
Technische Universität München

Department of Mathematics

Customer Churn Prediction In The
Insurance Sector Using Machine

Learning Methods

Implementation in SAS

Master Thesis

by

Bassant Abed

Supervisor: Prof. Dr. Matthias Scherer
Advisor: Gabriela Zeller
Submission Date: 18th of June 2020

I hereby declare that this thesis is my own work and that no other sources have been
used except those clearly indicated and referenced.

Munich, 18/06/2020

Abstract

To prevent customer churn in a highly competitive sector, insurance companies can
leverage the potential of machine learning automation and the availability of various
data sources, to enhance customer understanding. Due to the advances in standard
data-mining techniques, recent studies in search of the best churn prediction models have
been increasingly applying more sophisticated methods that deliver higher prediction
accuracy but often lack interpretability. The aim of this thesis is to take traditional churn
prediction models one step further by combining class imbalance reduction and predictive
power maximisation with a perspective on interpretability. The study is conducted in
collaboration with the German insurance group ERGO, with the final objective of
validating and improving an existing churn prediction model and identifying churn drivers
for clients with a likelihood of cancelling their active contract in the upcoming quarters.
An extensive feature set characterizing clients’ data is systematically investigated using
data-mining techniques to identify relevant churn drivers. In the advanced analytics
software SAS Enterprise Guide and SAS Enterprise Miner, five prediction models are
implemented, namely logistic regression, decision trees, random forests, gradient boosting,
and neural networks. Through data pre-processing, class imbalance and dimensionality
reduction, models with higher Precision are achieved. Supported by the results of unbiased
evaluation metrics, a fine-tuned random forest model delivers the most promising results
for churn identification. On the provided dataset, machine learning models outperform
classic regression by delivering higher Sensitivity, Precision, and Cumulative Lift values.
Beyond building prediction models, an insight into extractable actions and interpretability
methods is provided to allow marketeers to take post-modelling effective action. The final
determined models could help boost customer retention by applying the suggested actions
and providing the desired customer understanding.

Zusammenfassung

Um den Verlust von Kunden in einem hoch kompetitiven Sektor zu verhindern,
können Versicherungsunternehmen das Potenzial der Automatisierung durch modernes
maschinelles Lernen und diverse Datenquellen nutzen, um ihr Kundenverständnis
zu verbessern. Aufgrund der Fortschritte bei den gängigen Data-Mining Techniken
wenden neuere Studien auf der Suche nach den besten Storno-Vorhersagemodellen
zunehmend komplexere Methoden an, die zwar eine höhere Vorhersagegenauigkeit
liefern, deren Interpretation jedoch häufig schwierig ist. Das Ziel dieser Arbeit ist es,
traditionelle Storno-Vorhersagemodelle weiterzuentwickeln, um unter Berücksichtigung
des Klassenungleichgewichts hohe Vorhersagekraft und potenziell verbesserte
Interpretierbarkeit zu kombinieren. Die Studie wird in Zusammenarbeit mit der
deutschen Versicherungsgruppe ERGO durchgeführt, um einerseits ein bestehendes
Storno-Vorhersagemodell zu validieren und zu erweitern und andererseits Stornotreiber
für Kunden, die in den kommenden Quartalen eine hohe Kündigungswahrscheinlichkeit
für ihren aktiven Vertrag aufweisen, zu identifizieren. Der in dieser Arbeit bereitgestellte
Datensatz umfasst zahlreiche Eingangsvariablen zur Charakterisierung jedes Kunden,
welche mithilfe von Data-Mining Techniken systematisch untersucht werden, um
relevante Stornotreiber zu identifizieren. In der Software SAS Enterprise Guide und SAS
Enterprise Miner wird zunächst eine geeignete Vorverarbeitung durchgeführt (Bereinigung
des Datensatzes, Dimensionsreduktion, Reduzierung des Klassenungleichgewichts), bevor
die fünf Vorhersagemodelle logistische Regression, Entscheidungsbäume, Random
Forest, Gradient Boosting und neuronale Netze implementiert werden. Die Modelle
werden anhand geeigneter Performance-Metriken verglichen, wobei ein Random Forest
Modell die vielversprechendsten Ergebnisse für die Identifizierung von Storno liefert.
In dem in dieser Arbeit verwendeten Datensatz übertreffen Machine Learning Modelle
die klassische logistische Regression, insofern, dass sie höhere Werte für Sensitivität,
Präzision und kumulativen Lift liefern. Über die Erstellung von Vorhersagemodellen
hinaus wird ein Einblick in einsetzbare Maßnahmen und Interpretierbarkeitsmethoden
gegeben, sodass Versicherer aufbauend auf der Modellierung effektive Maßnahmen
zur Storno-Reduktion ergreifen können. So können die vorgestellten Modelle zur
Kundenbindung beitragen, indem relevante Storno-Treiber rechtzeitig identifiziert und
anschließend die vorgeschlagenen Maßnahmen angewendet werden, um die Abwanderung
von Kunden zu verhindern.

Acknowledgements

I sincerely want to thank Prof. Dr. Matthias Scherer for allowing me to write this thesis
under his supervision, enabling many scientifically enriching discussions and his patient
guidance, encouragement, and advice. I would also like to express my deepest gratitude
to my advisor Gabriela Zeller for her grateful assistance, suggestions, and continuous
motivation. Moreover, I would like to give thanks to all my supervisors from ERGO for
their project management support, insights, and coaching. Finally, I am very grateful to
my family and friends for their endless support and patience.

Table of Contents

Abstract

List of Figures iv

List of Tables vii

1 Introduction 1

2 Background and Notation 3

2.1 Background and Existing Literature . 3

2.2 Mathematical Notation . 6

3 Modelling Process and Methods 7

3.1 Theoretical Methodology . 7

3.1.1 Logistic Regression . 7

3.1.2 Decision Tree . 15

3.1.3 Random Forest . 23

3.1.4 Gradient Boosting . 26

3.1.5 Neural Networks . 32

3.2 Prediction Process . 39

3.2.1 Data and Features Pre-Processing 39

3.2.2 Class Imbalance Reduction . 43

3.2.3 Dimensionality Reduction . 47

3.2.4 Modelling and Prediction . 55

i

TABLE OF CONTENTS ii

3.2.5 Model Evaluation . 57

4 Case Study: Insurance Data 64

4.1 Data Description and Visualisation . 64

4.2 Data and Features Pre-Processing . 69

4.3 Class Imbalance Reduction . 71

4.4 Dimensionality Reduction . 73

5 Case Study: Prediction Results and Evaluation 77

5.1 Logistic Regression . 77

5.2 Decision Tree . 87

5.3 Random Forest . 90

5.4 Gradient Boosting . 96

5.5 Neural Networks . 102

6 Case Study: Discussion 109

6.1 Model Comparison . 109

6.2 Model Selection . 115

6.3 Actions and Insights . 116

6.3.1 Actions in the Insurance Sector . 116

6.3.2 Interpretable Machine Learning . 119

6.3.3 Research Limitations . 124

7 Conclusion 125

Bibliography 126

Appendix A Supplementary Information 132

A.1 Proofs . 132

A.1.1 Chapter 3.1.1 . 132

A.1.2 Chapter 3.2.3 . 133

TABLE OF CONTENTS iii

A.2 Case Study . 134

A.2.1 Data Description . 134

A.2.2 Dimensionality Reduction . 135

A.2.3 SEM Implementation Remarks . 138

A.2.4 Results . 144

List of Figures

3.1 Sigmoid Function By Arunava (2018) . 9

3.2 Wrapper Selection Techniques . 13

3.3 Decision Tree Structure . 16

3.4 Example: Decision Tree Partition . 17

3.5 Feedforward Neural Network Architecture 34

3.6 Neural Network Architecture Formulas . 35

3.7 Cross-Validation Procedure . 40

3.8 Filter Methods Flowchart . 47

3.9 Wrapper Methods Flowchart . 49

3.10 Embedded Methods Flowchart . 51

3.11 ROC and PR Charts By Brownlee (2020) 60

3.12 Gain & Lift Evaluation Charts By Littler (2020) 62

4.1 Features’ Univariate Exploratory Analysis 66

4.2 Relative Churn Frequency Per Age Group 67

4.3 Relative Churn Frequency Per Region . 67

4.4 Pre-Processing Flowchart Overview . 70

4.5 Implemented Decision Tree - Variable Importance 76

5.1 Flowchart Logistic Regression Modelling in SEM 77

5.2 Confusion Matrices - Logistic Regression Model 1 81

5.3 Evaluation Charts - Logistic Regression Model 1 81

5.4 Confusion Matrices - Logistic Regression Model 2 83

iv

LIST OF FIGURES v

5.5 Evaluation Charts - Logistic Regression Model 2 84

5.6 Confusion Matrices - LASSO Model . 86

5.7 Evaluation Charts - LASSO Model . 86

5.8 Decision Tree Structure - Churn Prediction Example 89

5.9 Random Forest Out-of-Bag ASE Development 90

5.10 Random Forest Models’ Evaluation Charts 92

5.11 Random Forest Model R2 - Variable Importance 94

5.12 Random Forest Model R2 - Confusion Matrix 95

5.13 Gradient Boosting Model G1 - Variable Importance 98

5.14 Gradient Boosting Model G2 - Variable Importance 98

5.15 Gradient Boosting Models - Confusion Matrices 99

5.16 GB Model G1 - Evaluation Charts . 101

5.17 GB Model G2 - Evaluation Charts . 101

5.18 Iteration Plots Of Different NN Optimizers 103

5.19 Neural Network Models Evaluation . 104

5.20 Default Neural Network Weights Illustration 106

5.21 Neural Network Model N4 - Confusion Matrices 108

6.1 Model Comparison - ROC Charts . 110

6.2 Model Comparison - Train Cumulative Lifts Chart 111

6.3 Model Comparison - Test Cumulative Lifts Chart 111

6.4 Model Comparison - Train Precision-Recall Chart (PRC) 111

6.5 Model Comparison - Test Precision-Recall Chart (PRC) 112

6.6 Customer Segmented Targeted Retention 117

6.7 Cutoff Optimisation w.r.t. Retention & Acquisition Costs 119

6.8 Partial Dependence Plots For GB and RF Models 121

6.9 Estimates - Local Surrogate Model . 123

A.1 Extended Features’ Exploratory Analysis 134

LIST OF FIGURES vi

A.2 Flowchart Of Random Forest Modelling In SEM 142

A.3 Flowchart Of Gradient Boosting Modelling In SEM 142

A.4 Flowchart Of Neural Network Modelling In SEM 142

A.5 Flowchart Of Cross Validation In SEM . 143

A.6 Flowchart Of All Models In SEM . 143

List of Tables

2.1 Mathematical Notation . 6

2.2 Abbreviations . 6

3.1 Gradient Boosting - Loss Functions . 28

3.2 r × 2 Contingency Table By Wu and Flach (2002) 48

3.3 Chi-Square Distribution Table . 54

3.4 Confusion Matrix Composition . 57

4.1 Household Insurance Dataset Overview . 64

4.2 Household Insurance Dataset Feature Overview 65

4.3 Features’ Categories Overview . 68

4.4 Un-sampled Model Evaluation . 71

4.5 50%-Under-Sampled Model Evaluation . 71

4.6 10-90%-Under-Sampled Model Evaluation 72

4.7 Comparison Of Variable Selection Methods 73

4.8 Case Study - Selected Input Variables . 74

4.9 CHAID Tree Settings . 75

4.10 Wrapper Methods Settings . 75

5.1 Logistic Regression Cross-Validation Results 78

5.2 Odds Ratio Estimates - Logistic Regression Model 1 79

5.3 Classification Statistics - Logistic Regression Model 1 80

5.4 Odds Ratio Estimates - Logistic Regression Model 2 82

vii

LIST OF TABLES viii

5.5 Classification Statistics - Logistic Regression Model 2 83

5.6 LASSO Cross-Validation Results . 84

5.7 Parameter Estimates - LASSO Model . 85

5.8 Classification Statistics - LASSO Model . 85

5.9 Decision Tree Cross-Validation Results . 87

5.10 Classification Statistics - Decision Tree . 88

5.11 Out-of-Bag Statistics - Random Forest Models 91

5.12 Classification Statistics - Random Forest Models 93

5.13 Classification Statistics - Random Forest Model R2 95

5.14 Gradient Boosting Cross-Validation Results 96

5.15 Classification Statistics - Gradient Boosting Models 99

5.16 Classification Statistics - Gradient Boosting Model G2 101

5.17 NN Weight Decay Tuning Results . 102

5.18 NN Optimizers’ Cross-Validation Results 103

5.19 Classification Statistics - Neural Network Models 105

5.20 Classification Statistics - Neural Network Model N4 107

6.1 Train Classification Statistics - All Models 113

6.2 Test Classification Statistics - All Models 113

6.3 Classification Statistics - Local Surrogate Model 122

A.1 LASSO - Selected Input Variables . 135

A.2 Meaning of features’ abbreviations . 136

A.3 Meaning of features’ abbreviations (continued) 137

A.4 CHAID Stepwise Logistic Regression - Variables’ Statistical Significance . . 144

A.5 Stepwise Logistic Regression - Variables’ Statistical Significance 145

A.6 CHAID Stepwise Logistic Regression - Parameter Estimates 146

A.7 Stepwise Logistic Regression - Parameter Estimates 146

Chapter 1

Introduction

In the age of artificial intelligence, high competition levels in the insurance sector
have driven forward-thinking companies to employ advanced machine learning methods,
providing them a competitive advantage. The potential of machine learning automation
and various data sources, enhancing customer understanding, can be leveraged by
insurance companies to reduce churn in times where high customer retention is crucial.
Most often, the profitability of a business is directly related to the growth of its
customer base, especially in the insurance sector, and can be more accurately predicted by
forecasting the expected churn rate. Churn rate is the percentage at which a customer or
several customers terminate service provided by a business in the future. Forecasting churn
would enable insurance companies to dynamically adjust current short and long-term
business decisions, seizing the opportunity to be one step ahead of their competitors. Since
the cost of acquiring new customers is proven to be usually higher than keeping existing
customers, see Kaya et al. (2018), companies should consider clients as a long-term asset
and initially maximise the potential in the area of customer retention. Knowing the clients’
preferences and expectations is thus part of the long-term success of a business.

The main objective of this thesis is to construct a model and determine the techniques
that best identify the highest possible number of clients intending to cancel their
outstanding insurance contract while preserving appropriate Precision and Accuracy
levels. Moreover, an understanding of the customer characteristics vital to predicting
customer churn behaviour should be provided by identifying relevant churn drivers. An
identification of contracts with a higher cancellation probability, i.e. a ranked list of
at-churn-risk customers based on assigned churn score and identified churn behaviour
is of further interest. The motivation is reducing customer churn by identifying those
potentially valuable candidates beforehand and taking targeted proactive action by
creating customer profiling. The study estimates the frequency of churn with respect

1

CHAPTER 1. INTRODUCTION 2

to suitable time-period-cohorts of the historical data and the repsective months before
contract end, during which customers are more likely to churn. The above research
questions are addressed by conducting a case study in collaboration with the insurance
group ERGO, on an available real dataset and by validating the proposed model on
out-of-sample data.

The framework to reach these objectives includes several subtasks. First, an insight
into background sources of the study is given, accompanied by introductory machine
learning foundations in Chapter 2.1. The methodology of machine learning models is
hardly separable for proper analysis and practical implementation; thus, it is addressed in
detail in Chapter 3.1. Available literature such as Hastie, Tibshirani, and Friedman (2001)
and Shalev-Shwartz and Ben-David (2014) present the previous works by J.R. Quinlan,
J.H. Friedman, and L. Breiman, providing a base of the implemented methodology.
In consideration of the dataset’s binary response, namely a labelling variable of churn
(Y = 1) or non-churn (Y = 0), classification methods are applied. First, the classic logistic
regression method, which serves as a benchmark to measure the performance of the more
complex methods is presented. As a base for the more sophisticated tree-based methods,
decision trees are subsequently introduced. Tree-pruning strategies and overfitting issues
are further analysed. Based on the decision tree algorithm, the random forest approach
is regarded to incorporate an ensemble technique in our analysis. Next, gradient boosting
is considered to represent an alternative ensemble family of machine learning methods.
Finally, the predictive power of neural networks is examined by analysing the architecture
and possible optimization procedures.

The dataset is pre-processed, cleaned, and mined before practical models are implemented,
as described in Chapter 4 by applying the presented data-mining methods in Section
3.2. Tackled challenges include data partition, dimensionality reduction, as well as
the transformation of biased and incomplete data. A further data-mining issue,
namely underlying class imbalance, is solved. Class imbalance and resulting possible
misclassification problems are overcome by applying sampling procedures on the data.
Subsequently, a feature selection is performed to identify the variables contributing the
most to the prediction variable. The feature subset is generated by considering wrapper
methods such as stepwise selection and variants of decision trees. Next, the five models are
implemented on the given case study following the same sequence as they are introduced.
Thereafter, the proposed models of the use case are cross-validated, its results evaluated
by examining several appropriate measures in Chapter 5 and its findings discussed in
Chapter 6. The advanced analytics data-mining tools SAS Enterprise Miner and SAS
Enterprise Guide are used to carry out the above methods. Applied procedures and macros
are mentioned afterwards at the corresponding step and in Appendix A.2.3.

Chapter 2

Background and Notation

2.1 Background and Existing Literature

For churn-exposed industries, we find a variety of implemented methods in many
fields if we consider current literature related to customer churn and different
data-mining techniques used to predict churn. These include banking and insurance,
telecommunication, retail markets, vacation rentals, and others. The most common goal
is to identify relevant churn drivers and predict the probability that a given customer
will churn, since customer attrition is one of the biggest threats to any industry.
Furthermore, it would be vital to know in which of the churn-prone cases, an application
of potentially costly measures is worthwhile. We carry out a short review of some of the
presently available literature on the topic to gain some insight into possible methods and
enhancement opportunities we can contribute to.

In order to tackle and reduce possible churn cases, the common reasons for churn need
to be understood. Shah, Shah, and Rahevar (2018) provide a good overview of the
process and steps to specify a churn prediction model and the different causes and
types of churn. According to this research, churn types can be divided into voluntary
and non-voluntary categories from a customer perspective and into contractual and
non-contractual categories from a business perspective. Voluntary churn occurs when the
customers themselves decide to end the contract, whether deliberately or not, whereas
non-voluntary churn represents the case where the company itself decides to no longer
provide the service for its customer. The recommended model specification steps include
data acquisition and assessment, goal definition, data exploration and adjustments,
dimensionality reduction through feature selection, modelling, scoring and comparing,
and eventually deploying the outbound model. We consider this as a benchmark for our

3

CHAPTER 2. BACKGROUND AND NOTATION 4

process and include or enhance all appropriate steps. The study by Shah, Shah, and
Rahevar (2018) lists some of the common causes of contract cancellation, which intuitively
include general client dissatisfaction with regards to the provided service, possible high
premiums in contrast to competitors, security issues, or new administrations. Bearing
these causes in mind can give us a hint about possible variable importance in our models;
for example, a client’s previous complaints behaviour could be a possible factor since an
overall dissatisfaction can lead the customer to churn.

Taking into account the provided background and introduction to the churn framework,
the available machine learning models need to be compared and selected for the
application. Vafeiadis et al. (2015) provide a comparative study of the most common
machine learning techniques used to predict customer churn in the telecommunication
industry. The five methods compared in their study include support vector machine,
neural networks, decision tree, regression analysis, and Naive Bayes. The Monte Carlo
simulation shows that neural networks and decision tree are the two best classifiers on the
given churn use case dataset. In general, Boosting was proven to improve the accuracy
of all methods. A further takeaway from this study is to apply one type of boosting
techniques such as gradient boosting on our case study.

To have an understanding of possible outcomes and conventional evaluation methods used,
we also take a look at a case study predicting churn on imbalanced datasets like the use
case on hand. Burez and Van den Poel (2009) highlight that the issue of class imbalance
has not been addressed a lot in rare event prediction research, and draws attention to
its equal importance in the churn modelling procedure. It is shown that non-standard
metrics improve predictive performance, as well as sampling and modelling techniques
such as gradient boosting, which provide excellent results on an imbalanced dataset.
These remarks are taken into consideration as we would include a section on possible
resolutions of rare event prediction challenges.

It is necessary to preliminarily introduce important terms and frameworks which apply
to the research’s objectives and case study’s scope.

Supervised Learning

Machine learning algorithms can be divided into two learning categories, namely
supervised and unsupervised learning (see Gareth et al. (2013), pp. 26-27). Given a dataset
including both input variables and the respective paired output, supervised learning is the
procedure of inferring a function mapping the input to the output from these instances.
Unsupervised learning, in contrast, detects previously non-deducted patterns in the data
with no pre-existing labels and with minimal human intervention. Regarding the use case

CHAPTER 2. BACKGROUND AND NOTATION 5

investigated in this research, the provided dataset includes both input variables and a
labelling target variable shifting the main focus on supervised learning techniques.

Classification

One instance of supervised learning known as ‘classification’ is a kind of categorization
(see Gareth et al. (2013), pp. 27-28). In machine learning, classification is the problem of
identifying to which of a set of categories (sub-populations) a new observation belongs.
The labelling target of the underlying case study is often a variable of binary type, i.e.
requiring classification of the observations into one of the two available classes. Identifying
one of the qualitative events can be achieved by applying classification methods, which
are the main focus of this research.

Predictive Accuracy - Model Interpretability Trade-Off

In general, as the flexibility of a method increases, its interpretability decreases
(see Gareth et al. (2013), pp. 24-26). A model’s flexibility refers to its level of restrictions
concerning input and output specifics. It is essential to keep in mind the desired goal
throughout the study to determine the optimal trade-off for this unique dataset and
research goal.

Bias-Variance Trade-Off

The applied statistical learning methods in this research will always show competing
properties, specifically bias versus variance. Variance refers to the generalisability error
of the model on a different dataset, and bias measures the deviation of the predicted
value from the real value. It is important to note that as we use more flexible methods,
the variance will increase, and the bias will decrease (see Gareth et al. (2013), pp. 33-36).

Considering the already carried out methods by previous studies and the standard machine
learning techniques, we apply models like decision trees, random forests, neural networks,
logistic regression, and gradient boosting to compare the performance on the use case and
dataset on hand to these previous findings. Throughout the analysis of the results, the
trade-offs introduced above are additionally taken into account.

CHAPTER 2. BACKGROUND AND NOTATION 6

2.2 Mathematical Notation

This section serves the reader with the main conventions in this research. If an object is
not defined as standard in Table 2.1, it is defined on the corresponding spot.

Symbol Meaning
R the set of real numbers.
Rd the set of d-dimensional vectors over R.
N the set of natural numbers.
Z the set of integers.

X ∈ RN×M N ×M -dimensional matrix over R.
X univariate random variable.
X multivariate random variable.

x, y, z vectors.
x scalar.
xij element of matrix X in the i-th row and j-th column.
〈x, y〉 = ∑

i∈N xiyi space - inner product.
x> transpose of x.
log the natural logarithm.
exp the exponential function.
X instances domain (set).
Y labels domain (set).
H hypothesis class (set).
L loss function.

1[expression] indicator function equals 1 if expression is true and 0 otherwise.

Table 2.1: Mathematical Notation

Abbreviation Meaning
LR Logistic Regression.
RF Random Forest.
GB Gradient Boosting.
NN Neural Network.
CV Cross Validation.
CVE Cross Validation Error.

Table 2.2: Abbreviations

Chapter 3

Modelling Process and Methods

3.1 Theoretical Methodology

3.1.1 Logistic Regression

The process of estimating and modelling the relationship between a dependent variable
(also ‘response’ or ‘outcome’) and one or more independent variables (also ‘features’,
‘predictors’ or ‘covariates’) has become an essential statistical task in all disciplines. The
classic linear regression model is used to explain the relationship between the response and
features by assuming the underlying association is linear. Sometimes the response variable
is not a numerical value but merely a selection of one of two possible outcomes, i.e. a binary
response. For example, will a customer churn or not? Will a client test positive or not? Will
a fraud case occur or not? These instances can be represented by a binary variable with
only two outcomes, namely 1 if the event occurs or 0 if the event does not occur, respective
to the individual event definition. Modelling a binary response requires performing some
adjustments to the assumptions attributed to the linear regression method, which led to
the rise of the logistic regression model. The goal of this model is to classify individual
cases by predicting the respective discrete outcome correctly. Furthermore, a display of
the input-output relationship strength or extent of association can be derived from this
model. However, logistic regression still belongs to the linear methods for classification, i.e.
linear classifiers. A hypothesis class includes all possible forms of hypotheses that are being
examined. Similar hypothesis classes to logistic regression are, for instance half-spaces and
linear regression (see Shalev-Shwartz and Ben-David (2014), pp. 126-127). This section
examines the analysis possibility of binary response data through the logistic regression
method.

7

CHAPTER 3. MODELLING PROCESS AND METHODS 8

First of all, to determine the model’s dimensions, the given dataset needs to be examined.
Given M input variables and N data observations, we consider the feature matrix X,

X =


x11 . . . x1M

x21 . . . x2M
... . . .

...
xN1 . . . xNM

 ∈ RN×M ,

i.e. X = (x1, . . . ,xN)>,xi ∈ RM =.. X ,

to represent our independent variables in a summarised form. The input variables can be
of any form, such as categorical, discrete, or continuous, since the model does not postulate
restrictions or assumptions about their distribution. Nevertheless, input variables should
not be highly correlated as it might affect the quality of the estimation (see Ranganathan,
Pramesh, and Aggarwal (2018)). Additionally, it is required that all given observations
are independent and identically distributed (i.i.d.) (see Shalev-Shwartz and Ben-David
(2014), p. 38).

Compared to the classic linear regression, which predicts a numerical outcome for the
given input values, the logistic regression model aims at predicting a discrete outcome by
forecasting the occurrence probability of the different possible classes. This means, our
response variable values yi have to belong to one of C predetermined labelling classes. C
is a finite set of integers.

y ∈ {1, . . . , C}N =.. CN ,

y = (y1, . . . , yN)>, yi ∈ C.

Given a target-labelled training set of a case study, the goal is to model the input-output
relationship by finding a mapping function (or classifier) f : RM → C such that the vectors
of feature variables are mapped to a corresponding predicted event label which can be
expressed by the following equation:

ŷi = f(xi), ∀i ∈ {1, . . . , N},

ŷ = (ŷ1, . . . , ŷN).

This results in a finite partition of the feature space such that

X =
⋃
ŷi∈C

Xŷi where Xŷi = {xi ∈ X : f(xi) = ŷi}.

In order to validate the used approach, the mathematical framework will be initially
described. First, since logistic regression is part of the family of linear classifiers, its
components can be expressed by some set of linear functions (see Shalev-Shwartz and

CHAPTER 3. MODELLING PROCESS AND METHODS 9

Ben-David (2014), pp. 126-127). We analyse the definition of the set AM of affine functions
(see Shalev-Shwartz and Ben-David (2014), p. 117):

AM = {hb0,b(xi) : b0 ∈ R, b ∈ RM , i ∈ {1, . . . , N}}

= {xi 7→ b0 + 〈b,xi〉 : b0 ∈ R, b ∈ RM , i ∈ {1, . . . , N}}, where

hb0,b(xi) = b0 + 〈b,xi〉 = b0 +
M∑
j=1

bjxij , ∀i ∈ {1, . . . , N}.

This set expresses all mapping functions using the parameters b0 ∈ R, b ∈ RM where
each mapping returns a classifying scalar b0 + 〈b,xi〉, given the input vectors xi. Through
a composition of a function φ : R → Y on the set AM one receives the corresponding
hypothesis class. As logistic regression includes the prediction of the probability of an
event occurring, a mapping function to the interval [0, 1] is needed. Hence, the S-shaped
sigmoid function φ = sig(t) = 1

1+e−t is often chosen (see Figure 3.1).

Figure 3.1: Sigmoid Function By Arunava (2018)

To take a more in-depth look at the origin of the chosen function, one must think of the
prediction goal as follows. Since one wants to predict the likelihood that an event occurs
i.e. p = P(yi = 1), it can be derived from the odds expression, that is the quotient of the
probability of an event occurrence p and its complement 1 − p = P(yi = 0), see left side
of Equation (3.1). This is also called ‘odds in favour of’ the event.

p

1− p = b0 + 〈b,xi〉. (3.1)

The right side of Equation (3.1) can take any real value in]−∞,∞[, which is unreasonable
in the logistic regression model as mentioned before. We choose p and the respective link

CHAPTER 3. MODELLING PROCESS AND METHODS 10

function in a way to restrict their values to [0, 1]. A transformation to the log odds
(Logit) by taking the logarithm of the odds also makes the quotient easier to interpret
and analyse. Logit is symmetric around 0, which results in better interpretability and
adaptivity. Hence, the regression is performed against the Logit of the response and not
the response variable itself. Since the parameter b0 accounts for the intercept term of the
model, we can express the right side of Equation (3.1) through 〈b̄, x̄i〉 with b̄ = (b0, b)>

and x̄i = (1,xi)>.

log
(

p

1− p

)
= 〈b̄, x̄i〉

p

1− p = exp(〈b̄, x̄i〉)

p = exp(〈b̄, x̄i〉)
1 + exp(〈b̄, x̄i〉)

= 1
1 + exp(−〈b̄, x̄i〉)

= h
b̄
(xi).

Since ex > 0 ∀x ∈ R and x
1+x < 1 ∀x ≥ 0, 0 < p < 1 holds as desired.

A second aspect to be examined are the corresponding distributions of the variables and
events. Observing the basic linear mapping expression

Y (x̄i) = 〈b̄, x̄i〉+ ε , ε ∼ N (0, σ2),

it is assumed that the response variable of the linear regression model, given the
observations and model parameters, has the following probability distribution:

Y | x̄i, θ ∼ N (µ(x̄i, b̄), σ2(x̄i)) with θ = (b̄, σ2) model parameters.

Considering a two - class problem (class 0 vs. class 1), hence C = {1, 2} and
the given input variables X, we can derive the probabilistic classification model,
see Equations (3.2) - (3.5), where the response is evaluated as an indicator variable
(see Murphy (2012), p. 245). We also view the response variable values as realisations
of the random variables Yi with Y = (Y1, . . . , YN):

Yi | x̄i, b̄ ∼ Ber(Yi | µ(x̄i)) (3.2)

P(Yi = 1 | x̄i) + P(Yi = 0 | x̄i) = 1 (3.3)

E[Yi | x̄i] = P(Yi = 1 | x̄i) = µ(x̄i) = sig(〈b̄, x̄i〉) (3.4)

P(Yi | x̄i, b̄) = Ber(Yi | sig(〈b̄, x̄i〉)) (3.5)

Therefore, if all cases of the probability function are considered, the logistic model can be
represented by:

P(Yi = yi) =



exp
(
〈b̄,x̄i〉

)
1+exp

(
〈b̄,x̄i〉

) = pi if yi = 1,

1
1+exp

(
〈b̄,x̄i〉

) = 1− pi if yi = 0.
(3.6)

CHAPTER 3. MODELLING PROCESS AND METHODS 11

A transformation of this estimated probability into a binary variable yields the predicted
model response. To proceed with the transformation all samples in the training set D,
(xi, yi) ∈ D are assumed to be i.i.d. The conditional likelihood function can then be
expressed as:

L(b̄,D) = P(Y | X, b̄) i.i.d.=
N∏
i=1

P(Yi = yi | Xi = x̄i)

=
N∏
i=1

P(Yi = 1 | x̄i, b̄)yi(1− P(Yi = 1 | x̄i, b̄))1−yi

(3.6)=
N∏
i=1

pi
yi(1− pi)1−yi

=
N∏
i=1

(
exp(〈b̄, x̄i〉)

1 + exp(〈b̄, x̄i〉)

)yi(1
1 + exp(〈b̄, x̄i〉)

)1−yi

=
N∏
i=1

exp(〈b̄, x̄i〉)yi
1 + exp(〈b̄, x̄i〉)

. (3.7)

It is clear from Equation (3.7) that it is cumbersome to find b̄ such that the likelihood
function L(b̄,D) is maximised. An alternative approach is to maximise the log-likelihood
which in turn maximises the likelihood since the log function is strictly monotonic.
Applying the log function on Equation (3.7) results in:

log(L(b̄,D)) (3.7)= log

 N∏
i=1

exp(〈b̄, x̄i〉)yi
1 + exp(〈b̄, x̄i〉)

)

=
N∑
i=1

yi〈b̄, x̄i〉 −
N∑
i=1

log[1 + exp(〈b̄, x̄i〉)]. (3.8)

Moreover, to maximise the log-likelihood (3.8) we need to set the first derivative with
respect to each b̄j equal to 0 and solve the M + 1 resulting equations:

∂ log(L(b̄,D))
∂b̄j

= ∂

∂b̄j

(
N∑
i=1

yi(〈b̄, x̄i〉)
)
− ∂

∂b̄j

(
N∑
i=1

log[1 + exp(〈b̄, x̄i〉)]
)

=
N∑
i=1

xijyi −
(

1
1 + exp(〈b̄, x̄i〉)

)
· ∂
∂b̄j

(
1 + exp(〈b̄, x̄i〉)

)

=
N∑
i=1

xijyi −
(

1
1 + exp(〈b̄, x̄i〉)

)
· exp(〈b̄, x̄i〉) · xij

(3.6)=
N∑
i=1

xij (yi − pi) . (3.9)

The resulting equations to be solved for the optimal vector of parameter estimates b̄
are non-linear in b̄j. There exists no closed form solution for the equations and only an

CHAPTER 3. MODELLING PROCESS AND METHODS 12

iteration procedure can be used to reach the optimal solution. Different optimisation
techniques are used to compute the optimal b̄. Most commonly, to solve Equations
(3.9) the Newton-Raphson method is applied (see Murphy (2012), pp. 249-250). After
numerically estimating the vector b̄, proving that the Hessian matrix is negative definite
and that b̄ is a global maximum, one can use b̄ to model the relationship between the
response and features.

Another approach to compute the parameter estimates is by defining a loss function that
accounts for the cost of misclassification. Similar to least squared error in logistic regression
that gives a convex function, a convex loss function is needed to optimise the parameters
through standard methods by easily providing the global optimum. The function should
assign a proper penalty when predicting 1 while the actual target is 0, for instance and
vice versa. A suitable cost or loss function can be expressed by (see Shalev-Shwartz and
Ben-David (2014), p. 127):

L(h
b̄
(x), yi) =

− log
(
h
b̄

(x)
)

if yi = 1,

− log(1− h
b̄

(x)) if yi = 0.
(3.10)

Hence, we can summarise the loss function (3.10) in the following manner:

L
(
h
b̄(x)

, yi

)
= −[yi log(h

b̄
(x)) + (1− yi) log(1− h

b̄
(x))]

= −
[
yi log

(
1

1 + exp(−〈b̄, x̄i〉)

)
+ (1− yi) log

(
1− 1

1 + exp(−〈b̄, x̄i〉)

)]

= −
[
−yi log(1 + exp(−〈b̄, x̄i〉)) + (1− yi) log

(
exp(−〈b̄, x̄i〉)

1 + exp(−〈b̄, x̄i〉)

)]
= −[−yi log(1 + exp(−〈b̄, x̄i〉)) + (1− yi)[−〈b̄, x̄i〉 − log(1 + exp(−〈b̄, x̄i〉)]]

= −[−〈b̄, x̄i〉+ yi〈b̄, x̄i〉 − log(1 + exp(−〈b̄, x̄i〉)]

= −[yi〈b̄, x̄i〉 − log(1 + exp(〈b̄, x̄i〉)].

This loss function is monotonic w.r.t. yi and convex w.r.t. b̄.
(See Proof in Appendix A.1.1)

The aim is to minimise the loss function as it penalises h
b̄

based on the log of the
expression:

arg min
b̄∈RM+1

N∑
i=1
−[yi〈b̄, x̄i〉 − log(1 + exp(〈b̄, x̄i〉)].

