Pandemics: emergence, spread and the formulation of control or mitigation policy

Dr Déirdre Hollingsworth

Medical Research Council
Centre for Outbreak Analysis & Modelling
Imperial College London
Pandemic emergence and spread

Emergence

Surveillance

Containment

Response & Mitigation
Pandemic emergence and spread

- Emergence
- Surveillance
- Containment
- Response & Mitigation
Emergence

Source: National Institute of Allergy and Infectious Diseases, NIH, USA
SARS 2003

Global alert 13th March 2003

- 8098 probable cases
- 27 countries
- 774 deaths (9.6%)

- Last cases June/July

Sources: WHO and Hollingsworth 2009
Journal of Public Health Policy
HIV/AIDS

• 2.6 million new infections, 1.8 million deaths in 2009
• Main pandemic strain emerged from chimpanzees in West Africa
• Emerged in late 19th/early 20th century
• Expansion may have been due to population changes in early 20th Century
• First noticed in early 1980s
• Asymptomatic transmission for many years prior to developing AIDS

Sources: UNAIDS, Lemey et al Genetics 2004 and references within, image Wikipedia Commons
Ebola haemorrhagic fever

- Intermittent outbreaks of a 10s to 100s of cases
- Very severe symptoms
- High mortality rate (up to 100%)
- Controlled by rapid response including quarantine

Sources: WHO and CDC, image Wikipedia Commons
H5N1 influenza – “bird” flu

Limited outbreaks, Severe symptoms
H1N1 influenza 2009 – “swine” flu

- Worldwide pandemic
- Millions of cases
- Low mortality

Fraser et al Science 2009
Emergence

• Biological factors
 – Ability to infect humans
 – Transmissible in humans

• Human factors
 – Interaction with animals
 – Contact and travel patterns

• Interactions
 – Biological factors which make containment unlikely
Basic Reproduction number, R_0

- R_0: Basic reproduction number
 - average no. of secondary cases generated by 1 primary case in a susceptible population

- R_t: Effective reproduction number
 - number of infections caused by each new case occurring at time, t

- The key determinant of incidence and prevalence of infection is the basic reproductive number R_0.
- Many factors determine its magnitude, including those that influence the typical course of infection in the patient and those that determine transmission between people.

Chains of transmission between hosts

<table>
<thead>
<tr>
<th>Generation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Infected</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

R_0 Basic reproduction number
Repeated crossing from reservoir

- Continued transmission within reservoir
- Multiple opportunities to evolve
- May not be picked up by surveillance
- Increase R_0
- Workers in animal markets had previously been exposed to SARS-like viruses

Antia et al Nature 2003
Cluster sizes

- Detecting unusual activity
- Larger cluster size indicates higher R_0
- Monitoring identifies how close R_0 is to 1

Ferguson et al Science 2004
Emergence

- Biological factors
 - Ability to infect humans
 - Transmissible in humans
- Human factors
 - Interaction with animals
 - Contact and travel patterns
- Interactions
 - Biological factors which make containment unlikely

\[R_0 > 1 \]
Symptoms and severity

• Identifiability of symptoms make surveillance easier
• Influenza-like-illness
 – Non-specific
 – Case definition often includes contact with other known cases
 – Need to look for unusual patterns, perhaps in non-standard data sources e.g. excessive paracetamol sales
• High severity makes detection more likely
Surveillance

- Google flu trends
- Use search terms to estimate incidence

- Health Map
- Early warning
- Internet reports
Young die disproportionately in influenza pandemics
Problems with estimating severity: delays

Garske et al, British Medical Journal 2009
Pandemic emergence and spread

Emergence
Surveillance
Containment
Response & Mitigation
Containment

• Contact tracing and quarantine
 – Pre-symptomatic infectiousness

• Local or global spatial containment
 – Epidemic growth rate
 – International travel

• Reducing impact
 – Mitigating impact
Containment: Epidemic curve

- Rate of new infections
- Time

- Establishment
- Exponential growth
- Endemicity

Random effects

Equilibrium, or recurrent epidemics

Ferguson et al Nature 2003
Control of SARS outbreaks

• Lack of pre-symptomatic infectiousness

➢ Increasingly rapid admission to hospital

➢ Infection control in hospitals

Fraser et al PNAS 2004

Riley et al Science 2003
Quarantine

Insufficient control to prevent epidemic

Fraser et al (2004) PNAS

$R_0 = \text{basic reproduction number}$

$\theta = \text{proportion of infections due to asymptomatic infections}$
Hong Kong 2003 SARS outbreak
Rapidly brought under control

Pattern of the epidemic:
stochastic mathematical model - fit to observations

No. of secondary cases generated by each primary case

(Riley, Fraser et al, 2003 Science)
Assume strain emerges in rural SE Asia.

For ‘human-like’ strain, time to peak in the first country affected anywhere from 80-120 days.

Key questions: can we stop spread at this early stage? What resources are required? Can we be sure?

