CEO Pay and Firm Size: an Update after the Crisis

Xavier Gabaix† Augustin Landier‡ Julien Sauvagnat§

October 8 2012

Abstract

In the competitive talent market view formalized in Gabaix and Landier (2008), CEO compensation is determined in a competitive talent market, and reflects the size of firms affected by talent. This paper offers an empirical update on this view. The years 2004-2011, which include the recent crisis were not part of the initial study and offer a laboratory to examine the theory as they include new positive and negative shocks to the size of large firms. Executive compensation at the top did closely track the evolution of average firm value during those years. During the crisis (2007 - 2009), average total firm values decreased by -17%, and CEO (ex ante) pay by -28%. During 2009-2011, we observe a rebound of firm values by +19% and CEO pay by +22%. These fairly proportional changes provide a validity check in favor of the “size of stakes” view.

*Prepared for the Economic Journal’s Features issue on executive pay. Landier aknowledges support from Scor Chair at Fondation JJ Laffont.
†NYU Stern School of Business, CEPR and NBER (e-mail: xgabaix@stern.nyu.edu)
‡Toulouse School of Economics (e-mail: augustin.landier@tse-fr.eu)
§Toulouse School of Economics (e-mail: julien.sauvagnat@gmail.com)
1. Introduction

Executive compensation remains very much at the center-stage of academic and policy debates. A relative lack of consensus seems to prevail regarding the origins of the large rise of executive compensation observed in the US since the 70s. According to some scholars (see e.g. Bebchuck and Fried (2004) for a summary of this view), rising compensation is due to a higher ability of CEOs to extract rents from shareholders, e.g. by capturing their board (Shivdasani & Yermack (1999)) or appointing compensation consultants that cater to their interests (Murphy & Sandino (2008)). Others argue that the very function of CEOs has changed over time: They are now more often poached from outside firms than before (Murphy & Zabojnik (2004) and Frydman (2005)); shareholders have become more convinced of the importance of financial incentives (Jensen et al. (2004)). By contrast, Gabaix and Landier (2008, henceforth GL) argue that the bulk of variations in CEO compensation across time and across companies can be explained as the result of competitive market forces. They show that under fairly general assumptions, in a market where the impact of CEO talent is scaled linearly by firm size, and where matching CEOs with firms is frictionless (as in Sattinger 1993 and Tervio 2008), one should expect the compensation of CEOs to follow the following formula:

\[w(n) = DS(n_*)^{\beta/\alpha} S(n)^{1-\beta/\alpha} \]

where \(w(n) \) is the dollar compensation of the CEO of the \(n^{th} \) biggest firm by decreasing size, \(n_* \) denotes the index of the reference firm (e.g. the 250th largest firm); \(\alpha \) is given by the distribution of firm size at the top: \(S(n) = An^{-\alpha} \); and \(\beta \) depends of the distribution of talent at the top. GL calibrate \(\beta/\alpha \approx 2/3 \). In particular, this formula predicts that if all firm sizes rise (resp. decline) over time by a factor \(x \), compensation should rise (resp. decline) by that same factor. We call the theory of managerial pay proposed by GL the “size of stakes view”, because it implies that as the size of large firms has increased over time, executive compensation has increased by a similar factor, as all firms have a higher willingness to pay for talent. GL, using data from 1970-2003 provide evidence consistent with the size of stakes view.

In this paper, we test whether the size of stakes view of executive compensation, proposed by GL passes the test of time. The years 2004-2011, which include the great recession were not part of the
initial study and provide the opportunity to run an informative “out-of-sample” test of the theory. During the financial crisis, the market capitalization of large companies was strongly negatively impacted. This offers an exceptional laboratory to potentially reject the size of stakes view, which predicts that changes in average CEO compensation in the largest firms should follow the changes in the average size of these firms. In line with the theory, we do find that executive compensation at the top did closely track the evolution of average firm value during those years. The recent data thus tend to be supportive of the equilibrium model developed in GL; the estimates that we find for β/α are very close to those of our original study and we confirm the constant linear scaling of talent impact with size.

To evaluate the theory, we update the two compensation indices used in GL: Between 1980 and 2011, the Jensen - Murphy - Wruck (JMW) compensation index has increased by 569% while the Frydman - Saks (FS) compensation index has increased by 341% (here, as everywhere in this article, increases are in real, inflation-adjusted quantities). By taking the average, we obtain a rise in CEO pay of 405%. In the same period, the average firm market value of the largest 500 US firms has increased by 425% while the average equity value of the largest 500 US firms (in terms of equity value) has increased by 467%. Thus the evidence supports the broadly proportional evolution of pay and firm size in the period 1980-2011.