Minimising the loss function is equivalent to the maximum likelihod estimation (MLE)
(3.9), as clearly L(h

b̄
(x), yi) is equal to the negative log-likelihood derived before in

Equation (3.8) (see Shalev-Shwartz and Ben-David (2014), p. 127).

Now that it is comprehensive how to reach the parameter estimates needed for the model,
it is just as important to understand which features should be considered in the model.

CHAPTER 3. MODELLING PROCESS AND METHODS 13

Feature Selection

While Section 4.3 will explain in detail how each of these selections works, an overview of
the possible variations is provided to compare the different techniques of logistic regression.
As previously mentioned, highly correlated features can affect the performance of logistic
regression. Therefore, running selection procedures to choose the most important variables
is a vital step before estimating the parameters. One can determine the best combination
of relevant features through a forward, backward, or stepwise selection procedure.
According to Hastie, Tibshirani, and Friedman (2001) (pp. 58-59), the forward selection
technique begins with a model including only the intercept and sequentially adds
predictors improving the model fit. In comparison, backward selection begins with the full
model, including all possible features, and sequentially eliminates input variables with the
least impact on the model’s quality (see Figure 3.2). Stepwise selection is a combination
of both previous selection methods. This is done by testing the effect of the features’
inclusion or elimination on the model fit at each step.

Figure 3.2: Wrapper Selection Techniques

Inspired by Rüping (2006)

Further model variations come in the form of a wide range of significance measures. The
importance of the features can be assessed by performing statistical tests on the estimated
coefficients. Two possible tests are the Wald statistic and the likelihood ratio test. The
goodness-of-fit for the logistic model is then measured by performing either the χ2 -test
or R2 test. These tests are explained extensively in Sections 3.2.3 and 3.2.5.

Regarding the scope of logistic regression, one needs to mention the dependence of
its efficiency on the extent of association between the covariates and the response
variable. Feature engineering, such as variables selection and transformation, influences
the performance significantly.

CHAPTER 3. MODELLING PROCESS AND METHODS 14

On the one hand, the logistic regression technique is very efficient and does not
require many computational resources in comparison to more sophisticated methods. The
simplicity of logistic regression makes it highly interpretable, which is an excellent asset
when specific measures need to be derived. It can additionally serve as a benchmark for
more complex models.
On the other hand, the model works poorly with highly correlated variables. The model
is also limited to specific data types, such as non-linearly separable data. Data is said to
be linearly separable if it is possible to draw a linear separating line between different
classes. In the case of linearly separable data, the sigmoid function gets sharper, driving
the model to a possible overfitting (see Adams (2018)). A possible solution, for instance
is a regularisation of the large weights that cause this overfitting. To overcome these
dependencies and correlations, certain measures are considered in Section 4.3.

To make the model more intuitive, we consider the insurance case study examined in
this research as an example. Since logistic regression is one of the most often used basic
statistical learning models and is implemented when the response variable is categorical,
we consider it a reasonable technique for a churn-labelled dataset (target variable is either
1 in case of a churn event or 0 in a non-churn event) to serve as a benchmark for our more
complex models. In that scenario, the probability function represents these cases:

P(Yi = yi) =



exp
(
〈b̄,x̄i〉

)
1+exp

(
〈b̄,x̄i〉

) if yi = 1, i.e. if client i has a churn label of 1,

1
1+exp

(
〈b̄,x̄i〉

) if yi = 0, i.e. if client i has a non-churn label of 0.

The modelling of churn behaviour can require some extra pre-processing as many
explanatory variables have to be taken into account, including factors reflecting deviating
human behaviour. Hence, to reduce the dimensionality of the M input variables, the
most important variables can be selected by computing selection metrics and ranking the
variables accordingly. Some general pre-processing of the features is usually necessary,
for instance the imputation of missing data and removal of highly correlated variables.
Subsequently, forward, backward, or stepwise selection procedure should be performed
to respectively select the most valuable combination of covariates for the model. The
parameter estimates are then computed for the subset of these variables by choosing the
Logit link function and running the iterative Newton-Raphson procedure, which yields b̄.
The model’s equation can be interpreted by taking the exponential of the coefficients and
observing that the odds of churn increase or decrease by exp(b̄j) if the characteristic b̄j
is underlying. Each of the steps mentioned above is further explained in the case study
Sections 4 and 6. In the next sections we start investigating the modern ‘tree’-based family
of machine learning models.

CHAPTER 3. MODELLING PROCESS AND METHODS 15

3.1.2 Decision Tree

The first ‘tree’-based method considered in this study is the classic decision tree used
for both classification and regression purposes. The approach consists of a sequential
decision-making process in the form of a flow-chart with a series of test questions.

Decision trees can be used with various objectives. One of the primary goals of this method
is the prediction of future records by using the tree-model derived from past data. The
observations have to be correctly classified by testing requirements on a subset of the
input variables. Similarly, in regression frameworks, the relationship to the continuous
response of which the values are to be predicted is modelled by running a series of criteria
on the features subset. A further vital use of this method is for variable selection. Like the
selection procedures introduced in logistic regression, decision tree serves as a technique
to select the most relevant variables for tree-based methods such as random forest and
gradient boosting. This technique is not only limited to a deduction of a variable selection
but also to establish relative variable importance. The variables’ rankings are based on
an enhanced model accuracy or reduced inhomogeneity of nodes (see below for further
elaboration). Hence, one can determine how important a variable is for the model by
looking at the results of the decision tree. Last but not least, this approach can be used for
data manipulation and handling of missing values. Since decision tree assists in describing,
generalising and categorising a dataset, it is often used in data-mining tasks.

An initial introduction of some preliminaries from graph theory and tree-based definitions
(see Diestel (2016), pp. 2-8) is necessary for a better model understanding:

• A graph is an ordered pair G = (V,E) (i.e. the order is relevant G 6= (E, V)), where
V is a non-empty set of nodes or vertices and E a set of edges, disjoint from V .

• A directed graph is a graph G = (V,E) with a non-empty set of nodes V and a
set of directed edges which connect unordered pairs of nodes.

• A cycle is a finite sequence of distinct edges connecting a series of nodes, with only
the first and last edge repeated.

• An acyclic graph is a graph with no cycles.

• A tree is a directed acyclic graph (V,E), where two nodes are connected by exactly
one unique path.

• A root node is the vertex at which there are no incoming edges but zero or more
outgoing edges. A rooted tree is therefore a directed acyclic graph, where all edges
are directed away from the root.

CHAPTER 3. MODELLING PROCESS AND METHODS 16

• A decision tree is a tree-structured model, where the model f : X → Y is defined
by a rooted tree.

• A parent node is a node divided into two sub-nodes. An internal node is a node
receiving exactly one incoming edge and two or more outgoing edges. A leaf or
terminal node has only one incoming edge and no outgoing edges (see Figure 3.3).

Figure 3.3: Decision Tree Structure

Inspired by Chauhan (2020).

One of the advantages of a decision tree is that there are very few theoretical assumptions
the training data has to fulfil for the method to be applicable. There are no distributional,
independence, or variance assumptions on the features. All input variables require a finite
domain, however. The maximum dimensions of the decision tree are 2M leaves and tree
depth of M + 1 (see Shalev-Shwartz and Ben-David (2014), p. 251) if splitting w.r.t. an
attribute is only allowed once. That is, the response is assumed to be of the discrete binary
type in the classification setting and numeric in the regression setting. Nodes represent
the different attributes x1, . . . ,xm of the feature matrix X and edges the decisions based
on these attributes. Several internal nodes in the tree can represent the same attribute if
the algorithm specifications enable it.
Like any classification model, the tree has to be represented by a non-linear mapping
function f : X 7→ Y of the input variables estimated by the conditional expectations on
the different partitions of the feature space. This is possible despite the main difference
that it can not be represented by applying a function of the family of affine function as
in Section 3.1.1. The general categorising approach will be explained in the next section,
along with its possible variants. Given an input space X , the goal is to partition the space
in a way that defines unique isolating areas, including the different labels (see Figure
3.4). The areas can be expressed in the following manner. Considering Rpk to be a parent

CHAPTER 3. MODELLING PROCESS AND METHODS 17

region at step k, we define the two resulting regions from partitioning by splitting using
the input variable xj as

Rs = {xi | xij ≤ t where xi ∈ Rpk , t ∈ R, j ∈ {1, . . . ,M}}, (3.11)

Rs′ = {xi | xij > t where xi ∈ Rpk , t ∈ R, j ∈ {1, . . . ,M}}. (3.12)

The feature space is partitioned such that the union over all distinct, non-overlapping
regions created by the definitions above is equal to the feature space. The enumeration of
the regions is arbitrary.

X =
S⋃
s=1

Rs where S ∈ N with

Rs ∩Rr = Ø for r 6= s.

We consider the following example where we have M = 2 features. In the root node, i.e.
in step k = 0, we decide to split X = Rp0 using attribute x1 so we obtain the two regions:

Rs = {xi | xi1 ≤ t1 where xi ∈ Rp0 , t1 ∈ R, j = 1},

Rs′ = {xi | xi1 > t1 where xi ∈ Rp0 , t1 ∈ R, j = 1} =.. R3.

In step k = 1 we consider the parent region Rs = Rp1 and split it such that we get the
two regions:

Rs = {xi2 ≤ t2 where xi ∈ Rp1 , t2 ∈ R, j = 2} =.. R1,

Rs′ = {xi2 > t2 where xi ∈ Rp1 , t2 ∈ R, j = 2} =.. R2.

(a) Feature Space Partition. (b) Decisions Flowchart.

Figure 3.4: Example: Decision Tree Partition

Inspired by Hastie, Tibshirani, and Friedman (2001).

CHAPTER 3. MODELLING PROCESS AND METHODS 18

Figure 3.4(a) shows a partition of a two-dimensional feature space by recursive binary
splitting on fake data including two classes indicated by the colours green and blue. The
space is stratified such that the individual regions contain as much as uniquely possible
only the green or the blue class. It can however occur that some observations lie in regions
with a different majority label.
Using these definitions, we can express our predictor for regression trees as the sum
over all mean responses of sample observations assigned to the individual regions
(see Murphy (2012), p. 544):

f : X → Y ,

f(x) = E[yi | xi ∈ Rs] =
S∑
s=1

cs1{x∈Rs}, x ∈ X, S ∈ N, (3.13)

ŷ = ĉs = 1
|Rs|

N∑
i=1

yi1{xi∈Rs},

where |Rs| is the number of observations that fall into region Rs and S the total number
of regions. By travelling on a path from the root node and creating regions with each split,
we reach the terminal node to predict the label, for instance x, given that the observation
lies in region Rs. The model involves stratifying the outstanding predictor space X into a
number of distinct regions Rs that are branch-like with the constant cs representing the
response of the region in the case of regression trees. In the case of continuous features, the
definitions (3.11) and (3.12) of Rs and Rs′ are reasonable. However, if we are considering
a categorical variable, the definitions would be adjusted to the following splitting rules:

Rs = {xi | xij = c where xi ∈ Rpk , c ∈ C ′, j ∈ {1, . . . ,M}},

Rs′ = {xi | xij 6= c where xi ∈ Rpk , c ∈ C ′, j ∈ {1, . . . ,M}}.

where C ′ represents the C ′ classes of the respective categorical feature. In comparison to
statement (3.13), classification trees can not use the mean response as a representation
for each region, so the most commonly occurring class in the region is predicted instead,
which also leads to differences in the error measures.
We define the proportion pmc and the respective predictor in the classification setting as

psc = 1
|Rs|

∑
xi∈Rs

1{yi=c} s.t.
C∑
c=1

psc = 1, (3.14)

ŷ = f(x) = arg max
c∈C

 1
|Rs|

∑
x∈Rs

1{yi=c}

 = arg max
c∈C

psc, (3.15)

psŷ = 1
|Rs|

∑
xi∈Rs

1{yi=ŷ},

CHAPTER 3. MODELLING PROCESS AND METHODS 19

withRs being the region that contains xi (see Hastie, Tibshirani, and Friedman (2001), pp.
308-310). While psc (see Equation (3.14)) represents the proportion of class c observations
that fall in node s, representing region Rs, ŷ (see Equation (3.15)) stands for the most
probable class label or majority class in node s.

The decision-tree-space complexity encountered to obtain the above defined final
predictors raises the main question of how to grow the tree optimally. Most developed
algorithms apply a greedy approach which optimises the tree only locally with respect
to the features. The general model building process firstly selects the best attribute for
splitting by using some of the popular measures introduced below. The attribute is then
set as a decision node splitting the instance space. This process is repeated recursively
for each subsequent node until a stopping criterion is met.

Univariate Splitting Criteria

Apart from the importance of choosing a proper growing and pruning algorithm, assessing
the classification cost, which measures the quality of each split within the algorithms, is
very crucial. It is important to note that the splits are done with the objective of optimising
the following measures on the respective region Rs, e.g. comparing the purity of the parent
region before and after splitting w.r.t. a particular attribute. The most common error
measures or univariate splitting criteria for classification settings (see Hastie, Tibshirani,
and Friedman (2001), pp. 308-310) are:

• Misclassification Rate:

MR = 1
|Rs|

∑
xi∈Rs

1{yi 6=ŷ} = 1− psŷ.

This error corresponds to the number of misclassified cases if we assign the most
common class to be the label of this region. So the error represents the fraction
of observations that do not belong to the most probable class. It was shown that
this rate is generally not preferred due to the lack of sensitivity for tree-growth
(see Gareth et al. (2013), pp. 311-314).

• Gini Index:
Gini =

C∑
c=1

psc(1− psc)
(3.14)= 1−

C∑
c=1

psc
2.

The Gini index provides a measure of total variance across the different classes.
It measures the node’s ‘purity’ in the following sense. If the values of the
proportions psc are close to zero or one and hence the Gini Index value is small,

CHAPTER 3. MODELLING PROCESS AND METHODS 20

it indicates that a node is ‘pure’ as it contains mainly instances from one class
(see Gareth et al. (2013), pp. 311-314).

• Entropy or Deviance:

H(D) = −
C∑
c=1

psc log psc. (3.16)

Similar to the Gini Index, the value of Entropy is smaller the purer the s-th node
and is very often used as a splitting criterion due to its enhanced sensitivity for
tree-growth.

• Information Gain:
As defined in Bahety (2014), given the underlying training set D and
Sj(c) = {xi ∈ D| xij = c} the set of instances xi with attribute j taking the
category c:

IG(D|j) = H(D)−H(D| j) (3.17)

= H(D)−
C′∑
c=1

|Sj(c)|
|D|

·H(Sj(c)). (3.18)

Information Gain represents the change in Entropy for a change of input variable.
It also represents the reduction in the cost generated by going from a parent
node to its successor as it measures the label’s Entropy before and after the split
(see Shalev-Shwartz and Ben-David (2014), p. 254). A high or maximal information
gain implies that the feature optimally partitions the space.

• Gain Ratio:

Gain Ratio = Information Gain
Split Info , (3.19)

Split Info = −
C′∑
c=1

|Sj(c)|
|D|

log
(
|Sj(c)|
|D|

)
. (3.20)

The Gain Ratio was introduced to measure the information generated by a split
that is valuable for prediction (see Frank (2003)).

The numerous aspects to be considered when growing a tree are, for instance the outline
of a specific tree structure, the choice of feature used as a splitting criterion at each node,
as well as the specification of splitting criterion and the threshold parameter at which the
tree stops to grow.
These dimensions are considered in the variety of possible algorithms to create decision
trees. The contrast between the algorithms lies mainly in four aspects:

• What is my splitting criterion? How is the error or variability measured?

CHAPTER 3. MODELLING PROCESS AND METHODS 21

• Can the algorithm be used for regression and/or classification purposes?

• Does the algorithm apply a technique to avoid overfitting?

• Does the algorithm handle missing values? How?

Decision Tree Algorithms

One of the first decision tree algorithms was developed in the late 1980s by J.R. Quinlan
and is called ID3 (Iterative Dichotomiser 3). In this approach, all possible decision trees
are built, and the simplest one out of all is chosen (see Quinlan (1986)). To build the
decision tree, that only supports categorical variables, minimum Entropy and maximum
Information Gain are considered as test attributes of the respective node. The procedure
works as follows (see Bahety (2014)):

1. Using the original training dataset D at the root node, recursively calculate the
Entropy and Information Gain only of unused features at each iteration.

2. Check if any of the following stopping criteria are reached. If not, go to step 3.

(a) If all observations are labelled by ys then s is a terminal node or leaf labelled
by ys.

(b) If there are no more unused features, this node is considered a terminal node
and labelled by the majority occurring class of the prior node.

(c) Similarly, if there are no more observations in the resulting node, the node is
labelled by the majority class of the prior node.

3. Start the procedure of attribute selection. From the subset of unused attributes,
select the attribute with the smallest Entropy or largest Information Gain to
partition the current space.

(a) Choose the best classifying feature and set it as an internal node.

(b) Add two corresponding branches. One representing all observations where the
feature dependent condition xs = c is fulfilled and one with xs 6= c.

(c) Go to step 2 for each resulting node.

This procedure is repeated for all subsequent nodes, does not guarantee to calculate the
optimal solution, and can lead to overfitting. The algorithm also does not include a pruning
method to avoid possible overfitting, nor the handling of missing values.

CHAPTER 3. MODELLING PROCESS AND METHODS 22

An extension of ID3 to support numerical variables and missing values was later
introduced by Quinlan (1987), namely the C4.5 algorithm. This approach has become
a benchmark for newer algorithms. The main difference to ID3 is the splitting criterion,
since C4.5 uses the Gain Ratio as a measure of the chosen feature for decision making.
A further difference lies in the possibility of applying a bottom-up pruning technique on
the tree to avoid overfitting.

Pruning Algorithms

Most pruning procedures grow a large tree and apply a bottom-up approach to eliminate
the nodes that do not provide additional information.
In the extension (see Quinlan (1987)), reduced error pruning (REP) and complex error
pruning (CEP) were introduced. REP starts from the leaves up and changes the label
of each internal node, i.e. (non-leaf) subtree with the most probable class if it does not
affect the prediction accuracy. If there is no subtree with the same property and this
adjustment reduces or maintains the error level, then the subtree is replaced by the leaf.
CEP, in contrast, builds several trees starting from the original unpruned tree. Given that
Tk is the unpruned tree and T0 the rooted tree, firstly trees Ti+1 are created by replacing
subtrees in Ti with leaves if the error measure is small enough (see Rokach and Maimon
(2015)). All created trees are then evaluated with respect to their generalisation error on
the cross-validation sets. The best-pruned tree with minimal generalisation error is chosen.
A similar yet more complex pruning algorithm used in C4.5 is the error based pruning
(EBP). The algorithm checks all nodes bottom-up, compares the three errors below and
chooses the alternative with the smallest error (see Rokach and Maimon (2015)):

1. E(subtree(T, t), St)

2. E(pruned(subtree(T, t), t), St)

3. E(subtree(T,maxsuccesor(T, t)), Smaxsuccesor(T,t)) where

E(T, S) = MR(T, S) + Zα

√√√√MR(T, S)(1−MR(T, S))
|S|

.

One further well-known approach is the CART Algorithm, which works for both
classification and regression problems. It uses the Gini Index as a measure for splitting.
The recursive binary splitting approach is applied from the root node to the terminal
node, where a stopping criterion is reached. The tree is not forward-looking, i.e. it does
not look for the optimum split that minimises further error measure at nodes later on but

CHAPTER 3. MODELLING PROCESS AND METHODS 23

rather locally minimises the error measure. The algorithm, however, includes a pruning
phase after growing, which uses CEP.

One of the most notable advantages of decision tree is its interpretability, as the structure
is not only intuitive but also easily tractable. The procedure additionally handles different
data types such as categorical and numerical, whether ordered or unordered. Last but not
least, a feature selection within the method provides efficiency in the prediction procedure.
The model, on the other hand, is unstable with respect to small changes in data, i.e.
any small change can lead to a substantial change in the structure of an optimal tree
(see Murphy (2012), p. 550). The decision tree is also relatively inaccurate in comparison
to other predictors such as a random forest. Information Gain is often biased for data
with more categorical data levels, thus normalising the Gain Ratio.

Given a churn framework such as our case study we consider the feature space X as
the space with M variables representing diverse useful information on the client such
as previous churn behaviour, necessary general information such as age, marital status,
regional information, and explanatory variables on the agent in charge. Another interesting
perspective on the use of a decision tree for a churn-labelled dataset is the prediction of
occurrence probabilities through regression trees. Not only can we classify instances, but
we can predict their occurrence probability. We choose to apply classification trees in our
setting where we consider a training dataset D with observations labelled by the binary
churn target variable. If we have an underlying client instance along with M information
variables, the goal is to be able to follow a specific decision path through the trained
decision tree and classify whether the customer will churn or not. Additionally, we want
to predict the probability indicating if the customer will churn or not using regression trees.
We decide to apply the CART algorithm, since it includes both options of classification
and regression. After training the tree on our dataset D, we insert a previously unseen
instance x into the tree, and receive the predicted churn behaviour ŷ as a result by the
respective assigned leaf node. Considering that the decision tree can potentially overfit,
we investigate a tree-based resolution in the following section.

3.1.3 Random Forest

It was underlined in the previous section that decision tree suffers from high variance,
tends to overfit the data, and leads to an accuracy drawback when predicting out-of-sample
observations. It was also shown how ‘greedy’ decision tree algorithms can be. The
motivation to tackle these matters gave rise to an extended and enhanced use of decision
trees. The method resulting from trying to avoid these obstacles is the random forest
technique. Random forest can be used for both classification and regression problems.

CHAPTER 3. MODELLING PROCESS AND METHODS 24

The essential idea of random forest is the construction of an ensemble of decision trees
and receiving a prediction by averaging the predictions of the single trees involved. An
ensemble should include several trees constructed by an algorithm, and using its individual
predictions should result in the final prediction.

Random forest modelling requires little or no assumptions. Since it is based on the decision
tree algorithms, it mainly requires the finiteness of the domains of features spaces for the
construction of the individual trees. The model also works on small to medium-sized
datasets and does not necessarily need large numbers of observations. The observations
are logically required to be i.i.d.

We consider the labelled training dataset

D = {(x1, y1), . . . , (xN , yN)},

with the feature matrix X and the binary classification set Y = C = {1, 2} as the labels’
domain in classification settings and Y = R that of regression settings. The goal is to
model the association between features and response through a function composition of
f : X 7→ Y and decision tree classifying maps. Hence, we represent random forest by the
following definition:

A random forest is a classifier f depending on a family of decision trees {Tb}Bb=1 with B

different bootstrap samples and i.i.d. parameters randomly chosen from a subset of the
model parameters set. By performing a randomised variant of the decision tree algorithms,
a forest of decision trees is built.

Bagging

In order to reduce possible variance or overfitting, specific methods were introduced. These
techniques mainly create an enhanced composite of several predictors into one estimator.
We introduce bagging (see Hastie, Tibshirani, and Friedman (2001), pp. 282-283), as a
motivation for the random forest model:

1. Repeatedly draw B different bootstrap samples from training set D.

2. Train the method on each of the B samples to obtain the predictors fb(x) = Tb for
b = 1, . . . , B.

3. All predictors are combined by averaging (in regression frameworks) or majority
voting (in classification frameworks) and the labels are assigned accordingly.

fbag(x) = 1
B

B∑
b=1

Tb in the regression framework.

CHAPTER 3. MODELLING PROCESS AND METHODS 25

Computing M different trees on different subsets through bagging, however, can lead
to highly correlated predictors. This calls for a further random element such as random
feature selection. That is, not only the subset of observations should be randomly chosen
but also the subset of input variables considered for splitting within the decision tree
algorithm.

Random Forest Training

Based on extended bagging, the general random forest approach can be represented by
the following algorithm (see Hastie, Tibshirani, and Friedman (2001), pp. 587-589):
For b = 1 to B:

1. Draw a bootstrap sample S with size N from the training dataset.

2. Considering independent decision trees on this sample, create a random forest by
recursively repeating the following steps to the leaves until a minimum node size is
reached.

(a) Select a random subset of features with size k from the M input variables,
where k ≤M .

(b) Select the best attribute for splitting among the k inputs.

(c) Split the node into two successive nodes respectively.

3. Construct ensembles of un-pruned trees {Tb}Bb=1 using the decision tree inducers
introduced in Section 3.1.2.

To calculate the final estimate, we distinguish between regression and classification
purposes.
In classification, a majority vote is used, i.e. if cb is the predicted class of the bth random
forest tree then ĉ = arg maxcb

∑B
b=1 pb1Tb=cb is the most probable class. The prediction of

the random forest is equal to the majority vote f(x) = ĉ.
In regression we average over all available trees such that the random forest map is defined
as f(x) = 1

B

∑B
b=1 ŷb.

Random forest has been proven to be very robust to noise, accurate, and easy to
understand. Not only does it solve the overfitting problem of decision trees, but
it also works with high-dimensional data very well. Random forest also works in
both classification and regression frameworks. On the other hand, random forest is
computationally expensive and inefficient, since it requires a lot of steps and time to

CHAPTER 3. MODELLING PROCESS AND METHODS 26

calculate each involved tree’s predictions. While decision trees are tractable, large random
forests are not easily interpretable nor tractable.

As we have decided that the decision tree algorithm is reasonable for a churn
modelling purpose, we consider random forest as an adequate technique complementing
our classification goals. Random forest supports both classification and regression
simultaneously, which delivers easy implementation. Knowing that the case study deals
with very correlated features in the dataset, as there are only minor differences in the
numerous measures, we consider the robustness to noise of random forest a suitable
property. However, we also know that we can not deduct a rule generating mechanism
or segmentation due to the complexity of random forest, and hence, we should consider
more classic models such as logistic regression to be complementary to the random forest
results. Running the above algorithm on a churn-labelled training set D should result
in the required classifications. After creating the diverse decision trees, as explained in
Section 3.1.2, the most frequent class is chosen as a label for the random forest’s final
prediction. Incorporating such a version of ensemble techniques in our use case can allow
us to tackle challenges such as class imbalance, overfitting, and inefficient computation
and is therefore applied and analysed in Chapter 5.
As random forest represents one type of ensemble learning methods and was proven to
enhance predictive power, we consider a further variant of ensemble modelling in the next
section.

3.1.4 Gradient Boosting

The most common approach to data-driven modelling is to build a single robust predictive
model. An alternative approach introduced in the previous section is by using an ensemble
technique that generates one powerful learner simultaneously combining several base weak
learners and averaging the models in the ensemble. Motivated by the unknown effect of
a stagewise adaptive procedure adding the learners iteratively and allowing consideration
of the error obtained in previous models, the first boosting algorithms were developed.
As described by Freund and Shapire (1999), “Boosting is a general method for improving
the accuracy of any given learning algorithm”. Inspired by Kearns and Valiant (1994), the
first to question whether a weak learner can be boosted into one powerful learner, Freund
and Shapire (1999) proposed the first boosting algorithm ‘AdaBoost’. Later on, Breiman
(1997) introduced an AdaBoost version, including gradient descent (explained in this
section), with a particular loss function. To enhance flexibility and optimise user-specific
cost functions, Friedman (2001) generalized Adaboost to gradient boosting to handle
various loss functions.

CHAPTER 3. MODELLING PROCESS AND METHODS 27

Gradient boosting trains the models in a gradual, additive, and sequential manner granting
it the power to improve predictive accuracy. The mechanism is relying on two aspects, the
gradient descent and boosting techniques, using gradients of the loss function to identify
the classifier’s shortcomings. This section starts by identifying the required mathematical
assumptions for the gradient boosting framework and motivation build-up, then working
through the gradient descent method used for model training. It is important to note that
we mainly consider the tree-based gradient boosting technique in this study.

Given M input variables and N data observations, we consider the feature matrix
X = (x1, . . . ,xN)>,xi ∈ X , and labelling vector y = (y1, . . . , yN)>, yi ∈ C in the dataset,
with the goal to minimize a given objective loss function L as follows (see Friedman
(2001)):

f̃(xi) = yi, ∀i ∈ {1, . . . , N}.

f̃(xi) = arg min
f(xi)

L(yi, f(xi)), ∀i ∈ {1, . . . , N}. (3.21)

Equation (3.21) represents the general supervised learning objective to obtain the
unknown functional association f̃ mapping input X to output y through an estimate f̂(xi)
such that the specified loss function L(yi, f(xi)) is minimized. In terms of expectations
the above objective can be expressed as the minimization of the expected loss function
value over the joint distribution of the sample values (X, y) (see Friedman (2001)):

f̃(xi) = arg min
f(xi)

EX[Ey(L(yi, f(xi)))|xi], ∀i ∈ 1, . . . , N.

Due to the unknown joint distribution V , the finite training sample, with N ′ training
observations generated by V , is used instead in practice. Solving the approximated version

f̂(xi) = arg min
f(xi)

1
N ′

N ′∑
i=1
L(yi, f(xi)),

enables the approximation of V via the training sample’s empirical distribution.
The input variables can be of any form, such as categorical, discrete, or continuous since
the underlying tree-based models do not postulate restrictions or assumptions about their
distribution. Moreover, missing values are directly handled by the procedure and require
no additional imputation. The labelling variable y can have any distribution, and the loss
function is assumed to be a convex differentiable function of arbitrary choice. Common loss
functions for the different target types are introduced in Table 3.1 (see Hastie, Tibshirani,
and Friedman (2001), p. 360). This setup gives the gradient boosting model the advantage
of being an efficient and flexible model.

CHAPTER 3. MODELLING PROCESS AND METHODS 28

Model Loss Function L Gradient
Regression 1

2 [yi − f(xi)]2 yi − f(xi)
Regression |yi − f(xi)| sign(yi − f(xi))
Classification (see (3.16)) −∑c∈C 1{yi=c} log(pc(xi) 1{yi=c} − pc(xi)

Table 3.1: Gradient Boosting - Loss Functions

Additive Approach Motivation

Despite the similarity to the adaptive basis function models, gradient boosting’s
optimisation lies in a functional space w.r.t. the predictions rather than a parameter space.
For parametrized models, the function search space can be restricted to the parameter
search space using the family f(xi, θ) such that (see Friedman (2001)):

θ̃ = arg min
θ

Ex[Ey(L(yi, f(xi, θ)))|xi], ∀i ∈ 1, . . . , N,

f̃(xi) = f(xi, θ̃).

Analogously to the parametric optimization problem, we consider the vector of functions
f(xi) fixed at xi ∀i ∈ bNc to be the ‘parameter’ vector of interest. The primary difference
in boosting lies in the manner of parametrizing f in the additive functional form rather
than the θ additive parametric form to tackle the absence of a closed-form solution:

f(xi) =
K∑
n=0

fn(xi),

with K representing the number of iterations, f0 the initial guess and the individual fn the
so called incremental ‘boosts’. By choosing base learners h(x, θ) the ensemble estimates
can be predicted in any boosting process by (Friedman (2001)):

fn(xi, ρ, θ) =
K∑
n=0

ρh(xi, θn).

Especially considered in this study is the case where each of the parametrized functions
of inputs h(xi, θn) is an individual decision tree and the parameters are the splitting
variables, split locations, and leaf nodes classifications.

A greedy forward stagewise additive approach of function incrementing with the
base-learners can be defined in this framework to solve:

min
{ρn,θn}Kn=1

N∑
i=1
L(yi,

K∑
n=1

ρnh(xi, θn)), (3.22)

with the optimal step-size ρn specified at each iteration as follows:

CHAPTER 3. MODELLING PROCESS AND METHODS 29

Algorithm: Forward Stagewise Additive Modelling (FSAM)
(see Hastie, Tibshirani, and Friedman (2001), pp. 341-342)

Initialisation: f0(x) = 0.
Recursion:
for n = 1, . . . , K :

Compute (ρn, θn) = arg minρ,θ
∑N
i=1 L(yi, fn−1(xi) + ρh(xi, θ)).

Update fn(x) = fn−1(x) + ρnh(x, θn).
end
Result: fK(xi).

FSAM considers the loss in total of interest, that is, the iteratively added learners and
the respective coefficients are chosen such that the updated model as a whole exhibits
minimum loss. Previously added parameters are not adjusted with each added optimal
expansion basis function. The final obtained function expansion represents the solution
to problem (3.22).
Considering a classification tree as a base learner:

T (x; Θ) =
S∑
s=1

θs1{x∈Rs}, Θ = {Rs, θs}Ss=1,

with predictive rule x ∈ Rs ⇒ f(x) = θs and θs representing the modal class of
observations in region Rs, one can implement FSAM to find the additive model (3.23)
through solving (3.24) at each step n (see Hastie, Tibshirani, and Friedman (2001), pp.
356-357):

fK(x) =
K∑
n=1

T (x; Θn), (3.23)

Θ̂n = arg min
θn

N∑
i=1
L(yi, fn−1 + T (xi,Θn)). (3.24)

θ̂sn = arg min
θsn

∑
xi∈Rsm

L(yi, fn−1(xi) + θsn). (3.25)

One approximation approach to solve (3.24) is by applying the commonly utilised steepest
gradient descent for parameter estimation, which uses fn = −ρngn. Considering the
current gradient gn of L(f) evaluated at f = f(n−1) such that the vector gn’s components
are expressed as:

gin =
[
∂L(yi, f(xi))

∂f(xi)

]
f(xi)=fn−1(xi)

, ∀ i ∈ {1, . . . N}, (3.26)

the gradient descent technique can be described through the following algorithm:

CHAPTER 3. MODELLING PROCESS AND METHODS 30

Algorithm: Steepest Gradient Descent
(see Hastie, Tibshirani, and Friedman (2001), pp. 358-359)

Initialisation: fn = 0.
Recursion:
for n = 1 to K

Compute ρn = arg minρ L(fn−1 − ρgn).
Update fn = fn−1 − ρngn.

end
Result: f̂ = 1

K

∑K
n=1 fn.

The gradient descent is often used as a numerical minimization method. It is called the
batch algorithm as it has to iterate through the entire dataset to compute the gradient
before starting the following iteration, which can be computationally infeasible for large
problems. The gradient descent algorithm initialises the function value at iteration n = 0
by setting it to an offset value such as fn = 0, and with each iterative step, it updates the
new loss function in the direction of the negative gradient of the current loss function.
The negative sign of ρgn applies the decrease in function value with respect to the highest
rate of L increase and represents the ‘line search’ along that direction.

Gradient Boosting Training

To generalize the gradient descent approach to previously unseen data fK(x), least-square
trees Tcn are constructed at each iteration for each class c with classified labels as close
as possible to the negative gradient gicn defined in the gradient boosting algorithm:

Θcn = arg min
Θ

N∑
i=1

(−gicn − Tc(xi,Θ))2,

which is the main step of the gradient boosting algorithm, along with the computed
constant in (3.25) (see Hastie, Tibshirani, and Friedman (2001), p. 359). Gradient
boosting alternatively to FSAM considers the loss as an iterative numerical optimization
problem. Each additional learner with its determined step size is an individual correction
term to its previous model. Breaking down the gradient boosting algorithm, it is essential
to note that the different model settings are reached by entering different loss functions.
The algorithm here focuses on the binary classification case.

CHAPTER 3. MODELLING PROCESS AND METHODS 31

Algorithm: Gradient Boosting
(see Hastie, Tibshirani, and Friedman (2001), pp. 360-361)

Initialisation: f0(x) = arg minθ
∑N
i=1 L(yi, θ).

Recursion:
for n = 1 to K

for c = 1 to 2
for i = 1 to N

Compute gicn =
[
∂L(yi,f1(xi),f2(xi))

∂fc(xi)

]
fc(xi)=fc,n−1(xi)

= 1{yi=c} − pc(xi).

end
Fit a classification tree w.r.t. gcn giving terminal regions Rsn for s ∈ {1, . . . , Sn}.
for s = 1 to Sn

Compute θscn = arg minθ
∑
xi∈Rsn L(yi, fc,n−1(xi) + θ).

end
Update fc,n(x) = fc,n−1(x) +∑Sn

s=1 θscn1{x∈Rsn}.
end

end
Result: f̂c(x) = fc,N(x) for c in {1, 2}.

