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Chapter 1

General Introduction

Insurance is the business dedicated to indemnifying random financial losses in ex-
change of charging premiums. One can also regard it as an attempt to tame the
uncertainty which underlies many aspects of human existence. These risks can be
of very different nature, but the classical division is made between life insurance
and non–life insurance. The present work is dedicated to various aspects of the
latter, mainly through the specification of new probabilistic models. These models
not only give insight into the nature of the possible drivers behind the uncertain
events in insurance, but often lead to a statistical approach which can be applied
in practice. The main themes throughout are the analysis of flood data, the math-
ematical modeling of the surplus and dividends of an insurance company, and the
statistical modeling of claim severities. While the challenges addressed in this thesis
are motivated by those insurance applications, the developed methods may also be
interesting in their own right, and for other application areas. In the following sec-
tions of this chapter, we will expand further on the topics covered in the remainder
of the thesis.

1.1 Events underlying non–life insurance

Nowadays a wide variety of insurance products exist, and what all the lines of
business have in common is that they cover losses incurred by random phenomena.
It is clear that a deeper understanding of the driving mechanisms would be ideal.
Apart from the fundamental modern physics theories, which assume that there is
an intrinsic randomness, which is inherent at the sub–atomic level, there exists
the idea that if we just had enough information, many things that appear to be
random would turn out to actually be structured. From that perspective, insurance
companies design products that make us feel in control of our own ignorance. But
not even the insurers can know all the processes behind random events, so two
techniques are adopted in an attempt to understand the nature of the insured
risks. The first one is proposing a model based on a physical or logical belief,
and the second is recollecting data from the past, and extrapolating by making
the assumption that the future will behave in a similar way. Good models often
combine the two approaches in a sound way. One thing is at least intuitively clear:
a better understanding of the insured risk will result in a better way of managing

21



22 CHAPTER 1. GENERAL INTRODUCTION

the incurred risks by incorporating this information into a statistical model (see
also Prettenthaler et al. (2017)). Let us now proceed to a very important line of
business, related to natural disasters and to the subject of Chapter 2 of this thesis.

One of the most common and widespread natural disasters in the world is flood-
ing. Thousands of people are killed every year worldwide due to floods, often placing
it as the most deadly natural events, closely followed by storms and landslides (cf.
Wallemacq (2018)). The number of people reached by floods is also the highest
among natural disasters, and the effects are being exacerbated as climate change
intensifies (cf. Field and Van Aalst (2014); Jongman et al. (2014)). It is clear
that these changes have led insurers in this line of business to put more effort into
learning from past flood records, but a key drawback is that catastrophic events do
not happen often, so the available data is typically scarce (cf. Jones et al. (2012);
Blöschl et al. (2017); Merz et al. (2018); Schmocker-Fackel and Naef (2010); Swier-
czynski et al. (2017) for flood series records), and the loss estimates can fluctuate
a lot (cf. Prettenthaler et al. (2015)). New technologies in paleoflood hydrology
has permitted the analysis of longer and more detailed time series of floods (cf.
Wilhelm et al. (2018b); Arnaud et al. (2012); Swierczynski et al. (2012); Czymzik
et al. (2013); Swierczynski et al. (2013); Wirth et al. (2013); Sabatier et al. (2017)).

The statistical tools that have been employed on flood records focus on trends
(cf. Merz and Blöschl (2003); Petrow and Merz (2009); Mudelsee et al. (2003)) and
clustering (Merz et al. (2016)) with the aim of detecting abrupt changes in flood
occurrence, but have not been applied to the newer, longer records. For surveys
of statistical methods for time series of climate data, we refer to Mudelsee (2014);
Wilhelm et al. (2018a). In Chapter 2 we derive a new approach for modeling trends
and change-points and proceed to analyze the flood frequency record from Lake
Mondsee sediments dating back 7100 years (cf. Swierczynski et al. (2013)), which
is of high resolution and more reliable than previous archives.

1.2 Collective risk theory

Collective risk theory deals with a mathematical representation of an the surplus
process of an insurance portfolio over time, and aims to solve certain optimality
problems based on model parameters. The typically used models oversimplify the
behaviour of insurers, often making strong assumptions in order to obtain explicit
solutions. However, these models do not aim to model real-life insurance companies’
behaviour accurately, but instead serve the purpose of hopefully gaining insight into
problems which are too complicated to solve mathematically, by solving related but
simpler problems.

1.2.1 Exact solutions

Since the introduction of the compound Poisson process by Filip Lundberg over a
century ago, a large amount of models in risk theory have been proposed. Modern
risk theory now often uses a class of stochastic processes X = {Xt}t≥0, called Lévy
risk processes (see Kyprianou (2014)), typically with the property that jumps may



1.2. COLLECTIVE RISK THEORY 23

only be negative. The initial capital is denoted by X0 = x ≥ 0, and the drift of the
process is assumed to be positive.
For a fixed b ≥ 0 the first passage times

τ−0 := inf{t ≥ 0 : Xt < 0}, τ+
b := inf{t ≥ 0 : Xt > b},

have the property that (cf. (Kyprianou, 2014, Ch.8))

Ex
(
e−δτ

+
b ; τ+

b < τ−0

)
=
W (x)

W (b)

and

Ex
(
e−δτ

−
0 ; τ−0 < τ+

b

)
= Z(x)− Z(b)

W (x)

W (b)
,

for any 0 ≤ x ≤ b, where W is a scale function, defined as the inverse Laplace
transform of the reciprocal of the (shifted) Laplace exponent

ψ(θ) := logEeθX1 ,

and Z is the second scale function, which is a scaled version of the integral of
W . The above expressions are very useful when dealing with fluctuations of Levy
processes, and as a special case one can obtain the ruin probability, Px(τ−0 < ∞),
in terms of the scale functions.

Since de Finetti’s work (cf. de Finetti (1957)), it has also been of interest to
consider dividend payout strategies in collective risk theory, and more precisely,
the specification of the optimal strategy to pay dividends over the life-time of the
insurance portfolio (see Gerber (1969)). In Kyprianou and Loeffen (2010) the ex-
pected sum of discounted dividends until ruin under a refraction strategy is derived
explicitly, that is

Ex
[∫ τ

0

e−δsc1{Us>b}ds

]
is given in terms of the scale functions, where τ = inf{t > 0 : Ut < 0}, and

Ut = Xt − c
∫ t

0

1{Us>b} ds, t ≥ 0.

The interpretation is that no dividends are paid while X is below the threshold b,
and dividends are paid at rate c above the threshold. The importance of this result
is historical, since it arises as the optimal dividend payout strategy for diffusions
(Jeanblanc-Picqué and Shiryaev (1995); Asmussen and Taksar (1997)) and some
compound Poisson processes (Gerber and Shiu (2006a)) when the dividend rate is
bounded. In the unbounded case, it is known that band strategies are optimal, and
in some cases they collapse to a barrier strategy (cf. Gerber (1969); Shreve et al.
(1984); Schmidli (2008); Azcue and Muler (2014), see also Avanzi (2009); Albrecher
and Thonhauser (2009) for surveys on optimality for dividend strategies).
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In Chapter 3 we consider a strategy where a barrier is set, but once it is crossed
and the dividend rate is increased, it cannot be decreased again. The expected
discounted dividend payments until ruin are considered, an optimality criterion
for the barrier of this model is obtained, and the solution is shown to be close to
the classical optimal solution for some specific scale functions. This addresses the
concern of some shareholders who prefer to never have a decrease in the dividend
rate, even if such strategy might not be optimal.

1.2.2 Simulation

When an exact solution is not available, an approach which has gained strength
with increased computer capabilities is simulation. The numerical evaluation of
ruin probabilities and their accuracy using pseudo-random numbers is a branch
of so-called stochastic simulation methods (cf. Asmussen and Glynn (2007) for a
comprehensive overview of the field). A particvular advantage of simulation for
stochastic models is that one can often allow for more complex models in the setup
of the problem. One such model will be presented in Chapter 4, where the exact
solution of the processes considered is not available, but a correlated process with
explicit ruin probability can be efficiently used to decrease the variance of the sim-
ulation procedure. In a general setting, Asmussen and Kroese (2006); Hartinger
and Kortschak (2009); Chan and Kroese (2011); Asmussen and Kortschak (2012);
Ghamami and Ross (2012); Asmussen and Kortschak (2015) give results for error
rates and efficient rare event simulation. We will use some of the methodology (in
particular, the Asmussen-Kroese estimator) and apply it to a case where claims
are mixtures of heavy- and light-tailed distributions (a setting that was previously
investigated in Vatamidou et al. (2013)).

1.3 Severity modeling

From an applied point of view, premium calculation often relies on the law of large
numbers or quantile estimation, in the sense that the expected loss (plus some
safety loading) or some quantile (Value-at-Risk) is often used as an ingredient in
the associated risk analysis and management. Models which take into account
the frequency and severity of claims at the same time do exist, but in the vast
majority of occasions the two are modeled separately. While the net premium is
often determined simply as the product of the average claim size and the average
rate of occurrence, for a more sophisticated analysis an accurate estimation of the
entire distribution of claim sizes is crucial. For instance, if we deal with heavy-
tailed risks, the mean might not even exist, or a slight change in the tail parameter
can have large effects on the VaR. In this section we will elaborate more on some
useful probabilistic and statistical tools which can and will be applied to severity
modeling.
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1.3.1 Extreme Value Theory

Often, the largest observation in a claim severity dataset is significantly larger
than any other data point. Loosely speaking, this is what we refer to as having
a heavy-tail, or in other words, the probability of observing very large claims is
not negligible. Extreme value theory (cf. Embrechts et al. (1997); Beirlant et al.
(2004); de Haan and Ferreira (2007) for classical texts on the subject and Gomes
and Guillou (2015) for an overview of the univariate case) is concerned with the
analysis of rare but large events. When modeling severity, it is of crucial importance
to analyze the tail of the distribution precisely. The mean value and quantiles are
highly sensitive to this characteristic, and hence the premium calculation, as well
as any other properties that one derives based on the inferred model.

Consider an independent and identically distributed (i.i.d.) sequence of random
variables X1, X2, . . . , such that the the following relation holds

c−1
n (Mn − dn)

d
= X1

for some norming constants cn, dn and where Mn = max{X1, . . . , Xn}. If this is
satisfied, we say that they follow a max-stable distribution. The concept of max-
stability is the backbone of extreme-value theory, since it can be related with the
limiting distributions of normalized maxima. By the convergence to types theorem
(cf. e.g. Embrechts et al. (1997)), it can be shown that a distribution is the non-
degenerate limit of normalized maxima, as the sample size grows, if and only if it
is max-stable. This means that if we desire to investigate how the maximum of a
large sample behaves, we can use the asymptotic theory to do inference. In this
regard, the following result (cf. Fisher and Tippett (1928)) is very useful, since it
guarantees a fully explicit way of writing the associated limiting distribution:

Theorem 1.3.1. For Xi an i.i.d. sequence of random variables, if there exist non-

degenerate H and norming constants such that c−1
n (Mn−dn)

d−→ H, then necessarily
H is one of the following:

Frechet: Φα(x) = e−x
−α

1(0,∞)(x),

Weibull: Ψα(x) = e−(−x)α1(−∞,0](x) + 1(0,∞)(x)

Gumbel: Λ(x) = e−e
−x

.

Of course, any given dataset will not fit exactly one of these three limit distributions,
but we can say that a distribution is for instance in the Frechet maximum domain of
attraction (MDA(Φα)) if their maximum asymptotically and correctly normalized
converges to the Frechet distribution. The concept extends in a similar way to the
other two distributions. There is a way of characterizing whether a distribution
belongs to a certain domain of attraction. For us to understand the result, we need
to define two useful concepts. Say that a distribution function is regularly varying
with index α ( F ∈ R−α) if

F (x) = x−α`(x), (1.1)
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where limx→∞ `(tx)/`(x) = 1, for all t > 0. The mean excess function is defined as

sX(u) = E(X − u|X > u) =

∫∞
u
F (y)dy

F (u)
.

Theorem 1.3.2. • F ∈ MDA(Φα) ⇔ F ∈ R−α. The norming constants can
be taken as dn = 0 and cn = F←(1− n−1).

• F ∈ MDA(Ψα)⇔ xF <∞ and F (xF − x−1) ∈ R−α. The norming constants
can be taken as dn = xF and cn = xF − F←(1− n−1).

• F ∈ MDA(Λ)⇔ F (x) = c(x) exp
(
−
∫ x
z
g(t)
a(t)

dt
)

, with g → 1, c→ c0 > 0, a′ →
0. The norming constants can be taken as dn = F←(1− n−1) and cn = a(dn).
One can choose a to be the mean excess function sX(u).

We refer to Embrechts et al. (1997) for further details. For our purposes, we are
mostly interested in the F ∈ MDA(Φα) case, and consequently in the estimation of
the tail parameter α of the class F ∈ R−α.

In the exact Pareto case, the function ` in (1.1) is identically equal to one. In
other cases, however, although slowly varying, the function ` might incur a large
bias on estimators constructed for the Pareto distribution. Consequently, a central
question in univariate extreme value theory is the determination of the threshold
above which one can sensibly regard the effect of the function ` as negligible, with
respect to a pure power law tail. In Chapter 6 of this thesis we tackle this clas-
sical problem by modifying the Hill estimator (the mean of the log-observations
above a certain threshold) through the deletion of low importance observations and
compensating deterministically.

When confining ourselves to the Hall subclass (cf. Hall (1982); Hall et al. (1985)),
or in other words, making second order assumptions on the tail of the distribu-
tion, many explicit calculations are available in terms of the given parametrization.
Hence, it is a popular assumption in the literature when deriving asymptotic results,
and most of the frequently used heavy-tailed distributions in the Frechet domain of
attraction belong to this class. Formally it is defined by its tail being of the form

P(X > u) = Cu−α
(
1 +Du−ν1(1 + o(1))

)
, for u→∞,

for some constants C,D. Estimation of the constants C, D and the index ν1 is a
difficult task, which is necessary but not the primary focus of the analysis, which
is rather concerned with the index α. The reason for this distinction is that the
truly large claims will have a behaviour dictated primarily by α. In Chapter 8
we will consider a related but slightly different problem. Given a dataset, we are
interested in the estimation of α solely for the purpose of testing whether it can
be regarded to be the same or different from the one of a reference heavy-tailed
distribution. The latter problem is usually denoted novelty detection (see Pimentel
et al. (2014); Markou and Singh (2003a,b) for reviews) and the use of extreme value
theory in this area is recent (cf. Clifton et al. (2011, 2013, 2014); Luca et al. (2014,
2016, 2018)). Novelty detection lies in the intersection of extreme value theory and
signal processing (in engineering), and we will further consider censored data as
well, which we now proceed to introduce.
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Censoring

Censoring is a statistical inconvenience that has for long been observed in real-life
applications. One of the most common situations where one encounters censoring is
when investigating whether a new drug is effective or not for terminally ill patients.
A study has to be made involving two groups: one using the drug and one not using
it, but one cannot wait until all patients die in order to take their average death
age by group. After all, the drug might be effective and one might end up waiting
for recovered patients to live the rest of their healthy lives. Instead, during the past
century, methods for accounting for the fact that some observations are censored
were included within the statistical analysis. The most common censoring mecha-
nism in research (although not necessarily in real-life) is right-censoring completely
at random. This is written mathematically as

Z = min{X, Y }, e = 1{Z = X},

where X is the variable of interest, Y is a censoring mechanism, independent of
X, and Z and e is the actual observed data. That is, only the censored variable Z
and the censoring indicator e can be used for estimating X. One of the most cited
papers of all history, Kaplan and Meier (1958), estimates the tail of X from the
pair (Z, e).

For insurance, censoring takes a different interpretation. While before X was
time (often a lifetime, hence the name survival analysis for these methods; see
Bogaerts et al. (2018) for censoring in survival analysis), it can also be considered
to be a monetary unit. If we consider a third-party liability insurer, often claims
which are very large take many years (e.g. due to open legal cases) to come to a
close. However, actuaries need to estimate the distribution of the claim sizes in any
given year. Thus, observation of (Z, e) is commonplace.

Methods such as the classical chain-ladder (cf. Mack et al. (1994) for the
stochastic model behind this method, and Wüthrich and Merz (2008) for a gen-
eral overview) try to account for the rest of the development of an open claim, and
make an estimate of the total claim size at closure. On the other hand, the sta-
tistical methodology from survival analysis can be applied directly, giving different
results. The estimates of the tail index of a heavy-tailed claim can be wildly dif-
ferent depending on which method one uses. In Chapter 5, a compromise between
the two approaches is made, giving rise to a hybrid estimator, which can be used
in practice.

Estimation in the context of extreme value theory under random right-censoring
has been considered in Beirlant et al. (2007) using a modified version of the Hill
estimator (see also Einmahl et al. (2008) for a classical overview of censoring in
extreme value theory), in Worms and Worms (2014) using a different approach,
based on the Kaplan-Meier estimator, and in Ameraoui et al. (2016) from a Bayesian
perspective. In Beirlant et al. (2018), the bias reduction version of such estimators
within the Hall class is considered. In Chapter 7 of this thesis we adapt the trimming
methodology from the non-censored case, which leads to family of kernel estimators
for the extreme value index of randomly right-censored observations.



28 CHAPTER 1. GENERAL INTRODUCTION

1.3.2 Matrix distributions

As remarked earlier, the estimation of the tail of the distribution is a central prob-
lem in insurance, and is also a main reason why extreme value theory methods are
so useful in this connection (cf. Embrechts et al. (1997)). However, many of the
extreme value distributions fail to capture the true behaviour of real life data, es-
pecially at lower quantiles. One way to circumvent this problem has been to select
a threshold (Wan and Davis (2019); Bladt et al. (2019)) and then splice the distri-
bution above such a value (cf. Albrecher et al. (2017); Pigeon and Denuit (2011)).
Suitable models for the body of the distribution are then application-dependent.
On the other hand, within the established area of matrix analytic methods in ap-
plied probability, it has recently been proposed to consider a global model with no
threshold selection by transforming a dense class of light-tailed distributions into
the heavy-tailed domain (cf. Albrecher and Bladt (2019), see also Bladt and Rojas-
Nandayapa (2018) for another approach). The underlying light-tailed distributions
are the building blocks of the construction, and are referred to as phase–type dis-
tributions. In the later chapters of this thesis, we will consider a modified version
of such building blocks, such that they are heavy-tailed to begin with, and a trans-
formation is possibly only needed in order to fine-tune the model.

In the univariate case (univariate risk modelling), a phase–type distribution
(PH) is defined as the time to absorption of a fine-state Markov jump process, with
one absorbing state, and all other states being transient (cf. Bladt and Nielsen
(2017) for a recent comprehensive treatment on PH and matrix analytic methods).
In Chapter 9, we take an analytic approach to matrix distributions in that we
modify the Laplace transform of a PH distribution in a way which results in the
law of a stable-mixed version of a (power of a) PH random variable. The resulting
distribution is peculiar in that it can additionally be seen as an absorption time
of a renewal process (generally non-Markovian). It is also heavy-tailed (a property
which it inherits from the stable distribution), and thus for an arbitrary regularly
varying index, it suffices to consider power transforms. Another property which is
inherited by the power transforms from PH distributions is denseness. In a nutshell,
the resulting family (the Matrix Mittag-Leffler (MML) family, based on the Mittag-
Leffler function, cf. Mittag-Leffler (1904)) will be tractable, heavy-tailed, and dense.

Concerning the multivariate counterpart of PH distributions, the most com-
monly considered family has been the MPH∗ class, which consists of a reward-
collection scheme in which a random vector has entries which collect state-dependent
rewards at different linear rates until absorption. If all rates are equal, the resulting
vector has identical entries. For a Markov jump-process generated as the augmen-
tation of two other Markov jump-processes, if rewards of a bivariate random vector
collect rewards according to each of the two sub-processes of the enlarged Markov
jump-process, then the entries are independent. In fact, any possible dependence
structure can be approximated as accurately as required, since the MPH∗ is dense on
the set of distributions of random vectors with positive coordinates. In Chapter 10,
we again take an analytic approach to generalizing the MPH∗ class into a tractable
(only for some special cases, with feed-forward structure, analogously to the MPH∗

case), heavy-tailed and dense class. The idea, however, is not equivalent to using
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the path representation of MML distributions and applying a reward system di-
rectly (this different line is explored in Chapter 11, where we introduce fractional
phase–type distributions). It is, instead, equivalent to plugging a MPH∗ vector
instead of a PH variable into the mixing decomposition of a MML variable. Both
in the univariate and multivariate cases, the theory of matrix Mittag-Leffler dis-
tributions and fractional phase–type distributions draws considerable insight from
fractional calculus methods (see for instance Kozubowski (2001); Garrappa and
Popolizio (2018) for details as to how the Mittag-Leffler function arises in solutions
to fractional differential equations).

All subsequent chapters of this thesis have either been published or submitted
for publication in peer-reviewed journals. Respective details will be given at the
beginning of each chapter.
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Chapter 2

Flood occurrence change-point
analysis in the paleoflood record
from lake Mondsee (NE Alps)

This chapter is based on the following article:

Albrecher, H., Bladt, M., Kortschak, D., Prettenthaler, F., & Swierczynski, T.
(2019). Flood occurrence change-point analysis in the paleoflood record from Lake
Mondsee (NE Alps). Global and Planetary Change, 178, 65-76.

Abstract

Knowledge about changes of flood occurrence patterns is important for risk esti-
mation of the future. Robust and well-calibrated paleoflood records, derived e.g.
from lake sediments, are excellent natural archives to investigate flood variability
of the past and to use the data for further modelling. In this paper, we analyse a
7100 year summer flood record recovered from Lake Mondsee (NE Alps), using a
statistical approach. We identify a point process of renewal type, with a significant
change-point of the occurrence pattern around 350 AD, switching from the over-
lay of two mechanisms of event recurrences of 5 and 50 years before to 2 and 17
years after this change-point. This change-point approach enables a comparison to
other flood records, and possibly to relate event frequencies to climatic conditions.
We also highlight how lower temporal resolution of flood records can hamper the
analysis of relations to climatic signals. Hence high-resolution records with robust
chronologies and flood information (e.g. seasonality and event characteristics) are
essential to improve the understanding of the interplay between climatic signals and
flood occurrences, which is an important ingredient for proper risk estimation and
risk management.

31



32 CHAPTER 2. FLOOD OCCURRENCE CHANGE-POINT ANALYSIS

2.1 Introduction

Floods rank among the most wide-reaching and commonly occurring natural haz-
ards worldwide. According to Wallemacq (2018), flood events, with 3 331 of killed
people in 2017, accounted for the largest number of deaths due to natural risks
globally in this year, followed by storms (2 510) and landslides (2 312). Of all dis-
aster types, with 55 million people affected, floods were also the leading cause of
suffering in 2017, if measured in these terms, followed by storms (25 million) and
droughts (10 million). The longer term picture for the preceding decade 2007-2016
was similar: 85 million people affected by floods, 73 million by droughts and 33
million by storms. In addition, also climate change is expected to intensify the im-
pacts of flooding (Field and Van Aalst (2014)). Hence, whilst representing a major
issue already today, managing the risk of flooding is expected to become an even
more important topic in the future.

The economic burden of all this poses a significant challenge to societies all over
the globe, calling for a more efficient flood risk management. For Europe alone,
e.g. Jongman et al. (2014) fear that observed extreme flood losses could more than
double in frequency by 2050 under future climate change and socio-economic de-
velopment. This requires a combination of risk reduction, risk retention and risk
transfer. As shown in Prettenthaler et al. (2017) for all these tasks, a good local
and regional quantification of flood risk is a key requisite for reducing the risk,
also e.g. by international cooperation in insuring the risks. A good quantification
of local flood risks is hindered by rather short damage records usually, though.
Prettenthaler et al. (2015) showed that the range in loss estimates can be large,
depending on modelling scale. This is one reason why in general there is some in-
terest from insurance and actuarial science in putting more effort into learning from
data sources that mirror flood processes over time periods longer than the archives
of insurance companies. The second reason was mentioned already, it is the threat
posed by climate change. Since the climate is changing, one of the most common
assumptions in local flood risk analysis, namely that flood processes are stationary,
might just not be appropriate at larger time scales. But only very long records
potentially contain enough information to discern whether a number of events can
be explained by one stationary process with statistical significance or whether the
underlying regime is indeed changing. Correspondingly, a look into the far past can
potentially help to better understand the future.

In Europe, instrumental flood series usually cover 30-50 years (Blöschl et al.
(2017)). Records from larger rivers (e.g. Danube, Rhine) sometimes present longer
series with 70-150 years (Merz et al. (2018)). Pre-instrumental data from historical
archives (Schmocker-Fackel and Naef (2010)) or natural geoarchives, e.g. lake sed-
iments (Swierczynski et al. (2017)) and fluvial sediments (Jones et al. (2012)) are
of great interest to study floods of the past. In contrast to sub-daily resolution of
instrumental flood data obtained from gauging stations, flood records from natu-
ral geoarchives provide long data series for pre-instrumental periods reaching back
10’000 years. However, these data have a lower temporal resolution reaching from
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seasonal, annual to decadal timescale and present distinguished flood information
(e.g. flood type, magnitude, frequency). During the last decade, large advances
in paleoflood hydrology (Wilhelm et al. (2018b)) resulted in a higher number of
paleorecords with datasets of improved temporal resolution, which enables great
potential for risk research to explore the natural variability of paleofloods, some-
times with seasonal resolution. Numerous studies have been undertaken in the
Alpine region (Arnaud et al. (2012); Swierczynski et al. (2012); Czymzik et al.
(2013); Swierczynski et al. (2013); Wirth et al. (2013); and Sabatier et al. (2017)).
When compared to climate information, many datasets suggest that recorded floods
exhibit a pronounced sensitivity to changes of climatic conditions. Most records ex-
hibit higher flood frequencies during cooling episodes, e.g. during the Little Ice Age
(ca. 1300-1900 AD). However, the linkage of climate change and flood occurrence
is not straightforward, as changes in flood frequencies show temporal as well as
regional differences, and uncertainties in chronologies and the nature of recorded
floods in sediments have to be considered (Swierczynski et al. (2017)).

Statistical properties of flood records help to better understand flood patterns
and to further investigate abrupt changes, long-term trends, natural variability,
flood episodes etc. For instrumental flood series, flood clustering (Merz et al.
(2016)) as well as trend analysis of floods have been applied (Merz and Blöschl
(2003); Petrow and Merz (2009)). In some cases, historical flood series have been
used to detect trends as well (Mudelsee et al. (2003)). Mudelsee (2014) provides
a nice survey for classical statistical techniques to deal with time series analysis of
climate-related data, see also the recent survey by Wilhelm et al. (2018a). Statistical
properties, such as inhomogeneous intensities of data series have been investigated
by Merz et al. (2016). That study analysed flood records over the past 80 years
across different locations in Germany and identified significant deviations from ho-
mogeneous flood occurrence patterns. However, long flood series have not been
analyzed so far.

Lake Mondsee sediments exhibit a summer flood record (April-August) for the
last 7100 years (Swierczynski et al. (2013)). The flood record from Lake Mondsee
sediments is based on a robust chronology of annual resolution and include inter-
calated summer flood layers which are triggered by extreme precipitation events
(Kämpf et al. (2014)). The sediment record from Lake Mondsee presents an ex-
cellent study site to investigate statistical properties of the long paleoflood record
in detail. The focus of this study is on frequency, since the reconstruction of the
magnitudes of flood events is limited from this study site (Kämpf et al. (2014)).
Previous studies (e.g. Frances et al. (1994); Payrastre et al. (2011)) used historical
flood information for flood frequency analysis. These authors argued that the useful-
ness of integrating historical flood information archives for flood frequency analysis
strongly depends on characteristics of the time series, such as length of time se-
ries, return periods, magnitude of historical flood and threshold level of perception
(Frances et al. (1994)). While historical floods reflect extreme floods of highest,
often unknown magnitudes and low recurrence rates (>100 years), the paleoflood
record from Lake Mondsee sediments reflects summer floods with higher flood re-
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currence (Swierczynski et al. (2013)). Based on sediment calibration with 30 years
of discharge data, the paleoflood record reflects summer floods above Q = 80 m3/s
(Kämpf et al. (2014)). Furthermore, Lake Mondsee presents a long high resolution
summer flood series of the 7100 years with tight uncertainty bands (Swierczynski
et al. (2013)) favoring robust statistical analysis.
Having such a long reliable and detailed track record of flood occurrences available,
our goal in this paper is hence to investigate the marginal time series of floods by
statistical techniques, and to study to what extent a simple self-contained parsimo-
nious model can already capture the observed flood dynamics of Lake Mondsee over
the large time span of the series in a reasonable way. We would like to emphasize
that this study is done on a marginal level, i.e. the findings are based by solely
looking at the sediment flood record stand-alone, and not relating the flood activity
to other climate indicators, which will be the subject of a future study. In any case,
the simplicity of the obtained models in the present study looks striking in its own
right, and is meant to serve as a contribution to further more detailed discussions
of the topic.

The paper is organized as follows. Section 2.2 describes the study area and
Section 2.3.1 the available data. Sections 2.3.2–2.3.4 then introduce and discuss
the statistical techniques used for the analysis in the sequel. In particular, we
present a novel regression approach based on generalized linear models that models
trends and change-points at the same time and then enables to give statements
about the significance of either of these in the presence of the other. Section 2.4
then performs a statistical analysis for the occurrence of flood events for the Lake
Mondsee sediment record.

Section 2.5 concludes. This study is a cooperation of an interdisciplinary team
bringing disciplines and competences together from Geosciences, Mathematics, Statis-
tics and Socioeconomics to explore the potential of long flood series as recorded in
lake sediments.

2.2 Study Area

Lake Mondsee is a pre-alpine lake in Upper Austria/NE Alps (47◦49’N, 13◦24’E).
The lake is located at 481 m asl and has a surface of 14.2 km2 (Fig. 2.1). The lake
catchment of ca. 241 km2 is characterised by siliciclastic Flysch sediments in the
northern part with maximum elevation up to 1100 m asl (ca. 75%) and Triassic
Main Dolomite and Mesozoic limestones of the Northern Calcareous Alps (ca. 25%)
in the southern part with maximum elevation of 1783 m asl (van Husen, 1989).
Three main rivers mainly drain the northern part leading to siliciclastic sediment
input during flood events. Smaller rivers drain the steep parts of the southern
catchment (see further information in Swierczynski et al. (2013) and Kämpf et al.
(2014), Lauterbach et al. (2011)). Lake Mondsee is exposed to moist airmasses from
the Atlantic and the Mediterranean Sea. Flood events preferably occur in summer
after heavy precipitation events.
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2.3 Data and Methods

2.3.1 Flood data from natural geoarchives

At Lake Mondsee, a long sediment core of 15 m has been retrieved in 2005 using a
piston corer (Lauterbach et al. (2011)). These sediments exhibit biochemical calcite
varves with seasonal resolutions and thin intercalated clastic layers (Fig. 2.1). A
combination of microfacies analysis and geochemical element analysis enables to
identify and allocate thin flood layers composed of siliciclastic sediments which
have been transported from the catchment into the lake during flood events (Fig.
2.1). Detecting the event layers in the sediments, a flood chronology of the last
7100 years has been established (Swierczynski et al. (2013)). The chronology of the
flood events is based on robust varve chronology with an error ca 1,25% for the
last 4000 years. A calibration study for the sediment deposition of flood layers in
the distal coring location as deposited between 1976—2013 (Kämpf et al. (2014);
Swierczynski et al., in prep.) document that these summer flood events are caused
by heavy precipitation events. In this study we use the flood event chronology from
Lake Mondsee which has been previously published in the database PANGAEA
(https://doi.pangaea.de/10.1594/PANGAEA.818922).

Figure 2.1: Left: Location of Mondsee, geological characteristics and lake catch-
ment. Three main tributaries Griesler Ache, Wangauer Ache and Zeller Ache (cor-
ing location as a white circle); Right: Thin section from Lake Mondsee sediments
(modified from Swierczynski et al., 2012) with spring/summer sublayers enriched in
endogenic Calcium (Ca) and autumn/winter layers enriched in titanium (Ti), micro-
scopic flood layers are enriched in magnesium (Mg) and titanium (Ti) transported
from the lake catchment while thicker debris flood layers are enriched in magne-
sium (Mg) indicating local provenance of sediment from Northern Calcareous Alps
(Dolomite and Limestone).
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2.3.2 Statistical analysis

The Mondsee record contains information on the occurrence of a flood in any given
year for the last 7100 years. Over-all there are 271 recorded flood events. Figure
2.2 depicts the 270 inter-flood times (i.e., the years between two consecutive floods)
in chronological order. It is now interesting to investigate the properties of this
time series and to test model assumptions for the nature of the stochastic process
underlying the occurrence of the flood events. In particular, the goal is to investigate
properties of stationarity and dependence in time from a statistical perspective and
in a second step interpret the observed structures. The analysis of this paper
can be adapted and extended whenever additional reliable covariate information is
available. For most of the implementations below, we use routines with the software
package R (described in more detail at the respective places).

Figure 2.2: Inter-flood times (in years) of the Mondsee record arranged in chrono-
logical order.

Testing for a Poisson process

While the resolution of the Mondsee record is in years, we decide to still consider
continuous-time models for the counting process underlying the flood occurrences.
In fact, when modelling counting processes, observations are in general restricted
to a discrete observation grid, and in the present situation the length of the time
series (and the average time between observations) is such that this simplification
should not be problematic. In any case, we later also test for the model sensitivity
due to this binning of data points.

For a general reference to counting process models, see e.g. Daley and Vere-Jones
(2007). The simplest stochastic process for the occurrence of events is a Poisson
process, which is built on the assumption of lack of memory. More formally, let
N(t), t ≥ 0, be the number of flood events up to time t (where t = 0 refers to
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the start of the observation period). Then N(t) is called a homogeneous Poisson
process with intensity λ, if it has stationary and independent increments, and each
increment N(t)−N(s) (0 ≤ s ≤ t) is Poisson-distributed with parameter λ(t− s),
i.e. P(N(t)−N(s) = n) = (λ(t− s))ne−λ(t−s)/n!. A particular consequence of this
definition is that the times between events follow an identical exponential distribu-
tion (with rate λ) throughout the entire time span, their values are independent,
and the latter properties can be tested statistically. For the test of exponentiality
of inter-arrival times we will use a Kolmogorov-Smirnov test.

In case of rejection, it is common as a next step in such a situation to then suspect
an inhomogeneous Poisson process to be a viable alternative model. This process
takes into account changes (like trends) in the intensity over time, but otherwise
keeps the lack-of-memory property of the counting process in place (see e.g. Merz
et al. (2016) for a respective assumption for German flood records). Let λ(t) be the
time-inhomogeneous intensity function which needs to be estimated from the data
series. A non-parametric approach is a kernel estimation of the intensity function
following

λ̂(t) = m−1

n∑
i=1

K

(
t− Ti
m

)
, (2.1)

where K is a kernel function, n is the number of observed flood events (in our
case n = 271), Ti are the times of floods, and m is a bandwith that determines
the time horizon in the observed event series that is used for the estimation of the
intensity at any time t, see also Merz et al. (2016). Typical choices for the kernel
function are Gaussian and uniform shapes (see e.g. Diggle and Marron (1988)). For

the confidence interval around the estimate λ̂(t), we follow the procedure of Merz
et al. (2016). That is, we randomly select with replacement years with a flood from
the set of all years with floods to get a new series of event times with the same
number of events. Then the estimation procedure is repeated on all these samples
and a 95% confidence bound is built from these. If the resulting confidence interval
around λ̂(t) at some point in time does not contain the estimated homogeneous
intensity, this is an indication of the non-homogeneity of the process. However,
while previous studies in the literature stop at this point (see e.g. Wilhelm et al.
(2018a)), one still needs to test whether the flood time series can reasonably be
modelled by an inhomogeneous Poisson process. In this paper, this is done by time-
transformation. With a suitable time transformation based on the inhomogeneous
intensity, every inhomogeneous Poisson process can be expressed as a homogeneous
Poisson process with resulting exponential inter-arrival times in ’operational’ time
(see e.g. (Albrecher et al., 2017, Ch.V) for details). For this purpose we prefer to
work with an estimate based on a uniform kernel

λ̂(t) =
#years with floods between years t−m/2 and t+m/2

m
, (2.2)

i.e., we simply count the number of floods in year-windows of size m (for small m,
it can happen that for some t-values this empirical estimate is zero, in which case we
replace it by 10−2; at the left and right end of the interval, the average is taken with
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the respectively fewer available 0/1 entries). Since the result is potentially quite
sensitive to the choice of the bandwithm, we varym across a large number of feasible
choices and choose the one that turns out to be ’closest’ to an inhomogeneous
Poisson behavior and then study its significance. That latter significance test is
then simply one for a homogeneous Poisson behavior, but now for the new time
scale.

2.3.3 Change-points and dependence

It will often occur that neither the homogeneous nor the non-homogeneous Poisson
assumptions hold. When looking for alternative models, there are several directions
possible. In the context of this paper, we strive for a simple model that can already
explain the observed data reasonably well. One such possibility is to consider a
renewal model, where inter-flood times are independent and identically distributed,
but possibly follow another than exponential distribution (see e.g. Albrecher et al.
(2017)).
Such models are homogeneous in time, so we implement a modified version that
allows for changes throughout time. Concretely, we allow for change-points, before
and after which the dynamics can possibly be described by a simple model, but with
respective different characteristics. Such change-points could e.g. be interpreted as
a sudden external event or a change of conditions that forces an abrupt change of
the dynamics underlying the occurrence pattern of flood events.
In order to identify possible change-points, various statistical approaches are possi-
ble, see e.g. Brodsky and Darkhovsky (1993); Chen and Gupta (2011) for a general
reference on parametric and non-parametric methods.

Classical mean-variance test

A classical likelihood ratio test based on changes in both the mean and variance
of the inter-flood times is performed using the function cpt.meanvar in R. The
variant of the test used here is tailored towards exponential and independent data.
The exponential assumption can be challenged, but in a number of cases the final
model later on will result in inter-arrival times of similar shape to the exponential,
so that in those cases the test can be seen reasonably appropriate. The test also
allows for the detection of more than one change-point (using the option BinSeg,
which performs a clustering algorithm, cf. Chen and Gupta (2011)).

CUSUM Test

A second classical test that we perform is the non-parametric sequential Cumulative
Sums (CUSUM) test, which tests for detecting a change in the mean based on cu-
mulative sums and on a normality assumption, see e.g. Csörgö and Horváth (1997).
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A regression approach to change-point detection

Whenever one suspects a sudden change-point, an alternative is a smoother trend,
so we would like to have a test at hand that allows to directly compare whether
the inclusion of a drift or a change-point is significant in the presence of the other.
For that purpose, we need a nested model. There exist change-point detection al-
gorithms for linear regression models, which to some extent provide that property
(see e.g. Chen and Gupta (2011); Csörgö and Horváth (1997)). We will extend that
approach here by allowing for a (more general) Generalized Linear Model (GLM)
setting, since our variables are not normally distributed and the trend is not neces-
sarily linear over time. The algorithm is simple and transparent. We present it in
a general form, as it may be useful in other contexts as well.

Assume we have n observations y1, . . . , yn, (say, inter-flood times) and time
events x1 ≤ · · · ≤ xn (say, flood number or flood year). The algorithm is as follows:

1. For K = 1, . . . n− 1:
Choose a regression model which is most appropriate with the distributional
characteristics of the data. Generalized Linear Models (GLM’s) are a flex-
ible and suggested family (see e.g. McCullagh and Nelder (1989); in the
present case, the Gamma GLM is appropriate given the results of the sta-
tistical analysis on the particular data), and their implementation in R is
through the glm function. The covariates should include the binary variable
zk = 1xk≤xK (zk = 1 when xk is smaller or equal than xK , and otherwise
xk = 0), k = 1, . . . , n, which allows for the inclusion of a change-point. The
additional inclusion of xk corresponds to the introduction of a trend.

2. Find the k := k0 that leads to the largest t-value (equivalently, the smallest
p-value) for the hypothesis of not having a change-point, i.e. find the most
significant coefficient (from k = 1, . . . , n) of the variable zk with respect to
the t-value (Wald test) that is outputted automatically when applying the R
function summary to a glm object.

3. Test for the significance of the selected change-point k0 by performing Analysis
of Variance (ANOVA) against the model without that change-point. That is,
fit the model k0 with the deletion of the covariate zk and compare the two
models with the anova function in R. A related useful function is drop1, which
does the two steps automatically (for every variable in the original model).

4. On the basis of the above test, decide for a model with a trend, with a change-
point, or both.

Remark 2.3.1. The above procedure tests for difference in means. If a difference
in variance is desired, it is best to first fit a model to the original data and then
perform the change-point analysis on the residuals of the fitted model.

Remark 2.3.2. The covariates included in Step (1) above do not necessarily enter
linearly into the modelling of the mean. The way they affect the variate is through
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the link function, and this is another parameter to be chosen in Step (1). The
covariate choices β1zi or β1zi + β2xi are good choices.

Remark 2.3.3. Finally, note one further advantage of this regression approach
above: both the classical mean-variance test and the CUSUM test rely on inde-
pendent inter-flood times, so that their application for lakes with a higher degree
of correlation becomes doubtful. However, with the regression above, some of the
dependence might be explained through the covariates so that the residuals may in
fact be close to independent. In other words, the regression approach is applicable
in a larger set of scenarios than the previous methods to detect change-points.

For the lake sediment record, we will apply the above procedure in Section 2.4
with the Gamma family with canonical link function (negative inverse function),
see e.g. Frees (2009). Let xk = k be the observation number and yk the inter-flood
times. For K = 1, . . . , n we then model the mean as

E(yk) = − 1

β0 + β1xk + β21xk≤K
, βi ∈ R, (2.3)

and we identify the K with the largest absolute resulting t-value. The resulting
coefficients for β1 and β2 then decide whether a (in our case decreasing) trend
and/or a change-point for the distribution of inter-flood times are present in the
time series, cf. Section 2.4.

Dependence between inter-flood times

In order to assess the (in)dependence between inter-flood times we look at the
corresponding auto-correlation function (ACF) and partial auto-correlation function
(PACF).

Furthermore, once a change-point is detected, the next task is then to test
whether before and after that change-point there is sufficient evidence for indepen-
dence among inter-flood times. We also do that initially with an ACF and PACF
analysis.

Since we are not only interested in correlations but more generally in the inde-
pendence assumption between inter-flood times, we further lag the series and use
an empirical copula test of independence between the resulting lagged vectors. This
is done by calling the serialIndepTest in R, which is an implementation of the
statistics developed in Genest and Rémillard (2004). The basic idea behind this test
is to compare the empirical copula of the data against the copula of independent
data, through a suitable measure, which can then be arranged in a plot according
to the lagged vectors that were considered. The standard way of plotting the test
is through the is through a dependogram (dependogram function in R), which is
merely a plot of the values of the serial independence statistic for different selec-
tions of lagged vectors. Critical values are automatically given (in the same way
that bands are given in ACF and PACF), which are such that the simultaneous
acceptance region has probability 0.95 under the null hypothesis of independence.
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2.3.4 Fitting a renewal model

Once a change-point is detected, and independence is plausible in each resulting
period, the next task is to identify an inter-flood time distribution for each of the
two periods that provides a reasonable fit to the sediment record. That is, within
each period, the inter-flood times Wi, i = 1, . . . n are considered to be independent
and identically distributed variables. For the class of distributions in which we look
for the best fit, we choose the general class of phase-type distributions. This class
extends the idea of an exponential distribution (with lack of memory) to a conca-
catanation of memory-less components by introducing κ states and a homogeneous
Markov chain that transits between these states according to fixed transition inten-
sities. The realization of the random variable is then the total amount of time a
trajectory spends in the chain from the initial state until it reaches an additional
final (absorption) state (see e.g. Asmussen and Albrecher (2010) for details). The
previous exponential distribution is then the special case of having only one state
before moving to absorption. The Markov chain starts according to the probability
vector π containing the κ probabilities to start in state j (j = 1, . . . , κ) and the
dynamics of the chain are given by a sub-intensity matrix T . It is any matrix that
satisfies to be non-positive in the diagonal, non-negative outside of the diagonal,
and row-wise sums to zero. The element Tij for i 6= j of the matrix has the in-
terpretation of being the transition rate from state i to j. The resulting survival
function is

P(Wi > x) = π exp(Tx)1, x ≥ 0,

where 1 is the (κ×1)-vector of 1’s. Phase-type distributions are not only an intuitive
way to extend the idea of memorylessness, but also represent a very broad family of
distributions on the positive real line. In particular, any other distribution can be
arbitrarily closely approximated by a phase-type distribution (if only the number κ
of states and the intensity matrix T is chosen appropriately). However, the phase-
type class is quite rich on its own and often it is the case that an exact distribution
from this class produces a nice fit. For instance, one of the most tractable phase-type
distributions is the hyper-exponential distribution, which corresponds to T being
zero in the off-diagonal elements and is interpreted as a mixture of exponential
distributions. The data will determine the needed size κ, and hence the complexity
of the model.

We fit such a model within each period using maximum likelihood via an EM
algorithm (utilizing the C program EMpht, see e.g. Asmussen et al. (1996)).

One advantage of such an explicit model is that one can make quantitative
statements about quantities like the distribution of the residual waiting time until
the next flood, given the time since the last flood (under the assumption that the
model represents the actual dynamics well). For any phase-type distribution, one
can calculate the probability that the next flood does not appear within the next
x − y years given that the previous flood occurred y years ago (see e.g. Asmussen
and Albrecher (2010)) as

S(x|y) =
π exp(T (x))1

π exp(Ty)1
, x ≥ y,
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and the respective expected value of number of years until the next flood is then
given by

− π exp(Ty)

π exp(Ty)1
T−11.

Further details on the implemented methods are given in Section 2.4.

2.4 Results and Discussion

2.4.1 Testing for a Poisson process

We first focus on the identical distribution behavior and will deal with dependence
later. One can see even with the naked eye from Figure 2.2 that there does not
seem to be a homogeneous behavior throughout time. Indeed, a respective statis-
tical test on exponentiality of the interflood times rejects this hypothesis with a
p-value below 10−15, so the assumption of a homogeneous Poisson process for the
occurrence of floods for the Mondsee record can immediately be rejected, and flood
events do show some degree of clustering.

Figure 2.3 depicts the resulting estimate λ̂(t) for a Gaussian kernel function (cf.
(2.1)) with bandwidth m = 100 years (i.e., the standard deviation of the kernel).
The rugs represent the actual flood events. The process was reflected at the borders
to compensate for missing values outside the considered time horizon.

The plot also contains the estimate of a constant intensity under a homogeneous
Poisson assumption together with bootstrap confidence intervals from resampling
the (supposedly) exponential interflood times.

Figure 2.3: Estimated inhomogeneous intensity together with confidence intervals.
The rug depicts the actual occurrence of floods in the Mondsee record

One can read the resulting plot in various ways. First, it reconfirms that the
hypothesis of a homogeneous Poisson process can be rejected, with the estimated
intensity leaving the confidence interval around the homogeneous estimate clearly
and for a siginificant proportion of the time. Vice versa, the estimate of the ho-
mogeneous intensity is outside the confidence interval around the inhomogeneous
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estimate for most of the time. More importantly, one sees a strongly time-varying
pattern of the intensity function with a long-term tendency of increase.

As described in Section 2.3.2, we now time-transform the process according to
the intensity estimate (2.2). Figure 2.4 depicts the inter-flood times after time trans-
formation for a small, medium and large value of window size m (m = 6, 50, 400).
If the inhomogeneous Poisson assumption were appropriate, these points should
now follow a unit exponential distribution. The smooth lines depict a natural cubic
spline with four knots fitted to each of the three (now homogenous) datasets, indi-
cating (particularly for larger m) a reasonably constant unit-mean behavior. The
choice of m that minimizes the Kolmogorov-Smirnov criterion for an exponential fit
is m = 50. However, even in this case, the resulting p-value is only 0.007, rejecting
the assumption of an inhomogeneous Poisson process for the Mondsee lake record.
Hence, while clustering of flood events is observed in the data, the inhomogeneous
Poisson process is not the appropriate model to account for this clustering.

Figure 2.4: Inter-flood times after being time-transformed according to an empirical
moving average of window size 6 (black), 50 (blue), and 400 (orange), respectively.
By color, the lines are four-spline regression curves added to the points for visual
tracking of their mean throughout time.

2.4.2 Change-points and dependence

We saw above that the assumption of a (homogeneous or inhomogeneous) Poisson
process has to be rejected on the basis of the resulting marginal distribution of
inter-flood times not being exponentially distributed. For this conclusion, the de-
pendence pattern between the inter-flood times had yet to be tested. In order to
find a suitable alternative model, the ACF and the PACF for the series of inter-flood
times was examined and it was readily concluded that across the entire time range
the inter-flood times are not sufficiently uncorrelated to directly pursue a renewal
model with independent (and non-exponential) inter-flood times.
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We hence look for possible change-points. As outlined in Section 2.3.3, we start
with a classical test based on both the mean and variance of the inter-flood times,
which allows for the detection of also more than one change-point. The result is
a single significant change-point at the observation number 133, corresponding to
year 350 AD (cf. Figure 2.5). Indeed, the identified change-point in Figure 2.5
could roughly be detected even by visual inspection of the time series. In order to

Figure 2.5: Inter-flood times (in years) with the suggested change-point at obser-
vation number 133.

test the presence of a change-point against an alternative description by a smooth
trend over time, we now apply the regression approach to change-point detection
as outlined in Section 2.3.3, using the Gamma family with canonical link function
(inverse function). This choice is justified by the fact that the actual distribution of
inter-flood times is close to that of a Gamma distribution, and the latter is within
the exponential dispersion family. Here we have xk = k, the yk are the inter-flood
times and K = 1, . . . , 269. We model the mean according to (2.3), and we look
for the largest absolute t-value of the β2 parameter (the absolute value of the ratio
between the coefficient β2 and its standard error). The latter is plotted in Figure 2.6
as a function of K, and one sees that the maximum is achieved for observation 133.
Note that this is in remarkable correspondence with the change-point obtained by
the classical mean-variance procedure above. The resulting model includes both a
change-point and a trend, see the dashed line in Figure 2.7. The plot also contains
the best model fits without a change-point (solid line) and without trend terms,
respectively (dashed-dotted line). Due to the nested model construction, one can
now test for significance of keeping or rejecting terms. An ANOVA likelihood ratio
test tells that dropping the change-point is highly rejected (p-value of 0.001953)
while the drift term is close to being insignificant, its dropping not being rejected
at a 5% significance level (p-value of 0.08001). Note that the best fit can lead to
very different decrease rates before and after the change-point (since the value of β2

is not restricted), and indeed the downward trend is virtually inexistent after ob-
servation 133 (correspondingly, the absolute values of the best fit with and without
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Figure 2.6: t-values as a function of observation, for the change-point coefficient in
the regression modelling of inter-flood times of Lake Mondsee. The change-point is
detected as before at observation number 133.

trend virtually coincide after the change-point). That is, only the drift term during
the first period is responsible for the near-significance of keeping the trend in the
model when tested against the simpler model with no drift.

We also compared the change-point detection with the CUSUM method, which
identifies a change-point at 131, which is again close to the value of 133.

Altogether, we hence settle for the single change-point at observation 133 (i.e.,
year 350 AD). In addition, in view of the almost insignificant trend term in the
above model, and in favour of model simplicity, we decide to remove the trend
from the final model, which allows us to view the inter-flood times as identically
distributed random variables within their period. This assumption is in any case
not restrictive for the second period, where the drift term is not present at all.

The next task is then to check whether the two periods (before and after the
change-point) exhibit dependence or independence among their inter-flood times.
The result of the ACF suggests that the change-point divides the data into two
time series that are each virtually un-autocorrelated. Hence, the autocorrelation
that was present in the full series was rather due to the data being comprised of two
homogeneous periods of different behaviour (namely of different mean), rather than
from the independence assumption being violated at each of the two periods. The
PACF suggested the same behaviour. It is also worth mentioning that the ACF
and PACF of the square of the inter-flood times and of the successive differences of
the inter-flood times are also within the confidence bounds. Analogous results were
obtained using dependograms, so we consider it reasonable to assume independence
between inter-flood times.
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Figure 2.7: Regression models for change-point and drift modelling.