Interestingly, over the recent period 2004 - 2011, firm size has successively sharply dropped and then rebounded. This offers a fairly strong test for the size of stakes view. According to this view, proportional changes in compensation should be observed as markets drop and rebound. We find that movements in CEO compensation did indeed closely track movements in firm size: Over 2007-2009, average total firm values decreased by -17.4%, equity values by -37.9%, and compensation indices by -27.7%. During 2009-2011, we observe a rebound of firm values by +19%, equity values by +27%, and compensation indices by +22%.

We want to highlight that the size of stakes view does not hinge on the fact that stock-markets be perfectly efficient. Even if market values were a poor proxy for fundamental values of firms, the market view developed in GL still applies; it states that the market for talents and the market for assets are deeply intertwined. If shareholders overvalue asset prices, it is a natural market outcome that talent be overvalued by the same factor (this is because in a frictionless framework, shareholders, who are the owners of assets, also have control over hiring decisions). If they overvalue
assets, they will exhibit a higher than normal willingness to pay for talent.

It is difficult to assess whether the recent years, that are the focus of the present study, are compatible with the “rent-extraction view” of compensation. Indeed without a specific form for the “stealing technology” used by managers, it is not possible to predict how rents should vary over time. If one believes that the “outrage constraint” faced by managers is tighter in downturns (see Bebchuk and Grinstein (2005)), then one should expect rents to fall as aggregate market performance is negative, but it is hard to know by what factor. By contrast, our prediction that pay in the largest firms should change over time in the same proportions as the size of large firms is easy to reject.

Our results are very much in line with Kaplan (2012), who documents that the ratio of average CEO pay to average firm market capitalization has been constant over time since 1960. Kaplan (2012) uses market capitalization whereas our benchmark approach uses total firm value (i.e. debt plus equity market value). We revisit whether total firm value is a better proxy for firm size in our theory than other measures of size such as market capitalization or sales. Total firm value (debt+equity) yields estimates that are theoretically more appealing (as it is independent of leverage choice), but pure equity has a good explanatory power, especially for short-term movements (see Figure 1). Perhaps firms that are riskier and that have more upside potential choose to have less debt (to avoid bankruptcy costs). Then, equity is likely to be a better proxy than debt+equity for how much a CEO can impact the firm.

2. Data Description

We incorporate the recent period in the regressions and graphs presented in GL. For this, we follow the methodology of GL. However, there are two noteworthy differences. First, we restrict our attention to US-based firms. The original study took all firms in Compustat. However, since Compustat has been including many more foreign firms, an additional filtering is in order. Second, the procedure followed to construct total firm value in GL unwittingly excluded some banks because the item Deferred Taxes is often missing in Compustat for these firms.\(^1\) As shown below, we thus set deferred taxes to 0 when missing before computing total firm value. As a novelty with respect

\(^1\)This effect was noted by Nagel (2010). We obtain very similar results in what follows when Deferred Taxes are excluded from the computation of total firm value.
to GL, prompted by interesting results in Kaplan (2012), we introduce equity market value as an alternative measure of firm size. We first describe in details the data, and then present the results.

2.1 Datasets

We use two datasets. Execucomp provides us with data on CEO compensation. Regressions presented in this paper were performed with Execucomp data extracted from WRDS in September 2012. We use Compustat to retrieve information on the size of US-based firms. US-based companies are identified with Compustat variable FIC.

CEO Compensation. The Execucomp panel provides data on compensation of the five best paid executives of the largest US firms from 1992. We identify the CEO of each firm-year in Execucomp with the dummy variable CEOANN. However, using the CEOANN variable, some firm-year observations have no CEO in Execucomp. We are however able in some cases to infer the CEO’s identity from the BECAMECEO variable indicating the date at which the individual became CEO. Specifically, when the CEOANN variable indicates no CEOs for a given firm-year, we consider an executive as the CEO of the firm in year \(t \) when (i) the BECAMECEO variable indicates that the executive was appointed as the CEO in year \(t \) or before and (ii) the dummy variable CEOANN indicates the executive as the CEO of the firm in year \(t + 1 \) or after.