The algorithm’s first step initialises the model with the constant model representing a
tree with one terminal node. The algorithm then recursively fits the base learner, i.e. a
classification tree to the computed respective negative gradient vector. The optimal tree
constant θscn is computed to update the estimate of the current iteration. For each class,
we obtain the tree expansion fc,N(x) generating classifications or predicted probabilities.

One of gradient boosting’s advantages is its high predictive accuracy. The technique
offers high flexibility as it optimises on various loss functions and hyperparameters.
As mentioned in the mathematical assumptions, gradient boosting models are
computationally more efficient as they directly include missing values handling instead of
an additional imputation. Drawbacks of this technique are, however also prevailing, such
as an overfitting tendency caused by the continuous improvement to reduce all errors.
The high model flexibility comes with a cost of sizeable hyperparameter search grids,
increased time and memory exhaustion. In comparison to the decision tree method, for
instance gradient boosting is less interpretable in nature, offering less trust for the user.
As boosting methods have shown good performance in churn prediction frameworks, we
consider their implementation on the study’s use case. We study a further adaptive basis
function model in the next section, however, with numerical optimisation in parameter
space.

CHAPTER 3. MODELLING PROCESS AND METHODS 32

3.1.5 Neural Networks

With a wide range of applicability in many disciplines, neural networks, rooting back to the
1940s, have gained popularity and evolved into a broad family of approaches with frequent
use across multiple areas. The network-based model, initially inspired by a brain’s complex
neural network structure, which originated from efforts to make information processing in
biological systems mathematically representable (McCulloch and Pitts (1943); Rosenblatt
(1961)), was shown to be able to carry out laborious computations. Over time, it was
extended for statistical pattern recognition. Like any other supervised machine learning
method, given a label vector and input variables, the network’s central capability is to
model a non-linear association by generating communication between the computation
units so-called ‘neurons’ of the network. Commonly, classification mechanisms comprised
of linear combinations of fixed basis functions are used. It is discovered that such models
have useful analytical and computational properties but that the curse of dimensionality
limits their practical applicability. To apply such models to significant scale problems, it
is necessary to make the basis functions adaptable to the data on hand.

Neural networks possess this adaptability and can be described by several terms. Using
the introduced terminology of graph-theory in Section 3.1.2, one can describe a neural
network as a directed graph with its ‘neurons’ representing nodes and the links generating
connections between the neurons representing the edges of the graph. One can also
consider a network as a class of serial parametric non-linear functional transformations.
There are three main types of neural networks, namely the feedforward neural network,
generally referred to as multilayer perceptron, recurrent, and convolution neural network.
Feedforward neural network processes input information by forward propagation and is
usually applied to tabular structured data. Recurrent neural network, in comparison,
contains a forward direction and additional recurrent connections in a looping manner,
ensuring that sequential information patterns are captured through the inputs. This type
is preferably used on time series, text, and audio data. Finally, convolutional neural
network is mainly prevalent in image and video processing. Given that the considered
use case in this research provides tabular data, the focus is mainly on feedforward neural
networks in this section.

We start by defining the network’s main mathematical framework and then introducing
the different architecture and hyperparameter variants throughout the network training.
First of all, it is essential to note that neural networks work for both classification and
regression purposes. They are applicable to structured and unstructured data, i.e. for both
supervised and unsupervised learning problems.

Considering the terminology of graph structures, one can define a feedforward neural

CHAPTER 3. MODELLING PROCESS AND METHODS 33

network as an acyclic directed graph G = (V,E) with its directed edges linking the
output from some neurons to the input of others (see Shalev-Shwartz and Ben-David
(2014), p. 269). The acyclic property of the graph ensures that the outputs of the network
are deterministic functions of the inputs.

Given M input variables and N data observations we consider the same feature matrix X
introduced in Section 3.1.1, which can be expressed by vector x = (x1, . . . ,xM),xj ∈ RN

to represent the inputs. Features considered can be of any type, however, different encoding
can help improve performance. If the inputs’ ranges are too big, a normalisation of the
inputs is usually considered a best practice for training, as obtaining a mean close to
0 can lead to a quicker learning rate of the optimal parameters for each input node.
Furthermore, the labelling vector y

y ∈ {1, . . . , C}N =.. CN ,

y = (y1, . . . , yN)>, yi ∈ C,

is considered in the neural network framework with the goal of approximating a final
non-linear mapping function σ : X → C such that the weighted sum of outputs of all final
neurons are mapped to a corresponding predicted event label. The mapping function is
called ‘activation function’ in the neural network case. This structure can be considered
a natural extension of logistic regression as expressed by the following equation:

ŷi = σ

 M∑
j=1

wjoj(xi)
 ∀i ∈ bNc, with ŷ = (ŷ1, . . . , ŷN). (3.27)

Neural Networks Architecture

We extend the general representation (3.27) by the following notations and definitions.
Over the edges of the network’s graph, the weight functions w : E 7→ R, indicating the
influence an input will have on the output, can be defined for later estimation purposes. A
neural network consists of one or more layers, where the neurons are organized in a stacked
pattern. The set of neurons can be organized by the decomposition (see Shalev-Shwartz
and Ben-David (2014), p. 269):

V =
⋃̇L

l=0Vl,

E : Vl−1 7→ Vl. (3.28)

The first layer, i.e. the input layer V0, represents exactly the feature space X and
respectively the output of the M + 1 neurons in the first layer is exactly xj , ∀j ∈ M

and a bias term accounting for output adjustments (see Figure 3.5). We denote by vl,n

CHAPTER 3. MODELLING PROCESS AND METHODS 34

the nth neuron of the lth layer and nl the number of total neurons in the lth layer, thus
Vl = {vl,1, . . . , vl,nl}. While each layer extracts features of the input for classification, the
use of multiple hidden layers allows construction of hierarchical features at different levels
of resolution. Each layer Vl−1 is connected by edges E to layer Vl as expressed by the
mapping (3.28) and as visible in Figure 3.5.

Figure 3.5: Feedforward Neural Network Architecture

Shalev-Shwartz and Ben-David (2014), (pp. 269-270) define the network’s architecture
(V,E, σ) by the following equations for a fixed neuron vl+1,n ∈ Vl+1 :

al+1,n(x) =
∑

r:(vt,r,vt+1,n)
w((vt,r, vt+1,n))ot,r(x), (3.29)

ol+1,n(x) = σ(al+1,n(x)). (3.30)

The input into the nth neuron in the lth layer is denoted by al,n(x) given the input vector
x into the network. Similarly, the output of the nth neuron of the lth layer is denoted by
ol,n(x). al+1,n(x) defined by Equation (3.29), represents the weighted sum of output for all
neurons connected between layer l and l+1. Each layer gets an activation function assigned
by the user, which transforms the weighted sum into the neuron’s output. The network’s
depth is equal to L, demonstrating the origination of the term ‘deep learning’, its width
maxl|Vl| and its size equal to |V | (see Shalev-Shwartz and Ben-David (2014), p. 270).
Activation functions are defined to perform a certain mathematical operation. The
commonly applied activation functions σ are:

• Sigmoid Function (see Figure 3.1):

σ(x) = 1
1 + e−x

, x ∈ R.

CHAPTER 3. MODELLING PROCESS AND METHODS 35

The non-linear sigmoid function returns a number between 0 and 1 for any given
real value x, providing an easy interpretation. The choice of a sigmoid function for
the activation correponds to the logistic regression model.

• Hyperbolic Tangent:

tanh(x) = 2
1 + e−2x − 1, x ∈ R.

The tanh function reduces the real values x’s range to the range -1 to 1 and centres
the values around 0. The centring provides a comparative advantage to the sigmoid
function.

• ReLU (Rectified Linear Unit):

ReLU(x) = max(0, x), x ∈ R.

The piecewise linear rectified linear activation function is the function returning the
provided real value x as long as x > 0 is fulfilled and otherwise returning the value
0. The limited sensitivity and saturation of the sigmoid and tanh function lead to
challenges when adapting the network’s weights. These are overcome by ReLU as it
represents sparsity and preserves linearity.

Figure 3.6: Neural Network Architecture Formulas

To provide an illustration to Equations (3.29) and (3.30), Figure 3.6 fixes the nth neuron of
the first hidden layer, i.e. v1,n and demonstrates the resulting neurons’ input and outputs.
Similar to the gradient boosting model, to estimate model parameters, loss functions are
minimized in the training process. For classification, the deviance measure is often used
as a loss function (see Table 3.1).

CHAPTER 3. MODELLING PROCESS AND METHODS 36

Neural Networks Training

Algorithm: Backpropagation (BackProp)
(see Shalev-Shwartz and Ben-David (2014), pp. 277-281)

Initialisation: Wl,r,s = w((vl,r, vl,s)),Wl,r,s = 0 for (vl,r, vl,s) /∈ E,
o0 = x, δL = oL − y.
Recursion Forward:
for l = 1 to L

for n = 1 to nl
Compute al,r = ∑kl−1

s=1 Wl−1,r,sol−1,s.
Compute ol,r = σ(al,r).

end
end
Recursion Backward:
for l = L− 1 to 1

for n = 1 to nl
Compute δl,r = ∑kl−1

s=1 Wl,r,sδl+1,sσ
′(al+1,s).

end
end
Result: ∀(vl−1,s, vl,r) ∈ E; partial derivative vk = δl,rσ

′(al,r))ol−1,s.

Algorithm: Stochastic Gradient Descent
(see Shalev-Shwartz and Ben-David (2014), pp. 277-281)

Initialisation: w(1) ∈ R|E| s.t. w(1) close to 0.
Recursion:
for k = 1 to K

Compute gradient vk = backpropagation(D, w, V, E, σ) for D = (x, y) ∼ V .
Update w(k+1) = w(k) − ρn(vk + λw(k)).

end
Result: ŵ, the best performing weight vector w(k).

Neural networks training comprises of minimising the loss function w.r.t. the adaptive
weights and bias, which is commonly performed by using the ‘stochastic’ gradient descent
(SGD) as numeric parameter optimization method after determining the gradient via
the ‘backpropagation’ method. The backpropagation algorithm calculates the gradient

CHAPTER 3. MODELLING PROCESS AND METHODS 37

w.r.t. all of the network’s weights on a sample generated by the distribution V of the
full dataset observations. The method includes two recursion directions as visible in the
algorithm setup. The first recursion transfers the information in a forward manner, setting
all neurons’ inputs and outputs per the defined layer structure, sample, and activation
functions. The second recursion starts at the last layer and works in a backward order to
determine the gradient for each edge of the network.
Subsequently, the weight vector, optimising the loss function, is determined by using the
SGD updated version of the gradient descent algorithm (see Section 3.1.4), which enhances
the search of the global optimum for non-convex objective functions. To yield faster
optimisation, the SGD also only iterates through subsets of the full batch by considering
D. The procedure initialises the weight vector’s values at iteration n = 1 by setting
w(1) as a random vector close to zero, and with each iterative step, updates the new loss
function in the direction of the negative gradient of the current loss function. The negative
sign of ρgn applies the decrease in function value with respect to the highest rate of L
increase. It is also important to note that the variable step size choice is more significant
in this context due to the non-convexity of the loss function. Sometimes, including a
regularization parameter λ also known as ‘weight decay’, such that the objective becomes
arg minw L(w) + λ

2 ‖w‖, corresponding to the ridge regression constraint in Equation
(3.37) (see Shalev-Shwartz and Ben-David (2014), p. 277). The larger the values for the
penalty parameter, the more the network’s weights will tend toward zero.

This developed and often used backpropagation algorithm was, however, proven to be
a lengthy converging optimization technique and not well scalable on large networks,
such that numerous other optimisation methods were developed. One of the developed
families of such methods, Quasi-Newton, leads to more efficient network training. The
Quasi-Newton family includes one of the alternative network training algorithms, namely
the Quick-Propagation (QuickProp) method by Fahlman (1988). This local updating
algorithm approximates the loss function using Taylor expansion and results in the
following independent weight updates (see Fahlman (1988)):

4W (k)
l,r,s = 4W (k−1)

l,r,s

4L(k)
l,r,s

4L(k−1)
l,r,s −4L

(k)
l,r,s

, (3.31)

W
(k)
l,r,s = W

(k)
l,r,s +4W (k)

l,r,s. (3.32)

The algorithm proposes a local approximation of the loss function and the computation
only depends on the regarded neurons in the connected layers, thus QuickProp can speed
up learning by only using the loss function curvature. Subsequent to retrieving the first
gradient with backpropagation, the direct step (3.31) is performed to attempt jumping in
one step from the particular point directly to the minimum of the parabola, assuming

CHAPTER 3. MODELLING PROCESS AND METHODS 38

that the loss function surface is locally quadratic. A further developed technique is
the conjugate gradient, which builds a learning procedure combining gradient descent
and Newton’s method. As backpropagation does not ensure the fastest convergence,
the conjugate gradient performs the search along with conjugate directions. We refer
to (Johansson, Dowla, and Goodman (1991)) for a detailed explanation and derivation of
the algorithm steps.

The advantages offered by neural networks includes the joint capability of modelling
complex linear and non-linear relationships using flexible input types and delivering
outputs of various forms. In comparison to standard regression models, neural networks
are also less sensitive to noise. While neural networks exhibit many advantages, they are
not exempt from drawbacks. First, specifying the optimal network architecture does not
have an accompanying guideline but is instead achieved by experience, as well as trial
and error, which makes it harder to implement for a given use case by the user. Specially
added to the complexity of network optimisation, overfitting issues have to be taken into
account. Furthermore, the lack of model interpretability reduces the trust of the user in
the provided result. Not knowing why and exactly how the network predicts this outcome
induces reduced flexibility in post-modelling extractable measures.

Considering the reliable power contained by neural networks, it can be useful to apply
them in the churn prediction framework to detect existing relationships. As neural
networks come in different architecture variants and optimisation possibilities, we consider
them an interesting application on the case study, to observe the resulting performance
w.r.t. the different settings. Before presenting the models implemented in the use case,
we introduce the theory of pre-processing the underlying dataset in the next section.

CHAPTER 3. MODELLING PROCESS AND METHODS 39

3.2 Prediction Process

3.2.1 Data and Features Pre-Processing

Real-world data is most often imperfect in the sense that it can include improper data
entries or errors, irrelevant data, missing values of attributes, or incompatible data
formats. Hence, before any valuable knowledge extraction or data analysis process can
start, there are standard data requirements that have to be fulfilled. Data pre-processing
not only prepares the data for a more efficient analysis but can also be used with the
objective of getting a grasp of the dataset and its nature. By doing this, the user can choose
to reduce the levels of granularity or change the structure of the data as desired. In large
enterprises of the insurance industry, for instance there are numerous insurance categories
with diverse regulatory requirements and platforms. It is often a technical challenge to
pre-process the data from such a heterogeneous data landscape. The different sources can
have different degrees of complexity and quality, which can make integration into one
flat-file database difficult.
Most of these challenges are solved through a form of ETL (Extract, Transform, Load)
process, see (Gour et al. (2010)). The typical ETL procedure includes extracting the data
from different sources into one data warehouse. Then, an appropriate transformation is
applied by a series of rules. Lastly, the data is loaded into the end target most often as
one flat-file database.
To enhance data reliability, three major categories of data problems are considered. One
is often faced with either too little data, too much data or fractured data as described by
Famili et al. (1997). First, data could be insufficient when a large number of the feature
values are missing, general attributes are missing or when the dataset size is not large
enough. Second, a great amount of data can also be disadvantageous if noisy or irrelevant
data is encountered, or if there are too many diverse data types. Third, the data could
be fractured if many data sources are integrated into one, with incompatible formats or
diverse granularity levels.

Given a raw dataset with M input variables and N observations, the goal is to transform
the data represented by X through functions Ti with X′ = Ti(X) such that X′ is more
useful, does not exclude useful information and eliminates some of the above mentioned
problems (see Famili et al. (1997)). X′ would then contain m < M features.

First, the data needs to be partitioned into a training set D, validation set V , and test
set T if the given raw dataset is large enough. Smaller datasets are partitioned only into
a training and a test dataset, and validation is performed on cross-validation samples
from the training dataset to avoid overfitting, fine-tune hyperparameters, and get more

CHAPTER 3. MODELLING PROCESS AND METHODS 40

evaluation metrics for model evaluation. An overview of the method is provided here, and
the validation approach is further introduced in Section 3.2.4.

Cross-Validation

Very widely used is the k-fold cross-validation technqiue to assess predictive performance.
This procedure partitions the data into k equal parts with each a size of N

k
; k−1 folds are

used to train the model and the respective remaining kth fold is used to test the model’s
predictive performance.

Figure 3.7: Cross-Validation Procedure

As described in Hastie, Tibshirani, and Friedman (2001) (pp. 241-243), after random
partitioning, each observation in the dataset uniquely belongs to a certain fold which can
be indexed by κ : {1, . . . , N} 7→ {1, . . . , k}. Given each fitted function f̂k, determined
by training the model on the training dataset without the kth fold, one can define the
cross-validation prediction error as the weighted average of all loss functions dependent
on the respective function of the fitted models:

CV (f̂) = 1
N

N∑
i=1
L(yi, f̂κ(i)(xi)). (3.33)

The case k = N , namely the leave-one-out cross-validation, is another possible variant
where at each iteration, exactly one observation is left out for validation, and the rest of
the data is used for model training. We consider the example of 5-fold cross-validation
in Figure 3.7 as an illustration of the method. For each k = 1, . . . , 5 fold, we iterate and
create a model. In the first iteration, the model is fitted on folds 2, 3, 4, 5 and then tested
on the first fold. In the second iteration, the model is fitted on folds 1, 3, 4, 5 and tested

CHAPTER 3. MODELLING PROCESS AND METHODS 41

on the second fold and so on. The evaluation of the model with respect to the CV error
is further specified w.r.t. considered measures in Section 3.2.5.
To dive deeper into the possible appropriate data transformations, solutions for each of
the pre-processing problem categories are introduced in the next paragraphs.

Data Transformation

When handling too much data, one encounters diverse data types and input variables with
numerous levels or big ranges. It is usually the case that parametric predictive models,
such as regression and neural networks, suffer from performance drawbacks if various
categorical variables with many levels are included. Coding each categorical variable by
indicator variables leads to a large number of model parameters. A common approach to
tackle this issue is the combination or grouping of categorical input levels with similar
outcomes (see Famili et al. (1997)). By consolidating the levels, the input variable’s
information would still be included yet without the need for encoding.

Often occurring are also data errors or outliers due to improper data entries, transmissions,
or characteristics of the different systems from which the data is extracted. It is justifiable
to remove outliers only if they do not represent actual natural variations but are rather
errors, not reflecting reality. In that case, correct outlier detection is necessary to be able
to remove or handle them. Standard solutions are data filtering or replacement.

Some datasets may have a large size with respect to the number of observations, while
in other settings, the amount of information collected in the form of different attributes
can be large. Nowadays, data is collected for all purposes, even if it does not assist in
the currently required modelling purpose, since it could be useful information in the
future. However, including too many features can increase model complexity and decrease
performance. Hence, only the relevant features are chosen to reduce dimensionality and
irrelevance. This approach is further explained in the upcoming Section 3.2.2.

Datasets with too little data, such as sets with attributes having missing values, can
be tackled by variable imputation or complete elimination of the observations. On the
one hand, elimination could reduce available useful information. On the other hand,
unequal vector lengths could cause inaccurate evaluations or bias in the information
value (see Famili et al. (1997)). Variable imputation is therefore preferred and refers
to the substitution of missing values with a predefined replacement value. To reduce the
largest amount of information loss possible, one can set a missing value threshold. If
the threshold is set to x%, variables with a missing value percentage exceeding x% are
completely removed, and the rest is imputed with the pre-determined replacement values.
However, the different variable types should be treated differently when imputing:

CHAPTER 3. MODELLING PROCESS AND METHODS 42

• Interval variables can be complemented with the mean, median, or mid-range of the
variable values. Another alternative is a tree-based imputation (explained below).

• Class variables can either be complemented with the majority class occurring or a
tree-based imputation as well.

The tree-based imputation relies on the introduced decision tree algorithm in Section
3.1.2 which automatically handles missing values within the modelling procedure. The
method, as described by Rahman and Islam (2011), mainly divides the dataset into a
dataset DF with observations having no missing values, i.e. full records and a dataset DM
with observations having some missing records. A set of decision trees is built on DF using
the features with missing values in DM and the C4.5 algorithm. Each missing record in
DM is then inserted into the tree and is assigned the mean value (if numeric) or majority
class (if categorical) of the respective leaf it falls into. We refer to (Rahman and Islam
(2011)) for the detailed steps of imputation based on decision trees.

An improvement of generalisation and manageability is, in all ways, more profitable.
However, a resulting limitation when imputing missing values is the omitting of model
uncertainty by disregarding missing values in the fitted function. The imputed values are
handled as real values, so this uncertainty is not accounted for in the model. Therefore,
the distinction between structurally missing values and missing values with a ‘real value’
is important.

Especially in the churn setting where the features indicate deviating human behaviour we
encounter a lot of missing values or features. The insurance sector offering a wide range
of insurance categories has to process the respective data in distinct systems and define
the possibility and paths of merging all sources. With the objective of reducing errors and
enhancing the predictive power of the models, an extensive pre-processing is necessary to
handle all of the above commonly occurring issues. Furthermore, a good understanding
of the dataset can enable experts to determine whether the model is in line with the
expectations of the churn’s relevant drivers. This good grasp can enable marketing teams
to use appropriate retention approaches.
Regarding our use case, it is important to consider partitioning the data in the right
manner, using cross-validation, to avoid having small datasets and respectively smaller
event frequencies. A proper variable imputation should also be performed as clients’ data
is often incomplete. Discretization of continuous variables or encoding categorical variables
should be considered w.r.t. the model on hand. An implementation of these suggested data
and features pre-processing methods is illustrated in Section 4.2 along with a necessary
class imbalance reduction, introduced in the next Section.

CHAPTER 3. MODELLING PROCESS AND METHODS 43

3.2.2 Class Imbalance Reduction

In recent years, rare events modelling has become a critical part of the industry’s essential
business practices. Rare events are infrequent observations that might have a substantial
impact on the company’s profitability or general business position. Due to the low observed
frequencies, datasets containing rare events are mostly imbalanced. An imbalanced dataset
occurs when one target class is represented more than the others, i.e. when the class
distribution is skewed. When the minority class, i.e. underrepresented class of interest,
has a low frequency in the dataset, most predictive models’ performance is degraded as it is
not able to predict these rare events precisely. Most machine learning approaches assume
that the data has an equal representation of the data; thus, several approaches were
developed to help address imbalanced datasets and correctly handle them. In this section,
the two common technique categories are introduced, namely data-level approaches and
algorithm-level approaches (see He and Ma (2013)).

Data-level approaches

The data-level approaches include all data processing methods that are used for altering
the number of observations for each class. One example is the widely used sampling
technique, which generates a new dataset from the underlying set with respect to the
needed class distributions or sample size. We discuss three possible variants in this section
which include, random over- or under-sampling and SMOTE-NC (see below).

• Random Under-Sampling
One of the classic sampling techniques that tackle the class imbalance problem is
the random under-sampling approach. This consists of randomly removing majority
class samples from the dataset. This approach might lead to a loss of information
by reducing the available dataset size.

• Random Over-Sampling
Random over-sampling addressees the imbalance by randomly duplicating minority
class samples from the dataset for a random number of times. This approach might
deliver biased results as it over-weighs the available rare events and be inefficient as
it exhibits long computation time. Random over-sampling can be generated through
the following steps (see Zhang and Chen (2019)):

1. Set ynew = yMC, where MC represents the minority class.

2. Select (xi, yi) such that yi = ynew with probability 1
NMC

.

CHAPTER 3. MODELLING PROCESS AND METHODS 44

3. Sample xnew from VCovMC(.,xi) the probability distribution centered at xi and
covariance matrix CovMC.

The procedure first selects the minority class label and assigns this label to an
instance-pair from the sample with probability 1

NMC
, where NMC represents the

number of observations belonging to class MC. The last step is sampling the input
values xnew from the given distribution.

• Synthetic Minority Over-sampling Technique - Nominal Continuous (SMOTE-NC):
The SMOTE approach introduced, by Chawla et al. (2002), represents an advanced
sampling method for over-sampling. As the name implies, the algorithm uses
generated synthetic examples instead of randomly replicated observations. The
basic SMOTE approach is, however, only applicable to continuous features. As the
underlying use case dataset includes both nominal and continuous input variables,
the SMOTE-NC version applicable for both types is considered. The algorithm
by Chawla et al. (2002) takes smaller dataset samples of the minority class and
generates synthetic samples along regions joining the k minority class nearest
neighbours. Multiplying the difference between a feature vector in the sample and
its nearest neighbour by a random number between 0 and 1 creates a random point
along the line segment, providing more general examples. The algorithm can be
described as follows:

1. Penalize the difference of nominal features by computing the median of
standard deviations of all the minority class’s continuous features. This median
should be used in the following algorithm steps to compute the euclidean
distance of a nominal feature between a sample and the nearest neighbour.

2. Compute the Euclidean distance between the considered feature vector and
other feature vectors of the minority class sample, computing the nearest
neighbour. The median computed should be included in the Euclidean distance
for the nominal features deviating between the considered vector and its
potential nearest-neighbour.

3. Generate the synthetic sample using the SMOTE procedure described by the
following pseudocode. While the values of the continuous features are deducted
from the pseudocode steps, the nominal feature values are set by choosing the
most occurring value of the k-nearest neighbours.

The following Pseudocode represents SMOTE for T number of minority class samples,
SMOTE over-sampling percentage N%, and number of nearest neighbours k:

CHAPTER 3. MODELLING PROCESS AND METHODS 45

Algorithm: k-Nearest-Neighbour
(see Shalev-Shwartz and Ben-David (2014), pp. 258-259)

Initialisation: Create sample D = {(x1, y1), . . . , (xn, yn)}.
Recursion:
for x ∈ X

Assign x the majority label in {yπi : i ≤ k}, with π1, . . . , πN representing
the reordering of instances {1, . . . , N} w.r.t. to their proximity to x.

end
Result: K = (x, yπi).

Algorithm: SMOTE (T,N, k)
(see Chawla et al. (2002))

Initialisation: N = int · N100 , s = 0.
Recursion:
If N < 100:

Randomise T minority class samples :
T = N

100 · T .
N = 100.

end
for i = 1, . . . , T :

Compute k nearest neighbours for each minority class sample using K.
Generate synthetic samples:
for j = 1, . . . ,M :

if N 6= 0:
Compute D = MCK(nn)(j)−MCi(j), for nn ∈ {1, . . . , k}.
Compute Ss(j) = MCi(j) +Gap ·D for Gap = random.uniform(0, 1).
s = s+ 1 , N = N − 1.

end
end

end
Result: N

100 · T synthetic minority class samples represented by S.

The SMOTE methodology, described by the above algorithm first randomly selects a
proportion of the minority class. For each xi in the sample the k nearest neighbours
inside the subset are computed with the suggested algorithm using Euclidean distance.
To generate each variable value of the synthetic observation the method progresses by

CHAPTER 3. MODELLING PROCESS AND METHODS 46

choosing a random instance nn from the k nearest neighbours computed. Subsequently,
the difference D between instance nn and i for the jth variable in matrix MC, representing
the original minority class sample, is determined. The computed difference multiplied by a
random number between 0 and 1 is added to the original instance i, generating a synthetic
value for variable j, which is stored in matrix S, representing the synthetic samples. This
is repeated for all variables on the minority class subset. We should note that s, initialised
at 0, counts the number of synthetic samples generated. SMOTE overcomes the overfitting
issue occurring in random over-sampling applications through the generation of artificial
samples. Simultaneously, the procedure does not lead to a loss of information, in contrast
to random under-sampling. However, SMOTE suffers from the possibility of additional
noise created by neighbouring instances not representing the desired class. A further
disadvantage is its impracticality for high-dimensional data, due to increased iterations
accompanied by high computational complexity.

Algorithm-level approaches

• Cost-Sensitive Learning:
Cost-sensitive learning assigns a misclassification cost for wrongly classified
instances instead of directly trying to classify the observations. That is, instead
of each instance being either correctly or incorrectly classified by the algorithm,
each class (or instance) is assigned a misclassification cost. Thus, instead of trying
to optimize the accuracy, the problem is then to minimize the total misclassification
cost.

• Ensemble Modelling:
One further popular approach to tackle class imbalance effects is to implement
ensemble modelling. Whether bagging, boosting or stacking, the ensemble
algorithms have showed enhanced performance on class-imbalanced datasets
(see Burez and Van den Poel (2009)).

Taking into account that the underlying case study aims at predicting churn, class
imbalance reduction techniques need to be applied. Churn can be viewed as a rare event in
most industries, as it represents a small proportion of activity in the considered interval.
For the underlying use case, it is also important to note that stratified sampling, stratified
partition, and stratified cross-validation should be applied. Using the random variants of
these approaches can lead to an unequal distribution of the available rare observations,
which makes a withhold of an equal frequency necessary. These settings adjustments are
defined on the corresponding spots in the following case study chapters.

CHAPTER 3. MODELLING PROCESS AND METHODS 47

3.2.3 Dimensionality Reduction

Along with the frequently faced pre-processing challenges such as nonstandard data
structures or diverse data types, one often faces ‘the curse of dimensionality’ (Bellman
(1961)) during the modelling cycle. High-dimensional feature spaces could provide useful
features associated with the target, which improve the model fit. However, these spaces
also require more data and add noisy non-informative features that are irrelevant to the
classification, thus degrading the model’s performance. The selection of appropriate input
variables and the extraction of valuable information reduces a possible deterioration of
potentially useful models. High dimensions of input spaces can lead to possible overfitting,
since the number of configurations covered by an individual observation decreases. The
computational and run-time cost of complex models can also be very high. Fast model
implementation and easy interpretability can, therefore, deliver more desirable results.

Given a dataset with design matrix X representing M input variables, the goal is to find a
matrix X′ with m < M features and better contribution to the model’s predictive power.

In this section, different feature selection approaches that enable the construction of
efficient and informative feature sets are addressed. Three main method categories are
introduced, namely filter-based methods, wrapper methods, and embedded methods.

Filter based methods

An easily applicable approach is the selection of features based on their particular
relevance or association with the response variable proven through statistical tests. That
is, input variables are evaluated according to a pre-determined quality metric independent
of the other inputs. The entire selection is independent of any modelling procedure as
well and hence considered as a pre-modelling step (see Figure 3.8). The features can be
filtered from the entire input space by ranking the metric values and setting a cutoff value.
However, the techniques only consider the relationship of each feature with the target,
but no interaction between the features, e.g. multicollinearity.

• A classic filter based method is the Chi-Square based selection. The Chi-Square test
was initially created for independence and goodness-of-fit testing. In the framework
of feature selection one can test the independence of a feature and class occurrence.

Figure 3.8: Filter Methods Flowchart

CHAPTER 3. MODELLING PROCESS AND METHODS 48

The method is applicable on both categorical and numeric interval variables. It
requires, however a discretisation of the interval variables by splitting the range into
equal-sized categories. In the binary case, the Chi-Square statistic is then defined
as (Wu and Flach (2002)):

χ2 =
r∑
i=1

(fi0 − µi0)2

µi0
+ (fi1 − µi1)2

µi1
. (3.34)

fi∗ represent the observed frequencies and µi∗ the expected frequencies w.r.t. each
class deducted from the respective contingency Table 3.2, where µij = f∗jfi∗

f
.

yi = 0 yi = 1 ∑
Input category c′1 f10(µ10) f11(µ11) f1∗

...
Input category c′r fr0(µr0) fr1(µr1) fr∗∑

f∗0 f∗1 f

Table 3.2: r × 2 Contingency Table By Wu and Flach (2002)

The obtained χ2-test statistic, see Equation (3.34), is compared against the critical
value from the χ2 distribution table with (r − 1) degrees of freedom. If the
corresponding p-value is smaller or equal than the pre-determined significance value,
(i.e. the null hypothesis of independence has to be rejected), there is an association
between the feature and response variable, and the feature should be considered an
input. Independence would imply close observed and expected values, leading to a
smaller Chi-Square statistic. One can conclude from the above formula that a higher
χ2 indicates a higher likelihood of correlation between the feature and event class.
Hence, the top-ranked features are those with the largest Chi-Square values.

• The previously introduced information theory measures (Information Gain (3.17))
and (Gain Ratio (3.19)) have an additional usage compared to splitting measures
for trees, namely as filter methods. In the context of the response variable, each
variable’s gain is evaluated as a measure of mutual information. A ranking provided
through the information gain or gain ratio values provides the selected variables.

Wrapper methods

In regression-based classification models such as logistic regression, one can apply the
well-known subset selection methods. Wrapper methods sequentially add or eliminate
features from a subset of features by training the model on the subset and testing the

CHAPTER 3. MODELLING PROCESS AND METHODS 49

Figure 3.9: Wrapper Methods Flowchart

added predictive power to the classifier repeatedly (see Figure 3.9). Considering the 2M

possible models can be computationally infeasible and impractical for large M . The
different versions of the subset selection search through smaller subsets from the entire
models’ space instead.

• Forward selection starts with the baseline model M0 containing only the
intercept and no input variables, predicting the overall sample mean or
majority class. Iteratively the feature with the best model fit improvement
is added, creating a nested sequence of models with increasing complexity
(see Gareth et al. (2013), pp. 207-210).

Algorithm: Forward Selection

Recursion:
for j = 0, . . . ,M − 1 :

Construct all M − j models supplementing Mj with one additional feature.
Choose the model providing the best improvement among the
M − j models, i.e. the model with lowest p-value from the F-statistic and its
respective alpha level, denote it by Mj+1.

end

The loop is terminated if no significant improvement in the p-value can be made
w.r.t. the pre-determined threshold.
Result: The best j models M0, . . . ,Mj, j ∈ {0, . . . ,M}.

Among the at most M+1 candidate modelsM0, . . . ,Mj, the model with the lowest
AIC (3.35), highest BIC (3.36) or lowest cross-validation error (3.33) is chosen.
Considering the above steps in the algorithm, one can conclude that only a maximum
of 1 +∑M−1

j=0 (M − j) Gauss Formula= 1 + M(M+1)
2 models are examined instead of the

exhaustive construction of 2M models.

The Akaike Information Criterion (AIC) defined as (see Hastie, Tibshirani, and
Friedman (2001), p. 231):

AIC = − 2
N
· L+ 2 · K

N
, (3.35)

CHAPTER 3. MODELLING PROCESS AND METHODS 50

was raised to solve the problem of overfitting by taking into account the
corresponding number of observations N , the number of model parameters K, and
the log likelihood L. The model with lowest AIC is considered to be best, as good
fit is rewarded through the − 2

N
· L term and over-parametrisation is penalised by

the term 2K
N

, demonstrating the trade-off between fit and complexity.

The difference between the Bayesian Information Criterion BIC and AIC lies
mainly in the penalty term. While AIC tends to choose more complex models
to deliver a better model performance, the BIC is rather oriented towards simple
models and penalises complexity (see Hastie, Tibshirani, and Friedman (2001), p.
233).

BIC = −2L+ log(N)K. (3.36)

It is important to note that both measures are relative, that is they can only be
used for a model comparison and not as general goodness-of-fit or quality measures.

• Backward selection follows an opposite idea as forward selection, in which the
approach starts with the full saturated model MM containing all M predictors.
At each step one predictor is removed and the respective models are considered
(see Gareth et al. (2013), pp. 207-210).

Algorithm: Backward Selection

Recursion:
for j = M, . . . , 1 :

Construct all j models each dropping one of the predictors from Mj for
the j − 1 predictors.
Choose the model with least reduction in overall model fit among the j models,
i.e. the model with lowest p-value from the F-statistic and its
respective alpha level, denote it by Mj−1.

end

The loop is terminated if the p-value of the remaining features is below a
pre-determined threshold.
Result: The best j models M0, . . . ,Mj, j ∈ {0, . . . ,M}.

From the at most M + 1 models, the model with the highest AIC, lowest BIC,
or lowest cross-validation error is chosen. Like forward selection, backward selection
only examines 1+ M(M+1)

2 models instead of 2M . However, this selection can only be
applied if the number of input variables M is larger than the number of observations
N .