Policies to contain a pandemic at source

Containment = elimination of virus before spread is extensive.

Variety of options; e.g.:

- treatment of cases.
- prophylaxis of household members.
- prophylaxis of schools/workplaces of cases.
- blanket prophylaxis of affected areas.
- Closure of schools/workplaces.
- Reduce travel in and out of affected zones

Delays, detection thresholds and usage limits simulated.

Pandemic influenza – antivirals

• Social + 5km prophylaxis
• 5km quarantine
• Infected
• Recovered
• Treated
• 100 days

International Airline Travel

International Tourist Arrivals, 1950-2004*

Source: World Tourism Organisation

Mean passengers per day
- 300 - 750
- 750 - 1500
- 1500 - 3000
- 3000 - 6000
- 6000 - 12000
International travel SARS 2003

- Global alert 13th March
- Up to 80% reduction in passenger numbers
- Coincident with peak in epidemic
- Continued beyond end of outbreak

Travel restrictions & Internal control

No control of source epidemic

$p = \text{Proportion of travel restricted}$

$R = 0.8, p = 0\%$

$R = 0.8, p = 80\%$

$R = 0.8, p = 99\%$

2003 SARS outbreak

Nature Medicine
SARS and influenza

<table>
<thead>
<tr>
<th></th>
<th>SARS</th>
<th>Influenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic reproductive number R_0</td>
<td>2.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Latent period</td>
<td>4 days</td>
<td>1.5 days</td>
</tr>
<tr>
<td>Infectious period</td>
<td>10 days</td>
<td>1.1 days</td>
</tr>
<tr>
<td>Epidemic doubling time</td>
<td>6.5 days</td>
<td>2.3 days</td>
</tr>
<tr>
<td>Pre- or asymptomatic infectiousness</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

Hollingsworth et al (2007) *Emerging Infectious Diseases*
International travel

• Airborne respiratory infections can rapidly spread globally
• Control of source epidemics is a major factor in limiting global spread of these infections
• Reductions in travel for SARS were too little, too late in absence of internal control
• Influenza is likely to spread globally prior to the introduction of travel restrictions

Nature Medicine and several other references at the time.
Global spread and the epidemic in Mexico
Pandemic emergence and spread

Emergence

Surveillance

Containment

Response & Mitigation
Response

• Priority tasks to inform policy
 – Clearly defined case definition
 – Real-time reporting
 – Identifying routes of transmission
 – Identifying etiological agent
 – Design of treatment protocols

• Epidemiological parameter estimation
 – R_0, incubation period, epidemic growth rate
 – Example of H1N1 2009 influenza
Parameter estimation: H1N1 Influenza 2009

‘Canaries in the mine’

Fraser et al Science 2009
Size of epidemic in Mexico

Strong correlation allows back-calculation of size of Mexican epidemic.

Best ‘estimate’ – 23,000 (18-32k) (based on interval censored model)
CFR=0.4%

Worst case (for severity) – 6,000 (based on presence-absence model)
CFR=1.4%

Fraser et al Science 2009
La Gloria: age-specific attack rates

Consistent with emerging US pattern at the time, though absolute magnitude may differ.

Fraser et al Science 2009
\(R_0 \) from Mexican epi curve

- Derived using renewal equation based method.
- \(R_0 = 1.37 \) (95% Cr.I.:1.24-1.59) for a model with Poisson case counts
- \(R_0 = 1.47 \) (95% Cr.I.:1.21-1.88) for negative binomial (overdispersed) case counts

Fraser et al Science 2009
Planning mitigation strategies

• Mathematical modelling can inform the design of mitigation strategies
 – Scenario building
 – Effect of uncertainties
 – Depends on good quality data

• Insights informed policy in 2009 H1N1 pandemic
Prioritising aims

- Cannot achieve all aims using the same strategy

Minimise peak demand
Minimise total cases

12 week strategy, starting week 5

Hollingsworth et al
PLoS Computational Biology 2010
Uncertainties in pandemic modelling

- Nature of virus (avian- or human-like)
- Transmissibility.
- Where transmission occurs (home, school, workplace, hospital).
- Lethality/risk groups for severe illness.
- The effect of ‘social distance measures’.
- Quality and timeliness of surveillance (ascertainment).
- Logistic constraints.
-
Summary

• Emergence
 – Impossible to predict exactly
 – Animal/human interface
 – Depends on both evolution of pathogen and human behaviour

• Containment?
 – Symptoms: type, timing, severity
 – Epidemic growth rate
 – Quality of surveillance

• Mitigation
 – Possible if plans are carefully constructed
Acknowledgements

• MRC Centre for Outbreak Analysis and Modelling
 – Neil Ferguson
 – Sir Roy Anderson
 – Christophe Fraser
 – Christl Donnelly

• Funders include:
 – Imperial College
 – Medical Research Council
 – European Commission
 – Bill and Melinda Gates Foundation