2.4.3 Fitting a renewal model

In view of the above findings, the next task is then to identify an inter-flood time
distribution for each of the two periods that provides a reasonable fit to the sed-
iment record. That is, within each period, the inter-flood times are considered to
be independent and identically distributed variables. A simple exponential distri-
bution (with a different parameter for before and after the change-point) for Wi

is amply rejected (with p-values below 1e-15). As described in Section 2.3.4, we
hence consider phase-type maximum likelihood fitting via an EM algorithm for the
subclass of hyper-exponential distributions (which are mixtures of exponential dis-
tributions) gives, for each of the two periods, an excellent fit for two states already:
for the first period the log-likelihood (LL) is -618.042 for both two and three states,
and -617.924 for a general phase-type distribution with three states. For the second
period the corresponding values are -469.371, -469.371 and -468.266. This may be
considered rather surprising, as it shows that two states (and a mixture of two ex-
ponential distributions) already suffice to provide a reasonable fit to the data, and
one does not improve by allowing a third component in the mixture, and improves
very little by allowing an arbitrary three-state phase-type distribution. Any slightly
parsimonious selection method – let alone AIC or BIC – will unequivocally choose
this two-state hyper-exponential model. The resulting parameter estimates are:

π1 = (0.211, 0.789), Diag(T1) = (−0.251, −0.020),

π2 = (0.305, 0.695), Diag(T2) = (−0.521, −0.060),

Correspondingly, the resulting model can be interpreted in the following way: in
the first period, after each flood occurrence, with a probability of roughly 0.79 there
follows an exponential waiting time with mean 1/0.02=50 years and with probabil-
ity 1-0.79=0.21 there is an exponential waiting time with mean 1/0.2=5 years. In
the second period, after each flood occurrence, with a probability of roughly 0.69
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there follows an exponential waiting time with mean 1/0.06=16.6 years and, al-
ternatively, with probability 1-0.69=0.31 there follows an exponential waiting time
with mean 1/0.5=2 years. In other words, one may interpret this as two mechanisms
present, one with a long and one with a much shorter return period, and after the
change-point around 350 AD the presence of these two mechanisms stays present
with very similar likelihood of appearance, but the return period is significantly
smaller for both of them.

For completeness, let us also consider a phase-type fit for a renewal model over
the entire 7100 years of the Mondsee record (ignoring the autocorrelation present
on the entire series) In that case, a three-state hyper-exponential model with pa-
rameters

πF = (0.375, 0.258, 0.367), (2.4)

Diag(TF ) = (−0.053, −0.398, −0.020)

fits the data with a log-likelihood value of -1114.991, while a four-state fit does not
improve this LL, and a general phase-type distribution with three states also yields
the same LL. A general four state fit yields a LL of -1114.340. This can be seen
as a quite convincing indication that (2.4) would be a reasonable model, i.e. three
co-existing mechanisms with exponential waiting time of mean 100/1.9 ≈ 52.6,
100/5.3 ≈ 18.8 and 100/39 ≈ 2.6 years, respectively. Hence, the full series contains
two mechanisms (states) that describe big inter-flood times, roughly corresponding
to the respective state of of the first and the second period. The third state is
the one responsible for the small return periods (mixing the two states with small
return periods of the two separate series) and the mean lies between the respective
values of the small return periods of the two separate periods (the concrete mix-
ture probabilities are determined by the fact that the first period with about 5400
years contains more instances than the second with about 1700 years, so that the
value is closer to the former; similarly for the initial probabilities). One may also
argue in this context that for the full time period there was not enough statisti-
cal evidence for the increased complexity of keeping both states with small return
periods separate in terms of a maximum likelihood tradeoff, while for the longer
return periods this is the case. In turn, the detection of the change-point allowed to
disentangle the effect of the mechanism with small return period into two separate
mechanisms that are different before and after the change-point. In addition, this
increased granularity of the model suggests that the mechanism responsible for the
larger return period changed in time towards one with significantly smaller return
period, which contributes to the increase of flood events. This nicely illustrates how
refined models can lead to a better understanding of involved flood risk.

It is quite surprising that a rather simple renewal structure with one change-
point after about 5400 years suffices to develop a very reasonable model. In partic-
ular, the pattern observed over the last 1700 years can reasonably be described by a
model without a trend, but rather the co-existence of two regimes, one with a longer
return period (2 years) and one with a shorter return period (17 years). One may
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interpret this result as the (again possibly surprising) finding that from the avail-
able long-time record one can not conclude in a statistically significant way that the
flood activity has increased lately, as only the one change-point 1700 years ago is
identified, and the dynamics since then can still be accommodated within the same
simple mechanism. However, we would also like to emphasize that this statement is
about statistical significance with respect to the long time horizon of 7100 years. As
is seen in Figure 2.3, on the intensity level one does observe a substantial increase
of recent flood activity, following a lower activity some centuries ago. However, it
is interesting that the parsimonious model identified in this paper demonstrates a
mechanism that allows to accommodate these changes within a stationary view on
longer time scales. Note that this is only possible after a change-point in history
about 1700 years ago, and for the 5400 years before that, again a similarly simple
model can capture the empirically observed flood occurrence pattern.

As the set of considered models was quite large, it is indeed remarkable that
the resulting model turns out to be so parsimonious. On the other hand, the non-
identifiability of phase-type distributions makes it impossible to make inference on
the parameters directly. A Monte Carlo confidence band for the empirical distri-
bution function is the usual alternative and is shown in Figure 2.8. The black step
function corresponds to the empirical cumulative hazard and the 95% confidence
bands were obtained by simulating empirical hazards from the fitted distribution.

Let us finally look at the sensitivity of the resulting model due to the binning of
flood events into the annual grid. For that purpose, one can assume that inter-flood
times are interval-censored at plus and minus one year of the current estimate. The
resulting fit is easily handled by the EM algorithm and yields an almost identical
distribution function (and, equivalently, cumulative hazard function). Figure 2.8
plots both fitted hazard rates for the dataset (binned observations in red, observa-
tions assuming censoring in blue) together with the empirical cumulative hazard of
the data in black. The confidence band is for the fitted phase-type curve and was
generated with 106 Monte Carlo simulations. One observes that the resulting fit is
rather satisfactory and that the effect of the annual binning of the flood event date
seems not to be problematic.

2.4.4 Comparison to an analysis with lower resolution data

Previous studies using sediment data often had a lower resolution available, see
for instance Wirth et al. (2013). In order to illustrate the advantage of the high
resolution of the Lake Mondsee sediment record, let us consider in the following a
situation with mildly lower resolution.

Concretely, we bin the inter-flood times into blocks of three observations (with
the final block containing four inter-flood times). Hence, instead of 270 data points
we now deal with 90 data points, each of which comprises the sum of three inter-
flood times (i.e., instead of knowing each inter-flood time, we only know the time
when three inter-flood times have passed). Additionally, each such sum is allowed
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Figure 2.8: Fitted cumulative hazard of the (phase-type) hyper-exponential model
with two states without (red) and with (blue) censoring.

an inaccuracy of plus minus 3 years (which is dealt with by censoring techniques).

Interestingly, the cpt.meanvar test identifies again one (and only one) statisti-
cally significant change-point at the year 350, which is identical to the one identified
for the full resolution data. Figure 2.9 depicts the resulting change-point.

After subdividing the data into the two periods, independence is again not
rejected from the correlation and dependogram plots. A statistical fit of the aggre-
gated inter-flood times identifies a generalised Erlang distribution of order 3 as an
excellent fit for both periods, which is a sum of 3 independent, but non-identical, ex-
ponential random variables. The corresponding LL is −176.343 for the first period
and −124.536 for the second period. For comparison, a general phase-type distri-
bution with nine states yields a LL of −175.153 and −123.078, respectively. This
is a minor improvement, while the resulting model would contain 32 − 3 + 2 = 8(!)
additional parameters, so that any criterion like AIC, BIC chooses the generalised
Erlang model at a glimpse. The resulting exponential parameters of the three states
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Figure 2.9: Binned inter-flood data with a suggested change-point.

are

Diag(T1) = (−0.0164,−43.596,−0.016)

Diag(T2) = (−0.054,−92.395,−0.054).

Note that for each period there are two states with virtually identical intensity
values, which are very similar to the intensity value of the state with the longer
return period in the full-resolution model. However, the difference is that in the
binned model two such components with longer expected return periods appear
with certainty, whereas in the model calibrated from full resolution they only have
a probability 0.78 and 0.69, respectively, to occur. Both before and after the change-
point, the third state in the binned model (which also occurs deterministically) has
an extremely small (in view of the annual time grid underlying the model, one
may even say degenerate) expected time until the next flood. Consequently the
latter would have to be considered an artefact and, in essence, the coexistence of
two parallel mechanisms can not be recovered in a meaningful way in the lower
resolution model. As the expected time of the short (degenerate) inter-flood time
may be considered negligible, the mixture of three exponentials in the full resolution
model is mereley replaced by the sum of two exponentials of the regime with longer
return periods in the lower resolution model, and the respective conclusions one
would draw from the modelling are significantly different.

This illustration emphasizes the advantage of the availability of the higher res-
olution, leading to a model with much more structure, yet still low complexity.

2.4.5 The waiting time until the next flood

As already outlined above, a phase-type renewal model enables us to compute
expected values of quantities of interest, like the number of years until the next
flood. For instance, in the second period, if already 20 years have passed since the
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last flood, the expected waiting time until the next flood can be calculated explicitly
to be roughly 17 years. Figure 2.10 depicts this expected value as function of years
since the last flood (purple line). It may seem counter-intuitive at first that this
number increases, the longer the time since the last flood. However, the nature of
the exponential distribution with its lack of memory is responsible for this effect,
as with time passing it becomes more likely that the mechanism with longer return
period is present, and the latter has lack of memory with mean around 17 years.
In case our phase-type fit had identified some sum (rather than the mixture) of
exponentials as the feasible model, then the situation would be different and the
expected time until the next flood would decrease as a function of time since the last
flood. To illustrate this, consider the binned model (with lower resolution) studied
in Section 2.4.4, where a generalized Erlang(3) distribution was the obtained model
for the aggregate time of three-inter-flood times. For the expected value of the next
flood under that (lower) model resolution one has to divide the aggregate mean
by 3 (since the aggregated variables are exchangeable). Figure 2.10 depicts the
result, again for the period after the change-point (blue line). Note that the line
converges to 100/(3×5.4446) = 6.1222, which is one-ninth of the mean of the largest
individual exponential mean in the sum. Both curves start close to the sample mean
of the inter-flood times (black line), and the model implications are dramatically
different for larger number of years since the last flood. The additional resolution
hence allowed to decipher the fine structure of the model and its consequences in
a way that was not to be expected from the aggregated data situation. This is a
further illustration for the sensitivity of these results with respect to the model and
the available resolution of flood record data.

Figure 2.10: Expected time until next flood as a function of years since the last
flood for the data from the second period.
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2.5 Conclusion and Outlook

This paper investigated statistical properties of the well-dated flood record of Lake
Mondsee covering the last 7100 years. It was shown that neither a homogeneous
nor an inhomogeneous Poisson process are appropriate models to characterise the
paleoflood records. Instead, we identified a significant change-point around 350 AD,
together with a strikingly simple renewal structure before and after that change-
point, leading to an increase of flood intensity for the second period. We developed a
more versatile nested regression approach to distinguish between trends and change-
points. We indeed obtain that change-points are a statistically more satisfactory
description of the dynamics than a trend for the Mondsee paleoflood record under
study. We emphasize that the change-point in flood dynamics is observed on a
purely statistical basis. The question of whether there is a causal relation to other
physical changes linked to the climate around this period is beyond the scope of this
study and will be subject of future research. But if such investigations, as to whether
causal relationships in the complex dynamics of the atmosphere / geosphere and hy-
drosphere nexus can be detected, are carried out and further empirical inquiry into
other sorts of paleodata could eventually explain the change-point that we detected
here, this will come as a valuable contribution to the broader questions mentioned
in the introduction: With a changing climate, which change-points do we have to
expect in our flood regimes and how can we thus reduce the uncertainty in flood risk
modelling facing climate change? One such important issue to be solved for all the
local flood regimes that paleoflood data are such an impressing witness of, is iden-
tifying the respective meteorological regimes that lead to, or were in the past likely
to have led to high precipitation events. This is beyond the scope of this study, but
we believe that the results presented can encourage further interdisciplinary studies.

When sticking to the target of learning more about potential future flood dam-
ages from the study of paleoflood records certainly another challenge will be the
following: Understand well, how modern records of flood processes such as gauge
data or damage data can be reasonably linked to the sediment data on the actual
end of the time series. One fascinating aspect about sediment data for a statistician
certainly is the fact that lakes kept the memories of past floods for such a long time.
While the approach here was a purely statistical one, it will be interesting to link
the more recent flood records to human interventions such as river regulation etc.

For now we conclude, that for investigating climatic and hydrological changes in
well-dated paleoflood series, high-resolution data are crucial. The statistical anal-
ysis of Lake Mondsee sediments performed in this paper demonstrates that the
resolution of a paleoflood record is important for the detection of change-points.
Similar to rare historical floods, the analysis of such time series is affected by the
recurrence times of floods. We showed that the flood dynamics inferred from the
data can be quite different under the higher resolution as compared to models that
would have been suggested by lower-resolution data. Consequently, the complete-
ness as well as the uncertainty within a record is an important information for
adapting an appropriate method.
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One of the main findings of the present study is that for the Lake Mondsee record
under study, it turns out that the use of change-points leads to a surprisingly par-
simonious satisfactory statistical description of the flood occurrence pattern over
time. We hence encourage the use of change-points for robust flood chronologies
to improve risk assessments. Change-point analysis can also be used for other pa-
leoflood records and hydro-climatic records. The PAGES Initiative (Floods Work-
ing Group) promotes the collection of paleoflood datasets with related metadata
(http://www.pages-igbp.org). Information about dating chronology and infor-
mation about completeness of floods as well as further flood information beyond
the paleoflood record (calibration studies) presents an excellent opportunity to use
the PAGES database of past floods for further statistical treatment. Further inves-
tigations of the past can then lead to an increased insight in mechanisms and hence
also the understanding of the future to come.
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Chapter 3

Dividends: From Refracting to
Ratcheting

This chapter is based on the following article:

Albrecher, H., Bäuerle, N., & Bladt, M. (2018). Dividends: From refracting to
ratcheting. Insurance: Mathematics and Economics, 83, 47-58.

Abstract

In this paper we consider an alternative dividend payment strategy in risk theory,
where the dividend rate can never decrease. This addresses a concern that has often
been raised in connection with the practical relevance of optimal classical dividend
payment strategies of barrier and threshold type. We study the case where once
during the lifetime of the risk process the dividend rate can be increased and derive
corresponding formulae for the resulting expected discounted dividend payments
until ruin. We first consider a general spectrally-negative Lévy risk model, and
then refine the analysis for a diffusion approximation and a compound Poisson
risk model. It is shown that for the diffusion approximation the optimal barrier
for the ratcheting strategy is characterized by an unexpected relation to the case
of refracted dividend payments. Finally, numerical illustrations for the diffusion
case indicate that with such a simple ratcheting dividend strategy the expected
value of discounted dividends can already get quite close to the respective value
of the refracted dividend strategy, the latter being known to be optimal among all
admissible dividend strategies.

3.1 Introduction

Starting with de Finetti’s work de Finetti (1957), the study of optimal dividend
payout strategies in collective risk theory has been a very active field of research
over the last 60 years. It is nowadays well-known that in order to maximize the
expected aggregate discounted dividends until ruin, it is optimal to pay dividends
according to a band strategy, which in a number of cases collapses to a barrier

55
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strategy, see e.g. Gerber (1969), Shreve et al. (1984), Schmidli (2008) and Azcue
and Muler (2014). When this optimal control problem is considered with an upper
bound on the dividend rate, then in many cases a refracting dividend strategy (or,
synonymously, a threshold strategy) is optimal (i.e., no dividend payments up to
a certain barrier level, and dividend payments at maximal allowed rate above that
barrier), see for instance Jeanblanc-Picqué and Shiryaev (1995), Asmussen and Tak-
sar (1997) for diffusions and Gerber and Shiu (2006a) and Lin and Pavlova (2006)
for the compound Poisson process. Since then numerous extensions and variations
of the dividend problem have been considered, many of which leading to intricate
and interesting mathematical problems, see e.g. Albrecher and Thonhauser (2009)
and Avanzi (2009) for surveys on the topic.
Among these variations, some also address the issue that the theoretically opti-
mal refraction strategy may not be realistic when it comes to implementation in
practice. One constraint is that dividends can only be paid out in a discrete rather
than a continuous-time fashion, see Albrecher et al. (2011) for a contribution in this
direction for random discrete payment times. Another problem with the threshold
strategy is the strong variability of payment patterns across time. In Avanzi and
Wong (2012) it was proposed for a diffusion process to consider dividend payments
that are proportional to the current surplus level, which leads to much smoother
dividend streams. Recently, the respective analysis of performance measures was
extended to the compound Poisson model in Albrecher and Cani (2017). In Bäuerle
and Jaśkiewicz (2015) and Bäuerle and Jaśkiewicz (2017) the aim was to maximize
risk-sensitive dividend payments in discrete time which, in case of exponential util-
ity, results in optimizing a weighted criterion of expectation and variance of the
dividends.

In this paper we would like to consider another constraint that is often mentioned
in discussions with practitioners. Concretely, it is at times considered desirable to
have a dividend payment stream that does not decrease over time (which we will
refer to as a ratcheting strategy, see e.g. Dybvig (1995)). One reason is that a de-
crease may have a negative psychological impact on shareholders and the considered
value of the company in general. Sticking to the analytically much more tractable
situation of a continuous-time model, the over-all mathematical question could then
be to find the optimal dividend payment pattern with a non-decreasing dividend
rate. This general optimal control problem is a considerable challenge, as one im-
mediately is put into a two-dimensional setting with one variable keeping track of
the current dividend rate, so that the usually advantageous Markovian structure
of the surplus process is lost even for simple processes. We hence in this paper
will consider only a first step towards improving the understanding of this general
problem, namely to allow for a constant dividend rate through-out the lifetime of
the risk process, which once during the lifetime can be increased to a higher level.
The task then is to find the optimal rates before and after that change, and the
surplus level at which this change should take place, so that the expected over-all
discounted dividend payments are maximized. The only constraint in this context
will be that the dividend rate must never exceed the drift rate of the original pro-
cess. This setting leads to quite explicit results and will give some insight into
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the nature of the problem. A particular focus will be given on the comparison of
the resulting optimal ratcheting strategy with the best refracting strategy, which
is known to be optimal among all admissible dividend strategies in the absence of
such a ratcheting constraint.

We will first deal with the general case of spectrally-negative Lévy processes
in Section 3.2. After collecting some necessary preliminaries, we adapt an exist-
ing formula for refraction strategies that also allows for dividend payments below
the barrier. We then derive a general formula for the expected discounted dividend
payments until ruin according to a ratcheting strategy in terms of the scale function
of the underlying Lévy process, and derive a criterion for the optimal ratcheting
barrier. Subsequently, in Section 7.3 we refine the analysis for the case of a pure
Brownian motion with drift (diffusion approximation). While many of the respec-
tive formulas can in fact be obtained from Section 3.2 by substituting the simple
form of the respective scale function, we derive a number of formulas in that section
in a self-contained, sometimes more direct, way. This adds another perspective to
the problems under study, and also allows to read parts of that section indepen-
dently of the general Lévy fluctuation theory that underlies the approach in Section
3.2. We then give some numerical illustrations on the performance of both the re-
fracting and ratcheting strategy, which somewhat surprisingly indicate that the best
ratcheting procedure is not far behind the best refracting (and hence over-all best)
dividend strategy. We also derive a somewhat surprising criterion for the optimal
ratcheting barrier in terms of a matching with a refracting strategy. In Section 7.4
we then proceed to work out the formulas of Section 3.2 to the particular case of
a Cramér-Lundberg risk model with hyper-exponential claim sizes. We also show
that the optimality criterion for the diffusion case mentioned above no longer holds
in the compound Poisson setting, the reason being the non-differentiability of the
refraction value function at the barrier level.
One natural concern for the implementation of a ratcheting strategy of the above
kind is that after the switching, the higher dividend rate will always stay, even when
the surplus level gets low. Correspondingly one may expect that ruin is more likely
or happens earlier, particularly when the optimal barrier level is chosen according
to the profitability criterion of maximal expected dividend payments. Also, the
optimal racheting barrier is in general higher than the optimal refraction barrier.
In Section 3.5 we discuss this issue further and quantify it in terms of expected ruin
time, given that ruin occurs. The numerical results in fact indicate that, conditional
on ruin to occur in finite time, the expected time to ruin is larger for the ratcheting
strategy. Finally, Section 3.6 contains some conclusions.

3.2 The Spectrally-Negative Lévy Risk Model

Let us consider a spectrally-negative Lévy process Y = {Yt}t≥0, i.e. a Lévy process
with only negative jumps, and which is not a.s. a non-increasing process. We assume
that Y0 = x ≥ 0 and the drift of this process is positive, and call such a Y a Lévy
risk process. Our focus in this paper will be on risk processes constantly paying out
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dividends at rate c1 ≥ 0 (so possibly c1 = 0), and in certain periods (to be specified)
at an increased rate c1 + c2, with c2 > 0. Correspondingly, the Lévy processes of
interest are

Xt = Yt − c1t, X̃t = Yt − (c1 + c2)t.

for all t ≥ 0. Define the Laplace exponent

ψ(θ) := logEeθX1 ,

which is finite for at least all θ ≥ 0, and denote by Φ(δ) the largest root of the
equation ψ(θ) = δ. The δ-scale functions W (x) and Z(x) of the process X are
defined for any δ ≥ 0 as∫ ∞

0

e−uxW (x) dx =
1

ψ(u)− δ
, u > Φ(δ),

Z(x) = 1 + δ

∫ x

0

W (y)dy.

The respective δ-scale functions for the process X̃ will be denoted by W(x) and Z(x),
respectively, and φ(δ) shall be the corresponding largest root of ψ(θ)− c2θ = δ.
Define now for a fixed b ≥ 0 the first passage times

τ−0 := inf{t ≥ 0 : Xt < 0}, τ+
b := inf{t ≥ 0 : Xt > b}.

We will be working on a canonical probability space for all the processes involved,
consisting of the space of all right-continuous functions with left-sided limits, with
a probability law denoted by Px, and associated conditional expectation Ex, given
that the process starts at x ≥ 0. It is well-known from Lévy fluctuation theory that
one has

Ex
(
e−δτ

+
b ; τ+

b < τ−0

)
=
W (x)

W (b)
(3.1)

and

Ex
(
e−δτ

−
0 ; τ−0 < τ+

b

)
= Z(x)− Z(b)

W (x)

W (b)
, (3.2)

for any 0 ≤ x ≤ b, see for instance (Kyprianou, 2014, Ch.8).

3.2.1 Refracting Strategy

For reasons of comparison, let us now first recollect a formula from Kyprianou and
Loeffen (2010) for the expected sum of discounted dividends until ruin under a
refraction strategy. For any threshold level b ≥ 0, the respective modified Lévy risk
process is given by

Ut = Xt − c2

∫ t

0

1{Us>b} ds, t ≥ 0. (3.3)

The interpretation is that dividends are paid at rate c1 while the original process
Y is below the threshold b, and at rate c1 + c2 above the threshold. Note that the
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existence of the process (3.3) is in fact not as straightforward as one may expect,
and one has to require

c2 ∈
(

0, γ +

∫
(0,1)

xΠ(dx)

)
,

whenever X has paths of bounded variation, where γ is the canonical drift coeffi-
cient in the Lévy-Khintchine representation of X, and Π is the corresponding Lévy
measure, see Theorem 1 of Kyprianou and Loeffen (2010) for details.

Define

τ = inf{t > 0 : Ut < 0}

as the time of ruin of the process U defined in (3.3). A slight adaptation of Eq.
(10.25) of Kyprianou and Loeffen (2010) (which corresponds to the case c1 = 0)
then leads to a formula for the expected sum of discounted dividends until ruin
under the threshold strategy (3.3), for general x, b ≥ 0:

V (x, c1, c2, b) := Ex
[∫ τ

0

e−δsc21{Us>b}ds

]
+ c1 Ex

[∫ τ

0

e−δsds

]
(3.4)

=
c2

δ
(1− Z(x− b)) +

W (x) + c2

∫ x
b
W(x− y)W ′(y)dy

φ(δ)
∫∞

0
e−φ(δ)yW ′(y + b)dy

+
c1

δ

[
1− Z(x)− δc2

∫ x

b

W(x− y)W (y)dy

]
+
c1

δ

[
W (x) + c2

∫ x
b
W(x− y)W ′(y)dy

e−φ(δ)b
∫∞

0
e−φ(δ)yW ′(y + b)dy

]
δ

∫ ∞
b

e−φ(δ)yW (y)dy.

This is a somewhat involved, but completely explicit expression for V (x, c1, c2, b),
which can be evaluated whenever the scale function of the underlying Lévy process
is available.

3.2.2 Ratchet Strategy

We now turn to the study of the following ratcheting strategy: Dividends are paid
at a fixed constant rate c1 ≥ 0 until the first time the surplus process hits a barrier
b, at which point the dividend rate is increased (ratcheted) to c1 + c2 for a fixed
constant c2 > 0, and stays at this higher level until the time of ruin. The modified
Lévy risk process under this ratcheting strategy is then given by

UR
t = Yt −

∫ t

0

(c1 + c21{Ms≥b})ds = Xt − c2

∫ t

0

1{Ms≥b}ds, (3.5)

where Mt = sup0≤s≤t Yt. In contrast to the refracting case, the existence of UR
t

is straightforward for any c2 > 0. Such a ratcheting strategy takes into account
the fact that shareholders prefer to not experience a decrease in the rate of their
dividend stream. This strategy is no longer Markovian, but depends on the history
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of the process.
Define by

τR = inf{t > 0 : UR
t < 0}

the time of ruin and by

V R(x, c1, c2, b) = Ex

[∫ τR

0

e−δs(c1 + c21{Ms≥b})ds

]
(3.6)

the expected value of the aggregate discounted dividend payments under such a
ratcheting strategy.

Theorem 3.2.1. The expected value of the aggregate discounted dividend payments
until ruin under a ratcheting strategy for a Lévy risk model is given by

V R(x, c1, c2, b) =


c1+c2
δ

[1− Z(x) + δ
φ(δ)

W(x)], 0 ≤ b ≤ x,
c1+c2
δ

[1− Z(b) + δ
φ(δ)

W(b)]W (x)
W (b)

+ c1
δ

[1− Z(x) + (Z(b)− 1)W (x)
W (b)

], 0 ≤ x < b.

(3.7)

Proof. Consider first the case x ≥ b. Then the higher dividend rate c1 + c2 is paid
out on from the beginning until ruin, i.e.

V R(x, c1, c2, b) = Ex

[∫ τR

0

e−δs(c1 + c2)ds

]
=
c1 + c2

δ
[1− Ex(e−δτ̃

−
0 )],

where

τ̃−0 = inf{t ≥ 0 : X̃t < 0}

is the ruin time of the risk process when the original drift is reduced by c1 + c2.
But then the result follows from (3.2) and the fact that limb→∞ Z(b)/W(b) = δ ·
limb→∞W(b)/W′(b) = δ/φ(δ).

For x < b, we have to distinguish whether the process will reach b before ruin
or not, and in the former case we apply the strong Markov property at that point
in time, on from which the process dynamics change to the drift being reduced by
c1 + c2. We thus have

V R(x, c1, c2, b) = c1 Ex

[∫ τ+b ∧τ
R

0

e−δsds

]
+ Ex(e−δτ

+
b ; τ+

b < τ−0 ) · V R(b, c1, c2, b),

and V R(b, c1, c2, b) is given above. The result then follows from

δ Ex

[∫ τ+b ∧τ
R

0

e−δsds

]
= 1−Ex

[
e−δ(τ

+
b ∧τ

R)
]

= 1−Ex
[
e−δτ

+
b ; τ+

b < τ−0

]
−Ex

[
e−δτ

−
0 ; τ−0 < τ+

b

]
,

and again using (3.1) and (3.2).
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It is interesting to try to identify the barrier level b, for which V R(x, c1, c2, b) is
maximized. The natural criterion for that purpose is to look for a solution of

∂V R(x, c1, c2, b)

∂b
= 0 (3.8)

One should keep in mind, however, that the necessity and sufficiency of this criterion
depends on the analytical properties of V R, which are inherited from the scale
function W . Correspondingly, it is not possible to characterize such a barrier level
in full generality, but for most cases of practical interest the scale function structure
is such that the above derivative condition for the optimal barrier is the relevant
one (see also Loeffen (2008)). Also, if the optimal barrier is positive, it represents a
necessary condition. For simplicity we will hence in the following refer to a barrier
that fulfills (3.8) as optimal. Theorem 3.2.1 can now be used to derive a criterion
for a barrier level b to be optimal for the ratcheting strategy:

Proposition 3.2.2. (Optimal barrier) For fixed c1, c2, the barrier b that maximizes
(3.7) does not depend on x and is characterized by the equation

d

db

(
W (b)

W (b)

)
= 0, (3.9)

where

W(x) =
c1Z(x) + c2

c1 + c2

− Z(x) +
δ

φ(δ)
W(x).

Proof. By the nature of the ratcheting strategy, for every initial capital x, a barrier
level b < x is equivalent to a barrier level b = x, so that we can w.l.o.g. consider
the case 0 ≤ x ≤ b only. Differentiation of expression (3.7) with respect to b and
equating it to zero shows that all terms depending on x disappear and that

W (b)

W ′(b)
=
W(b)

W ′(b)

or equivalently Equation (3.9) must hold.

One can easily see from (3.7) that the function V R(x, c1, c2, b) is continuous at
x = b. On the other hand, the derivative of V R with respect to x does not have
to be continuous in that point. The following result shows that this derivative is,
however, continuous in the optimal barrier level. There is hence an alternative way
to identify the optimal barrier:

Theorem 3.2.3. (Smooth pasting) In the ratcheting dividend problem, the optimal
barrier bR is exactly the one which makes the value function continuously differen-
tiable.

Proof. Taking the derivative of V R of (3.6) with respect to x on both sides of the
barrier b, evaluating at b and equating both expressions yields after some algebra
precisely the criterion (3.9).

In the next sections we will now refine the analysis for the case of Brownian
motion and for a compound Poisson process with hyper-exponential jumps.
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3.3 Brownian approximation

Consider now a risk process

Yt = x+ µt+ σBt, t ≥ 0, (3.10)

where µ > 0 is a constant drift, σ > 0 and (Bt)t≥0 denotes standard Brownian
motion. Clearly, this is a special case of the Lévy risk model considered in Section
3.2, and by substituting the corresponding scale function (which in this case is
a linear combination of two exponential terms), one can retrieve the respective
formulas for the refracting and ratcheting strategies in this more particular setting.
We prefer, however, to give here a self-contained, more direct derivation for the
diffusion case, and then use the resulting formulas for a more detailed analysis of
the performance of the ratcheting dividend strategy. In particular, we will also
establish an unexpected connection between the refracted and the ratcheting case
which does not hold for general Lévy risk processes.

3.3.1 Refracting Strategy

Consider a diffusion risk reserve process with continuous dividend payout

dUt = (µ− ct)dt+ σdBt,

where dividends are paid at rate

ct = c11{Ut≤b} + (c1 + c2)1{Ut>b} (3.11)

with b, c1, c2 ≥ 0. I.e., whenever the risk reserve is above level b we pay at rate
c1 + c2 > 0, otherwise only at rate c1. Thus the payment rate changes at b which
could be physically understood as a refraction. We first derive the corresponding
value of this strategy, measured in terms of the expected aggregate discounted
dividend payments

V (x, c1, c2, b) := Ex
[ ∫ τ

0

e−δscsds
]
,

where as before
τ := inf{t ≥ 0 : Xt = 0},

δ ≥ 0 is a discount rate and Ex is the conditional expectation given that X0 = x.
Here Xt = Yt − c1t. For c1 = 0, a formula for V is well-known, see e.g. Gerber and
Shiu (2006b). In the following we establish the corresponding extension for c1 > 0.

Denote by θ1 > 0 > θ2 the roots of

1

2
σ2z2 + (µ− c1)z − δ = 0, (3.12)

and by θ̃1 > 0 > θ̃2 the roots of

1

2
σ2z2 + (µ− c1 − c2)z − δ = 0. (3.13)
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Moreover, let κ :=
(
(µ− c1)2 + 2σ2δ

)− 1
2 and

W (x) := κ(eθ1x − eθ2x), x ≥ 0.

Note that W (x) is the scale function of the process (Xt)t≥0.

Theorem 3.3.1. The value function under the fixed threshold strategy (3.11) in the
diffusion case is given by

V (x, c1, c2, b) =

{
B ·W (x) + c1

δ

(
1− eθ2x

)
, 0 ≤ x ≤ b

c1+c2
δ

+Deθ̃2x, x ≥ b

where

B :=
1

δ
· c1e

θ2b(θ2 − θ̃2)− c2θ̃2

W ′(b)− θ̃2W (b)
(3.14)

D := Be−θ̃2bW (b)− c1

δ
e(θ2−θ̃2)b − c2

δ
e−θ̃2b. (3.15)

Proof. In what follows we write V (x) instead of V (x, c1, c2, b) since c1, c2, b are fixed.
First note that we can decompose the value function into

V (x) = c1 Ex
[ ∫ τ

0

e−δsds
]

+ V (x, µ− c1),

where V (x, µ − c1) is the value function of the expected discounted dividends of a
process Xt with drift µ−c1 where nothing is paid below the barrier b and above b the
rate c2 is paid. This is the usual refracting case (see e.g. Gerber and Shiu (2006b)).
From this observation it follows that V ∈ C1, i.e. V is continuously differentiable.

Now, since the process∫ t∧τ

0

e−δscsds+ e−δ(t∧τ)V (Xt∧τ )

is a martingale, the drift of the process has to vanish and the value function has to
satisfy the following differential equations below and above the barrier:

1

2
σ2V ′′(x) + (µ− c1)V ′(x)− δV (x) + c1 = 0, 0 ≤ x ≤ b, (3.16)

1

2
σ2V ′′(x) + (µ− c1 − c2)V ′(x)− δV (x) + c1 + c2 = 0, x ≥ b, (3.17)

with boundary conditions V (0) = 0 and limx→∞ V (x) = c1+c2
δ

. The general solution
of (3.16) is

V (x) =
c1

δ
+B1e

θ1x +B2e
θ2x

with constants B1, B2 ∈ R. Using V (0) = 0 we obtain B2 = − c1
δ
−B1. The general

solution of (3.17) is

V (x) =
c1 + c2

δ
+D1e

θ̃1x +D2e
θ̃2x
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with constants D1, D2 ∈ R. Using the second boundary condition we obtain D1 = 0.
The smooth fit condition that V and V ′ are continuous at b yields

B1e
θ1b − (

c1

δ
+B1)eθ2b =

c2

δ
+D2e

θ̃2b (3.18)

B1θ1e
θ1b − θ2(

c1

δ
+B1)eθ2b = D2θ̃2e

θ̃2b. (3.19)

The first equation implies

D2e
θ̃2b = B1

(
eθ1b − eθ2b

)
− c1

δ
eθ2b − c2

δ
(3.20)

which can be inserted into the second equation to obtain

B1

κ
W ′(b) =

B1θ̃2

κ
W (b) +

c1

δ
eθ2b(θ2 − θ̃2)− c2

δ
θ̃2.

This implies that B1 = κB with B as in (3.14). Inserting the expression for B1 into
(3.20) yields D := D2 in (3.15).

Remark 3.3.2. The special case c1 = 0, c2 = c > 0 has been studied intensively
before. In this case we obtain the formula

V (x, b) := V (x, 0, c, b) =


c
δ
W (x) θ̃2

θ̃2W (b)−W ′(b) , 0 ≤ x ≤ b

c
δ

(
1 + W ′(b)

θ̃2W (b)−W ′(b)e
θ̃2(x−b)

)
, x ≥ b.

This result can e.g. be found in Gerber and Shiu (2006b) as equation (2.22), (2.23).
Taking the derivative w.r.t. b and equating to zero establishes the optimal barrier
b∗ that maximizes V (x, b) as

b∗ =
1

θ1 − θ2

log

(
θ2(θ2 − θ̃2))

θ1(θ1 − θ̃2))

)

if µ + σ2

2
θ̃2 > 0 and b∗ = 0 otherwise (see e.g. Asmussen and Taksar (1997)).

In fact, in Gerber and Shiu (2006b), various other characterizations of b∗ have
been shown: First b∗ can be characterized as the unique b s.t. V (x, b) is twice
continuously differentiable in x. Moreover it is the unique b s.t. the value function
V (x, b) coincides with the value function of the dividends according to a horizontal
barrier strategy with barrier b, i.e. the case c = µ.

3.3.2 Ratchet Strategy

Let us now look into the value function for the diffusion case under the ratcheting
strategy:

Theorem 3.3.3. The value function under the ratchet dividend strategy with barrier
b for the diffusion case is given by

V R(x, c1, c2, b) =

{
c1
δ

(1− eθ2x) + 1
δ
eθ1x−eθ2x
eθ1b−eθ2b

(
c2 + c1e

θ2b − (c1 + c2)eθ̃2b
)
, 0 ≤ x ≤ b,

c1+c2
δ

(1− eθ̃2x), x ≥ b.

(3.21)
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Proof. In the diffusion case the scale functions are given by

W (x) = κ(eθ1x − eθ2x), W(x) = κ̃(eθ̃1x − eθ̃2x),

with κ =
(
(µ − c1)2 + 2σ2δ

)− 1
2 and κ̃ :=

(
(µ − c1 − c2)2 + 2σ2δ

)− 1
2 . Substituting

these expressions into (3.7) in Theorem 3.2.1, together with some algebraic manip-
ulations, gives the result. Note that here φ(δ) = θ̃1 and Z(x) = δ

θ1
W (x) + eθ2x.

For x ≥ b there is also a direct way: Since in this case we start immediately to
pay out at rate c1 + c2, the value function is

V R(x, c1, c2, b) =
c1 + c2

δ

(
1− Ex(e−δτ̃

−
0 )
)
.

But by the same arguments as in Theorem 3.3.1, the quantity m(x) := Ex(e−δτ̃
−
0 )

satisfies, for any x > 0, the differential equation

1

2
σ2m′′(x) + (µ− c1 − c2)m′(x)− δm(x) = 0,

with boundary condition m(0) = 1 and limx→∞m(x) = 0. Hence m(x) = Aeθ̃1x +

Beθ̃2x with A = 0 and B = 1, giving V R(x, c1, c2, b) = c1+c2
δ

(
1− eθ̃2x

)
for x ≥ b.

Note that V R is continuous in x.

Remark 3.3.4. For c1 = 0, c2 = c > 0, (3.21) simplifies to the formula

V R(x, 0, c, b) =

{
c
δ
eθ1x−eθ2x
eθ1b−eθ2b (1− eθ̃2b), 0 ≤ x ≤ b,

c
δ
(1− eθ̃2x), x ≥ b.

From Theorem 3.2.3 we already know that the barrier bR which maximizes the
payout in the ratcheting case, i.e. V R(x, c1, c2, b

R) := supb V
R(x, c1, c2, b) is the one

for which the value function is continuously differentiable. It turns out, that for the
diffusion case another somewhat surprising characterization of the optimal barrier
bR can be found:

Theorem 3.3.5. In the ratcheting dividend problem, the optimal barrier bR is ex-
actly the one for which the value function coincides with the value function in the
refracting case, i.e.

V R(x, c1, c2, b
R) = V (x, c1, c2, b

R), x ≥ 0.

Proof. Inspecting the value function of the ratcheting problem we see that we can
write it as

V R(x, c1, c2, b) =

{
γW (x) + c1

δ
(1− eθ2x), 0 ≤ x ≤ b

c1+c2
δ

(1− eθ̃2x), x ≥ b,
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with a suitable constant γ. The value function in the refracting problem is given
by

V (x, c1, c2, b) =

{
B ·W (x) + c1

δ

(
1− eθ2x

)
, 0 ≤ x ≤ b

c1+c2
δ

+Deθ̃2x , x ≥ b

with suitable constants B and D. Since V R ∈ C1, if we plug in b = bR and since
V ∈ C1 for all b ≥ 0 we deduce that the following equations hold:

γW (bR)− c1

δ
eθ2b

R

=
c2

δ
− c1 + c2

δ
eθ̃2b

R

(3.22)

γW ′(bR)− c1

δ
θ2e

θ2bR = −c1 + c2

δ
θ̃2e

θ̃2bR (3.23)

B ·W (bR)− c1

δ
eθ2b

R

=
c2

δ
+Deθ̃2b

R

(3.24)

B ·W ′(bR)− c1

δ
θ2e

θ2bR = Dθ̃2e
θ̃2bR . (3.25)

Subtracting (3.24) from (3.22) we obtain

W (bR)(γ −B) = −eθ̃2bR
(c1 + c2

δ
+D

)
(3.26)

and subtracting (3.25) from (3.23) we obtain

W ′(bR)(γ −B) = −θ̃2e
θ̃2bR
(c1 + c2

δ
+D

)
. (3.27)

These last two equations yield that

(γ −B)(W ′(bR)− θ̃2W (bR)) = 0.

Since W (x) = κ(eθ1x− eθ2x) > 0 and W ′(x) = κ(θ1e
θ1x− θ2e

θ2x) > 0 for x ≥ 0 (note
that θ2 < 0 and θ̃2 < 0), we obtain that B = γ, but in view of (3.24) and (3.22) the
latter implies that D = − c1+c2

δ
. Hence at this barrier level bR both value functions

coincide.

Example 3.3.1. Consider the case where c1 = 0, c2 = 5 and the parameters of
the risk reserve process are given by µ = 10, σ = 4 and the discount rate is δ =
0.999. In Figure 3.1 we see on the left-hand side the value function V (x, 0, 5, b)
as a function of the initial state and the barrier level. Note that x 7→ V (x, 0, 5, b)
is here differentiable for all b. On the right-hand side we see the value function
V R(x, 0, 5, b) as a function of the initial state and the barrier level. The mapping
x 7→ V (x, 0, 5, b) has a kink for all but one b (note that the unusually high value of
δ was chosen here to visually amplify this phenomenon).

In Figure 3.2 we see both functions in one picture (left). There is exactly one
b for which these functions coincide. In the picture on the right-hand side one can
see the difference V R(x, 0, 5, b) − V (x, 0, 5, b). The optimal barrier is bR = 2.41 in
this case.
In Figure 3.3 the two value functions can be seen as a function of b for fixed x = 0.5.

One nicely observes that the value bR which maximizes V R indeed coincides with
the one where both values coincide.
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Figure 3.1: Value functions V (x, 0, 5, b) (left) and V R(x, 0, 5, b) (right) with µ =
10, σ = 4, δ = 0.999 as functions of the initial state and the barrier level.

In the example above, when comparing the ratcheting strategy with the refrac-
tion strategy we fixed c1 = 0, i.e. no dividend payments before the first hitting time
of the barrier. While c1 = 0 is optimal for the refraction strategy (since the result-
ing strategy is known to maximize the expected discounted dividend payments until
ruin among all admissible dividend strategies), it may not be a fair way to compare
the performance of the two types of dividend strategies, since for the ratcheting
case it may very well be possible that a positive c1 is preferable. Let us therefore
compare the best refraction strategy with the best ratcheting strategy. For that
purpose, one can determine the optimal threshold value b∗(c1, c2) for the refraction
strategy and the optimal barrier value bR(c1, c2) for the ratcheting case for each
fixed c1 and c2. In a second step, an optimization of

V R(x, c1, c2, b
R(c1, c2)) and V (x, c1, c2, b

∗(c1, c2)) (3.28)

with respect to c1 and c2 in some constrained region of choice will yield the (trivari-
ate) optimum of V R and V for fixed initial surplus value x. Unfortunately, even
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Figure 3.2: Value functions V (x, 0, 5, b) and V R(x, 0, 5, b) with µ = 10, σ = 4, δ =
0.999 both in one picture (left) and the difference of both functions (right).

for the diffusion case, identifying the optimal trivariate choice of c1, c2, b for a given
x in an analytic way seems out of reach since c1, c2 enter into the equations in an
intricate way through the roots of the Laplace equation, and the characterization
of the optimal ratcheting barrier level also does not lead to an explicit formula.
We will, however, illustrate the behaviour of (3.28) numerically in the following
example.

Example 3.3.2. Let µ = 10, σ = 6, δ = 0.1 and x = 1. Figure 3.4 depicts the two
functions in (3.28) as well as their difference, for all dividend rates in the region

(c1, c2) ∈ [0, 5]2

(note that c1 + c2 = 10 corresponds to the drift µ of the original risk process, in
which case the refracting strategy turns into a horizontal dividend barrier, which in
the absence of any constraint on c1, c2 is the optimal dividend strategy). The two
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Figure 3.3: Value functions V (0.5, 0, 5, b) (solid curve) and V R(0.5, 0, 5, b) (dashed
curve) with µ = 10, σ = 4, δ = 0.999, c = 5 as functions of b.

functions agree for c2 = 0, and are strictly increasing in c2 for fixed c1. However,
for fixed c2 they are both not monotone in c1 (note that increasing c1 also increases
the larger dividend rate c1 + c2). The maximum absolute difference between the
two functions is achieved for the largest values of c1 and c2.
In order to compare the performance of the ratcheting strategy with optimal ratch-
eting barrier bR and optimal choices of cR1 and cR2 to the threshold strategy with
optimal threshold b∗ (with c1 = 0 and c2 being as large as feasible, which is
known to be optimal in that case), we plot those two functions for each given
upper bound k = c1 + c2 on the maximal dividend rate in Figure 3.5 (again for
x = 1, µ = 10, σ = 6, δ = 0.1). Note that each curve depicts the respective
overall best possible performance among ratcheting and refraction strategies for a
given upper bound k, k ∈ (0, 10). It is quite remarkable that the performance of
the ratcheting strategy is so close to the refracting strategy (which is the overall
optimal strategy), albeit the type of ratcheting is very simple (only based on one
switch). Note that here the optimal choice of cR1 also turns out to be zero, and
the optimal choice of cR2 is k, just as for the refracting case. This may lead to the
conjecture that cR1 = 0 and cR2 = k is always optimal for ratcheting. In view of the
intricate structure, a proof of this conjecture seems, however, difficult.
If the barrier is not optimal, one also observes non-monotonicity in c2, cf. Figure
3.6, where V R and V are plotted as a function of c1, c2 for a fixed and non-optimal
b = 1.
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Figure 3.4: Plot of the functions (3.28) (left) and their difference (right) for x =
1, µ = 10, σ = 6, δ = 0.1.

3.4 The Cramér-Lundberg model with hyper-exponential

claims

In the compound Poisson case, we have the usual Crámer-Lundberg setting, where

Yt = x+ ct−
Nt∑
i=1

Zi

where N = {Nt}t≥0 is a Poisson process with intensity λ > 0 and Zi are i.i.d.
non-negative random variables which are independent of N . Assume also that
c1 + c2 ≤ c. We focus on the case where Z1 is hyper-exponential, i.e. a mixture of
exponentials with

ψ(θ) = cθ − λ+ λ

n∑
k=1

Ak
1 + θ/αk

, Ak ≥ 0,
n∑
k=1

Ak = 1, αk > 0, n ∈ N,

for θ > −mink{αk}. The scale functions of the process Xt = Yt− c1t are then given
by

W (x) =
n∑
k=0

Dke
θkx, Z(x) = 1 + δ

n∑
k=0

Dk

θk
(eθkx − 1),
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Figure 3.5: The optimal value of V (solid) and V R (dashed) as a function of the
upper limit k = c1 + c2 for x = 1, µ = 10, σ = 6, δ = 0.1.

Figure 3.6: Plot of V and V R for a fixed, non-optimal b = 1 and x = 1, µ = 10, σ =
6, δ = 0.1.

where θk, k = 1, . . . , n+ 1 are the n+ 1 roots, in decreasing order, of the function

f(θ) = (c− c1)θ + λ+ λ

n∑
k=1

Ak
1 + θ/αk

− δ,

and

D−1
k =

df

dθ
(θk).

Similarly we obtain W,Z in terms of θ̃k and D̃k by replacing c1 by c := c1 + c2

in the above formulae. Substituting these expressions into the formulas derived in
Section 3.2, it follows that

V R(x, c1, c2, b) =

{
c
δ

+ c
∑n+1

k=1 Gke
θ̃kx, 0 ≤ b ≤ x

c1
δ
− c1

∑n+1
k=1

Dk
θk
eθkx +HW (x), 0 ≤ x < b,

(3.29)
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where

Gk = D̃k

(
1

θ̃1

− 1

θ̃k

)
,

H =
1

W (b)

[
c2

δ
+ c

n+1∑
k=1

D̃k

(
1

θ̃1

− 1

θ̃k

)
eθ̃kb + c1

n+1∑
k=1

Dk

θk
eθkb

]

Similarly, for the refraction strategy, it is given by

V (x, c1, c2, b) =


c
δ

+ c2

∑n+1
j=1 ζje

θ̃jx + c1

∑n+1
j=1 χ

1
je
θjx

+c1

∑
j,i(χ

2
ij + χ3

ij)(e
θi(x−b) − eθ̃j(x−b)), 0 ≤ b ≤ x

c1
δ

+ (η + c1ξ)W (x) + c1

∑n+1
j=1 χ

1
je
θjx

+c1

∑
j,i χ

3
ij(e

θi(x−b) − eθ̃j(x−b)), 0 ≤ x < b,

(3.30)

where

η =

(
θ̃1

n+1∑
k=1

Dkθk
θ̃1 − θk

eθkb

)−1

, ζj =

{
η
n+1∑
k=1

D̃jDkθk
θ̃j − θk

eθkb − D̃j

θ̃j

}
e−θ̃jb,

ξ = eθ̃1bθ̃1η
n+1∑
k=1

Dk

θ̃1 − θi
eθkb, χ1

j = −Dj/θj, χ2
ij = c2

DiD̃j

θ̃j − θi
eθib, χ3

ij = c2
DiD̃jθi
θ̃j − θi

eθibξ.

Remark 3.4.1. In the compound Poisson case it generally does not hold anymore
that

V R(x, c1, c2, b
R) = V (x, c1, c2, b

R), x ≥ 0,

where bR is the optimal barrier under the ratcheting strategy. To see this, consider
c1 = 0 and n = 1. In that case, (3.29) and (3.30) simplify to

V R(x, c1, c2, b) =

{
c2
δ

+ c2G2e
θ̃2x, 0 ≤ b ≤ x

H ·W (x), 0 ≤ x < b,
(3.31)

and

V (x, c1, c2, b) =

{
c2
δ

+ c2 ζ2e
θ̃2x, 0 ≤ b ≤ x

ηW (x), 0 ≤ x < b,
(3.32)

Arguing as in the diffusion case, the two analogous equations to (3.26) and (3.27)
would then be

(η −H)W (bR) = c2(ζ2 −G2)eθ̃2b
R

(3.33)

(η −H)W ′(bR) = c2(ζ2 −G2)θ̃2e
θ̃kb

R

(3.34)

and one may be inclined to think that the identity then follows in the same way.
However, in contrast to the diffusion case, the derivative of V is not continuous
in b unless b is the optimal barrier b∗ of the threshold case (cf. Gerber and Shiu
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(2006a)), which differs from bR. Hence equation (3.34) is in fact not valid and the
identity does no longer hold.

It is instructive to study the weak limit of the compound Poisson process with
exponential claims towards a Brownian motion (which can be achieved by driv-
ing up the intensity and reducing the mean claim size at the appropriate speed).
Concretely, fix the mean and variance

µ = c− λ

α
, σ2 =

2λ

α2
. (3.35)

Thus, for every choice of α we set λ(α) = α2σ2/2 and c(α) = µ+ ασ2/2. Then, as
α→∞ one reaches the diffusion case in the limit and we have

D1 → −κ, D2 → κ, G1 = 0, G2 → δ−1,

and the corresponding roots have the form

θ1,2 =

δ
α
− µ+ c1 ±

√
( δ
α
− µ+ c1)2 + 2σ2δ + 4(µ−c1)δ

α

σ2 + 2(µ−c1)
α

,

which coincide with the ones of the Brownian case defined in Section 7.3. This
implies that V R and V indeed converge to the ones of the Brownian case as α→∞.
We can hence observe the optimality condition of Theorem 3.3.5 to gradually come
into place and being valid in the limit. Indeed, in the limit V is continuously
differentiable at any barrier level b. This transition is illustrated in Figure 3.7,
where V R(1, 0, 8, b) (green) and V (1, 0, 8, b) (purple) are plotted as a function of b.
The solid line corresponds to the diffusion case with µ = 10, σ = 6 and δ = 0.1,
the dashed-and-dotted and the dashed lines correspond to the compound Poisson
case with α = 5, 10, respectively, where λ, c are chosen according to (3.35) in each
case. The crossing of the solid lines at the maximum of the green curve exemplifies
Theorem 3.3.5. The other crossings do not share this property.

3.5 The expected time to ruin

The fact that an optimal ratcheting strategy can perform nearly as well in some
cases as the optimal refracting strategy is remarkable, especially since shareholders
are guaranteed payments from a certain point onwards (until the time of ruin).
The drawback is that the optimal ratcheting barrier is in general higher than the
optimal refracting barrier (see for instance Figure 3.7), so that in the ratcheting
case shareholders will have to wait longer until receiving the increased payments
(or any payments at all if c1 = 0). Furthermore, the distribution of the time until
ruin and hence the length of the overall period of dividend payments will differ, but
due to discounting this difference becomes less relevant the larger the time of ruin
is. In this section we intend to quantify this tradeoff.
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Figure 3.7: Plot of V R(1, 0, 8, b) and V (1, 0, 8, b) as a function of the threshold b,
for the diffusion case with µ = 10, σ = 6 and δ = 0.1 (solid lines) and for the
compound Poisson case with α = 5 (dashed-dotted lines) and α = 10 (dashed
lines), respectively, with λ, c chosen according to (3.35).