CHAPTER 3. MODELLING PROCESS AND METHODS 51

• Stepwise selection combines both aspects of the forward and backward selection
approaches. The approach starts with the baseline model M0 and sequentially
adds features improving the model fit. After each addition however a significance
re-evaluation is performed as follows:

Algorithm: Stepwise Selection

Recursion:
for j = 0, . . . ,M − 1 :

Construct all M − j models supplementing Mj with one additional feature.
Choose the model with the best additional improvement among the M − j models.
Re-evaluate the model w.r.t. the elimination threshold; if any of the current
inputs exceed the F-statistic p-threshold, remove it and defined the model as Mj+1.

end

The loop is terminated if no significant improvement in the p-value can be made
w.r.t. the pre-determined remain or elimination threshold.
Result: The best j models M0, . . . ,Mj, j ∈ {0, . . . ,M}.

It is important to note that stepwise selection usually delivers better results as it
incorporates both aspects of the forward and backward selection, could however
require longer computational time.

Embedded methods

Embedded methods represent techniques that have a built-in feature selection
integrated within the model training procedure itself (see Figure 3.10). We first introduce
two regularisation approaches for regression, which include shrinking the coefficient
estimates towards zero. By setting some of the parameter estimates very close to zero,
a variance reduction and simultaneous variable selection are performed. Then, decision
tree variants are introduced, mostly used as a variable selection for the random forest and
gradient boosting algorithms.

Figure 3.10: Embedded Methods Flowchart

CHAPTER 3. MODELLING PROCESS AND METHODS 52

Regularisation methods are used in cases with a large number of covariates and coefficient
instability. By controlling how large the coefficients grow, a high potential variance can be
controlled. The method consists mainly of shrinking the maximum likelihood estimates
of model parameters towards zero. This is done through the addition of a penalty term
to the respective loss function of the model, i.e.

min
b0,...,bM

[L(xi, y, b) + λP (b)].

• The ridge regression model in the logistic regression framework consists of an
extra L2-norm penalty parameter (sum of squared estimates, see Equation (3.37))
applied to all coefficients except the intercept. By choosing a complexity parameter
λ ≥ 0 the penalty is added to the function of the MLE. The ridge maximisation
equation is thus expressed as follows (see Hastie, Tibshirani, and Friedman (2001),
pp. 61-63):

l =
N∑
i=1

[yi〈b̄, x̄i〉 − log(1 + exp(〈b̄, x̄i〉))]− λ
M∑
j=1

bj
2. (3.37)

As the shrinkage parameter λ and coefficients’ magnitude increases, the coefficients
tend to zero but are never completely eliminated. The drawback of this method
is the inclusion of all M predictors in the model, which can lead to complex
interpretability for large M . The above problem can also be expressed through
the following constrained form (a proof is provided in Appendix A.1.2):

min
b̄
l = min

b̄

N∑
i=1

[yi(〈b̄, x̄i〉)− log(1 + exp(〈b̄, x̄i〉))] s.t.
M∑
j=1

bj
2 ≤ t. (3.38)

• LASSO (Least Absolute Shrinkage and Selection Operator) overcomes the
disadvantage of ridge regression by including a form of variable selection as well.
Instead of adding an L2 penalty term, LASSO adds an L1 penalty, that is the sum
of absolute values of the estimates (see Hastie, Tibshirani, and Friedman (2001),
pp. 68-69):

l =
N∑
i=1

[yi〈b̄, x̄i〉 − log(1 + exp(〈b̄, x̄i〉))]− λ
M∑
j=1
|bj|. (3.39)

By subtracting the absolute instead of squared values (see Equation (3.39)), some
of the parameter estimates become equal to zero and are thus ignored in the final
model. The above optimisation problem is equivalent to minimising the loss function
subject to the L1-norm of the parameter estimates being smaller than a certain
threshold (a proof is provided in Appendix A.1.2):

min
b̄
l = min

b̄

N∑
i=1

[yi(〈b̄, x̄i〉)− log(1 + exp(〈b̄, x̄i〉))] s.t.
M∑
j=1
|bj| ≤ t. (3.40)

CHAPTER 3. MODELLING PROCESS AND METHODS 53

• As explained in Section 3.1.2 a decision tree can not only be used as a
classification model but also for feature selection purposes. Along with the explained
different variants such as ID3, C4.5, and CART, CHAID represents a further
decision-tree-based method, most often used for variable selection. While CART and
C4.5 are mainly oriented towards classification by building nodes with maximum
homogeneity, CHAID emphasises strong variable relationships.
The chi-square automatic interaction detection (CHAID) was developed in 1980
by Gordon V. Kass to discover associations between a categorical target and the
available predictors. The method aims at creating significant configurations from
the features to detect potentially important interactions. After each feature is best
split w.r.t. the Chi-Square statistic, all inputs are compared through an iterative
algorithm, and the best variable is chosen for node splitting. Similar to most decision
tree algorithms, the technique represents the outcome in a tree-like structure. As the
name indicates, the CHAID method uses the Pearson Chi-Square statistic within the
algorithm, as it is used as a criterion for the binary splitting and category grouping.

Given a target variable y with yi ∈ C where |C| ≥ 2 and a feature xj with xij ∈ C ′

where |C ′| ≥ 2, for all i ∈ {1, . . . , N}, one goal is to reduce the c× c′ frequency table
by merging some of the feature’s levels into one if the variable type permits it.

In order to consider all possible ways of partitioning a nominal predictor into two
groups one would have to compute, according to Kass (1980):

C∑
g=1

g−1∑
i=0

(−1)i(g − i)c
i!(g − i)!

possible combinations, splitting c values into g groups and in the ordinal inputs’ case
2(c−1) possibilities. To avoid scanning through that many combinations, a built-in
approach is suggested by Gordon V. Kass. We consider the binary case for simplicity:
The first step of the technique involves creating inputs of categorical type from the
underlying numeric interval variables by dividing the range into a predetermined
number of categories or bins with an approximately equal number of observations.
The algorithm then performs the following steps as defined by Kass (1980):

1. For each predictor create the c′× 2 contingency table as explained in Table 3.2
and apply the following steps.

(a) Create the 2 × 2 frequency table using the predictor’s categories pairs
leading to no significant difference w.r.t. the target. If the table of
Chi-Square statistics does not show any significance, combine these two
categories into one compound category and repeat this step (find next

CHAPTER 3. MODELLING PROCESS AND METHODS 54

possible pair including the new compound category and apply the same
method).

(b) To ensure the validity of the newly created mergers, using the created
compound categories in the previous step, implement the most significant
binary split (if it prevails) and go back to step (a).

DF P-values
0.1 0.05 0.025 0.01 0.005

1 2.71 3.84 5.02 6.63 7.88

Table 3.3: Chi-Square Distribution Table

2. Among all predictor variables, including the merged variables, choose the
predictor with the smallest p-value (see Table 3.3), i.e. the variable yielding
the most significant segmentation to partition the dataset.

3. Return to step 1 for each resulting segment of the dataset if no stopping
criterion is reached.

If a node meets any of the possible stopping criteria, terminate:

– The Chi-Square threshold p-value is exceeded.

– Maximum tree depth is exceeded.

– Minimum parent node or node size is not reached.

Although filter methods are easily and efficiently applicable, wrapper and embedded
methods tend to perform better because the feature selection is chosen such that the
classification is optimised. Filter methods also suffer from a lack of multicollinearity
assessment. A feature can be irrelevant on its own but, when combined with others,
show significant association to the target. Wrapper methods suffer from computational
expensiveness in comparison to filter methods. Hence, the trade-off between computational
time and accuracy needs to be considered. Embedded methods, in contrast, combine
the efficiency of filter methods and accuracy of wrapper methods by considering feature
interactions and feature subsets within the algorithm.

Especially in churn prediction, where determining a list of the relevant drivers is of
high importance, dimensionality reduction is a vital step. By selecting a smaller, more
powerful subset of features, classifications are more comfortable to comprehend and use
for determining effective retention measures. To first ensure the validity of the classifier
we evaluate quality measures introduced in the next section.

CHAPTER 3. MODELLING PROCESS AND METHODS 55

3.2.4 Modelling and Prediction

The churn prediction research history shows that some of the most used classification
methods for churn forecasts include the random forest, gradient boosting, and neural
network methods (see Vafeiadis et al. (2015)). Now that the theory behind these methods
is introduced and the pre-processing steps of the dataset are outlined, it is crucial
to comprehend the right modelling steps and sequence using these machine-learning
algorithms to tackle the key problem optimally.

The supervised modelling process usually contains three phases, namely a training phase,
validation phase, and test phase (see Shalev-Shwartz and Ben-David (2014), p. 150).
Training and validating the model on the given dataset can be achieved in different forms.
One approach to build up the training algorithm is by using the training set, then using
the validation set for hyperparameter tuning and an initial performance check. Another
manner is to carry out the training by only using the training set for both purposes and
using cross-validation as an alternative to the classic validation procedure. To assess the
fully-trained classifiers and determine the final candidate model, the test set is used for
measuring performance objectively. The outcome of all on the introduced models should
include an assigned forecasted probability for each observation. The last step before
the overall model assessment includes determining the classification by transforming
the assigned probabilities of churn to binary values. This is done for models that only
learn calibrated probabilities throughout the training process. The transformation can be
defined as follows:

ŷi =

1 if P̂(yi = 1) ≥ t

0 else,

where ŷ is the vector of binary predicted labels and t ∈ [0, 1] the forecasted probability.

Methods such as decision-tree-based methods and neural networks which primarily
deliver the forecasted classifications can vice versa be calibrated to eventually deliver
posterior probabilities. When dealing with imbalanced datasets, it is crucial to accurately
determine the threshold t such that the minority class can be accurately and sufficiently
predicted. The choice of t can be optimised by optimising evaluation metrics such as the
Precision-Recall curve or the adjusted F-measure introduced in Section 3.2.5.

The need for hyperparameter tuning and optimisation techniques is perceived as part of
the validation procedure, reducing manual steps, increasing efficiency, and improving the
performance of machine-learning methods. By tailoring the hyperparameters w.r.t. the
dataset and modelling goal on hand, an enhancement of algorithm performance can be
reached, as it was proven that different configurations work best for different datasets (see
Hutter, Kotthoff, and Vanschoren (2019), pp. 3-5).

CHAPTER 3. MODELLING PROCESS AND METHODS 56

For the machine learning method denoted by M and the hyperparameter space
H = H1 ×H2 × . . .×Hk, for all k hyperparameters and the individual hyperparameter
domains H1, H2 . . . , Hk, this problem is defined by Hutter, Kotthoff, and Vanschoren
(2019) (p. 5) as the fine tuning of the hyperparameters to find:

λ̂ = arg min
λ∈H

E(Dtrain,Dval)L(Mλ, Dtrain, DCross-val),

whereMλ denotes the machine learning methodM with its hyperparameters represented
by λ and L the loss generated by the model using hyperparameters λ. E denotes the
approximate estimation, as in practice the user usually has access to a finite data subset.
Once the tuning is performed and a hyperparameter set is chosen, the model with these
optimal hyperparameters is finally built using the whole training dataset.

In the churn case study, we apply all of the introduced methodologies by first performing
a hyperparameter tuning per k-fold-cross-validation and finally choosing the best model
out of the resulting selections. We consider the different hyperparameter grids for
the introduced methods as elaborated below through the typically used ranges with
reference to (Probst, Boulesteix, and Bischl (2019)). The user can optimally search the
hyperparameters grid systematically or randomly according to the software capabilities.

Decision trees can be fine-tuned by defining different node splitting criteria. Often
increasing the maximum depth of the tree (1-50) is applied to receive a larger tree and
more accurate predictions. However, increasing decision tree size can lead to overfitting.
One can also define the minimum samples needed in a node for split application and the
leaves (1-20). Tree-based methods like random forest and gradient boosting can be tuned
similarly with a few extra tweaks. Random forests need to be assigned the maximum
number of decision trees in the forest (1-2000), which can have higher scoring benefits
but a much longer training time. The number of features considered for splitting can be
adjusted to be between (1-

√
M). Additionally, all decision tree tuning can be made, as

explained above. Gradient boosting has two hyperparameters sets, one for the boosting
process and one for decision tree growth. The boosting process includes setting the number
of iterations (1-5000). Increasing the number of iterations should be accompanied by a
lower shrinkage parameter to offset the overfitting effect. The user should also set a
relatively high training proportion to avoid a potential loss of information.

To summarise, the modelling procedure can be outlined in the following sequence. First,
a machine learning method M needs to be determined along with the definition of
the required hyperparameters grid of the respective model. Next, the model is trained
only on the respective training folds and validated by evaluating the CVE. The final
chosen hyperparameters are used to train the model on the entire training set. Lastly, the
comparison of model performance is assessed via evaluation measures on the test set.

CHAPTER 3. MODELLING PROCESS AND METHODS 57

3.2.5 Model Evaluation

The final vital key to determine optimal classifiers is the choice of suitable evaluation
metrics, allowing the user to determine the best possible model for the underlying
prediction goal. Since the final model choice is based on the selected performance measure,
a wrong choice w.r.t. the dataset characteristics and end goal can mislead the user about
the actual model capacity and quality. Both goodness-of-fit measures suitable for the
different methodologies and generally applicable classification performance measures can
be considered for the overall assessment. Choosing an appropriate method for several
objectives is challenging, especially for models trained on imbalanced datasets and skewed
class distribution. In this section, we present, considering class imbalance conditions, the
standard metrics in binary classification frameworks used to ensure validity, reliability,
and generalisability of the discussed modelling techniques.

First, the familiarisation with the concept of a confusion matrix resulting from the final
predicted labels of the individual observations in binary classification frameworks is
necessary. By setting a certain probability cutoff threshold on the predicted probabilities,
the frequencies can shift by leading to different counts in the confusion matrix. The
matrix can be visualised through the following table layout.

A
ct

ua
l

L
ab

el

Classification Outcome
N′ P′

N
True
Negative
(TN)

False
Positive
(FP)

P
False
Negative
(FN)

True
Positive
(TP)

Table 3.4: Confusion Matrix Composition

The true positives (TP) in Table 3.4 represent the number of correctly classified event
observations. In the case study context, this is the number of clients labelled as churners
and correctly classified by the trained model as churners. Similarly, (TN) represents the
number of correctly classified non-event observations. In the case study context, this is
the number of clients who are labelled as non-churners and are correctly classified by the
trained model as non-churners. In contrast, false positives (FP) are the count of labelled
non-churners, which are misclassified by the model as churners and vice versa for false
negatives (FN). Columns of the confusion matrix consist of the predicted classes, while

CHAPTER 3. MODELLING PROCESS AND METHODS 58

the rows represent the actual classes. However, none of the above measures are solely
adequate for a final model choice; thus, threshold metrics were introduced to unify their
evaluation strengths. According to Hossin and Sulaiman (2015), evaluation metrics can
be divided into the three main categories threshold, ranking, and probability metrics.

Threshold Metrics

Threshold metrics are based on the confusion matrix components and include the measures
which change based on the chosen cutoff value, as reviewed by Hossin and Sulaiman (2015):

• Accuracy:
TP + TN

TP + FP + TN + FN . (3.41)

Accuracy is the fraction of correctly positive and negative classified events. In the
case of highly imbalanced datasets, accuracy can be very misleading as the TN
frequency increases the overall accuracy, hiding the true performance of positive
event prediction, which is the primary goal of rare event modelling. Accuracy will
therefore not be used in the upcoming churn case study.

• Misclassification Rate (MR):
FP + FN

TP + FP + TN + FN . (3.42)

MR is the fraction of wrong positive and negative classified events. Similar to
Accuracy, MR is not an adequate metric for models trained on imbalanced datasets.

• Precision:
TP

TP + FP . (3.43)

Precision represents the fraction of correctly classified events among all event
classifications, e.g. actual true churners between all classified churners. That is,
precision is the accuracy of event classifications and therefore of high relevance.

• Recall, True Positive Rate (TPR), Sensitivity or Hit Rate:
TP

TP + FN . (3.44)

Sensitivity represents the fraction of correctly model-classified events among all
actual events, e.g. the proportion of correctly classified true churners. Sensitivity
however, does not take into account false positives, thus high Sensitivity is only
useful to rule out non-churners from the event category but not to detect them.

CHAPTER 3. MODELLING PROCESS AND METHODS 59

• True Negative Rate (TNR) or Specificity:
TN

FP + TN . (3.45)

Specificity represents the fraction of correctly model-classified non-events among
all actual events, e.g. the proportion of correctly classified true non-churners. In
contrast to Sensitivity, high Specificity is useful to rule out churners from the
non-event category rather than detecting them. Specificity can also be computed
by 1 + FPR.

• False Positive Rate (FPR):
FP

FP + TN . (3.46)

The FPR is the ratio of model-misclassified non-events as events among all true
non-events.

• Geometric Mean (G-Mean) (see Akosa (2017)):√
(Sensitivity× Specificity). (3.47)

The G-Mean provides an evaluation measure on the balance of classified majority
and minority classes. The lower the G-Mean, the poorer the classifier’s performance
in classifying events irrespective of the good non-events classification performance.
This metric is a good indicator of the extent of underfitting of events.

• F-Measure, F-Score or F1:
2

1
Precision + 1

Recall
= 2× Precision× Recall

Precision + Recall . (3.48)

The F-Measure combines both Precision and Recall aspects by determining the
harmonic mean of both. The measure, however, is not powerful for imbalanced
datasets as precision and recall have the same weights. Instead, we consider the
adjusted F-Measure for the underlying case study.

• Adjusted F-Measure or Fβ (see Akosa (2017)):

(1 + β2)× Precision× Recall
(β2 × Precision) + Recall . (3.49)

By increasing beta above 1, the metric tends to favour increasing the Recall instead
of equally balancing Precision and Recall. As in some cases, FN are more costly
than FP, Recall should be considered rather than Precision. 0 < β < 1 implies a
higher importance of Precision, while β > 1 indicates a higher weight for Recall.

CHAPTER 3. MODELLING PROCESS AND METHODS 60

Ranking Metrics

• ROC and AUC:
The ROC (Receiver Operating Characteristic) curve displays the classification
model performance at different thresholds. It plots the TPR (Sensitivity) on the
y-axis against the FPR (1 − Specificity) on the x-axis. The curve represents a
trade-off between costs stemming from non-churners wrongly classified as churners
vs. the potential benefits from the correctly classified churners. It shows that
increasing the TP frequency comes with the cost of also increasing FP frequency.
The AUC (Area under the ROC Curve) is used as a performance metric of the ROC
curve measuring the ROC’s area under the curve with values ranging from 0 to 1
and representing the model’s TP ranking capabilities. The nearer the ROC curve to
the top left corner, the larger the AUC and the better the classifier’s performance, as
the ROC curve is closer to the coordinates (0,1), i.e. closer to the model exhibiting
100% Sensitivity and Specificity (see Figure 3.11(a)). An AUC value of 1 therefore
implies a perfect model, while a value of 0.5 conveys it is as poor as a random model.

(a) ROC Chart (b) PR Chart

Figure 3.11: ROC and PR Charts By Brownlee (2020)

• PR (Precision-Recall) Curve:
The PR curve displays the model’s precision and recall performance at different
thresholds. It plots the TPR (Sensitivity/Recall) on the x-axis against the Precision
on the y-axis, with the blue dot in Figure 3.11 representing a coordinate going
through a classifier’s curve. The curve represents a trade-off between trying
to achieve high accuracy through high Precision while keeping a high event
classification capability, i.e. a high Recall. Ideally, the user wants a model with many

CHAPTER 3. MODELLING PROCESS AND METHODS 61

event classifications, that are also labelled correctly. The height of the baseline curve
in Chart 3.11(b) is equal to the proportion of events in the dataset.

To explain the upcoming ranking metrics Gain and Lift we need to use the model’s
predicted probabilities. Given the predicted probabilities, p̂i = P̂(yi = 1), we score
our underlying observations by ranking their corresponding probabilities from the
largest to the smallest value. As elaborated by Shmueli (2019), the probabilities are
then ranked by applying the transformation R(p̂i) = N − i + 1 with the highest
ranked observation fulfilling R(p̂N) = 1.

• Cumulative Gain and Lift:
Cumulative Gains represent the number of true classified events among the top n

ranked observations (Shmueli (2019)).

CG(n) = TPn. (3.50)

Lift represents the proportion of Cumulative Gains vs. random targeting of a
population from the test dataset. If the model is implemented, Lift is a general
indicator of how much better it would capture response compared to random
targeting of risk customers from the sample. The higher the Lift, the better the
performance vs. random samples (Shmueli (2019)).

Lift(n) = TPn
n
N

(TP + FN) =
TPn
n

(TP+FN)
N

. (3.51)

An alternative to the use of classification frequencies and confusion matrices are
Lift and Gain charts. Lift charts are commonly used in the evaluation of churn
prediction models because most underlying datasets are imbalanced, leading to
biased confusion matrices and hence misleading threshold performance measures.

• Cumulative Gain Chart and Cumulative Lift Chart:
The Cumulative Gain chart can be visualised by plotting CG(n) as a function of
the targeted observations n (see Figure 3.12(a)). A classic Lift chart similarly plots
the ratio from Equation (3.51) as a function of n. A more powerful and commonly
used visualisation is the Cumulative Lift chart which plots the Lift as Lift(n/N)
(see Figure 3.12(b)). That is, the lift on the y-axis corresponds to the respective
decile. This shows a clearer version of the targeting.

The Cumulative Lift chart can be interpreted by considering the different percentiles.
Considering Figure 3.12(b), if the 10% percentile, i.e. the upper 0.1 proportion of scored
customers are contacted, the model shows a 2.75 higher capture rate than a random 10%
sample. That is, the model would capture 275̇

CHAPTER 3. MODELLING PROCESS AND METHODS 62

(a) Cumulative Gains Chart (b) Lift Chart

Figure 3.12: Gain & Lift Evaluation Charts By Littler (2020)

Probability Metrics

Probability metrics are mainly used for models delivering the likelihoods of each
observation belonging to the respective class label. The metrics are based on the predicted
probabilities rather than counts of each class label.

• Similar to the commonly used MSE in numerical target prediction, one can
measure the deviation between true and predicted labels by computing the average
square error (ASE) for a binary target, where p̂ic, c ∈ C represents the predicted
probabilities of the classes for observation i as defined by SAS Institute Inc. (2017):

ASE =
N∑
i=1

C∑
c=1

(1{yi=c} − p̂ic)2

CN
. (3.52)

• Log Loss:
Last but not least, we re-introduce the Log Loss measure used for quantifying
the performance of the models’ predicted probabilities. Log Loss measures the
divergence of the observations’ predicted probabilities of classification from the
actual labels. Hence, a perfect model would have a Log Loss of 0 and a poorly
performing model would deliver a high Log Loss. Log Loss and Cross-Entropy are
equal when computing the error rates for models. We refer to Equation (3.10) and
Equation (3.16), delivering the Log Loss measure:

Log Loss = − 1
N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi). (3.53)

CHAPTER 3. MODELLING PROCESS AND METHODS 63

As demonstrated, there are numerous evaluation metrics with different possible
deployments regarding the business and research objectives. In the underlying churn
use case, we mainly focus on less class-imbalance sensitive measures such as Recall,
Event-Precision, Cumulative Lift, and AUC value. The practical implementation of the
models and subsequent evaluation using these measures is presented in the next chapters.

Chapter 4

Case Study: Insurance Data

4.1 Data Description and Visualisation

ERGO is an insurance group offering a wide range of insurance products and operating in
the following sectors: property and casualty, life, health, legal, and travel insurance. The
confidentiality of its clients’ insurance data leads to a separated pre-processing necessity
by different teams. After the data is extracted from the data warehouse and imported into
a separate environment, it is brought in a pseudonymous1 form by the data engineering
team and cannot be analysed by the same individuals. The pseudonymous data is then
analysed by the data science team to train the respective models. Every three months
(quarterly) an automatic data extraction and script calculation are performed to deliver
a suitable ABT2 for the models of choice. We are aiming at providing a model for each of
the following four insurance categories: household, legal, liability, and accident insurance.
For each insurance category, we create a different ABT with primarily the same features.
The main differences lie in the target variable and values of variables with respect to
clients’ changes and perspectives, which is analysed next.

Household Insurance - Dataset Overview
Number of clients observed 289,103
Features 2250
Churn Frequency 3.41 %
Median time insured 15 years

Table 4.1: Household Insurance Dataset Overview
1Individual identification characteristics, like name or address, are replaced by pseudonyms.
2An Analytical Base Table (ABT) is a dataset in which all data preparation steps are applied, including

the generation of the target and all features.

64

CHAPTER 4. CASE STUDY: INSURANCE DATA 65

The household insurance dataset being examined (see Table 4.1) contains 289,103
observations and 2250 predictor variables, the target variable, and one identification
variable (client ID). This dataset is then stratified into a training set containing 80%
of the data points, i.e. 231,280 observations, and a test set containing the other 20%. The
test set remains aside until the end of the prediction process for the purpose of a final
out-of-sample assessment.

Table 4.2 shows a summarised overview of the available variable types and their
frequencies. It contains four different types of data: binary, nominal, unary (variable
consists of one value only) and interval. We can see that we are handling a mixed dataset
with a big segment of nominal data representing 43%, interval data 35%, binary 11%, and
unary 11%. In order to reduce the number of variables, we set a missing values threshold
of 99%, i.e. if at least 99% of the values in a column are missing or consist of one attribute,
the variable is left out of the imported dataset. Likewise, nominal variables with a vast
number of levels are left out. By setting the threshold of number of classes to 25, a nominal
variable with more than 25 classes will be rejected. Furthermore, interval variables with
less than 20 levels will be marked as nominal.

Variable Role Variable Type Frequency
ID (Client Number) Interval 1
Target Binary 1
Input (1428) Binary 190

Interval 626
Nominal 612

Rejected (822) Binary 32
Interval 123
Nominal 313
Unary 206
Time-ID 148

Table 4.2: Household Insurance Dataset Feature Overview

The data also includes ten general variables representing the different insurance categories
that could provide compelling information about the client. One can observe that some
variables are similarly considered in all insurance categories. The categories mainly
represent the ten different insurance sectors: accident, construction loan, disability,
property and casualty, life, health, legal, car, care, and dental insurance.

Clients with active contracts in the respective insurance category will be part of the table,
along with gathered information from other insurance categories’ tables. Not all the clients
in the household insurance ABT are present in the accident insurance ABT. E.g., if the

CHAPTER 4. CASE STUDY: INSURANCE DATA 66

clients hold both an active accident and household insurance, they will be represented
by a unique observation row in both the accident-ABT and household-ABT. The main
differences between the ABTs lie in the following variables. Firstly, the target variable
differs with respect to the insurance product, since the creation of the target variable is
based on the clients’ previous churn behaviour and the date of their outstanding contract’s
end. The contract is always insurance category specific. The variables referring to contract
end are linked to the respective insurance being observed, e.g. in the household dataset,
we consider the contract end-date of the client’s household contract, even if this client has
another insurance product with a similar contract end-date. Hence, these variables also
differ between the ABTs.

Next, we analyse the target variable, which we aim to model by using the presented
methods in Chapter 3.1. Given a client’s information, the model should be able to predict
whether the customer will churn or not and with which probability during the observed
time frame it will occur. Hence, the given target variable represents avoidable churn
occurrence and is defined with respect to two aspects. First, the group of clients who
have cancelled their outstanding contract 4-8 months before contract end, i.e. 1-5 months
before the cancellation deadline (3 months before contract end) is selected. Secondly, all
clients with an outstanding contract and only 4-8 months to go till contract end are further
chosen. Labelling these cases by 1 and all others by 0 defines the target variable of the
dataset. The target variable includes two classes; class 1, which includes 9848 observations,
and class 0, which includes 279,255 observations.

(a) Time Elapsed (b) Last Active Sector

Figure 4.1: Features’ Univariate Exploratory Analysis

To have an illustration of the general interaction between features and the target variable,
we analyse some intuitively important input variables in the dataset, such as churn
behaviour with respect to regions, age, and contract specific characteristics in association

CHAPTER 4. CASE STUDY: INSURANCE DATA 67

with the target variable (see also Figure A.1). In Figure 4.1(a) we can see a high churn
frequency for clients with a shorter contract activity, i.e. clients who have been insured
for 180 or more months, equivalent to 15 or more years, churned less often compared to
individuals who have only started their first contract since 30 months, i.e. two and a half
years. Figure 4.1(b) shows how clients who have an active contract of property (HR) and
casualty (HA) insurance out of all insurance categories were more likely to churn.

Figure 4.2: Relative Churn Frequency Per Age Group

In Figure 4.2, the churn behaviour is almost normally distributed along with all age
groups. It is visible how the highest frequencies of churn occur between the ages of 48 to
53. This appears reasonable, as individuals in this age group might change their household
in need of different insurance. We can also see a large number of 0-aged churners. This is
due to missing values that are labelled by the age of 0. These examples show the necessity
of exploratory analysis to detect outliers or inconsistencies. This is fixed in Section 4.2.

Figure 4.3: Relative Churn Frequency Per Region

In Figure 4.3, it is visible how the highest relative frequencies of churn occur in the

CHAPTER 4. CASE STUDY: INSURANCE DATA 68

north-east regions of Mecklenburg-Vorpommern and Saxony, followed by Saxony-Anhalt
and Bavaria. Considering that the second-largest activity location of ERGO’s insurance
services is provided in Nürnberg, along with many headquarters of rival German insurance
companies, it is reasonable that this can lead to higher churn frequency in Bavaria due to
higher competition levels. The eastern states’ high frequency can be possibly caused by the
distance factor to the main agents of ERGO primarily located in Nordrhein-Westfallen.

We can provide a more detailed overview of the input variables by categorising them into
time-variant and time-invariant variables, as well as into diverse general categories.

Category Specifications Time Variance
Socio-demographic Characteristics
Customer ID
Age, Gender, Family Status Basic Information
Income, Job, Education Level Socio-Economic
Region, Location, ZIP-Code Micro-Geographic
Contract and Product Characteristics
Agent’s change in location
Number of agents Agent related
Time elapsed since agent’s contract begin
Agent’s Gender
Premium price
Payment method Product
Insurance type
Time elapsed since last contract end Contract
Tine elapsed since last contract begin
Company - Customer Relation
Elapsed time since first/last cancellation
Cancelation reason History of churn behaviour
Cancellation in other contract types
Number of churns
Cross-selling category of last churn
Number of complaints
Elapsed time since last complaint
Elapsed time since start of relation

Table 4.3: Features’ Categories Overview

From the variables’ overview in Table 4.3, we obtain a good understanding of the potential
available and possibly influential variables in the model and can adjust our model settings
to adapt to the dataset nature. Post-modelling, the user can detect the most important
categories and further enhance or increase the available features lying in it.

CHAPTER 4. CASE STUDY: INSURANCE DATA 69

4.2 Data and Features Pre-Processing

As introduced in Section 3.2.1, extensive data-mining and pre-processing is necessary
for robust training of the considered models. We adaptively implement the presented
approaches on the given raw dataset in our case study. The dataset is provided quarterly
through the given server for processing by the models. Most of the pre-processing work is
automated in the steps before our interaction with the dataset. So the raw dataset already
includes merged data with one standard format. Since ERGO has several data sources due
to its diverse insurance activities, the format of each needs to be taken into consideration.
Hence, the raw dataset delivered includes the variables and their assigned names, the data
format of each, as well as some features generated through variable interactions.

We start by giving a short introduction to the SAS Enterprise Miner (SEM) software we
are using for the prediction. By creating a new diagram in SEM, we can illustrate the
modelling process through a flowchart. SEM uses the so-called ‘SEMMA’ (Sample Explore
Modify Model Assess) approach, which allows the user to first sample and explore, then
model, modify, and assess the data. This approach already makes it easier for the user to
include all appropriate steps in the modelling process required to obtain a sound model.
After creating a new project and new diagram, the raw dataset is imported as-is from the
particular server via the ‘Data Source’ button. During the import of the dataset, SEM
requires the user to enter some pre-processing information, as mentioned in Section 4.1.
This already includes rules settings pre-determinable for the handling of missing values
and categorical values with numerous levels.

First, we conducted an exploratory analysis of the underlying dataset to have a proper
visualisation to spot outliers and detect pattern. These results were already presented in
Section 4.1.

Second, a partition of the data is necessary to implement all pre-processing steps on
the training set and set the test dataset aside. We choose to split the dataset into a
training dataset containing 80% of the data and a test dataset containing the other 20%
of the data. As no distinct validation dataset is set aside due to data scarcity, validation
has to be obtained through 5-fold cross-validation on the training set. To perform the
5-fold cross-validation in SEM, the ‘Transformation’ node is used. The data is randomly
segmented by applying the formula int(ranuni(1) ∗ 5) + 1 on the training set.

This random transformation (no stratification available in SEM) allocates a fold
with an index from 1 to 5 to each observation. When we train the model and
tune the hyperparameters, we consider the folds as groups in the SEM context,
and each iteration corresponds to one loop through start group to end group.

CHAPTER 4. CASE STUDY: INSURANCE DATA 70

An illustration of the cross validation procedure in SEM is provided in Figure A.5.

Finally, imperfections revealed through the analysis are removed by handling missing
values, inconsistencies, and duplicates. We start by imputing the missing values through
the ‘Impute’ node before applying logistic regression and neural network modelling steps.
Since decision tree already handles missing values within the algorithm, there is no need
to add this as a pre-step. A final data check is performed to avoid inconsistencies (see
Figure 4.4).

When handling missing values, we can either remove the instances which have missing
values or remove the missing values directly by imputing the variables. Since we have a
large number of 1422 feature variables, we decide to implement both methods to reduce
the challenge we are facing and adequately handle the resulting effect of missing values.
First, we remove all variables with a 99% missing values quota when importing the dataset.
Then we impute the continuous variables by filling their missing values with the mean
and categorical variables by replacing the most commonly occurring class or count. It
should be noted that count stands for modal value. We also set the missing cutoff value
to 80%. This is the maximum percentage of missing values allowed for a variable to be
imputed. Any variable exceeding this cutoff is rejected. Otherwise, inputs with a missing
values percentage less or equal than 80% are replaced by an adjusted new input with its
missing values replaced by the determined synthetic value. SEM thus rejects 718 variables,
containing more than 80% missing values, and imputes 704 variables complying with the
cutoff value, representing the new feature space.

Figure 4.4: Pre-Processing Flowchart Overview

Further vital pre-processing steps to consider here are the grouping of excessive categorical
input variable levels that might lead to overfitting and adjusting the roles of entries
assigned by SEM. Variables can be grouped in SEM by using the ‘Replacement’ node or
within the methods. We decide to do this at a later point if required. SEM can misinterpret
variable notation; for instance, the role of a variable including the word ‘segment’ in its
name is automatically set to ‘Segment’, which has to be readjusted. RS is also falsely
interpreted by SEM as residuals.

Analysing the first implemented steps demonstrates the importance of initial data and
features pre-processing to complete the subsequent modelling steps successfully.

CHAPTER 4. CASE STUDY: INSURANCE DATA 71

4.3 Class Imbalance Reduction

In the considered use case, we handle a dataset containing only a 3.4% frequency of churn
labels. Applying any of the class imbalance reduction techniques introduced in Section
3.2.2 can help to increase the predictive accuracy of event observations. Considering SEM’s
technical availabilities, random under-sampling and SMOTE for continuous features are
applicable. Therefore, we consider only under-sampling in this case study but highly
recommend considering the SMOTE-NC technique as the study done by Batista, Prati,
and Monard (2004) shows that over-sampling techniques provide more accurate results
than under-sampling w.r.t. the ROC Curve. Especially SMOTE provided good results on
a considered dataset with not so many positive cases. The models based on un-sampled
data are compared to those with under-sampled pre-training to obtain validation and
comparative statistics. We can observe the following confusion matrices on the test data
for different models when the data is un-sampled.