CEO compensation is then measured with Execucomp variable, TDC1, which includes salary, bonus, restricted stock granted and Black-Scholes value of stock-options granted. Finally, CEO compensation is converted into 2000 constant dollars using the GDP deflator of the Bureau of Economic Analysis.

Firm size. We will use different proxies for firm size, namely total firm value, earning before interest and taxes, sales and equity value. We construct these variables from Compustat. Total firm value is the sum of the market value of equity, defined as number of shares outstanding (item CSHO) multiplied by the end-of-fiscal-year stock price (item PRCC,F), and the book value of debt, defined as total assets (item AT) minus the sum of book value of equity (item CEQ) and deferred taxes (item TXDB); we set deferred taxes to 0 when missing. Earnings before interest and taxes is (item OIBDP-item DP). Sales is measured with Compustat item SALE. Equity value is (item CSHO*item PRCC,F). All quantities are converted into 2000 constant dollars using the GDP
deflator of the Bureau of Economic Analysis. Finally, we construct the 48 Fama-French industry
dummies from the conversion table in the Appendix of Fama and French (1997) using the firm’s 4
digit SIC industry code.

2.2 Compensation indices

To evaluate changes in CEO pay over the long run, we rely on the same compensation indices used
in GL, namely the JMW and FS compensation indices.

The FS compensation index is based on Frydman and Saks (2010). Total Compensation is
the sum of salaries, bonuses, long-term incentive payments, and the Black-Scholes value of options
granted. The data are based on the three highest-paid officers in the largest 50 firms in 1940, 1960,
and 1990. The data appendix in Frydman and Saks (2010) provides detailed information on the
sample selection.

The JMW Compensation Index is based on the data of Jensen, Murphy, and Wruck (2004). Their sample encompasses all CEOs included in the S&P 500, using data from Forbes and Execu-
Comp. CEO total pay includes cash pay, restricted stock, payouts from long-term pay programs,
and the value of stock options granted from 1992 onward using ExecuComp’s modified Black-Scholes
approach. Compensation prior to 1978 excludes option grants and is computed between 1978 and
1991 using the amounts realized from exercising stock options.

Reproducing Figure 1 and Table III of GL for the period 1970 - 2011 requires extending both
compensation indices over the recent period, i.e. 2004 - 2011. We proceed in the following way : for every year between 2005 and 2011, the FS compensation index (respectively, the JMW com-
ensation index) in year \(t \) equals the FS compensation index (respectively, the JMW compensation
index) in year \(t - 1 \) times the annual percentage increase in the mean CEO compensation of the
largest 500 US-based firms.

Specifically, we first rank for every fiscal year between 2005 and 2011 US-based companies in
terms of total firm value, computed at the end of the previous fiscal year. For every year between
2005 and 2011, we then merge Compustat and Execucomp with the GVKEY identifier and keep
the largest 500 US companies for which we can retrieve CEO compensation in Execucomp. We
use the procedure mentioned above to identify CEOs in Execucomp. Before computing the annual
percentage increase in the mean CEO compensation, we deflate it using the Bureau of Economic Analysis GDP Deflator.

Figure 1 compares the evolution of CEO pay and firm size over the period 1970-2011. We again restrict our attention to firms with non-missing information on CEO pay in Execucomp when computing the average market total value of the largest 500 US-based firms between 1992 and 2011. Before 1992 (the earliest date for the Execucomp database), we simply compute the average market total value of the largest 500 US-based firms present in Compustat. Finally, using a symmetric procedure, we compute the average equity value of the largest 500 US-based firms in terms of equity value. After 1992, as above, we again exclude firms for which Execucomp does not provide information on CEO compensation.

Figure 2 plots the firm size distribution confirming a fat-tailed distribution of firms, consistent with a Zipf’s law for firm size (Simon 1955, Axtell 2001, Gabaix 1999, Luttmer 2007), here firm size being firm total market value rather than the usual “size” expressed by number of employees.

3. Results

3.1 CEO Pay and Proxies For Firm Size

As in GL, we first consider three proxies for firm size - namely total firm value, earnings before interest and taxes (EBIT) and sales. We then regress the logarithms of CEO compensation of the 1000 highest paid CEOs on the logarithms of the different size proxies, controlling for year and industry.