Whenever c1 + c2 is smaller than the drift of the original risk process, there is
a positive probability to not have ruin at all, so we will confine our analysis here
to the time of ruin given that ruin occurs (a more refined analysis could look into
occupation time distributions of certain surplus ranges). Consider an initial surplus
x below barrier b. The expected time of ruin, given it occurs in finite time, under
a ratcheting strategy is then given by

Ex[τR; τR <∞] = Ex[τ−0 ; τ−0 < τ+
b ] + Ex[τ+

b + τ̂0
−; τb

+ < τ−0 , τ
R <∞],

where τ̂0
− is the time to ruin, starting from b under the increased dividend rate

c1 + c2. This leads to

Ex[τR; τR <∞] = Ex[τ−0 ; τ−0 < τ+
b ] + Pb(τ̃−0 <∞)Ex[τ+

b ; τb
+ < τ−0 ]

+ Px(τ+
b < τ−0 )Eb[τ̃0

−; τ̃0
− <∞].

All these quantities can be recovered from the identities (3.1) and (3.2).

For the refracted strategy, for x ≤ b one has directly from Theorem 5(ii) of
Kyprianou and Loeffen (2010) that

Ex(e−δτ
−
0 ; τ−0 <∞) = Z(x)−

[
W (x)

e−φ(δ)b
∫∞

0
e−φ(δ)yW ′(y + b)dy

]
δ

∫ ∞
b

e−φ(δ)yW (y)dy,

from which the expected ruin time can be obtained by differentiation w.r.t. δ and
evaluating the result at δ = 0.
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Example 3.5.1. In the compound Poisson case with exponential claims and the
safety loading condition c− c1 − c2 > λ/α, we have for the first term

Ex[τ0
−; τ0

− < τb
+] =

−
(c− c1)λe

bλ
(c−c1)

(
λ(αx+ 1)e

bλ
(c−c1) + αeαb(αb(c− c1)− α(c− c1)x+ bλ+ (c− c1))

)
(c− c1)(α(c− c1)− λ)

(
α(c− c1)eαb − λe

bλ
(c−c1)

)2

+
λe

αb−αx+ λx
(c−c1)

(
λe

bλ
(c−c1) (αb(c− c1) + λ(b− x) + (c− c1)) + α(c− c1)eαb((c− c1) + λx)

)
(c− c1)(α(c− c1)− λ)

(
α(c− c1)eαb − λe

bλ
(c−c1)

)2 ,

for the second

Pb(τ̃0
− <∞) =

λ

α(c− c1 − c2)
e

[
λ

c−c1−c2
−α
]
b
,

Ex[τb+; τb
+ < τ0

−] =

−
eα(b−x)

(
e
λ(b+x)
c−c1 (b−x)λ3+α(c−c1)

(
e
αb+ λx

c−c1 λ((αb+2)(c−c1)+λx)+eαx
(
α2(c−c1)2eαb(x−b)−e

bλ
c−c1 λ(bλ+(c−c1)(αx+2))

)))

(c−c1)(α(c−c1)−λ)

(
α(c−c1)eαb−e

bλ
c−c1 λ

)2 ,

and for the third

Px(τb+ < τ0
−) =

α(c− c1)− λe
λx

c−c1
−αx

α(c− c1)− λe
λb

c−c1
−αb

,

Eb[τ̃0
−; τ̃0

− <∞] =
c− c1 − c2 + λb

(c− c1 − c2)((c− c1 − c2)α− λ)
· λ

α(c− c1 − c2)
e

[
λ

c−c1−c2
−α
]
b
.

Similar formulae can be derived in a simpler manner for the ruin probabilities both
in the ratcheting and refracted case. Taking the ratio then yields

Ex[τR|τR <∞] =
Ex[τR; τR <∞]

Px(τR <∞)
and Ex[τ |τ <∞] =

Ex[τ ; τ <∞]

Px(τ <∞)
, (3.36)

cf. also (Gerber and Shiu, 1998, p.59). Figure 3.8 depicts the behaviour of these
two quantities as a function of b for initial capital x = 1 and parameters c = 6,
c1 = c2 = 2, λ = α = 1. One observes that the expected ruin time (given ruin
occurs in finite time) is, for the same barrier, typically larger for the ratcheting
case, which at first sight may look counter-intuitive, since the refraction strategy
increases the drift again when the process is below b. However, this indicates that
in the refraction case those sample paths that do not lead to ruin quickly, will more
likely escape ruin also later, so the conditioning on the event of ruin is essential
here.

Finally, we compare these properties of sample paths for the refracting and
ratcheting strategies when the respective optimal barrier is chosen. Figure 3.9
shows the probability to reach the optimal barrier before ruin as well as the expected
time to reach the optimal barrier, given that it is reached before ruin for the two
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Figure 3.8: The expected time to ruin, given that it occurs, for the ratcheting (solid
line) and the refracted (dashed line) strategies as a function of barrier level b (x = 1,
c = 6, c1 = c2 = 2, λ = α = 1).

strategies, as a function of initial capital x. Note that for the used parameters,
the respective optimal barrier levels are bR = 4.604602 and b∗ = 2.723496. One
observes that the despite the higher value of bR, the probability to reach that level
(and hence the probability to increase the dividend rate) is not much less than for
the respective refraction strategy, whereas the expected time to get there roughly
doubles.
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Figure 3.9: The probability of hitting the optimal barrier before ruin (left) and
the expected hitting time of the optimal barrier, given that it happens before ruin
(right) as a function of initial capital x, for ratcheting (solid line) and refracting
(dashed line), c = 6, c1 = c2 = 2, λ = α = 1.

Remark 3.5.1. Observe that, as a corollary of the first formula in Example 3.5.1,
by taking the limit to the diffusion process (3.10) with drift µ and variance σ2

(using the parametrization (3.35)) as well as taking b → ∞, one retrieves the
simple expression

Ex(τ−0 |τ−0 <∞) =
x

µ
.

Since this formula is interesting in its own right, and seems not to have been consid-
ered in actuarial circles before, we derive it here also directly using an alternative
approach. Consider St = x−Yt = −µt−σBt, with drift −µ. By exponential tilting
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by θ we have that in the new measure P̃ the process S has drift −µ+ θσ2 and the
likelihood ratio

exp(θSt − tψ(θ)) = exp(θSt − t(−µ+ θσ2)θ − tσ2θ2/2)

is a martingale wrt P̃x, the law of Yt starting at zero, where ψ is the Laplace exponent
given as in the beginning of Section 3.2 (here with respect to P̃x). Inserting now
θ = µ/σ2 simplifies to zero drift and

exp(θSt − tψ(θ)) = exp((µ/σ2)St − tµ2/(2σ2)).

Optional stopping holds for this martingale if and only if the stopping times are
finite (see e.g. (Asmussen and Albrecher, 2010, Ch.IV.4)), and the time of ruin τ−0
is such a time, since under P̃x the drift is zero. Hence we have

Ẽx(exp((µ/σ2)Sτ−0 − τ
−
0 µ

2/(2σ2))) = 1.

But Sτ−0 = x, and

exp((µ/σ2)x− τ−0 µ2/(2σ2))

is bounded around any finite neighbourhood of µ, hence uniformly integrable for
any sequence µn → µ so we may take the derivative with respect to µ and get

Ẽx
({

x

σ2
− τ−0 µ

σ2

}
exp((µ/σ2)x− τ−0 µ2/(2σ2)

)
= 0.

This translates in the original measure to

Ex
({

x

σ2
− τ−0 µ

σ2

}
; τ−0 <∞

)
= 0,

and a rearrangement yields indeed

x

µ
=

Ex(τ−0 ; τ−0 <∞)

Px(τ−0 <∞)
= Ex(τ−0 |τ−0 <∞).

3.6 Conclusion and Future Research

In this paper we considered a ratcheting dividend strategy in an insurance risk the-
ory context, where the dividend rate can be raised once during the lifetime of the
surplus process. We derived analytical formulas for the expected discounted divi-
dend payments until ruin for a general Lévy risk model, and refined the results for
a diffusion approximation and a compound Poisson model with hyper-exponential
claims. The numerical illustrations indicate that the performance of such a ratch-
eting strategy is in fact not far behind the optimal refraction strategy, and also in
terms of expected ruin time the resulting performance seems rather competitive.
There are many possible directions for extensions and generalizations from here.
In a future paper we will consider the case of multiple barriers, where the ratchet-
ing strategy will mean a gradual increase of the dividend rate. Another question
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of interest is to analytically show that the performance of the racheting strategy
is monotone in the choice of the dividend rate increase c2 at the switching time.
Finally, to solve the general stochastic control problem of identifying the optimal
ratcheting strategy (which possibly leads to a continuous function c(x) as a func-
tion of first hitting of the surplus level x) will be an interesting challenge for future
research.



Chapter 4

Efficient simulation of ruin
probabilities when claims are
mixtures of heavy and light tails

This chapter is based on the following article, currently submitted for publication:

Albrecher, H., Bladt, M., & Vatamidou, E. (2020). Efficient simulation of ruin
probabilities when claims are mixtures of heavy and light tails. Preprint, University
of Lausanne.

Abstract

We consider the classical Cramér-Lundberg risk model with claim sizes that are
mixtures of phase–type and subexponential variables. Exploiting a specific geomet-
ric compound representation, we propose control variate techniques to efficiently
simulate the ruin probability in this situation. The resulting estimators perform
well for both small and large initial capital. We quantify the variance reduction as
well as the efficiency gain of our method over another fast standard technique based
on the classical Pollaczek-Khinchine formula. We provide a numerical example to
illustrate the performance, and show that for more time-/consuming conditional
Monte Carlo techniques, the new series representation also does not compare unfa-
vorably to the one based on the Pollaczek-Khinchine formula.

4.1 Introduction

The study of ruin probabilities for insurance risk models is a classical topic in applied
probability, see e.g. Rolski et al. (1999). Explicit formulas for ruin probabilities are
available only in specific situations. One such instance is the classical Cramér-
Lundberg risk model when claim sizes are of phase-type, see e.g. Asmussen and
Albrecher (2010) for more details. However, the tail of such phase-type distributions
is exponentially bounded Neuts (1994), whereas insurance data often suggest heavy-

79
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tails Albrecher et al. (2017). In the presence of heavy-tails one then typically has
to resort to approximations or simulations, and to achieve accuracy for either of
the two can be challenging. While highly efficient simulation techniques for ruin
probabilities for exponentially bounded claims are available for a long time already
(e.g. using Lundberg conjugation (Asmussen and Albrecher, 2010, Ch.XV)), the
field of efficient simulation for heavy-tails has only advanced significantly in more
recent years and is an active field of research (cf. Asmussen and Kortschak (2015);
Ghamami and Ross (2012); Juneja (2007); Nguyen and Robert (2014) and Asmussen
and Glynn (2007) for an overview).

Among the many possible modelling approaches for insurance claim sizes, in this
paper we will be interested in mixture models, where with a certain probability ε a
new claim is of a heavy-tailed type and with probability 1− ε it is of a certain light-
tailed type. Such a co-existence of heavy and light tails is very intuitive in practice,
see e.g. Lee et al. (2012); Tzougas et al. (2014). For small ε, Vatamidou et al.
(2013) used a perturbation approach to devise a numerical approximation scheme
for the determination of ruin probabilities in the presence of heavy-tails in the spirit
of corrected phase-type approximations. Their approach relied on an alternative
representation of the Pollaczek-Khinchine (PK) formula that converges more quickly
as ε → 0, see also Geiger and Adekpedjou (2019). Inspired by this approach, in
this paper we want to study the potential of such an alternative representation for
general mixture models and not necessarily small ε. The focus here will be to see
whether large claim approximations can be used more efficiently as control variates
in a simulation procedure than for algorithms based on the classical PK formula.
We will show both theoretically and in a numerical implementation that this is
indeed the case. The results in principle apply to any situation where claim sizes
are a mixture between a tractable light-tailed and a heavy-tailed distribution for
which the convolution of the two can be calculated explicitly. Moreover, even if the
latter convolution can not be evaluated explicitly, the series representation can be
advantageous.

We will also study the performance of the alternative series representation for
a conditional Monte Carlo method developed by Asmussen & Kroese Asmussen
and Kroese (2006). The latter can be applied to the PK formula and leads to a
significant reduction of variance for the ruin probability estimator, but at a consid-
erable additional computational cost. It will turn out that for this case, our series
representation has no significant advantage over the classical PK approach, but the
performance is not worse either.

The rest of the paper is organised as follows. Section 4.2 describes the risk
model based on the mixture of light- and heavy-tailed claims and provides some
preliminaries. In Section 4.3, we then construct a new control variate estimator
for the ruin probability based on subexponential properties, which can exploit the
advantage of exact ruin probability formulas for the light-tailed component in the
mixture. We provide error bounds, investigate the tail behaviour, and quantify
the resulting variance reduction when using the control variates, as well as the
advantage of our approach to the analogous one based on the PK formula. We also
consider the introduction of this alternative series representation for a conditional
Monte Carlo framework in the spirit of Asmussen and Kroese (2006). In Section
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4.4, we then perform numerical experiments and analyse the results. Finally, we
conclude in Section 4.5.

4.2 Model description and preliminaries

Consider the classical Cramér-Lundberg risk model for the surplus process of an
insurance portfolio. The premium inflow is assumed at a constant rate (w.l.o.g.
1 per unit time) and claims arrive according to a homogeneous Poisson process

{N(t)}t≥0 with rate λ. The claim sizes Uk
D
= U are i.i.d. with common distribution

function G, and are independent of {N(t)}. If u is the initial capital, the surplus
at time t is then given by

R(t) = u+ t−
N(t)∑
k=1

Uk.

We also define the claim surplus process S(t) = u − R(t) and its maximum
M = sup0≤t<∞ S(t). The probability ψ(u) of ultimate ruin is then

ψ(u) = P(M > u). (4.1)

In addition, we assume that the safety loading condition ρ = λEU < 1 holds and
thus the well-known Pollaczek-Khinchine (PK) formula

1− ψ(u) = (1− ρ)
∞∑
k=0

ρk(Ge)∗k(u) (4.2)

can be used for the evaluation of the ruin probability. Here Ge(u) =
∫ u

0

(
1 −

G(x)
)
/EU is the distribution function of the stationary excess claim size U e, see

e.g. Asmussen and Albrecher (2010).
In this paper, we assume that claim sizes are of a mixture type. Concretely,

U is phase-type with probability 1 − ε and heavy-tailed with probability ε, where

ε ∈ (0, 1). The phase-type claim sizes Bk
D
= B and the heavy-tailed claim sizes

Ck
D
= C are both assumed to have finite means µB and µC , respectively. Denote by

G̃e(s), F̃ e
p (s), and F̃ e

h(s) the Laplace transforms of the stationary excess claim sizes

U e
k

D
= U e, Be

k
D
= Be, and Ce

k
D
= Ce, respectively. Moreover, we set δ := λµB and

θ := λµC , which means that the phase-type and heavy-tailed claims are responsible
for expected aggregate claim size (1 − ε)δ and εθ per unit time, respectively. The
expected overall aggregate claim size is then given by ρ = (1 − ε)δ + εθ. In terms
of Laplace transforms, the Pollaczek-Khinchine formula can be written as

Ee−sM = (1− ρ)
∞∑
k=0

ρk
(
G̃e(s)

)k
=

1− ρ
1− ρ G̃e(s)

=
1− (1− ε)δ − εθ

1− (1− ε)δF̃ e
p (s)− εθF̃ e

h(s)
.

(4.3)

Using representation (4.3), it was shown in Vatamidou et al. (2013) that ψ(u) can
be expressed as a series expansion involving the ruin probability of a risk process
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with purely phase-type claim sizes (base model). One easy way to establish a
phase-type base model is by simply considering that G(x) = (1 − ε)Fp(x) + ε,
x ≥ 0, i.e. discard all heavy-tailed claim sizes. This base model, for which the claim
size distribution has an atom at zero, is equivalent to the compound Poisson risk
model in which claims arrive at rate (1− ε)λ and follow the distribution of B. We
denote by M• the supremum of its corresponding claim surplus process and we set
ρ• = (1− ε)δ. The PK formula for this base model takes the form

Ee−sM• =
1− ρ•

1− ρ•F̃ e
p (s)

. (4.4)

We denote by ψ•(u) the phase-type approximation of ψ(u) that is obtained when
we apply Laplace inversion to (4.4). The following series expansion of ψ(u) for the
general risk process was shown in (Vatamidou et al., 2013, Th.1). In order to keep
this paper self-contained, we repeat the short proof here in the present notation.

Theorem 4.2.1 (Vatamidou et al. (2013)). We have

ψ(u) =
1− ρ
1− ρ•

ψ•(u) +
1− ρ
1− ρ•

∞∑
k=1

(
εθ

1− ρ•

)k
Ak(u), (4.5)

where Ak(u) = P(M•
0 +M•

1 + · · ·+M•
k + Ce

1 + · · ·+ Ce
k > u) and M•

k
D
= M•. This

expansion converges for all values of u.

Proof. It can easily be derived that U e = IBe
k+(1−I)Ce

k, where I ∼ Bernoulli
(
ρ•/(ρ•+

εθ)
)
. Therefore G̃e(s) =

ρ•

ρ• + εθ
F̃ e
p (s) +

εθ

ρ• + εθ
F̃ e
h(s), and we find by virtue of the

binomial identity

(
G̃e(s)

)`
=

1

(ρ• + εθ)`

∑̀
k=0

(
`

k

)
(ρ•)`−k

(
F̃ e
p (s)

)`−k
(εθ)k

(
F̃ e
h(s)

)k
.

Combining (4.3), (4.4), we get

Ee−sM = (1− ρ• − εθ)
∞∑
`=0

∑̀
k=0

(
`

k

)
(ρ•)`−k

(
F̃ e
p (s)

)`−k
(εθ)k

(
F̃ e
h(s)

)k
= (1− ρ• − εθ)

∞∑
k=0

(εθ)k
(
F̃ e
h(s)

)k ∞∑
`=k

(
`

k

)
(ρ•)`−k

(
F̃ e
p (s)

)`−k
= (1− ρ• − εθ)

∞∑
k=0

(εθ)k
(
F̃ e
h(s)

)k 1(
1− ρ•F̃ e

p (s)
)k+1

= (1− ρ• − εθ)
∞∑
k=0

(εθ)k
(
F̃ e
h(s)

)k 1

(1− ρ•)k+1

(
Ee−sM•

)k+1

=
1− ρ
1− ρ•

∞∑
k=0

(
εθ

1− ρ•

)k (
F̃ e
h(s)

)k(Ee−sM•)k+1

.
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We obtain the provided series expansion for ψ(u) via Laplace inversion and using

ψ•(u) = P(M•
0 > u). The convergence is granted by

∣∣Ee−sM•∣∣ ≤ 1 and
∣∣∣F̃ e

h(s)
∣∣∣ ≤ 1,

while εθ < 1− ρ• due to the stability condition ρ < 1.

Theorem 4.2.1 provides an alternative interpretation forM , i.e.M
D
=
∑N

k=0(M•
k+

Ce
k), where Ce

0 := 0 and N is a geometric random variable N ∼ Geom
(

1−ρ
1−ρ•

)
. Note

that in addition to k = 0, for various subexponential random variables Ce
k also the

term for k = 1 in (4.5) can be calculated explicitly, so that

ψ(u) =
1− ρ
1− ρ•

ψ•(u) +
1− ρ
1− ρ•

εθ

1− ρ•
P(M•

0 +M•
1 + Ce

1 > u)︸ ︷︷ ︸
explicit

+
1− ρ
1− ρ•

∞∑
k=2

(
εθ

1− ρ•

)k
Ak(u).

Thus, to approximate ψ(u), we only need to have an estimate for

ϕ(u) : =
1− ρ
1− ρ•

∞∑
k=2

(
εθ

1− ρ•

)k
Ak(u) =

(
εθ

1− ρ•

)2

EAN+2(u)

=

(
εθ

1− ρ•

)2

P(M•
0 +M•

1 + · · ·+M•
N+2 + Ce

1 + · · ·+ Ce
N+2 > u), (4.6)

which we want to approximate by simulating the tail of

V
D
= M•

0 +M•
1 + Ce

1 +
N+2∑
k=2

(M•
k + Ce

k), (4.7)

with N ∼ Geom
(

1−ρ
1−ρ•

)
.

Using the above representation, we propose in Section 4.3 efficient variance
reduction techniques for this simulation based on suitably chosen control variates.

4.3 Control variate techniques

Let Z(u) be the random variable we must simulate in order to calculate its expecta-
tion ϕ(u) = EZ(u). The idea of a control variate is to use another random variable
W (u), which has a known expectation EW (u) and is strongly correlated with Z(u).
Thus, the deviation of the simulated from the exact value of W (u) may be used for
improving the simulation accuracy for Z(u). If

(
Zi(u),Wi(u)

)
, i = 1, 2, . . . , κ, are

independent copies of
(
Z(u),W (u)

)
, then an efficient control variate estimator is

defined as

ϕ̂κ(u) := ẑκ(u) + α̂κ
(
ŵκ(u)− EW (u)

)
, (4.8)
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where

ẑκ(u) =

∑κ
i=1 Zi(u)

κ
, ŵκ(u) =

∑κ
i=1Wi(u)

κ
, (4.9)

α̂κ = −
∑κ

i=1

(
Zi(u)− ẑκ(u)

)(
Wi(u)− ŵκ(u)

)∑κ
i=1

(
Wi(u)− ŵκ(u)

)2 . (4.10)

Note that this choice of α̂κ based on the empirical correlation of Z(u) and W (u)
optimizes the variance gain, see e.g. Albrecher et al. (2017); Asmussen and Glynn
(2007). We assume now that the distribution of Ce belongs to the class of subex-
ponential distributions S, i.e. for any n ∈ N,

F ∗n(u) ∼ nF (u), as u→∞, (4.11)

where F (u) = 1 − F (u), see e.g. Teugels (1975). The construction of the con-
crete W (u) below is inspired by the following well-known asymptotic property of
subexponential distributions (see e.g. (Foss et al., 2013, Cor.3.18) or (Asmussen and
Albrecher, 2010, Cor.X.1.11)):

Property 4.3.1. Let F ∈ S and let A be any distribution with a lighter tail, i.e.
A(u) = o

(
F (u)

)
. Then for the convolution A ∗ F of A and F we have A ∗ F ∈ S

and (A ∗ F )(u) ∼ F (u).

In other words, for sufficiently large u, only the maximum of the subexponential
claims will substantially contribute to the probability (4.6).

4.3.1 Max of heavy-tails

It is immediately obvious from (4.6) that

Z(u) =

(
εθ

1− ρ•

)2

1{V >u}, (4.12)

while for a fixed n ∈ N, we consider the random variable

Vn := max{Ce
1 , . . . , C

e
N+2}1{N+2≤n}. (4.13)

Definition 4.3.2. For a fixed n ∈ N, define the control variate

W (u) =

(
εθ

1− ρ•

)2

1{Vn>u}. (4.14)

The nth order approximation ϕn(u) = EW (u) of ϕ(u) is then

ϕn(u) =

(
1− ρ
1− ρ•

) n∑
k=2

(
εθ

1− ρ•

)k
P
(

max{Ce
1 , . . . , C

e
k} > u

)
. (4.15)

By construction, ϕn(u) underestimates ϕ(u). Next we collect some properties
of this approximation.
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Properties of the approximation

The following lower and upper bounds for the approximation error can be obtained.

Proposition 4.3.3 (Error bounds). The error of the approximation ϕn(u), n ∈ N,
is bounded from above and below as follows:(

εθ

1− ρ•

)n+1

A1(u) ≤ϕ(u)− ϕn(u) ≤
(

εθ

1− ρ•

)n+1

+

(
1− εθ

1− ρ•

)(
εθ

1− ρ•
F e
h(u)

)2 1−
(

εθ
1−ρ•F

e
h(u)

)n−1

1− εθ
1−ρ•F

e
h(u)

.

Proof. For simplicity of notation, we set p := εθ
1−ρ• . The error of the approximation

is equal to

ϕ(u)− ϕn(u) = (1− p)
∞∑
k=2

pnAk(u)− (1− p)
n∑
k=2

pk P
(

max{Ce
1 , . . . , C

e
k} > u

)
= (1− p)

n∑
k=2

pk
(
Ak(u)− P

(
max{Ce

1 , . . . , C
e
k} > u

))
+ (1− p)

∞∑
k=n+1

pkAk(u).

For the upper bound, we use P
(

max{Ce
1 , . . . , C

e
k} > u

)
= 1−

(
F e
h(u)

)k
and Ak(u) ≤

1 to obtain

ϕ(u)− ϕn(u) ≤(1− p)
n∑
k=2

pk P
(

max{Ce
1 , . . . , C

e
k} ≤ u

)
+ (1− p)

∞∑
k=n+1

pk

=pn+1 + (1− p)
n∑
k=2

(
pF e

h(u)
)k
.

For the lower bound, we take Ak(u) ≥ P
(

max{Ce
1 , . . . , C

e
k} > u

)
when k ≤ n and

Ak(u) ≥ A1(u) otherwise, to calculate

ϕ(u)− ϕn(u) ≥ (1− p)
∞∑

k=n+1

pkA1(u) = pn+1A1(u),

and the proof is complete.

Proposition 4.3.4 (Tail behaviour). For Ce ∈ S, the nth approximation

ψn(u) :=
1− ρ
1− ρ•

ψ•(u) +
1− ρ
1− ρ•

εθ

1− ρ•
P(M•

0 +M•
1 + Ce

1 > u) + ϕn(u)

of the target ruin probability ψ(u) has the following tail behaviour:

ψn(u) ∼ εθ

1− ρ

(
1− (n+ 1)

(
εθ

1− ρ•

)n
+ n

(
εθ

1− ρ•

)n+1
)
F e
h(u), u→∞.
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Proof. The approximation ψ•(u) has a phase-type representation; therefore, it is
of order o

(
F e
h(u)

)
. The same holds for the tail of the distribution of M•

0 + M•
1 .

Moreover, since Ce ∈ S, from Property 4.3.1 we obtain P(M•
0 + M•

1 + Ce
1 > u) ∼

F e
h(u). Finally, from P

(
max{Ce

1 , . . . , C
e
n} > u

)
≤ P(Ce

1 + · · ·+ Ce
n > u) and (4.11),

we deduce that P
(

max{Ce
1 , . . . , C

e
n} > u

)
∼ nF e

h(u), which leads to the following
result by inserting these asymptotic estimates into Definition 4.3.2:

ψn(u) ∼
(

1− εθ

1− ρ•

) n∑
k=1

k

(
εθ

1− ρ•

)k
F e
h(u)

=

εθ
1−ρ•

(
1− (n+ 1)

(
εθ

1−ρ•

)n
+ n

(
εθ

1−ρ•

)n+1
)

1− εθ
1−ρ•

F e
h(u)

=
εθ

1− ρ

(
1− (n+ 1)

(
εθ

1− ρ•

)n
+ n

(
εθ

1− ρ•

)n+1
)
F e
h(u).

Proposition 4.3.4 (in comparison with Theorem 5 in Vatamidou et al. (2013))
shows that ψn(u) nearly captures the asymptotic behaviour of the exact ruin prob-
ability

ψ(u) ∼ εθ

1− ρ
F e
h(u), (4.16)

being off by a factor

(
1− (n+ 1)

(
εθ

1−ρ•

)n
+ n

(
εθ

1−ρ•

)n+1
)
∈ (0, 1). As expected,

the tail of ψn(u) underestimates the tail of ψ(u).

Variance reduction

We consider now the bivariate simulation of i.i.d. copies of the random variables V
and Vn: (

V (i), V (i)
n

)
, i = 1, 2, . . . , κ. (4.17)

For each fixed n ∈ N, the estimator (4.8) takes the form

ϕ̂nκ(u) := ẑκ(u) + α̂κ
(
ŵκ(u)− ϕn(u)

)
. (4.18)

We can now establish our main result.

Theorem 4.3.5 (Variance reduction). For each fixed n ∈ N, the variance of the
estimator (4.18) behaves asymptotically as

Var
(
ϕ̂nκ(u)

)
∼
(

εθ

1− ρ•

)n+3 1 + n
(

1−ρ
1−ρ•

)
1−ρ
1−ρ•

· F
e
h(u)

κ
, as u→∞ (4.19)

and satisfies

Var
(
ϕ̂nκ(u)

)
Var
(
ẑκ(u)

) → (
εθ

1− ρ•

)n−1 1 + n
(

1−ρ
1−ρ•

)
1 + 1−ρ

1−ρ•
, as u→∞. (4.20)
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Proof. Since Eẑκ(u) = ϕ(u), we know from Asmussen and Glynn (2007) that the
proposed estimator has variance

1−
(
r(u)

)2

κ
VarZ(u), (4.21)

with correlation coefficient r(u) = Corr
(
Z(u),W (u)

)
. By the definition of Vn,

{Vn > u} ⊆ {V > u} and consequently 1{V >u} · 1{Vn>u} = 1{Vn>u}. We calculate,

Cov
(
Z(u),W (u)

)
=

(
εθ

1− ρ•

)4

Cov
(
1{V >u} · 1{Vn>u}

)
=

(
εθ

1− ρ•

)4 (
E
(
1{V >u}1{Vn>u}

)
− E1{V >u} E1{Vn>u}

)
=

(
εθ

1− ρ•

)4 (
P
(
Vn > u

)
− P

(
V > u

)
P
(
Vn > u

))
=

(
εθ

1− ρ•

)4

P
(
Vn > u

)
P
(
V ≤ u

)
.

Similarly, we find

Var
(
Z(u)

)
=

(
εθ

1− ρ•

)4

P
(
V > u

)
P
(
V ≤ u

)
, and

Var
(
W (u)

)
=

(
εθ

1− ρ•

)4

P
(
Vn > u

)
P
(
Vn ≤ u

)
.

Hence, it is immediate that

1−
(
r(u)

)2
=

1− P
(
Vn > u

)
/P
(
V > u

)
1− P

(
Vn > u

) . (4.22)

Following Proposition 4.3.4, we calculate

P
(
Vn > u

)
∼
(

1− εθ

1− ρ•

) n∑
k=2

k

(
εθ

1− ρ•

)k−2

F e
h(u)

=
2− εθ

1−ρ• − (n+ 1)
(

εθ
1−ρ•

)n−1

+ n
(

εθ
1−ρ•

)n
1− εθ

1−ρ•
F e
h(u)

and

P
(
V > u

)
∼

2− εθ
1−ρ•

1− εθ
1−ρ•

F e
h(u),

as u→∞. We finally obtain

P
(
Vn > u

)
P
(
V > u

) → 1−
(n+ 1)

(
εθ

1−ρ•

)n−1

− n
(

εθ
1−ρ•

)n
2− εθ

1−ρ•
,
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so that

1−
(
r(u)

)2 →
(n+ 1)

(
εθ

1−ρ•

)n−1

− n
(

εθ
1−ρ•

)n
2− εθ

1−ρ•
,

and the statement of the theorem follows.

The above theorem quantifies the asymptotic variance reduction for fixed n as
u increases, this reduction being arbitrarily large when n is increased sufficiently.

4.3.2 Conditional Monte Carlo

While the approach of Section 4.3.1 is the focus of this paper, for purposes of com-
parison and completeness we are also interested in the performance of the alternative
series representation for the conditional Monte Carlo estimate and its variance re-
duction proposed in Asmussen and Kroese (2006). To that end, let us recap here its
idea and present its application to our series representation. Define X?

0 = M•
0 and

Xk = M•
k +Ce

k, k = 1, 2, . . . , so that V
D
= X?

0 +
∑N+2

k=1 Xk, where N ∼ Geom
(

1−ρ
1−ρ•

)
as before. (4.6) can then be written as

ϕ(u) =

(
εθ

1− ρ•

)2

P(X?
0 +X1 + · · ·+XN+2 > u).

Note that for fixed k ≥ 1 and mk := max{X1, . . . , Xk}, we have

P(X?
0 +X1 + · · ·+Xk > u) = k P(Sk > u−X?

0 , Xk = mk)

= k P(Xk > mk−1, Xk > u−X?
0 − Sk−1) = k EFX

(
mk−1 ∨ (u−X?

0 − Sk−1)
)
,

where FX is the common c.c.d.f. of the Xk’s and S` =
∑`

k=1Xk, S0 = 0. Conse-
quently, the random variable Z(u) becomes

Z?(u) =

(
εθ

1− ρ•

)2

(N + 2)FX

(
mN+1 ∨ (u−X?

0 − SN+1)
)
.

We can further introduce NFX(u) as a control variate for the number of sum-
mands (see e.g. Ghamami and Ross (2012)).

Definition 4.3.6. We use the control variate

W ?(u) =

(
εθ

1− ρ•

)2

(N + 2)FX(u).

The resulting approximation ϕ?(u) = EW ?(u) of ϕ(u) then is

ϕ?(u) :=

(
εθ

1− ρ•

)2
(

εθ

1− ρ
+ 2

)
FX(u).
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This control variate leads to the following Asmussen-Kroese (AK)-type estima-
tor:

ψ̂?κ(u) := ẑ?κ(u) + α̂?κ
(
ŵ?κ(u)− ϕ?(u)

)
, (4.23)

where ẑ?κ(u), ŵ?κ(u), and α̂?κ are calculated via (4.9) using Z?(u) and W ?(u).

Remark 4.3.7. An alternative approach is to set X?
1 = M•

0 +M•
1 + Ce

1 and Xk =
M•

k + Ce
k, k = 2, 3, . . . and write (4.6) as

ϕ(u) =

(
εθ

1− ρ•

)2

P(X?
1 +X2 + · · ·+XN+2 > u).

Observe that all the random variables on the right hand side of this equation are
heavy-tailed and independent, but not identically distributed. Thus, using the AK
estimator for non i.i.d. random variables established in Chan and Kroese (2011),
we could instead construct a control variate based on the conditional Monte Carlo
estimator

Z?(u) =

(
εθ

1− ρ•

)2
(
FX?

1

(
m?
−1 ∨ (u− SN+1 +X1)

)
+ (N + 1)FX

(
m?
−(N+2) ∨ (u− SN −X?

0 )
))
,

where m?
−1 = max{X2, . . . , XN+2} and m?

−k = max{X?
1 , X2, . . . , Xk−1, Xk+1, XN+2}.

4.3.3 Comparison with the Pollaczek-Khinchine expansion

For reference and the purpose of comparison, we also consider the estimators anal-
ogous to the ones in Sections 4.3.1 and 4.3.2 using the usual PK series expansion
of the ruin probability in (4.2), which we rewrite as

ψ(u) = (1− ρ)ρGe(u)︸ ︷︷ ︸
explicit

+ (1− ρ)
∞∑
k=2

ρk
(
1− (Ge)∗k(u)

)
︸ ︷︷ ︸

:=ϕ◦(u)

.

Define the random variables N◦ ∼ Geom(1− ρ),

V ◦ =
N◦+2∑
k=1

U e
k ,

V ◦n = max{U e
1 , . . . , U

e
N◦+2}1{N◦≤n−2},

and let S◦n =
∑n

k=1 U
e
k as well as m◦k = max{U e

1 , . . . , U
e
k}. With this notation, the

following equations define the analogous control variate estimators of ϕ◦(u):

Z◦(u) = ρ21{V ◦>u} Z◦,?(u) = ρ2(N◦ + 2)Ge(m◦N◦+1 ∨ (u− S◦N◦+1))

W ◦(u) = ρ21{V ◦n>u} W ◦,?(u) = ρ2(N◦ + 2)Ge(u),

and the associated empirical estimator

ϕ̂◦,nκ (u) := ẑ◦κ(u) + α̂◦κ
(
ŵ◦κ(u)− ϕ◦n(u)

)
. (4.24)
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Observe now that the distributional behaviour of the variable U e is slightly differ-
ent than that of Ce

k. Recall that U e = IBe
k+(1−I)Ce

k, where I ∼ Bernoulli
(
ρ•/(ρ•+

εθ)
)
. Hence,

P(U e > u) =
ρ•

ρ• + εθ
P(Be > u) +

εθ

ρ• + εθ
P(Ce > u) ∼ εθ

ρ• + εθ
P(Ce > u),

as u → ∞. Moreover, since Ce is subexponential, the above relation implies that
U e is subexponential as well. Consequently,

P(m◦k > u) ∼ k
εθ

ρ• + εθ
P(Ce > u) = k

εθ

ρ• + εθ
F e
h(u).

Using the above asymptotic and following the proof of Theorem 4.3.5, we obtain
the next result.

Theorem 4.3.8. For each fixed n ∈ N, the variance of the estimator (4.24) behaves
asymptotically as

Var
(
ϕ̂◦,nκ (u)

)
∼ ρn+3 1 + n (1− ρ)

1− ρ
· εθ
ρ
· F

e
h(u)

κ
, as u→∞,

and satisfies

Var
(
ϕ̂◦,nκ (u)

)
Var
(
ẑ◦κ(u)

) → ρn−1 1 + n (1− ρ)

1 + (1− ρ)
, as u→∞. (4.25)

It follows that we can compare the asymptotic effect on the variance between
the two different series expansions for the ruin probability, as well as the effect on
the proportion of variance reduction due to the use of control variates:

Corollary 4.3.9. For each fixed n ∈ N, the following relations hold:

Var
(
ϕ̂nκ(u)

)
Var
(
ϕ̂◦,nκ (u)

) ∼ [ εθ

1− ρ•

/
ρ

]n+2 1 + n
(

1−ρ
1−ρ•

)
1 + n(1− ρ)

, as u→∞, (4.26)

and[
Var
(
ϕ̂nκ(u)

)
Var
(
ẑκ(u)

) ] · [Var
(
ϕ̂◦,nκ (u)

)
Var
(
ẑ◦κ(u)

) ]−1

→
[

εθ

1− ρ•

/
ρ

]n−1 1 + n
(

1−ρ
1−ρ•

)
1 + n(1− ρ)

· 1 + (1− ρ)

1 +
(

1−ρ
1−ρ•

) ,
as u→∞.

Notice that the inequality εθ
1−ρ• < ρ is actually equivalent to the net profit

condition ρ < 1. As a consequence, the terms involving powers of εθ
1−ρ•/ρ < 1 in

the above result guarantee (for large n) a better performance of our new series
representation over the classical Pollaczek-Khinchine expansion.

Remark 4.3.10. Note that the term ρ• also depends on ε and εθ
1−ρ• is not necessarily

monotone in ε. Correspondingly, it will depend not only on the fraction ε of heavy-
tailed claims in the mixture but also on the value of all other involved parameters
how large an improvement our series representation provides.
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4.4 Numerical experiments

In this section, we test and numerically illustrate the efficiency of our proposed
technique, and compare it to the analogous classical simulation techniques based
on the PK representation (4.2) (see also (Asmussen and Albrecher, 2010, Ch.XV.2)).

To perform our numerical experiments, we need to specify a mixture claim size
distribution for which the distributions of M•

0 + M•
1 + Ce

1 and M•
1 + Ce

1 can be
evaluated explicitly; note that the second convolution is only required for the AK
estimator.

4.4.1 Mixture of exponential and Pareto claim sizes

For the phase-type claim sizes we choose an exponential distribution with rate µ,
i.e. Fp(u) = F e

p (u) = e−µu, and µB = 1/µ. For the heavy-tailed claim sizes we
consider a shifted Pareto distribution with shape parameter a > 1 and scale b > 0,
i.e. Fh(u) = (1 + u/b)−a and F e

h(u) = (1 + u/b)−(a−1), u ≥ 0, with µC = b/(a− 1).
The two tail probabilities of the aforementioned sums of variables are explicitly

available. For instance, for µ = 3, a = 2, b = 1, ε = 0.1 and ρ = 0.99 they are given
by

P(M•
0 +M•

1 + Ce
1 > u) =

1

25.600.000.000(1 + u)
×

(
− 41200(223427 + 264627u)

+ 297(1 + u)

(
400e−309u/400(292973 + 91773u)

+ 31827(1691 + 891u)e−309(1+u)/400

(
Ei
(309(1 + u)

400

)
− Ei

(309

400

))))

P(X1 > u) =
103

400(1 + u)
+

297

320000
×

(
800e−309u/400

+ 618e−309(1+u)/400

(
Ei
(309(1 + u)

400

)
− Ei

(309

400

)))
, (4.27)

where Ei(z) = −
∫∞
−z

e−t

t
dt is the exponential integral. For all other parameters that

we consider, analogous formulas are used. Finally, we calculate P
(

max{Ce
1 , . . . , C

e
k} >

u
)

= 1−
(
1− (1 + u/b)−(a−1) )k.

4.4.2 Parameters

In all our experiments, we fixed µ = 3 and b = 1, while we considered various
combinations for the remaining parameters. Motivated by Vatamidou et al. (2013),
we focused mainly on the cases ρ ∈ {0.9, 0.99, 0.999}, where simulations involving
heavy-tails can be considerably problematic (known as the heavy-traffic regime in
the related queueing context, cf. Asmussen (2003)) and where the first two terms
of (4.15) are known to be unable to close the gap between the approximation and
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the exact ruin probability even for values of ε = 0.1. For the remaining parameters
we tested ε ∈ {0.1, 0.7} and a ∈ {2, 3, 4}.

4.4.3 Results

In all the presented examples, the order of ψn(u) is equal to n = 100 and the number
of simulations is κ = 10, 000.

We plot in Figure 4.1 the simulated ruin probability that is obtained using the
Monte Carlo estimator (4.12) together with the heavy-tail approximation (4.16).
The dashed black lines depict the error bounds in Proposition 4.3.3. We observe
in both graphs that the lower bound converges to the heavy-tail approximation
(4.16) as u → ∞. This behaviour is observed for any n and is in accordance
with theory. A similar statement holds for any u as n → ∞. Further empirical
tests show that this convergence in n is remarkably fast. However, one cannot
draw a safe conclusion for which choice of parameters the lower bound is below or
above the heavy-tail approximation. Finally, we observe in the left graph that the
upper bound is not very tight, as expected by Proposition 4.3.3, since the chosen
parameters give εθ/(1−ρ•) = 0.875. The bound becomes tighter in the right graph,
where εθ/(1− ρ•) = 0.25.

From this point on, let us fix the parameters to a = 2, ε = 0.1, and ρ = 0.99
to allow for comparability between Figures 4.2 and 4.3. Moreover, we use a log-
log scale. In Figure 4.2, we plot the MC estimate (4.12) (blue solid line) together
with the control variate extension (4.18) (black dashed line) against the heavy-tail
approximation (4.16). We observe that the control variate technique outperforms
the crude estimate (4.12) across the entire range of u (see the variance plot on
the right). Figure 4.2 also compares the simulation results with the ones based
on the classical PK formula described in Section 4.3.3. For the crude version, the
latter are competitive for large u, but perform worse for small u. However, for the
control variate, our new approach is always significantly and convincingly better.
This nicely illustrates the theoretical asymptotic results of Section 4.3: note that
for the present choice of parameters the control variate asymptotically reduces the
variance by a factor 0.09 (the constant on the right-hand side of (4.20)) for our
series representation, to be compared with 0.73 for the analogous constant on the
right-hand side of (4.25) for the PK representation. Related to that, the constant
on the right-hand side of (4.26) in Corollary 4.3.9 is 0.12, which means that our
series representation reduces the asymptotic variance by almost 90%, when control
variates are used in both cases.

In Figure 4.3, we plot the simulated ruin probability with the AK estimator
(blue solid line) and its control variate extension in Section 4.3.2 against the heavy-
tail approximation (4.16), both for the PK and our new series expansion. One
recognises that the asymptotic behaviour according to (4.16) (red dotted line) is
recovered for all four estimators for sufficiently large u. The right graph illustrates
that the introduction of the control variate is a significant improvement in terms
of variance reduction for both the PK and our series, and that the two perform
similarly. The overall variance is much lower than for the method underlying Figure
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4.2. However, one should keep in mind that in terms of computation time the AK
estimator in Figure 4.3 is much more time-consuming (about 20–50 times in our
implementations), as the integrals (4.27) have to be evaluated κ times, whereas for
the method in Figure 4.2 only once for the explicit term in front.

For large ρ, the number of summands tends to be large, and the results of the
presented simulations suggest that the approximation

P(M•
0 +M•

1 + · · ·+M•
k + Ce

1 + · · ·+ Ce
k > u) ≈ P

(
max{Ce

1 , . . . , C
e
k} > u

)
(4.28)

is better than the one employed using the usual PK series expansion

P(U e
1 + · · ·+ U e

k > u) ≈ P
(

max{U e
1 , . . . , U

e
k} > u

)
. (4.29)

Intuitively, the latter is comprised of mixtures of heavy-tailed and light-tailed
variables, and hence the number of heavy-tailed variables is thinned down, which is
a drawback that our new method does not have. This is further supported by the
plot in the left panel of Figure 4.4, where the empirical correlations between the
control variates are given. Concretely, when simulating from (4.29), only 100 · εθ

ρ
%

of our U e
k ’s will actually be heavy-tailed and thus one loses too much information

from the original presence of heavy-tailed Ce
k’s, in contrast to (4.28) where only

the light tails are omitted and all heavy-tails are kept. Consequently, the new
control variate is much more efficient, cf. the factors εθ/ρ in Corollary 4.3.9. In
contrast, for the AK estimator the control variate does not significantly differ for
the two series representations, and therefore – while the control variate itself is a
huge improvement over the crude estimate (cf. Figure 4.3 (right)) – there is no
improvement from using the alternative representation.

Figure 4.1: The simulated ruin probability with MC estimator (4.12) (blue solid
line together with its 95% confidence interval in orange) and the heavy-tail approx-
imation (red dotted line), as a function of the initial capital u. The black dashed
lines represent the error bounds in Theorem 4.3.3. Model parameters: a = 3 (both)
and {ε, ρ} = {0.7, 0.9} (left) or {ε, ρ} = {0.1, 0.7} (right).
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Figure 4.2: The simulated ruin probability with MC estimator (4.12) (blue solid line
together with its 95% (blue solid line) and the control variate extension (4.18) (black
dashed line) against the heavy-tail approximation. The corresponding estimates
based on the PK formula are depicted in pink and dashed green. Model parameters:
a = 2, ε = 0.1, and ρ = 0.99. The respective empirical variances are presented on
the right.

4.5 Conclusion

In this paper, we introduced an alternative series expansion for the PK formula in
the Cramér-Lundberg model for the case when claims are mixtures of distributions
with heavy and light tails. We showed that this can give rise to a significant
improvement of simulation algorithms based on this series, both for large and small
values of initial capital.

When using the AK conditional Monte Carlo technique, the new series repre-
sentation performs similarly as the original one based on the PK formula. Both
these AK procedures (and particularly their control variate extensions w.r.t. N)
have a significantly lower variance for a fixed simulation size when compared to the
method of Section 4.3.1. However, the AK estimator is quite slow because it has
to evaluate an improper integral in every iteration for the chosen mixture model.
Hence, whenever time matters, the first simulation method based on (4.18) is to
be preferred, and there our new series is a significant improvement. The latter is
particularly the case also in the heavy-traffic regime where simulation is known to
be difficult. In addition, the performance is quite convincing also for moderate and
low initial capital.

In addition, it is hard or even impossible to use the AK estimator when the
distribution of M•

1 + Ce
1 is not known explicitly. On the other hand, our estimator

can be used even if the probability P(M•
0 +M•

1 +Ce
1 > u) cannot be calculated in a

closed form. In such cases, one can simply simulate that latter probability as well
and adapt the theoretical results in Sections 4.3.1 and 4.3.1 accordingly.

In addition, although we concretely considered a mixture of a phase-type and a
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Figure 4.3: The simulated ruin probability with the AK estimator (blue solid line)
and its control variate extension (4.23) (black dashed line) against the heavy-tail
approximation. The corresponding estimates based on the PK formula are depicted
in pink and dashed green. Model parameters: a = 2, ε = 0.1, and ρ = 0.99. The
respective empirical variances are presented on the right.

subexponential distribution in this paper, the results still hold if we replace Fp(x)
by any distribution for which ψ•(u) = P(M•

0 > u) has a closed form, e.g. matrix-
exponential distributions (cf. Bladt and Nielsen (2017)). In addition, one can fur-
ther modify our approach in order to evaluate ψ•(u) via simulation for any other
light-tailed distribution, which is known to produce effortlessly reliable simulation
outputs.

Finally, we would like to point out that the ruin probability of the more general
Sparre Andersen model also has a Pollaczek-Khinchine-type formula with respect
to the ladder height distribution ((Asmussen and Albrecher, 2010, Ch.VI)). Our
estimator is also valid for this model as long as the ladder height distribution can
be found explicitly, which is for instance the case when the inter-occurrence times
belong to the class of distributions with rational Laplace transform.
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Figure 4.4: The correlation of the control variate using the new series expansion
(black solid line) and the classical one (red dashed line) for the traditional Monte
Carlo approach (4.3.1, left panel) and for the AK approach (4.3.2, right panel).
Model parameters: a = 2, ε = 0.1, and ρ = 0.99.



Chapter 5

Combined Tail Estimation Using
Censored Data and Expert
Information

This chapter is based on the following article:

Bladt, M., Albrecher, H., & Beirlant, J. (2019). Combined tail estimation using
censored data and expert information. Scandinavian Actuarial Journal, to appear.

Abstract

We study tail estimation in Pareto-like settings for datasets with a high percentage
of randomly right-censored data, and where some expert information on the tail
index is available for the censored observations. This setting arises for instance
naturally for liability insurance claims, where actuarial experts build reserves based
on the specificity of each open claim, which can be used to improve the estimation
based on the already available data points from closed claims. Through an entropy-
perturbed likelihood we derive an explicit estimator and establish a close analogy
with Bayesian methods. Embedded in an extreme value approach, asymptotic nor-
mality of the estimator is shown, and when the expert is clair-voyant, a simple
combination formula can be deduced, bridging the classical statistical approach
with the expert information. Following the aforementioned combination formula, a
combination of quantile estimators can be naturally defined. In a simulation study,
the estimator is shown to often outperform the Hill estimator for censored observa-
tions and recent Bayesian solutions, some of which require more information than
usually available. Finally we perform a case study on a motor third-party liability
insurance claim dataset, where Hill-type and quantile plots incorporate ultimate
values into the estimation procedure in an intuitive manner.

97
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5.1 Introduction

In applied statistics, one is often faced with the need to combine different types
of information to produce a single decision. For instance, in credibility theory, the
weights that link a relevant but small dataset with a big but not-so-relevant dataset
are looked for, or similarly in bioinformatics one may use a dataset containing
different cell types in the estimation of a cell, and scale down their importance in
various ways.

The present paper is motivated by a specific problem in liability insurance. In
that line of business, claim size data usually have a high percentage of censored
observations, as policies take years, or even decades, to be finally settled. Due to
the limited number of claims, one still would like to take into account available
information about the open claims in the estimation of claim size distributions (see
e.g. Albrecher et al. (2017)). On the one hand, experts typically project the final
amount of open claims, i.e. they propose incurred values, or also ultimates based
on covariate information or other (objective or subjective) considerations which are
not in the payment dataset that arrives at a statistician’s table. On the other
hand, statisticians have standard ways of dealing with censored observations, for
instance the Peaks over Threshold method when one is interested in extremes, as
well as the Hill estimator for heavy and Pareto-like tails. This research has started
in Beirlant et al. (2007) and Einmahl et al. (2008) and has received more attention
recently, see e.g. Worms and Worms (2014), Ameraoui et al. (2016), Beirlant et al.
(2018). However, in that line of extreme value methods expert information has
not been incorporated. In Albrecher et al. (2017), incurred values were used to
derive upper bounds for the open claims and survival analysis methods for interval
censored data were implemented. See also Bogaerts et al. (2018) for frequentist and
Bayesian analysis of interval censored data.
One often faces the question of whether to conduct the analysis from the right-
censored observations point of view, or whether to use the imputed ultimate (expert)
values into the dataset and treat it as a fully-observed dataset. The latter is typically
an easy (and cheap) solution. Figure 5.1 illustrates a possible situation of available
data for motor third-party liability (MTPL) insurance claims of a direct insurance
company operating in the EU, cf. Section 5.5 for more details, where this data
set will be studied. In what follows we are interested in developing a procedure
that combines both approaches, without making any assumptions on the quality or
method used to obtain the expert information.

To that end, we assume that for each censored observation (open claim), we
have a tail parameter βi which reflects the belief of the expert on the heaviness
of the tail of this particular (unsettled) observation. The typical situation may be
that all the βi are equal or that there is an upper and a lower bound for all of
them. However, we develop the theory for the general case, and we embed these
indices into a statistical framework, where a single tail parameter is estimated for
the entire dataset. At a philosophical level, the proposal of different βi is not an
ill-posed problem, it rather shows a prior variability of a belief on the tail index.