Model TN FP FN TP
Logistic Regression 55833 19 1956 15
Random Forest 55852 0 1971 0
Neural Network 55852 0 1971 0

Table 4.4: Un-sampled Model Evaluation

Table 4.4 shows how almost all models can not identify any churn event observations.
Logistic regression solely identifies a total of 15 churn cases, which makes about 0.03%
of the test set. It is important to determine the under-sampling ratio cautiously as
information is being disregarded, making a large information loss disadvantageous. We
consider an appropriate ratio with respect to the dataset size and target frequency, given
that the total raw dataset has 230k observations and only 3.4% target frequency. Choosing
a 50% for under-sampled representation, for instance would remove too many majority
class observations leading to a high loss of information and possibly a high misclassification
rate. For illustration, Table 4.5 confirms this statement by findings of the use case.

Model TN FP FN TP MR C-Lift
Logistic Regression 1189 635 1336 782 50% 1.88
Random Forest 1048 518 1453 923 50% 1.83
Gradient Boosting 1104 535 1436 867 50% 1.88
Neural Network 1178 670 1301 793 50% 1.72

Table 4.5: 50%-Under-Sampled Model Evaluation

CHAPTER 4. CASE STUDY: INSURANCE DATA 72

Table 4.5 shows how all models exhibit an accuracy equal to 50 %, which is considered
an only fair performance given that the dataset is now balanced. Misclassifying too many
non-event observations can lead to a distraction from the true churners desired to be
identified. It is also important to note how observing only 6.8% of the dataset on hand,
i.e. 19716 observations as 50%-under-sampled model does, can consequently capture less of
the at-risk customers. This conclusion is deducted by the small demonstrated Cumulative
Lift of the 5% percentile, only achieving about 1.9 times higher response capture than a
random 5% sample.

After considering commonly used ratios and using the training set to determine an
adequate ratio, we implement a 10-90% stratified under-sampling in SEM, i.e. 10% is the
proportion of the created sample containing the churn level. This is done by setting the
Sample node method to Stratify, the Criterion Property to Level Based, Level Selection
property to Event, and Sample Proportion to 10. By determining the Level Proportion
to be 100%, i.e. all event observations should be included in the sample, the 100% would
make up the 10% of the newly generated sample.

Table 4.6 shows how all models exhibit an overall Precision above 64%, which is
considered a good performance since the dataset is still imbalanced. In comparison to
the 50%-under-sampled Cumulative Lift, the models now show an almost overall C-Lift
of 4, implying a higher response capture. It is also important to note that the FP count is
substantially lower and the FN count comparable, leading to a MR of only 9.8% despite
the bigger size of the examined set.

Overall, the enhanced model performance observed through the model evaluation statistics
confirms the importance of incorporating any class imbalance reduction techniques in
churn prediction.
It is important to note that any dataset transformation should be applied in a stratified
manner. That is, dataset partition should be generated through stratified sampling as
random sampling can lead to a disadvantageous distribution of the rarely available event
observations. Similarly, cross-validation folds should be segmented through stratified
sampling.

Model TN FP FN TP MR C-Lift
Logistic Regression 17661 68 1872 99 9.8% 3.89
Random Forest 17615 114 1767 204 9.5% 4.42
Gradient Boosting 17634 95 1776 195 9.4% 4.25
Neural Network 17564 165 1772 199 9.8% 4.08

Table 4.6: 10-90%-Under-Sampled Model Evaluation

CHAPTER 4. CASE STUDY: INSURANCE DATA 73

4.4 Dimensionality Reduction

Considering the pre-processed non-imputed dataset of the case study, including 1422
variables, feature selection is a vital step to improving prediction accuracy and reducing
the computational costs. As introduced in Section 3.2.3, there are numerous feature
selection methods for such a dataset and churn classification problem that will be
implemented in our case study in this section.

Variable Selection for Logistic Regression

We start by presenting the different implemented selection methods as a step within the
logistic regression modelling procedure. The performance of logistic regression models
increases when a thorough variable selection is applied. Since the underlying dataset
includes a large number of features, several approaches are considered. After imputing
the variables with a missing percentage of 80% and rejecting the rest, as mentioned in
Section 4.2, we have an input space of 765 variables. First, the CHAID tree embedded
method was performed to reduce computational time, followed by a stepwise wrapper
method within the regression model. Next, ignoring computational time, all 765 variables
were entered directly into the stepwise wrapper method. Last but not least, a LASSO
regression was performed as an alternative to the classic logistic regression model. The
selections were compared to the full saturated model with no selection applied.

Variables # Coefficients Run Time
CHAID 152 821 4min 01s
Stepwise Selection 30 112 31min 05s
CHAID + Stepwise Selection 30 135 4min 34s
LASSO 104 118 3min 57s
No Selection 765 2438 21min 51s

Table 4.7: Comparison Of Variable Selection Methods

Table 4.7 3 provides an overview of the number of variables selected by each method and
their resulting number of coefficients. Applying stepwise selection or a mixture of both
CHAID and stepwise selection method results in 30 variables, the fewest number in total.
LASSO, in contrast, has 104, a relatively higher number of variables since all inputs are
considered, and only some coefficients are set equal to zero. The number of coefficients
(118) in the LASSO model is, however less than 135 coefficients of the CHAID + Stepwise

3The run time was determined w.r.t. running the program on the SAS Server in the ERGO
IT-Infrastructure and can not be further specified.

CHAPTER 4. CASE STUDY: INSURANCE DATA 74

model, implying a simpler model complexity despite a larger number of overall variables.
It also implies a smaller number of nominal inputs due to less generated scores for model
parameters. Applying no selection, the all-features regression model delivers a model with
765 variables and is relatively inefficient.

We compare the top-ranked 20 variables of the CHAID and stepwise selection methods
next to check significance (see Table A.1 for the LASSO selection).

Stepwise Selection CHAID
HH Ph State Key A1 Churn Last No Mon
Id HH Geo Cluster of kgs12
AG Contr Prop A Beg Dat 1Y Geo Cluster of kgs16
CL Doc Reas A1 AG Chg Resp OE Pnr 1Y
HH Ins Cond Year A1 State
Kgs12 Prop Hs Life stage of kgs12
HH Contr Chg Reas A1 No Mon First Contr Beg
Churn 3Mon UP PERSTYP A 1
Churn 3Mon No CI Churn Last CS Cat
AG Contr Prop A End Dat 1Y No Mon First Contr Beg HH
Job Pos Initial Product
Loc Chg 3Mon HH Ins Cond Year A1
Churn Last CS Cat UP PERSTYP S 1
Delta No Cat 3Mon Churn 3Mon
Delta Kompo Contr 3Mon Job Pos
AG Chg Resp OE Pnr 1Y ANZ ERST END CS SP
KKM A P Quelle VM ANZ VMT P KNR AKT V
Kgs16 Rentalscore Age
No Cars HH Rental score of kgs12
HH EndDate Cat No Mon Last Contr Int Beg Dat

Table 4.8: Case Study - Selected Input Variables

The above abbreviations kgs12 and kgs16 refer to the municipality codes based on
micro-market and street granularity, respectively. HH refers to household, C & L to
Casualty & Liability and # to the number of a considered variable. It is important to
note that most of the dataset features’ abbreviations are explained in Tables A.2 and A.3.
One can observe from Table 4.8 the similarities between the selected variables of each
method. The variables Churn 3Mon and AG Chg Resp OE Pnr 1Y are ranked in the top
20 variables of each selection method. The client’s existence, or lack of a recent churn
respectively, can indicate the upcoming churn in another insurance category. A change of
the responsible agent seems to affect the client’s churn decision as well. Most variables
proven to be significant are either client-related basic information like age, life stage,
region, job position or contract, and agent-based features. It is also visible how CHAID

CHAPTER 4. CASE STUDY: INSURANCE DATA 75

takes into account more micro-geographic variables such as geographical clusters and
rental scores of the respective municipalities. In the following paragraphs, an explanation
of the technical settings and implementation of the methodology in SEM is provided.
In the SEM node, ‘Variable Selection’ one can choose a variable selection model associated
with the target variable. The possible choices are the CHAID tree, R-Square method, or
both. Considering the high number of categorical and binary variables in the feature space,
we consider the CHAID tree-like selection more suitable. CHAID also detects possible
interactions between the variables. Constrained by the available selection methods in SEM,
the CHAID tree might not provide the optimal features subset for regression purposes
but can be used for a substantial reduction to keep an overview of the input variables.
The procedure works as explained in Section 3.2.3. In SEM, one can also specify the
number of bins or categories in which the range of the numeric variables is divided for the
tree-splits. One can also predetermine the minimum Chi-Square cutoff value for variable
selection and the number of passes through the training data for performing the binary
splits. The default number of bins is 25, cutoff value 3.48 corresponding to 5% significance
(see Table 3.3), and the default number of passes is 6.

Target Model Chi-Square
Chi-Square Options
Number of Bins 25
Maximum Pass Number 10
Minimum Chi-Square 6.63

Table 4.9: CHAID Tree Settings

Model Selection
Selection Model Stepwise
Selection Criterion AIC
Use Selection Defaults No

Table 4.10: Wrapper Methods Settings

By increasing the number of passes, the process will require more computational time,
which might improve the model performance. The number of passes controls the depth
of the tree that is fit. By increasing the number of passes, the potential depth of the tree
increases. The increase can impact which variables are ultimately selected since different
numbers of splits on the same variable will have different predictive capabilities. The more
trees are considered, the more accurate the method is at identifying the best predictors
that can be identified using that method. The number of passes, however, does not impact
the number of variables that are selected directly. The Minimum Chi-Square property, on
the other hand, has a direct impact. The higher the Minimum Chi-Square value specified,
the fewer the variables which will be retained and the higher their significance. The feature
selection method is included in the cross-validation procedure of the model to determine
optimal parameters. The resulting parameter suggestions, see Table 4.9, are 10 passes, 25
bins, and a cutoff value of 6.63 corresponding to a significance level of 1% (see Table 3.3).

In the SEM ‘Regression’ node, one can choose the direction of the wrapper methods

CHAPTER 4. CASE STUDY: INSURANCE DATA 76

between Forward, Backward, or Stepwise and the final model selection criterion such as
AIC, BIC, cross-validation error or Misclassification Rate, see Table 4.10. In order to
optimise the choice of these three parameters and wrapper methods, a tuning is provided
via 5-fold cross-validation. The combination of model parameters and wrapper direction,
leading to the smallest cross-validation error, is chosen for use in the training cycle.

Variable Selection for Random Forest and Gradient Boosting

In comparison to logistic regression, the base feature selection for random forest and
gradient boosting is automatically made through a decision tree. It is important to note
that imputation is not performed for the RF and GB model, as it is already incorporated
in the modelling. Instead of entering all 1422 variables right to the methods, it is preferred
to pre-select the variables providing the best tree performance. The chosen tree selects
the variables within 11 minutes, on average, more slowly than LASSO and CHAID.

We can see from Figure 4.5 that some of the top 20 ranked variables by the decision
tree are also included by the logistic regression selection methods, which validates their
significance. We note that the determined importance in Figure 4.5 is based on the
reduction of the respective Gini Index over the sum of all nodes. These include the number
of months since the last churn, churn in the last 3 months, and the number of months since
the start of the first contract. We have seen from the exploratory analysis and the variable
selection 4.8 that intuitively, clients who have had an insurance contract for a longer time
churned less frequently. This information could be powerful in predicting future churn
behaviour, as visible in Figure 4.5. This detailed understanding of influential variables
will allow an effective measures extraction for potential churners.

Figure 4.5: Implemented Decision Tree - Variable Importance

Chapter 5

Case Study: Prediction Results and
Evaluation

In this chapter, we summarise the findings of modelling using the methods introduced in
Chapter 3, and the insurance dataset provided by ERGO, described in Chapter 4. We
first provide an overview of the results and a respective interpretation of the findings.
The evaluation via the defined assessment measures is chosen considering the respective
research goal and business objective. A final discussion via model comparison and final
model selection will be further elaborated in the next chapter.

5.1 Logistic Regression

We start off by presenting the results of the classic logistic regression model. It has been
illustrated in Chapter 4 how managing missing values, handling extreme values, and
a proper feature selection lead to better prediction results. We present here the final
results after implementing the proper pre-processing, class-imbalance, and dimensionality
reduction procedures. To visualise the process of classification via logistic regression, the
SEM modelling diagram is presented in Figure 5.1.

Figure 5.1: Flowchart Logistic Regression Modelling in SEM

77

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 78

After assigning the above settings of the under-sampling ratio to 10%-90%, 80%-20%
training-test data partition, and a variable imputation with an 80% missing cutoff value,
we start training the different model variants w.r.t. feature selection methods.

First, to find the optimal set of hyperparameters, including the choices for the
model selection method, final model selection criterion, and right maximum number
of effects, 5-fold cross-validation is applied. SEM does not offer an integrated complete
hyperparameters search grid; hence all reasonable combinations are set manually and
cross-validated.

We compare the models’ hyperparameters and performance of each of the different feature
selection procedures. Overall, the different wrapper directions are compared via random
5-fold cross-validation. Table 5.1 represents the resulting cross-validation metrics for each
of the considered selection methods with the criteria in brackets referring to the model
selection criterion of the respective wrapper technique.

Model Description ASE AUC Gain C-Lift
CHAID + Stepwise (AIC) 0.0838 0.691 187.89 2.88
CHAID + Forward (CVE) 0.0839 0.691 186.46 2.86
CHAID + Stepwise (CVE) 0.0840 0.684 184.97 2.85
CHAID + Backward (CVE) 0.0842 0.692 190.23 2.90
CHAID + Forward (AIC) 0.0844 0.683 181.04 2.81
CHAID + Backward (AIC) 0.0851 0.673 168.47 2.68

Table 5.1: Logistic Regression Cross-Validation Results

It is visible from Table 5.1 that the stepwise wrapper technique with model selection
criterion setting ‘AIC’ delivers better model performance vs. ‘CV-ASE’, as it delivers a
smaller CV-ASE and higher Cumulative Lift. This could be attributed to SEM’s technical
only availability of a hold-one-out cross-validation rather than stratified cross-validation,
leading to an imbalanced distribution of the rare available churn labels between the
datasets. The AIC stepwise selection model is favoured overall, confirming the advantages
of combining both forward and backward selection elements. Based on the smallest
cross-validation error, the hyperparameter combination of the model ‘CHAID + Stepwise
(AIC)’ is chosen for comparison against other variants of logistic regression techniques on
the test dataset. We denote this model by M1.

M1, using a combination of CHAID and stepwise selection, fits a model with 30 input
variables and 141 model parameters predicting the churn labelling target. We only consider
the results of the model in the last step, i.e. step 30 of the stepwise selection procedure for
extensive analysis. Statistical significance χ2(df = 135, N = 78790) = 4624.78, p < 0.001
is demonstrated by the full model containing all 30 selected predictors, implying the

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 79

model’s ability to distinguish between potential churners and non-churners.

To get a deeper understanding of the contributing drivers and identify features with no
predictive power, we interpret the significant point estimates for the model’s odds ratio.
This can be understood as the effect of a one-unit change in the regarded variable on
the overall predicted odds, while all the other variables are held constant at their default
values.
Significant odd ratios ofM1 to an α-level of 0.001 (see Table 5.2) include the Churn 3Mon
odd ratio estimate of 3.657 for class ‘Yes’ vs. ‘No’. This implies that clients who churned in
the previous 3 months are 3.657 times more likely to churn than clients with Churn 3Mon
set to class ‘No’. The variable CL Doc Reas A1 with effects 60 and 62 also exhibits high
estimated odd ratios. Cases with change reason 60 are 3.464, and reason 62 are 5.222 more
likely to churn than cases with reason 70. This is intuitive, considering that reason 60 for
changes in the C&L contract stands for cancellation and 62 for pre-cancellation, while
reason 70 stand for initiation. Similarly, every additional unit (0.1) in the proportion of
the variable AG Cont Prop A End Dat 1Y (agent’s contracts proportion vs. other agents
w.r.t. end date within a year) leads to a 77.2% higher chance of churn. If there was no
change in the responsible agent of the policyholder, then the policyholder is 42.1% less
likely to churn. Similarly, no change in the location contributes to a 50% decreasing effect.
An odds ratio estimate of 1 represents a neutral effect on the event likelihood. For example,
Last Agcy Active has no significant increasing or decreasing effect.

Variable Level Odds Ratio Estimate
CL Doc Reas A1 62 vs. 70 5.222
Churn 3Mon Y vs. N 3.657
CL Doc Reas A1 60 vs. 70 3.464
Churn 3Mon No CI 1.85
AG Cont Prop A End Dat 1Y 1.772
Last Agcy Active 1
Resp OE Pnr 1
AG Chg Resp OE Pnr 1Y 0 vs. 1 0.579
Loc Chng 3Mon 0 vs. 1 0.491
Int Marketing Bank vs. other 0.486
HH Ins Cond Year A1 1981 vs. 2017 0.16
Last Adm Sys Active IT vs. VK 0.007

Table 5.2: Odds Ratio Estimates - Logistic Regression Model 1

For the overall variable significance, the Wald Statistic and its corresponding significance
levels are considered (see Table A.4). If the Wald Statistic is big enough, it will conform
with the 0.001 significance level and be considered as an input variable.

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 80

To evaluate the model’s overall performance and goodness-of-fit, one can consider
diverse metrics. As resolved in Section 3.2.5, specific measures can be misleading for
highly imbalanced datasets. The choice heavily relies on the predictions of interest
and post-prediction intended use. We thus first investigate all key metrics for model
comparison and consider only the suitable measures for model selection. Model M1’s
fit statistics show an ASE of 0.0828 and MR of 0.0978 on the training set. The model
performs similarly on the test set as it shows an ASE of 0.0831 and MR of 0.0981. The
minor difference between the model’s errors on training and test dataset shows that the
model does not tend to deviate as it works comparably well with previously unseen data.

[%] Cutoff t =

0.99 0.50 0.13
Accuracy 90 90.17 78.61
Overall Precision 95 76.14 57.86
Event Precision 100 61.90 22.47
Sensitivity (TPR) 0.05 4.62 46.42
Specificity (TNR) 100 99.68 82.19

Cutoff t =

0.99 0.50 0.13
G-Mean (3.47) 2.25 21.45 61.77
F1.2-Score (3.49) 0.09 7.44 32.31
F1-Score (3.48) 0.10 8.59 30.28
FPR [%] 0 0.32 17.81
FNR [%] 99.95 95.38 53.58

Table 5.3: Classification Statistics - Logistic Regression Model 1

Table 5.3 casts light on the threshold metrics of the test dataset for three alternative
cutoffs. While the default cutoff 0.5 is considered by SEM automatically, we consider
the cutoff corresponding to the highest F1.2-Score (0.13 here) and cutoff with the highest
Precision (0.99 here), to give an insight on how the evaluation measures would change
with the adjustment of the cutoff. As expected, it is notable how with decreasing cutoffs, a
decrease in Event Precision simultaneously with an increase in Sensitivity occurs. Despite
an increase in TPR when the cutoff t = 0.13 is applied, the Event Precision decrease is of
a disadvantage as we require a moderately precise model with a high TPR. In contrast, a
Precision and Specificity increase accompanied by a Sensitivity decrease can be observed
when the higher cutoff 0.99 is set. Table 5.3 also suggests an Accuracy of 90% for the
logistic regression model with stepwise selection. It is however visible from the confusion
matrix in Figure 5.2(b) that the TP frequency is 0.46%. This shows that our model
selection w.r.t. our research goals should not be based on the Accuracy measure as it is
misleading w.r.t. the imbalanced case study dataset.

The confusion matrices in Figure 5.2, based on the test dataset, demonstrate the high
imbalance through the heat-map. While TNR shows the highest frequency of right
classifications, we observe small TP counts. This suggests that capturing the particular
churning clients is in practice challenging with the use of an imbalanced dataset. We will
therefore use the ranking metrics independent of the cutoff scores and threshold metrics

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 81

to help identify the best churn prediction model.

(a) Confusion Matrix t = 0.99 (b) Confusion Matrix t = 0.5 (c) Confusion Matrix t = 0.13

Figure 5.2: Confusion Matrices - Logistic Regression Model 1

The AUC value and Cumulative Lift chart are considered essential performance indicators
that influence the final model choice. Figure 5.3(a) shows a C-Lift of 3.9 (3.8) for the 5%
percentile and 3 (2.9) for the upper decile of the training (test) dataset. This means if
the user implements the suggested model, it should be possible to capture 19-19.5% of
the at-risk customers for intervention if the clients scored in the first 5% percentile are
contacted. Contacting 5-10% suggest by the test scoring is 2.9-3.7 times higher than the
rate achieved by contacting a random 5-10% of the underlying observations. Marginally
worse model performance and a difference in the percentage captured by 0.09-0.11% is
displayed through the test set curve. The model exhibits a good AUC value of 0.705 on
the training set and similarly well 0.698 on the test set. Moreover, the small difference
between training and test performance is verified through the ROC Index.

(a) Lift Chart Model 1. (b) ROC Chart Model 1.

Figure 5.3: Evaluation Charts - Logistic Regression Model 1

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 82

To compare a baseline logistic regression model without prior selection, only the
stepwise wrapper is applied, resulting in model M2 with 30 input variables and
112 model parameters. A relationship between the probability of churn and the
combination of 30 independent variables is verified, since the full model’s Chi-Square
χ2(df = 112, N = 78790) = 4717.13 indicates a 0.001 level of significance. The null
hypothesis was accordingly rejected, and the existence of an association between the
independent variables and the churn target is hence supported (see Table A.5).

The model M2 validates the odds ratio estimates of model M1, as its estimates are
consistent with the level of effects predicted before (see Table 5.4). Comparably, clients
who churned in the previous 3 months are 3.68 times more likely to churn than clients
with Churn 3Mon set to class ‘No’. Moreover, a higher unit in the proportion of an
agent’s contracts vs. other agents increases the churn likelihood by 81%. Cases of the
variable CL Doc Reas A1 with reasons 62 (pre-cancellation) are 5.092 more likely to
churn than cases with reason 70. For every additional churned car insurance contract
Churn 3Mon No CI, there is a 90.6% increase in the likelihood of churn. Furthermore,
clients with job label 6 (unknown) are 1.353 times more likely to churn than clients
with label ‘D’ (unknown). As M1 predicts, Last Agcy Active does not change the
odds of response by an amount captured by the model. Likewise, HH Ph State Key A1
(policyholder’s state key in household contract) with state key 01 (Schleswig-Holstein),
does not have a significant effect. With every additional unit in Kgs12 Prop Hs (kgs12’s
high school proportion), there is a subsequent 70% decreasing change in the odds.

Variable Level Odds Ratio Estimates
CL Doc Reas A1 62 vs. 70 5.092
Churn 3Mon Y vs. N 3.68
Churn 3Mon No CI 1.906
AG Cont Prop A End Dat 1Y 1.817
Kgs16 Rentalscore 1 vs. 9 1.357
Job Pos 6 vs. D 1.353
HH Ph State Key A1 01 vs. 16 1
Last Agcy Active 1
Delta No Cat 3Mon 0.733
Job Pos A vs. D 0.651
AG Chg Resp OE Pnr 1Y 0 vs. 1 0.589
Loc Chng 3Mon 0 vs. 1 0.495
Kgs12 Prop Hs 0.309
HH Ins Cond Year A1 1981 vs. 2017 0.105

Table 5.4: Odds Ratio Estimates - Logistic Regression Model 2
Table 5.5 portrays the threshold metrics for the three alternative cutoffs as defined for
M1. The default cutoff of 0.5 delivers a TPR of 5.02%, which is relatively low compared

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 83

to the TNR. Reducing the cutoff value of this model will induce the inverse relationship
between decreasing Precision and increasing Sensitivity. To obtain the balanced tradeoff
in both measures and general comparability of all models, we remain with the model
using the default cutoff value of 0.5. Table 5.5 also suggests an FNR of 94.98% for the
logistic regression model with stepwise selection. It is visible from the confusion matrix in
Figure 5.4(b) that the TP frequency is 0.5%. This shows that the model selection w.r.t.
our research goals can not include the highest TP count.

[%] Cutoff t =

0.84 0.50 0.13
Overall Precision 79.40 74.85 57.97
Event Precision 68.75 59.28 22.72
Sensitivity (TPR) 0.56 5.02 46.02
Specificity (TNR) 99.97 99.62 82.60

Cutoff t =

0.84 0.50 0.13
G-Mean (3.47) 7.47 22.37 61.65
F1.2-Score (3.49) 0.94 8.04 32.40
FPR [%] 0.03 0.38 17.40
FNR [%] 99.44 94.98 53.98

Table 5.5: Classification Statistics - Logistic Regression Model 2

(a) Confusion Matrix t = 0.84 (b) Confusion Matrix t = 0.5 (c) Confusion Matrix t = 0.13

Figure 5.4: Confusion Matrices - Logistic Regression Model 2
The confusion matrix in Figure 5.4(c) demonstrates the highest TP count when the low
0.13 threshold, maximising the F1.2-score, is applied. While a high TP frequency of 4.6% is
reached, the model suffers from a very low Event Precision of 22%. For the default value
we can conclude that M2 shows higher Sensitivity than M1, while M1 shows higher
Event Precision.

Figure 5.5(a) shows thatM2 exhibits a Cumulative Lift of 3.96 (3.89) i.e. 19.5-19.8% risk
customers are captured in the 5% percentile, which is 0-0.3% higher thanM1. The upper
decile shows a Cumulative Lift resulting in a 29.8-30.2% response capture. Using model
M2 will deliver a 3.89-3.96 times higher rate of risk capture than contacting a random
5% sample of the observations, if the 5% percentile of scored clients are contacted. Figure
5.5(b) shows very similar statistics on both training and test datasets implying high

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 84

stability and no signs of overfitting. M2 performs in a more stable manner on the test
dataset thanM1. Regarding the ROC chart, the AUC value ofM2 on the training dataset
is 0.705 and stays stable as 0.704 on the test dataset.

(a) Lift Chart Model 2. (b) ROC Chart Model 2.

Figure 5.5: Evaluation Charts - Logistic Regression Model 2

Overall, the classic model M2 with no prior feature selection tends to be more robust
than M1 as it performs more similar on both the training and test sets. Model M2 is
also able to classify a higher frequency of True Positives than M1. Based on the higher
Recall on the test set, we chooseM2 as a logistic regression model candidate against the
machine learning algorithms.

Last but not least, a comparison of the LASSO shrinkage method against the classic
logistic regression models is conducted. The LASSO method is selected since it also serves
as a further feature selection variant.

Model Description ASE AUC Gain C-Lift
LASSO (200 Effects) 0.0835 0.70 199.56 2.99
LASSO (300 Effects) 0.0835 0.70 199.56 2.99
LASSO (100 Effects) 0.0836 0.69 197.92 2.97

Table 5.6: LASSO Cross-Validation Results

The possible LASSO combinations include setting the different maximum number of
effects 100, 200, or 300 in SEM. The cross-validation error of the model with 200 effects is
the lowest between the three possibilities. It is clear from Table 5.6 that the model with
an allowed maximum number of 300 effects stops the selection procedure at 200 effects
since more effects worsen the model performance. Based on the lowest cross-validation
error and simultaneously highest cross-validation Cumulative Lift, we chose the LASSO
model, M3, with 200 maximum effects to compare against all the other models.

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 85

Since LASSO aims to shrink all the parameter estimates towards and some equal to zero,
M3’s parameter estimates’ range spans between -0.1 and 0.3, a much smaller range than
that of the logistic regression model’s parameter estimates, see Table 5.7, A.6 and A.7.

Variable Level Parameter Estimate
CL Doc Reas A1 62 0.298
Churn 3Mon Yes 0.227
Churn 3Mon No CI 0.098
AG Cont Prop A End Dat 1Y 0.060
Last Agcy Active 0.001
Delta No Cat 3Mon -0.036
AG Chg Resp OE Pnr 1Y 0 -0.048
Loc Chg 3Mon 0 -0.070
Kgs12 Prop Hs -0.090

Table 5.7: Parameter Estimates - LASSO Model

Similar to modelsM1 andM2, the LASSO model predicts the same ranking of variables’
effects. For instance, Churn 3Mon and CL Doc Reas A1 have high estimates in contrast to
other parameters shrunken very close to zero. The parameter estimate of Last Agcy Active
is shrunk very close to zero, verifying the finding of no substantially changing effect.
Loc Chg 3Mon and AG Chg Resp OE Pnr 1Y lead to a decreasing effect on the odds. In
line with modelM2, LASSO’s parameter estimate of Kgs12 Prop Hs suggests a decrease
in the odds for an increase in kgs12’s high school proportion.

Next, the different classification statistics of the model demonstrated by Table 5.8 are
elaborated. The LASSO model exhibits a relatively higher TPR of 6.44% than models
M1 andM2 in the default mode and a fair Event Precision of 52%. For the default cutoff
score, the LASSO model is able to classify more positive cases in comparison to M2,
however, accompanied by a lower Event and Overall Precision, while for cutoff value 0.12
M2 has a higher TPR. This implies that the interpretation dependent on the cutoff values
should be universal, i.e. all models compared should have the same cutoff.

[%] Cutoff t =

0.99 0.50 0.12
Overall Precision 95 71.39 57.91
Event Precision 100 52 22.79
Sensitivity (TPR) 0.10 6.44 43.63
Specificity (TNR) 100 99.35 83.57

Cutoff t =

0.99 0.50 0.12
G-Mean (3.47) 3.19 25.30 60.39
F1.2-Score (3.49) 0.17 10.06 31.74
FPR [%] 0 0.65 16.43
FNR [%] 99.90 93.56 56.37

Table 5.8: Classification Statistics - LASSO Model

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 86

(a) Confusion Matrix t = 0.99 (b) Confusion Matrix t = 0.5 (c) Confusion Matrix t = 0.12

Figure 5.6: Confusion Matrices - LASSO Model

The confusion matrices of the model in Figure 5.6 show very similar frequencies as the
other two models. The LASSO model however has the highest True Positives and False
Positives count overall for the 0.5 cutoff value. The cutoff value achieving the highest
F1.2-Score is 0.12 in comparison to 0.13 of the other two models, demonstrating that the
model reaches higher TP Counts in the lower predicted probabilities segments.

Figure 5.7(a) displaysM3’s Cumulative Lift of 3.85 (3.84) i.e. 19.2-19.25% risk customers
capture in the 5% percentile on the training (test) set, which is 0.2% lower than M2.
Using modelM3 will deliver a 2.95-2.99 times higher rate of risk capture than contacting a
random 10% sample of the population if the 10% percentile of scored clients are contacted.
The 5-10% percentiles exhibit a C-Lift resulting in a 19.2-29.9% response capture. Overall,
the LASSO model delivers a smaller Cumulative Lift than M2.

(a) Lift Chart Model 3. (b) ROC Chart Model 3.

Figure 5.7: Evaluation Charts - LASSO Model

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 87

The ROC chart in Figure 5.7(b) also shows narrowly deviating curves on training and
test datasets, implying high stability. M3 performs in a similarly robust manner on the
test set like the M2 logistic regression model. The ROC curve exhibits a good AUC of
0.7 on the training dataset and a similarly well 0.698 AUC on the test dataset.

To conclude, it has been verified that using different logistic regression variants and
shrinkage methods produce similar results in this churn prediction framework. Superior
results are, however, perceived for M2 and M3 due to their high Sensitivities and
Cumulative Lifts. We consider both model suggestions as candidates against the upcoming
machine learning methods.

From the outlined model analysis, the following key findings emerged:
Consistent important drivers for household insurance churn prediction are the high
relevance of previous churn history and agent-related changes. Moreover, the clients’
churn behaviour in other contract types is included in the top indicators. Taking into
account the research goals, logistic regression identifies a fair number of clients with
cancellation intention. Furthermore, the technique is able to deliver relevant churn drivers
and consequent effects, which partly helps create a type of consumer profiling.

5.2 Decision Tree

Next, we describe the results of the tree-based techniques by first illustrating its building
blocks, i.e. decision trees.

The integrated decision tree as variable selection pre-step for random forest and gradient
boosting can be used as a way of reducing an unnecessarily large number of redundant
variables and increase model performance. The information-rich inputs can then be further
evaluated by the tree-based modelling nodes. By considering the three variants, CART,
CHAID tree, and Entropy as a node split criterion, we carry out a cross-validation
procedure to fine-tune the hyperparameters of the decision tree and discuss the resulting
facts below.

Model Description ASE AUC Gain C-Lift
CHAID Tree 0.0835 0.677 186.48 2.86
Entropy 0.0842 0.625 158.84 2.59
CART 0.0857 0.59 126.88 2.27

Table 5.9: Decision Tree Cross-Validation Results

Table 5.9 demonstrates that the CHAID Tree performs best overall as it delivers the

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 88

smallest CV-ASE and highest AUC and Cumulative Lift. CART is the weakest model
between all three with a higher CV-ASE and lowest AUC and Cumulative Lift. Based on
the smallest CV-ASE and overall best performance, we apply the CHAID Tree Settings in
the SEM variable selection step before training the random forest and gradient boosting
models.

In SEM, we set the nominal target criterion to ‘ProbChisq’ to build a CHAID tree. The
inputs can be used several times at different nodes with only binary splits allowed, and a
maximum depth of 6 can be achieved by the tree. Finally, the large full tree is chosen with
cross-validated subtrees. The CHAID method yields a tree with the following classification
statistics:

Statistic [%] Train Test
Overall Precision 82.31 70.98
Event Precision 73.17 51.02
Sensitivity (TPR) 16.48 11.42
Specificity (TNR) 99.33 98.78

Table 5.10: Classification Statistics - Decision Tree

A subtree of the full tree, included as an illustration on the next page (see Figure 5.8),
shows the high importance of the variable Churn Last No Mon (number of months since
last churn) as it is already used twice for node splitting. While the top ten logistic
regression features include churn related inputs, Churn Last No Mon is not included
in the tree’s top variables. In accordance with the previous logistic regression models,
observations with no change of responsible agent, indicated by the binary variable
AG Chg Resp OE Pnr 1Y (change of responsible agent in the past year), lead to fewer
observations with churn labels (7.82% vs. 12.99%) of the respective nodes’ samples. The
tree also suggests that clients younger than 73 years generate internal nodes with a higher
churn label frequency than older clients.

Table 5.10 demonstrates that the tree’s Sensitivity is in line with our research goal and
with previous classifiers’ performance. Considering that the tree is able to identify a
relatively good number of potential churners, we consider the provided features’ subset
a good foundation for the tree-based models. However, the tendency of decision tree
to overfit is underlined by the big discrepancy between training and test values. The
tree’s Precision is compromised while still providing a high number of correct event
classifications proven by the high TPR. Overall, the decision tree exhibits similarities with
logistic regression and is observed to be a reasonable feature selection base for random
forest and gradient boosting.

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 89

Fi
gu

re
5.

8:
D

ec
isi

on
Tr

ee
St

ru
ct

ur
e

-C
hu

rn
Pr

ed
ic

tio
n

Ex
am

pl
e

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 90

5.3 Random Forest

Considering the provided illustration of how the single trees in a churn-predicting random
forest could look like, we train the random forest model on the chosen variables and allow
the base decision trees to prioritise the important associated variables (see Flowchart A.2).

First, the extensive grid of hyperparameters requires a proper fine-tuning to achieve better
forest performance and avoid potential overfitting by conducting an Out-of-Bag (OOB)
assessment. Since SEM does not support cross-validation on the random forest node, the
Out-of-Bag errors are compared as an alternative to the CV-ASE. For the hyperparameter
tuning, we compare different combinations of numbers of trees, maximum leaf sizes,
numbers of variables per split, and maximum tree depths. Based on the Out-of-Bag
validation metrics, we choose two of the best performing models and consider them in the
final comparison for the random forest candidate model.

Figure 5.9: Random Forest Out-of-Bag ASE Development

Figure 5.9 portrays the development of the OOB average squared error (ASE) on the
y-axis versus number of trees on the x-axis for each considered number of variables used
for splitting the tree nodes. It is visible how an increase in the number of considered
variables reduces the Out-of-bag ASE. Regarding all variables at each split considerably
reduces the ASE, however, with an accompanying risk of overfitting the model, longer
computation time, and increased complexity. Starting from 100-150 forest trees, there
is only an incremental reduction in ASE visible, which makes the final performance
indifferent to the number of trees.