Table 1 presents the results. The three size proxies have positive and significant coefficients when used together to predict compensation (column (1)). Moreover, as shown in columns (2) to (4), total market value, EBIT and sales have similar predictive power when used alone to predict compensation, as can be seen by comparing R^2, with a slight edge for firm value. In column (5), we introduce equity value as an alternative measure of firm size. Again, equity value turns out to be a valid proxy for firm size.
3.2 Panel Evidence, 1992 - 2011

As in GL, we estimate:

\[\ln(w_{i,t}) = d + e \times \ln(S_{n^*,t-1}) + f \times \ln(S_{i,t-1}) \]

where \(w_{i,t} \) is CEO compensation in firm \(i \) and year \(t \), \(S_{n^*,t-1} \) is market total value of the firm number \(n^* = 250 \) in the sample at the end of fiscal year \(t - 1 \) and \(S_{i,t-1} \) is firm \(i \) total market value. We cluster standard errors at either the firm level or at the year level. The sample consists of either the top 500 or top 1000 US-based companies in terms of firm value for which we can retrieve CEO compensation in Execucomp (using the procedure mentioned above). The sample period is from 1992 to 2011.

Columns (1) to (3) (respectively columns (4) to (6)) in Table 2 present the results for the largest 1000 (respectively 500) US firms. Columns (2) and (4) include industry fixed effects while columns (3) and (6) include firm fixed effects. The results obtained over the sample period 1992 - 2011 remain consistent with the size of stakes theory. For all specifications, the coefficients (and standard errors) are similar to those in GL. Moreover, \(p \) values for the null hypothesis that \(e + f = 1 \) are above 0.1 in specifications (1), (2) and (5), which is consistent with the constant returns to scale hypothesis in firm size.

3.3 Times-Series US Evidence, 1971 - 2011

Figure 1 shows the evolution of CEO pay and firm size for the largest US-based firms between 1971 and 2011.

Between 1980 and 2011, the JMW compensation index has increased by 569% while the FS compensation index has increased by 341%. By taking the average, we obtain a rise in CEO pay of
405%. In the same period, the average firm market value of the largest 500 US firms has increased by 425% while the average equity value of the largest 500 US firms (in terms of equity value) has increased by 467%. Thus the evidence supports the broadly proportional evolution of pay and firm size in the period 1980-2011. Note that since the levels of compensation reflect dollar values on an ex-ante basis (e.g. values of stock-options are evaluated at time granted, as opposed to time exercised), there is no hardwired link between compensation and stock-market values.

As shown in Table 4, over the recent period 2004 - 2011, movements in CEO compensation closely follow movements in firm size. In particular, CEO pay and firm size have both decreased during the crisis (2007 - 2009): Average total firm values decreased by -17.4%, equity values by -37.9%, and compensation indices by -27.7%. During 2009-2011, we observe a rebound of firm values by +19%, equity values by +27%, and compensation indices by +22%. We see these fairly proportional changes over successive episodes of market drops and market rebound as a strong validity test for the size of stakes view.

It is important to notice that the size of stakes view does not hinge on the fact that stock-markets be perfectly efficient. Even if market values were a poor proxy for fundamental values of firms, the market view developed in GL still applies; it states that the market for talents and the market for assets are deeply intertwined. If shareholders overvalue asset prices, it is a natural market outcome that talent be overvalued by the same factor (this is because in our frictionless framework shareholders have control over hiring decisions).

As in GL, we estimate:

\[\Delta_t(\ln w_t) = \hat{\gamma} \times \Delta_t \ln S_{*,t-1} \]

where \(w \) is either the JMW index or the FS index and \(S_* \) is the mean firm total value of the top 500 largest US-based firms. Again, we restrict our attention to US-based firms for which we can retrieve CEO compensation in Execucomp. The sample period is 1971-2011.
GL find estimates \(\hat{\gamma} = 1.14 \) using the JMW compensation index and \(\hat{\gamma} = 0.87 \) using FS compensation index over the period 1971 - 2003. As shown in Table 5, we find extremely close estimates between 1971 and 2011: \(\hat{\gamma} = 1.01 \) using the JMW compensation index and \(\hat{\gamma} = 0.82 \) using FS compensation index.

This method puts all the weight on the contemporaneous changes in firm size and pay. Of course, the economics predicts that pay will track size one-for-one, but there could be some delay in that relation. Kaplan (2012) has proposed a graphical device that captures the medium-frequency relation between pay and size (represented by firms size) better than regression (1). Interestingly, he finds good support for a stable ratio between average pay and average firm size since 1960.