The difference with the Bayesian paradigm is the fact that we only make the
assumption for censored observations, such that increasing sample sizes but constant
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Figure 5.1: Motor third-party liability insurance: log-claims in vertical order of
arrival, showing the paid amount for both open (red, circle) and closed (black, dot)
claims, as well as ultimate values for the open claims (green, triangle).

censored proportions will keep the importance of the expert guesses constant, with
respect to the rest of the data. In mathematical terms we will see that our approach
will have a Bayesian interpretation when the prior distribution of the parameter
depends on the sample through the censoring indicators.

We propose a perturbation of the likelihood via an exponential factor and use
the relative entropy between two densities as a dissimilarity measure. The resulting
maximum perturbed-likelihood estimate has an explicit formula which resembles
the Hill estimator adapted for censoring (cf. Hill (1975); Beirlant et al. (2007)),
degenerates into it as the perturbation becomes small, and converges to the mean
of the expert tail indices as the perturbation becomes large. Thus, in a similar
way as in the prior specification for Bayesian estimation, if experts have additional
information on the quality of their belief, the perturbation parameter can be tuned
accordingly. However, we propose a method which does not assume such additional
prior knowledge, apart from the original expert knowledge.

Penalization is a prevalent idea which has gained popularity in the age of cheap
computational power. The idea behind it is to impose beliefs on the statistical
estimation which can yield a better estimation or an estimator which has more
acceptable properties for the application at hand. It can help to impute a control
or perturbation parameter which in turn helps to tailor estimators towards a certain
degree of convenience. For instance, in a different statistical setting, the Lasso or
Ridge regression imposes the belief or need of a data scientist to reduce the number
of covariates included in a covariate-response analysis. In some cases this procedure
helps to remove nuisance covariates, but in others it might be too aggressive and
exclude truly informative variables. This bottleneck is specific to each application –
and even to each dataset – which suggests that a fully automated procedure is not
recommended. In the same vein, the effectiveness of the proposed method depends
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on the quality of the provided expert tail information, and this is something which
is not always available or quantifiable. In any case, it is recommended that the tail
inference is done side-by-side with the experts.

We derive the asymptotic properties of the perturbed-likelihood estimator, and
although the asymptotic mean square error (AMSE) is available, the parameter
which minimizes it depends on subjective considerations. One such consideration is
the strength of the belief in the expert information provided: if the belief is certain,
the penalization parameter goes to infinity, which means that the data should be
ignored and the expert information should be used instead, based on the AMSE
criterion. To avoid assumptions which are not realistically available in practice,
we instead suggest selecting the penalizing parameter in a convenient way, as the
one which reduces the perturbed estimator to a simple sum of identifiable compo-
nents. When the expert information is precise (degenerate at the true parameter)
it holds that the penalization weight equal to 1 always leads to a lower AMSE, the
latter also having a formula with a pleasant interpretation. When substituting this
penalization parameter into the original formula, a very simple interpretation of
the (inverse of the) estimator is available (Theorem 5.4.4): it is the combination
of the Hill estimator and the expert information, the weights being the proportion
of non-censored and censored data-points, respectively. Such a simple combination
estimator is shown for a variety of common heavy-tailed distributions and for a va-
riety of parameters to perform very well alongside competing methods, which need
information to tune their own parameters.

The remainder of the paper is structured as follows. In Section 5.2, for the exact
Pareto distribution, we introduce the notation and perturbation that we will deal
with, as well as deriving simple expressions for the maximum perturbed-likelihood
estimators and showing how they bridge theory and practice in a smooth manner.
In Section 5.3 we establish a close link with Bayesian statistics. In Section 8.3
we extend the methodology to the case where the data only exhibit Pareto-type
behaviour in the tail, and we derive the asymptotic distributional properties of
the perturbed-likelihood estimator and unveil a simple combination formula. In
this more general heavy-tailed case, we naturally deal with estimators that use
only a fraction of upper order statistics, and introduce as benchmarks some recent
Bayesian estimators that have been proposed for censored datasets. In Section 5.5
we perform a simulation study and a real-life motor third-party liability insurance
application. The latter data has been studied in the literature from both the expert
information and the censored dataset viewpoints, but not yet in a joint manner, as
we do here. We conclude in Section 5.6.

5.2 Derivation and properties

Consider the estimation from a censored sample following an exact Pareto distri-
bution. That is, we observe the randomly censored data-points and the binary
indicator censoring variables:

(Z1, e1), (Z2, e2), . . . , (Zn, en).
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Contrary to classical survival analysis, the Zi here correspond to payment sizes
rather than times. The density and tail of the non-censored underlying data (which
is not observed) are given by

fα(x) =
αxα0
xα+1

, Fα(x) =
xα0
xα
, x ≥ x0 > 0, (5.1)

with unknown tail parameter α and known scale parameter x0. The latter assump-
tion poses no restriction, since we are interested only in the estimation of the tail
index, and as we will see, the Hill-type estimators based on upper order statistics
that will be considered depend only on the log spacings of the data, which are
independent of the scale parameter.

Additionally, and in contrast to classical survival analysis, we assume that we
are given for each (right-)censored data-point an expert information of the possible
tail parameter, i.e. we have knowledge of βi > 0 for i = 1, . . . , n. This can arise, for
instance, when the data are collected from different sources, or the realization of
a data-point showing some pattern due to a particular settlement history, or some
covariate information that can not be included in a more direct way. However, it is
believed that all data points eventually come from one underlying distribution (or at
least one aims for such a modelling description). We are also primarily interested in
the case where all the βi are the same, since more often than not, expert information
can come in this format.

When ignoring the information from the data, natural estimates of α are given
by the weighted arithmetic and harmonic mean

α̂am =

∑n
i=1(1− ei)βi∑n
i=1(1− ei)

, α̂hm =

∑n
i=1(1− ei)∑n

i=1(1− ei)/βi
, (5.2)

respectively, where ei = 0 if Zi is right-censored, and ei = 1 otherwise. On the other
hand, in the context of survival analysis it is a standard approach to maximize the
following likelihood based purely on the data

L(α; z) =
n∏
i=1

fα(zi)
eiFα(zi)

1−ei =
n∏
i=1

(
αxα0
zα+1
i

)ei (xα0
zαi

)1−ei

.

The maximum likelihood estimator is then given by

α̂MLE =

∑n
i=1 ei∑n

i=1 log
(
Zi
x0

) , (5.3)

which is an adaptation (see Beirlant et al. (2007)) to the censoring case of the famous
Hill estimator (cf. Hill (1975)) from extreme value theory obtained by Peaks-over-
Threshold modelling; see Embrechts et al. (1997) or Beirlant et al. (2004) for a
broader treatment on Pareto-type tail estimation, see also Section 4.

The two aforementioned approaches to the estimation of the tail parameter are
in practice separated. That is, an expert will take only one of the two approaches,
based on factors such as reliability of the expert information or data availability.
This is an especially difficult decision when there is a high percentage of censored
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and large observations, which present a key problem in the estimation in statistics
in general, see for instance Leung et al. (1997).

In the present paper, we introduce an estimator which bridges the previous
estimators. We will proceed by the perturbation of the likelihood function, and
consider a penalized likelihood:

LP (α; z) =
n∏
i=1

fα(zi)
eiFα(zi)

1−eie−(1−ei)λD(α,βi)

=
n∏
i=1

(
αxα0
zα+1
i

)ei (xα0
zαi

e−λD(α,βi)

)1−ei

,

where the factor e−λD(α,βi) penalizes the contribution of the censored observations
according to some measure of dissimilarity between fα and the Pareto distribution
with parameter βi, denoted by D(α, βi), and the λ ≥ 0 models the strength of
the penalization imposed by D(α, βi). We propose to use the relative entropy as a
dissimilarity measure:

D(βi, α) =

∫ ∞
x0

log

(
gi(s)

fα(s)

)
gi(s) ds =

α

βi
− 1− log

(
α

βi

)
≥ 0, (5.4)

where gi is a Pareto density with tail index βi and scale parameter x0. The associ-
ated log-likelihood is then given by

log
(
LP (α, z)

)
=

n∑
i=1

ei log

(
αxα0
zα+1
i

)
+

n∑
i=1

(1− ei) log

(
xα0
zαi

)
−

n∑
i=1

λ(1− ei)D(fα, gi).

(5.5)

Equation (5.5) turns out to have an explicit minimizer when using D from (5.4)
(we omit the details), given by

α̂P (λ) =

∑n
i=1(ei +λ(1− ei))∑n

i=1(log(Zi/x0) + λ(1− ei)/βi)
.

Notice that if we flip the densities in the entropy penalization and consider
instead

D(α, βi) =

∫ ∞
x0

log

(
fα(s)

gi(s)

)
fα(s) ds =

βi
α
− 1− log

(
βi
α

)
≥ 0,

the associated penalized likelihood has the explicit solution

α̂I(λ) = (5.6)∑n
1 (ei−λ(1− ei)) +

√
[
∑n

1 (ei−λ(1− ei)]
2

+ 4
∑n

1 log
(
Zi
x0

)
·
∑n

1 βiλ(1− ei)

2
∑n

1 log
(
Zi
x0

) ,

which is less appealing, with more complicated asymptotic properties.
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Remark 5.2.1. The particular choice of entropy penalization is mathematical in
nature, since the resulting explicit and simple form of the maximum likelihood esti-
mator permits a deeper analysis than other choices. For instance, the significantly
more complicated explicit estimators (5.6) or (5.13) lead to a much more involved
analysis.

Remark 5.2.2. In general, with lack of any other type of information, giving equal
weight to each censored observation is the most natural way to deal with them. If
the expert has an idea of the importance of each data point and their corresponding
tail indices βi, the selection can be done on a single parameter λ through

λi = λωi.

Note that then

lim
λ→∞

α̂P (λ) =

∑n
i=1(1− ei)ωi∑n

i=1(1− ei)ωi/βi
, (5.7)

and

lim
λ→∞

α̂I(λ) =

∑n
i=1(1− ei)ωiβi∑n
i=1(1− ei)ωi

, (5.8)

i.e. the information brought by the data becomes irrelevant and we take a weighted
average of the expert guesses. Taking uniform weights, i.e., giving equal importance
to each censored observation, will result in (5.2).

If no weights are naturally suggested one can always tackle the multi-dimensional
selection problem on all λi. In this more general case we have that

lim
λi→0; i=1,...,n

α̂P (λ1, . . . , λn) =

∑n
i=1 ei∑n

i=1 log
(
Zi
x0

) . (5.9)

which can readily be deduced directly from (5.5), since it is the classical non-
penalized estimator. Similarly

lim
λi→0; i=1,...,n

α̂I(λ1, . . . , λn) =

∑n
i=1 ei∑n

i=1 log
(
Zi
x0

) . (5.10)

As a consequence of the limits (5.7), (5.8), (5.9) and (5.10), we readily get for
λ1 = · · · = λn =: λ ≥ 0 that

lim
λ→∞

α̂P (λ) = α̂1, lim
λ→∞

α̂I(λ) = α̂2, lim
λ→0

α̂P = lim
λ→0

α̂I(λ) = α̂MLE,

which confirms that the estimator bridges the estimation of α and the proposal of
the βi, and that the parameter λ reflects in some sense the strength of the belief on
the expert information. The next section will touch upon this interpretation in a
more precise manner.
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5.3 Penalization seen as a Bayesian prior

We will use a single λ value in practice, but here we assume the most general setting
where the λi could be different, at no complexity cost. The penalized likelihood
that gives rise to α̂P is given by

LP (α; z) =
n∏
i=1

(
αxα0
zα+1
i

)ei (xα0
zαi

)1−ei

e−λi(1−ei)(α/βi−1−log(α/βi))

=

[
n∏
i=1

(
αxα0
zα+1
i

)ei (xα0
zαi

)1−ei
]
·
[
α
∑n
i=1 λi(1−ei)e−α

∑n
i=1 λi(1−ei)/βi

]
×

[
n∏
i=1

β
−λi(1−ei)
i eλi(1−ei)

]
=
[
α
∑n
i=1(ei +λi(1−ei))e−α

∑n
i=1(λi(1−ei)/βi+log(zi/x0))

]
×

[
n∏
i=1

β
−λi(1−ei)
i eλi(1−ei)z− ei

i

]
.

Note that the second factor after the last equality sign does not depend on α,
and the first one is proportional to a gamma density. We thus recognize that the
penalized maximum likelihood estimator can be seen as the posterior mode arising
from a Pareto likelihood and the conjugate gamma prior with hyper-parameters

α0 =
n∑
i=1

λi(1− ei) + 1, β0 =
n∑
i=1

λi(1− ei)/βi,

and corresponding posterior parameters

α∗ =
n∑
i=1

(ei +λi(1− ei)) + 1, β∗ =
n∑
i=1

(λi(1− ei)/βi + log(zi/x0)).

The hyper-parameters of the prior, however, do depend on the sample, namely on
the censoring indicators ei, so we are not in the classical Bayesian setting. Nonethe-
less, we will continue to call it a prior, for simplicity.

In this context we also have the following interpretation of the effects of the
selection of the λi. The mode of the prior distribution is given by∑n

j=1 λj(1− ej)∑n
i=1 λi(1− ei)/βi

=

(
n∑
i=1

λi(1− ei)∑n
j=1 λj(1− ej)

β−1
i

)−1

, (5.11)

and one sees that the proportions of the λi give the weights which will determine
this mode. However, we can multiplicatively scale these λi and the mode will remain
unchanged. The magnitude of the λi, in contrast, does play a role for the variance
of the prior: ∑n

i=1 λi(1− ei) + 1

(
∑n

i=1 λi(1− ei)/βi)
2 , (5.12)
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since the larger the λi, the smaller the prior variance. Thus, a single estimate as
an expert information will trump the ability to effectively determine the magnitude
of the penalization parameter. This is a problem which is often encountered in
Bayesian statistics, and a prior is often selected nonetheless, making frequentists
doubtful of this philosophical leap of faith.

Note that the gamma distribution has two parameters, and any two descriptive
statistics (presently we used the mode and variance) which bijectively map to the
mode and variance can be used to give alternate full explanations as to how the
proportions λi(1 − ei)/

∑n
j=1 λj(1 − ej) and the sizes of the λi play a role in the

modification of the prior distribution, and hence on the expert belief.

Remark 5.3.1. If instead of using the penalization given by (5.4) we simply use
squared penalization given by

D(βi, α) =
(α− βi)2

2
≥ 0,

then the maximum perturbed-likelihood estimate will again be explicit and given
by

α̂Sq =

∑n
i=1(λi(1− ei)βi − log(Zi/x0))∑n

i=1 λi(1− ei)

+

√
[
∑n

i=1(λi(1− ei)βi − log(Zi/x0))]
2

+ 4
∑n

i=1 λi(1− ei) ·
∑n

i=1 ei∑n
i=1 λi(1− ei)

, (5.13)

which naturally leads to a Gaussian prior interpretation when the λi are equal. This
estimator also converges to the Hill estimator as λi → 0, i = 1, . . . , n, but it can
have numerical instabilities when the denominator becomes very small.

5.4 Extreme Value Theory

We now move on to a more general heavy-tail approach and consider the case of
regularly varying distributions with tail of the form

x−α`(x), α > 0,

where ` is a slowly varying function, i.e. `(vx)
`(x)
→ 1, as x→∞ for every v > 1. We

also assume now that censoring is done at random and the data is generated as the
minimum of two independent random variables

Zi = min{Xi, Li},

with regularly varying tails:

P(Xi > u) = u−α`(u),

P(Li > u) = u−α2`2(u).
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It follows that

P(Zi > u) = u−αc`c(u), αc = α + α2, (5.14)

and slowly varying function `c = ` `2. Here we confine ourselves to the so-called
Hall class (cf. Hall (1982)). This popular second-order assumption in extreme value
theory often makes asymptotic identities tractable:

P(Xi > u) = C1u
−α (1 +D1u

−ν1(1 + o(1))
)

for u→∞,
P(Li > u) = C2u

−α2
(
1 +D2u

−ν2(1 + o(1))
)

for u→∞, (5.15)

where ν1, ν2, C1, C2 are positive constants and D1, D2 real constants. Then, with

C = C1C2, ν∗ = min(ν1, ν2)

and

D∗ =


D1, ν1 < ν2

D2, ν2 < ν1

D1 +D2, ν1 = ν2,

we have that
P(Zi > u) = Cu−αc

(
1 +D∗u

−ν∗(1 + o(1))
)
,

that is, the censored dataset is again in the Hall class.
Denote the quantile function of Z by Q and consider the tail quantile function

U(x) = Q(1− x−1), x > 1. Then we have that

U(x) = C1/αc

(
1 +

D∗
αc
C−ν∗/αcx−ν∗/αc(1 + o(1))

)
.

The order statistics of the data will be denoted by

Z(1) ≥ · · · ≥ Z(n),

with associated censoring indicators e(i) and expert information β(i). Given a high
threshold u > x0, the Hill estimator adapted for censoring is

α̂Hu =

∑n
i=1 ei 1{Zi > u}∑n

i=1 log
(
Zi
u

)
1{Zi > u}

. (5.16)

Taking Z(k) for some 1 ≤ k ≤ n, as a (random) threshold u, we obtain the alterna-
tive order statistics version

α̂MLE
k =

∑k
i=1 e(i)∑k

i=1 log
(

Z(i)

Z(k+1)

) =
p̂k
Hk

, (5.17)

where

p̂k =
1

k

k∑
i=1

e(i)
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is the proportion of non-censored observations in the largest k observations of Z,
and

Hk =
1

k

k∑
i=1

log

(
Z(i)

Z(k+1)

)
is the classical Hill estimator based on the largest k observations. For details on
these censored versions of the Hill estimator, we refer to (Einmahl et al., 2008,
Sec.2).

The asymptotic distribution of Hk has been studied intensively in the literature
under the above second-order assumptions (see for instance (Beirlant et al., 2004,
Ch.4)): assuming

√
k(k/n)ν∗/αc → δ ≥ 0, (5.18)

as k, n→∞ with k/n→ 0, we have that

√
k

(
Hk −

1

αc

)
d→ Y0 ∼ N

(
−C−ν∗/αcD∗

ν∗δ

αc(αc + ν∗)
, α−2

c

)
. (5.19)

As discussed in Einmahl et al. (2008), the asymptotic bias of p̂k follows from the
leading term in 1

k

∑k
i=1 p(U(n/i))− p, where

p(z) = P (e = 1|Z = z) ,

and p denotes the asymptotic probability of non-censoring

p = lim
z→∞

p(z) =
1/α2

1/α + 1/α2

=
α

α + α2

.

Under the Hall class (5.15), we have with the definition

(D/α)∗ =


D1/α, ν1 < ν2

−D2/α2, ν2 < ν1

D1/α−D2/α2, ν1 = ν2,

that as x→∞

p(U(x))− p = p(1− p)(D/α)∗ν∗C
−ν∗/αcx−ν∗/αc(1 + o(1)). (5.20)

From this, assuming that
√
k(k/n)ν∗/αc → δ as k, n→∞ with k/n→ 0, one gets

√
k (p̂k − p)

d→ N
(
p(1− p)C−ν∗/αc(D/α)∗

αcν∗δ

αc + ν∗
, p(1− p)

)
.

In Einmahl et al. (2008) it was also derived that asymptotically Hk and p̂k are
independent, so that under the condition (5.18) as k, n→∞ with k/n→ 0,

√
k

(
1

α̂MLE
k

− 1

α

)
d→ N

(
− δν∗
αc + ν∗

C−ν∗/αc [D∗(α
−1
c + α−1) +

α2

α
(D/α)∗],

1

pα2

)
.

(5.21)
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In the same manner we can define a version of α̂P which perturbs at censored
data-points and which considers only large claims. We consider as before that
λi = λ, and, in analogy to the exact Pareto setting, define the two estimators

α̂Pu =

∑n
i=1(ei +λ(1− ei))1{Zi > u}∑n

i=1(log(Zi/u) + λ(1− ei)/βi)1{Zi > u}
,

and the order statistics version

α̂Pk =

∑k
i=1(e(i) +λ(1− e(i)))∑k

i=1

(
log
(
Z(i)

Z(k)

)
+ λ(1− e(i))/β(i)

) .
Theorem 5.4.1. Assume (5.15). Set λi = λ ≥ 0, βi = β > 0. As

√
k(k/n)ν∗/αc →

δ, as k, n→∞ with k/n→ 0,

√
k

(
1

α̂Pk
− λα2/β + 1

λα2 + α

)
is asymptotically normal with asymptotic mean

M = −δν∗C
−ν∗/αc

1− r1

(
D∗/αc + λp(1− p)(D/α)∗αc/β

ν∗ + αc

+
λr2 + α−1

c

1− r1

p(1− p)(D/α)∗

(
αc

αc + ν∗

))
and variance

V =
1

α2
c(1− r1)2

+
1

(1− r1)4

(
λ

β(1− λ)
+

1

αc

)2

(1− λ)2p(1− p), (5.22)

where r1 = (1− p)(1− λ) and r2 = (1− p)/β. The asymptotic bias of 1/α̂Pk equals

B =
λα2/β + 1

λα2 + α
− 1

α
+O

(
(k/n)ν∗/αc

)
(5.23)

as k, n→∞ and k/n→ 0.

Proof. See Appendix A.

Remark 5.4.2. Notice that estimates of α2 or αc are available using basic survival
analysis techniques, cf. (5.14). Consequently, we can use the plug-in method for
the estimation of any of the above formulas that involve these quantities.

Remark 5.4.3. As a sanity check, observe that in Theorem 5.4.1, whenever β = α
and δ = 0, the bias vanishes.

In the same spirit, even more can be said:
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Corollary 5.4.4. (Combination) Assume the conditions of Theorem 5.4.1, and
further δ = 0, with β = α. Then the estimator α̂Pk with λ = 1 is unbiased and can
be written as

α̂Pk =

(∑k
i=1 e(i)

k
·
∑k

i=1 log(Z(i)/Z(k+1))∑k
i=1 e(i)

+

∑k
i=1(1− e(i))

k
· β−1

)−1

.

In words, 1/α̂Pk is the weighted average of the MLE estimator and the expert infor-
mation, the weights being the proportion of non-censored (and censored, respectively)
observations above the threshold T (k). Moreover, its inverse has asymptotic variance
(and hence mean square error) given by

Var(1/α̂Pk ) =
1

kp(α + α2)2
,

which, when compared to (5.21), is seen to enhance estimation.

The proof of Corollary 5.4.4 is immediate.

Remark 5.4.5. Observe that in a Bayesian setting, whenever we are aware that a
parameter lies within an interval, a natural estimator is constructed as follows. We
set a uniform prior on [b1, b2] and together with the Pareto likelihood we use the
posterior mean as an estimate. Such a mean is given by

∫ b2
b1
α1+

∑n
i=1 eie

−α
∑n
i=1 log

(
Z1
x0

)
dα∫ b2

b1
α
∑n
i=1 eie

−α
∑n
i=1 log

(
Z1
x0

)
dα

=

∑n
i=1 ei +1∑n

i=1 log
(
Z1

x0

)
×

γ(
∑n

i=1 ei +2, b2

∑n
i=1 log

(
Z1

x0

)
)− γ(

∑n
i=1 ei +2, b1

∑n
i=1 log

(
Z1

x0

)
)

γ(
∑n

i=1 ei +1, b2

∑n
i=1 log

(
Z1

x0

)
)− γ(

∑n
i=1 ei +1, b1

∑n
i=1 log

(
Z1

x0

)
)

 ,
where

γ(u, v) =

∫ v
0
tu−1e−t dt

Γ(u)

is the (normalized) lower incomplete gamma function. One can go one step further
and define the order statistics version of the above estimator. However, despite
being theoretically neat, the latter estimator is numerically unstable for both large
(k > 100) and small (k < 5) number of upper order statistics, and hence we will
not pursue it in the simulation section.

Remark 5.4.6. In Ameraoui et al. (2016), several Bayesian approaches for heavy-
tail estimation were considered (see also Beirlant et al. (2018)) under the random
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censoring assumption. We will use two of them as a benchmark. The first one arises
from the posterior mean of a Pareto likelihood and the conjugate Gamma(a, b) prior:

α̂BG =
a+

∑k
i=1 e(i)

b+
∑k

i=1 log(Z(i)/Z(k+1))
. (5.24)

In the presence of a single expert estimate β of the tail index, the prior parameters
can be tuned by moment matching, where the variance will need to be imposed
subjectively. That is, solve β = a/b and σ2 = a/b2 for an expert opinion on σ2.

The second one arises from the maximal data information prior, and leads to
the estimator

α̂BM =
1 +

∑k
i=1 e(i) +

√
(1 +

∑k
i=1 e(i))2 + 4

∑k
i=1 log(Z(i)/Z(k+1))

2
∑k

i=1 log(Z(i)/Z(k+1))
. (5.25)

Notice that the latter does not admit tuning the prior to additional data.

Quantile estimation

With the last result at hand it is natural to propose a quantile estimator based
on the approach taken in Weissman (1978). Recall that we denote the quantile
function of a regularly varying tail by Q(p). Exploiting the fact that

Q(1− p)
Q(1− k/n)

∼ p−1/α

(k/n)−1/α
=

(
k

np

)1/α

, p ↓ 0, k/n→ 0, np = o(k), (5.26)

the Weissman estimator based on k order statistics (and without expert informa-
tion) arises naturally as

Q̂MLE
k (1− p) = Q̂KM(1− k/n) ·

(
k

np

)1/α̂MLE
k

, (5.27)

where Q̂KM is the quantile function derived from the Kaplan-Meier estimator

Ŝ(z) =
∏

i: Zi≤z

(
1− di

ni

)
,

for the survival curve of the censored dataset in question, (Zi, ei), i = 1, . . . , n,
where the Zi are payments (which would correspond to times in classical survival
analysis terminology). Here, di is the number of closed claims of a given size z, and
ni is the number of payments, which irrespectively of censoring, are above z. In
the case of no censoring this reduces to the empirical quantiles of the dataset, since
the Kaplan-Meier curve is then just the empirical distribution function. Similarly,
in the case of pure expert information an estimator can be proposed as

Q̂EX
k (1− p) = Q̂EX(1− k/n) ·

(
k

np

)1/β

, (5.28)



5.5. SIMULATION STUDY AND MTPL INSURANCE 111

where Q̂EX is either an expert-given cumulative distribution function, or in absence
of it, simply the Kaplan-Meier quantiles. To combine these two results, Theorem
5.4.4 leads the way. For the choice λ = 1, we see that the Pareto part of the tail
splits for the perturbed estimator according to(

k

np

)1/α̂P

=

(
k

np

)p̂k/α̂MLE
k

·
(
k

np

)(1−p̂k)/β

,

where

p̂k =
1

k

k∑
i=1

e(i),

and hence the following estimator is proposed for the overall tail

Q̂P
k (1− p) =

[
Q̂KM(1− k/n) ·

(
k

np

)1/α̂MLE
k

]p̂k
·

[
Q̂EX(1− k/n) ·

(
k

np

)1/β
]1−p̂k

(5.29)

= Q̂P (1− k/n) ·
(
k

np

)1/α̂Pk

, (5.30)

where

Q̂P (1− k/n) = (Q̂KM(1− k/n))p̂k(Q̂EX(1− k/n))1−p̂k .

Observe that in the absence of expert information for the quantile function, we
merely have

Q̂P
k (1− p) = Q̂KM(1− k/n) ·

(
k

np

)1/α̂Pk

.

5.5 Simulation Study and MTPL Insurance

We perform in this section a simulation study and apply our method to a motor
third party liability insurance dataset (cf. (Albrecher et al., 2017, Sec.1.3.1)). In
order to make our results comparable with existing studies and existing analysis of
the aforementioned dataset, we will consider estimation of

ξ =
1

α
,

and thus we will make use of the estimators

ξ̂MLE
k =

1

α̂MLE
k

, ξ̂Pk =
1

α̂Pk
, ξ̂BGk =

1

α̂BGk
, ξ̂BMk =

1

α̂BMk
. (5.31)



112 CHAPTER 5. COMBINED TAIL ESTIMATION

5.5.1 Simulation Study

We consider three heavy-tails belonging to the Hall class (5.15), and compare ξ̂k
and the quantile estimator

Q̂P
k (1− p) = Q̂KM(1− k/n) ·

(
k

np

)ξ̂k
,

where ξ̂k is one of the four estimators in (5.31), and for p = 0.005. For any tail
estimator ξ̂k, we generically refer to Q̂P

k as the corresponding Weismann estimator,
since it was derived using the general principle of equation (5.26).
Concretely, we simulate two independent i.i.d. samples of size n = 200, correspond-
ing to the variables Xi and Li, i = 1, , . . . , n, in (5.15). We repeat the procedure
Nsim = 1000 times. The following three distributions are employed, with two sub-
cases for each distribution, for varying parameters:

• The exact Pareto distribution, defined in (5.1), for ξ = 1, 1/2.

• The Burr distribution, with tail given by

F (x) =

(
η

η + xτ

)λ
, x > 0, η, τ, λ > 0,

We consider η = 1, λ = 2, τ = 1/2; η = 2, λ = 1, τ = 2; and η = 2. Notice
that ξ = 1/(λτ)

• The Fréchet distribution with tail

F (x) = 1− exp(−x−α), α > 0.

We consider ξ = 1, 1/2.

For the expert information we draw a single random number from a Gaussian dis-
tribution centered at the true ξ and with standard deviation 0.2, and define that
value as 1/β. Then, by moment matching, using a variance of 0.04, we obtain the
parameters a, b needed for ξ̂BGk . Notice that we input the true value of the variance,
and hence we are giving additional information to the Bayesian setting, opposed to
ξ̂Pk , where we make no such assumptions and we use the combination with λ = 1.
Additional studies (which we omit here) show that if the Bayesian variance is not
correctly specified (for instance, set at 1 or 0.5), the Bayesian solution behaves
almost identically to the censored Hill estimator ξ̂MLE

k .

Also notice the misspecification of the Gamma prior in the derivation of ξ̂BGk with
respect to the Gaussian distribution from which the expert information is actually
simulated. Using a Gaussian prior would not only make explicit posterior formulas
not available (and hence the need to resort to MCMC sampling methods as Gibbs
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sampling), but would add more information than what we have assumed is available
throughout the paper (we have not even assumed knowledge of the variance).

We then plot the empirical bias and MSE of each resulting estimator as a func-
tion of k (comparing the estimates with respect to the true value). We write expres-
sions such as Burr(ξ = 1) to indicate that the parameters of the distribution are not
the focus, but rather the resulting tail index from the Hall class (which is a function
of the parameters). The results are given in Figures 5.2, 5.3 and 5.4. We observe
how the fact that the perturbation will affect estimation based on the proportion of
censored observations as opposed to the total amount of data-points performs well
for k > 10. As a result, a substantial amount of bias and MSE is removed. This
is especially the case for the heavy-tail case ξ = 1. For the lighter tail ξ = 0.5, the
perturbed estimator has either the best or second best performance bias-wise, and
its only major drawback is the MSE for the exact Pareto case for k > 50, where
the Bayesian gamma solution performs even worse. When considering quantiles,
the perturbed estimator behaves better than the Hill estimator and on par with the
other two benchmarks for the heavy-tail exact Pareto case. In the lighter tail case
it performs the worst for large order statistics, recovering and behaving as in the
previous case for k < 60. In all other non-exact Pareto tail cases, the perturbation
was superior to all methods.

Notice that one assumption made in this study was that the expert guess was
centered and with relatively good quality (mean ξ and standard deviation 0.2).
If the latter conditions are changed, it is easy to construct a simulation study
where both the perturbed and the Bayesian gamma solution perform much worse.
Consequently, the findings of this simulation study suggest that insurers that are
very confident in their expert opinions might benefit from using the combination
estimator ξ̂Pk with λ = 1.

Remark 5.5.1. For the adaptive selection of λ, the procedure of cross-validation
may naturally come to mind. However, the latter is based on averages rather than
extremes. For instance, in a 10-fold cross-validation, the 9 parts of the data that do
not contain the maximum will tend to prefer lighter tail indices, and only the one
part with the maximum will suggest a heavy-tail index, so that the overall index
will be underestimated. Correspondingly, cross-validation is not a method of choice
in this context.

5.5.2 Insurance Data

We consider a dataset from Motor Third Party Liability Insurance (MTPL) from
a direct insurance company operating in the EU (cf. (Albrecher et al., 2017,
Sec.1.3.1)), consisting of yearly paid amounts to policyholders during the period
1995-2010. At 2010 we have roughly 60% right-censored (open) observations out
of the total 837 claims. The data are reported as soon as the incurred value ex-
ceeds the reporting threshold given in Figure 1.2 in Albrecher et al. (2017), and
the histogram of the IBNR delays is given in Figure 1.3 in Albrecher et al. (2017).
We also have an ultimate estimate which is the company’s expert estimation of the
eventual size of the claim. In Figure 5.5 we have several descriptive statistics of the
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Figure 5.2: Bias and (log) Mean Square Error for the exact Pareto distribution, for
varying parameters. We compare ξ̂Pk (orange, solid), ξ̂MLE

k (red, dotted), ξ̂BGk (blue,

dashed) and ξ̂BMk (purple, dashed and dotted), as well as the associated Weissman
quantile estimator.
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Figure 5.3: Bias and (log) Mean Square Error for the Burr distribution, for varying
parameters. We compare ξ̂Pk (orange, solid), ξ̂MLE

k (red, dotted), ξ̂BGk (blue, dashed)

and ξ̂BMk (purple, dashed and dotted), as well as the associated Weissman quantile
estimator.
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Figure 5.4: Bias and (log) Mean Square Error for the Frechet distribution, for
varying parameters. We compare ξ̂Pk (orange, solid), ξ̂MLE

k (red, dotted), ξ̂BGk (blue,

dashed) and ξ̂BMk (purple, dashed and dotted), as well as the associated Weissman
quantile estimator.
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data: the log-claim sizes, the Kaplan-Meier estimator of the data (cf. Kaplan and
Meier (1958)), the proportion of non-censoring (closed claims) as a function of the
order statistics of the claims, and a QQ-plot for the log-claims against theoretical
exponential quantiles. We observe that censoring at random is not a far-fetched
assumption to make, since a horizontal behaviour of the proportion of closed claims
as a function of the number of upper order statistics does not reject the possibil-
ity of the sizes of claims and the probabilities of censoring of those claims being
independent. The Pareto tail behaviour of large (above 0.45 million, possibly cen-
sored) claim sizes seems to hold, based on the QQ-plot of their logarithm against
theoretical exponential quantiles. Standard tests also do not reject the exponential
hypothesis of the logarithm of these large claims (Kolmogorov-Smirnov p-value of
0.50).

Figure 5.5: Descriptive statistics of the insurance data. Top left: log-claims in order
of arrival, showing both open (red, circle) and closed (black, dot) claims. Top right:
Kaplan-Meier survival probability estimator for the claims. Bottom left: proportion
of closed claims as a function of the top k order statistics of the claim sizes. Bottom
right: QQ plot of the logarithm of the claims larger than 0.54 million euro, against
the theoretical exponential quantiles with the same mean.
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Figure 5.6: Hill plot of the ultimates (black, dashed), censored Hill estimator ξ̂MLE
k

for the claims (red, dashed), and the combined estimator ξ̂Pk (orange, solid) with
λ = 1 and β = 1/0.48.

Now we would like to know how the ultimates can help to estimate the tail
parameter. In Bladt et al. (2019), the ultimates of this dataset were explored, where
it was observed that they are Pareto in the tail. Furthermore, using developments in
threshold selection, using trimming techniques, it was shown that ξ = 0.48 is a good
estimate for the heaviness of the tail of the ultimates. In Figure 5.6 we show the Hill
plot for the ultimates, together with the chosen expert ξ value, and the censored
Hill ξ̂MLE

k and the perturbed version ξ̂Pk with λ = 1 and β = 1/0.48. Notice that
in this case, we know how β is obtained, and this additional knowledge could be
useful. However, our method does not assume any specific structure, which means
that any other method can be used to obtain β, and we merely give the current one
for the sake of example. We observe a particularly stable region when k is between
20 and 70, which suggests a heavier tail (roughly 0.65) than the ultimates alone
predict. We will see how this affects the quantiles alike.

As a way of validating our estimation procedure we perform the following check.
We consider all claims arriving in the shorter period of time 1995-2000 and we follow
exclusively these 310 older claims until 2010. The proportion of censoring at 2010
drops to roughly 29.5%. We examine the censored Hill estimator and perturbed
estimator (using the same λ = 1 and 1/β = 0.48 as before) for this reduced data,
and plot it in Figure 5.7, together with the corresponding estimators using the
full data which we had previously obtained. We observe that the censored Hill
estimator for the reduced data dropped its value in the most stable region by about
0.2, almost reaching the perturbed estimator for both the complete and reduced
datasets, showing that as the proportion of censoring decreases, the estimators come
closer together. Notice that the perturbed estimator remained surprisingly stable,
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even when the penalization parameter stayed at the same value but the sample size
decreased, due to the fact that the proportion of censored claims controlled the
strength of the penalization in a natural way.

Finally, we add the corresponding analysis of the 99.5% quantile (which is rele-
vant for Value-at-Risk considerations) for the case where the expert quantile infor-
mation is given by the empirical distribution function of the ultimates, and combine
the Hill estimator and the expert information by means of Equation (5.29). That
is,

Q̂P
k (1− p) =

[
Q̂KM(1− k/n) ·

(
k

np

)ξ̂MLE
k

]p̂k
·

[
Q̂ULT (1− k/n) ·

(
k

np

)1/β
]1−p̂k

=
(

(Q̂KM(1− k/n))p̂k(Q̂EX(1− k/n))1−p̂k
)ξ̂Pk

,

where p̂k = 1
k

∑k
i=1 e(i), Q̂KM is the quantile function associated with the Kaplan-

Meier curve of the claims, and Q̂ULT is the quantile function associated with the
empirical distribution function of the ultimates.
The quantile coming from the ultimates alone is given by

Q̂ULT
k (1− p) = Q̂ULT (1− k/n) ·

(
k

np

)HU
k

,

where HU
k is the Hill estimator of the ultimates. Finally, without any expert infor-

mation (ignoring the ultimates), the quantile is given by

Q̂KM
k (1− p) = Q̂KM(1− k/n) ·

(
k

np

)ξ̂MLE
k

.

Note that, due to missing IBNR data at the later accident years, some care is
needed concerning the interpretation of these quantile estimates as the outcome
levels which are exceeded in 100 × 0.5% of the reported cases. However, as these
IBNR data concern smaller losses, the influence of these omissions is limited as can
be verified by restricting the proposed approach to the claims from earlier accident
years and comparing with the present results. The result is gathered as a function
of the number k of upper order statistics in Figure 5.8. The combined estimation
of the high quantile results is a stable compromise between the under-estimated
quantiles from the expert opinions and the pure Weissman approach, which has
higher variability. Such under-estimation of the size of the claims at closure by
the ultimates was also observed empirically while exploring the data (details are
omitted). Observe also Figure 5.9, where the reduction of the data which was used
above to validate the procedure was applied to the quantiles, and an analogous
interpretation applies. This suggests that the current reserving could benefit from
a re-evaluation. However, this analysis is made without knowing the actual process
behind the calculation of the ultimates, and a deeper understanding of this process
could in the future elucidate whether there is something being overlooked by the
experts or by the statisticians.
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Figure 5.7: Hill plot of the ultimates (black), for the reduced (solid) and com-
plete (dashed) datasets: censored Hill estimator ξ̂MLE

k for the claims (red), and the

combined estimator ξ̂Pk (orange) with λ = 1 and β = 1/0.48.

Figure 5.8: 99.5% quantile estimator using the censored approach (Q̂KM
k (0.005),

red) for the claims, expert information (Q̂ULT
k (0.005), black) and their combination

via ξ̂Pu , with the selection λ = 1 (Q̂P
k (0.005), orange).
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Figure 5.9: Plot of the 99.5% quantile for the ultimates Q̂ULT
k (black), and for

the reduced (solid) and complete (dashed) datasets: censored Hill estimation Q̂KM
k

for the claims (red), and the combined estimator Q̂P
k (orange) with λ = 1 and

β = 1/0.48.

5.6 Conclusion

We have derived a flexible estimator that bridges statistical theory and practice
when it comes to tail estimation. The results also apply to adaptation of quantile
estimation techniques both when more expert information is available (for instance
when an expert cumulative distribution function is available) and also when it is
lacking. Like in Bayesian statistics, the strength of the belief of the expert is often
subjective and in many cases unquantifiable, especially when provided with a single
point estimate. As discussed in the paper, our method is in fact closely related
to Bayesian techniques, but it is driven by the proportion of censoring, rather
than by the number of total observations. The developed estimator represents a
statistically sound method for making a compromise between expert information
and likelihood methods, without the need of any additional prior assumptions,
and its performance depends on the quality of the expert guess. In particular,
we suggested a convenient approach to avoid selection of a tuning parameter for
the linking of expert information and Hill estimation. The methods developed can
readily be adapted for the selection of the tuning parameter using more complex
methods (such as moment matching) whenever there is more expert information
available than presently assumed.

For heavy-tails, the estimator is shown to be asymptotically normal, and has
further desirable properties when the tuning parameter is chosen to be 1. Indeed,
Theorem 5.4.4 can serve as a simple rule of thumb in practice for combining the
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two sources of information, and suggests that using good quality expert information
can reduce the variance while keeping the bias at bay. This rule appears to be
rather natural, and the approach in this paper enables to embed this intuitive
combination within the theory of perturbed likelihood estimation. A more detailed
analysis would depend on the specific application at hand, and on the quantifiability
of the strength of beliefs, which in the present liability insurance dataset, and
more generally in any analysis made by statisticians without the experts present, is
commonly lacking.

A simulation study showed that when the guess is close to being correct, the
estimator fares very favorably, compared to the Hill estimator and two recently
proposed Bayesian solutions. Moreover, the estimator seems to be quite stable with
respect to the chosen threshold, which is of particular interest since the choice of an
appropriate threshold is a classical problem in extreme value analysis. Concerning
quantiles, and for the simulated examples, the estimator was favorable to all the
benchmarks for virtually all sample fractions for non-exact Pareto tails. Trimming
techniques have recently been proposed to address threshold selection, and a future
line of research will be to consider lower-trimmed versions of the proposed perturbed
estimator to aid in the visual and automatic sample fraction selection.

Finally, the application of the method to actual motor third-party liability lia-
bility insurance data illustrates that decision makers with a strong belief in a point
estimate of the tail parameter could be less reluctant to use the tail parameter and
quantiles suggested by the inclusion of data-points proposed by our method than
the one from the pure censored Hill estimation of the data.

Appendix

Proof of Theorem 5.4.1

Proof. Define

Vk =
1

k

k∑
i=1

(1− e(i))(1− λ), Wk =
1

k

k∑
i=1

(1− e(i))/β. (5.32)

First note that

Vk
d→ r1, Wk

d→p r2.

Concerning the asymptotic distribution of Vk and Wk we make use of the method
developed in Einmahl et al. (2008) introducing i.i.d. uniform (0,1) random variables
Ui, i ≥ 1, independent of the Zi sequence, and corresponding indicators being equal
to 1 if U ≤ p(Z), and 0 otherwise. When denoting the U variable induced by Z(i)

by U (i) we have

Vk
d
=

1

k

k∑
j=1

1{U(i)>p(Z(i))}(1− λ) and Wk
d
=

1

βk

k∑
j=1

1{U(i)>p(Z(i))},
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which, under (5.20), can be replaced asymptotically by

V̂k =
1

k

k∑
j=1

1{U(i)>p(U(n/i))}(1− λ) and Ŵk =
1

βk

k∑
j=1

1{U(i)>p(U(n/i))},

for which

√
k(V̂k − r1)

d→ Y1,
√
k(Ŵk − r2)

d→ Y2,

where

Y1 ∼ N (− δν∗αc
αc + ν∗

p(1− p)C−ν∗/αc(D/α)∗(1− λ), p(1− p)(1− λ)2),

Y2 ∼ N (− δν∗αc
αc + ν∗

p(1− p)C−ν∗/αc(D/α)∗/β, p(1− p)/β2),

which are independent of Y0, defined in (5.19). Then we obtain

√
k

(
Hk + λŴk

1− V̂k
− 1 + λα2/β

α + λα2

)
=

1

1− V̂k

√
k

(
Hk −

1

αc

)
+

λ

1− V̂k

√
k(Ŵk − r2)

+

(
λr2 +

1

αc

)√
k

(
1

1− V̂k
− 1

1− r1

)
=

1

1− V̂k

√
k

(
Hk −

1

αc

)
+

λ

1− V̂k

√
k(Ŵk − r2)

+
λr2 + 1

α+α2

(1− r1)(1− V̂k)

√
k
(
V̂k − r1

)
d→ 1

1− r1

Y0 +
λ

1− r1

Y2 +
λr2 + 1

αc

(1− r1)2
Y1

=
1

1− r1

Y0 +

[
λ

1− r1

1

β(1− λ)
+
λr2 + 1

αc

(1− r1)2

]
Y1

The mean and variance are then computed from the last expression, since Y0 and
Y1 are independent.
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Chapter 6

Threshold selection and trimming
in extremes

This chapter is based on the following article, currently submitted for publication:

Bladt, M., Albrecher, H., & Beirlant, J. (2019). Trimming and threshold selec-
tion in extremes. arXiv preprint arXiv:1903.07942.

Abstract

We consider removing lower order statistics from the classical Hill estimator in
extreme value statistics, and compensating for it by rescaling the remaining terms.
Trajectories of these trimmed statistics as a function of the extent of trimming turn
out to be quite flat near the optimal threshold value. For the regularly varying
case, the classical threshold selection problem in tail estimation is then revisited,
both visually via trimmed Hill plots and, for the Hall class, also mathematically
via minimizing the expected empirical variance. This leads to a simple threshold
selection procedure for the classical Hill estimator which circumvents the estimation
of some of the tail characteristics, a problem which is usually the bottleneck in
threshold selection. As a by-product, we derive an alternative estimator of the tail
index, which assigns more weight to large observations, and works particularly well
for relatively lighter tails. A simple ratio statistic routine is suggested to evaluate
the goodness of the implied selection of the threshold. We illustrate the favourable
performance and the potential of the proposed method with simulation studies and
real insurance data.

6.1 Introduction

The use of Pareto-type tails has been shown to be important in different areas of
risk management, such as for instance in computer science, insurance and finance.
In social sciences and linguistics the model is referred to as Zipf’s law. This model
corresponds to the max-domain of attraction of a generalized extreme value distri-
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bution with a positive extreme value index (EVI) ξ:

1− F (x) = x−1/ξ`(x), ξ > 0, (6.1)

where ` denotes a slowly varying function at infinity:

lim
x→∞

`(ux)

`(x)
= 1, for every u > 0. (6.2)

Since the appearance of the paper of Hill (1975) in which the EVI estimator

Hk,n =
1

k

k∑
i=1

logXn−j+1,n − logXn−k,n (6.3)

was proposed with

Xn,n ≥ Xn−1,n ≥ · · · ≥ Xn−i+1,n ≥ · · · ≥ X1,n

denoting the ordered statistics of a random sample from F , the literature on es-
timation of ξ > 0 and other tail quantities such as extreme quantiles and tail
probabilities has increased exponentially. We refer to Embrechts et al. (1997), Beir-
lant et al. (2004), de Haan and Ferreira (2007) and Gomes and Guillou (2015) for
detailed discussions and reviews of these estimation problems. Next to the proposal
of numerous estimators, focus has gradually shifted to selection methods of k and to
the construction of bias-reduced estimators which exhibit plots of estimates which,
as a function of k, are as stable as possible. Indeed, plots of estimators of ξ as a
function of k that are consistent under the large semi-parametric model (6.1) are
hard to interpret. In case of the Hill estimator some authors refer to Hill horror
plots. While it has been frequently suggested to choose a ’stable’ area (see for in-
stance Drees et al. (2000) and De Sousa and Michailidis (2004)), such a stable part
is often absent or hard to find. Sometimes more than one stable section is present,
like in some insurance applications as we will discuss later.

The typical available guidelines for the choice of k to be used in the implementa-
tion of the EVI estimators depend strongly on the properties of the tail itself, and
k needs to be estimated adaptively from the data. This problem can be compared
with choosing a bandwidth parameter in density estimation. It is typically suggested
that the optimal value of k should be the one that minimizes the mean-squared er-
ror (MSE). However, this optimum depends on the sample size, the unknown value
of ξ as well as on the nature of `, as was first described in Hall et al. (1985).
Bootstrap methods were proposed in Hall (1990), Draisma et al. (1999), Danielsson
et al. (2001), and Gomes and Oliveira (2001). Beirlant et al. (1996, 2002) derived
regression diagnostic methods on a Pareto quantile plot. Other selection proce-
dures can be found in Drees and Kaufmann (1998) and Guillou and Hall (2001).
Possible heuristic choices are provided in Gomes and Pestana (2007), Gomes et al.
(2008) and Beirlant et al. (2011). Almost all authors consider the adaptive choice
of k for the Hill estimator, while methods can be adapted to other estimators as well.
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In this paper we consider trimming of the Hill estimator, omitting some of the lower
order statistics in Xn−k+1,n, . . . , Xn,n, which leads to statistics of the type

Tb,k =
b∑
i=1

ci(b, k) log

(
Xn−i+1,n

Xn−k,n

)
, (6.4)

for some 1 ≤ b ≤ k and suitable constants ci(b, k). This kind of kernel-type statis-
tics have been previously proposed (cf. Csörgő et al. (1985)) as estimators of ξ.
However, the implementation of the optimal kernel is not an easy task nor our fo-
cus in this paper. Instead, we propose a special form of the kernel that leads to
an identity which aids in the threshold estimation problem. In Section 2 we de-
rive the coefficients ci(b, k) which make Tb,k unbiased when ` is constant and when
we force the coefficients ci(b, k) = c(b, k) not to depend on i. We present a novel
lower-trimmed Hill plot which provides significant graphical support for the esti-
mation problem of ξ, as we illustrate with both simulations and real world data.
We also provide mathematical evidence that, as a function of b, the variability of
the Tb,k statistics is lower than the one in the Hill plot. In Section 3, we examine
the asymptotic characteristics of Tb,k in (6.4) under the general model (6.1). The
asymptotic expected empirical variance of Tb,k is shown to be less sensitive on the
tail parameter ξ than the asymptotic mean-squared error (AMSE) of the usual Hill
estimator (6.3). We identify a link between the corresponding two optimal k-choices
which allows to bypass the specification of ξ and other characteristics of the tail
behavior for the identification of the optimal threshold in the classical Hill esti-
mate, and the resulting procedure turns out to be simple to implement in practice.
Subsequently, we study the estimator T k obtained by averaging the trimmed Hill
estimators over b = 1, . . . , k. This latter estimator naturally assigns more weight to
the larger observations, the weights being only moderately changed when increasing
k. Furthermore, the specification of these weights is independent of the distribution
F . Note that, in contrast, earlier criteria for reweighting terms in the Hill estimator
(such as e.g. Csörgő et al. (1985) in terms of kernel estimates, see also (Beirlant
et al., 2002, Sec.3)) had to heavily rely on the tail parameter ξ. In Section 4 we
then present a simple ratio statistic as a tool to evaluate the goodness of selection
of k. Section 5 confirms the good performance of the proposed methods using sim-
ulations, where T k turns out to outperform the classical Hill estimator in almost
all cases. Note that our approach eventually suggests a fully automated procedure
for the threshold selection, also in the absence of knowledge about, or assumptions
on, the tail characteristics. Section 6 favorably illustrates this on a set of real-life
motor third party liability insurance data. We would like to emphasize that the
approach proposed in this paper suggests a general procedure that can in principle
also be applied to other estimators in extreme value analysis.



128CHAPTER 6. THRESHOLD SELECTION AND TRIMMING IN EXTREMES

6.2 A lower-trimmed Hill statistic

6.2.1 Derivation

Assume first, for simplicity, that we have independent and identically distributed
(i.i.d.) exact Pareto random variables, X1, X2, . . . , Xn, with tail given by

F (x) = (x/σ)−1/ξ, x ≥ σ, ξ, σ > 0, (6.5)

and we are interested in robust estimation of the tail index ξ.
A main tool used throughout the paper is the well-known Rényi representation,

which states (in the second distribution equality below), that for the order statistics
of a random sample X1, . . . , Xn from the distribution (6.5), one has, for k ≤ n,(

log

(
Xn,n

Xn−k,n

)
, . . . , log

(
Xn−k+1,n

Xn−k,n

))
d
= (Ek,k, . . . , E1,k)

d
=

(
k∑
j=1

E∗j
k − j + 1

, . . . ,
E∗1
k

)
.