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 91

Variables # Trees # Leaves OOB ASE OOB MR OOB Log-Loss
All 100 74961 0.081 0.095 0.292
50 150 171768 0.082 0.099 0.295
40 130 151988 0.083 0.099 0.297
25 200 255716 0.083 0.099 0.298

Table 5.11: Out-of-Bag Statistics - Random Forest Models

Table 5.11 demonstrates that using a higher number of trees with a smaller number of
variables can deliver similar results compared to trees with a large number of variables.
Choosing a large number of variables and trees can, however, also lead to an overfitted
model. This is suggested by the hyperparameter tuning as the biggest difference between
training ASE and OOB ASE is exhibited by the model with all variables. Based on the
resulting out-of-bag errors and settings, we investigate the random forest with 150 trees,
50 variables denoted by R1 vs. 130 trees, 40 variables (R2), and an untuned forest (R3).

To compare the final chosen models, we first clarify the respective settings in SEM and
characteristics of the random forest. Untuned forests with the default settings in SEM are
set to only try 14 variables for node splitting, build the forest using 100 trees, training
the forest on a 0.6 proportion of the training dataset, and using the rest for Out-of-Bag
assessment. Furthermore, a maximum depth of 50 is considered, and the node splitting
criterion is set to the Gini criterion. In comparison, we set the training proportions for
R1 and R2 to 0.8 and allow only a 0.2 proportion of the training dataset to be used
for Out-of-Bag assessment. This is done to avoid a higher imbalanced distribution of the
target levels and to obtain the same validation proportion as in the 5-fold cross-validation.
Moreover, R1 can choose out of 50 variables, the Gini criterion for node splitting uses
150 trees and has a maximum depth of 6. Similarly, R2 can choose from 40 Variables, the
Gini criterion for node splitting uses 130 trees and has a maximum depth of 6.

The first chart in Figure 5.10 shows the Cumulative Lift curves of all three models on the
training set. In the 5% percentile, the untuned forest R3 shows the highest Cumulative
Lift of 5.11 vs. a Cumulative Lift of 4.68 for R1 and slightly lower 4.66 for R2. For the
upper decile, all models decrease substantially, demonstrating the low frequency of the
target observations as the datasets only include less than 10% churn labeled instances. The
second chart shows the models’ performance on the test set. The same models’ ranking
pattern of the training set chart prevails on the test set which implies some findings. The
untuned default forest yields a considerably lower Cumulative Lift than on the training set,
indicating a high discrepancy between in and out-of-sample performance despite being the
best predictive forest. This highlights the underlying overfitting and the model’s unstable
generalisation on unseen data. R1 and R2 are comparable to their values on the training

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 92

set, verifying that increasing the depth of the forest can lead to overfitting.

Figure 5.10: Random Forest Models’ Evaluation Charts

R1 performs better overall than R2 as it shows higher Cumulative Lift on both the 5%
and 10% percentiles. Overall these findings are in accordance with findings visible by the

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 93

ROC charts on training and test sets. Moreover, R3’s discrepancy between in-sample and
out-of-sample performance is visible by the high training ROC curve vs. a less steep curve
on the test set. Generally, all three ROC curves show moderate model performance on
the test set and deliver AUC values between 0.7-0.72, with R3 performing best.

[%] R1 R2 R3

Accuracy 90.44 90.45 90.41
Overall Precision 77.36 77.52 79.41
Event Precision 63.84 64.15 68.16
Sensitivity (TPR) 10.30 10.35 7.71
Specificity (TNR) 99.35 99.36 99.60
Cumulative Lift (5%) 4.43 4.42 4.57

R1 R2 R3

G-Mean (3.47) 31.99 32.07 27.71
F1-Score (3.48) 17.74 17.82 13.86
F1.2-Score (3.49) 15.69 15.77 12.12
FPR [%] 0.65 0.64 0.40
FNR [%] 89.70 89.65 92.29
AUC 0.71 0.71 0.72

Table 5.12: Classification Statistics - Random Forest Models

For an extensive evaluation, Table 5.12 compares the test set evaluation measures of the
random forest methods with tuned hyperparameters versus the default forest settings
suggested by SEM. While the untuned R3 exhibits overall the highest Event Precision,
R1 and R2 show considerably higher Sensitivity, especially R2’s relatively high 10.35%
Sensitivity w.r.t. the underlying class imbalance. Model R2, built using 130 trees and 40
variables demonstrates the best balance between Precision and Recall, as it exhibits the
highest F-scores. The adjusted F1.2-Score, weighing Recall by just 0.2 times more than
Precision, favours R2 with the highest score of 15.77, a relatively higher score than R3’s
12.12. One can also note that R3 shows the highest Specificity. In the underlying case
study, False Negatives are more costly than False Positives; hence, models with a smaller
FNR are preferably selected, for instance model R2 with the overall smallest FNR of
89.65%. It must be pointed out that models with the highest Cumulative Lift, such as
model R3 here, do not guarantee the highest Recall rate. While Recall measures the
correct event classifications between all event classifications, Cumulative Lift measures
the increased event capture only for a targeted subset, e.g. the top proportion of the
predicted probabilities ranked list. The statistics findings in Table 5.12 are directly in line
with previous findings by the Cumulative Lift and ROC Chart regarding R3’s overfitting
potential, as the test shows a similar performance compared to the other models in contrast
to a much better-indicated assessment on the training set. Although the models deliver a
seemingly high 90% Accuracy, we obtain in a similar pattern as logistic regression models
very high 90% FNR. In the context of class imbalance, Accuracy remains a misleading
evaluation metric for tree-based techniques.

Based on all of the above results and overview of different model properties, we select R2

as a final candidate for the random forest model. R2 provides the highest Recall along

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 94

with an adequate balance of Event Precision proven by the high F-scores.

The final chosen model R2 has the following variable importance structure:

Figure 5.11: Random Forest Model R2 - Variable Importance
The right panel of Figure 5.11 displays the mean decrease in Gini, which resembles
the mean of a variable’s total influence on a decrease in node impurity, weighted
by the samples arriving at that node in each of the forest’s tree. The higher the
mean decrease in Gini, the more important the variable. In accordance with the
logistic regression models’ feature importance, the random forest model tends to highly
weigh some of LR’s top-ranked variables. These are for example churn and agent
behaviour related variables such as Churn 3Mon, Churn No Contr 6Mon (number of
churned contracts in the past 6 months), Churn First No Mon (number of months
since first churn) and AG Chg Resp OE Pnr 1Y. The number of churned contracts in
the past 6 months has the greatest Gini reduction influence and is, therefore, of high
importance. Based on the number of times the variable was used for splitting, depicted
in the left panel of Figure 5.11, we can also draw conclusions about the importance.
The variables Churn No Contr 6Mon and Churn First No Mon simultaneously show
high Gini reduction and high number of splits. The association is highlighted as
Churn First No Mon, measuring the number of months since the last churn is used for
334 rules in the entire forest. Similarly, the variables AG Chg Resp OE Pnr 1Y and Age
are used for 200-250 splits.

The train confusion matrix of R2 shows a True Positives count of 901, i.e. 1.14% of the
classified observations by the random forest classifier (see Figure 5.12(a)), relatively high
w.r.t. the analysed logistic regression models. Consequently, the False Negatives frequency
of 8.96% is overall lower showing a less Negatives classifications oriented distribution in
the heat-maps than LR. One can notice vice versa that the model is able to properly

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 95

(a) Train Confusion Matrix. (b) Test Confusion Matrix.

Figure 5.12: Random Forest Model R2 - Confusion Matrix

classify TN, leading to a low frequency of 338 FP, 0.43% of the total classifications. The
test confusion matrix shows similar total percentages for each component as all frequency
proportions change by less than 0.16% (see Figure 5.12(b)). This is also indicated by the
small 1% difference in train and test Sensitivity as visible in Table 5.13.

To further analyse the confusion matrix indications, we review the resulting evaluation
metrics of R2 given by Table 5.13.

AUC C-Lift(5%) Event Precision TPR FNR FPR F1.2-Score
Train 0.72 4.66 72.72% 11.44% 88.56% 0.48% 17.47
Test 0.71 4.42 64.15% 10.35% 89.65% 0.64% 15.77

Table 5.13: Classification Statistics - Random Forest Model R2

Table 5.13 summarises the research-goal relevant classification measures of model R2 on
both the training and test sets. R2 shows a high Event Precision on the training set of
almost 73%, and in comparison, only 64% on the test dataset. This can be attributed to
the smaller number of available cases in the test vs. training set, not allowing the forest to
obtain a comparable event accuracy. The ROC index hardly changes, implying that the
Sensitivity levels remain stable on out-of-sample observations. Furthermore, we analyse
the relevant ranking metrics for the imbalanced dataset on hand. Model R2 exhibits a
test Cumulative Lift of 4.42 in the upper 5% percentile (see Figure 5.10), i.e. 22.1%
risk customers are captured, which is a relatively high Cumulative Lift. The upper 10%
percentile shows a Cumulative Lift resulting in a 31-33% response capture. Using model
R2 will deliver a 3.1-4.6 times higher rate of risk capture than contacting a random 5-10%

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 96

sample of the observations if the clients in the 5-10% percentile are contacted. The ROC
charts in Figure 5.10 also show very similar curves on both sets implying high robustness
and no signs of potentially disadvantageous overfitting.

In conclusion, the random forest modelling results display the potential differences that
can arise when the algorithm’s hyperparameters are adjusted. From the short review
above, we can confirm that an increase in maximum depth generates a higher model
Precision. However, high maximum depth, along with a low training set proportion, can
negatively affect the model’s generalisability and robustness. These essential findings are
consistent with previous studies (Probst, Boulesteix, and Bischl (2019)). The results lead
to similar conclusions as logistic regression, namely that important influencing features
include churn-history and contract-related characteristics. It is important to note that
some of the top-ranked variables by the random forest model, explicitly KKM AR HH
and KKM A P Quelle were included with no provided elaboration on the definition by
ERGO. As the variables show relatively high importance in the tree-based methods, it is
considered valuable to add the variables’ definitions.
On the one hand, considerably superior results are achieved with random forest models
compared to logistic regression with respect to Recall and Cumulative Lift. On the other
hand, random forest models do not provide the possible odd ratio estimates interpretation
to extract valuable churn drivers and effectively tackle them, e.g. through marketing
measures, by understanding the effect direction. Nonetheless, it is well justified to use
random forest models for high and precise targeted churn detection.

5.4 Gradient Boosting

Moving on to the last tree-based method, gradient boosting (see Flowchart A.3), we
start by giving a short review of the cross-validation results with the objective of
hyperparameter tuning and model optimisation.

Model Description ASE AUC Gain C-Lift
100 Itr. GB 0.0810 0.720 218.48 3.18
GB Default 0.0819 0.703 208.83 3.09
CHAID + GB 0.0821 0.699 204.27 3.04
Entropy + GB 0.0824 0.687 193.73 2.94

Table 5.14: Gradient Boosting Cross-Validation Results

In Table 5.14 the four top models of the gradient boosting parameter combinations are
listed with their respective cross-validation statistics. The first model ‘100 Itr. GB’,

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 97

denoted by G1, is a fine-tuned gradient boosting model. The model uses an increased
number of 100 iterations and a decreased shrinkage parameter of 0.05 controlling the
learning rate to offset potential overfitting due to the increased iterations number. G1’s
decision tree parameters include a maximum depth of 4, a leaf fraction of 0.005, and
a variable can be used by two splitting rules in the same path. We denote the default
gradient boosting model as G2. The untuned default gradient boosting model in SEM has,
in comparison, only 50 iterations, a shrinkage parameter of 0.1, maximum depth of 2, leaf
fraction of 0.001, and variables can not be reused. The tuned gradient boosting model
performs overall better on the cross-validation set as it shows a smaller cross-validated
ASE, higher AUC of 0.72, and a higher Cumulative Lift than the default model. To
compare classic gradient boosting models, we compare the model, including features
pre-selection via a decision tree. We apply the best performing decision trees according
to Table 5.9; these are the CHAID tree and the tree based on Entropy as a splitting
criterion. As clear from Table 5.14 the classic gradient boosting models outperform both
models with an extra feature selection as their cross-validated errors are slightly higher
and Cumulative Lifts are lower. Based on the above observed lower CV-ASE, we compare
the best two performing models on the cross-validation set, G1 and G2, for illustration and
analysis of relative performance.

Figure 5.13 displays the relative variable importance of model G1, which resembles the
variables’ total contribution to the change in the residual sum of squares error values. The
higher the reduction in error value, the higher the variable’s relative importance measure.
In comparison with the previous models’ feature importance, the gradient boosting model
highly weighs some different variables as the tree’s top important variables. These are for
example, rather the basic client-related variables such as Age, Geo Cluster kgs16 and
CL Ph State Key A1. The variables Churn Last No Mon and AG Chg Resp OE Pnr 1Y
remain highly ranked in accordance with the previous models.

Likewise, Figure 5.14 demonstrates the relative variable importance of model G2. In
comparison with G1’s feature importance bar chart, the default gradient boosting model
has a slightly different variable ranking. Whilst G1 only includes Churn Last No Mon
in the top ranks, G2 considers more variables indicating churn behaviour history is of
the highest importance. We can justify G2’s reduced number of overall splitting rules
with the smaller allowed maximum tree depth. It is important to note that some of the
top-ranked variables by both gradient boosting models, explicitly KKM AR Kunde and
KKM A P Quelle were included in the random forest model with no provided elaboration
on the definition. Generally, one can observe consistency with previous models implying
association between the target and variables in churn history or agent related categories.

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 98

Figure 5.13: Gradient Boosting Model G1 - Variable Importance

Figure 5.14: Gradient Boosting Model G2 - Variable Importance

Next, we analyse the classification frequencies of the models on the test set. The confusion
matrix of G1 w.r.t. the default 0.5 cutoff value shows a moderately high True Positives
count of 190, 0.96% of the classified observations by the model. G2 is able to correctly
classify a slightly higher count of 195 True Positives, making up roughly 1% of model
classifications. As a consequence, the G1’s False Negatives frequency of 1781 is lower vs.
the 1776 count of G2. One can additionally observe that G2 is able to slightly classify
more True Negatives than G1, leading to a lower count of 95 False Positives, 0.48% of the

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 99

(a) Confusion Matrix - G1. (b) Confusion Matrix - G2.

Figure 5.15: Gradient Boosting Models - Confusion Matrices

total classified sample vs. 105, 0.53% of G1’s classifications. The heat-maps’ colours show
overall the same orientation of the classifications distribution.

To support the findings obtained by the confusion matrices, we consider the test evaluation
metrics’ values for both models displayed in Table 5.15. The table reveals almost overall
superior results for model G2 on the test set. G1 outperforms only w.r.t. showing higher
Cumulative Lift and ROC Index. This highlights that the model with a higher Cumulative
Lift does not necessarily deliver the highest TP frequency nor Precision. In line with the
confusion matrices, G2 exhibits almost a 10% Recall rate, slightly lower than random
forest models, and twice as high as logistic regression. The Event Precision is moderate
as it is lower than 70%, however in consistency with previous classifiers’ performance. In
conclusion, both models perform fairly with minor percentage differences.

G1 G2

Accuracy [%] 90.43 90.50
Overall Precision [%] 77.61 79.05
Event Precision [%] 64.41 67.24
Sensitivity (TPR) [%] 9.64 9.89
Specificity (TNR) [%] 99.41 99.46
Cumulative Lift (5%) 4.65 4.25

G1 G2

G-Mean (3.47) 30.96 31.37
F1-Score (3.48) 16.77 17.25
F1.2-Score (3.49) 14.80 15.21
FPR [%] 0.59 0.54
FNR [%] 90.36 90.11
AUC 0.72 0.71

Table 5.15: Classification Statistics - Gradient Boosting Models

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 100

The chart in Figure 5.16(a) shows the Cumulative Lift curves of the model G1 on both
the training and test set. In the 5% percentile, the tuned gradient boosting model shows
a high Cumulative Lift of 4.65 on the training set vs. the same Cumulative Lift of 4.65
on the test set. For the 10% decile, the model’s Cumulative Lifts decrease substantially,
demonstrating the underlying low frequency of the target observations as the datasets only
include less than 10% churn labeled instances. On the 10% decile, G1 exhibits a trained
Cumulative Lift of 3.45 and test Cumulative Lift of 3.27. The second chart 5.16(b) shows
the models’ ROC curve on the training and test sets. The same robustness pattern of the
chart on the sets prevails. The tuned gradient boosting yields a marginally lower train
ROC curve than on the test set, indicating some discrepancy between in and out-of-sample
performance. This highlights the underlying overfitting for gradient boosting models with
a high iterations number.
Analogously, Figure 5.17(a) displays the Cumulative Lift curves of the model G2 on the
training vs. test set. The default gradient boosting shows a marginally higher Cumulative
Lift on the training set equal to 4.31 vs. 4.25 on the test set. We can, therefore, conclude
that using model G2 and contacting the clients in the 5% percentile, we should be able to
capture 21.25-21.55% more at risk-customers than random-targeting which is an effective
result in practice. In comparison to G1, a small deviation is visible on both the Cumulative
Lift and ROC charts. In the upper retrieval area (5%-10%) we also note a sharper decrease
in Lift for G1. The default model, however, generalises in both charts poorer than G1,
supported by the lower C-Lift and AUC values of Table 5.15.
Based on the above review of different model properties, G2 is selected as a final candidate
for the gradient boosting model. G2 provides the highest Recall and Precision between the
considered models. The model, however, does not optimally reach the highest Cumulative
Lift nor the highest AUC value. Regarding the G2’s metrics’ discrepancies between test
and train sets, visible in Table 5.16, implies strong model robustness and generalisability.
It should be mentioned that the performance on the test set is partially better than on the
training set demonstrated by measures like Precision and FPR. One possible explanation
of this random occurence could be the features’ different distribuation between test and
training set.
The gradient boosting technique findings can be summarised as follows:
The investigated versions of gradient boosting models are able to identify a good
proportion of customers with cancellation intention along with good accuracy. Moreover,
gradient boosting models with a moderate iterations number relative to the target
frequency and dataset size perform in a stable manner on previously unseen data.
Increasing the iterations number can increase model performance but confirms the
necessity of defining an adequate bias-variance trade-off. Similar performance as other
tree-based methods such as random forests, decision trees and superior results over

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 101

classic models i.e., logistic regression, are observed. Finally, identified representative
variables include the number of months since the last churn, change of the responsible
agent in the last year, age and client-company relationship recency implied by
No Mon First Contr Beg (number of months since the start of the first contract).

AUC Overall Precision Event Precision TPR FNR FPR
G2 Train 0.71 78.82 % 66.78% 10.05 % 89.95 % 0.56%
G2 Test 0.71 79.05 % 67.24% 9.89 % 90.11 % 0.54%

Table 5.16: Classification Statistics - Gradient Boosting Model G2

(a) Lift Chart - G1. (b) ROC Chart - G1.

Figure 5.16: GB Model G1 - Evaluation Charts

(a) Lift Chart - G2. (b) ROC Chart - G2.

Figure 5.17: GB Model G2 - Evaluation Charts

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 102

5.5 Neural Networks

Finally, we implement a further family of machine learning algorithms, namely neural
networks. Neural networks’ hyperparameter tuning is commonly known to be a tedious
task that can not be efficiently performed by using a complete grid search (see Hastie,
Tibshirani, and Friedman (2001), p. 397). Therefore, we consider some of the important
tuning properties and validate the candidate choices through 5-fold cross-validation.
Considering the SEM remarks in Appendix A.2.3 and the available tuning options, the
user can primarily set the number of hidden units (HU)/neurons, the number of hidden
layers, and the total number of iterations (IT). Increasing the NN size should not hurt the
performance (see Hastie, Tibshirani, and Friedman (2001), p. 400), so varying the number
of neurons, and the number of iterations will be the main hyperparameter tuning base.
We consider other aspects like weight decay adjustment as a manner to reduce potential
overfitting generated by large weights. Similarly, increasing the number of iterations can
reduce the error and is therefore considered. Additionally, a wide variety of optimization
techniques are available in SEM, including standard BackProp, QuickProp, LM-BFGS (see
Nocedal (1980)), and Conjugate Gradient. Finally, the learning rate adjustable to some
of the algorithms is regarded as a tunable hyperparameter. Since the tuning of several
parameters can not be performed simultaneously in SEM, we first consider a simple MLP
with a single hidden layer, 35 HU, and a learning rate of 0.01 to tune the weight decay.
In Table 5.17 one can observe the statistics of the same architecture with different
weight decays. The table does not show a consistent pattern w.r.t. weight decay size
but implies that the smallest weight decay is favoured overall as its model exhibits the
smallest CVE-ASE, highest AUC and Cumulative Lift. Considering the number of neurons
and iterations is of interest next. To observe the different required iterations for each
optimization technique we set the initial learning rate for QuickProp to 0.01 and that of
BackBrop to 0.1. As the QuickProp optimizer learns faster it requires a smaller number
of overall iterations with a smaller learning rate.
The iteration plots in Figure 5.18 of both QuickProp and BackProp show a decreasing
pattern for an increasing number of iterations. It is also visible how QuickProp either
requires fewer iterations for the model to achieve convergence quickly or reaches a possibly

NN’s Weight Decay ASE AUC C-Lift
0.0001 0.055 0.907 5.934
0.01 0.057 0.903 5.844
0.001 0.061 0.888 5.533

Table 5.17: NN Weight Decay Tuning Results

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 103

(a) Iterations Plot - QuickProp. (b) Iterations Plot - BackProp.

Figure 5.18: Iteration Plots Of Different NN Optimizers

high overfitting rate and thus induces early stopping. The network with 50 HU shows the
smallest CV-ASE for QuickProp, followed by a network with 35 or 40 HU. It is visible
how the QuickProp optimizer favours networks with more neurons over smaller networks.
Similarly, BackProp prefers overall mid-sized networks with a large number of neurons, yet
not too many as the network with 50HU performs marginally worse. Regarding that the
differences in CV-ASE are small, we consider further supporting statistics such as AUC
values and Cumulative Lift of the models. In Table 5.18, the cross-validation metrics are
listed for the different model properties. While the 50 HU QuickProp model shows the
smallest CV-ASE, 40 HU provides the highest Cumulative Lift and a small difference in
ASE. Considering that the AUC value is the same for the top three models, we choose the
model with 40 HU as a candidate model for QuickProp and denote it byN1. For BackProp,
the model N2 with 40 HU provides the highest Cumulative Lift as well, making it an
interesting model for more investigation. 1 Based on the above hyperparameter tuning
and deduced models we implement a comparison on the test set as as final assessment,
including a model with 2 layers and LM-BGFS optimizer, denoted by N3.

QProp Properties ASE AUC C-Lift
50HU, 67IT 0.064 0.681 2.68
40HU, 67IT 0.065 0.681 2.77
35HU, 67IT 0.065 0.681 2.75
20HU, 67IT 0.067 0.679 2.65
10HU, 67IT 0.069 0.675 2.69

BProp Properties ASE AUC C-Lift
35HU, 150IT 0.0808 0.695 2.87
40HU, 150IT 0.0810 0.696 2.91
20HU, 150IT 0.0811 0.693 2.89
50HU, 150IT 0.0812 0.696 2.90
10HU, 150IT 0.0812 0.696 2.90

Table 5.18: NN Optimizers’ Cross-Validation Results
1 The minor differences in the measures’ values, ranking some models with less neurons on the top,

could be attributed to the random cross validation.

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 104

Figure 5.19: Neural Network Models Evaluation

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 105

In the comparison, we lastly include the default model N4 of SEM (see Flowchart A.4),
creating an MLP of 1 layer and 3 hidden units using the Conjugate Gradient optimizer.
The default learning rate is set to 0.1 and initial weight decay to 0.0001.

The top chart in Figure 5.19 shows the Cumulative Lift curves of all four candidate
models on the training set. In the 5% percentile, the QuickProp MLP shows the highest
Cumulative Lift of 5.76 vs. a Cumulative Lift of 4.53 for N4, slightly lower 4.24 for N3

and the lowest for the BackProp model N2 with a Cumulative Lift of 4.03. For the upper
decile, all models decrease substantially, demonstrating the underlying low frequency of
the target observations. The second chart shows the models’ performance on the test set.
The ranking pattern of the train chart changes implying some key aspects. The QuickProp
network yields a considerably lower Cumulative Lift than the first curve, indicating a
high discrepancy of almost 2 Lift points between in and out-of-sample performance. This
highlights the underlying overfitting and the general model’s poor generalisation on unseen
data. Due to this performance, N1 no longer exhibits the highest Cumulative Lift on the
test set as SEM’s default neural network claims the first rank with a slightly higher
Cumulative Lift of 4.08. N2 - N4 are comparable to their values on the training set,
verifying that some neural network optimizers work well with the data on hand and
others, such as QuickProp can lead to overfitting.

N4 performs overall better than N1 as it shows higher test Cumulative Lift on both the
5% and 10% percentiles. Overall these findings are in accordance with results visible by
the ROC charts on training and test sets. Moreover, N1’s out-of-sample discrepancy is
visible by the high training ROC curve vs. a less steep curve on the test set. The ROC
curves of all for models show moderate performance on the test set and deliver an AUC
value around 0.7, higher than the baseline model, with N2 outperforming overall.

For an extensive evaluation, Table 5.19 compares the test set evaluation measures of
the neural network models with tuned hyperparameters versus the traditional default
suggested by SEM. While the back-propagation MLP exhibits overall the highest Event
Precision, N1 and N4 show considerably higher TPR, especially N1’s relatively high

[%] N1 N2 N3 N4

Overall Precision 73.28 76.41 72.84 72.75
Event Precision 55.67 62.15 55.06 54.67
Sensitivity (TPR) 10.71 7.91 7.46 10.10
Specificity (TNR) 99.05 99.46 99.32 99.07
FPR 0.95 0.54 0.68 0.93

N1 N2 N3 N4

G-Mean 32.56 28.06 27.22 31.63
F1.2-Score 16.00 12.32 11.55 15.16
C-Lift (5%) 3.96 3.90 3.84 4.08
FNR [%] 89.29 92.09 92.54 89.90
AUC 0.695 0.702 0.697 0.695

Table 5.19: Classification Statistics - Neural Network Models

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 106

10.71% TPR w.r.t. the underlying class imbalance. Models N1 and N4 demonstrate
the best balance between Precision and Recall as they hold the highest F1.2-Score. The
adjusted F1.2-Score, weighing Recall by just 0.2 times more than Precision, favours N1

overall by portraying the highest score of 16, a relatively higher score than N2 and N3.
One can also note that N2 shows the highest Specificity. In the underlying case study,
False Negatives are more costly than False Positives; hence, models with a smaller FNR
are preferably selected, for example either model N1 or N4 with overall smallest FNRs.
It must be pointed out that models with the highest Cumulative Lift, such as model N4

here, do not guarantee the highest Recall rate. The statistics findings are directly in line
with previous results by the Cumulative Lift and ROC Chart regarding N1’s overfitting
potential, as the test shows a similar performance compared to the other models in contrast
to a much better-indicated assessment on the training set. Although the models deliver a
seemingly high accuracy, we obtain in a similar pattern as the previous machine learning
models very high 90% FNR.

Based on all of the above results and overview of different model properties, we select N4

as a final candidate for the neural network model. N4 provides the second-highest Recall
along with an adequate balance of Event Precision proven by the F1.2-Score and highest
Cumulative Lift. We therefore investigate this model in more detail. For illustration we
include the structure of the MLP graph along some of its estimated weights. Figure 5.20
displays that some of the highest assigned weights between the input layer and hidden
layer, belong to the variables Churn Last No Mon, Age and Loc Chng 3Mon implying
more influence on the output. The color of the links imply the relative size of the weights.

Figure 5.20: Default Neural Network Weights Illustration

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 107

AUC C-Lift(5%) Event Precision TPR FNR FPR F1.2-Score
Train 0.73 4.53 61.62% 10.90% 89.10% 0.75% 16.45
Test 0.70 4.08 54.67% 10.10% 89.90% 0.93% 15.16

Table 5.20: Classification Statistics - Neural Network Model N4

Table 5.20 summarises the research-goal relevant classification measures of model N4 on
both the training and test sets. N4 shows a high Event Precision on the training set of
almost 62% and, in comparison, only 55% on the test dataset. This can be attributed
to the smaller number of available cases in the test vs. training set, not allowing the
network to obtain a comparable event accuracy. The ROC index changes by a small rate,
implying that the sensitivity levels remain relatively stable on out-of-sample observations.
Furthermore, we analyse the relevant ranking metrics for the imbalanced dataset on hand.
Model N4 exhibits a test Cumulative Lift of 4.08 (see Figure 5.19) in the 5% percentile,
i.e. 20.4% risk customers are captured, which is relatively high. The 10% percentile shows
a Cumulative Lift resulting in a 31-34% response capture. The ROC charts in Figure
5.19 also show very similar curves on both sets implying fair robustness and no signs of
potentially disadvantageous overfitting. Furthermore, the confusion matrix of the final
candidate model N4 shows on the training set a True Positives count of 859, i.e. 1.09%
of the classified observations, relatively high w.r.t. the analysed logistic regression models
and slightly lower than random forest models. Consequently, the False Negatives frequency
of 8.91% is overall lower. One can notice vice versa that the model is able to properly
classify True Negatives, leading to a low frequency of 535 False Positives, 0.68% of the
total classifications.
The heat-map in Figure 5.21 shows a fewer Negatives classifications oriented distribution
than that of logistic regression models. The test confusion matrix shows similar total
percentages for each component as all frequency proportions change by less than 0.17%.
This is also indicated by the less than 1% difference in train and test Sensitivity as visible
in Table 5.20.

In conclusion, the neural network modelling results display the possible arising differences
when the algorithm’s hyperparameters are adjusted. From the short review above, we
can confirm that different optimisers can generate a higher model Recall. However,
high maximum iterations along with an inappropriate weight decay or learning rate can
negatively affect the model’s generalisability and robustness. These basic findings are
consistent with previous studies (Probst, Boulesteix, and Bischl (2019)). The results lead
to similar conclusions as previous models w.r.t. predictive capabilities and possible model
enhancements. The model however demonstrates the black-box drawback, as the user does

CHAPTER 5. CASE STUDY: PREDICTION RESULTS AND EVALUATION 108

(a) Train Confusion Matrix - N4. (b) Test Confusion Matrix - N4.

Figure 5.21: Neural Network Model N4 - Confusion Matrices

not get any insights into the important covariates for the prediction.
On the one hand, considerably superior results are achieved with neural network models in
comparison to logistic regression with respect to Recall and Cumulative Lift. On the other
hand, the models do not provide the interpretability to extract valuable churn drivers and
effectively tackle them, e.g. through marketing measures.
Nonetheless, it is well justified to use neural network models for a high and less precise
targeted churn detection. To evaluate all implemented models simultaneously and evaluate
their performance, the next chapter starts with a full model comparison, along with a
discussion of the findings and eventually complementing it by a concluding section.

Chapter 6

Case Study: Discussion

6.1 Model Comparison

In this section, we provide a summary and collective overview of all candidate models’
performance on the training and test sets by considering diverse evaluation metrics
(see Flowchart A.6). We focus on comparing the models’ advantages and disadvantages
with respect to general evaluation categories and the key research objectives. For
simplicity, we denote the models by the abbreviations defined in Section 2.2.
First, the ROC curves of all models are considered in Figure 6.1. Overall, the charts
imply that all models perform better on both sets than the random baseline model. On
the training set, NN exhibits the highest ROC curve over the entire range. RF consistently
shows a superior curve on all models on the test set, indicating a larger AUC value, which
is associated with a better classifier ranking ability. It is interesting to note that the single
classifiers LR and LASSO exhibit higher curve values for the FPR mid-range (0.2-0.6) vs.
GB and NN visible on the test ROC chart. It appears to be that with increasing cutoffs,
the simple classifiers are rather able to maintain an adequate balance between TPR and
FPR than gradient boosting techniques.

Figure 6.2 and 6.3 are set against each other to contrast the models’ robustness and
response capture simultaneously. The random forest’s Cumulative Lift of the 5% percentile
clearly outperforms the other models on both sets. It is important to note that in
comparison to the other models, NN shows the highest discrepancy between training and
test Cumulative Lift. The second-best performing classifier is the gradient boosting model
with only a small difference in the test set versus RF. Overall, the LASSO model exhibits
the lowest 5% Cumulative Lift on both sets. The model rankings do not prevail throughout
the upper deciles, e.g. on the 10% decile. On the 10% decile, NN performs better than

109

CHAPTER 6. CASE STUDY: DISCUSSION 110

(a) Train ROC Charts.

(b) Test ROC Charts.

Figure 6.1: Model Comparison - ROC Charts

gradient boosting. Starting from the 60% decile, all models perform the same as the
lower scored observations are assigned to negative classifications. The consistently close
Specificity rates imply that all models can properly classify the non-churners. Generally,
using the suggested models and contacting the upper ranked 5% of scored test clients
will allow the user to capture 19.2-22.1% more of the at-risk customers than contacting a
random 5% sample of clients.

Similarly, Figure 6.4 and 6.5 are compared to contrast the models’ stability and
Precision-Recall (PR) trade-off simultaneously. All in all, the classifiers yield high Recall
only at low Precision values, as for 80-100% Recall, the classifiers merely achieve 15-10%
Precision. This finding implies that the models’ predicted scores are only marginally
associated with the outcome. A substantial decrease in RF and GB PR curve steepness
is observable on the test vs. train set. While ROC curves focus on both target classes,
PR curves cover mainly the minority class implying a higher relevance for the final model

CHAPTER 6. CASE STUDY: DISCUSSION 111

selection.

Figure 6.2: Model Comparison - Train Cumulative Lifts Chart

Figure 6.3: Model Comparison - Test Cumulative Lifts Chart

Figure 6.4: Model Comparison - Train Precision-Recall Chart (PRC)

CHAPTER 6. CASE STUDY: DISCUSSION 112

Figure 6.5: Model Comparison - Test Precision-Recall Chart (PRC)

Similar to the ROC chart, the PRC plot in Figure 6.4 indicates that RF has a superior
prediction performance through all Recall rates, followed by gradient boosting. Figure
6.5 shows a slightly different picture, which has to be attributed to the differences in
test data. The GB model is now clearly leading over the wide range [2,7] and [11,17] of
Recall rates, although the random forest is stronger for the excluded rates. Regarding
the mid-field of Recall rates (around 20%), random forest continuously outperforms with
LASSO and LR additionally showing almost the same percentages. Overall the same
primary finding remains, namely that tree-based methods can predict more churners with
a higher Precision using the underlying case study dataset. It is also notable how the
NN curve underperforms relative to RF and GB despite a high Recall. This can be
attributed to low Event Precision below 60%. After determining the final candidate model
in the model selection Section 6.2, the user can investigate the Precision-Recall curve to
determine the cutoff, where a balance of Recall and Precision levels are acceptable.

We support the drawn conclusions by analysing the evaluation metrics for all models
comparatively. ROC plots pose a general difficulty of judging practical performance, as
a decision is required about which areas of FPR are relevant and acceptable. While the
primary goal of this use case is achieving a high Sensitivity, being satisfied with the
mid-FPR-field performance, and not taking into account the strong class imbalance could
translate into large numbers of False Positive predictions. Therefore, an evaluation with
respect to the AUC value can be more accurate and less cumbersome. Overall Table 6.1
demonstrates that random forest exhibits superior results on all train metrics except FPR
and AUC. The lowest FPR is assigned to the logistic regression models, implying higher
Specificity and better non-churners detection ability. The second-best overall performing
model on the training set is the neural network as it shows the highest AUC value,
second-highest Recall, Cumulative Lift, and F1.2-Score.