4. Conclusion and Some Open Questions

The crisis offered new events to see the reaction of compensation to firm size, and the GL theory appears to pass the test. We wish to highlight that there are still many things to explore, enrich, or perhaps correct this view. For instance, behavioral factors in the perception of CEO talent could be important (Malmendier and Tate 2009). Because of this possibility, GL works out how contagion effects could potentially strongly affect CEO pay. Bereskin and Cicero (forth.) present some evidence in support of that effect.

On the theoretical side, it would be good to extend the model to incentives (see Edmans, Gabaix and Landier (2009) and Edmans and Gabaix (2011) for static models that integrate well with GL, and Dittman, Maug and Spalt (2011) for a behavioral approach), in particular with dynamic incentives and CEO turnover (see Jenter and Kanaan forth. and Eisfeld-Kuhnen 2012). This remains difficult, though perhaps within reach.

Also, integrating the CEO market with other talent markets (as in Kaplan and Rauh 2010 and the spirit of Rosen 1981) would be good. Conceptually, we would expect some integration with the market for CEO of private companies and for hedge fund managers, for instance. It is likely
that studying this integration might shed light on the increase in inequality, particularly with the rise of top incomes (Piketty and Saez 2003, Lemieux, MacLeod and Parent 2009). In that respect, relatedly, progress in the measurement of “talent” and “CEO skill” is encouraging (Bertrand and Schoar 2003, Custodio, Ferreira and Matos forth., Falato, Li and Milbourn 2012, Bennedsen et al. 2012).

Kaplan (2012), building on Frydman and Saks (2010), finds that the GL theory works well in the 1960-2010 sample, but less so before. Why is that? One reason is that stock market values were depressed, so perhaps the full firm value (Debt + equity) was higher than pure equity (which is what Kaplan uses). Another important under-researched channel is the supply of skills. One possibility that would be reasonably researchable would be that the supply of skills was lower before 1960 (perhaps because of technology, GI bill etc.), and that supply of MBA and college graduates increased after World War II. That hypothesis seems researchable as more data becomes available (Goldin and Katz 2008).

Finally, as many countries now have started forcing the disclosure of pay, investigating pay in those countries seems both doable and informative.

5. References

Bennedsen, Morten, Kasper Nielsen, Francisco Pérez-González, and Daniel Wolfenzon (2012),“Do CEOs matter?,” working paper, Stanford.

Jenter, Dirk, and Fadi Kanaan (forth.), “CEO Turnover and Relative Performance Evaluation”, \textit{Journal of Finance}.

Figure 1: Executive Compensation and Size of the Top 500 Firms

FS compensation index is based on Frydman and Saks (2010). Total Compensation is the sum of salaries, bonuses, long-term incentive payments, and the Black-Scholes value of options granted. The data are based on the three highest-paid officers in the largest 50 firms in 1940, 1960, and 1990. The JMW Compensation Index is based on the data of Jensen, Murphy, and Wruck (2004). Their sample encompasses all CEOs included in the S&P 500, using data from Forbes and ExecuComp. CEO total pay includes cash pay, restricted stock, payouts from long-term pay programs, and the value of stock options granted from 1992 onward using ExecuComp’s modified Black-Scholes approach. Compensation prior to 1978 excludes option grants and is computed between 1978 and 1991 using the amounts realized from exercising stock options. Both compensation indices are available until 2004. From 2005 to 2011, the FS compensation index in year t equals the FS compensation index in year $t-1$ times the annual percentage increase in the mean CEOs compensation – defined as ExecuComp variable TDC1 – of the top 500 largest US-based firms (in term of total market firm value, i.e. debt plus equity). We use the same methodology to extend the JMW Compensation Index. The formula we use for total firm value is $(\text{CSHO} \times PRCC_F + AT - CEQ - TXDB)$, computed at the end of the previous fiscal year. Deferred Taxes (item TXDB) is set to 0 when missing. TOP 500 Firm Value is the mean firm value of the top 500 largest US-based firms (in terms of firm value). TOP 500 Equity Value is the mean market equity value – defined as $(\text{CSHO} \times PRCC_F)$ – of the top 500 largest US-based firms (in terms of equity.
value). In both cases, after 1992, we exclude from our computations firms with missing data in Execucomp on CEO compensation. All indices are normalized to be equal to 1 in 1980. All quantities were first converted into constant dollars using the GDP deflator of the Bureau of Economic Analysis.
In 2010, we take the top 500 US-based firms by total firm value with non-missing data on CEO compensation, order them by size, \(S_1 \geq S_2 \geq \ldots \geq S_{500} \), and plot \(\ln S \) on the horizontal axis and \(\ln(Rank - \frac{1}{2}) \) on the vertical axis. Gabaix and Ibragimov (2011) recommend the \(-\frac{1}{2}\) term and show that it removes the leading small sample bias. Regressing \(\ln(Rank - \frac{1}{2}) = -\zeta \ln(S) + \text{constant} \) yields a Pareto exponent \(\zeta = 0.915 \) (standard error 0.057), \(R^2 = 0.99 \). \(\zeta \) close to 1 is indicative of an approximate Zipf’s law for firm total value.
Table 1: CEO PAY AND DIFFERENT PROXIES FOR FIRM SIZE