(6.6)

Here, Ek,k ≥ · · · ≥ E1,k are the order statistics of an independent i.i.d. exponential
sample E1, . . . , Ek with mean ξ, and E∗1 , . . . , E

∗
k is another independent i.i.d. expo-

nential sample with mean ξ.

Bhattacharya et al. (2017) recently proposed linear estimators of the form

ξ̂k0,k =
k∑

i=k0+1

ck0,k(i) log (Xn−i+1,n/Xn−k,n) , 0 ≤ k0 < k < n,

in order to trim the upper order statistics in outlier-contaminated samples, where
the constants ck0,k(i) are chosen in a way to ensure that the resulting estimator for
ξ is unbiased. For fixed k0, k, the problem can then be recast into that of finding
suitable weights δi such that one can write

ξ̂k0,k =
k∑

i=k0+1

ck0,k(i)Ek−i+1,k =

k−k0∑
i=1

δiEi,k.

Using the Rényi representation (6.6) and solving some elementary linear equations,
they derived δi = 1

r
, i < r, and δr = (k − r + 1)/r. This led them to the so-called

trimmed Hill estimator

ξ̂k0,k =
k0 + 1

k − k0

log (Xn−k0,n/Xn−k,n) +
1

k − k0

k∑
i=k0+2

log (Xn−i+1,k/Xn−k,n) ,

which is shown to be quite useful in outlier detection under (6.1).
In a similar way, but for a different purpose, in this paper we investigate trim-

ming from the left. Concretely, we consider estimators of the form

Tb,k =
b∑
i=1

ci(b, k) log (Xn−i+1,n/Xn−k,n) , 0 < b ≤ k,
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where ci(b, k) are constants to be determined. As above, we would like to find
suitable weights γi such that

Tb,k =
b∑
i=1

ci(b, k)Ek−i+1,k =
k∑

i=k−b+1

γiEi,k (6.7)

Setting q = k − b+ 1, the Rényi representation (6.6) yields

Tb,k =
k∑
i=q

γiEi,k =
k∑
i=q

γi

i∑
j=1

E∗j
k − j + 1

=
k∑
j=1

E∗j

k∑
i=j∨q

γi
k − j + 1

=
k∑
j=1

γjE
∗
j

with γj :=
∑k

i=j∨q
γi

k−j+1
. Here we use the notation j∨q = max{j, q}. Unfortunately,

the set of equations

γj =
1

k
, j = 1, . . . , k,

has no solution (for j ≤ q the left-hand-side cannot remain constant in j). Instead,
we choose to set

γq = γq+1 = · · · = γk =:
1

ω(q, k)
(6.8)

and

E (Tb,k) = ξ (6.9)

as the defining equations. The solution of (6.8) and (6.9) is given by

ω(q, k) =
k∑
j=1

k − j ∨ q + 1

k − j + 1
. (6.10)

Plugging (6.10) into (6.7), we then arrive at the following definition of a lower-
trimmed Hill statistic Tb,k:

Tb,k =
r∑
i=q

log (Xn−k+i,n/Xn−k,n)

ω(q, k)
=

∑b
i=1 log (Xn−i+1,n/Xn−k,n)

ω(k − b+ 1, k)

=

∑b
i=1 log(Xn−i+1,n/Xn−k,n)

b(1 +
∑k

j=b+1 j
−1)

, b = 1, . . . , k, k < n, (6.11)

where we use the convention
∑k

j=k+1 j
−1 := 0.
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6.2.2 A lower-trimmed Hill plot

Tb,k defined above is unbiased for any b, k, b ≤ k, by construction. Analogous to
the Hill plot, in which Tk,k is plotted as a function of k, we now exploit the second
degree of freedom and plot, for selected values of k, Tb,k as a function of b. That is,
the plot is constructed by overlaying the trajectories

(b, Tb,k), b = 1, . . . , k,

for a selection of k values. The lower variance of these trajectories comes from
the fact that the normalizing order statistic is fixed, and hence a non-constant be-
haviour is easier to identify visually than in the classical Hill plot. As a particular
consequence, the selection of k that makes the tail resemble a pure Pareto tail is
easier to determine, by examining when the trajectories start to be constant.

The following Proposition provides mathematical evidence for the above obser-
vations.

Proposition 6.2.1. As a function of the number b of order statistics being used, in
the exact Pareto case (6.5) the estimator Tb,k has lower variance than the classical
Hill estimator Tb,b. More precisely,

V (Tb,b) =
ξ2

b
and V (Tb,k) ≤

ξ2∑k−b+1
j=1

(
b

k−j+1

)2

+ b
.

As an illustration, we now compare the performance of these lower-trimmed Hill
(LTH) plots for Pareto, near-Pareto and spliced Pareto distributions. The latter is
defined through its cumulative distribution function (c.d.f.)

F (x; ξ0, r, c) =
(1− x−1/ξ0−r·1{x≥c})− 1{x ≥ c}(c−1/ξ0 − c−1/ξ0−r)

1− c−1/ξ0 + c−1/ξ0−r
, x ≥ 1 (6.12)

for c ≥ 1 and r > −1/ξ0, which is the c.d.f. of a Pareto random variable with
tail index ξ0 up to some splicing point c, continuously pasted with the c.d.f. of a
Pareto random variable with another tail index ξ = (1/ξ0 +r)−1 thereafter. Splicing
models (also sometimes referred to as composite models) are for instance popular
in reinsurance modelling, cf. (Albrecher et al., 2017, Ch.4).

Concretely we simulated a sample of size n = 1000 from a:

• pure Pareto ξ = σ = 1 sample, defined in (6.5).

• spliced Pareto sample, defined in (6.12), with parameters ξ = 1, ξ0 = 4 and
splicing point c = 1.3.

• spliced Pareto sample, defined in (6.12), with parameters ξ = 1, ξ0 = 1/4 and
splicing point c = 1.3.
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• Burr sample with tail F (x) = 1
1+x

, x > 0 (which amounts to a shifted Pareto).

• Loggamma with logshape parameter 3/2 and lograte parameter 1.

The LTH plots together with usual Hill plots are shown in the top panels of
Figures 6.1–6.5. The LTH plots are made for a selection of k, from 1 to 1000 by
spacings of 50 (1,51,101,...), as a function of the lower trimming b. Recall that
b ≤ k, so the lines have different domains on the x-axis. Observe that the right
end-point of each of the overlaid lines corresponds to the respective point in the
Hill plot.

For the spliced distributions in Figures 6.2 and 6.3 observe how the LTH esti-
mator becomes horizontal as a function of b when k is close to the (rank of the)
splicing point. For smaller k, the plot then looks similar to the exact Pareto case.
Loosely speaking, the slope of the lines are a very useful visual tool for detecting
the number of upper order statistics k after which a Pareto tail is feasible. This can
also be seen in the Burr (Fig.6.4) and loggamma case (Fig.6.5), where the regime
of a Pareto tail is only reached for high quantiles.

The bottom panels of Figures 6.1–6.5 suggest two ways of measuring the afore-
mentioned flatness of the LTH estimator as a function of b. The first one computes
the empirical variance of Tb,k, b = 1, . . . , k, while the second one fits a linear model
with independent variable b = 1, . . . , k and response variable Tb,k, and then plots
the magnitude of the resulting slope coefficient.

6.3 Regularly varying tails

We now move from the simple Pareto sample to a general Fréchet domain of at-
traction, with tails of the form (6.1). Denote by Q the quantile function associated
to F , and define

U(x) = Q(1− 1/x), x > 1,

such that the condition (6.1) is equivalent to

lim
A→∞

U(Ax)

U(A)
= x−ξ.

Assumptions on the rate of convergence of the above limit make it possible to
obtain explicit results concerning asymptotic properties of the lower-trimmed Hill
estimator. Hence, we impose the second order condition

lim
A→∞

logU(Ax)− logU(A)− ξ log(x)

Q0(A)
=
xp − 1

p
, (6.13)

for some regularly varying function Q0 with index p < 0.
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Figure 6.1: Exact Pareto case (ξ = 1). Top left: Tb,k for varying lower trimming b,
for k = 1, 51, 101, . . . , 1000. Top right: Hill plot. Bottom left: empirical variance
of the LTH as a function of k. Bottom right: slope of a fitted linear model to the
LTH as a function of k.

Theorem 6.3.1. Under the model (6.1) and second order condition (6.13), Tb,k
as defined in (6.11) satisfies the following asymptotic distributional identity, for
n, k, n/k →∞,

Tb,k
d
= ξ

Eb +
∑k

j=b+1Ej/j

1 +
∑k

j=b+1 j
−1

+
Q0(n/k)

p

((k+1)/b)p

1−p − 1

1 +
∑k

j=b+1 j
−1

(1 + op(1)), (6.14)

where E1, . . . , Ek are i.i.d. standard exponential random variables, and where we
use the notation Eb = b−1

∑b
i=1Ei.
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Figure 6.2: Spliced Pareto case (body parameter: 4 and tail parameter: 1). Top
left: Tb,k for varying lower trimming b, for k = 1, 51, 101, . . . , 1000. The vertical line
is the splicing location. Top right: Hill plot. Bottom left: empirical variance of the
LTH as a function of k. Bottom right: slope of a fitted linear model to the LTH as
a function of k.

6.3.1 Distribution of the average

Define the average of the Tb,k across b as

T k :=
1

k

k∑
b=1

Tb,k, (6.15)

which by Theorem 3.1 satisfies

T k
d
=
ξ

k

k∑
b=1

Eb +
∑k

j=b+1Ej/j

1 +
∑k

j=b+1 j
−1

+
Q0(n/k)

pk

k∑
b=1

((k+1)/b)p

1−p − 1

1 +
∑k

j=b+1 j
−1

(1 + op(1)).
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Figure 6.3: Spliced Pareto case (body parameter: 1/4 and tail parameter: 1). Top
left: Tb,k for varying lower trimming b, for k = 1, 51, 101, . . . , 1000. The vertical line
is the splicing location. Top right: Hill plot. Bottom left: empirical variance of the
LTH as a function of k. Bottom right: slope of a fitted linear model to the LTH as
a function of k.

We can immediately see that

E(Tb,k) = ξ +
Q0(n/k)

p

((k+1)/b)p

1−p − 1

1 +
∑k

j=b+1 j
−1

(1 + op(1)),

E(T k) = ξ +
Q0(n/k)

pk

k∑
b=1

((k+1)/b)p

1−p − 1

1 +
∑k

j=b+1 j
−1

(1 + op(1)),
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Figure 6.4: Burr case (all parameters set to 1). Top left: Tb,k for varying lower
trimming b, for k = 1, 51, 101, . . . , 1000. Top right: Hill plot. Bottom left: empirical
variance of the LTH as a function of k. Bottom right: slope of a fitted linear model
to the LTH as a function of k.

so that the asymptotic bias terms can be recognized directly. To ease notation, let
us introduce the constants

cb,k,p :=
1

p
·

((k+1)/b)p

1−p − 1

1 +
∑k

j=b+1 j
−1
≈ 1

p
·

((k+1)/b)p

1−p − 1

1 + log((k + 1)/b)
(6.16)

ck,p :=
1

pk

k∑
b=1

((k+1)/b)p

1−p − 1

1 +
∑k

j=b+1 j
−1
≈ 1

pk

k∑
b=1

((k+1)/b)p

1−p − 1

1 + log((k + 1)/b)
.

Theorem 6.3.2. The average T k as defined in (6.15), under model (6.1) and second
order condition (6.13) satisfies the following asymptotic distributional identity, for
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Figure 6.5: Loggamma case (logshape parameter: 3/2, lograte parameter: 1). Top
left: Tb,k for varying lower trimming b, for k = 1, 51, 101, . . . , 1000. Top right: Hill
plot. Bottom left: empirical variance of the LTH as a function of k. Bottom right:
slope of a fitted linear model to the LTH as a function of k.

n, k, n/k →∞,

T k
d
=

ξ

k − 1

k∑
j=1

Ej

[
log(1 + log(k/j)) +

ek

j
E(1 + log(k/j))

]
(1 + o(1)) (6.17)

+Q0(n/k)

[
e1−p

p(1− p)
E(1− p)− e

p
E(1)

]
(1 + op(1)),

where

E(x) :=

∫ ∞
x

e−v/v dv,

is the exponential integral.

Equipped with the representations in terms of exponential variables that we
obtained in Theorems 6.3.1 and 6.3.2, we set on to analyze the mean of the empirical
variance of Tb,k as a function of b.
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Theorem 6.3.3. The mean of the empirical variance of {Tb,k; 1 ≤ b ≤ k}, under
model (6.1) and second order condition (6.13) satisfies the following asymptotic
identity, for n, k, n/k →∞,

E

[
1

k

k∑
b=1

(Tb,k − T k)2

]
=
C

k
ξ2(1 + o(1)) +Q2

0(n/k)f(p)(1 + op(1))

where C = 0.502727 and

f(p) :=
1− e1−2p(1− 2p) E(1− 2p)− e2−2p E2(1− p)

p2(1− p)2

+ 2
e2−p E(1− p) E(1)− 1 + e1−p(1− p) E(1− p)

p2(1− p)

+
1− e E(1)− e2 E2(1)

p2
> 0. (6.18)

6.3.2 Optimal k in the Hall class

We now make a further assumption on the regularly varying class, in order to get
an explicit form of Q0. Concretely, we assume the Hall class (Hall (1982)), which
satisfies the property

U(x) = Axξ(1 +Dxp(1 + o(1))), x→∞. (6.19)

An immediate consequence then is the explicit expression

Q0(x) = −pDxp(1 + o(1)).

Hence,

E

[
1

k

k∑
b=1

(Tb,k − T k)2

]
=
C

k
ξ2(1 + o(1)) + p2D2(n/k)2pf(p)(1 + op(1)). (6.20)

Recall that the classical Hill estimator for this class has AMSE given by

ξ2

k
+

(
Q0(n/k)

1− p

)2

,

which is minimized for

k∗0 ∼ (Q2
0(n))−1/(1−2p)

(
ξ2(1− p)2

−2p

)1/(1−2p)

=

(
n−2pξ2(1− p)2

−2p3D2

)1/(1−2p)

, (6.21)
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see e.g. (Beirlant et al., 2004, p.125)). In a similar way, the minimizer of (6.20) is
simply

k∗ ∼ (Q2
0(n))−1/(1−2p)

(
Cξ2

−2pf(p)

)1/(1−2p)

=

(
n−2pCξ2

−2p3D2f(p)

)1/(1−2p)

. (6.22)

Hence from (6.21) and (6.22) we obtain a simple expression of the optimal threshold
k∗0 of the Hill estimator in terms of k∗:

k∗0 = k∗
(

C

(1− p)2f(p)

)−1/(1−2p)

. (6.23)

6.3.3 Interpretation of T k as a weighted Hill estimator

Observe that, for fixed k,

T k =
1

k

k∑
b=1

Tb,k =
1

k

k∑
i=1

θi log(Xn−i+1,n/Xn−k,n), (6.24)

with

θi :=
k∑
b=i

1

b(1 +
∑k

j=b+1 j
−1)

,

so that one can interpret the estimator T k as a modification of the classical Hill
estimator that uses different weights for different order statistics. It is not hard to
see that asymptotically the correction factors behave like

θi ∼ log

(
log(i/k)− 1

log(1− 1/k)− 1

)
, k →∞. (6.25)

Figure 6.6(left) highlights the accuracy of this approximation for k = 100 across
different values of i, and also illustrates the fact that the largest data point receives
a weight of almost 2 in this case, whereas on from the 20th-largest observation the
weight is lower than for the classical Hill estimator, and the weight diminishes for
smaller data points. Note that, as k increases, the weight of the largest observation
grows above any bound, but extremely slowly, namely

θ1 = log(log(k) + 1)− 1/k +O(1/k3).

Figure 6.6(right) illustrates that even for a value as large as k = 10000, θ1 is still
below 2.4.
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Figure 6.6: Left panel: for k = 100, the true θi (blue) and the asymptotic approxi-
mation (6.25) (orange) as a function of i. Right panel: Leading terms of the series
expansion of θ1 with respect to k.

6.4 A ratio statistic

Once a k∗ has been selected, it is important to be able to statistically assess whether
the remaining upper tail differs significantly from the one of a pure Pareto. In order
to recognize whether a Pareto tail has been achieved or not, we have seen that
flatness of the lower-trimmed Hill estimator is desirable. Inspired by the T-statistic
introduced in Bhattacharya et al. (2017), we introduce the ratio statistics

Rb,k =
Tb+1,k

Tb,k
, b = 1, . . . , k − 1,

quantities which we expect to be close to one. Although these statistics do not
have the property of being i.i.d. and hence test sizes have to be calibrated using
Monte Carlo simulation, an advantage which carries over to the present setting is
that they do not depend on ξ. Indeed,

Rb,k
d
=

ω(b, k)

ω(b+ 1, k)

(
1 +

log (Γb+1/Γk+1)∑b
i=1 log (Γi/Γk+1)

)
,

by the order statistics property of the Poisson process, where Γm =
∑m

i=1 Ei, and
Ei, i = 1, 2, . . . , is an i.i.d. sequence of independent unit-rate exponential random
variables. This invariance with respect to the ξ parameter permits to assess the
goodness of selection of a threshold k∗ as follows:

1. Simulate the Rb,k∗ statistics NMC times, and call them

Rm
b,k∗ , m = 1, . . . , NMC , b = 2, . . . k∗ − 1.

2. For fixed α ∈ (0, 1), find the empirical α/2 and 1−α/2 quantiles corresponding
to each of the b = 2, . . . , k∗ − 1 samples,

Rm
b,k∗ , m = 1, . . . , NMC ,

and call them (q1, q2)2, . . . , (q1, q2)k∗−1.
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3. Count the proportion of the the NMC trajectories

Rm
b,k∗ , b = 2, . . . , k∗ − 1,

which fall outside of their confidence interval (q1, q2)b for some 2 ≤ b ≤ k∗−1.
Call this proportion αr.

4. If αr is, up to some tolerance level, too large (too small), go to step (2) and
decrease (increase) α to a value within its two last values.

5. Plot the Rb,k∗ , b = 2, . . . , k∗ − 1, from the data, together with the last set of
quantiles (q1, q2)1, . . . , (q1, q2)k∗ . It is also a good idea, for visualization, to
plot the standarized version

Rb,k∗ − q1,b

q2,b − q1,b

, b = 2, . . . , k∗ − 1,

which for a pure Pareto tail is expected by construction to lie between 0 and
1 in 100(1− α)% of the cases.

Example 6.4.1. For the Burr sample of Figure 6.4, we compare taking k∗ = 326
and k∗ = 600 in the plots of Figure 6.7. The first number, k∗ = 326 is precisely the
one that minimizes the expected empirical variance, according to the parameters
of the Burr sample and to formula (6.22), with p chosen to be −1. The number of
Monte Carlo simulations was in each case NMC = 10000, and the significance level
is α = 0.05. Observe how the fit is good for k = 326, but is outside the bands for
k = 600.

Remark 6.4.1. This approach can only be considered as a selection procedure
itself if the corresponding sequential testing is adjusted to have the correct size. In
other words, if the above algorithm is used multiple times to choose k, the rejection
probability will exceed the desired α level. An alternative is to take sequential values
of k into the algorithm, which makes the routine highly computationally intensive.
Hence, we presently recommend it solely as a goodness of selection evaluation.

6.5 Simulations

We perform a simulation study based on three different and common distributions
which belong to the Hall class (6.19). We consider simulating Nsim = 1000 times
from the following three distributions, with four sub-cases for each distribution, for
varying sample size and parameters:

• The Burr distribution, with tail given by

F (x) =

(
η

η + xτ

)λ
, x > 0, η, τ, λ > 0,
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Figure 6.7: Standarized R-statistic for the Burr sample of Figure 6.4 (all parameters
set to 1), for two choices of threshold: k = 326, 600, respectively. NMC = 10000
and α = 0.05.

which implies by Taylor expansion that

ξ =
1

λτ
, A = η1/τ , D = −1

τ
, p = −1

λ
.

We consider for n = 100, 500 the two sets of parameters η = 1, λ = 2, τ = 1/2;
and η = 3/2, λ = 1/2, τ = 2.

• The Fréchet distribution with tail

F (x) = 1− exp(−x−α), α > 0,

which implies

ξ =
1

α
, A = 1, D = − 1

2α
, p = −1.

We consider for n = 100, 500 the two parameters α = 1, 1/2.

• The Generalized Pareto Distribution (GPD) distribution, with tail given by

F (x) =
(

1 +
γx

σ

)−1/γ

, γ, σ > 0,

which implies

ξ = γ, A =
σ

γ
, D = −1, p = −γ.

We consider for n = 100, 500 the two sets of parameters γ = 1/2, σ = 2; and
γ = 5/2, σ = 1.
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For each sample we evaluate the Hill estimator

Hk = Tk,k

and the averaged trimmed estimator

T k =
1

k

k∑
b=1

Tb,k

at three particular choices of k. Note that these threshold choices are designed for
the Hill estimator, but will turn out sensible for the latter estimator as well.

(i) We use the popular procedure of Guillou and Hall (2001) as a benchmark for
finding the optimal choice of k, and denote the resulting tail estimators by
Hk̂GH

, T k̂GH . Such a threshold selection procedure has been subject to com-
parisons (both in Guillou and Hall (2001) itself and in Beirlant et al. (2002))
to other alternatives like Danielsson et al. (2001) and Drees and Kaufmann
(1998), and we refer the reader to these papers for further details.

(ii) An estimator of k∗0 from (6.21) obtained as follows. Motivated by (6.20), we
compute k∗ as the minimizer of the empirical variance (the search beginning
at 1/5 of the sample size, to avoid degeneracies) of the trimmed Hill estimator,
as a function of b, and using (6.23) to set

k∗0 := k∗
(

C

(1− p)2f(p)

)−1/(1−2p)

.

Observe that while we still have to input p, here prior knowledge of ξ,D is
no longer needed. We choose p = −1 as the canonical choice.

(iii) As in (ii), but using the true parameter of p, in order to quantify how the
removal of a potential misspecification of p by the canonical choice p = −1
affects the estimators (this complements Beirlant et al. (2002), where it was
concluded from simulation studies for various estimators that this potential
misspecification does not seem to be of major importance).

We then plot the bias, variance and MSE of each resulting estimator as a function
of k.

The results are given in Figures 6.8, 6.9 for the Burr case; Figures 6.10, 6.11 for the
Fréchet case; and Figures 6.12, 6.13 for the GPD. We observe that the behaviour
is very similar for the three families (which is not uncommon in this context, cf.
(Beirlant et al., 2002, p.178)).

For the Hill estimator, we notice that our method fares very favourably against
the benchmark, and the misspecification of the second order parameter p does
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not play a substantial role. The same behaviour is observed within the three T -
estimators. When comparing Hill against T -estimators, the latter improve the bias
and MSE for nearly all k, and in most cases also the variance (except for very
heavy-tails (ξ ≥ 1) and small values of k).

Remarkably, the estimator T k0, p=−1, where the canonical p = −1 is used, is
highly competitive against the Hill estimator, especially so for ξ ≤ 1. This is not
a contradiction, since the optimality of the Hill estimator refers to choices for k
within the class of Hk, whereas the T k estimators span a different class (visible in
the weighting interpretation of Section 6.3.3), and when k is optimized w.r.t. AMSE
in that class, even better performance can be feasible, which, however, is not the
subject of the present paper.

6.6 Insurance data

Let us now consider a real-life insurance data set consisting of 837 motor third
party liability (MTPL) insurance claims from the period 1995-2010 that was studied
intensively in Albrecher et al. (2017) (where it is referred to as ”Company A”).
These data are right-censored, and were also analyzed recently combining survival
analysis techniques and expert information in Bladt et al. (2020). Here, we focus
only on the ultimates, see Figure 6.14, which are the actual final claim sizes for the
settled claims and an expert prediction of the total payment until closure for all
claims that are still open.
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Figure 6.8: Burr distribution, parameters η = 1, λ = 2, τ = 1/2. Top: Violin plots
for n = 100, 500 of the estimators Hk̂GH

, Hk̂∗0 , p=−1, Hk̂∗0 , p=−1/λ, T k̂GH , T k̂∗0 , p=−1,

T k̂∗0 , p=−1/λ. Bottom: diagnostics of T k (blue) and Hk (red) as a function of k.
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Figure 6.9: Burr distribution, parameters η = 3/2, λ = 1/2, τ = 2. Top: Violin
plots for n = 100, 500 of the estimators Hk̂GH

, Hk̂∗0 , p=−1, Hk̂∗0 , p=−1/λ, T k̂GH , T k̂∗0 , p=−1,

T k̂∗0 , p=−1/λ. Bottom: diagnostics of T k (blue) and Hk (red) as a function of k.
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Figure 6.10: Fréchet distribution, parameter α = 1. Top: Violin plots for n =
100, 500 of the estimators Hk̂GH

, Hk̂∗0 , p=−1, T k̂GH , T k̂∗0 , p=−1. Bottom: diagnostics of

T k (blue) and Hk (red) as a function of k.
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Figure 6.11: Fréchet distribution, parameter α = 1/2. Top: Violin plots for n =
100, 500 of the estimators Hk̂GH

, Hk̂∗0 , p=−1, T k̂GH , T k̂∗0 , p=−1. Bottom: diagnostics of

T k (blue) and Hk (red) as a function of k.
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Figure 6.12: GPD distribution, parameters γ = 1/2, σ = 2. Top: Violin plots for
n = 100, 500 of the estimators Hk̂GH

, Hk̂∗0 , p=−1, Hk̂∗0 , p=−γ
, T k̂GH , T k̂∗0 , p=−1, T k̂∗0 , p=−γ

.

Bottom: diagnostics of T k (blue) and Hk (red) as a function of k.
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Figure 6.13: GPD distribution, parameters γ = 5/2, σ = 1. Top: Violin plots for
n = 100, 500 of the estimators Hk̂GH

, Hk̂∗0 , p=−1, Hk̂∗0 , p=−γ
, T k̂GH , T k̂∗0 , p=−1, T k̂∗0 , p=−γ

.

Bottom: diagnostics of T k (blue) and Hk (red) as a function of k.
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Figure 6.14: Ultimates from an MTPL insurance portfolio.

In Figure 6.15 we depict the lower-trimmed Hill plots and the usual Hill plot,
together with the empirical variance. As in the simulation studies in Section 6.5,
in order to avoid degeneracies, we only look at candidates for the minimizer to
the right of n/5, which corresponds to 167 in this case. The minimum empirical
variance is then obtained for k∗ = 222. Using the canonical choice p = −1, we
have that k0 = 222/2.62421 ≈ 85. Note that for the same choice of p = −1, and
using the prior eyeballed estimate ξ ≈ 0.5, and consequently D = −0.5, we get by
(6.21) the suggestion k∗0 ≈ 112 (which might be considered the classical choice of
the threshold in this case).
The corresponding estimates of ξ are given by

Hk0 = 0.508, Hk∗0
= 0.560, T k0 = 0.480, Tk∗0 = 0.525.

The simulation studies of Section 6.5 may suggest the third of the above numbers to
be the most reliable estimate here. The ratio statistic test in Figure 6.16 suggests
that for both thresholds the sample is Pareto in the tail (with only a slight issue
for the two largest observations).

In (Albrecher et al., 2017, p.99), a splicing point was suggested for this data set
at around k = 20, based on expert opinion. A semi-automated option using our
method for detecting this splicing point would be to replace the left limit k = 167
by a very small number (in this case k = 4 is chosen after visual inspection of the
erratic nature of the empirical variance for the first three), and then to apply our
method, which leads to the detection of the minimum variance at k = 38 (which
is clearly visible in Figure 6.15). Under the assumption p = −1 this then leads to
k ≈ 14 as a suggested splicing point. Note that in the nature of the present data
set, the ultimates for the highest claims have intrinsic uncertainty (as they are just
estimates of the final closed claim size), and a more systematic way to approach
this particular situation would be to combine the trimming of the Hill estimator
from below and above, which is not the focus of the present paper.

6.7 Conclusion

In this paper, we showed that trimming the Hill estimator from the left can lead
to favorable properties in connection with the expected empirical variance of the
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Figure 6.15: MTPL insurance ultimates. Top left: Lower-trimmed Hill estimator
(LTH) estimator for varying lower trimming b, for k uniformly spaced from 1 to 837
in units of 20. Top right: Hill plot. Bottom: empirical variance of the LTH as a
function of k. The dotted line is the left limit for candidates, and the solid line is
the resulting minimum.

tail index estimators in extreme value statistics. For the Hall class, we established
asymptotic results on the behavior of this expected empirical variance, which al-
lows to develop a guideline for the choice of the optimal threshold in the tail index
estimation problem. It turns out that there is an intrinsic link between this op-
timal threshold and the classical optimal threshold for the Hill estimator. Since
in the trimming context the identification of the optimal threshold is much more
insensitive on the tail characteristics (it only depends on the p-parameter in the
Hall class, not on D nor on the tail index ξ), this link allows to circumvent the
classical problem in threshold selection for the Hill estimator. As a by-product,
by suitable averaging we develop a novel tail index estimator which assigns a non-
uniform weight to each observation in a natural way, relies on fewer assumptions
on the tail characteristics, is simple to implement and outperforms the classical
Hill estimator in most cases. The latter is illustrated in extensive simulation stud-
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Figure 6.16: Standardized R-statistic for the MTPL ultimates, for the two threshold
choices k = 85 (left) and k = 112 (right). NMC = 100, 000 and α = 0.05.

ies. In addition, the technique is applied to a real-life insurance data set that was
previously studied by other techniques. We conclude by noting that the approach
taken in this paper is in principle also applicable for the potential improvement of
tail index estimators other than the Hill estimator. Further possible directions of
future research include the combination of left trimming with right trimming in sit-
uations with possible outliers, as well as the consideration of possibly censored data.
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6.8 Proofs

Proof of Proposition 2.1. Set q = k − b+ 1. By the Rényi representation (6.6),

V (Tb,k) = V

(
k∑
j=1

E∗j

k∑
i=j∨q

γi
k − j + 1

)
= ξ2

∑k
j=1

(
k−j∨q+1
k−j+1

)2

(∑k
j=1

k−j∨q+1
k−j+1

)2 .

Plugging in q = 1 (b = k) gives

V (Tk,k) =
ξ2

k
,

which corresponds to the usual Hill estimator Tk,k and gives the first identity. In
the general case,

V (Tb,k) = ξ2

∑q
j=1

(
k−q+1
k−j+1

)2

+ k − q + 1(∑q
j=1

k−q+1
k−j+1

+ k − q + 1
)2 .

But j ≤ q implies k−q+1
k−j+1

≤ 1, such that

q∑
i=1

1

k − j + 1
≥

q∑
j=1

k − q + 1

k − j + 1

1

k − j + 1
,

so

q∑
j=1

k − q + 1

k − j + 1
+ k − q + 1 ≥

q∑
j=1

(
k − q + 1

k − j + 1

)2

+ k − q + 1.

Thus

V (Tb,k) ≤ ξ2

∑q
j=1

(
k−q+1
k−j+1

)2

+ k − q + 1(∑q
j=1

(
k−q+1
k−j+1

)2

+ k − q + 1

)2

=
ξ2∑q

j=1

(
k−q+1
k−j+1

)2

+ k − q + 1
,

which gives the second identity.

Proof of Theorem 3.1. We first note that

Tb,k
d
=

∑b
i=1 log(U(Yn−i+1,n)/U(Yn−k,n))

b(1 +
∑k

j=b+1 j
−1)

,
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where Y1,n < · · · < Yn,n are the order statistics of a standard Pareto sample (the
ξ = 1 case). Then, from the second order condition (6.13) we obtain that for
A = Yn−k,n and x = Yn−i+1,n/Yn−k,n, as k, n, n/k →∞,

Tb,k
d
=
ξ
∑b

i=1 log(Yn−i+1,n/Yn−k,n) +
Q0(Yn−k,n)

p

∑b
i=1((Yn−i+1,n/Yn−k,n)p − 1)(1 + op(1))

b(1 +
∑k

j=b+1 j
−1)

.

But by the Rényi representation (6.6) of exponential order statistics, the first term
is distributed as

b∑
i=1

log(Yn−i+1,n/Yn−k,n)
d
=

b∑
j=1

Ej + b

k∑
j=b+1

Ej/j,

where E1, E2, . . . , Ek are i.i.d. standard exponential random variables. For the sec-
ond term, by convergence to uniform random variables and a Riemann integral
approximation, we get

1

b

b∑
i=1

((Yn−i+1,n/Yn−k,n)p − 1)
d
≈ 1

b

b∑
i=1

(((k + 1)/i)p − 1)

≈ k + 1

b

∫ b/(k+1)

0

(u−p − 1) du =
((k + 1)/b)p

1− p
− 1,

and since (1− 1/Yn−k,n) is a uniform order statistic, we further get that

Q0(Yn−k,n)

Q0(n/k)

P→ 1.

Putting the three pieces together then establishes (6.14).

Proof of Theorem 3.2. With the shortened notation, we write

Tb,k
d
= ξ

Eb +
∑k

j=b+1 Ej/j

1 +
∑k

j=b+1 j
−1

+Q0(n/k)cb,k,p(1 + op(1)), (6.26)

and by exchange of the order of summation, we can write

T k
d
=
ξ

k

k∑
b=1

Eb +
∑k

j=b+1 Ej/j

1 +
∑k

j=b+1 j
−1

+Q0(n/k)ck,p(1 + op(1))

=
ξ

k

[
k∑
j=1

Ej

k∑
b=j

1

b(1 +
∑k

j=b+1 j
−1)

+
k∑
j=2

Ej

j−1∑
b=1

1

j(1 +
∑k

j=b+1 j
−1)

]
+Q0(n/k)ck,p(1 + op(1))

=
ξ

k

k∑
j=1

Ej

[
k∑
b=j

1

b(1 + log(k/b)
+

j−1∑
b=1

1

j(1 + log(k/b)

]
(1 + o(1))

+Q0(n/k)ck,p(1 + op(1)).
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Again, by Riemann integration we have that

1

k

k∑
b=j

1

(b/k)(1 + log(k/b))
≈
∫ 1

j/k

du

u(1− log(u))
= log(1 + log(k/j)),

and

j−1∑
b=1

1

j(1 + log(k/b)
≈ k

j

∫ j/k

0

du

1− log(u)
=
ek

j
E(1 + log(k/j)).

Similarly,

ck,p ≈
1

p

∫ 1

0

(1− p)−1u−p

1− log(u)
du− 1

p

∫ 1

0

du

1− log(u)

=
e1−p

p(1− p)
E(1− p)− e

p
E(1). (6.27)

Putting the pieces together then indeed yields (6.17).

Proof of Theorem 3.3. Let us first decompose each summand by writing

E((Tb,k − T k)2) = E((Tb,k − ξ)2) + E((T k − ξ)2)− 2E((Tb,k − ξ)(T k − ξ)),

and subsequently consider each term separately. From (6.26) we have that

E((Tb,k − ξ)2) = V(Tb,k) + Bias2(Tb,k) = ξ2
1
b

+
∑k

j=b+1 1/j2

(1 +
∑k

j=b+1 j
−1)2

+Q2
0(n/k)c2

b,k,p(1 + op(1)).

On the other hand, (6.17) gives

E((T k − ξ)2) = V(T k) + Bias2(T k)

=
ξ2

k2

k∑
j=1

[
log(1 + log(k/j)) +

ek

j
E(1 + log(k/j))

]2

(1 + o(1))

+Q2
0(n/k)

[
e1−p

p(1− p)
E(1− p)− e

p
E(1)

]2

(1 + op(1)).

The third term can be analyzed using both (6.17) and (6.26) as follows

E((Tb,k − ξ)(T k − ξ)) = E((Tb,k − E(Tb,k))(T k − E(T k))) +Q2
0(n/k)cb,k,pck,p

= ξ2 E

[(
1
b

∑b
j=1(Ej − 1) +

∑k
j=b+1(Ej − 1)/j

1 +
∑k

j=b+1 j
−1

)(
k∑
i=1

Ei − 1

k
S(i, k)(1 + o(1))

)]
+Q2

0(n/k)cb,k,pck,p

= ξ2

∑k
j=1(j ∨ b)−1S(j, k)

k(1 +
∑k

j=b+1 j
−1)

(1 + o(1)) +Q2
0(n/k)cb,k,pck,p



156CHAPTER 6. THRESHOLD SELECTION AND TRIMMING IN EXTREMES

where S(j, k) := log(1 + log(k/j)) + ek
j
E(1 + log(k/j)).

We now proceed to add the k summands of the expected variance. To this end,
some preparatory calculations will be helpful. By (6.16) and Riemann approxima-
tion we have

1

k

k∑
b=1

c2
b,k,p ≈

1

k

k∑
b=1

1

p2
·

((k+1)/b)2p

(1−p)2 − 2 ((k+1)/b)p

1−p + 1

(1 + log((k + 1)/b))2

≈ 1

p2(1− p)2

[
1− e1−2p(1− 2p) E(1− 2p)

]
− 2

p2(1− p)
[
1− e1−p(1− p) E(1− p)

]
+

1

p2
[1− e E(1)] .

By virtue of (6.27),

c2
k,p ≈

e2(1−p)

p2(1− p)2
E2(1− p)− 2

e2−p

p2(1− p)
E(1− p) E(1) +

e2

p2
E2(1),

from which we deduce that as k →∞,

1

k

k∑
b=1

c2
b,k,p − c2

k,p → f(p),

where f(p) is given by (6.18).
Observe that

1

k

k∑
b=1

1
b

+
∑k

j=b+1 1/j2

(1 +
∑k

j=b+1 j
−1)2

≈ 2

k

∫ 1

0

du

u(1− log(u))2
− 1

k

∫ 1

0

du

(1− log(u))2

=
1 + e E(1)

k
.

Next,

1

e

1

k

k∑
b=1

∑b
j=1 b

−1(log(1 + log(k/j)) + ek
j
E1(1 + log(k/j)))

1 + log(k/b)

≈
∫ 1

0

1

z log(e/z)

(∫ z

0

1

u

(∫ ∞
log(e/u)

log(v)e−v dv

)
du

)
dz

≈ 0.266 =: I1

and

1

e

1

k

k∑
b=1

∑k
j=b+1 j

−1(log(1 + log(k/j)) + ek
j
E1(1 + log(k/j)))

1 + log(k/b)

≈
∫ 1

0

1

log(e/z)

(∫ 1

z

1

u2

(∫ ∞
log(e/u)

log(v)e−v dv

)
du

)
dz

≈ 0.135746 =: I2
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Finally,

1

k

k∑
j=1

(k/j)2

(∫ ∞
log(e/u)

log(v)e−v dv

)2

≈
∫ 1

0

u−2

(∫ ∞
log(e/u)

log(v)e−v dv

)2

du

≈ 0.148005 =: I3.

Altogether we hence obtain

E

[
1

k

k∑
b=1

(Tb,k − T k)2

]

=
1

k

k∑
b=1

(
(E((Tb,k − ξ)2) + E((T k − ξ)2)− 2E((Tb,k − ξ)(T k − ξ))

)
= ξ2

(
1 + e E(1)

k

)
(1 + o(1)) + ξ2 e

2

k
I3(1 + o(1))

− 2ξ2 e

k
(I1 + I2)(1 + o(1)) +Q2

0(n/k)

[
1

k

k∑
b=1

c2
b,k,p − c2

k,p

]
(1 + op(1))

= ξ2

(
1 + e E(1)

k

)
(1 + o(1)) + ξ2 e

2

k
I3(1 + o(1))

− 2ξ2 e

k
(I1 + I2)(1 + o(1)) +Q2

0(n/k)f(p)(1 + op(1))

=
C

k
ξ2(1 + o(1)) +Q2

0(n/k)f(p)(1 + op(1))

with

C = 1 + e E(1) + e2I3 − 2e(I1 + I2) ≈ 0.502727.
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Chapter 7

Trimmed extreme value
estimators for censored
heavy-tailed data

This chapter is based on the following manuscript being prepared for submission:

Albrecher, H., Beirlant, J., & Bladt, M. (2020). Trimmed extreme value esti-
mators for censored heavy-tailed data. Preprint, University of Lausanne.

Abstract

We consider estimation of the extreme value index and extreme quantiles for heavy–
tailed data that are right-censored. We study a general procedure of removing low
importance observations in tail estimators. This trimming procedure is applied to
the state-of-the-art estimators for randomly right-censored tail estimators, conse-
quently deriving various families of trimmed estimators. The latter are put into a
kernel framework together with one of the existing estimators. Extensive simula-
tion suggests that one of the new considered kernels leads to a highly competitive
estimator against virtually any other available alternative in this framework.

7.1 Introduction

In recent years the problem of tail estimation for heavy-tailed distributions when
the available data are right-censored has received considerable attention. Several
papers on this subject have been motivated by heavy-tailed insurance claim data
with long development times of the claims, see e.g. Beirlant et al. (2016, 2018,
2019); Worms and Worms (2014, 2016, 2018); Ndao et al. (2014). The underlying
model assumption here is that the random variable of interest X has a Pareto-type
distribution function

F (x) = P(X ≤ x) = 1− x−1/ξ`(x), ξ > 0, x > 1, (7.1)
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where ` is slowly varying at infinity:

lim
x→∞

`(tx)

`(x)
= 1, for every t > 1.

A popular model for modelling incomplete right-censored observations is given
by the random right-censoring model, where the independent and identically dis-
tributed (i.i.d.) observations X1, . . . , Xn of X may be preceded by censoring vari-
ables C1, . . . , Cn, and it is known if that happens. One then observes

Zi = min{Xi, Ci}, ei = 1{Xi ≤ Ci}, i = 1, . . . , n,

where C1, . . . , Cn is an i.i.d. sequence of censoring random variables, independent of
the observations Xi. In order to avoid that the largest X observations would almost
surely be censored, one assumes that also the censoring variables are Pareto-type
distributed with distribution function

G(x) = P(C1 ≤ x) = 1− x−1/ξc`c(x), ξc > 0, x > 1,

with `c another slowly varying function at infinity. Then we have that for x > 1,

H(x) = P(Z1 ≤ x) = 1− x−1/ξz`z(x), ξz =
ξξc
ξ + ξc

,

where `z(x) = `(x)`c(x). As explained in Einmahl et al. (2008) the parameter
p = ξz/ξ = ξc

ξ+ξc
is the limit of P(e1 = 1|Z1 = z) as z → ∞, and can be inter-

preted as the non-censoring probability in the limit, or the tail limiting proportion
of non-censored data. In the exact Pareto setting (i.e. ` and `c being constant) the
censoring indicators e1, . . . , en turn out to be i.i.d. Bernoulli(p) random variables,
independent of Z1, . . . , Zn.

Within this censoring and regularly varying context, Beirlant et al. (2007) pro-
posed a first estimator of ξ in the spirit of the classical Hill estimator (cf. Hill
(1975)). Concretely, define the order statistics of the observed sample as

Z1,n ≤ · · · ≤ Zn,n,

and ei,n the corresponding censoring indicators i = 1, . . . , n. Then the Hill estimator
adapted for censoring is given by

Hk =

∑k
i=1 log(Zn−i+1,n/Zn−k,n)∑k

i=1 en−i+1,n

, 1 < k < n. (7.2)

Einmahl et al. (2008) showed that, under some regularity assumptions, Hk is con-
sistent and asymptotically normally distributed, whatever the value of p ∈ (0, 1).
In the present paper it will be useful to define

pk =
1

k

k∑
i=1

en−i+1,n, HZ
k =

∑k
i=1 log(Zn−i+1,n/Zn−k,n)

k
, k < n,
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and then, under some conditions, as k, n→∞ and k/n→ 0

Hk =
HZ
k

pk
→p

ξz
p

= ξ.

Worms and Worms (2014) proposed an alternative generalization of the Hill esti-
mator based on the fact that

E(log(Z/t)|Z > t) =

∫ ∞
1

F (ut)

F (t)

1

u
du→ ξ as t→∞, (7.3)

where F (x) = 1 − F (x). In the exact Pareto case, the above limit is an equality.
Replacing F with the Kaplan-Meier estimate

F̂ (x) =
∏

Zi,n≤x

(
n− i

n− i+ 1

)ei,n
for the tail yields the estimator

HW
k =

k∑
i=1

F̂ (Zn−i,n)

F̂ (Zn−k,n)
log(Zn−i,n/Zn−i+1,n), (7.4)

which was shown to be consistent in Worms and Worms (2014), while Beirlant et al.
(2019) derived asymptotic normality under light censoring, i.e. ξ < ξc or p > 1/2,
and some regularity conditions. Observe that both (7.2) and (7.4) reduce to HZ

k

when there is no censoring. Based on simulation studies, see e.g. Beirlant et al.
(2018), the estimator HW

k is known to exhibit superior behaviour in comparison
with Hk, especially with respect to bias.

Before introducing the trimming procedure, we first propose a simplified version
of HW

k , that will be more amenable for the approach in the sequel. To this end,
note that one can write

HW
k =

k∑
i=1

[
k∏

j=i+1

(1− 1/j)en−i+1,n

]
log(Zn−i+1,n/Zn−i,n), (7.5)

where the term in the square bracket has expectation

E

[
k∏

j=i+1

(1− 1/j)en−i+1,n

]
=

k∏
j=i+1

(1− p/j) (7.6)

for the exact Pareto case, while the second factor in (7.5) satisfies, by the Rényi
representation,

E(log(Zn−i+1,n/Zn−i,n)) =
1

i
∑k

m=im
−1

E(log(Zn−i+1,n/Zn−k,n)). (7.7)
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Based on (7.6) and (7.7), and using the approximations
∑k

m=im
−1 ≈ log((k+ 1)/i)

and (1− pk/j) ≈ exp(−pk/j), we define a novel simpler estimator of ξ by

HA
k =

1

k + 1

k∑
i=1

(
i

k + 1

)pk−1
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), k < n, (7.8)

where the log-spacings in the sum are all taken with respect to the same baseline
order statistic Zn−k,n. The latter will allow to apply the trimming operation of
removing low importance observations in the tail estimation, developed in Bladt
et al. (2019) for the non-censoring case, to the present situation with censoring.

In this paper, we extend the trimming method proposed in Bladt et al. (2019)
to the case of random right censoring, both for Hk and HA

k . Averaging the trimmed
statistics over the amount of trimming then leads to new estimators which belong to
a general family of kernel estimators comprising Hk and HA

k . This family turns out
to be closed under the proposed averaging operation after trimming. After studying
the basic asymptotic properties of the kernel estimators in Section 7.3, we discuss
the optimal choice of k when using the proposed estimators in Section 7.4. In a
final section, the merits of the new kernel estimators and the threshold selection
method are illustrated through simulations and a case study from insurance.

7.2 Trimmed estimators for ξ

7.2.1 Trimming tail estimators

In Bladt et al. (2019), lower trimming of the classical Hill estimator was shown to
be an effective strategy to obtain Hill-type plots with lower variance arising from
the changes of the baseline order statistic, which aids in the visual selection of a
horizontal part of the trajectory. Here, we extend this approach to the censored case,
and consider lower trimming of the estimators Hk and HA

k , deleting the smallest
k − b (b ≤ k) peaks over thresholds Zn−i+1,n/Zn−k,n, i = b+ 1, . . . , k:

Hb,k =
1

1 +
∑k

j=b+1 j
−1
·

1
b

∑b
i=1 log(Zn−i+1,n/Zn−k,n)

pk
, b ≤ k ≤ n− 1, (7.9)

and analogously

HA
b,k =

1

b+ 1

b∑
i=1

(
i

b+ 1

)pk−1
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), b ≤ k ≤ n− 1,

(7.10)

as the trimmed versions of Hk and HA
k . Note that Hk,k = Hk and HA

k,k = HA
k .
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7.2.2 Averaging and kernels

The above trimming procedure naturally leads to new estimators when considering
the empirical mean of the trimmed estimators across b = 1, . . . , k

1

k

k∑
b=1

Hb,k,
1

k

k∑
b=1

HA
b,k.

For instance, in case of HA
b,k this is asymptotically equivalent to

H
A

k =
1

k

k∑
i=1

1

1− pk

((
k + 1

i

)1−pk
− 1

)
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), k < n,

(7.11)

as can be seen by a simple Riemann sum approximation as before.

In fact Hk, H
A
k and H

A

k can all be put into a kernel framework, by defining

HKk =
1

k

k∑
i=1

K
(

i

k + 1
, pk

)
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), (7.12)

where K is a positive kernel function satisfying∫ 1

0

K(u; p) du =
1

p
, for all p ∈ (0, 1].

In particular, we get

Hk = HK0
k , with K0(u, p) =

1

p
log

(
1

u

)
,

HA
k = HK1

k , with K1(u, p) = up−1,

H
A

k = HK2
k , with K2(u, p) =

up−1 − 1

1− p
.

Note that HW
k does not fall into this framework, but its simplified version HA

k does.

Also notice that, when trimming any kernel estimator HKk to obtain

HKb,k =
1

b+ 1

b∑
i=1

K
(

i

b+ 1
, pk

)
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), (7.13)

the averaging operation 1
k

∑k
b=1 H

K
b,k leads to an associated kernel estimator

HK̄k =
1

k

k∑
i=1

K̄
(

i

k + 1
, pk

)
1

log((k + 1)/i)
log(Zn−i+1,n/Zn−k,n), (7.14)
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with

K̄(u, p) =

∫ 1

u

K(v, p)

v
dv,

where K̄( i
k+1

, p) is obtained using a Riemann approximation of 1
k

∑k
b=i

k
b+1
K
(

i
k+1

k+1
b+1

, p
)

as k → ∞ for fixed b. An interesting question in its own right, which we will not
pursue further in the sequel, is whether creating kernels in such an iterative fashion
leads to a limit in some appropriate functional space.

7.3 Asymptotic representations

In this section we derive the asymptotic distributions of the kernel estimators and
their trimmed counterparts as introduced in the preceding section. In Einmahl et al.
(2008) the asymptotics for Hk = HK0

k was discussed in detail (and note that Beirlant
et al. (2019) provided an asymptotic normality result for HW

k when p > 1/2, but
that estimator is not in the current kernel framework). Here we provide asymptotic
representations for the class of kernel estimators HKk in general. To this end, we
make use of second-order assumptions which were first proposed in Hall and Welsh
(1985) and since then have gained popularity in the extreme value community:

`(x) = C(1 +Dx−β(1 + o(1)),

`c(x) = Cc(1 +Dcx
−βc(1 + o(1)), x→∞,

where β, βc, C, Cc are positive constants and D,Dc are real constants. It now follows
that

`z(x) = Cz(1 +Dzx
−βz(1 + o(1)),

where

Cz = CCc, βz = min{β, βc}, Dz = D · 1β≤βc +Dc · 1βc≤β.

Concerning the peaks-over-threshold values Zn−i+1,n/Zn−k,n, i = 1, . . . , k, one then
has the following expansion as n, k → ∞ and k/n → 0 (see pp.75-76 in de Haan
and Ferreira (2007)):

log(Zn−i+1,n/Zn−k,n) = ξz log((k + 1)/i) +
ξz√
k
V

(
i

k + 1

)
(7.15)

+Q0,z(n/k)kρz(
k + 1

i
)(1 + o(1)),

where ρz = −βzξz, Q0,z(t) = −ξ2
zβzDzC

ρztρz , kρz(u) = uρz−1
ρz

, and {V (u)}u>0 is a
centered Gaussian process with covariance function

E(V (u)V (v)) =
1−max{u, v}

max{u, v}
, u, v > 0.
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Next, from Einmahl et al. (2008) and Beirlant et al. (2016) one obtains that

√
k(pk − p) =

√
p(1− p)Z +

√
kQ0,z(n/k)

κz
1− ρz

(1 + o(1)), (7.16)

where Z ∼ N(0, 1) independent of V , and κz = − (Dξ)z
Dzξξc

, with

(Dξ)z = (Dξ)1β≤βc − (Dcξc)1βc≤β. Based on (7.15) and (7.16) we now derive that

HKb,k − ξ =
1

b+ 1

b∑
i=1

(
K(

i

b+ 1
, pk)−K(

i

b+ 1
, p)

)
log(Zn−i+1,n/Zn−k,n)

log((k + 1)/i)

+

(
1

b+ 1

b∑
i=1

K(
i

b+ 1
, p)

log(Zn−i+1,n/Zn−k,n)

log((k + 1)/i)
− ξ

)
=: T1,b,k + T2,b,k. (7.17)

Using the mean value theorem, we have from (7.15) and (7.16) that

T1,b,k ∼p ξz(pk − p)αKb

= ξzα
K
b

(√
p(1− p) Z√

k
+Q0,z(n/k)

κz
1− ρz

(1 + o(1))

)
, (7.18)

with αKb = 1
b+1

∑b
i=1

∂K
∂p

( i
b+1

, p). Next, using (7.15),

T2,b,k = ξz

(
1

b+ 1

b∑
i=1

K(
i

b+ 1
, p)− 1

p

)

+
ξz√
k

1

b+ 1

b∑
i=1

K(
i

b+ 1
, p)

V (i/(k + 1))

log((k + 1)/i)

+Q0,z(n/k)(1 + o(1))
1

b+ 1

b∑
i=1

K(
i

b+ 1
, p)

kρz((k + 1)/i)

log((k + 1)/i)
. (7.19)

Concerning the non-trimmed kernel estimators, we find the asymptotic expan-
sion

√
k
(
HKk − ξ

)
=−

√
p(1− p) ξz

p2
Z +

ξz
k + 1

k∑
i=1

K(
i

k + 1
, p)

V (i/(k + 1))

log((k + 1)/i)

+
√
kQ0,z(n/k)

{
−κzξz

p2(1− ρz)
+

1

k + 1

k∑
i=1

K(
i

k + 1
, p)

kρz((k + 1)/i)

log((k + 1)/i)

}
(1 + o(1)),

(7.20)

using αKk = −1/p2 + O(k−1) and 1
k+1

∑k
i=1K( i

k+1
, p) − 1

p
= O(k−1). Hence the

asymptotic mean squared error of HKk is given by

AMSE(HKk ) =
ξ2
z

k
vp +Q2

0,z(
n

k
) bp (7.21)
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with

vp =
1− p
p3

+
2

k + 1

k∑
i=1

K(
i

k + 1
, p)

1− i
k+1

i
k+1

log(k+1
i

)

(
1

k + 1

i∑
j=1

K(
j

k + 1
, p)

1

log(k+1
j

)

)
,

bp =

{
−κzξz

p2(1− ρz)
+

1

k + 1

k∑
i=1

K(
i

k + 1
, p)

kρz((k + 1)/i)

log((k + 1)/i)

}2

.