CHAPTER 6. CASE STUDY: DISCUSSION 113

LR LASSO RF GB NN
AUC/ROC Index 0.71 0.7 0.72 0.71 0.73
Cumulative Lift (5%) 3.96 3.85 4.66 4.31 4.53
Event Precision [%] 64.21 56.21 72.72 66.78 61.62
Sensitivity (TPR) [%] 5.42 6.78 11.44 10.05 10.90
FNR [%] 94.58 93.22 88.56 89.95 89.10
FPR [%] 0.34 0.59 0.48 0.56 0.75
G-Mean (3.47) 23.24 25.96 33.74 31.62 32.90
F1.2-Score (3.49) 8.68 10.59 17.47 15.42 16.45

Table 6.1: Train Classification Statistics - All Models

LR LASSO RF GB NN
AUC/ROC Index 0.70 0.69 0.71 0.71 0.70
Cumulative Lift (5%) 3.84 3.89 4.42 4.25 4.08
Event Precision [%] 59.28 52.26 64.15 67.24 54.67
Sensitivity (TPR) [%] 5.02 6.44 10.35 9.89 10.10
FNR [%] 94.98 93.56 89.65 90.11 89.90
FPR [%] 0.38 0.65 0.64 0.54 0.93
G-Mean (3.47) 22.37 25.30 32.07 31.37 31.63
F1.2-Score (3.49) 8.04 10.06 15.77 15.21 15.16

Table 6.2: Test Classification Statistics - All Models

Last but not least, we compare all models on the test set to obtain an unbiased assessment
from which we can draw conclusions and understanding. The test set deteriorates the
Precision performance of all models except gradient boosting. A gradient boosting’s
moderate 67.24% Precision is shown to be the highest of all models on the test
set, additionally higher than the training value. Unlike Precision, Recall rates remain
relatively close to train values. The random forest model generates the highest rate of
TP classifications as its Sensitivity is 10.35% on the test set. In consistency with FPR
train values, logistic regression exhibits the highest Specificity, which is, however, not
of primary interest. As RF no longer displays both the highest Recall and Precision,
it can be useful to consider the adjusted F1.2-Score, offering an assessment through a
Recall-weighted measure. The random forest provides evidence to its good balance as its
F1.2-Score of 15.77 is the highest. Gradient boosting, in contrast, has a slightly lower 15.22
score, provided by the higher Precision and a marginally lower Recall. With respect to

CHAPTER 6. CASE STUDY: DISCUSSION 114

the models on hand, the model with highest Cumulative Lift, i.e. RF also obtains the
highest Sensitivity. Overall, random forest’s superior performance can be attributed to
its built-in-functionality of minimising the overall error rate, such that majority classes of
imbalanced datasets get assigned a low error rate. In contrast, the minority class obtains
a larger error rate.

From the short review above, the following summarised key findings emerge with respect
to each evaluation category:
Considering model robustness, not all top-ranked models under consideration of business
objectives would be highly favoured. As shown through comparative statistics and charts
on training and test sets, the almost overall best performing classifier RF comes with a
cost of high deviation between training and test values. We consider the gradient boosting
model to be the top choice for an optimal trade-off between bias and variance. The
model, providing the second-highest Cumulative Lift and highest Precision, additionally
provides the smallest deviation from training values and accompanying model stability.
In contrast, the model providing the least robustness is the Conjugate Gradient optimised
neural network as high out-of-sample deviance was demonstrated through the comparison
of several metrics on train and test set.

Examining the interpretability of the models confirms the importance of investigating
present machine learning advancements in model interpretability. As shown in Section 5,
logistic regression and LASSO techniques are able to provide a quantitative interpretation
of the variables’ influence on churn likelihood. This is particularly important when
investigating clients with a tendency to churn, as it might improve the analyst’s
and marketeer’s understanding. Tackling specific client segments exhibiting particular
characteristics is mainly attributable to perceiving the predicted increasing, decreasing,
or neutral effects. While the tree-based methods RF and GB provide a variable importance
ranking, they do not explicitly demonstrate the direction or type of effect.
Together, all models’ findings consistently confirm that important drivers of churn
prediction are previous churn history, agent-induced properties, client’s behaviour in other
insurance contract categories, and essential client characteristics. Meanwhile, NN shows
an interpretability disadvantage as it is a complete black-box model.

Handling missing values can contribute to model efficiency. Considering the additional run
time by pre-adjusting missing values for the logistic regression, LASSO and neural network
models are indicative of a potential disadvantage. Meanwhile, tree-based techniques
automatically process missing-values as decision trees include the built-in functionality
saving extra pre-processing efforts.

Considering Precision as an indicative measure of the classifier’s predictive power under

CHAPTER 6. CASE STUDY: DISCUSSION 115

our use case’s imbalanced dataset conditions, we conclude that gradient boosting provides
the model with the highest churn predictive power.
Similarly, taking into consideration the key goal of churn identification, it is deduced that
random forest provides the highest Recall. Together, the findings confirm the strength of
tree-based machine learning techniques in churn prediction.

6.2 Model Selection

To summarise the results and obtain a conclusive overview, this section includes final
remarks and reflective judgments on the key findings. The main research question and
sub-questions shall be revisited and answered with respect to the obtained results. The
goal is not to determine one ultimate champion model for all research goals but to meet
existing business objectives by considering the appropriate model accordingly.

The first objective was to determine the techniques that best identify the highest possible
number of clients intending to cancel their outstanding insurance contract while preserving
appropriate Precision and Accuracy levels. To this end, a model with highest Sensitivity
is most useful, while other characteristics such as Precision could be only moderate and
interpretability less relevant. Following the findings above, if one wants to identify the
highest number of at-churn-risk customers, a random forest with Senistivity 10.35 is
preferable, followed by a feedforward neural network with Sensitivity 10.10.
Possibilities to create highly precise prediction models on imbalanced datasets and
calculating the customers’ churn probabilities can be achieved by applying class imbalance
reduction techniques along the standard data-mining process. The methods worked very
well by providing models with up to 67% Event Precision on the test set.
Random forest and gradient boosting models provide the best prediction models delivering
both high Recall and Precision values. One approach of combining the different models’
advantages is by comparing the client scoring or using new interpretability methods.

The next research goal considered is the identification of relevant churn drivers. To this
end, a model with highest interpretability is most useful, while other characteristics such
as Precision and Recall could be moderate. The models with intrinsic interpretability,
such as logistic regression or LASSO, do provide an insight into why customers churn
while not having highest predictive power. Hence, we conclude that the model with
moderate Precision and highest interpretability is the logistic regression model with
stepwise selection. Solutions to overcome this joint issue are therefore further investigated
in Section 6.3.2.
Key customer characteristics to predicting relevant churn drivers were categorised in three

CHAPTER 6. CASE STUDY: DISCUSSION 116

classes: basic information, product-related information, and agent-related features. The
identified drivers describing customers churn behaviour are from these classes with churn
behaviour over-represented. Customers are likely to churn if they have already churned
other active contracts at the same insurance company. If the responsible agent changes,
this increases the likelihood that the client will churn, e.g. to keep the agent at a new
respective insurance company.

The last research goal considered is the generation of a ranked list of at-churn-risk
customers based on assigned churn score and identified churn behaviour. Using a decision
tree, it is possible to directly deduct churn probabilities based on the relevant churn
drivers and create a list of the at-churn-risk customers. Taking into account that most
clients churn 5-8 months before contract end and the relevant deducted churn drivers, the
list can be further segmented. We give a more extensive insight into possible customer
profiling and segmentation in the next section.

6.3 Actions and Insights

Taking into account the proposed models by Section 6.2, this section combines an
intepretability aspect with the standard technqiues and provides insight into the customer
retention actions in the insurance sector. Furthermore, some research limitations are
described to make the users aware of possible enhancements.

6.3.1 Actions in the Insurance Sector

Actions Post-Modelling

Beyond merely identifying the potential churn customers and drivers, more importantly is
determining early enough signals for customer intervention. The alerts should be against
customers, who in the recent period show signs but still hold standing contracts, such that
targeted proactive retention is applied. Optimising marketing actions and taking effective
measures, consequently from churn prediction, can reduce the number of customers falling
into the at-churn-risk category and increase revenues from the same base of existing
customers. It is important to note that churn modelling is an iterative process; i.e. there
has to be regular back-testing and development of the considered models to confirm
prediction quality.

After identifying customers at risk of churning, the marketeers have to put the models
into production. It is vital to know how exactly the marketeer can reach the customer by

CHAPTER 6. CASE STUDY: DISCUSSION 117

considering individual marketing actions for the diverse customer base. Taking random
proactive retention measures do not necessarily deliver lower churn rates, but instead
applying targeted proactive retention to maximize chances that the specific customer will
remain would be more effective. For instance, a client might respond more positvely to
retention emails than calls and another may negatively react to any kind of marketing.
It needs to be taken into consideration that the behaviour and preferences of each customer
are different. Consequently, not all high at-churn-risk customers are marketing-affine.
Instead of generating marketing losses by addressing the wrong clients, marketeers can
approach clients with a high predicted churn index and high marketing-affinity. One
can, for instance determine this affinity by running marketing campaigns and storing
the indicating repsonse of customers in the database over the years. Alternatively, clients
with high response rates to retention campaigns can be selected as investigable control
groups and be optimally considered in the following models. For illustration, the client
clustering within the different matrix parts can be applicable post scoring in Figure 6.6.

Considering that human behaviour can deviate, marketing departments should rely on
customer rankings rather than absolute predicted probability values. The rankings should
be based on frequency and recency aspects. Recency is provided automatically by target
definition, and frequency is provided through higher rankings of predicted probabilities.
After ranking the customers, the user will have a clear perspective on the clients’ risk level
by considering a risk-based segmentation w.r.t. engagement levels and marketing-affinity.

Figure 6.6 illustrates a possible customer segmentation with respect to predicted churn
probability and profitability provided by the customers. The first segment, identifying
top priority clients, includes clients with the highest predicted churn probability and very
high profitability. These clients are considered of the highest priority as they represent

Figure 6.6: Customer Segmented Targeted Retention

CHAPTER 6. CASE STUDY: DISCUSSION 118

the most vital risk exposure by the identified at-churn-risk customers and ensure high
profitability for the company if proactive measures are taken against their churn intention.
The clients in this segment can be further partitioned, for instance by considering their
marketing-affinity, demographic aspects, or behaviour history. The segmentation can
be made more actionable by identifying the respective consequences of targeting the
individual created groups.

Cost-Sensitive Evaluation

The approach of cost-sensitive learning and evaluation, already introduced in Section 3.2.2,
can help improve a majority-class-biased model. Trying to minimize the overall costs or
maximizing revenues as a business objective, the user can assign a higher misclassification
cost for the minority class. These can be applied by using the exact costs provided by
marketing teams exerted for the measures taken in customer retention along with the costs
of customer acquisition. Another manner would involve considering the costs and benefits
of respective classification post-training. For illustration, we consider a costs-savings
analysis for the use case on hand post-training. If the insurance company engaged every
single customer or even a high unnecessary number due to a high False Positives count, the
costs would be too high. Nevertheless, the higher costs induced by customer acquisition
should be taken into consideration. Focusing retention efforts on a small valuable subset
of high-risk customers would, therefore, be a more effective strategy.
An approximation of actual business impact can be achieved by following the analysis
of two of the most promising models generated, namely random forest and gradient
boosting. As mentioned in the Results Section 5, the choice of a cutoff score for the
confusion matrix can lead to better results according to the desired business objective.
Assuming that we want to achieve one particular business goal, for instance cost-saving,
we calculate the resulting costs for each threshold and choose the cutoff with minimum
costs. For this purpose, we state the following assumptions with regard to costs as implied
by experts at ERGO. The cost of retention strategies used per customer is assumed to be
approximately AC15, implying a TP and FP cost of AC15. For each churn-prone client that
we don’t approach due to a FN, we assume the client leaves and we have to acquire one
new client at AC30 cost. Assuming that customer acquisition costs are twice as much as
customer retention measures, we consider the following costs for threshold optimisation:

Observing the curves in Figure 6.7 leads to optimal cutoff and savings findings. The curve
demonstrates that the random forest model achieves the lowest costs at the 0.54 cutoff,
while gradient boosting reaches the optimal cost savings at the 0.44 cutoff. The random
forest model would imply total costs of AC57,705 versus slightly lower AC57,375 costs if the

CHAPTER 6. CASE STUDY: DISCUSSION 119

Figure 6.7: Cutoff Optimisation w.r.t. Retention & Acquisition Costs

gradient boosting model is used and all the TP & FP identified customers are approached.
Considering the use of the default 0.5 cutoff would lead to total costs of AC57,780 when
random forest is used and AC57,630, in case of gradient boosting. These imply respective
minor cost savings but still provide optimal results w.r.t cost-sensitivity.

This example illustrates the added value of optimizing the generated machine learning
models, by determining the optimal cutoff score for higher Precision, as well as a beneficial
impact on the business. For accurate computations, we suggest an exact identification of
costs and benefits to reach the more business-optimised churn prediction models.

6.3.2 Interpretable Machine Learning

Understanding why the machine learning models classify churners as they do can drive
the marketing and analytics teams to achieve the desired profitability and customer
satisfaction goals. As observed in Section 6.2, depending on the business objective,
either accuracy or interpretability can be considered a priority. In some applications, the
transparency provided by interpretable-models such as logistic regression is preferred over
accuracy. While the random forest was shown to be the champion model w.r.t. our research
goal, marketing teams can only extract the important contributing drivers, but not their
effect on clients’ churn behaviour. Like many other domains, interpretable models have
thus gained importance in recent years in the churn prediction research. Newly introduced
methods can help to overcome the obstacles of black-box models and simultaneously make
use of the suggested highly sensitive models.
Considering that ERGO’s suggested models do not include an interpretability perspective,
we consider this a new important post-modelling orientation and a customer apprehension
analysis that we can contribute to.

CHAPTER 6. CASE STUDY: DISCUSSION 120

Interpretability methods can be categorised through several criteria. First of all,
the methods can be classified into intrinsic and post-hoc interpretability categories
(see Molnar (2019), p. 16). Interpretability is achieved by using simple structured
models (intrinsic) or applying a model analysis post-training (post-hoc). Similarly,
one can categorize the techniques into model-specific and model-agnostic procedures.
Model-specific methods are only applicable to a specific machine learning class, while
model-agnostic methods are post-hoc techniques practical for any machine learning model
(see Molnar (2019), p. 17).

We consider two further general categories, namely global and local interpretability
categories (see Molnar (2019), pp. 17-19). While global models use all observations in
the dataset to explain the input-output relationship, local methods focus on explaining
the prediction of a single instance. Sometimes, global interpretability does not give specific
enough insights; thus, we apply the local methods examining specific instances or a group
of predictions, i.e. clusters.

In this section, we give an insight into the newly implemented model-agnostic methods and
consider a model-specific solution. Some of the model-agnostic methods were conducted
for the final candidate models to help analyse the interpretability of the suggested
black-box models such as random forest, neural networks, and gradient boosting. For
the implementation of model interpretability techniques, the newest tool from SAS for
machine learning, namely SAS Viya, is used. Similar to SEM, remarks are included in
Appendix A.2.3 to explain the respective implementation steps and procedures.

Partial Dependence Plots

One of the commonly utilised global interpretability methods to understand contributing
churn drivers is the partial dependence plot. The partial dependence function uses all
instances for plot generation and therefore demonstrates the global association between
a feature and the target. The partial dependence plot displays the marginal effect
on the classification result of the regarded trained model, i.e. the partial dependence
of predictions on those observed features (see Molnar (2019), p. 81). The plot can
reveal if the underlying association is linear, a step-function, or a more complex
relationship. This reveals the direction of dependency, i.e. whether we should expect
increasing, decreasing, or neutral effects when the value of an input variable changes.
In classification settings, the plot displays the probability of the target occurring for
different values of the considered feature. We state the definition in the binary case as

CHAPTER 6. CASE STUDY: DISCUSSION 121

follows (see Hastie, Tibshirani, and Friedman (2001), p. 370):

fk(xj) = log pk(xj)−
1
C

C∑
c=1

log pc(xj).

For each class c, the log of predicted probability is computed for the separate
k ∈ {1, . . . , C} created models and the respective predicted probabilities of each. Like
the Logit model, the plots can reveal the effect on log-odds of that class occurrence by
the considered feature as the scale is similar to that of Logit. For illustration, Figure 6.8
displays the partial dependence plots of two features in the gradient boosting and random
forest candidate models chosen in Section 6.1.

(a) PDP No Mon Last Churn (b) PDP No Churn Contr 1Y

Figure 6.8: Partial Dependence Plots For GB and RF Models

The partial dependence plots in Figure 6.8 illustrate interpretability. Figure 6.8(a) and
6.8(b) show two plots, the dark-red belonging to the gradient boosting model and the
blue plots to the random forest model. Both plots in Figure 6.8(a) show a similar sharp
decreasing interaction for an increasing number of months since the last churn occurred.
The plots also show neutral effects for a higher number of months. In contrast, the partial
dependence plot of the number of churned contracts in the past year first shows a sharply
increasing interaction, followed by a decrease and neutralisation. This can be attributed
to the fact that there are only very few instances with more than 13 churned contracts
in the past year. It is important to mention that generally one has to be careful which
feature ranges are considered, as for some, there might be no available data (such as here,
≥ 14 churned contracts). It is intuitive that with increasing units of churned contracts, the
customer is more likely to churn. Likewise, recent churners are more likely to churn other
active contracts, than customers with the last occurring churn more than 15-20 months
ago.

CHAPTER 6. CASE STUDY: DISCUSSION 122

LIME

We consider the LIME (Local Interpretable Model Agnostic Explanations) method
in comparison to the above demonstrated global partial dependence plots. This local
surrogate model is used to explain individual predictions of the respective black-box
model, in contrast to the global models considering all instances. LIME does this by merely
explaining these through fitting a linear regression to the original classifier’s features using
the predicted probabilities as the response variable. This is done by applying the following
steps (see Ribeiro, Singh, and Guestrin (2016)(a)):

1. Select instance x for further investigation and consider it as the centroid of a cluster.

2. Generate more sample points around this instance by using the standard deviation
from the overall training set. Alternatively, exponential smoothing kernels can be
used to define the neighbourhood (see Ribeiro, Singh, and Guestrin (2016)(a)).

3. Enter the synthetic instances into the black-box model and create a new response
variable using the computed predicted probabilities.

4. Weigh the new sample points w.r.t. their distance to the observed instance, i.e. by
the weight factor w = e

x−si
σ for σ a scaling factor.

5. Fit a LASSO model to the new labelled dataset to select the important features.

6. Use the selected features by the LASSO model to fit a linear regression model
providing interpretability.

Implementing these steps in SAS Viya directly delivered the following local model
statistics for two randomly chosen instances using the suggested gradient boosting model:
As visible in Table 6.3 the local models fitted to each of the clusters only deviate by

Statistic Centroid 1 Centroid 2
Adj. R2 0.709 0.709
ASE 9e−05 9e−05

R2 0.709 0.709
AIC -82685 -82686

Table 6.3: Classification Statistics - Local Surrogate Model

amounts captured in more than three digits. Both models suggest an R2 of 0.709 for
the linear regression model which is considered a strong effect size. Moreover, both
instances are assigned to a low-risk category as the predicted churn probability is only

CHAPTER 6. CASE STUDY: DISCUSSION 123

0.084. Considering the first observed instance, Figure 6.9 shows the LIME explanations
of the prediction. The coefficients in the LIME explanation show that for this instance all
considered feature variables reduce the risk of churn, which is in line with the customer
being assigned a low-risk predicted probability. Looking at the specific feature values for
this observation can give the analysts intuition on how to create the customer profiling.

An alternative model-specific solution is the comparison of logistic regression and random
forest customer scoring post-modelling. In efforts of making use of a simple model like
logistic regression, one further approach we implemented is the comparison of scoring
distributions. With respect to the business objective, for example we assumed that a
considerable percentage of at-risk customers identification is sufficient, and compared the
1000 top-ranked (highest predicted churn probabilities) clients of both random forest
and logistic regression models. Subsequently, we deducted segments of the top-ranked
clients of each and checked if a high proportion is present in both models. Conformity of
70% showed that using a logistic regression model will help us identify 70% of the 1000
top-ranked clients by the random forest model. Considering aspects like marketing-affinity
and retention response can further determine if these clients are worth approaching.

It is important to note that the methods introduced in this section provide a first insight
into the black-box models, but have some drawbacks and limitations:
Partial dependence plots, for instance are easy to implement, displaying only the average
marginal effects, but allowing heterogeneous effects to possibly stay undiscovered by
assuming the features are independent (see Molnar (2019), p. 85). While the idea of
LIME is also reasonable and practical as it is model-agnostic, one concern is the possible
instability of the explanations, as two close observations could provide substantially
different explanations (see Ribeiro, Singh, and Guestrin (2016)(b)), misleading the user.

Figure 6.9: Estimates - Local Surrogate Model

Despite the possible drawbacks, the above findings imply that extending the models by
an interpretability analysis could enhance customer understanding and help derive more

CHAPTER 6. CASE STUDY: DISCUSSION 124

targeted measures. We, therefore, recommend extending the existing churn prediction
model by such explainable methods.

6.3.3 Research Limitations

Limitations of the study, that the insurance company and users should be aware of, are
shortly described below.

The findings concluded for the household insurance category do not automatically transfer
to other insurance categories. Instead of predicting if an observed client will churn in any
of the categories collectively, this study uses a dataset labelled by a household churn
target. Thus, the models are mainly focused on predicting household insurance churn.
The insurance company can, however, easily embed the modelling techniques to the whole
insurance categories range by generating a merged dataset for all segments jointly. It is,
however, important to note that difficulties in modelling will rise when customers only hold
one active insurance contract or when trying to extract respectively suitable measures.

A further considerable limitation is missing information about past performed
model-specified actions, implying how approachable the customers are. Not incorporating
previously taken actions into the predictive model, hence recommending possibly the
same actions and measures for the same customers once more in the following model
implementation, can lead to costly consequences. Taking into account that reducing the
number of taken actions per client is more effective and profitable, these clients should
be eliminated in the post-modelling strategy or be addressed with new actions. This
limitation rises because no particular model-extracted actions have been taken by ERGO
in the past years to be included in our model generation.

The suggested churn prediction model is mainly based on historical data conveying
comparable traits between the present and previous customers. According to the
equivalence of the datasets’ features, customers whose churn probability corresponds to
clients whose churn behaviour is now known, are assigned a similar classification. The
sole reliance on the assumption that previous clients’ data corresponds to future churn
behaviour can be disadvantageous when seasonal effects, extreme events, or deviating
human behaviour occur.

Finally, the sutdy does not identify the optimal time window to take proactive actions
against potential churners. That is, the model does not incorporate when to best apply
the measures, e.g. by contacting the customer. If the model suggests a post-modelling
action, the only guideline given is to reach out to the client as fast as the marketeers can
to effectively guarantee the benefits are received right after costs are generated.

Chapter 7

Conclusion

Customer retention with the help of customer churn prediction remains a key business
objective for all industries and is known to be a more valuable strategy than customer
acquisition. Substantial challenges faced during churn prediction include class imbalance,
black-box interpretability, and model specification. While a wide range of literature is
already approaching these topics, companies are still in search of better models providing
a combined offer of customer valuation, class imbalance, and high predictive power.

In this study, we developed a model to predict churn for our industry partner, ERGO,
using well-known machine learning models. The following key findings emerged throughout
our analysis of model results.
Classic regression models are outperformed by more sophisticated models such as random
forest and gradient boosting. We found some encouraging results when we fine-tune the
hyperparameters of the respective models and provide insights into the interpretability.

The creation of a highly precise prediction model on the imbalanced dataset was handled
by applying random under-sampling along the standard data-mining process, which
showed increased predictive accuracy and Cumulative Lift. Under-sampling the majority
class worked well by providing models with up to 67% Event Precision on the test set.

The models with intrinsic interpretability, such as logistic regression or LASSO, did
provide an insight into why customers churn but did not offer the most precise models.
Hence, we conclude that the model with moderately high Precision and interpretability is
the logistic regression model via stepwise selection. New solutions allowed higher predictive
models to be implemented with an insight into churn reasons. Partial dependence plots
and LIME provided the alternative of implementing an interpretable gradient boosting
model instead of the less sensitive logistic regression model.

Key identified churn drivers were churn-behaviour variables such as the number of months

125

CHAPTER 7. CONCLUSION 126

since the client’s last churn, the number of churned contracts in the last 6 months, or 1
year, the last cross-selling category churned and if the client churned a contract in the
last 3 months. Additionally, agent related features were demonstrated to have effects
such as the agent’s change of location, responsibility change, or proportion of supervised
clients relative to other agents. Last but not least, some basic client data was shown to
be informative such as age, high school diploma, and rental score.

Random forest delivered the overall best performance, gradient boosting the most robust,
and logistic regression the most interpretable results. The drawbacks of each model
are addressed by considering cost-saving analysis and interpretability methods. It was
concluded that cost and benefit analysis is essential to predictive churn analytics and
should not be overlooked.

Apart from the concluded findings and mentioned research limitations, several interesting
perspectives for future research have emerged. The aim of future work should be
to generalize further the theoretical analysis of highly predictive models suitable for
imbalanced labelled datasets and apply them for churn prediction frameworks.
A primary takeaway from the models presented is the generalisability to the entire
insurance type range. Any service-based company can gain an understanding and insight
into the proposed actions, and predictive statistics by a similar model suggested. The
analysis provided is thus relevant and can be extended to other organisations, products,
and sectors.
Given that machine learning models often only rely on historical data, memorising a
cause-and-effect structure, black swan events are not incorporated when they occur. We
want to tailor and stay ahead of such infrequent events.
Churn prediction modelling could be extended with a focus on a time dimension.
Databases can be enriched to include time-series data improving the weights of events and
target labelling, as well as predicting when the user would churn, which can consequently
provide an investment time window optimization.
Finally, taking ethical considerations into account, compliance with regulations for
data protection and privacy concerns was considered in this research as the clients’
sensitive data is analysed in a pseudonymous form. However, along with increasingly
tight regulations, there is a rise in the need to quantify privacy and define privacy
mathematically. While many heuristics were implemented for privacy perseverance such
as anonymization (removal of identifiable attributes), they were proven to fail by all the
linkage attacks conducted, calling for a need for a robust privacy definition. Some advances
have been made by defining the rigorous mathematical definition ‘differential privacy’ (see
Ji, Lipton, and Elkan (2014)), leaving space for more theoretical analysis of learning with
differential privacy and its suitability for churn prediction frameworks.

Bibliography

Adams, Ryan P. (2018). Linear Classification with Logistic Regression. Tech. rep.
Princeton University, pp. 1–9.

Akosa, Josephine S. (2017). “Predictive Accuracy : A Misleading Performance Measure
for Highly Imbalanced Data”. url: https : / / support . sas . com / resources / papers /
proceedings17/0942-2017.pdf.

Arunava. (2018). Sigmoid Function. url: https://towardsdatascience.com/derivative-of-
the-sigmoid-function-536880cf918e.

Bahety, Anand. (2014). “Extension and Evaluation of ID3–Decision Tree Algorithm”. In:
pp. 1–8. url: http://ssltest.cs.umd.edu/Grad/scholarlypapers/papers/Bahety.pdf.

Batista, Gustavo E.A.P.A, Prati, Ronaldo C., and Monard, Maria Carolina. (2004). “A
study of the behavior of several methods for balancing machine learning training data”.
In: ACM SIGKDD Explorations Newsletter, pp. 1–20. issn: 19310145. doi: 10.1145/
1007730.1007735.

Bellman, Richard E. (1961). Adaptive control processes: a guided tour. Princeton, New
Jersey.: Princeton University Press.

Breiman, Leo. (1997). Prediction Games And Arcing Algorithms. Tech. rep. Berkley, CA.:
Statistics Department, University of California, pp. 1–33.

— (2001). “Random Forest”. In: Machine Learning 45.1, pp. 5–32. issn: 1098-6596. doi:
10.1017/CBO9781107415324.004. arXiv: arXiv:1011.1669v3.

Brownlee, Jason. (2020). (URL). url: https ://machinelearningmastery.com/tour- of -
evaluation-metrics-for-imbalanced-classification/.

Burez, J. and Van den Poel, D. (2009). “Handling class imbalance in customer churn
prediction”. In: Expert Systems with Applications 36, pp. 4626–4636. issn: 09574174.
doi: 10.1016/j.eswa.2008.05.027. url: http://dx.doi.org/10.1016/j.eswa.2008.05.027.

Chauhan, Nagesh Singh. (2020). Decision Tree. url: https://www.kdnuggets.com/2020/
01/decision-tree-algorithm-explained.html.

Chawla, Nitesh V. et al. (2002). “SMOTE: Synthetic Minority Over-sampling Technique”.
In: Journal of Artificial Intelligence Research 16, pp. 321–357. issn: 10769757. doi:

127

https://support.sas.com/resources/papers/proceedings17/0942-2017.pdf
https://support.sas.com/resources/papers/proceedings17/0942-2017.pdf
https://towardsdatascience.com/derivative-of-the-sigmoid-function-536880cf918e
https://towardsdatascience.com/derivative-of-the-sigmoid-function-536880cf918e
http://ssltest.cs.umd.edu/Grad/scholarlypapers/papers/Bahety.pdf
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1017/CBO9781107415324.004
https://arxiv.org/abs/arXiv:1011.1669v3
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
https://doi.org/10.1016/j.eswa.2008.05.027
http://dx.doi.org/10.1016/j.eswa.2008.05.027
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html
https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html

BIBLIOGRAPHY 128

10.1613/jair.953. arXiv: 1106.1813. url: https://arxiv.org/pdf/1106.1813.pdf{\%
}0Ahttp://www.snopes.com/horrors/insects/telamonia.asp.

Diestel, Reinhard. (2016). Graph Theory. Springer, pp. 1–274. isbn: 978-1-4612-9969-1.
doi: 10.1007/978-1-4612-9967-7. arXiv: arXiv:1011.1669v3.

Fahlman, Scott E. (1988). An empirical study of learning speed in back-propagation
networks. Tech. rep. CMU-CS-88-162. Pittsburgh, USA: Carnegie Melon University,
School of Computer Science, pp. 1–19. url: http : // scholar . google . com/scholar ?
cluster=3383018529262918047{\&}hl=en.

Famili, A. et al. (1997). “Data Preprocessing and Intelligent Data”. In: Intelligent Data
Analysis Journal.

Frank, Vanden Berghen. (2003). Classification Trees : C4 . 5. Tech. rep. Universit Libre
de Bruxelles, pp. 1–5.

Freund, Yoav and Shapire, Robert E. (1999). “A short introduction to Boosting”. In:
Journal of Japanese Society for Artificial Intelligence 14.5, pp. 771–780. arXiv: 1508.
01136. url: http://arxiv.org/abs/1508.01136.

Friedman, Jerome H. (2001). Greedy Function Approximation: A Gradient Boosting
Machine. Tech. rep. Stanford, CA: Sequoia Hall, Stanford University, pp. 1–39.

Gareth, James et al. (2013). Introduction to Statistical Learning with
Applications in R. Springer, pp. 1–426. isbn: 9781681735054. doi: 10 . 2200 /
S00899ED1V01Y201902MAS024.

Gour, Vishal et al. (2010). “Improve Performance of Extract, Transform and Load ETL
in Data Warehouse”. In: International Journal on Computer Science & Engineering
2.3, pp. 786–789. issn: 09753397.

Hastie, Trevor, Tibshirani, Robert, and Friedman, Jerome. (2001). The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer,
pp. 1–745. isbn: 9780387848570. doi: 10.1007/b94608. url: http://www.springerlink.
com/index/D7X7KX6772HQ2135.pdf.

He, Haibo and Ma, Yunqian. (2013). Imbalanced Learning. John Wiley & Sons, Inc.,
pp. 1–210. doi: 10.1002/9781118025604.ch3.

Hossin, Mohammad and Sulaiman, MN. (2015). “A Review on Evaluation Metrics for Data
Classification Evaluations”. In: International Journal of Data Mining & Knowledge
Management Process 5.2, pp. 01–11. issn: 2231007X. doi: 10.5121/ijdkp.2015.5201.

Hssina, Badr et al. (2014). “A comparative study of decision tree ID3 and C4.5”. In:
International Journal of Advanced Computer Science and Applications 4.2, pp. 13–19.
issn: 2158107X. doi: 10.14569/specialissue.2014.040203.

Hutter, Frank, Kotthoff, Lars, and Vanschoren, Joaquin. (2019). Automated Machine
Learning. Vol. 498. Springer, pp. 233–317. isbn: 9783319009599. doi: 10.1007/978-3-
319-00960-5 6.

https://doi.org/10.1613/jair.953
https://arxiv.org/abs/1106.1813
https://arxiv.org/pdf/1106.1813.pdf{\%}0Ahttp://www.snopes.com/horrors/insects/telamonia.asp
https://arxiv.org/pdf/1106.1813.pdf{\%}0Ahttp://www.snopes.com/horrors/insects/telamonia.asp
https://doi.org/10.1007/978-1-4612-9967-7
https://arxiv.org/abs/arXiv:1011.1669v3
http://scholar.google.com/scholar?cluster=3383018529262918047{\&}hl=en
http://scholar.google.com/scholar?cluster=3383018529262918047{\&}hl=en
https://arxiv.org/abs/1508.01136
https://arxiv.org/abs/1508.01136
http://arxiv.org/abs/1508.01136
https://doi.org/10.2200/S00899ED1V01Y201902MAS024
https://doi.org/10.2200/S00899ED1V01Y201902MAS024
https://doi.org/10.1007/b94608
http://www.springerlink.com/index/D7X7KX6772HQ2135.pdf
http://www.springerlink.com/index/D7X7KX6772HQ2135.pdf
https://doi.org/10.1002/9781118025604.ch3
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.14569/specialissue.2014.040203
https://doi.org/10.1007/978-3-319-00960-5_6
https://doi.org/10.1007/978-3-319-00960-5_6

BIBLIOGRAPHY 129

Ji, Zhanglong, Lipton, Zachary C., and Elkan, Charles. (2014). “Differential Privacy and
Machine Learning: a Survey and Review”. In: pp. 1–30. arXiv: 1412.7584. url: http:
//arxiv.org/abs/1412.7584.

Johansson, Erik M, Dowla, Farid U, and Goodman, Dennis M. (1991). “Backpropogation
Learning For Multilayer Feed-Forward Neural Networks Using The Conjugate
Gradient Method”. In: International Journal of Neural Systems 2.4, pp. 291–301.

Kass, G. V. (1980). “An Exploratory Technique for Investigating Large Quantities of
Categorical Data”. In: ournal of the Royal Statistical Society: Series C (Applied
Statistics 29.2, pp. 119–127. issn: 00359254. doi: 10.2307/2986296.

Kaya, Erdem et al. (2018). “Behavioral attributes and financial churn prediction”. In:
EPJ Data Science 7.1. issn: 21931127. doi: 10.1140/epjds/s13688-018-0165-5. url:
http://dx.doi.org/10.1140/epjds/s13688-018-0165-5.

Kearns, Michael and Valiant, Leslie. (1994). “Cryptographic Limitations on Learning
Boolean Formulae and Finite Automata”. In: Journal of the ACM (JACM) 41.1,
pp. 67–95. issn: 1557735X. doi: 10.1145/174644.174647.

Littler, Sarah. (2020). Cumulative Charts. url: https ://select - statistics .co .uk/blog/
cumulative - gains - and - lift - curves - measuring - the - performance - of - a - marketing -
campaign/.

McCulloch, Warren S. and Pitts, Walter H. (1943). “A logical calculus of the ideas
immanent in nervous activity”. In: The Bulletin of Mathematical Biophysics 5,
pp. 115–133.

Molnar, Christoph. (2019). Interpretable Machine Learning. A Guide for Making Black
Box Models Explainable. Pp. 1–247. url: https://christophm.github.io/interpretable-
ml-book.

Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective, pp. 1–1067.
isbn: 9780262018029. doi: 10.1007/978-94-011-3532-0 2. url: https://mitpress.mit.
edu/books/machine-learning-1.