The sample consists of all US-based firms between 1992 and 2011 for which we can retrieve both firm size in Compustat and CEO compensation in Execucomp. We select each year the 1000 highest-paid CEOs, using the ExecuComp total compensation variable TDC1, which includes salary, bonus, restricted stock granted, and Black-Scholes value of stock-options granted. We regress the log compensation of the CEO in year t on the log of the firm’s size proxies at the end of year $t - 1$. All nominal quantities were first converted into 2000 constant dollars using the GDP deflator of the Bureau of Economic Analysis. The formula we use for total firm value is $(\text{CSHO} \times \text{PRCC} + \text{AT} - \text{CEQ} - \text{TXDB})$. Deferred Taxes (item TXDB) is set to 0 when missing. Income is measured as earnings before interest and taxes, defined from Compustat as (OIBDP-DP). Sales is measured with Compustat item SALE. Equity value is $(\text{CSHO} \times \text{PRCC})$. The industries are the Fama French [1997] 48 sectors. We report standard errors clustered at the firm level (first line) and at the year level (second line).

<table>
<thead>
<tr>
<th></th>
<th>ln(Total compensation)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>ln(Firm Value)</td>
<td>0.176</td>
</tr>
<tr>
<td></td>
<td>(0.0311)</td>
</tr>
<tr>
<td>ln(Income)</td>
<td>0.0772</td>
</tr>
<tr>
<td></td>
<td>(0.0180)</td>
</tr>
<tr>
<td>ln(Sales)</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td>(0.0143)</td>
</tr>
<tr>
<td>ln(Equity Value)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>Yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>17949</td>
</tr>
<tr>
<td>R^2</td>
<td>0.295</td>
</tr>
</tbody>
</table>
Table 2: CEO PAY, OWN FIRM SIZE, AND REFERENCE FIRM SIZE

Size is market total value

The sample consists of all US-based firms between 1992 and 2011 for which we can retrieve both firm size in Compustat and CEO compensation in Execucomp. We select each year the top n (n = 500, 1000) largest firms (in term of total market firm value, i.e. debt plus equity). The formula we use for total firm value is (CSHO*PRCC_F+AT-CEQ-TXDB). Deferred Taxes (item TXDB) is set to 0 when missing. We retrieve from ExecuComp the total compensation variable, TDC1 in year t, which includes salary, bonus, restricted stock granted and Black-Scholes value of stock-options granted. All nominal quantities are converted into 2000 dollars using the GDP deflator of the Bureau of Economic Analysis. The industries are the Fama French [1997] 48 sectors. We regress the log of total compensation of the CEO in year \(t \) on the log of the firm value (debt plus equity) at the end of the year \(t - 1 \), and the log of the 250th firm market value at the end of the year \(t - 1 \). We report standard errors clustered at the firm level (first line) and at the year level (second line).