7.4 Optimal choice of k when estimating ξ

Denoting the trimmed version of the Hill estimator in the fully observed case by
HZ
b,k = Hb,k pk, it was shown in Bladt et al. (2019) that the value kopt(H

Z
k ) of k

minimizing the asymptotic MSE of Hk
Z satisfies

kopt(H
Z
k ) =

(
K

(1− ρz)2f(ρz)

) −1
1−2ρz

kopt(H
Z
b,k),

for a universal constant K and a specific function f . Here kopt(H
Z
b,k) is the op-

timal sample fraction minimizing the expectation of the empirical variance S2
k =

1
k

∑k
b=1

(
HZ
b,k − 1

k

∑k
b=1 H

Z
b,k

)2

.

On the other hand, based on (7.20) we find under β < βc, i.e. when the bias is
largest compared with the classical Hill estimator in case of no censoring, that

AMSE(Hk) =
1

p4

(
p
ξ2
z

k
+
Q2

0,z(n/k)

(1− ρz)2

)
, (7.22)

which yields that

kopt(Hk) =

(
p−1K

(1− ρz)2f(ρz)

)− 1
1−2ρz

kopt(H
Z
b,k). (7.23)

This means that the optimal k for the estimator Hk with respect to minimization
of the AMSE is linked to the optimal k of its trimmed versions for the minimization
of the expected empirical variance in the non-censored case. A consequence of the
above formula is that

kopt(Hk) = p
1

1−2ρz kopt(H
Z
k ).

That is, a larger percentage of censoring leads to a higher threshold, when compared
to the non-censored case. This can already be seen from the expression of the AMSE
given in (7.22), where a smaller p leads to more weight being given to the bias term.
From an intuitive point of view, when dealing with censored datasets, two sources
of bias have to be accounted for, and hence a smaller sample fraction k is needed
to control them.

In practice, for a given sample, one finds an estimate k̂0 = k̂opt(H
Z
b,k) of kopt(H

Z
b,k)

through minimization of s2
k over k, from which an adaptive choice of k is found

through (
p−1

k̂0
K

(1− ρ̂z)2f(ρ̂z)

)− 1
1−2ρ̂z

k̂0,



7.5. SIMULATIONS 167

using an estimate ρ̂z of ρz and replacing p by pk̂0 . The second-order parameter ρz
is known to be hard to estimate, even in the non-censored case. In the next section
we use the choices ρz = −1,−1/2,−3/2, but the results are not very sensitive to
this parameter, which is commonly taken as simply ρz = −1 in practice.

7.5 Simulations

We performed simulations using the following distributions.

• Burr distribution with survival function 1 − F (x) =
(

θ
θ+xβ

)λ
with (θ, β, λ)

taken as (10,2,1) for X and (10,3,1) for C so that p < 1/2, next to (10,3,1)
for X and (10,2,1) for C so that p > 1/2, and (10,2,1) for both X and C with
p = 1/2.

• Fréchet distribution with F (x) = exp(−x−1/ξ) with ξ taken as 1/2 for X and
1/4 for C and correspondingly p < 1/2, as 1/4 for X and 1/2 for C and
correspondingly p > 1/2, and finally as ξ = 1/4 for both X and C, so that
p = 1/2.

• Log-gamma distribution with density f(x) = λα

Γ(α)
(log x)α−1x−λ−1 with (α, λ)

taken as (3/2,2) for X and (3/2,4) for C so that p < 1/2, as (3/2,4) for X and
(3/2,2) for C so that p > 1/2, and as (3/2,4) for X and C so that p = 1/2.

The results are based on 200 simulations of sample size n = 200 each.
In Figures 7.1, 7.2 and 7.3 we plot the bias, variance and mean squared error

as a function of k of the various estimators considered above. Note that the MSE
characteristics of the estimator HK2

k are quite comparable to those of HW
k in the

Burr and Fréchet cases, and are even better for the log-gamma model.
In Figures 7.4, 7.5 and 7.6 we provide violin plots for the optimal threshold for

the K0-based estimator, selected according to the automatic procedure given in the
previous section. We have taken ρz = −1,−3/2,−1/2 respectively for the three
distributions that we consider. These values were permuted (the resulting plots are
omitted) and the results were not very sensitive to the choice of ρz. To avoid degen-
eracies, a cutoff of 1/5 of the size of the data set was used for the empirical variance
estimates. Where relevant we also add the results of the parameter estimates when
taking k fixed at the theoretical optimal value.

7.6 Insurance Application: censored claims data

vs ultimates

We now proceed to analyze an insurance dataset consisting of 837 motor third-
party liability (MTPL) insurance claims from 1995 till 2010. This data set has
been described and studied in Albrecher et al. (2017), Bladt et al. (2019) (with-
out censoring, using ultimate values instead) and Bladt et al. (2020) (using both
censoring and ultimate values).
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The data exhibit right-censoring, that is, a claim size is partially observed when-
ever the development of the claim payment is ongoing and and the claim is not yet
closed. Observed claim sizes thus are considered as observed data points. In Bladt
et al. (2020) it was argued that the assumption of random censoring and heavy-
tailedness is adequate.

Using the same mechanism as for the simulation study (and ρz = −1) we find
that k = 35 is the optimal threshold for the estimator using the kernel K0 (see
Figure 7.7). As observed in the simulations, it makes sense to evaluate the other
estimators at this value as well. This yields the estimates

ξ̂ = 0.8781691, 0.8745332, 0.6981923, 0.7003625.

The latter two values correspond to the kernel K2 and to the Worms estimator HW
k .

They are quite close, and the simulations suggest that they are also the best per-
forming. Previous studies, using the ultimate values (cf. Bladt et al. (2019), with
subsequent agreement in Albrecher et al. (2019)), that is, internal projected values
of the claim sizes at closure, suggested a tail index of about 0.48. In Bladt et al.
(2020), combining this expert information with the estimator corresponding to K0,
intermediate values between the purely statistical 0.87 and the purely expert infor-
mation 0.48 were suggested. The present value of 0.7 is an interesting intermediate
value that arises from a purely statistical procedure.

7.7 Conclusion

In this paper we developed novel extreme value estimators under right-censoring in
a kernel framework. The latter class is closed (in the asymptotic sense) under the
averaging operation of their trimmed versions, by a simple replacement of kernel.
The asymptotic behaviour is given for arbitrary kernels, which allows us to compute,
for instance, the expression for the MSE as a function of k. The choice of the
optimal threshold with respect to MSE is explored in connection with the empirical
variance of the trimmed trajectories, which leads to an automated way of selecting
a threshold. As for the non-censored case, the idea of selecting a threshold by
exploiting this link, circumvents the usual estimation difficulties and instabilities
which arise in previous approaches in the literature which typically require the
estimation of the second-order parameter D, and of ξ itself. Despite its simplicity,
simulation studies suggest that the method is also efficient. In fact, when compared
with the theoretically optimal value, the latter sometimes is too small to be of any
practical relevance, and then our adaptive estimator is superior. In the other cases,
when the theoretically optimal value is sensible, our estimator also performs well
against it. We finally apply the procedure to a well-understood insurance dataset,
and the simulation studies suggest that the instances where K0 has been used in
the literature (either alone, or in combination with expert information) to analyze
these data could very possibly be improved by considering K2 instead. Interesting
directions for further research include trimming the kernel estimators from above,
to remove outliers from data, and to apply combined tail information using censored
data and expert information with the new kernels, improving the previous methods.
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Finally, it will be interesting to consider optimality criteria for the choice of k for
any kernel, and to work out criteria for the selection of the optimal kernel from a
purely mathematical point of view.
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Figure 7.1: Burr distributions: bias, variance and mean square error of the kernel
estimator (Hk = HK0

k in solid blue, HA
k = HK1

k in dashed red, HK2
k in dotted

orange) and the Worms estimator HW
k (dashed and dotted green), as a function of

k. The top, middle and bottom levels correspond to 2p < 1, 2p > 1 and 2p = 1,
respectively.
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Figure 7.2: Fréchet distributions: bias, variance and mean square error of the kernel
estimator (Hk = HK0

k in solid blue, HA
k = HK1

k in dashed red, HK2
k in dotted orange)

and the Worms estimator HW
K (dashed and dotted green), as a function of k. The

top, middle and bottom levels correspond to 2p < 1, 2p > 1 and 2p = 1, respectively.
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Figure 7.3: Log-gamma distributions: bias, variance and mean square error of the
kernel estimator (Hk = HK0

k in solid blue, HA
k = HK1

k in dashed red, HK2
k in dotted

orange) and the Worms estimator KW
k (dashed and dotted green), as a function of

k. The top, middle and bottom levels correspond to 2p < 1, 2p > 1 and 2p = 1,
respectively.
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Figure 7.4: Violin plots for the simulation results in case of Burr distributions under
different non-censoring asymptotic probabilities.

Figure 7.5: Violin plots for the simulation results in case of Fréchet distributions
under different non-censoring asymptotic probabilities.
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Figure 7.6: Violin plots for the simulation results in case of log-gamma distributions
under different non-censoring asymptotic probabilities.

Figure 7.7: Estimates of ξ for the MTPL insurance claim size data: Hk = HK0
k

in solid blue, HA
k = HK1

k in dashed red, HK2
k in dotted orange and the Worms

estimator HW
k in dashed and dotted green. The vertical line is at the estimated

optimal k for Hk = HK0
k .



Chapter 8

Novelty detection for heavy-tailed
randomly censored data

This chapter is based on the following manuscript being prepared for submission:

Bladt, M (2020). Novelty detection for heavy-tailed randomly censored data.
Preprint, University of Lausanne.

Abstract

The problem of determining whether a small sample comes from a specific distri-
bution is considered, the null hypothesis being rejected when there is novelty in
the sample. We consider an extension of an existing methodology to the censored
case. Specifically, consider a heavy-tailed sample, randomly and independently
right-censored by another heavy-tailed sample, and testing in low-density regions,
by means of point processes of exceedances. A transformation of the original data
lets us write a survival analysis likelihood whose distribution can be approximated
analytically, by considering peaks over different thresholds for the censored part
and the non-censored part of the likelihood, respectively. We introduce two addi-
tional methods along similar lines, and finally exemplify the performance of such
approximations using synthetic data.

8.1 Introduction

In pattern recognition or in signal processing, novelty detection is defined as the
task of differentiating two samples, where one is very large and the other is small.
The problem can be seen as a one-sided classification problem where the question
of interest is the determination of whether the small sample comes from the distri-
bution of the larger one or not. The area has applications in IT security, healthcare
informatics, industrial or medical monitoring and others, cf. Pimentel et al. (2014)
for a more detailed description of the classical applications. A decade and a half
ago, the review of novelty detection given in Markou and Singh (2003a,b) distin-
guished the classification techniques as being statistical or of neural network-type.

175
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In the context of machine learning the problem can be cast as the task of recognising
change in a test sample with respect to a training sample. While appropriate at the
time, in the more recent review given in Pimentel et al. (2014) it is argued that not
only have machine learning and statistics converged as study fields, but many new
methods for detecting novelty have arisen in the last decade and a new distinction is
in place. More precisely, the proposed categories for novelty detection methods are:
probabilistic, distance-based, domain-based, reconstruction-based and information
theoretic.

As argued in Luca et al. (2018), the majority of the existing work deals with the
point-wise classification and when dealing with more than a single point, multiple
hypothesis testing is then adopted, which is prone to have large misclassification
rate. Although there is no universally accepted definition, the difference between
outlier detection and novelty detection is argued in Pimentel et al. (2014) to be
significant: outliers are data which is not desired in a statistical analysis, and which
may arise in contaminated samples, while novelty detection aims at measuring pat-
terns that change. In Luca et al. (2018), a likelihood-approximation approach (using
the so-called Janossy densities) reduces a multidimensional problem into a unidi-
mensional one. Their setup allows for a second random mechanism, by making
the number of points of the small sample a random variable. Such a method is
then worked out in detail for the Gaussian distribution, and a simulation sensitiv-
ity analysis is also provided for that case. They also suggest a method which can
be used for detecting novelty in extreme value theory, i.e. a change of behaviour of
incoming data in under-sampled regions.

In this paper we take up the ideas in Luca et al. (2018) and extend them to
the case where the data is possibly right-censored. We hence want to classify point
patterns {ξ1, ξ2, . . . , ξn}, n ∈ N but we observe only {X1, . . . , Xn} where the data-
points have been randomly right-censored and we also observe whether or not a
specific variable was censored:

Xk = min{ξk, Ck}, ek = 1{ξk = Xk}, k = 1, . . . , n,

where {C1, . . . , Cn} is a censoring mechanism that is independent of the ξk. We will
be especially concerned with the classification of Pareto distributed samples, but
the theory will be presented in a general point process approach, and the method-
ology used ensures that deviations from the Pareto family can be sensibly classified
using the same test. We will modify an approach found in Luca et al. (2018) to
fit our current goal and develop transparent and well-motivated methods which use
a survival analysis likelihood or a Bayesian-like posterior, respectively, instead of
Janossy densities. Such classifiers fall into the category of parametric probabilistic
detection methods.

Notice that existing novelty detection methods could be applied to the Xk or
to the binary variables ei directly, but there are cases when both ξk and Ck change
in a manner that the Xk remain fairly similar (or even identical) to the case where
there is no change, and then the ei yield additional information and hence play an
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important role. The same comment is true if we exchange the roles of Xk and ek.
Hence, if we stick to non-censored data methods, the novelty detection for each of
the two samples {ξ1, ξ2, . . . , ξn} and {e1, e2, . . . , en} has to be obtained and suitably
combined. In the present work we will use the classical maximum-likelihood clas-
sification method for this bivariate problem as a benchmark, combined using the
Bonferroni correction (cf. Hochberg and Tamhane (1987)). The latter correction
is unreliable for doing multiple hypothesis testing when data are dependent and
the number of tests considered is large, neither of which will pose an issue in what
follows. Building on the latter method we also show on synthetic data how the in-
clusion of information on the number of peaks over thresholds can lead to a drastic
improvement on the power of such a double test.

Novelty detection or one-class classification for samples that have been randomly
censored has, to the best of the author’s knowledge, not been considered before. In
Eo et al. (2014) some algorithms for recognising an outlier in a randomly censored
sample are considered, by means of quantile regression. For non-censored samples,
extreme value methods for detecting outliers can be found in Chapter 2 of Aggarwal
(2016), where the focus is on multivariate Gaussian samples, and the Mahalanobis
distance plays an important role in the incorporation of the inter-vector covariance
matrix.

The main tool that facilitates the analysis of a censored sample for low density
areas will be the point process of exceedances (cf. Embrechts et al. (2013)). Such
point processes are used in Extreme Value Theory (EVT) for modelling extreme
events, such as natural disasters, accidents, or the related insurance claims. This
kind of data is often prone to be right-censored. A classical problem in EVT deals
with the estimation of the tail index, cf. Beirlant et al. (2004) or Embrechts et al.
(2013) for an overview, and Bladt et al. (2020) for a recently proposed estimation
method for when external information is available for the right-censored data-points.
EVT methods have also been used previously for classifying non-censored data.
Specifically, in Clifton et al. (2011, 2013, 2014) one-sample classification methods
are derived, where only the most extreme point of the small sample is used to make
a decision. In Luca et al. (2014), the Poisson point process model is used in nov-
elty detection to introduce ”anomaly scores” for number of exceedances and size of
exceedances separately and then combined with a third score. In Luca et al. (2016)
the Poisson approximation was again used in a more integrated way, where also an
analysis on the mean and maximal exceedances is jointly taken into account. In
Section 5.4 of Luca et al. (2018) a detection test is derived which uses jointly the
size and number of exceedances.

The remainder of the paper is organised as follows. In Section 8.2 we lay out
the formulation of the classification problem. In Section 8.3 we give the background
needed from point processes and EVT needed for part of the main result, which is
then given in Section 8.4, together with two additional methods. A performance
study on synthetic data is given in Section 8.5, before concluding in Section 8.6.
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8.2 Problem Formulation

We will consider the problem of determining whether an independent and identically
distributed (i.i.d.) randomly censored sample Xk = min{ξk, Ck}, ek = 1{ξk =
Xk}, k = 1, . . . , n comes from the same distribution as a large and well-understood
sample. That is to say if

P(ξ1 ≤ x) = Fξ(x), P(C1 ≤ x) = FC(x), x ≥ 0

are the true cumulative distribution functions of the target sample and the censor-
ing mechanism, respectively, we are interested in devising a test for the following
statistical hypothesis:

H0 : P(Xk ≤ x) = FX(x) = 1− F ξ(x)FC(x) (8.1)

H1 : P(Xk ≤ x) = FX(x) 6= 1− F ξ(x)FC(x).

Observe that we make the assumption that we know the (large-sample) distribution
of both ξ1 and C1, and the resulting test will also be sensitive to changes on the cen-
soring mechanism. The methods developed below also apply without change to the
case where the large-sample distribution of ξ1 is known whereas the small-sample
distribution of C1 is also known, by simply incorporating the latter into H0 through
FC .

In terms of novelty detection, it is not classically assumed we know a distribution
but instead we have a large and well-sampled dataset, so Fξ and FC should be

replaced with their estimated counterparts, say F̂ξ and F̂C , respectively, leading to
the statistical hypothesis which is common in the novelty detection literature

H0 : P(Xk ≤ x) = FX(x) = 1− F̂ξ(x)F̂C(x)

H1 : P(Xk ≤ x) = FX(x) 6= 1− F̂ξ(x)F̂C(x).

Estimating F̂ξ, F̂C corresponds to training, and the determination of the above
statistical hypotheses corresponds to testing, in machine learning terminology. The
difference between the two hypothesis results in very small discrepancies of the
testing procedure if the training sample is large, as is the case in the area of novelty
detection, but care must be taken if this is not the case, and then a two-sample
classification method might be more appropriate. In the remainder of the paper
we will study the testing part of the procedure. Namely, we focus on testing the
hypothesis (8.1).

8.3 Extreme Value Theory

One of the tools that has proven to be very useful in the analysis of novelty detec-
tion for heavy-tailed data in low-density regions is EVT, cf. Clifton et al. (2011,
2013, 2014) and a point process approximation approach in Luca et al. (2014, 2016,
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2018) has been evolving in an ever more integrated fashion. In this section we in-
troduce the main notation, concepts and limits which motivate the approximations
that we will crucially need at a later stage when devising the novelty detection
test. We present first selected classical EVT results and then proceed to introduce
point processes and point processes of exceedances, which will play a central role
when choosing a parametric form of the test. Results here are stated without any
additional effort for extreme value distributions in general, although later we will
concentrate exclusively on Pareto and Gumbel laws.

8.3.1 Domains of attraction and GPD

Given an i.i.d. sequence of random variables X1, X2, . . . , we say that they follow a
max-stable distribution if the following relation holds

c−1
n (Mn − dn)

d
= X1

for some norming constants cn, dn and where Mn = max{X1, . . . , Xn}. The class
of max-stable distributions is important because of its connection with limiting
distributions of maxima. More precisely, assume that P(Mn ≤ cnx + dn) → H(x)
(non-degenerate). Then also P(Mnk ≤ cnkx+dnk)→ H(x), while on the other hand
P(Mnk ≤ cnx+ dn)→ Hk(x). By the convergence to types theorem (cf. Embrechts

et al. (2013)), if Yi
i.i.d.∼ H,

max{Y1, · · · , Yk}
d
= c̃kY1 + d̃k, c̃k = lim

n

cnk
cn
, d̃nk = lim

n

dnk − dn
cn

.

Conversely, it is clear that any max-stable sequence has a maximum which has a
limiting distribution. This characterisation of max-stable laws goes even further,
since the following theorem (cf. Fisher and Tippett (1928)) guarantees a fully
explicit way of writing the associated limiting distribution:

Theorem 8.3.1. For Xi i.i.d., if there exist non-degenerate H and norming con-

stants such that c−1
n (Mn − dn)

d−→ H, then necessarily H is one of the following:

Frechet: Φα(x) = e−x
−α

1(0,∞)(x),

Weibull: Ψα(x) = e−(−x)α1(−∞,0](x) + 1(0,∞)(x)

Gumbel: Λ(x) = e−e
−x

.

An important remark is that, although distributionally different, mathematically
the variables satisfy

X ∼ Φα ⇔ −X−1 ∼ Ψα ⇔ logXα ∼ Λ.

This relation is important when transforming data. The above distributions are
called the extreme value distributions. It follows that they are max-stable with
norming constants cn = n1/α, n−1/α, 1 and dn = 0, 0, lnn. For instance, in the ex-
ponential case, P(Mn − lnn ≤ x) = (1− n−1e−x)n → Λ(x) and in the Cauchy case,
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by L’Hopital F (x) ∼ 1
πx

, so P(Mn ≤ nx/π) = (1 − F (nx/π))n → e−x
−1

= Φ1(x).
In general, it is easier to verify the membership to a so-called domain of attraction
via the following result.

Say that a distribution function F ∈ R−α, that is, it is regularly varying with
index α if F (x) = x−α`(x) where limx→∞ `(tx)/`(x) = 1, for all t > 0. The mean
excess function is defined as

sX(u) = E(X − u|X > u) =

∫∞
u
F (y)dy

F (u)
.

Theorem 8.3.2. (Characterisation)

• F ∈ MDA(Φα) ⇔ F ∈ R−α. The norming constants can be taken as dn = 0
and cn = F←(1− n−1).

• F ∈ MDA(Ψα)⇔ xF <∞ and F (xF − x−1) ∈ R−α. The norming constants
can be taken as dn = xF and cn = xF − F←(1− n−1).

• F ∈ MDA(Λ)⇔ F (x) = c(x) exp
(
−
∫ x
z
g(t)
a(t)

dt
)

, with g → 1, c→ c0 > 0, a′ →
0. The norming constants can be taken as dn = F←(1− n−1) and cn = a(dn).
One can choose a to be the mean excess function.

The extreme value distributions can be parametrised for simplicity in the so-
called Generalised Extreme Value distribution (GEV):

Hξ(x) = exp(−(1 + ξx)−1/ξ), 1 + ξx > 0,

corresponding to Frechet ξ = α−1 > 0, Weibull ξ = −α−1 < 0 and Gumbel ξ = 0.
The following result links the distribution functions of normalised maxima and of
the normalised exceedances over a high threshold, cf. Balkema and De Haan (1974);
Pickands III et al. (1975):

Theorem 8.3.3. The following are equivalent:

a) F ∈ MDA(Hξ)

b) There exists a positive function a such that for 1 + ξx > 0,

lim
u↑xF

F (u+ xa(u))

F (u)
= − logHξ(x).

An interesting discussion arises from the preceding theorem as follows. The limit
in b) can be interpreted as the limit distribution of the excess over a high threshold

lim
u↑xF

P((X − u)/a(u) > x|X > u) = − logHξ(x) =: Gξ(x), (8.2)

which we define as the Generalised Pareto distribution (GPD). Again, in the Gumbel
case we can take a(u) = sX(u). This suggests that a good approximation for



8.3. EXTREME VALUE THEORY 181

the normalised excess distribution or the distribution of the so-called peaks over
thresholds (POT) is given by the corresponding GPD. In fact, Fu(x) = P(X − u ≤
x|X > u) can be approximated almost uniformly by Gξ,β(u) := Gξ(·/β(u)), for some
positive function β in the sense that F ∈ MDA(Hξ) if and only if

lim
u↑xF

sup
0<x<xF−u

|Fu(x)−Gξ,β(u)(x)| = 0. (8.3)

In conclusion, we have found the asymptotic behaviour for the excess distribution
of i.i.d. data over increasingly high thresholds.

In practice, to check when this approximation is reasonable, for β(u) ≡ β, one
has to choose u as to make the empirical mean excess function

en(u) =

∫∞
u
F n(y)dy

F n(u)
=

∑
i∈∆n(u)(Xi − u)

card∆n(u)
, ∆n(u) = {i : Xi > u}

approximately linear, since the mean excess function of a GPD is given by

β + uξ

1− ξ
, β(u) + uξ > 0.

8.3.2 Point Processes

For an i.i.d. sequence X1, X2, . . . , with distribution F , thresholds (un) and λ ∈
(0,∞), it holds that nF (un)→ λ if and only if Bn =

∑n
i=1 1Xi>un ∼ Bin(n, F (un))

converges to a Pois(λ) variable Y . Indeed, the Laplace transform of the binomial
variable satisfies the following limit

ΨBn(u) = (F (un) + F (un)e−u)n =

(
1− nF (un)

n
(1− e−u)

)n
(8.4)

→ exp{−λ(1− e−u)} = ΨY (u) (8.5)

if and only if nF (un) → λ. The point process approach to extreme value theory
links this Poisson limit result with the GPD limit in (8.3) in a unified way.

The notion of a point process is that of a measurable mapN : Ω→ (Mp(E),Mp(E))
where Mp(E) is the space of all locally finite counting measures on the space E. The
sigma field Mp(E) is the one which makes all projections measurable. In short, a
point process is a random variable taking values in a function space. The functions
of the latter space are used for counting.

The structure N =
∑∞

i=1 εXi for random variables (Xi) in E ⊂ R, where
εXi(A) := 1{Xi ∈ A} for all measurable A ⊂ R, defines a point process, which
counts for each ω ∈ Ω the number of realisations X1(ω), X2(ω), . . . falling into
the set A, the resulting count being N(A)(ω). The mean measure is defined
as µ(·) = E(N(·)). We require µ(K) < ∞ for any compact K ⊂ E, so then
E(N(K)) < ∞ and by non-negativity of N , even N(K) < ∞ a.s., so that N is
indeed a point process.
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Of special importance is the Poisson Point Process PPP(µ), defined on the space
E as a point process N such that N(A) is distributed Pois(µ(A)) and for disjoint
A1, · · · , Ak, the variables N(A1), . . . , N(Ak) are independent. We observe that,
analogously to the Poisson random variable, a Poisson point process is characterised
by the mean measure µ. In general, the distribution of a point process N =

∑∞
i=1 εXi

can be characterised by the use of the Laplace functional, defined as

ΨN(g) = E
(

exp

{
−
∫
g(x)dN(x)

})
= E(exp{−

∞∑
i=1

g(Xi)}),

for every non-negative, bounded and measurable function g. We now define the
Point Process of exceedances for a sequence of i.i.d. max-stable random variables
X1, X2, . . . , Xn with norming constants cn, dn as

Nn(A) =
n∑
i=1

ε(Xi−dncn
, i
n+1)(A), (8.6)

for every measurable A ⊂ (u,∞) × (0, 1). Using a Laplace functional version of
the convergence in (8.4), one can show that weak convergence holds (cf. Mikosch
(2009); Embrechts et al. (2013)) from the point process (8.6) to a PPP with mean
measure given by

µ(A) = (t− s)Gξ(x), A = (x,∞)× (s, t) ⊂ (u,∞)× (0, 1) (8.7)

whenever nF (dn + cnu)→ Gξ(u) =: λ.
In particular, we can translate the limits (8.2) and (8.4) into the language of

point processes by doing the following calculations:

P((X1 − dn)/cn > x|X1 > dn) = nP((X1 − dn)/cn > x)

= E(Nn((x,∞)× (0, 1)))

→ µ((x,∞)× (0, 1)) = Gξ(x), (8.8)

where we have used that P(X1 > dn) = P(X1 > F←(1− n−1)) = n−1, by Theorem
8.3.2, and

P(Nn((u,∞)× (0, 1)) = k)→ λk

k!
e−λ, (8.9)

respectively. Notice that, apart from characterisations, we did not build upon
previous results, meaning that point processes provide alternative ways of proving
EVT limits, in a uniquely transparent fashion.

8.4 Novelty detection for randomly censored data

We focus on the classification derived from a censored extreme-value sample

X = {X1, X2, . . . , Xn}, e = {e1, e2, . . . , en}, n ∈ N,
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where X1, X2, . . . , is an independent and identically distributed (i.i.d.) sample with
X1 having a law in the Fréchet domain of attraction, e1, e2, . . . , are binary indicators
taking the value 1 if the observation is non-censored and 0 otherwise. The archetype
of such a domain of attraction is the Pareto distribution and will be our main focus
when investigating the performance of the test. However, the increased generality
with which we will present the results comes with little additional effort. Further,
we assume random censoring from two distributions from the Fréchet domain of
attraction is in place. Concretely, by the regularly varying tail characterization we
have that if

Xi = min{ξi, Ci}, i = 1, 2, . . . ,

with ξi being the target i.i.d. sample to estimate and Ci being an independent i.i.d.
censoring sequence, with respective tails given by

P(ξ1 > x) = x−α`ξ(x), P(C1 > x) = x−c`C(x), α, c, x > 0,

where `ξ, `C are slowly varying functions, then

P(X1 > x) = x−(α+c)`X(x), x > 0,

with `X again slowly varying. We also have that the censoring indicator can be
written as

e1 = 1{X1 = ξ1}.

In the remainder of this section we will study a point process of exceedances
that will be useful to determine the asymptotic law of an approximate survival-
analysis likelihood. We then proceed to introduce two main methods that can be
used for novelty detection for censored data. We also examine some tests based on
the Bonferroni correction, both as a benchmark and as a third main method.

8.4.1 Point Process of Exceedances

Assume that a density fξ(x) of ξ1 exists and denote by F ξ(x) =
∫∞
x
fξ(z)dz.

Further, we require that the negative logarithm of the densities and tails:

Zi = log(α)− log fξ(Xi), Wi = − logF ξ(Xi), i = 1, 2, . . . , n,

are themselves in the Gumbel domain of attraction. Let their associated cumulative
distribution functions be denoted by FZ and FW , respectively.

We proceed to introduce a point process of exceedances for the variables Zi and
Wi, i = 1, . . . which will be useful in the next subsection. Define for the respective
norming constants an, bn and cn, dn, the process

Nn(A) =
n∑
i=1

ε(ei(Zi−bnan
)+(1−ei)(Wi−dncn

), i
n+1)(A), (8.10)

for every measurable A ⊂ (0,∞) × (0, 1). In the exact Pareto case we have that
Zi,Wi and e are independent. For the regularly varying case, we will consider
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only those cases where the excesses Zi − bn|Zi > bn and Wi − dn|Wi > dn are
asymptotically independent of e, and where furthermore (Einmahl et al. (2008))

lim
n→∞

P(ei = 1|Xi > n)→ p =
α

α + c
. (8.11)

We have the following Poisson convergence.

Theorem 8.4.1. The point process of exceedances (8.10) converges weakly to a
PPP, say N , with mean measure given by

E(N(A)) = µ(A) = (t− s)e−x, A = (x,∞)× (s, t) ⊂ (0,∞)× (0, 1) (8.12)

if and only if for u > 0

lim
n→∞

nFZ(bn + anu) = lim
n→∞

nFW (dn + cnu) = e−u.

Proof. We use the Laplace functional convergence. To this end we calculate for any
measurable, non-negative and bounded function of the type f(x, y) = 1{x > z}h(y),

ΨNn(f)

= E(exp{−
n∑
i=1

1{ei(Zi − bn)/an + (1− ei)(Wi − dn)/cn > z}h(i/(n+ 1))})

=
n∏
i=1

E(1− 1{ei(Zi − bn)/an + (1− ei)(Wi − dn)/cn > z}

× (1− exp{−h(i/(n+ 1))}))

=
n∏
i=1

(1− P(ei(Zi − bn)/an + (1− ei)(Wi − dn)/cn > z)

× (1− exp{−h(i/(n+ 1))}))

∼
n∏
i=1

exp{−nP(ei(Zi − bn)/an + (1− ei)(Wi − dn)/cn > z)

× (1− exp{−h(i/(n+ 1))})/n}

→ exp{−(pe−z + (1− p)e−z)
∫ 1

0

(1− e−h(y))dy}

= exp{−
∫ ∞

0

∫ 1

0

(1− e−1{x>z}h(y))dy e−xdx} = ΨN(f).

which holds if and only if for u > 0 we have FZ(bn + anu), nFZ(dn + cnu) → e−u.
This concludes the proof for such f . For general f it suffices to use the standard
approximation by functions of the aforementioned type and an application of the
dominated convergence theorem (cf. Kallenberg (2006)).

The previous enables us to obtain some quantities of interest with little effort,
analogous to (8.2) and (8.4) of the classical case.
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Corollary 8.4.2. Let limn→∞ nFZ(anx + bn) = limn→∞ nFW (cnx + dn) = e−x =:
λ(x). Define

M(x, n) = P(e1(Z1 − bn)/an + (1− e1)(W1 − dn)/cn > x|e1(Z1 − bn) (8.13)

+ (1− e1)(W1 − dn) > 0), (8.14)

K(x, n) =
n∑
i=1

1{ei(Zi − bn)/an + (1− ei)(Wi − dn)/cn > x}, n ∈ N (8.15)

Then

lim
n→∞

M(x, n) = λ(x), x ≥ 0.

and

lim
n→∞

P(K(x, n) = k) =
λ(x)k

k!
e−λ(x), k ≥ 0

Proof. For the second identity simply observe that since the following equality holds

K(x, n) = Nn((x,∞)× (0, 1))

we can use the convergence

P(Nn((x,∞)× (0, 1)) = k)→ λ(x)k

k!
e−λ(x),

by definition of PPP.

For the first identity we note first that by Theorem 8.3.2.

P(e1(Z1 − bn) + (1− e1)(W1 − dn) > 0)

∼ pP(Z1 > F←Z (1− n−1)) + (1− p)P(W1 > F←W (1− n−1)) = n−1.

which implies M(x, n) ∼ E(K(x, n)) and we may apply the previous result, since
the mean of a Poisson variable is the rate λ(x). Alternatively, one can directly
calculate:

P(ei(Zi − bn)/an + (1− ei)(Wi − dn)/cn > x|ei(Zi − bn) + (1− ei)(Wi − dn) > 0)

∼ nP(ei(Zi − bn)/an + (1− ei)(Wi − dn)/cn > x)

= E(Nn((x,∞)× (0, 1)))

→ µ((x,∞)× (0, 1)) = e−x.
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8.4.2 Law of the likelihood

We define

K0(u, v) =
n∑
i=1

1{ei(Zi − u)/sZ(u) + (1− ei)(Wi − v)/sW (v) > 0},

and to simplify notation assume that the observations which contribute to K0(u, v)
are precisely the first K0(u, v) of the n data points. That is,

K0(u, v) =

K0(u,v)∑
i=1

1{ei(Zi − u)/sZ(u) + (1− ei)(Wi − v)/sW (v) > 0},

which for varying n can be achieved by re-labeling. Here

sZ(u) = E(Z1 − u|Z1 > u), sW (v) = E(W1 − v|W1 > v)

are the mean excess functions of the transformed variables.

From Corollary 8.4.2 we know that the exceedances Zi − u|Zi > u and Wi −
v|Wi > v are for large thresholds distributed according to exponential distributions
with respective means given by sZ(u) and sW (v). We hence consider, conditionally
on K0(u, v) = k, the asymptotic likelihood of the transformed exceedances, defined
as the random variable

Lk(X, e, u, v)

=
k∏
i=1

exp

(
−ei

[
Zi − u
sZ(u)

+ log sZ(u)

])
exp

(
−(1− ei)

[
Wi − v
sW (v)

+ log sW (v)

])
,

for 1 ≤ k ≤ n and L0(X, e, u, v) = 1. Let p(k) := P(K0(u, v) = k), 0 ≤ k ≤ n If
n is large and we choose u, v, such that nFZ(u) = nFW (v) = λ > 0, we have by
Corollary 8.4.2 that

p(k)→ λk

k!
e−λ.

Theorem 8.4.3. As u = u(n), v = v(n), n → ∞ such that nFZ(u), nFW (v) →
λ > 0, the asymptotic cumulative distribution function of the random variable
LK0(u,v)(X, e, u, v) is given by

G(l) = e−λ1{1 ≤ l}+
∞∑
k=1

λk

k!
e−λFk,

where

k∧κ∑
i=0

(
k

i

)
pi(1− p)k−i γu(k,− log(sW (v)kl)− i log(sZ(u)/sW (v)))

(k − 1)!
→ Fk.

κ = 1{sZ(u) > sW (v)} − log(sW (v)kl)
log(sZ(u)/sW (v))

+ k1{sZ(u) ≤ sW (v)}, p = α/(α + c) and

γu(·, ·) is the upper incomplete gamma function.
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Proof. Note first that for large u, v, n, the normalised exceedances (Zi − u)/sZ(u)
and (Wi− v)/sW (v) are asymptotically standard exponentially distributed, X ⊥⊥ e,
and the probability of non-censoring (8.11) stabilises at p = α/(α + c).

We first determine the law of Ak = − log(Lk(X, e, u, v)) for deterministic k. We
write

Ak =
k∑
i=1

ei

[
Zi − u
sZ(u)

+ log sZ(u)

]
+ (1− ei)

[
Wi − v
sW (v)

+ log sW (v)

]

=
k∑
i=1

(
ei

[
Zi − u
sZ(u)

]
+ (1− ei)

[
Wi − v
sW (v)

])

+ log(sZ(u)/sW (v))
k∑
i=1

ei + log(sW (v))k

and observe that the first sum has an Erlang(k, 1) distribution. For the second
sum, we have a scaled Binomial(k, p) random variable. We hence get that for
sZ(u) > sW (v)

P
(
Ak − log(sW (v))k

log(sZ(u)/sW (v))
< x

)
∼

x∧k∑
i=0

(
k

i

)
pi(1− p)k−i γl(k, (x− i) log(sZ(u)/sW (v)))

(k − 1)!
,

where γl(·, ·) denotes the lower incomplete gamma function. Now using

Ak − log(sW (v))k

log(sZ(u)/sW (v))
< x

⇔ Lk(X, e, u, v) > exp(− log(sW (v))k − x log(sZ(u)/sW (v)))

we get

P(Lk(X, e, u, v) ≤ l) ∼

k∧ − log(sW (v)kl)

log(sZ (u)/sW (v))∑
i=0

(
k

i

)
pi(1− p)k−i γu(k,− log(sW (v)kl)− i log(sZ(u)/sW (v)))

(k − 1)!
.

If sZ(u) < sW (v) we have

P
(
Ak − log(sW (v))k

− log(sZ(u)/sW (v))
< x

)
∼

k∑
i=0

(
k

i

)
pi(1− p)k−i γl(k, (x+ i) log(sW (v)/sZ(u)))

(k − 1)!
,

and

Ak − log(sW (v))k

− log(sZ(u)/sW (v))
< x

⇔ Lk(X, e, u, v) < exp(− log(sW (v))k − x log(sW (v)/sZ(u)))
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so we get

P(Lk(X, e, u, v) ≤ l)

∼
k∑
i=0

(
k

i

)
pi(1− p)k−i γu(k,− log(sW (v)kl)− i log(sZ(u)/sW (v)))

(k − 1)!
.

The formula can also be verified to hold for when the mean excess functions agree.
Finally, by conditioning and using the Poisson process exceedance probabilities, the
main result now follows.

Observe that within the last theorem there is an implicit check not only of the
distribution of the exceedances, but also of the number of such exceedances, ac-
cording to the Poisson number of POTs approximation.

Remark 8.4.4. (Method 1) In practice, for a finite sample size n, it is natural to
consider the quantity

G(l) := e−λ1{1 ≤ l}

+
n∑
k=1

λk

k!
e−λ

k∧κ∑
i=0

(
k

i

)
pi(1− p)k−i γu(k,− log(sW (v)kl)− i log(sZ(u)/sW (v)))

(k − 1)!

as the determining factor to check whether a sample is novel or not: if it is above
or below 1 − α/2 or α/2, respectively, we say that the sample is novel, or reject
the null hypothesis. For instance, the arbitrary α = 0.05, 0.01 agree with most
statistical significances used in practice. In Luca et al. (2018) the test for heavy-
tails is rejected only when G(l) < α, and while this works well when a novel tail is
heavier than the reference one, empirical tests show that for an arbitrary change in
the tail, G > 1− α/2 or G < α/2 is superior.

In contrast, the results in Luca et al. (2018) could be adapted to the sample
X1, . . . , Xn without the use of the ek. The rationale is as follows. Define

Z̃i = log(α + c)− log(fX(Xi)), i = 1, . . . , n, (8.16)

and

K̃0(u) =
n∑
i=1

1{(Z̃i − u)/sZ̃(u) > 0}, (8.17)

and let the law of the exceedances Z̃i − u|Z̃i > u for large thresholds u converge
to an exponential distribution with respective mean given by sZ̃(u). We hence,
conditionally on K0(u, v) = k, could consider

k∏
i=1

exp

(
−

[
Z̃i − u
sZ̃(u)

+ log sZ̃(u)

])
.
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In order to accommodate for the (asymptotically independent) information brought
by the ei, we instead consider the joint asymptotic likelihood of the normalised
exceedances and the censoring indicators:

L̃k(X, e, u) =
k∏
i=1

(
α

α + c

)ei ( c

α + c

)1−ei
exp

(
−Z̃i − u
sZ̃(u)

)
,

for 1 ≤ k ≤ n and L̃0(X, e, u) = 1. Let p̃(k) := P(K̃0(u) = k), 0 ≤ k ≤ n. If n is
large and we choose u, such that nF Z̃(u) = λ > 0, we have by (8.9) that

p̃(k)→ λk

k!
e−λ.

Theorem 8.4.5. As u = u(n), n→∞ such that nF Z̃(u)→ λ > 0, the asymptotic

cumulative distribution function of the random variable L̃K̃0(u)(X, e, u) is given by

G̃(l) = e−λ1{1 ≤ l}+
∞∑
k=1

λk

k!
e−λF̃k

where

F̃k =

k∧κ(p)∑
i=0

(
k

i

)
pi(1− p)k−i γu(k, log((1− p)k/l) + i log(p/(1− p)))

(k − 1)!
,

κ(p) = 1{p < 1/2}k log((1−p)k/l)
log((1−p)/p) + k1{p ≥ 1/2}, p = α/(α + c) and γu(·, ·) is the

upper incomplete gamma function.

Proof. As noted above, for large u, v, n, the normalised exceedances (Z̃i−u)/sZ̃(u)
are asymptotically standard exponentially distributed, X ⊥⊥ e, and the probability
of non-censoring (8.11) stabilises at p = α/(α + c).

We define Ãk = − log(L̃k(X, e, u)) for deterministic k. We have

Ãk =
k∑
i=1

Z̃i − u
sZ̃(u)

− log(p)
k∑
i=1

ei − log(1− p)
k∑
i=1

(1− ei)

=
k∑
i=1

Z̃i − u
sZ̃(u)

− log(p/(1− p))
k∑
i=1

ei − log(1− p)k.

The first sum has an Erlang(k, 1) distribution. For the second sum, we have a scaled
Binomial(k, p) random variable. We hence get that for p < 1/2

P

(
Ãk + log(1− p)k

log((1− p)/p)
< x

)

∼
x∧k∑
i=0

(
k

i

)
pi(1− p)k−i γl(k, (x− i) log((1− p)/p))

(k − 1)!
,
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where as before γl denotes the lower incomplete gamma function. Since

Ãk + log(1− p)k
log((1− p)/p)

< x

⇔ L̃k(X, e, u) > exp(log(1− p)k − x log((1− p)/p))

we get

P(L̃k(X, e, u) ≤ l) ∼
k∧ k log((1−p)k/l)

log((1−p)/p)∑
i=0

(
k

i

)
pi(1− p)k−i γu(k, log((1− p)k/l)− i log((1− p)/p))

(k − 1)!
.

If p > 1/2 then

P

(
Ãk + log(1− p)k

log(p/(1− p))
< x

)

∼
k∑
i=0

(
k

i

)
pi(1− p)k−i γl(k, (x+ i) log(p/(1− p)))

(k − 1)!
,

And since

Ãk + log(1− p)k
log(p/(1− p))

< x ⇔ L̃k(X, e, u) > exp(log(1− p)k − x log(p/(1− p)))

we get

P(L̃k(X, e, u) ≤ l)

∼
k∑
i=0

(
k

i

)
pi(1− p)k−i γu(k, log((1− p)k/l)− i log(1− p)/p))

(k − 1)!
.

It remains to check that the formula remains valid for p = 0 and the proof is
finished off by conditioning and invoking the classical Poisson process exceedance
probabilities.

Remark 8.4.6. (Method 2) In practice, for a finite sample size n, we consider

G̃(l) = e−λ1{1 ≤ l}

+
n∑
k=1

λk

k!
e−λ

k∧κ(p)∑
i=0

(
k

i

)
pi(1− p)k−i γu(k, log((1− p)k/l) + i log(p/(1− p)))

(k − 1)!
,

as the determining factor to check whether a sample is novel or not: if it is above
or below 1−α/2 or α/2, respectively, we say that the sample is novel, or reject the
null hypothesis.
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8.4.3 The Bonferroni correction

As a benchmark to the bivariate and asymptotically independent hypothesis testing
at hand, it is natural to consider hypothesis testing based on the sufficient statistics
of the exceedances (log(Xα+c

i ) − u) and corresponding ei, i = 1, . . . , k, which are
approximately independent and i.i.d. exponential and binomial, respectively, when
Xi are Pareto in the tail.

Remark 8.4.7. (Benchmark) When Xi have a Pareto tail, the classic Bonferroni
test for censored data is as follows. Since for high thresholds

b1 :=
k∑
i=1

log(Xα+c
i )− u

slog(Xα+c
i )(u)

∼ Gamma(k, 1)

and (near) independently

b2 :=
k∑
i=1

ei ∼ Binom

(
k, p =

α

α + c

)
we set

B1(b1) =
γl(k, b1)

(k − 1)!

and

B2(b2) =

b2∑
i=0

(
k

i

)
pi(1− p)k−i

and we reject the null hypothesis whenever any of the following holds:

B1(b1) < α/4, B1(b1) > 1− α/4, B2(b2) < α/4, B2(b2) > 1− α/4.

Notice that for the binomial test B2 above it is crucial to use the same k as the
number of exceedances used to calculate b2, making it unfeasible to apply a Poisson
conditional argument as before.

In the same spirit of Method 1 and Method 2 we may apply a Bonferroni cor-
rection to a double hypothesis test which also takes into account the conditional
distribution of the exceedances given the sample size, which is asymptotically Pois-
son. More precisely, using the notation of (8.16), (8.17) we consider the asymptotic
likelihood of the normalised exceedances without the censoring indicators:

LBk (X, e, u) =
k∏
i=1

exp

(
−Z̃i − u
sZ̃(u)

)
, (8.18)

for 1 ≤ k ≤ n and LB0 (X, e, u) = 1. With p(k) = P(K̃0(u) = k), 0 ≤ k ≤ n, if n is
large and we choose u, such that nF Z̃(u) = λ > 0, we have by (8.9) that

p̃(k)→ λk

k!
e−λ.

It is then easy to prove in the same manner as Theorem 8.4.6 the following result
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Theorem 8.4.8. As u = u(n), n→∞ such that nF Z̃(u)→ λ > 0, the asymptotic
cumulative distribution function of the random variable LB

K̃0(u)
(X, e, u) is given by

GB(l) = e−λ1{1 ≤ l}+
∞∑
k=1

λk

k!
e−λFB

k

where

FB
k =

γu(k,− log(l))

(k − 1)!
,

and γu(·, ·) is the upper incomplete gamma function.

We also consider the the asymptotic likelihood of the censoring indicators:

LCk (X, e, u) =
k∏
i=1

(
α

α + c

)ei ( c

α + c

)1−ei
, (8.19)

for 1 ≤ k ≤ n and LC0 (X, e, u) = 1. Using the same proof method as before, we get

Theorem 8.4.9. As u = u(n), n→∞ such that nF Z̃(u)→ λ > 0, the asymptotic
cumulative distribution function of the random variable LB

K̃0(u)
(X, e, u) is given by

GC(l) = e−λ1{1 ≤ l}+
∞∑
k=1

λk

k!
e−λFC

k

where

FC
k =

∑
i∈Σ(p,l)

(
k

i

)
pi(1− p)k−i,

and

Σ(p, l) =

{
{0, . . . ,min {k, bk log((1− p)/l)/ log((1− p)/p)c}}, p > 1/2

{min {k, bk log((1− p)/l)/ log((1− p)/p)c} , . . . , k}, p ≤ 1/2.

With the two last results we can create an enhanced bivariate Bonferroni correc-
tion method that takes into account the conditional distribution of the exceedances
given the sample size.

Remark 8.4.10. (Method 3) In practice, for a finite sample size n, we consider
realisations l1, l2 of the (8.18) and (8.19), respectively and set

GB(l1) = e−λ1{1 ≤ l1}+
n∑
k=1

λk

k!
e−λ

γu(k,− log(l1))

(k − 1)!
,

and

GC(l2) = e−λ1{1 ≤ l2}+
n∑
k=1

λk

k!
e−λ

∑
i∈Σ(p,l2)

(
k

i

)
pi(1− p)k−i,

and we reject the null hypothesis whenever any of the following holds:

GB(l1) < α/4, GB(l1) > 1− α/4, GC(l2) < α/4, GC(l2) > 1− α/4.
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8.4.4 A special class of regularly varying distributions

We have made the assumption that the variables Xi have regularly varying tails,
P(X1 > x) = `X(x)x−(α+c), α + c > 0, and at the same time that the variables
Zi = − log f(Xi), Wi = − logF (Xi), are in the Gumbel domain of attraction. For
this to hold true we require that

P
(
− log

(
`ξ(X1)X−α1

)
> x

)
is tail equivalent with a Von Mises function, and likewise for the Zi. We initially
examine a simple case.

Assume that `ξ = lξ, a constant, so `X(x) = lξ`C(x), and we further make the
requirement that `C(x) converges to a constant lC . We have

P(W1 > x) = P (Xα
1 > lξ exp(x)) = l

−c/α
ξ `C

(
l
1/α
ξ exp(x/α)

)
exp(−x(α + c)/α),

which is tail equivalent to a Von Mises function. In a similar fashion the expression

P(Z1 > x) = P
(
Xα+1

1 > α lξ exp(x)
)

= α−(α+c)/(α+1)l
−(c+1)/(α+1)
ξ `C

(
(αlξ)

1/(α+1) exp(x/(α + 1))
)

× exp(−x(α + c)/(α + 1)),

demonstrates the belonging to the Gumbel domain of attraction. By convergence,
the same is true for the case `ξ → lξ. A subclass of such distributions which was first
suggested by Hall et al. (1985), and subsequently accepted in the Extreme Value
Theory community is the following:

P(ξi > u) = C1u
−α (1 +K1u

−β1(1 + o(1))
)

for u→∞, (8.20)

P(Ci > u) = C2u
−c (1 +K2u

−β2(1 + o(1))
)

for u→∞,

where β1, β2, C1, C2 are positive constants and K1, K2 real constants.

8.5 Performance

We consider a simulation study where the variables ξ and C follow a regularly
varying tail given by the following special case of (8.20):

P(ξi > u) = u−α
(
1 +Ku−β

)
for u→∞,

P(Ci > u) = u−c
(
1 +Ku−β

)
for u→∞.

We will study the successful classification proportion, or power of the test, given
the significance level of 0.05. The following table summarises the different settings
that we cover, where α0 and c0 are the hypothesis (test) parameters:

The mean excess function is taken to be as in the exact Pareto case, as are the
thresholds, defined by λ through the equations

nFZ(u) = λ > 0, nFW (v) = λ > 0.
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α0 c0 α c β K λ
Study 1 2 1.2 2 2.2 2 0.2 ∈ [5, 30]
Study 2 1.5 1.2 1 1.2 2 0.5 ∈ [5, 30]
Study 3 2 1 1.8 1 2 ∈ [0, 2] 15
Study 4 2 1.2 2.2 2.2 2 ∈ [0, 2] 15

For the Method 1 (Remark 8.4.4), Method 2 (Remark 8.4.6), Method 3 (Remark
8.4.10), and Baseline (Remark 8.4.7) the results based on a sample of size n = 200
and averaged over 1000 simulations (for each value of the varying parameter) are
given in Figure 8.1.