Nocedal, Jorge. (1980). “Updating Quasi-Newton Matrices with Limited Storage”. In:
Mathematics of Computation 35.151, pp. 773–782. issn: 00255718. doi: 10 . 2307 /
2006193.

Probst, Philipp, Boulesteix, Anne Laure, and Bischl, Bernd. (2019). “Tunability:
Importance of hyperparameters of machine learning algorithms”. In: Journal of
Machine Learning Research 20, pp. 1–22. issn: 15337928. arXiv: 1802.09596.

Quinlan, J. Ross. (1986). “Induction of decision trees”. In: Machine Learning 1.1,
pp. 81–106. issn: 0885-6125. doi: 10.1007/bf00116251.

— (1987). “Simplifying decision trees”. In: International Journal of Man-Machine Studies
27.3, pp. 221–234. issn: 10715819. doi: 10.1006/ijhc.1987.0321.

https://arxiv.org/abs/1412.7584
http://arxiv.org/abs/1412.7584
http://arxiv.org/abs/1412.7584
https://doi.org/10.2307/2986296
https://doi.org/10.1140/epjds/s13688-018-0165-5
http://dx.doi.org/10.1140/epjds/s13688-018-0165-5
https://doi.org/10.1145/174644.174647
https://select-statistics.co.uk/blog/cumulative-gains-and-lift-curves-measuring-the-performance-of-a-marketing-campaign/
https://select-statistics.co.uk/blog/cumulative-gains-and-lift-curves-measuring-the-performance-of-a-marketing-campaign/
https://select-statistics.co.uk/blog/cumulative-gains-and-lift-curves-measuring-the-performance-of-a-marketing-campaign/
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1007/978-94-011-3532-0_2
https://mitpress.mit.edu/books/machine-learning-1
https://mitpress.mit.edu/books/machine-learning-1
https://doi.org/10.2307/2006193
https://doi.org/10.2307/2006193
https://arxiv.org/abs/1802.09596
https://doi.org/10.1007/bf00116251
https://doi.org/10.1006/ijhc.1987.0321

BIBLIOGRAPHY 130

Rahman, Md Geaur and Islam, Md Zahidul. (2011). “A decision tree-based missing
value imputation technique for data pre-processing”. In: Proceedings of the Ninth
Australasian Data Mining Conference-Volume 121, pp. 41–50. isbn: 9781921770029.

Ranganathan, Priya, Pramesh, C.S., and Aggarwal, Rakesh. (2018). “Common pitfalls
in statistical analysis: Logistic regression”. In: Perspectives in Clinical Research 8.3,
pp. 148–151. doi: 10.4103/picr.PICR. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC6176693/?report=printable.

Ribeiro, Marco Tulio, Singh, Sameer, and Guestrin, Carlos. (2016)(a). “Model-Agnostic
Interpretability of Machine Learning”. In: Whi. arXiv: 1606.05386. url: http://arxiv.
org/abs/1606.05386.

— (2016)(b). “Why Should I Trust You? Explaining the Predictions of Any Classifier”.
In: arXiv: 1710.10720. url: http://arxiv.org/abs/1710.10720.

Rokach, Lior and Maimon, Oded. (2015). Data Mining with Decision Trees: Theory and
Applications. 2nd Edition. Vol. 81. World Scientific Publishing Co. Pte. Ltd., pp. 1–305.
isbn: 964-7445-88-1.

Rosenblatt, Frank. (1961). Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Washington, DC: Spartan Books, pp. 1–621. doi: 10.2307/2312103.

Rüping, Stephan. (2006). “Learning Interpretable Models”. PhD thesis. Universit¨at
Dortmund, p. 209. doi: 10 . 1086 / 508674. url: http : / / www . stefan - rueping . de /
publications/rueping{\ }2006b.pdf.

SAS Institute Inc. (2012). SAS Enterprise Miner and SAS Text Miner Procedures
Reference for SAS 9.2.

— (2017). “SAS Visual Analytics 8.1: Working with SAS Visual Data Mining and
Machine Learning”. In: pp. 1–22.

Shah, Jainam D., Shah, Fenil D., and Rahevar, Mrugendra. (2018). “Customer Churn
Prediction Analysis”. In: International Journal of Computer Applications 182.29,
pp. 15–17. doi: 10.5120/ijca2018918145.

Shalev-Shwartz, Shai and Ben-David, Shai. (2014). Understanding Machine Learning:
From Theory to Algorithms. New York, USA: Cambridge University Press, pp. 1–449.
isbn: 9781107298019. doi: 10.1017/CBO9781107298019.

Shmueli, Galit. (2019). “Lift Up and Act! Classifier Performance in Resource-Constrained
Applications”. In: arXiv: 1906.03374. url: http://arxiv.org/abs/1906.03374.

Vafeiadis, T. et al. (2015). “A comparison of machine learning techniques for customer
churn prediction”. In: Simulation Modelling Practice and Theory 55, pp. 1–9. issn:
1569190X. doi: 10.1016/j.simpat.2015.03.003. url: http://dx.doi.org/10.1016/j.
simpat.2015.03.003.

https://doi.org/10.4103/picr.PICR
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176693/?report=printable
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176693/?report=printable
https://arxiv.org/abs/1606.05386
http://arxiv.org/abs/1606.05386
http://arxiv.org/abs/1606.05386
https://arxiv.org/abs/1710.10720
http://arxiv.org/abs/1710.10720
https://doi.org/10.2307/2312103
https://doi.org/10.1086/508674
http://www.stefan-rueping.de/publications/rueping{_}2006b.pdf
http://www.stefan-rueping.de/publications/rueping{_}2006b.pdf
https://doi.org/10.5120/ijca2018918145
https://doi.org/10.1017/CBO9781107298019
https://arxiv.org/abs/1906.03374
http://arxiv.org/abs/1906.03374
https://doi.org/10.1016/j.simpat.2015.03.003
http://dx.doi.org/10.1016/j.simpat.2015.03.003
http://dx.doi.org/10.1016/j.simpat.2015.03.003

BIBLIOGRAPHY 131

Wu, Shaomin and Flach, Peter A. (2002). “Feature selection with labelled and unlabelled
data”. In: Proceedings of ECML/PKDD’02 Workshop on Integration and Collaboration
Aspects of Data Mining, Decision Support and Meta-Learning, pp. 156–167.

Zhang, Jue and Chen, Li. (2019). “Clustering-based undersampling with random over
sampling examples and support vector machine for imbalanced classification of breast
cancer diagnosis”. In: Computer Assisted Surgery 24.sup2. PMID: 31403330, pp. 62–72.
doi: 10.1080/24699322.2019.1649074. eprint: https://doi.org/10.1080/24699322.2019.
1649074. url: https://doi.org/10.1080/24699322.2019.1649074.

https://doi.org/10.1080/24699322.2019.1649074
https://doi.org/10.1080/24699322.2019.1649074
https://doi.org/10.1080/24699322.2019.1649074
https://doi.org/10.1080/24699322.2019.1649074

Appendix A

Supplementary Information

A.1 Proofs

A.1.1 Chapter 3.1.1

Proof (Convexity of Loss Function):

According to the second order condition; a function f which is twice continuously
differentiable is convex ⇐⇒ its Hessian matrix is positive semi-definite, i.e.
∀z : z′∇2

xf(x)z ≥ 0.
We take a look at the gradient of the first part of the loss function:

∇
b̄

[− log(h
b̄

(x̄i))] = ∇
b̄

[log(1 + e−〈b̄,x̄i〉)]

=
(
−e〈b̄,x̄i〉

1 + e−〈b̄,x̄i〉

)
x̄i =

(
1

1 + e−〈b̄,x̄i〉
− 1

)
x̄i = (h

b̄
(x̄i)− 1)x̄i.

And now the hessian:

∇
b̄

[Grad] = ∇
b̄

[∇
b̄

[− log(h
b̄

(x̄i))]] = ∇
b̄

((h
b̄

(x)− 1)x̄i) = h
b̄

(x̄i)(1− hb̄(x̄i))x̄ix̄i′.

Hence z′[h
b̄

(x̄i)(1 − hb̄(x̄i))x̄ix̄i>]z = h
b̄

(x̄i)(1 − hb̄(x̄i))(x̄i>z)2 ≥ 0. We analyse the
gradient of the second part of the loss function:

∇
b̄

[− log(1− h
b̄

(x̄i))] = ∇
b̄

[(〈b̄, x̄i〉+ log(1 + e−〈b̄,x̄i〉))]

= x̄i +∇
b̄

[log(1 + e−〈b̄,x̄i〉)].

∇
b̄

[Grad] = ∇
b̄

[∇
b̄

[− log(h
b̄

(x̄i))]] = ∇
b̄

[x̄i+∇b̄[log(1+e−〈b̄,x̄i〉)] = ∇2
b̄

[log(1+e−〈b̄,x̄i〉)],

132

APPENDIX A. SUPPLEMENTARY INFORMATION 133

which was proven to be semi-definite above. Hence, the statement is proven since the
positive linear combination of convex functions is convex.

A.1.2 Chapter 3.2.3

Proof (Equivalence of constrained problem for LASSO and Ridge regression):
The proof of constrained and unconstrained form equivalence can be achieved by showing
that b̄ values of each are equal. Given the general optimisation problem

minx∈Rnf(x) s.t. hi(x) ≤ 0, i = 1, . . . ,m,

the first and second KKT conditions needed for the equivalence proof are

∂f(x) +
m∑
i=1

ui∂hi(x) = 0 (Stationarity), (A.1)

uihi(x) = 0 ∀i ∈ bmc (Complementarity). (A.2)

Knowing that the KKT method minimises functions subject to inequality, we replace the
constrained form by the following equivalent unconstrained form :

min
b̄

N∑
i=1

[yi(〈b̄, x̄i〉)− log(1 + exp(〈b̄, x̄i〉))]− θ(
M∑
j=1

bj
2 − t). (A.3)

By showing that λ = θ, we show the equivalence of b̄ values.

The stationary condition of the KKT method (see Equation (A.1)) gives us the
information that the gradient of the Lagrangian equals 0 with respect to b̄.
We can show that the differentiation in both forms depends on the same terms by
considering the extended form of Equation (A.3), namely:

min
b̄

N∑
i=1

[yi(〈b̄, x̄i〉)− log(1 + exp(〈b̄, x̄i〉))]− θ(
M∑
j=1

bj
2) + θ(t).

That is the first two terms depending on b̄ are equivalent to the terms of the unconstrained
form and are those relevant for the gradient.

Secondly, the complementarity condition of KKT (see Equation (A.2)) provides the
following statement:

θ(
M∑
j=1

bj
2 − t) = 0. (A.4)

Equation (A.4) indicates that b̄ minimising the unconstrained form must be t = ∑M
j=1 bj

2.
The constrained form holds as the equivalence is proven.

The exact same proof steps hold for the LASSO method by replacing the norm by∑M
j=1|bj|.

APPENDIX A. SUPPLEMENTARY INFORMATION 134

A.2 Case Study

A.2.1 Data Description

Figure A.1: Extended Features’ Exploratory Analysis

APPENDIX A. SUPPLEMENTARY INFORMATION 135

A.2.2 Dimensionality Reduction

LASSO Selection
CL Doc Reas A1
Churn 3Mon
Churn 3Mon No CI
UP ZKHASUM S 1
Kgs12 Prop Hs
AG Contr Prop A Beg Dat 1Y
HP BAK JAHR A 1
ALLE ROLLE VERLPERS ANZ
Churn 3Mon HH
Loc Chg 3Mon
KA
VM AEND VM ZUSTAE VERTR 1J
AG Contr Prop A End Dat 1Y
Chur 3Mon AI
HP ORG SL A1
AG Chg Resp OE Pnr 1Y
SO
Churn 3Mon HA
Delta No Cat 3Mon
Churn Last CS Cat

Table A.1: LASSO - Selected Input Variables

APPENDIX A. SUPPLEMENTARY INFORMATION 136

Va
ria

bl
e

A
bb

re
vi

at
io

n
M

ea
ni

ng
A

ct
iv

e
Pa

ss
iv

e
24

M
on

H
H

A
ct

iv
e

or
Pa

ss
iv

e
ho

us
eh

ol
d

la
st

24
m

on
th

s.
A

ge
A

ge
A

G
C

hg
R

es
p

O
E

Pn
r

1Y
C

ha
ng

e
of

re
sp

on
sib

le
ag

en
t

in
la

st
ye

ar
.

A
G

C
on

tr
Pr

op
A

Be
g

D
at

1Y
A

ge
nt

’s
co

nt
ra

ct
s

pr
op

or
tio

n
vs

.o
th

er
ag

en
t

w
.r.

t.
in

iti
al

da
te

w
ith

in
a

ye
ar

.
A

G
C

on
tr

Pr
op

A
En

d
D

at
1Y

A
ge

nt
’s

co
nt

ra
ct

s
pr

op
or

tio
n

vs
.o

th
er

ag
en

ts
w

.r.
t.

en
d

da
te

w
ith

in
a

ye
ar

.
A

G
N

o
C

on
tr

A
ge

nt
’s

nu
m

be
r

of
re

sp
.c

on
tr

ac
ts

.
A

G
N

o
C

on
tr

Be
g

D
at

1Y
H

H
A

ge
nt

’s
nu

m
be

r
of

H
H

co
nt

ra
ct

s
w

ith
st

ar
t

da
te

in
th

e
la

st
ye

ar
.

C
hu

rn
3M

on
C

us
to

m
er

ch
ur

n
oc

cu
re

nc
e

or
no

n-
oc

cu
re

nc
e

in
la

st
3

m
on

th
s.

C
hu

rn
3M

on
N

o
C

I
N

um
be

r
of

ca
nc

el
le

d
ca

r
in

su
ra

nc
e

co
nt

ra
ct

s
in

la
st

3
m

on
th

s.
C

hu
rn

Fi
rs

t
N

o
M

on
N

um
be

r
of

m
on

th
s

sin
ce

fir
st

ch
ur

n.
C

hu
rn

La
st

N
o

M
on

N
um

be
r

of
m

on
th

s
sin

ce
la

st
ch

ur
n.

C
hu

rn
La

st
C

S
C

at
La

st
ch

ur
ne

d
cr

os
s-

se
lli

ng
ca

te
go

ry
.

C
hu

rn
N

o
C

on
tr

6M
on

N
um

be
r

of
ch

ur
ne

d
co

nt
ra

ct
s

in
th

e
la

st
6

m
on

th
s.

C
hu

rn
N

o
C

on
tr

1Y
N

um
be

r
of

ch
ur

ne
d

co
nt

ra
ct

s
in

th
e

la
st

ye
ar

.
C

hu
rn

N
o

C
on

tr
3Y

N
um

be
r

of
ch

ur
ne

d
co

nt
ra

ct
s

in
th

e
la

st
3

ye
ar

s.
C

L
D

oc
R

ea
s

A
1

R
ea

so
ns

fo
r

C
&

L
fir

st
ac

tiv
e

co
nt

ra
ct

ch
an

ge
s.

C
L

PC
L

Ty
p

A
1

Pr
iv

at
e

ca
su

al
ty

&
lib

ili
ty

ty
pe

of
fir

st
ac

tiv
e

co
nt

ra
ct

.
C

L
Ph

A
dm

Sy
s

K
ey

A
1

Po
lic

y
ho

ld
er

’s
ad

m
.sy

te
m

ke
y

of
fir

st
ac

tiv
e

C
&

L
co

nt
ra

ct
.

D
el

ta
K

om
po

C
on

tr
3M

on
D

el
ta

of
nu

m
be

r
of

K
O

M
PO

co
nt

ra
ct

s
in

la
st

3
m

on
th

s.
D

el
ta

N
o

C
at

3M
on

D
el

ta
of

nu
m

be
r

of
in

su
re

d
ca

te
go

rie
s

in
la

st
3

m
on

th
s.

H
H

En
dD

at
e

C
at

En
d

da
te

ca
te

go
ry

of
H

H
co

nt
ra

ct
.

H
H

In
s

C
on

d
Ye

ar
A

1
Ye

ar
of

ho
us

eh
ol

d
in

su
ra

nc
e

co
nd

iti
on

s
be

gi
n,

fir
st

ac
tiv

e
co

nt
ra

ct
.

H
H

C
on

tr
C

hg
R

ea
s

A
1

R
ea

so
ns

fo
r

ho
us

eh
ol

d
fir

st
ac

tiv
e

co
nt

ra
ct

ch
an

ge
s.

H
H

Ph
St

at
e

K
ey

A
1

Po
lic

y
ho

ld
er

’s
st

at
e

co
de

in
fir

st
ac

tiv
e

ho
us

eh
ol

d
co

nt
ra

ct
.

Ta
bl

e
A

.2
:M

ea
ni

ng
of

fe
at

ur
es

’a
bb

re
vi

at
io

ns

APPENDIX A. SUPPLEMENTARY INFORMATION 137

M
ea

ni
ng

En
gl

ish
A

bb
re

v.
Va

rI
ab

le
s

Id
H

H
C

lie
nt

ID
re

fe
rs

to
ho

us
eh

ol
d/

fa
m

ily
.

In
t

M
ar

ke
tin

g
In

iti
al

m
ar

ke
tin

g.
Jo

b
Po

s
Jo

b
po

sit
io

n.
K

gs
12

G
eo

cl
us

te
r

G
eo

C
lu

st
er

of
kg

s1
2.

K
gs

12
Pr

op
H

s
Pr

op
or

tio
n

of
kg

s
12

w
ith

hi
gh

sc
ho

ol
di

pl
om

a.
K

gs
12

R
en

ta
lsc

or
e

R
en

ta
ls

co
re

of
kg

s1
2.

K
gs

16
G

eo
cl

us
te

r
G

eo
C

lu
st

er
of

kg
s1

6.
K

gs
16

Ls
ta

ge
Li

fe
st

ag
e

of
kg

s1
6.

K
gs

16
R

en
ta

lsc
or

e
R

en
ta

ls
co

re
of

kg
s1

6.
La

st
A

gc
y

A
ct

iv
e

La
st

ac
tiv

e
ag

en
cy

.
Lo

c
C

hn
g

3M
on

Lo
ca

tio
n

ch
an

ge
oc

cu
re

nc
e

or
no

n-
oc

cu
re

nc
e

in
la

st
3

m
on

th
s.

N
o

A
ct

iv
e

C
on

tr
To

ta
ln

um
be

r
of

ac
tiv

e
co

nt
ra

ct
s.

N
o

C
ar

s
H

H
N

um
be

r
of

ho
us

eh
ol

d’
s

ca
rs

.
N

o
M

on
Fi

rs
t

C
on

tr
Be

g
N

um
be

r
of

m
on

th
s

sin
ce

fir
st

co
nt

ra
ct

st
ar

t.
N

o
M

on
Fi

rs
t

C
on

tr
Be

g
H

H
N

um
be

r
of

m
on

th
s

sin
ce

fir
st

H
H

co
nt

ra
ct

st
ar

t.
R

es
p

O
E

Pn
r

ID
nu

m
be

r
of

re
sp

on
sib

le
A

ge
nt

.

Ta
bl

e
A

.3
:M

ea
ni

ng
of

fe
at

ur
es

’a
bb

re
vi

at
io

ns
(c

on
tin

ue
d)

APPENDIX A. SUPPLEMENTARY INFORMATION 138

A.2.3 SEM Implementation Remarks

As SAS Enterprise Miner delivers a user-friendly interface with no visible details of the
exact procedure triggered behind the nodes, we list a few remarks here concerning the
implemented settings and the procedures run with reference to SAS Institute Inc. (2012).
Regarding the technical implementation of random forest in SEM, the node ‘HP Random
Forest’ was used for classification. Within SEM’s node, the ‘PROC HPForest’ procedure
is triggered with the following adjustable settings in the statements. By setting the train
proportion to 1/n, the INBAGFRACTION = 1/n option in the statement is set to specify
the number of observations to sample without replacement into the bagged data. The
procedure randomly selects m candidate input variables independently in every node,
where m is the by the user predetermined value of the VARS TO TRY = option in the
statement. The procedure computes the average square error measure of prediction error,
the misclassification rate, and the log-loss. Given an observation, the procedure follows
the tree-paths and assigns the observation to a single leaf in each decision tree. Using the
generated posterior probability predictions, (i.e. the proportion of that class among the
bagged training observations in that leaf) of the respective tree containing the leaf, the
classification is forecasted by assigning the class with the highest posterior probability.
The decision trees trained by the procedure are generated using recursive binary splitting,
with splits seeking to maximize Gini reduction for a nominal target and variance reduction
for an interval target.

Automated hyperparameter tuning of number of trees and variables, is applied through
the following code:

1 %macro hpRFTuning (noVars = 10, maxTrees =200);
2

3 %let noTries = % sysfunc (countw (& noVars .));
4

5 %do k = 1 %to & noTries .;
6 %let Try = % sysfunc (scan(& noVars .,&k));
7

8 proc hpforest data=&EM_ IMPORT _DATA maxtrees =& maxTrees .
9 var_to_try=&Try .;

10 input %EM_ INTERVAL _INPUT /level= interval ;
11 input %EM_ ORDINAL _INPUT /level= ordinal ;
12 input %EM_ NOMINAL _INPUT /level= nominal ;
13 input %EM_ BINARY _INPUT /level= binary ;
14 target %EM_ TARGET / level= binary ;
15 ods output fitstatistics = fitstats _vars&Try .;
16 run;
17

APPENDIX A. SUPPLEMENTARY INFORMATION 139

18 data fitstats _vars&Try .;
19 length varsToTry $ 8;
20 set fitstats _vars&Try .;
21 varToTry = " &Try. " ;
22 run;
23

24 proc append base= fitStats data= fitstats _vars&Try. force;
25 run;
26 %end;
27

28 %mend hpRFTuning ;
29

30 % hpRFTuning (noVars =5 10 15 20 25 30 35 40 45 50 all , maxTrees =200);
31

32 %em_ register (type=Data ,key= fitStats);
33

34 data &em_user_ fitStats ;
35 set fitStats ;
36 run;
37

38 %em_ report (viewType =data ,key=fitStats , autodisplay =y);
39 %em_ report (viewType =lineplot ,key=fitStats ,x=nTrees ,y=miscOOB , group=varsToTry ,
40 description =Out of Bag Misclassification Rate , autodisplay =y);

Using the ‘Gradient Boosting’ node in SEM similarly invokes the ‘PROC TreeBoost’
procedure, which implements the algorithm described by Friedman (2001). Adjustable
settings in the node include, for example the number of iterations for the boosting series.
Considering that the triggered procedure uses decision trees as base learners for the
boosting ensemble, the number of iterations is equal to the number of trees. The user
can also set the MAXDEPTH representing the maximum tree depth allowed where the
procedure can continue searching for new splitting rules (see SAS Institute Inc. (2012)):

1 PROC TREEBOOST <options >;
2 ASSESS <options >;
3 CODE <options >;
4 DECISION DECDATA =data -set -name <options >;
5 FREQ variable ;
6 IMPORTANCE <options >;
7 INPUT list -of - variables <options >;
8 MAKEMACRO NTREES =macro -name;
9 PERFORMANCE <options >;

10 SAVE <options >;
11 SCORE <options >;
12 SUBSERIES <options >;
13 TARGET variable <options >; RUN;

APPENDIX A. SUPPLEMENTARY INFORMATION 140

To implement a linear or logistic regression in SEM, the ‘DMREG’ procedure is invoked
by the ‘Regression’ node to either predict the numerical value of the continuous variable
of interest or to predict the probability that a categorical target will take on one of the
possible classes. The procedure consists of several statements, each including different
adjustable parameters and has the following outline (see SAS Institute Inc. (2012)):

1 PROC DMREG DATA=data -set -name DMDBCAT =catalog -name <options >;
2 CLASS list -of - variables ;
3 CODE <options >;
4 DECISION DECDATA =data -set -name <options >;
5 FREQ variable ;
6 MODEL target - variable =input - variables </ options >;
7 NLOPTIONS <options >;
8 PERFORMANCE <options >;
9 REMOTE <options >;

10 SCORE <options >;
11 QUIT;

The MODEL statement, most importantly, sets the target variable in terms of the required
input variables, as well as the fitting characteristics. The optimization methods available
for computing are chosen by specifying the TECHNIQUE to NEWRAP (Newton-Raphson
Optimization with Line Search), NRRIDG (Newton-Raphson RidgeSyntax Optimization),
or QUANEW (Quasi-Newton Optimization), and many more. Furthermore, SELECTION
options assign, e.g. the model selection criterion, wrapper methods direction if desired,
and a maximum number of steps in the selection process. At each step of the model
construction, the procedure will choose the model with best-specified criterion values such
as CHOOSE = AIC, CV-ASE, or VERROR. The different wrapper methods correspond
to SELECTION= Backward, Forward, None or Stepwise.

The alternative LASSO method first computes the estimates by running a logistic
regression through PROC LOGISTIC and feeding these estimates into the PROC
GLMSELECT. A further logistic regression run is performed at the end to transform
the output to a predicted probability between 0 and 1.

The ‘Neural Network’ node makes use of the PROC Neural procedure does not use all of
its aspects however. It is important to note that the statement includes many optional
settings that we do not apply and refer to SAS Institute Inc. (2012) for details. Most
important components of the PROC Neural include the ARCHITECTURE, HIDDEN,
and NETOPTIONS statements. The architecture statement specifies the required neural
network architecture, for instance a GLM, MLP or Ordinary Radial Basis Function
Network. The hidden statement sets the number of hidden units or neurons which are
connected in a forward-manner by the CONNECT statement. NETOPTIONS include

APPENDIX A. SUPPLEMENTARY INFORMATION 141

adjustable hyperparameters like (DECAY) weight decay, (OBJECT) loss function used
by the network and RANDIST for the choice of distribution to generate random initial
weights, like the Cauchy, Normal or Uniform distributions.

The technical functionalities of the used neural network optimisers will also be shortly
introduced here. The standard BackProp computes the weight update at each iteration
as explained in Section 3.1.5. Using the PDETAIL option in PROC NEURAL procedure,
one can assign accordingly QPROP or BPROP. The outputs of PDETAIL for BackProp
are the quantities measuring previous weight change, current weight change, gradient,
previous and current weight. As for QPROP, SEM computes Equation (A.5) by computing
the following alternative, as it can become large or move away from the minimum:

αkl,r,s =
4L(k)

l,r,s

4L(k−1)
l,r,s −4L

(k)
l,r,s

. (A.5)

αk =


αmax for |αkl,r,s| > αmax,

αmax for (4L(k−1)
l,r,s −4L

(k)
l,r,s) · 4W

(k−1)
l,r,s > 0,

αkl,r,s otherwise.

Considering the above computation, the output by QPROP in SEM includes addditional
to BPROP’s standard outputs, the quantities of the modified gradient and αk.

Finally, we include some remarks about the procedures used by SAS Viya for the
generation of partial dependence plots and LIME models. The ‘partialDependence’
procedure generates a function averaging the model prediction for each value of a specific
feature. Assigning a model, input dataset and predicted probabilities to the action
‘partialDependence’ produces the plot using PROC SGPLOT. The second available action
in SAS Viya, is the ‘linearExplainer’. The procedure contains PROC CAS code to run
the adjusted settings. By assigning an input dataset to the statement and the trained
black-box model to ‘modelTable’, we can run the procedure ‘explainModel’ to determine
the LIME model. The ‘preset’ parameter specifies that the LIME explanation method
should be used.

1 proc cas;
2 loadactionset " explainModel ";
3 explainModel . linearExplainer / table = ""
4 query = "QUERY"
5 modelTable = ""
6 modelTableType = " ASTORE "
7 predictedTarget = "P_ target "
8 seed = 1234

APPENDIX A. SUPPLEMENTARY INFORMATION 142

9 preset = "LIME"
10 inputs = {}
11 nominals = {}
12 ;
13 run;
14 quit;

Figure A.2: Flowchart Of Random Forest Modelling In SEM

Figure A.3: Flowchart Of Gradient Boosting Modelling In SEM

Figure A.4: Flowchart Of Neural Network Modelling In SEM

APPENDIX A. SUPPLEMENTARY INFORMATION 143

Fi
gu

re
A

.5
:F

lo
wc

ha
rt

O
fC

ro
ss

Va
lid

at
io

n
In

SE
M

Fi
gu

re
A

.6
:F

lo
wc

ha
rt

O
fA

ll
M

od
el

s
In

SE
M

APPENDIX A. SUPPLEMENTARY INFORMATION 144

A.2.4 Results

Variable Entered DF Wald χ2 Pr >χ2 AIC

Churn 3Mon 1 209.22 <.0001 50414.2
AG Chg Resp OE Pnr 1Y 1 299.45 <.0001 49848
Churn Last CS Cat 10 182.72 <.0001 49270.9
No Mon First Contr Beg 1 48.91 <.0001 48755.7
Delta Kompo Contr 3Mon 1 178.38 <.0001 48455.9
AG Contr Prop A End Dat 1Y 1 130.06 <.0001 48277.5
Churn Last No Mon 1 162.46 <.0001 48102
SB HH 1 60.60 <.0001 47931.9
Age 1 124.61 <.0001 47789.9
Kgs12 Prop Hs 1 9.45 0.0021 47673.6
KKM A P Quelle 2 90.78 <.0001 47575.1
CL Doc Reas A1 7 97.52 <.0001 47483.9
Loc Chg 3Mon 1 76.36 <.0001 47410.6
Job Pos 13 72.68 <.0001 47328
Active Passive 24Mon HH 1 40.83 <.0001 47273
Int Marketing 9 71.92 <.0001 47218.1
HH Ins Cond Year A1 21 113.30 <.0001 47172.2
HH Ph State Key A1 17 76.70 <.0001 47122.6
HH EndDate Cat 3 40.64 <.0001 47085.8
No Active Contr 1 34.85 <.0001 47055.3
Kgs16 Rentalscore 8 50.22 <.0001 47015.8
Last Agcy Active 1 22.92 <.0001 46997.9
ANZ VERTR V END DAT HH 3J 1 19.15 <.0001 46981.5
Churn 3Mon No CI 1 20.29 <.0001 46963
ANZ LETZ END CS SP 12 42.79 <.0001 46941.9
Dup4 1 19.67 <.0001 46925.3
Resp OE Pnr 1 14.72 0.0001 46911.5
Last Adm Sys Active 14 46.34 <.0001 46895.8
LV TAGE V A1 1 15.69 <.0001 46882
MyERGO 1 15.11 0.0001 46869.4

Table A.4: CHAID Stepwise Logistic Regression - Variables’ Statistical Significance

APPENDIX A. SUPPLEMENTARY INFORMATION 145

Variable Entered DF Wald χ2 Pr >χ2 AIC

Churn 3Mon 1 212.29 <.0001 50414.2
AG Chg Resp OE Pnr 1Y 1 295.82 <.0001 49848
Churn Last CS Cat 10 182.28 <.0001 49270.9
No Mon First Contr Beg 1 72.12 <.0001 48755.7
Delta No Cat 3Mon 1 34.26 <.0001 48452.3
AG Contr Prop A End Dat 1Y 1 147.63 <.0001 48270.7
No Cars HH 1 193.42 <.0001 48039.5
Churn Last No Mon 1 157.19 <.0001 47854.7
Age 1 138.99 <.0001 47712.6
Kgs12 Prop Hs 1 9.90 0.0017 47581.5
CL Doc Reas A1 7 93.20 <.0001 47488.7
KKM A P Quelle 2 113.90 <.0001 47400.6
Loc Chg 3Mon 1 71.61 <.0001 47329
Job Pos 13 72.98 <.0001 47241.1
AG CONTR 1 63.63 <.0001 47184.3
Active Passive 24Mon HH 1 40.13 <.0001 47144
HH Ins Cond Year A1 21 132.41 <.0001 47094.7
No Contr End Dat HH 3Y 1 29.07 <.0001 47060.5
HH Ph State Key A1 17 83.25 <.0001 47011.2
Kgs16 Rentalscore 8 57.43 <.0001 46968.9
Churn 3Mon No CI 1 24.05 <.0001 46939.9
CL Ph Adm Sys Key A1 1 29.84 <.0001 46908.8
HH EndDate Cat 3 35.69 <.0001 46877.7
AG Contr Prop A Beg Dat 1Y 1 24.98 <.0001 46846.2
VP in LV 1 26.19 <.0001 46821.4
Delta Kompo Contr 3Mon 1 25.91 <.0001 46796.4
Id HH 2 56.83 <.0001 46789
AG Contr Prop A End Dat 1Y DY 1 18.92 <.0001 46770.7
Last Agcy Active 1 22.88 <.0001 46753.1
HH Contr Chg Reas A1 9 40.80 <.0001 46731

Table A.5: Stepwise Logistic Regression - Variables’ Statistical Significance

APPENDIX A. SUPPLEMENTARY INFORMATION 146

Variable Effect Parameter Estimate Standard Error

Last Adm Sys Active TR -5.13 35.17
Last Adm Sys Active IT -4.07 49.43
Kgs12 Prop Hs -1.15 0.37
CL Doc Reas A1 14 -1.01 0.91
HH Ins Cond Year A1 2016 -0.93 0.98
Intercept -0.88 4.83
Int Marketing Bank -0.59 0.20
Delta Kompo Contr 3Mon -0.54 0.04
Job Pos ? -0.41 0.07
Loc Chg 3Mon 0 -0.36 0.04
Churn Last CS Cat LV -0.33 0.04
Churn 3Mon No CI 0.62 0.14
Churn 3Mon Yes 0.65 0.04
Last Adm Sys Active SV 0.86 4.32
HH Ph State Key A1 13 0.91 2.14
CL Doc Reas A1 60 1.07 0.89
CL Doc Reas A1 62 1.48 0.26

Table A.6: CHAID Stepwise Logistic Regression - Parameter Estimates

Variable Effect Parameter Estimate Standard Error

Id HH 1 -4.49 0.60
AG Contr Prop A Beg Dat 1Y -2.06 0.41
CL Doc Reas A1 14 -1.39 0.97
Kgs12 Prop Hs -1.17 0.37
HH Ins Cond Year A1 1981 -0.99 0.71
Job Pos ? -0.39 0.07
Loc Chg 3Mon 0 -0.35 0.04
Churn Last CS Cat LV -0.31 0.04
Delta No Cat 3Mon -0.31 0.05
Kgs16 Rentalscore 1 0.24 0.06
Churn Last CS Cat HA 0.24 0.07
AG Contr Prop A End Dat 1Y 0.60 0.05
Churn 3Mon No CI 0.65 0.13
Churn 3Mon Yes 0.65 0.04
HH Ph State Key A1 13 0.95 2.21
HH Contr Chg Reas A1 60 1.01 0.56
HH Ins Cond Year A1 2016 1.32 1.05
CL Doc Reas A1 62 1.66 0.27
Intercept 2.86 2.23

Table A.7: Stepwise Logistic Regression - Parameter Estimates

	Abstract
	List of Figures
	List of Tables
	Introduction
	Background and Notation
	Background and Existing Literature
	Mathematical Notation

	Modelling Process and Methods
	Theoretical Methodology
	Logistic Regression
	Decision Tree
	Random Forest
	Gradient Boosting
	Neural Networks

	Prediction Process
	Data and Features Pre-Processing
	Class Imbalance Reduction
	Dimensionality Reduction
	Modelling and Prediction
	Model Evaluation

	Case Study: Insurance Data
	Data Description and Visualisation
	Data and Features Pre-Processing
	Class Imbalance Reduction
	Dimensionality Reduction

	Case Study: Prediction Results and Evaluation
	Logistic Regression
	Decision Tree
	Random Forest
	Gradient Boosting
	Neural Networks

	Case Study: Discussion
	Model Comparison
	Model Selection
	Actions and Insights
	Actions in the Insurance Sector
	Interpretable Machine Learning
	Research Limitations

	Conclusion
	Bibliography
	Appendix Supplementary Information
	Proofs
	Chapter 3.1.1
	Chapter 3.2.3

	Case Study
	Data Description
	Dimensionality Reduction
	SEM Implementation Remarks
	Results