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(Total compensation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In(Firm Value)</td>
<td>0.331</td>
<td>0.387</td>
<td>0.251</td>
<td>0.310</td>
<td>0.356</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>(0.0155)</td>
<td>(0.0165)</td>
<td>(0.0500)</td>
<td>(0.0269)</td>
<td>(0.0263)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>ln(Firm Value of firm # 250)</td>
<td>0.690</td>
<td>0.611</td>
<td>0.846</td>
<td>0.843</td>
<td>0.736</td>
<td>1.062</td>
</tr>
<tr>
<td></td>
<td>(0.0380)</td>
<td>(0.0362)</td>
<td>(0.0484)</td>
<td>(0.0588)</td>
<td>(0.0580)</td>
<td>(0.0982)</td>
</tr>
<tr>
<td>ln(Firm Value)+ln(Firm Value of firm # 250)-1</td>
<td>0.020</td>
<td>-0.002</td>
<td>0.097</td>
<td>0.153</td>
<td>0.092</td>
<td>0.191</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Firm fixed effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>19909</td>
<td>19909</td>
<td>19909</td>
<td>9989</td>
<td>9989</td>
<td>9989</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.197</td>
<td>0.273</td>
<td>0.574</td>
<td>0.140</td>
<td>0.220</td>
<td>0.561</td>
</tr>
</tbody>
</table>
Table 3: CEO PAY, OWN FIRM SIZE, AND REFERENCE FIRM SIZE

Size is equity value

The sample consists of all US-based firms between 1992 and 2011 for which we can retrieve both firm size in Compustat and CEO compensation in Execucomp. We select each year the top n (n = 500, 1000) largest firms in term of equity value. The formula we use for equity value is (CSHO*PRCC_F). We retrieve from ExecuComp the total compensation variable, TDC1 in year t, which includes salary, bonus, restricted stock granted and Black-Scholes value of stock-options granted. All nominal quantities are converted into 2000 dollars using the GDP deflator of the Bureau of Economic Analysis. The industries are the Fama French [1997] 48 sectors. We regress the log of total compensation of the CEO in year t on the log of the equity value at the end of the year $t - 1$, and the log of the 250th equity value at the end of the year $t - 1$. We report standard errors clustered at the firm level (first line) and at the year level (second line).

<table>
<thead>
<tr>
<th></th>
<th>Top 1000</th>
<th></th>
<th></th>
<th>Top 500</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ln(Total compensation)</td>
<td></td>
<td></td>
<td>ln(Total compensation)</td>
</tr>
<tr>
<td>ln(Equity Value)</td>
<td>0.388</td>
<td>0.390</td>
<td>0.282</td>
<td>0.338</td>
<td>0.332</td>
</tr>
<tr>
<td></td>
<td>(0.0197)</td>
<td>(0.0204)</td>
<td>(0.0408)</td>
<td>(0.0393)</td>
<td>(0.0382)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0137)</td>
<td>(0.0238)</td>
<td>(0.0256)</td>
<td>(0.0249)</td>
</tr>
<tr>
<td>ln(Equity Value of firm # 250)</td>
<td>0.445</td>
<td>0.420</td>
<td>0.544</td>
<td>0.567</td>
<td>0.548</td>
</tr>
<tr>
<td></td>
<td>(0.0297)</td>
<td>(0.0303)</td>
<td>(0.0345)</td>
<td>(0.0467)</td>
<td>(0.0491)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0716)</td>
<td>(0.102)</td>
<td>(0.0863)</td>
<td>(0.0825)</td>
</tr>
<tr>
<td>Industry fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm fixed effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>ln(Equity Value)+ln(Equity Value of firm # 250)-1</td>
<td>-0.166</td>
<td>-0.189</td>
<td>-0.173</td>
<td>-0.095</td>
<td>-0.121</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.029)</td>
<td>(0.031)</td>
<td>(0.044)</td>
<td>(0.044)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.069)</td>
<td>(0.092)</td>
<td>(0.087)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>Observations</td>
<td>19908</td>
<td>19908</td>
<td>19908</td>
<td>9985</td>
<td>9985</td>
</tr>
<tr>
<td>R^2</td>
<td>0.217</td>
<td>0.243</td>
<td>0.572</td>
<td>0.139</td>
<td>0.175</td>
</tr>
</tbody>
</table>

Table 4: EXECUTIVE COMPENSATION AND SIZE (2007-2011)

This table presents the evolution of firm size and CEO compensation over the period 2007 - 2011. The sample consists of the top 500 US-based firms for which we can retrieve both firm size in Compustat and CEO compensation in Execucomp.