Figure 8.1: Power of various tests introduced in the text, as a function of a test
parameter. Method 1 in blue; Method 2 in red; Method 3 in black; Baseline in
yellow.

We observe that the three methods introduced in this paper which make use
of the conditional information of the exceedances given the sample size drastically
improve novelty detection for censored data. A Bonferroni correction on two such
tests (Method 3) is seen to be competitive against the univariate tests (Method 1
and 2). When the tail of the new (testing) sample becomes heavier, the usual MLE
bivariate approach is always outperformed in the cases that we consider (Study 2
and 3). From Study 1, where the testing sample has lighter tail, we observe that too
few exceedances (too high thresholds) or too many exceedances (too low thresholds)
can sometimes be detrimental to the methods which rely on the Point Processes
of Exceedances. Finally, from Study 4 we can observe that large departures from
Pareto behaviour when the testing sample has lighter tail can be detrimental to
the PPP methods. The latter is not surprising, since when tails are lighter than
expected, too few observations fall above a pre-set threshold, and the statistics
using those very few points become less reliable.
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8.6 Conclusion

In this paper we have developed novelty detection tests for the situation when
datasets have right-censored observations, building and generalising on existing
methodology. The focus was on detecting a change in either tail of the under-
lying sample or of the censoring mechanism. We have shown how a PPP arises
from a point process of exceedances in the censored case, exploiting the fact that
for Pareto-like tails, the peaks over high thresholds and the censoring labels are
virtually independent. We have used this tool, and the already existing Poisson
convergence theorem to develop tests which jointly include information on not only
the censoring mechanism and the size of the exceedances but also on the number
of exceedances.

Since we could also see the problem as a bivariate hypothesis testing problem,
the loss of power expected from, say, a Bonferroni correction, was expected to
not be large, given that the tests are virtually independent for high thresholds.
Nonetheless, the inclusion of PPP methods allowed us to develop a probabilistically
sound test which takes into account the conditional distribution of the number of
exceedances given a sample size (Poisson approximation) which yields high sensi-
tivity, especially when the tail of the new sample is heavier.

With this contribution we aim at filling a gap in the literature which is classically
of interest primarily to the health, finance and insurance sector. The methods we
developed are designed and perform best in under-sampled regions of heavy-tailed
distributions, i.e. in the tail of the distribution.

There are various ways of how to generalise the results we have obtained. For
instance, the introduction of dependence between the censoring mechanism and the
underlying sample could be interesting to model, i.e. the novelty detection study of
data which is censored, but not completely at random. We would also like to study
the novelty detection problem for the case of several dependent samples which have
been randomly censored by a possibly dependent multivariate censoring mechanism.
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Chapter 9

Matrix Mittag–Leffler
distributions and modeling
heavy-tailed risks

This chapter is based on the following article:

Albrecher, H., Bladt, M., & Bladt, M. (2019). Matrix Mittag–Leffler distribu-
tions and modeling heavy-tailed risks. Extremes, to appear. arXiv:1906.05316.

Abstract

In this paper we define the class of matrix Mittag-Leffler distributions and study
some of its properties. We show that it can be interpreted as a particular case of
an inhomogeneous phase-type distribution with random scaling factor, and alter-
natively also as the absorption time of a semi-Markov process with Mittag-Leffler
distributed interarrival times. We then identify this class and its power transforms
as a remarkably parsimonious and versatile family for the modelling of heavy-tailed
risks, which overcomes some disadvantages of other approaches like the problem of
threshold selection in extreme value theory. We illustrate this point both on simu-
lated data as well as on a set of real-life MTPL insurance data that were modeled
differently in the past.

9.1 Introduction

The modeling of heavy-tailed risks is a classical topic in probability, statistics and
its applications to understand and interpret data, see e.g. Embrechts et al. (1997),
Beirlant et al. (2004) and Klugman et al. (2012). The folklore heavy-tailed distri-
butions like Pareto, (heavy-tailed) Weibull and lognormal distributions can often
serve as very useful benchmark models, particularly when only a few data points
are available. In addition, the Pareto distribution is simple to work with and has
an intuitive justification in terms of limit properties of extremes. However, in sit-
uations with more (but not an abundance of) data points, one often empirically

197
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observes that a simple Pareto distribution does not serve as a good model across
the entire range of the distribution. This is also the case for more general paramet-
ric families like Burr or Benktander distributions. Traditionally, and according to
a main paradigm of the extreme value statistics approach, this is handled by only
using the largest available data points to estimate the tail behavior, and model the
bulk of the distribution separately by another distribution, finally splicing together
the respective parts (see e.g. (Albrecher et al., 2017, Ch.4) for details). In insurance
practice one often refers to this separate modeling as the modeling of attritional and
large claims, and the resulting models are frequently referred to as composite mod-
els Pigeon and Denuit (2011). A natural problem in this context is how to choose
the threshold between the separate regions, often boiling down to the compromise
of not leaving too few data points for the tail modeling. At the same time, the
consequences of that choice can be considerable, for instance for the determination
of solvency capital requirements in insurance (cf. (Albrecher et al., 2017, Ch.6) for
illustrations). A considerable effort has therefore been made to develop techniques
and criteria for an appropriate choice of such thresholds, see e.g. Beirlant et al.
(2004) for an overview and Bladt et al. (2019) for a recent contribution in that
direction.
If the confidence in the relevance of available data points for the description of the
(future) risk is sufficiently high, another possible approach is to use a tractable, but
much larger family of distributions and identify a good fit. A particularly popular
candidate for such an approach is the class of phase-type (PH) distributions, see e.g.
Asmussen et al. (1996). The class of PH distributions is dense (in the sense of weak
convergence) in the class of distributions on the positive real line, meaning that
they can approximate any positive distribution arbitrarily well. They are, however,
light-tailed, which may be a problem in applications which require a heavier tail and
where the quantities of interest heavily depend on the tail behavior (as e.g. for ruin
probabilities, cf. Asmussen and Albrecher (2010)). Fitting heavy-tailed distribu-
tions with a PH distribution can then lead to requiring many phases (rendering its
use computationally cumbersome), and the resulting model will still not capture the
tail behavior in a satisfactory manner. Two approaches to remedy this problem are
Bladt and Rojas-Nandayapa (2018) and Bladt et al. (2015). In Albrecher and Bladt
(2019) recently another direction was suggested, namely to transform time in the
construction of PH distributions (as absorption times of Markov jump processes),
leading to inhomogeneous phase-type (IPH) distributions. For suitable transfor-
mations, this approach allows to transport the versatility of PH distributions into
the domain of heavy-tailed distributions, by introducing dense classes of genuinely
heavy-tailed distributions. As a by-product, it was shown in Albrecher and Bladt
(2019) that a class of matrix-Pareto distributions can be identified, where the scalar
parameter of a classical Pareto distribution is replaced by a matrix, providing an
intuitive and somewhat natural extension of the Pareto distribution, much as the
matrix-exponential distribution, which is a powerful extension of the classical ex-
ponential distribution, see e.g. Bladt and Nielsen (2017).

In this paper we establish another matrix version of a distribution, namely the
Mittag-Leffler distribution (first studied by Pillai (1990)). While the identifica-
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tion of matrix versions of distributions is of mathematical interest in its own right,
we will show that the resulting matrix Mittag-Leffler distributions (and its power
transforms) have favorable properties for the modeling of heavy-tails, and it can
outperform some other modeling approaches in a remarkable way. Furthermore,
we will identify this class of distributions as a particular extension of the IPH class,
where the scaling is random. In addition, we will establish the matrix Mittag-
Leffler distribution as the absorption time of a semi-Markov process with (scalar)
Mittag-Leffler distributed inter-arrival times, extending the role of the exponential
distribution for the inter-arrival in continuous-time Markov chains.

The Mittag-Leffler function was first introduced in Mittag-Leffler (1904) and
over the years turned out to be a crucial object in fractional calculus. It can be
seen as playing the same role for fractional differential equations as the exponential
function does for ordinary differential equations, see e.g. Gorenflo et al. (2014) for
a recent overview. A recent application of fractional calculus for a particular risk
model in insurance can be found in Constantinescu et al. (ress). Mittag-Leffler func-
tions with matrix argument were first introduced in Chikrii and Eidel’man (2000)
and play a prominent role for identifying solutions of systems of fractional differen-
tial equations, see e.g. Garrappa and Popolizio (2018). Here we will use them to
define the class of matrix Mittag-Leffler (MML) distributions, which enjoy some at-
tractive mathematical properties and are heavy-tailed with a regularly varying tail
with index α < 1. While such extremely heavy-tails with resulting infinite mean
can be relevant in the modeling of operational risk Nešlehová et al. (2006) and pos-
sibly insurance losses due to natural catastrophes Albrecher et al. (2017), in most
applications of interest the tails are slightly less heavy. We therefore enlarge the
class of matrix Mittag-Leffler distributions by also including its power transforms
and estimate the corresponding power together with the other parameters from the
data in the fitting procedure. The index of regular variation of this larger class
of distributions can now be any positive number. Whereas the number of needed
phases for a PH or IPH fit can be very large also due to multi–modality or other
irregularities in the shape of the main body of the distribution, we will see that the
class of matrix Mittag-Leffler distribution and its power transforms (which we call
power matrix Mittag-Leffler (PMML) distributions) offers a significant reduction
in the number of phases needed to obtaining adequate fits. For this reason, it can
even be worthwhile to scale light-tailed data points to heavy-tailed ones first, then
apply a matrix Mittag-Leffler fit to the latter and transform the fit back to the
original light-tailed scaling. This procedure is to some extent the reverse direction
of the philosophy that underlied the PH fitting of heavy-tailed distributions. We
will illustrate the potential advantage of this alternative approach in the numerical
section at the end of the paper.

The remainder of the paper is organized as follows. Section 9.2 recollects some
useful definitions and properties of Mittag-Leffler functions, Mittag-Leffler distribu-
tions and PH distributions. Section 9.3 then defines matrix Mittag-Leffler distribu-
tions and derives a number of its properties. We also give three explicit examples.
Section 9.4 establishes MML distributions as IPH distributions under a particu-
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lar random scaling, which allows to intuitively understand the additional flexibility
gained from using MML distributions for the modeling of heavy-tailed risks. We
then also establish MML distributions as the absorption times of a semi-Markov
process with ML distributed interarrival times, which is yet another perspective on
the potential of the MML class as a modeling tool. Finally, Section 9.5 is devoted to
the modeling of data using (power-transformed) MML distributions. We first illus-
trate the convincing performance of the numerical fitting procedure to something
as involved as tri–modal data. Secondly, we consider an MTPL data set taken from
Albrecher et al. (2017) and already studied by various other means in the literature.
We show that a plain maximum-likelihood fit to this data set gives a convincing fit to
the entire range of the data with remarkably few parameters, and even identifies the
tail index with striking accuracy when compared to recent extreme value techniques
as in Bladt et al. (2019), without having to choose a threshold for the tail modeling
at all. We then also provide an example where transforming light-tailed data into
heavy-tailed ones, fitting with a PMML distribution and transforming back can lead
to a much better fit for the same number of parameters than a classical phase-type
distribution. We then also discuss the signature of MML distributions in the tail
in terms of the behavior of the Hill plot, which allows to develop an intuitive guess
as to when MML distributions are particularly adequate for a fitting procedure of
heavy-tails. Finally, Section 9.6 concludes.

9.2 Some relevant background

9.2.1 Mittag–Leffler functions

The Mittag–Leffler (ML) function is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where β ∈ R and α > 0. The ML function is an entire function if β > 0, and it
satisfies (see e.g. (Erdélyi et al., 1955, p.210))

dm

dzm
[
zβ−1Ea,β (za)

]
= zβ−m−1Eα,β−m (zα) .

This implies that (see (Garrappa and Popolizio, 2018, Prop.2))

E
(k)
α,β(z) =

dk

dzk
Eα,β(z) =

1

αkzk

k∑
j=0

c
(k)
j Eα,β−j(z) (9.1)

where

c
(k)
j =


(1− β − α(k − 1))c

(k−1)
0 , j = 0,

c
(k−1)
j−1 + (1− β − α(k − 1) + j)c

(k−1)
j , j = 1, . . . , k − 1,

1, j = k.
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For a matrix A, we may define its ML function as

Eα,β(A) =
∞∑
k=0

Ak

Γ(αk + β)
.

If β > 0, one can then express the entire ML function of a matrix A by Cauchy’s
formula

Eα,β(A) =
1

2πi

∫
γ

Eα,β(z)(zI −A)−1 dz,

where γ is a simple path enclosing the eigenvalues of A. If A has a Jordan normal
form A = P diag(J1, ...,J r)P

−1 with

J i =


λi 1 0 · · · 0
0 λi 1 · · · 0
0 0 λi · · · 0
...

...
...

...
...
...

...
0 0 0 · · · λi

 ,

then we may equivalently express Eα,β(A) by

Eα,β(A) = P diag(Eα,β(J1), ..., Eα,β(J r))P
−1,

where

Eα,β(J i) =



Eα,β(λi) E
(1)
α,β(λi)

E
(2)
α,β(λi)

2!
· · · E

(mi−1)

α,β (λi)

(mi−1)!

0 Eα,β(λi) E
(1)
α,β(λi) · · ·

E
(mi−2)

α,β (λi)

(mi−2)!

0 0 Eα,β(λi) · · ·
E

(mi−3)

α,β (λi)

(mi−3)!
...

... · · · ...
...
...

...
0 0 0 · · · Eα,β(λi)


,

and mi is the dimension of J i.
In either case, we shall need to evaluate the derivatives of ML functions at the

eigenvalues, which by (9.1) implies the evaluation of ML functions with possibly
negative indices β − j. This is not a problem, but it is important that initially
β > 0 to ensure that the ML function is entire and thereby the existence of the
Cauchy integral formula is guaranteed.

For further properties on the ML function we refer e.g. to Erdélyi et al. (1955),
Garrappa and Popolizio (2018), Matychyn and Onyshchenko (2018) and Haubold
et al. (2011).

9.2.2 Mittag–Leffler distributions

A random variable having Mittag-Leffler (ML) distribution was defined in Pillai
(1990) through the cumulative distribution function and consequently density given
by

Fδ,α(x) = 1− Eα,1(−(x/δ)α), x > 0, 0 < α ≤ 1,

fδ,α(x) =
xα−1

δα
Eα,α(−(x/δ)α), x > 0, 0 < α ≤ 1,
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with Laplace transform

1

1 + (δu)α
. (9.2)

A convenient representation, due to Kozubowski Kozubowski (2001), for a ML
random variable X is

X
d
= δZR1/α,

where Z is standard exponential and R has cumulative distribution function

FR(x) =
2

πα

[
arctan

(
x

sin(απ/2)
+ cot(απ/2)

)
− π

2

]
+ 1.

The tail behaviour of R is equivalent to that of a Cauchy random variable, and
hence X is regularly varying with parameter α in the tail (see e.g. (Mikosch, 1999,
Prop.1.3.9)).

The following extension (for the case δ = 1) will also play a role in the sequel: a
random variable X is said to follow a generalized Mittag-Leffler (GML) distribution
with parameters α (0 < α ≤ 1) and β > 0, if its Laplace transform is given by

E(e−uX) = (1 + uα)−β.

The corresponding cumulative distribution function then is

Fα,β(x) =
∞∑
k=0

(−1)kΓ(k + β)xα(k+β)

Γ(β) k! Γ(1 + α(k + β))
=
∞∑
k=0

(−1)kxα(k+β)

B(β, k) k Γ(1 + α(k + β))
,

where B(x, y) is the Beta function (see Jose et al. (2010)). The analogous repre-
sentation for a GML variable X is

X
d
= W 1/αSα, (9.3)

where W is Gamma with scale parameter 1 and shape parameter β, and Sα is a
random variable with Laplace transform given by

E(e−uSα) = exp(−uα).

9.2.3 Phase–type distributions

A random variable τ is said to be phase–type distributed with generator (or rep-
resentation) (π,T ), and we write τ ∼ PH(π,T ), if it is the time until absorp-
tion of a (time–homogeneous) Markov jump process {Xt}t≥0 with state–space E =
{1, 2, ..., p, p + 1} where states 1, ..., p are transient and state p + 1 is absorbing.
The row vector π = (π1, ..., πp) is the initial distribution, πi = P(X0 = i), and
T = {tij}i,j=1,...,p where tij denotes the transition rates of jumps between transient
states i and j. We assume that π1 + · · · πp+ 1, i.e. X0 cannot start in the absorbing
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state which would have caused an atom at zero. The intensity matrix for {Xt}t≥0

can be written as

Λ =

(
T t
0 0

)
,

where t = (t1, ..., tp)
′ is a column vector of exit rates, i.e. ti is the rate of transition

from state i to the absorbing state p + 1. We notice that −Te = t, where e =
(1, 1, ..., 1)′ is the p–dimensional column vector of ones, since the row sums in Λ
must all be zero. Hence (π,T ) fully parametrises the Markov process.

The class of Phase–type distributions is dense in the class of distributions on the
positive reals, meaning that they may approximate any positive distribution arbi-
trarily well. On the other hand, they constitute a class of probabilistically tractable
distributions, which often allows for exact solutions to complex stochastic problems,
and frequently in a closed form. The theory is well developed with numerous appli-
cations in insurance risk and queueing theory (see e.g. Bladt and Nielsen (2017) and
reference therein). Phase–type distributions are light-tailed (i.e., their tail has an
exponential decay), which makes them inadequate for modelling certain phenomena
like insurance risks with heavy-tailed claims. Recently, Albrecher and Bladt (2019)
proposed an extension of the PH construction principle to time–inhomogeneous
Markov processes, in which case the absorption times can also be heavy-tailed with
a wide spectrum of possible tail shapes.

If τ ∼ PH(π,T ), then its density function is given by fτ (x) = πeTxt, its
distribution function by Fτ (x) = 1 − πeTxe and its Laplace transform by Lτ (s) =
π(sI − T )−1t, where I denotes the identity matrix. The (fractional) moments are
E(τα) = Γ(α + 1)π(−T )−αe. For further details on Phase–type distributions we
refer to Bladt and Nielsen (2017).

9.3 Matrix Mittag–Leffler distributions

Let us now derive a matrix version of the Mittag-Leffler distribution by defining its
Laplace transform and identifying the distribution associated to it. To this end, in
view of (9.2) consider the function

φ(u) = π(uαI − T )−1t, 0 < α ≤ 1, (9.4)

where (π,T ) is a PH generator.

Theorem 9.3.1. φ(u) is the Laplace transform of a probability distribution.

Proof. Let g(u) = uα and

f(x) = π(xI − T )−1t.

Then φ(u) = f(g(u)). Now T − uαI is a sub–intensity matrix for all u ≥ 0 and
therefore (uαI − T )−1 is a non–negative matrix (Green matrix, see (Bladt and
Nielsen, 2017, p.134)). Thus

f (n)(g(u)) = (−1)nn!π (uαI − T )−n−1 t,
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which has sign (−1)n. Concerning g,

g(j)(u) = α(α− 1) · · · (α− j + 1)uα−j

has sign (−1)j+1. We shall employ Faá di Bruno’s formula,

dn

dxn
f(g(x)) =

∑ n!

m1!m2! · · ·mn!
· f (m1+···+mn)(g(x)) ·

n∏
j=1

(
g(j)(x)

j!

)mj
,

where the summation is over n–tuples for which

1 ·m1 + 2 ·m2 + 3 ·m3 + · · ·+ n ·mn = n,

to determine the sign of φ(n)(u). Notice that

sign

(
f (m1+m2+···+mn)(g(u))

n∏
i=1

g(i)(u)mi

)
= (−1)m1+···+mn

n∏
i=1

(−1)mi(i+1)

= (−1)2
∑
imi(−1)

∑
i imi

= (−1)n.

Hence all terms in the summation have the same sign (−1)n, and we conclude
that also the sum itself has sign (−1)n, i.e. sign(φ(n)(u)) = (−1)n. Since φ(0) =
π(−T )t = π(−T )(−Te) = πe = 1, the result then follows with Bernstein’s theo-
rem (see (Feller, 1971, p.439)).

Remark 9.3.2. Note that the proof does not rely on the special form of uα, and it
follows that if g is any function with g(0) = 0 and −g completely monotone, then

φ(u) = π(g(u)I − T )−1t

is the Laplace transform of a probability distribution, which may also be useful in
other contexts.

Theorem 9.3.3. Let X be a random variable with Laplace transform (9.4). Then
the density function of X is given by

f(x) = xα−1πEα,α (Txα) t.

Proof. We show that f has the required Laplace transform. For u sufficiently large
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one has ∫ ∞
0

e−uxf(x) dx = π

∫ ∞
0

e−ux
∞∑
n=0

T nxαn

Γ((n+ 1)α)
xα−1 dx t

= π

∞∑
n=0

T n

Γ((n+ 1)α)

∫ ∞
0

xα(n+1)−1e−ux dx t

= π

∞∑
n=0

T n

Γ((n+ 1)α)
Γ((n+ 1)α)u−(n+1)αt

= −π
∞∑
n=0

T n+1u−(n+1)αe

= −π
∞∑
n=1

(−Tu−α)ne

= −π(I − Tu−α)−1(Tu−α)e

= π(uαI − T )−1t.

The result for all u ∈ [0,∞) then follows by analytic continuation.

Definition 9.3.4. Let (π,T ) be a PH generator and let 0 < α ≤ 1. A random vari-
able X is said to have a matrix Mittag–Leffler distribution, if its Laplace transform
is given by

E(e−uX) = π(uαI − T )−1t.

In this case we write X ∼ MML(α,π,T ).

Remark 9.3.5. The proof Theorem 9.3.3 shows that for any triplet (π,T , t) for
which

f(x) = πeTxt (9.5)

is a density function, the function φ(u) = π(uαI−T )−1t is indeed a Laplace trans-
form of a probability distribution. Distributions with density (9.5) are referred to as
matrix–exponential distributions, and contain the class of phase–type distributions
as a strict subset. We have stated the above definition in terms of a phase–type
generator, but it is hence clear that the construction also applies to any matrix–
exponential distribution. While most results in the following could be stated in
terms of a matrix–exponential triplet, for the sake of simplicity and notation we
restrict the parameters to phase–type generators only.

Corollary 9.3.6. Let X ∼ MML(α,π,T ). Then the cumulative distribution func-
tion for X is given by

F (x) = 1− πEα,1 (Txα) e.

Proof. The derivative of this function is

F ′(x) = −π
∞∑
n=1

T nnxα(n−1)αxα−1

Γ(1 + αn)
e

= −xα−1π
∞∑
n=1

(Txα)n−1

Γ(αn)
Te

= xα−1πEα,α(Txα)t,
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which indeed coincides with the density. It remains to note that F satisfies the
boundary condition F (0) = 0.

One can now realize that the matrix ML distribution provides an extension of
representation (9.3) in the following way:

Theorem 9.3.7. Let X ∼ MML(α,π,T ). Then

X
d
= W 1/αSα, (9.6)

where W ∼ PH(π, T ), and Sα is an independent (positive stable) random variable
with Laplace transform given by exp(−uα).

Proof. Simply note that

E(exp(−uW 1/αSα)) =

∫ ∞
0

E(exp(−ux1/αSα))πeTxt dx

= π

∫ ∞
0

e−u
αxeTx dx t

= π

∫ ∞
0

e−x(uαI−T ) dx t

= π(uαI − T )−1 t.

Corollary 9.3.8. Let X ∼ MML(α,π,T ). The fractional moments of order ρ <
α ≤ 1 are given by

E(Xρ) =
Γ(1− ρ/α)Γ(1 + ρ/α)π(−T )−ρ/αe

Γ(1− ρ)
.

Proof. It is known Wolfe (1975) that the fractional moments of a random variable
Sα with Laplace transform exp(−uα) are given by

E(Sρα) =
Γ(1− ρ/α)

Γ(1− ρ)
.

From Bladt and Nielsen (2017) we know that the νth fractional moment of a random
variable W with PH(π, T ) distribution is given by

E(W ν) = Γ(ν + 1)π(−T )−νe.

By Theorem 9.3.7, and setting ν = ρ/α, X will have the ρth fractional moment
given by

E(Xρ) = E(Sρα)E(W ρ/α) =
Γ(1− ρ/α)Γ(1 + ρ/α)π(−T )−ρ/αe

Γ(1− ρ)
.
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Remark 9.3.9. Representation (9.6) is not only useful for establshing closed-form
formulas, but it also suggests a simple and efficient simulation technique for X.
Simulation algorithms for PH and stable distributions are for instance available in
the statistical software R via the packages actuar and stabledist, respectively.

Example 9.3.1. Consider X ∼ MML(α,π,T ) where (π,T ) is the PH repre-
sentation of an Erlang distribution with p (p ∈ N) stages and intensity λ, i.e.
π = (1, 0, ..., 0) and

T =



−λ λ 0 ... 0 0
0 −λ λ ... 0 0
0 0 −λ ... 0 0
...

...
...

...
...
...

...
...

0 0 0 ... −λ λ
0 0 0 ... 0 −λ


.

In this case

(sI − T )−1 =



1
s+λ

λ
(s+λ)2

λ2

(s+λ)3
... λp−1

(s+λ)p

0 1
s+λ

λ
(s+λ)2

... λp−2

(s+λ)p−1

0 0 1
s+λ

... λp−3

(s+λ)p−2

...
...

...
...
...
...

...
0 0 0 ... 1

s+λ

 ,

so

f(x) = xα−1πEα,α(Txα)t

= xα−1 1

2πi

∫
γ

Eα,α(s)π(sI − xαT )−1 t ds

= xα−1 1

2πi

∫
γ

Eα,α(s)λ
(λxα)p−1

(s+ xαλ)p
ds

=
λpxαp−1

(p− 1)!
E(p−1)
α,α (−λxα),

where γ is a simple path enclosing −λxα, and where in the last step we used the
residue theorem. Note that this corresponds to the GML random variable given
already for general shape parameter p = β ∈ R+ in (9.3) (although this explicit
form of the density was not given in Jose et al. (2010)). Figure 9.1 depicts the density
for several choices of parameters. The parameter α controls the heaviness of the
tail (and more generally the deviation from exponentiality of the Mittag-Leffler
function), the parameter p determines the shape of the body of the distribution
(since larger p implies a more pronounced Erlang component), and λ is a scaling
parameter.

Example 9.3.2. Mixture of Erlang distributions form the simplest sub–class of PH
distributions which are dense in the class of distributions on the positive real line
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Figure 9.1: Density of a MML(α,π,T ), for α = 0.7 and Erlang phase-type compo-
nent with p = 4 and λ = 2 (solid). The remaining curves have a change in one of
the parameters: α = 0.5 (dashed), p = 6 (dotted), and λ = 1 (dashed and dotted).

(in the sense of weak convergence). Let h be the density

h(x) =
m∑
i=1

θifErl(x; pi, λi),

where fErl(x; pi, λi) = λpii x
pi−1 exp(−λix)/(pi−1)! denotes the density of an Erlang

distribution and θi ≥ 0 are weights with
∑
θi = 1. Then it follows immediately

from Example 9.3.1 that the corresponding MML distribution has density

f(x) =
m∑
i=1

θi
λpii x

αpi−1

(pi − 1)!
E(pi−1)
α,α (−λixα).

In Figure 9.2, a trimodal distribution is considered, corresponding toX ∼ MML(α,π,T ),
for a mixture of three Erlang PH components. The densities of log(X) and X are
both depicted.

Example 9.3.3. A Coxian phase–type distribution has a representation of the form

π = (π1, ..., πp), T =


−λ1 λ1 0 ... 0

0 −λ2 λ2 ... 0
0 0 −λ3 ... 0
...

...
...

...
...
...

...
0 0 0 ... −λp

 ,
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Figure 9.2: Densities of log(X) and of X, where X ∼ MML(α,π,T ) is a mixture
of m = 3 Erlang PH components with parameters α = 0.9, p1 = 5, p2 = 3, p3 = 4,
λ1 = 20, λ2 = 1, λ3 = 0.03, θ1 = 0.5, θ2 = 0.2, θ3 = 0.3.

where all λi, i = 1, . . . , p, are distinct. In this case

(zI − T )−1 =



1
z+λ1

λ1
(z+λ1)(z+λ2)

λ1λ2
(z+λ1)(z+λ2)(z+λ3)

· · · λ1···λp−1

(z+λ1)(z+λ2)···(z+λp)

0 1
z+λ2

λ2
(z+λ2)(z+λ3)

· · · λ2···λp−1

(z+λ2)(z+λ3)···(z+λp)

0 0 1
z+λ3

· · · λ3···λp−1

(z+λ3)(z+λ4)···(z+λp)
...

...
...

...
...
...

...
0 0 0 · · · 1

z+λp

 ,

so

f(x) = xα−1 1

2πi

∫
γ

Eα,α(s)π(sI − xαT )−1t ds

= xα−1

p∑
j=1

πj
1

2πi

∫
γ

Eα,α(s)
(λjx

α)(λj+1x
α) · · · (λp−1x

α)λp
(s+ λjxα)(s+ λj+1xα) · · · (s+ λpxα)

ds

=

p∑
j=1

πjx
α(p−j+1)−1

(
p∏
k=j

λk

)
1

2πi

∫
γ

Eα,α(s)

(s+ xαλj) · · · (s+ xαλp)
ds

=

p∑
j=1

πjx
α(p−j+1)−1

(
p∏
k=j

λk

)
p∑

m=j

Eα,α(−λmxα)
p∏
n=j

n6=m

(−xαλm + xαλn)

= xα−1

p∑
j=1

πj

(
p∏
k=j

λk

)
p∑

m=j

Eα,α(−λmxα)
p∏
n=j

n6=m

(λn − λm)

.

In Figure 9.3 four such densities are plotted.



210 CHAPTER 9. MATRIX MITTAG–LEFFLER DISTRIBUTIONS

Figure 9.3: Density of X ∼ MML(α,π,T ), with Coxian PH component (p = 4,
α = 0.9, λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 4, and π = (0.5, 0, 0.5, 0) (solid), π =
(0.5, 0.5, 0, 0) (dashed), π = (0.5, 0, 0, 0.5) (dotted), and π = (0.25, 0.25, 0.25, 0.25)
(dashed–dotted)).

9.4 Sample path respresentations

We now provide two different representations of the MML distribution as sample
path properties of a stochastic process. The first one will be as an absorption time
of a randomly scaled time-inhomogeneous Markov jump process, and the second
one as an absorption time of a particular semi-Markov process (where random time
scaling is not needed).

9.4.1 Random time-inhomogeneous phase–type distributions

We recall from Section 9.2.3 that a random variable is PH distributed if it is the
time until absorption of a time–homogeneous Markov jump process on a finite
state–space, where one state is absorbing and the remaining states are transient.
In this section we show that a MML distribution can be interpreted as a time–
inhomogeneous phase–type distribution with random intensity matrix.

Let us define a random time-inhomogeneous Markov jump process Xt as a jump
process with state space E = {1, 2, . . . , p, p+ 1}, where p+ 1 is an absorbing state,
the remaining states being transient, and the intensity matrix given by

Λ(t) =
1

Y

(
T (t) t(t)

0 0

)
, (9.7)

where t(t) = −T (t)e, e = (1, 1, . . . , 1)T , 0 = (0, 0, . . . , 0), π = (π1, . . . , πp),

P(X0 = p+ 1) = 0, P(X0 = k) = πk, k = 1, . . . , p,

and the independent, positive random variable Y is a random scaling factor. For
the resulting absorption time

τ = inf{t ≥ 0 : Xt = p+ 1},
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we write τ ∼ RIPH(Y,π,T (t)). Note that the special case Y ≡ 1 corresponds to
the IPH class in Albrecher and Bladt (2019).

If furthermore we can write T (t) = λ(t)T , the intensity matrix (9.7) takes the
form

Λ(t) =
λ(t)

Y

(
T t
0 0

)
,

in which case we write τ ∼ RIPH(Y,π,T , λ). The following result is then immedi-
ate.

Theorem 9.4.1. Let τ ∼ RIPH(Y,π,T , λ) for a random variable Y with density
g. Then the density f and distribution function F of τ are given by

f(x) =

∫ ∞
0

λ(x/v)π exp

(∫ x/v

0

λ(u) duT

)
t
g(v)

v
dv,

F (x) = 1−
∫ ∞

0

π exp

(∫ x/v

0

λ(u) duT

)
e g(v) dv.

Furthermore, if λ(t) is a strictly positive function and we define h by

h−1(x) =

∫ x

0

λ(t) dt,

then

τ
d
= h(τ0) · Y, (9.8)

where τ0 ∼ PH(π,T ).

Combining Theorem 9.3.7 and Theorem 9.4.1, the matrix Mittag-Leffler random
variable X ∼ MML(α,π,T ) can hence be interpreted as a particular random scaling
of a time-inhomogeneous phase-type distribution τ0 ∼ PH(π,T ) with h(x) = x1/α

(translating into λ(t) = αtα−1) and heavy-tailed random scaling factor Y = Sα. As
we will illustrate in Section 9.5, this represents a particularly versatile yet simple
class of random variables for fitting real data.

Remark 9.4.2. For any random variable W with cumulative distribution function
FW , it is possible to write

W
d
= F−1

W (1− exp(−E)) =: hW (E),

where E is a unit mean exponential random variable. For modeling purposes, the
rationale in Albrecher and Bladt (2019) can be interpreted as approximating the
transformation function hW before-hand by some function h (in absence of the
knowledge of W ) and then replacing E with a general PH distribution, providing
flexibility for the fit with often explicit formulas for the resulting random variable.
The matrix-Pareto distributions defined in Albrecher and Bladt (2019) are then
the special case Y ≡ 1 and (up to a constant) h(x) = ex − 1 in (9.8), which
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entails λ(t) = 1/(1 + t). The fitting in that case is particularly parsimonious for
distributions ’close’ to a Pareto distribution (where the distance concept here is
then inherited from the distance in the PH domain after the log-transform). The
general representation (9.8), in contrast, allows to introduce a potential heavy-tail
behavior also through the random scaling factor Y , providing more flexibility for the
shape of the function h(x) = x1/α (through the choice of α) in a fitting procedure
while keeping the resulting expressions tractable.

Remark 9.4.3. The form (9.8) may also suggest to consider – for modelling pur-
poses – the somewhat simpler case of a PH variable multiplied by a standard Pareto
variable with tail index β > 0, that is h(x) = x and fY (y) = βx−β−1, x ≥ 1. For
general τ0 ∼ PH(π,T ) it is straightforward to see that then

fτ (t) = βz−β−1

∫ t

0

wβπ exp(Tw)t dw

= βz−β−1mβFmβ(t),

where mβ is the β-th moment of τ0, and Fmβ is its β-th moment distribution.
For τ0 ∼ Exp(λ) this simplifies to

fτ (t) =
β(λt)−β/2 exp(−λt/2)WM

(
β
2
, β

2
+ 1

2
, λt
)

λt(β + 1)
,

where

WM(k,m, z) = zm+1/2e−z/2
∞∑
n=0

(
m− k + 1

2

)
n

n!(2m+ 1)n
zn

is the Whittaker M function and (x)n is the Pochhammer symbol. Inserting a
matrix into the third argument of this function, one may now proceed again with
the matrix version of Cauchy’s formula and by Jordan decomposition, potentially
giving rise to a theory similar to the one for Mittag-Leffler distributions. However,
this direction is not the focus of the present paper. In addition, a key difference
between the above product construction and the MML distribution will be discussed
in Section 9.4.2 below in the context of a non-random path representation, for which
the fine properties of the ML distribution play a crucial role.

9.4.2 Semi–Markov framework

Let E∗ = {1, 2, ..., p} be a state space and let Q = {qij}i,j∈E denote a transition
matrix for some Markov chain {Yn}n∈N defined on E∗. We assume that qii = 0 for
all i. {Yn}n∈N will serve as an embedded Markov chain in a Markov renewal process.

Let α ∈ (0, 1] and λi > 0. For i = 1, ..., p, let T in be i.i.d. random variables with a
Mittag–Leffler distribution ML(α, λi), where we use the parametrisation such that
the density of a generic T i is given by

fi(x) = λix
α−1Eα,α(−λixα). (9.9)

An alternative common parametrisation is obtained in terms of the parameter ρi
that satisfies ρ−αi = λi.
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We now construct a semi–Markov process {Xt}t≥0 as follows. Let S0 = 0 and

Sn =
n∑
i=1

T Yii , n ≥ 1.

Define

Xt =
∞∑
n=1

Yn−11{Sn−1≤t<Sn}. (9.10)

Then {Xt}t≥0 changes states according to the Markov chain Yn, Sn denotes the time
of the n’th jump, and the sojourn times in states i are Mittag–Leffler distributed
with paramters (α, λi). The construction is illustrated in Figure 11.2.

t

Xt

1
2
3

p

∼ f3

∼ f1

∼ fp

∼ f1

S1 S2 S3 S4

Figure 9.4: Construction of a semi–Markov process based on Mittag–Leffler dis-
tributed interarrivals.

Define the intensity matrix Λ = {λij}i=1,...,p by

λij = λiqij, i 6= j, and λii = −λi =
∑
k 6=i

λik,

and let

pij(t) = P(Xt = j|X0 = i), P (t) = {pij(t)}i,j=1,...,p.

Theorem 9.4.4. We have

P (t) = Eα,1(Λtα).

Proof. Conditioning on the time of the first jump, we get that

pij(t) = δij P(T i1 > t) +

∫ t

0

fi(s)
∑
k 6=i

qikpkj(t− s) ds

= δijEα,1(−λitα) +
∑
k 6=i

qik

∫ t

0

λis
α−1Eα,α(−λisα)pkj(t− s) ds.

Taking Laplace transforms, and using that

L
[
xβ−1Eα,β (axα)

]
(s) = s−β

(
1− as−α

)−1
,
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together with λik = λiqik, we get that

p̂ij(s) := E(e−spij(t)) = δij
1

1 + λis−α
+
∑
k 6=i

λik
s−α

1 + λis−α
· p̂kj(s)

or

(1 + λis
−α)p̂ij(s) = δij + s−α

∑
k 6=i

λikp̂kj(s).

Now using λii = −λi, we get

p̂ij(s) = δij + s−α
p∑

k=1

λikp̂kj(s). (9.11)

In matrix form this amounts to

P̂ (s) = I + s−αΛP̂ (s)

which has the solution

P̂ (s) = (I − s−αΛ)−1.

The right-hand side is the Laplace transform of Eα,1(Λtα), establishing the result.

Next we consider the case where E = {1, 2, ..., p, p + 1} and where the states
1, ..., p are transient and state p+ 1 is absorbing (with respect to the Markov chain
{Yn}n∈N). This means that {Yn}n∈N has a transition matrix of the form

Q =

(
Q1 q1

0 1

)
,

and regarding the intensities we set λp+1 = 0. The matrix Λ then is of the form

Λ =

(
T t
0 0

)
. (9.12)

We notice the following useful result.

Lemma 9.4.5.

Eα,1

((
T t
0 0

)
xα
)

=

(
Eα,1(Txα) e− Eα,1(Txα)e

0 1

)
,

where t = −Te (rows sum to zero).
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Proof. By definition,

Eα,1

((
T t
0 0

)
xα
)

=
∞∑
n=0

(
T t
0 0

)n
xαn

Γ(αn+ 1)

= I +
∞∑
n=1

(
T t
0 0

)n
xαn

Γ(αn+ 1)

= I +
∞∑
n=1

(
T n −T ne
0 0

)
xαn

Γ(αn+ 1)

=

(
I +

∑∞
n=1 T

n xαn

Γ(αn+1)
−
(∑∞

n=1 T
n xαn

Γ(αn+1)
e
)

0 1

)

=

(
Eα,1(Txα) e− Eα,1(Txα)e

0 1

)
.

Thus the restriction of Eα,1(Λxα) to the transient states 1, ..., p equals Eα,1(Txα)
and is hence the sub–transition matrix between the transient states.

Theorem 9.4.6. Let {Xt}t≥0 be a semi-Markov process, where the matrix Λ has
the form

Λ =

(
T t
0 0

)
.

Let τ = inf{t ≥ 0 : Xt = p + 1} denote the time until absorption. Then τ has a
MML(α,π,T ) distribution, with cumulative distribution function given by

Fτ (u) = 1− πEα,1(Tuα)e.

Proof. For E∗ = {1, 2, . . . , p}, the events {τ > u} and {Xu ∈ E∗} coincide. Thus,

1− Fτ (u) = P(τ > u) = P (Xu ∈ E∗) =

p∑
j=1

P (Xu = j)

=

p∑
i,j=1

P (Xu = j|X0 = i)P (X0 = i) =

p∑
i,j=1

πiP ij(u) = πEα,1(Tuα)e.

Remark 9.4.7. The proofs above heavily depend on the form of the Laplace trans-
form of the ML distribution, and its similarity with the exponential function. Note
that the above construction naturally extends the definition of PH distributions as
absorption times of continuous–time Markov chains, the latter being the limit case
α → 1. In general, such a semi-Markov representation will hence not be available
for other product distributions.
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9.5 Statistical modeling using MML distributions

In this section we present some examples of MML distribution fitting to data.
Let us start with an illustration of the maximum likelihood fitting performance to
simulated data.

Example 9.5.1. We simulate 300 observations from X ∼ MML(α,π,T ), with
a mixture of Erlang PH component, with parameters chosen in such a way that
the log-data is trimodal. The corresponding maximum likelihood fit is depicted in
Figure 9.5 (for visualization purposes the scale of the x-axis is logarithmic). The
true parameters are m = 3, α = 0.9, p1 = p2 = p3 = 3, λ1 = 10, λ2 = 1, λ3 = 0.1,
θ1 = 0.3, θ2 = 0.3 θ3 = 0.4, whereas the maximum likelihood estimator is found to
be

α̂ = 0.905532, θ̂1 = 0.3133867, θ̂2 = 0.3138739, θ̂3 = 0.3727393,

λ̂1 = 9.193643, λ̂2 = 1.137208, λ̂3 = 0.08746225.

The negative log-likelihood at the fitted parameters was 1020.102, compared to
1023.963 at the true parameters (i.e., in the likelihood sense, the fitted model even
outperforms the true model for the simulated data points). Note that the tri-modal
shape of the underlying density is nicely identified here (which in pure PH fitting
would typically not work as smoothly). We also provide a Hill plot of the simulated
data, where the potentially heavy-tailed behavior can be clearly appreciated. �

Figure 9.5: Left panel: maximum likelihood fit (red) to simulated MML data with
mixture of Erlang PH component and parameters m = 3, α = 0.9, p1 = p2 = p3 = 3,
λ1 = 10, λ2 = 1, λ3 = 0.1, θ1 = 0.3, θ2 = 0.3, θ3 = 0.4. The true density is plotted
in blue. Right panel: Hill plot of the untransformed data.

The fact that MML distributions behave in a Pareto manner with parameter
α ∈ (0, 1] in the tail can be seen from (9.6). Since such a tail will be too heavy for
most applications, we introduce a simple power transformation to gain flexibility
for the tail behavior, which particularly allows lighter tails as well.
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Definition 9.5.1. Let X ∼ MML(α,π,T ). For ν > 0, we define

X1/ν ∼ PMML(α,π,T , ν),

and refer to it as the class of Power-MML (PMML) distributions.

The density function of a PMML(α,π,T , ν) distribution is given by

f(x) = νxνα−1πEα,α (Txνα) t,

which will be needed for the maximum likelihood procedure below.

Remark 9.5.2. The introduction of the PMML class allows for an adaptive trans-
formation of the data during the fitting procedure. The interpretation of ν is then
as the power to which the data should be taken in order for the latter to be most
adequately fit by a pure MML distribution. As the number of MML components
grows, the product αν is expected to estimate the tail index. However, this estimate
might be far off when the matrix T is not large enough in order for the global fit
to be adequate. In those cases, the power transform will tend to improve the fit of
the body of the distribution, rather than the tail. When compared to the approach
taken in Albrecher and Bladt (2019) (fitting a PH density to log-transformed heavy-
tailed variables) one can consider the present procedure as adaptive selection of the
transformation function, as opposed to fixing it to be the logarithm.

Example 9.5.2. We consider a real-life motor third party liability (MTPL) insur-
ance data set which was thoroughly studied in Albrecher et al. (2017), mainly from
a heavy-tailed perspective (referred to as ”Company A” there). The data set origi-
nally consists of 837 observations, having the interpretation of claim sizes reported
to the company during the time frame 1995-2010. The data are right-censored, and
were analyzed recently in Bladt et al. (2020) using perturbed likelihood with cen-
soring techniques. For the present purpose, we solely focus on the ultimates, which
consists of imputing an expert prediction of the final claim amount for all claims
which are still open, i.e. right-censored. We restrict our analysis here to the largest
800 observations, since the inclusion of the 37 smallest claims lead to a sub-optimal
fit, but are somehow irrelevant for modeling purposes. For convenience, we divided
the claim sizes by 100, 000.

The heavy-tailed nature of the data suggests that using MML distributions to
model the claim sizes is appropriate. Recently, in Bladt et al. (2019), a tail index
of α−1 = 0.48 was suggested through an automated threshold selection procedure,
using a novel trimming approach for the Hill estimator. Since this (or also other
much rougher pre-analysis techniques like Pareto QQ-plots) suggests a finite mean,
we employ the PMML distributions for the present purpose. This is in fact advised
as a general procedure, since in situations where a pure MML fit is appropriate,
the fitting procedure will suggest a value for ν close to 1 anyway. The maximum
likelihood procedure identifies here a surprisingly simple PMML distribution as
adequate, namely with a PH component just being a simple exponential random
variable:

α̂ = 0.3025553, T̂ = −0.08293046, ν̂ = 6.941576.
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Figure 9.6: Liability insurance ultimates. Left panel: maximum likelihood fit using
a PMML with exponential PH component. Right panel: QQ-plot of the fitted
distribution function evaluated at the sample quantiles, against theoretical uniform
quantiles.

More complex PH components turn out to indeed numerically degenerate into this
simple model again. The resulting model density is hence given by

f(x) = 0.56x1.1E0.30,0.30

(
−0.08x2.1

)
.

The adequate fit can be appreciated in Figure 9.6. Observe that the maximum
likelihood approach is concerned not only with the tail behaviour but also with
adequately fitting the body of the distribution. Nonetheless, the tail index of the
PMML fit is given by (α̂ · ν̂)−1 = 0.4761427, which is strikingly(!) close to the 0.48
suggested in Bladt et al. (2019).

A previous approach to describe the entire data set by one model was given in
(Albrecher et al., 2017, p.99), where a splicing point was suggested for this data set
at around the 20th largest order statistic, based purely on expert opinion. A semi-
automated approach in Bladt et al. (2019) suggested splicing at the 14th largest
data point. Notice that not only does our model fit the data well and is much
more parsimonious, but it also circumvents threshold or splicing point selection
completely. �

Phase-type distributions are weakly dense in the set of all probability distribu-
tions on the positive real line. However, often a very large dimension of the PH
distribution is needed to get a decent fit to data. Here, we show an example of
how the class of PMML distributions can be used to reduce the dimension of a
PH fit, thanks to the increased flexibility that the randomization with an α-stable
distribution and the power function (·)1/ν provide.
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Example 9.5.3. We consider n = 500 simulated data points X1, . . . , Xn following
a mixture of two Erlang(40) distributions. The PH representation is of dimension
80, with parameters

π0
1 = π0

41 = 0.5, λ0
1 = 100, λ0

2 = 50.

Since the data is light-tailed, and PMML are heavy-tailed, we consider the trans-
formed observations

Yi = exp(Xi)− 1, i = 1, . . . , n, (9.13)

which are Pareto in the tail. We then proceed to fit a PMML distribution to the
transformed data, but with a much lower matrix dimension. Concretely, we consider
a mixture of two Erlang distributions of three phases each for the PH component
of the PMML representation. In this way we are led to the maximum likelihood
estimates

α̂ = 0.8649503, π̂1 = 0.5386982, π̂1 = 0.4613018,

λ̂1 = 25.47413, λ̂2 = 1.298168, ν̂ = 3.871273.

The (back-transformed) fitted density is plotted in Figure 9.7, along with a his-
togram of the original PH data points. We also include a fitted density using a pure
PH distribution of the same dimension and kind: a mixture of two Erlangs of three
phases each. We observe how transforming the data into the heavy-tail domain,
fitting a PMML and then back-transforming adds only two extra parameters and
improves the estimation dramatically. Additionally, a Hill plot of the transformed
data is provided, which shows that the tail index empirically could correspond to
α−1 ≈ 0.1, such that it is necessary to use the PMML class, as opposed to only
the MML. For reference, the resulting tail is (α̂ · ν̂)−1 = 0.223427, but here the
quantification of the tail behaviour is not the main focus of the estimation, and
used only qualitatively. In fact, a quick calculation shows that the true index is
α−1 = 1/50 = 0.02, and it is well-known that it is a hard task to estimate tail
indices in the transition area between Fréchet and Gumbel domains of attraction.
The additional Hill plots of simulated paths of the estimated model in Figure 9.7
show how the hump at the middle of the Hill plot is not a random fluctuation, but
rather a systematic feature.

Notice that we took the exponential transformation (9.13) of the simulated data
because in this case we know that their tail is exponential and hence the trans-
forms will be regularly varying, in accordance with the PMML distribution. In
general, the exponentiation of light-tailed data does not imply that the resulting
underlying distribution is regularly varying in the tail. Hence, for real data, a pre-
liminary assessment of the tail behavior and the one of their exponential transforms
is recommended.

Remark 9.5.3. When fitting a MML or PMML distribution to data, one has to
decide upon the dimension of the underlying phase–type representation. This prob-
lem arises similarly when fitting phase–type distributions to light-tailed data, and
there are no generally accepted and well established methods for model selection,
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Figure 9.7: Left panel: a back-transformed PMML fit (red) using a 6-dimensional
matrix representation, and a pure PH fit (blue) of the same dimension, to an 80-
dimensional PH simulated data set. Right panel: Hill plot of the transformed
data (black, solid), together with Hill plots for simulated data from the resulting
estimated model (red, dashed).

since PH distributions may be well overparametrised so that penalized methods
such AIC or BIC indices will not work in general. The order of the PMML (or
phase–type distribution) is therefore usually chosen by fitting a range of models
of different dimension and then comparing the fit and likelihood values (which, as
opposed to information indices, are comparable).

9.6 Conclusion

In this paper we define the class of matrix Mittag-Leffler distributions and derive
some of its properties. We identify this class as a particular case of inhomogeneous
phase-type distributions under random scaling with a stable law, which together
with its power transforms is surprisingly versatile for modeling purposes. In addi-
tion, the class is shown to correspond to absorption times of semi–Markov processes
with Mittag–Leffler distributed interarrival times, providing a natural extension of
the phase–type construction. We illustrate with several examples that this class
can simultaneously fit the main body and the tail of a distribution with remarkable
accuracy in a parsimonious manner. It turns out that the flexibility of this heavy-
tailed class of distributions can even make it worthwhile to transform data into the
heavy-tailed domain, fitting the resulting data points and then transforming them
back. It will be an interesting direction for future research to further explore the
potential of such fitting procedures, both from a theoretical and practical perspec-
tive.



Chapter 10

Multivariate Matrix
Mittag–Leffler distributions

This chapter is based on the following article (in press):

Albrecher, H., Bladt, M., & Bladt, M. (2020). Multivariate Matrix Mittag-
Leffler distributions. Annals of the Institute of Statistical Mathematics, to appear.

Abstract

We extend the construction principle of multivariate phase-type distributions to
establish an analytically tractable class of heavy-tailed multivariate random vari-
ables whose marginal distributions are of Mittag-Leffler type with arbitrary index
of regular variation. The construction can essentially be seen as allowing a scalar
parameter to become matrix-valued. The class of distributions is shown to be dense
among all multivariate positive random variables and hence provides a versatile can-
didate for the modelling of heavy-tailed, but tail-independent, risks in various fields
of application.

10.1 Introduction

The joint modelling of dependent risks is a crucial task in many areas of applied
probability and quantitative risk management, see e.g. McNeil et al. (2015). While
in many situations there is a reasonable amount of data available for the fitting pro-
cedure of univariate risks, the identification of multivariate models is much more
delicate. A frequent approach proposed in applications is to use the available data
for univariate fitting, and choose a parametric copula to combine the margins, where
the parameters of that copula are then either assumed a priori or estimated from
the joint data. The choice of such a copula is of course crucial for the result-
ing joint distribution and the conclusions one draws from it, cf. Mai and Scherer
(2017); Mikosch (2006). In multivariate extremes, which is currently a very active
research topic, one typically uses less restrictive assumptions for the quantification
of joint exceedances, see e.g. Falk et al. (2019); Kiriliouk et al. (2019). Some specific
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families, like multivariate regular variation, are considered particularly attractive
in this context, as they have a natural interpretation in terms of how to extend
univariate behaviour into higher dimensions Ho and Dombry (2019); Joe and Li
(2011); Resnick (2002). These results focus, however, on the asymptotic behaviour,
so that for a concrete application with an available data set one typically has to
choose thresholds above which this respective behaviour is assumed Wan and Davis
(2019), and the bulk of the distribution is then to be modelled by a different dis-
tribution (see e.g. Beirlant et al. (2004) and (Albrecher et al., 2017, Ch.IV.5)).