<table>
<thead>
<tr>
<th>Change over:</th>
<th>Total firm value</th>
<th>Equity value</th>
<th>FS comp index</th>
<th>JMW comp index</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2007-2009):</td>
<td>-17.4%</td>
<td>-37.8%</td>
<td>-27.7%</td>
<td>-27.7%</td>
</tr>
<tr>
<td>(2009-2011):</td>
<td>19.0%</td>
<td>27.0%</td>
<td>22.0%</td>
<td>22.0%</td>
</tr>
</tbody>
</table>

20
Table 5: CEO PAY AND THE SIZE OF LARGE FIRMS, 1970–2011

Size is market total value

We estimate for \(t \geq 1971, \)

\[
\Delta (\ln w_t) = \hat{\gamma} \times \Delta (\ln S_{*,t-1}),
\]

where \(w \) is either the Jensen–Murphy–Wruck index or the Frydman–Saks index and \(S_* \) is the mean equity value of the top 500 largest US-based firms (in terms ot equity value). To be included in the sample after 1992, a firm must have non-missing information on CEO compensation in ExecuComp. We show Newey-West standard errors in parentheses, allowing the error term to be autocorrelated for up to two lags. The Jensen–Murphy–Wruck index is based on the data of Jensen, Murphy, and Wruck (2004). The Frydman–Saks index is based on Frydman and Saks (2010). Both compensation indexes are available until 2004. From 2005 to 2010, the FS compensation index in year \(t \) equals the FS compensation index in year \(t-1 \) times the annual increase in the mean CEOs compensation (ExecuComp variable TDC1) of the top 500 largest US-based firms (in term of total market firm value, i.e. debt plus equity). We use the same methodology to extend the JMW Compensation Index. The formula we use for firm value is \((\text{CSHO} \times \text{PRCC, F} + \text{AT-CEQ-TXDB})\), computed at the end of the previous fiscal year. Deferred Taxes (item TXDB) is set to 0 when missing. Quantities are deflated using the Bureau of Economic Analysis GDP deflator.

<table>
<thead>
<tr>
<th>(\Delta \ln(\text{Total compensation}))</th>
<th>(\text{Jensen-Murphy-Wruck index})</th>
<th>(\text{Frydman-Saks index})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \ln \text{Firm Value})</td>
<td>1.013***</td>
<td>0.821***</td>
</tr>
<tr>
<td></td>
<td>(0.351)</td>
<td>(0.189)</td>
</tr>
<tr>
<td>(\text{Constant})</td>
<td>0.0137</td>
<td>0.0052</td>
</tr>
<tr>
<td></td>
<td>(0.0282)</td>
<td>(0.0204)</td>
</tr>
<tr>
<td>(\text{Observations})</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

21
Table 6: CEO PAY AND THE SIZE OF LARGE FIRMS, 1970–2011

Size is equity value

We estimate for \(t \geq 1971 \),

\[
\Delta_t (\ln w_t) = \hat{\gamma} \times \Delta_t (\ln S_{*,t-1}),
\]

where \(w \) is either the Jensen–Murphy–Wruck index or the Frydman–Saks index and \(S_\ast \) is the mean equity value of the top 500 largest US-based firms (in terms of equity value). To be included in the sample after 1992, a firm must have non-missing information on CEO compensation in ExecuComp. Equity value is defined as \((\text{CSHO} \times \text{PRCC}_F)\). We show Newey-West standard errors in parentheses, allowing the error term to be autocorrelated for up to two lags.

The Jensen–Murphy–Wruck index is based on the data of Jensen, Murphy, and Wruck (2004). The Frydman–Saks index is based on Frydman and Saks (2010). Both compensation indexes are available until 2004. From 2005 to 2010, the FS compensation index in year \(t \) equals the FS compensation index in year \(t - 1 \) times the annual increase in the mean CEOs compensation (ExecuComp variable TDC1) of the top 500 largest US-based firms (in terms of total market firm value, i.e., debt plus equity). We use the same methodology to extend the JMW Compensation Index.

The formula we use for firm value is \((\text{CSHO} \times \text{PRCC}_F + \text{AT} - \text{CEQ} - \text{TXDB})\), computed at the end of the previous fiscal year. Deferred Taxes (item TXDB) is set to 0 when missing. Quantities are deflated using the Bureau of Economic Analysis GDP deflator.

\[
\begin{array}{ccc}
\Delta (\ln (\text{Total compensation})) & \text{Jensen-Murphy-Wruck index} & \text{Frydman-Saks index} \\
\Delta (\ln \text{Equity Value}) & 0.642^{***} & 0.412^{***} \\
& (0.149) & (0.106) \\
\text{Constant} & 0.0390^* & 0.0296 \\
& (0.0204) & (0.0185) \\
\text{Observations} & 40 & 40 \\
\end{array}
\]