In this paper we would like to establish a family of multivariate distributions
that can be applied for modeling across the entire positive orthant, so that no thres-
hold selection is needed. In particular, we are interested in a family that leads to
explicit and tractable expressions for the model fitting and interpretation. While
such a family already exists for marginally light (exponentially bounded) tails in the
form of multivariate phase-type (MVPH) distributions, our goal here is to develop
a related family with heavy-tailed marginal distributions. The univariate starting
point for this procedure is the matrix Mittag-Leffler (MML) distribution, which
is a heavy-tailed distribution that was recently studied in Albrecher et al. (2019),
and which proved to be very tractable, with excellent fitting properties. While in
principle there are many possible ways of defining a vector of random variables
with given marginals, we want to consider here the natural concept of multivariate
families that can be characterized by the property that any linear combination of
the components of such a vector is again of the same marginal type. This is exactly
one possible definition of MVPH distributions (so any linear combination of the
coordinates of a random vector are again (univariate) phase-type), and it is also a
characterizing property of multivariate regular variation of a random vector, namely
that any linear combination of the coordinates of such a vector is again (univariate)
regularly varying, see Basrak et al. (2002).

The goal is hence to study the class of multivariate random vectors for which
such a property applies with MML marginal distributions. It will turn out that for
this approach to work, we first need to consider a slightly more general class, which
we will refer to as generalized MML distributions. We will show that the analysis
developed for the MVPH case can then be extended to our more general situation.
In particular, we will establish some properties of this class and work out explicit ex-
pressions for a number of concrete cases. The analysis is considerably simpler for the
symmetric situation where all marginal distributions share the same index of regular
variation, but the general case can be handled as well. The resulting multivariate
MML distribution is asymptotically independent, i.e. there is tail-independence for
each bivariate pair of components. In the case of multivariate regular variation, the
subclass of random vectors with asymptotic independence was studied and charac-
terized in terms of second order conditions in Resnick (2002), where also concrete
application areas for such heavy-tailed, but asymptotically independent risks are
given. In a sense, the multivariate MML family of distributions we introduce here
is another candidate for models in this domain, with the advantage of being explicit
and tractable across the entire range Rn

+. In that respect, this family is also an in-
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teresting alternative to multivariate Linnik distributions (see e.g. Anderson (1992)
and Lim and Teo (2010a)), which can be conveniently defined in terms of their char-
acteristic function, have the range Rn (rather than Rn

+) and also have heavy-tailed
marginals, but which do not lead to explicit expressions for the multivariate density.

The remainder of the paper is organized as follows. Section 10.2 recapitulates the
construction principle of univariate and multivariate PH distributions and provides
the available background on MML distributions. Section 10.3 introduces general-
ized MML distributions. In Section 10.4 we then develop the necessary theoretical
background for our definition of the multivariate MML family and establish some
of its properties. We also consider power transforms, which will provide useful flexi-
bility for modeling applications, and we derive denseness properties of the resulting
multivariate family. In Section 10.5 we work out a concrete simple example in detail
and illustrate resulting dependence properties for this case. Section 10.6 concludes.

10.2 Phase–type distributions

10.2.1 Notation

We shall apply a common convention from phase–type theory that matrices are
expressed in bold capital letters (e.g. T ,Λ), row vectors are bold minuscular greek
letters (e.g. π,α) while column vectors are bold minuscular roman letters (e.g. t,
x). Elements of matrices and vectors are denoted by their corresponding minuscular
unbold letters with indices, e.g. A = {aij} and a = (ai). If a = (a1, ..., an) is a
vector, then by ∆(a) we shall denote the diagonal matrix with a as diagonal.

10.2.2 Univariate phase–type distributions

Phase–type distributions are defined as the distribution of the time until absorption
of a finite state–space Markov jump process with one absorbing state and the other
states being transient.

Let p be a positive integer, and {Xt}t≥0 denote a Markov jump process on
E = {1, ..., p, p+1}, where states 1, 2, ..., p are transient and state p+1 is absorbing.
Let πi = P(X0 = i) and assume that π1 + · · · πp = 1, i.e. initiation in the absorbing
state is not possible. The intensity matrix of {Xt}t≥0 can be written as

Λ =

(
T t
0 0

)
, (10.1)

where T is the p × p sub–intensity matrix whose off diagonal elements consist of
transition rates between the transient states, t is a p–dimensional column vector
0 is a p–dimensional row vector. The diagonal elements of T are given by tii =
−
∑

j 6=i tij + ti, since the row sums of Λ must be zero.
Let e denote the vector of ones and π = (π1, ..., πp). Dimensions are usually

suppressed and e may then have any adequate dimension depending on the context.
Then the time until absorption,

τ = inf{t ≥ 0 : Xt = p+ 1},
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is said to have a phase–type (PH) distribution with representation (π,T ) and we
write PHp(π,T ). Since rows of Λ sum to zero, we get t = −Te. Note that the
case p = 1 leads to an exponential distribution.

If τ ∼ PHp(π,T ), then a number of relevant formulas can be written compactly
in matrix notation, like e.g.

f(x;π,T ) = πeTxt, x > 0,

F (x;π,T ) = 1− πeTxt, x > 0,

L(s;π,T ) = π(sI − T )−1t, s > Re(ηmax),

E(τα) = Γ(α + 1)π(−T )−αe, α > 0,

for the density, c.d.f., Laplace transform and (fractional) moments, respectively.
Here ηmax denotes the eigenvalue with maximum real part of T , and this real part
is strictly negative. In particular, the Laplace transform is well defined for all s ≥ 0
and in a neighbourhood around zero.

Remark 10.2.1. Representations (π,T ) of phase–type distributions are not unique.
In fact, one can construct an infinite number of different representations, which may
even be of different orders p. Hence phase–type representations may also suffer from
over-parametrisation, and it is not possible to attach a specific significance to indi-
vidual elements of an intensity matrix. While one can typically construct a certain
behaviour by means of structuring the sub–intensity matrix T , the opposite task
of deducing such a behaviour from a given matrix is typically not possible. Some
simple cases, however, may be described. For instance, p = 1 means one phase and
the resulting distribution is exponential, hence unimodal. For p = 2, bimodality
cannot be achieved either, as one could at most aim for a mixture of exponentials.
For p = 3 it is possible to have a mixture of an exponential with an Erlang(2) which
is bimodal.

For further details on phase–type expressions, we refer to Albrecher et al. (2019)
and Bladt and Nielsen (2017).

10.2.3 Multivariate phase–type distributions

A non–negative random vectorX = (X1, ..., Xn) is phase–type distributed (MVPH)
if all non–negative, non-vanishing linear combinations of its coordinates Xi, i =
1, ..., n have a (univariate) phase–type distribution. This is the most general defi-
nition of a multivariate phase–type distribution which, however, lacks practicality
since it does not suggest how to construct such distributions. It contains a sub–
class of multivariate distributions, MPH∗, which have multidimensional Laplace
transforms of the form

LX(u;π,T ,R) = E(e−<u,X>) = π (∆(Ru)− T )−1 t. (10.2)

and we write thatX ∼ MPH∗(π,T ,R). Here (π,T ) is a phase–type representation
of dimension p, say, R is a p×n matrix and u = (u1, ..., un) ∈ Rn

+. Furthermore, the
joint Laplace transform exists in a neighbourhood around zero ((Bladt and Nielsen,
2017, Thm.8.1.2)).
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The form (10.2) is established from the following probabilistic construction (cf.
Kulkarni (1989)). Consider the Markov jump process {Xt}t≥0 underlying the phase–
type distribution with representation (π,T ). The n columns of R = {rik} are
p–dimensional vectors which contain non–negative numbers. These numbers are
“rewards” to be earned during sojourns in state i. If τ denotes the time until
absorption of the underlying Markov jump process, then

Xk =

∫ τ

0

p∑
i=1

1{Xt = i}rik dt, k = 1, ..., n (10.3)

is the total reward earned according to column k of R until absorption. The struc-
ture matrix R hence picks scaled sojourns out of the underlying Markov jump
process. Correlation between different total rewards, Xi and Xj say, will then de-
pend on the structure of R and on the underlying stochastic process. If there are
common states in which reward is earned for both Xi and Xj, then this will con-
tribute to a positive correlation between them. If there are no common states, the
correlation will be entirely generated by the structure of the T matrix. Negative
correlation between Xi and Xj is achieved if large rewards earned in one reduces the
one earned in the other and vice versa. Specific constructions of dependencies be-
tween Phase–type distributed random variables with given marginals is non–trivial,
see. e.g. Bladt and Nielsen (2010) for an example with exponentially distributed
marginals.

The random variables Xk defined in (10.3) are again phase–type distributed and
in general dependent since different variables may be generated through earning
positive rewards on certain common states (while in other states there may be zero
reward for one variable whenever the other has positive reward). If all rik > 0,
i = 1, ..., p, then Xk is phase–type distributed with initial distribution π and sub–
intensity matrix ∆−1(r·k)T . This follows easily from a sample path argument: if
reward rik is earned during a sojourn in state i, then the distribution of the reward
during a sojourn is exponentially distributed with intensity −tii/rik.

If some rik = 0, then finding a representation for Xk is more involved. Letw ≥ 0
denote a non–zero vector. For obtaining the k’th marginal distribution we would
choose w = e′k, the k’th Euclidean unit vector, while for a more general projection
we may choose w = c1e1 + ... + cnek for some constants ci, i = 1, ..., n. For this
given w, decompose the set of transient state E = {1, ..., p} into E = E+ ∪ E0,
where E+ denotes states i ∈ E for which (Rw)i > 0 and E0 states i ∈ E for which
(Rw)i = 0. Decompose π = (π+,π0) and

T =

(
T++ T+0

T 0+ T 00

)
(10.4)

accordingly. Then we have the following theorem which is proved in (Bladt and
Nielsen, 2017, p.441).

Theorem 10.2.2. The distribution of 〈X,w〉 is given by an atom at zero of size
q = π0

(
I − (−T 00)−1 T 0+

)
e and an absolute continuous part given by a possibly

defective phase-type distribution with representation (πw,Tw), where

πw = π+ + π0 (−T 00)−1 T 0+ and T w = ∆ ((Rw)+)−1 (T++ + T+0 (−T 00)−1 T 0+

)
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This means that

π (∆(Ruw)− T )−1 t = E
(
e−〈X,uw〉)

= E
(
e−u〈X,w〉)

= q + πw(uI − Tw)−1tw, (10.5)

where tw = −Twe.

Remark 10.2.3. It is still an open question whether MPH∗⊂MVPH or whether
MPH∗ = MVPH.

Remark 10.2.4. As for univariate phase–type distributions, representations (π,T ,R)
of MPH∗ are not uniquely determined by their distributions, and they may be over–
parametrised as well. In particular, the interplay between T and R introduces
further ambiguity.

While both MPH∗ and MPVH distributions lack explicit formulas for distribu-
tion and density functions, there is a sub–class of MPH∗ distributions that does
allow explicit forms. The latter is the one where the structure of the underlying
Markov chain is of so–called feed–forward type.

Let C1, ...,Cn be sub–intensity matrices and letD1, ...,Dn denote non–negative
matrices such that −Cie = Die. The matrices Di are not necessarily square
matrices, with the number of rows being equal to the number of rows in Ci and the
number of columns equal to the number of rows (and columns) of Ci+1. Define

β = (π,0, ...,0) and T =


C1 D1 0 · · · 0
0 C2 D2 · · · 0
0 0 C3 · · · 0
...

...
...

...
...
...

...
0 0 0 · · · Cn

 (10.6)

and let the reward matrix be

R =


e 0 0 · · · 0
0 e 0 · · · 0
0 0 e · · · 0
...

...
...

...
...
...

...
0 0 0 · · · e

 . (10.7)

The structure of the R matrix implies that the i’th total reward, Xi, then equals
the inter–arrival time between arrivals i−1 and i. Positive correlation between two
consecutive inter–arrivals i− 1 and i can then be obtained by choosing the matrix
Di in such a way that a long (short) duration of the Markov chain in block i − 1
will imply a long (short) duration in block i as well. For a negative correlation we
have to choose the matrix D1 such that the implications are reversed.

Then the joint density of the MPH∗ distribution is then given by

f(x1, ..., xn;β,T ,R) = πeC1x1D1e
C2x2D2 · · ·Dn−1e

CnxnDne. (10.8)
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Remark 10.2.5. The matrices Ci are sub–intensity matrices, providing a phase–
type distributed time until arrival i. The matrices Di are non–negative matrices
containing intensities for initiating a new inter–arrival time for arrival i + 1 at the
time of the arrival i. Hence the matrices Di create the dependence between the
inter–arrival. In particular, if Di = ciπi+1, where ci = −Cie is the exit rate
(column) vector corresponding to Ci and πi+1 is some probability (row) vector on
{1, 2, ..., pi}, then the inter–arrivals are independent.

Remark 10.2.6. The (full) matrix Dn is not really needed for our purposes, but
only the exit vector cn = −Cne = Dne. Thus we may rewrite (10.8) in the form

f(x1, ..., xn;β,T ,R) = πeC1x1D1e
C2x2D2 · · ·Dn−1e

Cnxncn, (10.9)

We shall, however, maintain the notation with Dn for notational reasons. Since
−Cie = Die for all i, this also implies the exit vector

t = −Te = (0, 0, ..., 0, cn)′,

so Dne, which is not part of T , is part of t (see (10.1)).

Remark 10.2.7. Note that the restriction −Cie = Die reduces the effective num-
ber of parameters contributed from those matrices from 2p2

i to 2p2
i−pi. In particular,

the model of (10.9), and therefore also (10.8), has p1 − 1 +
∑n−1

i=1 pi(2pi − 1) + p2
n

effective degrees of freedom.

Remark 10.2.8. If Ci = C and Di = D for all i, then (10.8) is the joint density
function for the first n inter–arrival times of a Markovian Arrival Process (MAP)
(see e.g. Neuts (1979), Bladt and Nielsen (2017)). This class of point processes
is dense in class of point process on R+ (see Asmussen and Koole (1993)), and
therefore the class of distributions given by (10.8) is also dense – in the sense of
weak convergence and with flexible dimension of the matrices C and D – in the
class of multivariate distributions on Rn

+.

Later we shall need the joint fractional moments for such distributions, which
are given in the following lemma.

Lemma 10.2.9. Suppose that X = (X1, X2, ..., Xn) has a joint phase–type distri-
bution with density (10.8). Then for θi > 0, i = 1, . . . , n,

E(Xθ1
1 X

θ2
2 · · ·Xθn

n ) =

(
n∏
i=1

Γ(θi + 1)

)
π

(
n∏
i=1

(−Ci)
−θi−1Di

)
e

Proof. It is sufficient to prove the lemma for n = 2.

E(Zθ1
1 Z

θ2
2 ) =

∫ ∞
0

∫ ∞
0

zθ11 z
θ2
2 πe

C1z1D1e
C2z2D2e dz1 dz2

= π

∫ ∞
0

zθ11 e
C1z1 dz1D1

∫ ∞
0

zθ22 e
C2z2 dz2D2e

= πLzθ1 (−C1)D1Lzθ2 (−C2)D2e,

where Lzθ(u) = Γ(u + 1)/uθ+1 is the Laplace transform for z → zθ. Since the
Laplace transforms are analytic (where they are defined), the result follows by a
functional calculus argument (see Theorem 3.4.4 of Bladt and Nielsen (2017)).
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10.2.4 Matrix Mittag–Leffler distributions

Let (π,T ) be a phase–type representation. Then a random variable X has a matrix
Mittag–Leffler (MML) distribution with representation (α,π,T ), if it has Laplace
transform

LX(u;α,π,T ) = π (uαI − T )−1 t, u ≥ 0,

where 0 < α ≤ 1. We write X ∼ MML(α,π,T ). Let

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C,

denote the Mittag–Leffler (ML) function. Then (see Albrecher et al. (2019)) the
density of X is given by

f(x;α,π,T ) = xα−1πEα,α (Txα) t, x > 0,

and the corresponding c.d.f. is

F (x;α,π,T ) = 1− πEα,1 (Txα) e, x > 0.

The ML function with (complex) matrix argument A is defined as

Eα,β(A) =
∞∑
k=0

Ak

Γ(αk + β)
.

For β > 0, one can express the (then entire) ML function of a matrixA by Cauchy’s
formula

Eα,β(A) =
1

2πi

∫
γ

Eα,β(z)(zI −A)−1 dz,

where γ is a simple path enclosing the eigenvalues of A. Invoking the residue
theorem, for each entry of the matrix Eα,β(z)(zI − A)−1, then provides a simple
method for calculating Eα,β(A).

As outlined in Albrecher et al. (2019), MML distributions with 0 < α < 1 are
heavy-tailed with tail indices less than one, so that their mean does not exist. This
may be too restrictive in many situations, and one way to obtain a closely related
class of distributions is by considering power transformations of the original MML
distributed random variables. Indeed, if X ∼ MML(α,π,T ), then X1/ν has density

f(x; ν, α,π,T ) = νxνα−1πEα,α (Txνα) t, x > 0,

and distribution function

F (x; ν, α,π,T ) = 1− πEα,1(Txαν)e, x > 0,

for ν > 0 (cf. Albrecher et al. (2019)). Rewriting β = να leads to the reparametriza-
tion

f(x; β, α,π,T ) =
β

α
xβ−1πEα,α

(
Txβ

)
t, x > 0, (10.10)
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and

F (x; β, α,π,T ) = 1− πEα,1(Txβ)e, x > 0. (10.11)

Thus, for any 0 < α ≤ 1 and β > 0, (10.10) and (10.11) define densities and
their corresponding distribution functions, with tail index β instead of α. We shall
refer to distributions with densities of the form (10.10) as power MML and write
X ∼ MML1/ν(α,π,T ). Their Laplace transforms are somewhat more involved.
Indeed, the Laplace transform for X ∼ MML1/ν(α,π,T ) is given by (see formula
(5.1.30) in Gorenflo et al. (2014) and compare to (Gorenflo et al., 2014, p.364))

LX(s; ν, α,π,T ) = s−ναπ

(
∞∑
k=0

Γ(να(k + 1))

Γ(α(k + 1))

(
s−ναT

)k)
t, s ≥ 0, (10.12)

where the series expansion relates to a generalized Wright hypergeometric function
(cf. with (Gorenflo et al., 2014, p.364) for further details). The similarity with the
Laplace transform for Y ∼ MML(α,π,T ) may be appreciated by rewriting

LY (s;α,π,T ) = π(sαI − T )−1t = s−απ(I − s−αT )−1t, s ≥ 0, (10.13)

where we also notice that (10.12) reduces to (10.13) for ν = 1.

10.3 Generalized matrix Mittag–Leffler distribu-

tions

The convolution of Mittag–Leffler distributions is not a Mittag–Leffler distribution.
However, if the components in the convolution have the same tail index, then the
resulting distribution is a MML.

Theorem 10.3.1. Suppose that X ∼ MML(α,π1,T 1) and Y ∼ MML(α,π2,T 2).
Then

X + Y ∼ MML(α,π,T ),

with

π = (π1,0) and T =

(
T 1 t1π2

0 T 2

)
.

Proof. This result follows from the Laplace transform of X + Y being

LX+Y (u;α,π,T ) = π1(uαI − T 1)−1t1π2(uαI − T 2)−1t2

= (π1,0)

(
(uαI − T 1)−1 −(uαI − T 1)−1(−t1π2)(uαI − T 2)−1

0 (uαI − T 2)−1

)(
0
t2

)
= (π1,0)

(
uαI −

(
T 1 t1π2

0 T 2

))−1(
0
t2

)
.
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Since X ∼ MML(α,π1,T 1) implies that cX ∼ MML(α,π,T ) for any constant
c > 0, where

π = π1 and T = c−αT 1,

we conclude that if X1, X2, ..., Xn are independent MML with the same tail index
α, then any linear combination c1X1 + ...+cnXn with c1, c2, ..., cn ≥ 0 is again MML
with tail index α.

The convolution of MML distributions with different tail indices are not MML
distributions, but naturally lead to an extended class of MML distributions which we
refer to as Generalized MML, as we will define in the sequel. If X ∼ MML(α,π1,T 1)
and Y ∼ MML(β,π2,T 2) with α 6= β, then calculations similar to the proof of
Theorem 10.3.1 lead to X + Y having Laplace transform

LX+Y (u) = (π1,0)

(
∆(uαI, uβI)−

(
T 1 t1π2

0 T 2

))−1(
0
t2

)
, (10.14)

where ∆(A,B) denotes the block diagonal matrix

∆(A,B) =

(
A 0
0 B

)
for square matrices A and B. The linear combination c1X + c2Y will then have a
Laplace transform on the form,

Lc1X+c2Y (u) = (π1,0)

(
∆(uαI, uβI)−

(
c−α1 T 1 c−α1 t1π2

0 c−β2 T 2

))−1(
0

c−β2 t2

)
.

This motivates the following definition.

Definition 10.3.2. A random variable X is said to have a (univariate) generalized
matrix Mittag–Leffler distribution, if there exist α1, ..., αn with 0 < αi ≤ 1, and
a phase–type representation (π,T ) for which the absolutely continuous part of its
Laplace transform is given by

Lcont
X (u;α,π,T ) = π(∆(uα1I1, ..., u

αnIn)− T )−1t, u ≥ 0,

where Ik are identity matrices and dim(I1) + ...+ dim(In) = dim(T ). We write

X ∼ GMML(α,π,T ),

where α = (α1, ..., αn)∈ Rn
+.

Then, if X1, ..., Xn are independent with

Xi ∼ GMML(αi,πi,T i),

we get
X1 + ...+Xn ∼ GMML(α,π,T )

where
α = (α1, ...,αn),
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π = (π1,0, ...,0),

and

T =


T 1 t1π2 0 ... 0
0 T 2 t2π3 ... 0
0 0 T 3 ... 0
...

...
...

...
...
...

...

0 0 0
...
...
... T n

 .

By scaling, any non–negative non–zero linear combination of GMML distributed
random variables will again follow a GMML distribution.

10.4 The multivariate matrix Mittag–Leffler dis-

tribution

Motivated by Section 10.3, we proceed now to define the multivariate MML in a
similar way as their underlying multivariate phase–type distributions.

Definition 10.4.1. A random vector X = (X1, ..., Xn) has a multivariate GMML
distribution in the wide sense, if all non–negative non–vanishing linear combinations
c1X1 + ...+ cnXn have a GMML distribution.

As for MVPH distributions, this definition is not very practical from a construc-
tive point of view, and we shall introduce a subclass inspired by (10.2). To this end
we first notice the following result.

Lemma 10.4.2. Let φ(s1, ..., sk) be a multidimensional Laplace transform and let
g1(x), ..., gk(x) denote functions for which −gi are completely monotone. Then it
follows that

L(s1, ..., sk) = φ(g1(s1), ..., gk(sk))

is again a Laplace transform.

Proof. This follows immediately from the multidimensional Bernstein–Widder theo-
rem, see (Bochner, 2005, p.87), which states that a multivariate function φ(s1, ..., sk)
is a multidimensional Laplace transform if and only if it is infinitely often differen-
tiable and

(−1)n1+···+nk ∂
n1+...+nkφ

∂sn1
1 . . . ∂snkk

≥ 0

for all n1 ≥ 0, ..., nk ≥ 0.

From this we immediately get the following important result.

Theorem 10.4.3. Let (π,T ,R) be a representation for a multivariate PH distri-
bution (10.2). Then the multidimensional function

φ(u) = π (∆(Ruα)− T )−1 t, u ∈ Rn
+, (10.15)

with uα = (uα1
1 , ..., u

αn
n ), is a multidimensional Laplace transform.
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From Theorem 10.2.2 we now obtain the following.

Theorem 10.4.4. Let w ≥ 0 denote a non–zero vector and let X = (X1, ..., Xn)
have a distribution given by the joint Laplace transform (10.15) with all αi = α.
Decompose (π,T ) as in (10.4) according to Rwα. Then the distribution of 〈X,w〉
has an atom at zero of size q = π0

(
I − (−T 00)−1 T 0+

)
e, and a possibly defective

absolute continuous part which is MML(α,πwα ,Twα), where (πwα ,Twα) is given
in Theorem 10.2.2.

Proof. The result follows from

E
(
e−u〈X,w〉) = E

(
e−〈X,uw〉)

(10.15)
= π (∆(Ruαwα)− T )−1 t

(10.5)
= q + πwα(uαI − Twα)−1twα .

For possibly distinct αi, we proceed as follows.

Theorem 10.4.5. Let w ≥ 0 denote a non–zero vector and let X = (X1, ..., Xn)
be a random vector with joint Laplace transform (10.15). Decompose (π,T ) as in
(10.4) according to Rwα. Then the distribution of 〈X,w〉 has an atom at zero of
size p = π0

(
I − (−T 00)−1 T 0+

)
e and a possibly defective absolute continuous part

which is GMML(α,πwα ,Twα), where (πwα ,Twα) is given in Theorem 10.2.2.

Proof. We have that

E
(
e−u〈X,w〉) = E

(
e−〈X,uw〉)

= π (∆(R(uw)α)− T )−1 t

= π (∆(Rwα)∆(uα)− T )−1 t,

where ∆(uα) = diag(uα1 , ..., uαn). Now splitting into blocks according to E+ and
E0, we see that

π (∆(Rwα)∆(uα)− T )−1 t = π

(
∆(Rwα)+∆(uα)+ − T++ −T+0

−T 0+ −T 00

)−1

t

= (π+,π0)

(
A11 A12

A21 A22

)(
t+
t0

)
,

where

A11 =
(
∆(Rwα)+∆(uα)+ − T++ − T+0(−T 00)−1T 0+

)−1

=
(
∆(uα)+ − (∆(Rwα)+)−1

[
T++ + T+0(−T 00)−1T 0+

])−1
∆(Rwα)−1

+

= (∆(uα)+ − Twα)−1 ∆(Rwα)−1
+ ,

A12 = (∆(uα)+ − Twα)−1 ∆(Rwα)−1
+ T+0(−T 00)−1,

A21 = (−T 00)−1T 0+ (∆(uα)+ − Twα)−1 ∆(Rwα)−1
+ ,

A22 = (−T 00)−1
(
I + T 0+ (∆(uα)+ − Twα)−1 ∆(Rwα)−1

+ T+0(−T 00)−1
)
.



10.4. THE MULTIVARIATE MATRIX MITTAG–LEFFLER DISTRIBUTION233

Then

π+A11 + π0A21 = πwα (∆(uα)+ − Twα)−1 ∆(Rwα)−1
+ ,

π+A12 + π0A22 = π0(−T 00)−1 + πwα (∆(uα)+ − Twα)−1 ∆(Rwα)−1
+ T+0(−T 00)−1.

Now inserting (
t+
t0

)
= −Te =

(
−T++e− T+0e
−T 0+e− T 00e

)
,

we get

(π+A11 + π0A21) t+ + (π+A12 + π0A22) t0

= π0(I − (−T 00)−1T 0+)e+ πwα (∆(uα)+ − Twα)−1 twα

= p+ πwα (∆(uα)+ − Twα)−1 twα

with

twα = −Twαe.

From the previous results we see that we have found a sub-class of multivariate
matrix Mittag–Leffler distributions with explicit Laplace transform. This allows us
to concentrate on this class, and to make the following definition.

Definition 10.4.6. Let X = (X1, ..., Xn) be a random vector. Then we say that
X has a multivariate matrix generalized Mittag–Leffler distribution if it has joint
Laplace transform given by (10.15), and write

X ∼ GMML(α,π,T ,R).

The following result generalizes Theorem 3.6 of Albrecher et al. (2019) to the
multivariate case. In particular, it gives the probabilistic interpretation of the
GMML class as a family of random vectors whose marginals are absorption times
of randomly-scaled, time-inhomogeneous Markov processes. The dependence of the
corresponding Markov processes arises from the fact that they are all generated
according to a reward structure on an underlying common Markov jump process.

Theorem 10.4.7. Let X = (X1, ..., Xn) ∼ GMML(α,π,T ,R). Then

X
d
= W 1/α • Sα, (10.16)

where W 1/α = (W
1/α1

1 , . . . ,W
1/αn
n ) with W = (W1, ...,Wn) ∼ MPH∗(π,T ,R) (see

(10.2)), and where Sα = (Sα1 , . . . , Sαn) is a vector of independent stable random
variables, each with Laplace transform exp(−uαi). Here, • refers to component-wise
multiplication of vectors.
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Proof. We observe that

E(exp(−〈u,W 1/α • Sα〉)) =

∫
Rn+

E(exp(−〈u,w1/α • Sα〉)) dFW (w)

=

∫
Rn+

exp(−[uα1
1 w1 + · · ·+ uαnn wn]) dFW (w)

=

∫
Rn+

exp(−〈uα,w〉) dFW (w)

= π (∆(Ruα)− T )−1 t,

which implies the desired representation.

Remark 10.4.8. From representation (10.16), we have that the marginals of any
multivariate GMML distribution are regularly varying with indices α1, . . . , αn, all
smaller than 1. Moreover, by the multivariate version of Breiman’s lemma (cf.
Basrak et al. (2002)) and the fact that multivariate phase–type distributions have
moments of all orders, it follows that the tail independence structure of the vec-
tor Sα carries over to X. That is, the multivariate GMML family introduced in
this paper has (very) heavy-tailed GMML marginals, but is tail-independent. As
mentioned in the introduction, application areas for such models are e.g. given in
Resnick (2002).

A consequence of αi < 1 is that the mean does not exist. To alleviate this
potential practical drawback, it was proposed in Albrecher et al. (2019) to consider
power-transformed variables in the univariate case. In the same way, we propose
the following definition.

Definition 10.4.9. Let X ∼ GMML(α,π,T ,R). For ν > 0, we define

Y = X1/ν ∼ GMML1/ν(α,π,T ,R),

and refer to it as the class of power multivariate MML distributions.

Under the power transform, the class is in general no longer closed under linear
combinations. For fixed α, however, it possesses the following denseness property
(in contrast to distributions with Laplace transform (10.15)). Here ‘dense on Rn

+’
means dense in the sense of weak convergence among all distributions on Rn

+.

Theorem 10.4.10. (i) The class of GMML(α,π,T ,R) variables is dense on Rn
+.

(ii) For any fixed α, the class of GMML1/ν(α,π,T ,R) variables is dense on Rn
+.

(iii) For any fixed marginal tail indices α • ν = γ−1 > 0, the class of
GMML1/ν(α,π,T ,R) variables is dense on Rn

+.

Proof. (i) The statement is evident by noticing that we may choose α ≡ 1 and
recalling that the class of variables with Laplace transform (10.2) is dense on Rn

+.
(ii) Let 0 < ν1 < ν2 < · · · be any increasing and (entry-wise) diverging sequence

of vectors and Y be an arbitrary random vector on Rn
+. Let Sα be as in Theorem

10.4.7 and notice that Sα
1/νn → 1. In particular Sα

1/νn d→ 1. Moreover, we may
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choose an independent sequence of vectors W n with Laplace transforms of the form

(10.2) such that W 1/νn
n

d→ Y . Applying the continuous mapping theorem, and by
the characterization of Theorem 10.4.7, the statement follows.

(iii) Similar to the previous case, let 0 < α1 < α2 < · · · be an increasing
sequence of vectors, converging to 1, and set νn = (γ • αn)−1. With Sα as in

Theorem 10.4.7 we have that S1/νn
αn

d→ 1. Choosing an independent sequence of

vectors W n with Laplace transforms of the form (10.2) and with W 1/νn
n

d→ Y , the
proof is finished as before.

Remark 10.4.11. The above result shows how several classes of multivariate
Mittag-Leffler distributions and their power transforms are dense in the set of all
distributions of the n-dimensional positive orthant. However, since we are dealing
with a tail-independent model, the number of phases increases drastically when
faced with the need to capture dependence above high thresholds. Heuristically,
the tail dependence is only correctly modelled in the limit. This is in some way
analogous to the fact that phase–type distributions are dense on all distributions
on the positive real line, but they are all light-tailed (of exponential decay), and
very large dimensions are needed for approximations of heavy-tailed distributions,
cf. Bladt and Nielsen (2017).

10.5 Special structures and examples

From the previous sections, it becomes clear that the tail behavior of the GMML
class is determined by the parameters αi (cf. Remark 10.4.8) and the dependence
structure is mainly triggered by the parameters of the reward matrix R, as these
determine joint contributions to the size of each component. The marginal behav-
ior and overall shape in the body of the distribution is then finally implied by the
structure of the phase-type components (π,T ). In particular, the dimension p of
the latter also determines the potential for possible multimodalities of the compo-
nents. In fact, Theorem 10.4.10 on the denseness of GMML1/ν distributions on Rn

+

relies (implicitly in part (i)) on the possibility of having arbitrarily large dimension
p, a flexibility that is needed for modelling multiple modes, as the latter can require
many phases. However, due to the possibly complex interaction of all parameters,
one can not uniquely assign the role of each of the parameters to achieve a par-
ticular distributional behavior or shape. Moreover, for arbitrary combinations of
parameters it is not always possible to get an explicit expression for the density of
a GMML distribution (a complication inherited from the phase-type distributions).

We now proceed to give an example of a subclass that, however, does allow
an explicit form. To that end, consider the special structure (10.6) and (10.7) for
(π,T ,R), which in the exponential case led to the density (10.8),

f(x1, ..., xn;π,T ,R) = πeC1x1D1e
C2x2D2 · · ·Dn−1e

CnxnDne.

This choice of (π,T ,R), when plugged into (10.15), results in the joint Laplace
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transform of X ∼ GMML(α,π,T ,R)

LX(u;θ) = β


uα1

1 I −C1 −D1 0 · · · 0
0 uα2

2 I −C2 −D2 · · · 0
0 0 uα3

3 I −C3 · · · 0
...

...
...

...
...
...

...
0 0 0 · · · uαnn I −Cn


−1

0
0
0
...

Dne

 ,

(10.17)
where we now use the shorthand notation θ = (α,π,T ,R). For the resulting class

of GMML distributions we can derive joint and marginal density functions, but first
we notice the following lemma.

Lemma 10.5.1. ∫ ∞
0

xα−1Eα,α(Txα) dx = −T−1.

Proof. Since λ → λxα−1Eα,α(−λxα) is an analytic function, and a density as a
function of x, we get that∫ ∞

0

xα−1Eα,α(Txα) dx =

∫ ∞
0

xα−1 1

2πi

∫
γ

Eα,α(sxα)(sI − T )−1 ds dx

=
1

2πi

∫
γ

(∫ ∞
0

xα−1Eα,α(sxα) dx

)
(sI − T )−1 ds

=
1

2πi
(−s−1)(sI − T )−1 ds

= −T−1.

Remark 10.5.2. The matrix U = −T−1 is the so–called Green matrix which has
the following probabilistic interpretation: The element (i, j) of U is the expected
time that the Markov jump process underlying a phase–type distribution with gen-
erator T spends in state j (prior to absorption) given that it starts in state i.

The main result of this section is as follows.

Theorem 10.5.3. The Laplace transform (10.17) can equivalently be written as

LX(u;θ) = π

(
n∏
i=1

(uα1
i I −Ci)

−1Di

)
e, u ∈ Rn

+. (10.18)

The corresponding joint density is given by

fX(x1, ..., xn;θ) = π

(
n∏
i=1

xαi−1
i Eαi,αi(Cix

αi
i )Di

)
e, xi > 0, i = 1, . . . , n.

(10.19)
For the i’th marginal distribution of Xi we have

Xi ∼ MML(αi,βi,Ci)
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where

βi = π

i−1∏
j=1

(−Cj)
−1Dj.

Proof. It is sufficient to prove the result for n = 2. (10.18) follows from the general
block diagonal inversion formula(

A −B
0 C

)−1

=

(
A−1 A−1BC−1

0 C−1

)
.

Concerning (10.19), we have that∫ ∞
0

∫ ∞
0

e−s1x1−s2x2πxα1
1 Eα1,α1(C1x

α1
1 )D1x

α2
2 Eα2,α2(C2x

α2
2 )D2e dx1 dx2

=

∫ ∞
0

e−s1x1xα1
1 πEα1,α1(C1x

α1
1 ) dx1D1

∫ ∞
0

e−s2x2xα2
2 Eα2,α2(C2x

α2
2 )D2e dx2

= π(uα1
1 I −C1)−1D1(uα2

2 I −C2)−1D2e

= (π,0)

(
uα1

1 I −C1 −D1

0 uα2
2 I −C2

)−1(
0
D2e

)
,

which is of the form (10.15).
The result on the marginal distributions follow from Lemma 10.5.1 and by using

that (Ci +Di)e = 0, implying that (−Ci)
−1Die = e.

The previous result can be used in the construction of bivariate (or multivariate)
Mittag–Leffler distributions of a reasonably general type.

Example 10.5.1 (Bivariate Mittag–Leffler distribution).
In this example we construct a class of bivariate distributions with Mittag–Leffler
distributed marginals. The starting point is the construction of a bivariate expo-
nential distribution underlying the MML. For details on this construction we refer
to Section 8.3.2 of Bladt and Nielsen (2017). Let m be a positive integer and

S =



−mλ (m− 1)λ 0 . . . 0 0
0 −(m− 1)λ (m− 2)λ . . . 0 0
0 0 −(m− 2)λ . . . 0 0
...

...
...

. . . . . .
...

...
0 0 0 . . . −2λ λ
0 0 0 · · · 0 −λ


.

Then for any initial distribution π = (π1, ..., πm), the phase–type distribution
PH(π,S) is simply an exponential distribution with intensity λ. Similarly, if we let

S̃ =



−µ µ 0 . . . 0 0
0 −2µ 2µ . . . 0 0
0 0 −3µ . . . 0 0
...

...
...

. . . . . .
...

...
0 0 0 · · · −(m− 1)µ (m− 1)µ
0 0 0 . . . 0 −mµ
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and π̃ = 1
m
e =

(
1
m
, ..., 1

m

)
, then PH(π̃, S̃) is again exponentially distributed with

intensity µ. Let P be a doubly stochastic matrix, i.e. its elements are non–negative
and

Pe = e and e′P = e′,

and define

T =

(
S λP

0 S̃

)
.

Consider the reward matrix

R =

(
e 0
0 e

)
.

Then MPH∗(e′1,T ,R) is a bivariate exponential distribution. This class of bivariate
exponential distributions is capable of achieving any feasible correlation (ranging
from 1 − π2/6 to 1) by choosing m sufficiently large and P adequately (see Bladt
and Nielsen (2010)). Independence is achieved for

P =
1

m
E,

where E = {1}i,j=1,...,m is the matrix of ones, maximum negative (minimum) corre-
lation (up to order m) by

P = I

and maximum positive correlation for order up to m by

P = {δi,m−i+1},

which is the anti–diagonal unit matrix, cf. He et al. (2012).
The correponding GMML(α,π,T ,R) then has a density f of the form

f(x1, x2;θ) = mλµxα1−1
1 xα2−1

2 e′1Eα1,α1(Sx
α1
1 )PEα2,α2(S̃x

α2
2 )en, x1, x2 > 0,

(10.20)
where as usual ei denotes the i’th Euclidian unit vector. The marginals are Mittag–
Leffler distributions with densities

fX1(x;α1, λ) = λxα1−1Eα1,α1(−λxα1−1) and fX2(x;α2, µ) = µxα2−1Eα2,α2(−µxα2−1),

for x > 0, which follows directly from the invariance under different representations
(parametrisations), or by simple integration and using Lemma 10.5.1. Note that
the present dependence structure has a very natural interpretation as a copula
constructed in terms of combining marginal order statistics, cf. Baker (2008) and
(Bladt and Nielsen, 2017, Sec.8.3.2), here for Mittag-Leffler marginals.

We can write the expression (10.20) slightly more explicit. The eigenvalues
of S are −mλ, −(m − 1)λ,..., −λ. To the eigenvalue −λk there corresponds an

eigenvector v(k) = (v
(k)
1 , ..., v

(k)
n ) with

v
(k)
1 = 1

v
(k)
i+1 =

(
1− k − 1

m− i

)
v

(k)
i , i = 1, ...,m− 1.
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Similarly, S̃ has eigenvalues −µm,−µ(m − 1), ...,−µ and to the eigenvalue −kµ
there corresponds an eigenvector w(k) with

w
(k)
1 = 1

w
(k)
i+1 =

(
1− k

i

)
w

(k)
i , i = 1, ...,m− 1.

Considering v(k) andw(k) as column vectors, we form the matrices V = (v(1), ...,v(m))
and W = (w(1), ...,w(m)). Then we may write

Eα1,α1(Sx
α1) = V∆

(
Eα1,α1(−mλxλ1), ..., Eα1,α1(−λxα1)

)
V −1,

Eα2,α2(S̃x
α2) = W∆ (Eα2,α2(−mµxα2), ..., Eα1,α1(−µxα2))W−1.

Though the correlation between the Mittag–Leffler marginals is not defined (since
moments of orders larger than α do not exist), some notion of dependence may be
appreciated from the correlation structure of the underlying phase–type distribu-
tion.

In Figure 10.1 we depict a bivariate Mittag-Leffler density along with simulated
data for the parameters α = (0.6, 0.7), m = 20, λ = 1, µ = 2, and P the identity
matrix.

In Figure 10.2 we use the same parameters but with P being the counter-identity
matrix. As expected, the sign of the log-correlation is determined by the structure
of the latter matrix. Notice that the number of effective parameters corresponding
to each of the two proposed structures is five.

Figure 10.1: Density and 1000 simulated data-points from a bivariate ML distribu-
tion with negative log-correlation (empirical correlation of −0.53).

Concerning the power MML with this structure we have the following result.



240 CHAPTER 10. MULTIVARIATE MATRIX ML DISTRIBUTIONS

Figure 10.2: Density and 1000 simulated data-points from a bivariate ML distribu-
tion with positive correlation (empirical correlation of 0.55).

Theorem 10.5.4. Assume that X has joint density (10.19). Then Y = X1/ν has
the joint density

fY (x1, ..., xn;ν,θ) = π

(
n∏
i=1

νix
αiνi−1
i Eαi,αi(Cix

αiνi
i )Di

)
e, xi > 0, i = 1, . . . , n,

and joint moments

E
(
Y θ1

1 Y θ2
2 · · ·Y θn

n

)
=

n∏
i=1

(
Γ(1− θi/(νiαi))Γ(1 + θi/(νiαi))

Γ(1− θi/νi)

)
π

(
n∏
i=1

(−Ci)
−θi/νiαi−1Di

)
e,

where νiαi > θi > 0, for i = 1, 2, ..., n.

Proof. The form of the joint density is immediate. Concerning the form of the
moments, it suffices to consider the case n = 2. Using the decomposition (10.4.7),
we get

E(Y θ1
1 Y θ2

2 ) = E

(
W

θ1
α1ν1

1 W
θ2
α2ν2

2 S
θ1
ν1
α1 S

θ2
ν2
α2

)
= E

(
W

θ1
α1ν1

1 W
θ2
α2ν2

2

)
E

(
S
θ1
ν1
α1

)
E

(
S
θ2
ν2
α2

)
,

where (W1,W2) has a bivariate phase–type distribution with joint density (10.8).
Since

E

(
S
θi
νi
αi

)
=

Γ
(

1− θi
αiν1

)
Γ
(

1− θi
ν1

) ,

the result then follows from Lemma 10.2.9.
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Example 10.5.2. Consider the case of a bivariate MML distribution, θ1 = θ2 = 1,
νiαi > 1 and that C1 and C2 have the same dimension (the latter can always be
achieved by augmenting the smaller one). Using the abbreviation

ci =
Γ(1− 1/(νiαi))Γ(1 + 1/(νiαi))

Γ(1− 1/νi)
, i = 1, 2,

we get

E(Y1) = c1π(−C1)−1/(α1ν1)−1D1e,

E(Y2) = c2π(−C1)−1D1(−C2)−1/(α1ν1)−1D2e,

E(Y1Y2) = c1c2π(−C1)−1/(α1ν1)−1D1(−C2)−1/(α2ν2)−1D2e.

If νiαi > 2 we can calculate variances and correlation. Indeed, with

c′i =
Γ(1− 2/(νiαi))Γ(1 + 2/(νiαi))

Γ(1− 2/νi)
, i = 1, 2,

one has

E(Y 2
1 ) = c′1π(−C1)−2/(α1ν1)−1D1e

E(Y 2
2 ) = c′2π(−C−1

1 D1)(−C1)−2/(α2ν2)−1D2e

from which the correlation coefficient is readily calculated.
In Figure 10.3 we depict a bivariate density from a GMML1/ν(α,π,T ,R) dis-

tribution along with simulated data. The parameters are given by

α = (0.6, 0.7), β = ν •α = (3, 3),

and the phase-type component being of the feed-forward structure (10.6) and (10.7),
with n = 2, β1 = (1/3, 1/3, 1/3), β2 = 0,

C1 = C2 =

−10 0 0
0 −1 0
0 0 −1/10

 , and D1 = −C1 =

10 0 0
0 1 0
0 0 1/10

 .

Hence both marginals are mixtures of power Mittag–Leffler distributions. The
mixing probabilities of the two distributions are also the same, (1/3, 1/3, 1/3), since
the diagonal form ofD1 ensures that the second mixture draws the same component
as the first. The first marginal mixture distribution has a density given by

f1(x) =
5

3
x3

3∑
i=1

λiE0.6,0.6(−λix3), (10.21)

where λ1 = 10, λ2 = 1 and λ3 = 1/10, while the second marginal density has the
form

f2(x) =
10

7
x3

3∑
i=1

λiE0.7,0.7(−λix3). (10.22)
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The reward matrix is

R =


1 0
1 0
1 0
0 1
0 1
0 1


and Y1 and Y2 simply correspond to the aforementioned mixtures. The structure
of D1 implies a strong positive correlation. For example, if Y1 is picked from the
mixture component with rate 10, then Y2 will be picked from the same component
(but then drawn independently).

In Figure 10.4 we use the same parameters, except for

D1 =

 0 0 10
0 1 0

1/10 0 0

 .

Here the correlation between Y1 and Y2 will be negative: if Yi is drawn from the
component with rate 10, then Yj will be drawn from a component with rate 0.1,
i 6= j. The marginal distributions are again given by (10.21) and (10.22) since
the mixing probabilities are all equal. We observe how the sign of the correlation
is affected by the structure of the matrix D1, and the fact that the matrices Ci

are no longer of Erlang structure, the effect is qualitatively opposite to that of the
bivariate ML case. One also sees that the class provides quite some flexibility in
terms of the shape of the joint density function.

Remark 10.5.5. Dependence may often be constructed by introducing certain
structures into the intensity matrices like in Example 10.5.1. More generally, de-
pendence between several random variables of MPH∗ type may be constructed using
the so–called Baker copula (Baker (2008)), where order statistics are used and any
feasible correlation structure can be obtained.

10.6 Conclusion

This paper introduces a class GMML of multivariate distributions with matrix
Mittag-Leffler distributed marginals. With a construction essentially based on
the multivariate phase–type distribution, the GMML class remains a flexible and
tractable dense class of distributions maintaining a number of closed form prop-
erties. Two important sub–classes are considered, which lead to explicit formulas
for distributional properties such as densities and fractional moments. This makes
it an attractive candidate for the modelling of both theoretical and practical as-
pects of multivariate heavy-tailed risks, in situations with tail-independence. The
present construction can not be extended to tail-dependent scenarios, so that other
approaches will be needed for the latter, which will be an interesting topic for future
research.
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Figure 10.3: Density and 1000 simulated data-points from a power multivariate
GMML distribution with positive correlation (true correlation of 0.35 and empirical
of 0.37).

Figure 10.4: Density and 1000 simulated data-points from a power multivariate
GMML distribution with negative correlation (true correlation of −0.32 and empir-
ical of −0.33).
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Chapter 11

Multivariate fractional phase–type
distributions

This chapter is based on the following article, currently submitted for publication:

Albrecher, H., Bladt, M., & Bladt, M. (2020). Multivariate fractional phase–
type distributions. arXiv preprint arXiv:2003.11122.

Abstract

We extend the Kulkarni class of multivariate phase–type distributions in a natu-
ral time–fractional way to construct a new class of multivariate distributions with
heavy-tailed Mittag-Leffler(ML)-distributed marginals. The approach relies on as-
signing rewards to a non–Markovian jump process with ML sojourn times. This
new class complements an earlier multivariate ML construction Albrecher et al.
(2020) and in contrast to the former also allows for tail dependence. We derive
properties and characterizations of this class, and work out some special cases that
lead to explicit density representations.

11.1 Introduction

The formulation of flexible and at the same time parsimonious models for stochastic
phenomena is a crucial ingredient in the process of managing risks in various ap-
plication areas of operations research. On the one hand, a given set of data should
be represented reasonably well when putting them into the frame of a calibrated
model (and finally replacing them by the latter for the further purposes in the risk
analysis). Yet, on the other hand, one needs to avoid overfitting of data and result-
ing lack of robustness of fitted parameters when applied to updated data sets. In
addition, in quite a number of situations (notably in quantitative risk management,
see e.g. McNeil et al. (2015)) models are used to extrapolate beyond the range of
existing data, and then capturing the main pattern is essential, but overfitting can
lead to wrong conclusions about tail properties, particularly in higher dimensions,
see also Beirlant et al. (2004). Another important aspect in this context is that it is

245
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quite useful, if models still allow for explicit densities or expressions for the relevant
intended measures of risk. This leads to more efficient fitting procedures, and par-
ticularly allows to study sensitivities with respect to changes in model parameters
in a more explicit way.
In this context, it is quite attractive to have a set of models that a priori is quite
general and versatile, but then in the process of fitting the model to actual data
reduces to a simpler model in some nested way, if the given data suggest that. One
classical example of such a class of models in one dimension are the phase-type
distributions (originally introduced by Neuts Neuts (1975)), which builds upon the
simplicity of an exponential distribution, but then concatenates exponential ingredi-
ents by considering the absorption time of a homogeneous Markov jump process on
transient states (phases) into one absorption state with, if needed, many phases and
arbitrary intensity matrix (the exponential being the special case of one transient
phase only). The gained flexibility is enormous, as the resulting class of phase-
type distributions can be shown to be dense (in the sense of weak convergence)
in the class of all distributions on the positive half-line (see e.g. Asmussen et al.
(1996)). However, the resulting model will only be parsimonious if the underlying
risk is close to an exponential structure (e.g. in the tail), as otherwise the num-
ber of phases needed for a good fit will be excessive. Yet, on the computational
level, the class of phase-type distributions is pleasant, as it can be understood as
an (almost exhaustive) subclass of matrix-exponential distributions (that is, an ex-
ponential distribution with matrix parameter), for which explicit calculations are
available (see e.g. Bladt and Nielsen (2017)). If the underlying risk has a tail heavier
than exponential, then it was recently shown in Albrecher and Bladt (2019) that
extending the above construction principle to time-inhomogeneous Markov jump
processes, adapts the fitting procedure to be built upon other than exponential
random variables (namely transforms thereof), and thereby keeps the number of
necessary parameters for a good fit very low (essentially leading to matrix-valued
parameters of the new base distribution, like Pareto or Weibull). See also Bladt
and Rojas-Nandayapa (2018) for another alternative to modelling heavy-tailed data
within the phase-type paradigm. Finally, in Albrecher et al. (2019) a random time
transformation (based on a stable(α) random variable with 0 < α ≤ 1) in the
underlying Markov jump process was considered, which leads to a Mittag-Leffler
(ML) distribution as the base distribution, and a resulting flexible family of ML
distributions with matrix argument (which later will be referred to as the frac-
tional phase-type class PHα). The latter is typically heavy-tailed, but contains the
phase-type distributions as the limiting special case α = 1. Hence the data fitting
procedure can decide on which type of model is most suitable for a given data set.

For modelling in more than one dimension, Kulkarni Kulkarni (1989) formulated
a multivariate version MPH∗ of the phase-type construction by having each compo-
nent of a random vector collecting different rewards in every state of the (common)
Markov jump process, thereby creating possibly dependent phase-type random vari-
ables, whose joint Laplace transform is still fully explicit. It could be shown that the
resulting family of distributions is again dense in the class of all distributions on the
positive orthant. In Albrecher et al. (2020), this multivariate construction was ex-
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tended to define a transparent class of multivariate generalized matrix ML (GMML)
distributions by applying an independent stable(αi) random time transformation to
each component of the Kulkarni construction. Mathematically, this amounts to a
replacement of each argument θi in the joint Laplace transform by its power θαii ,
leading to explicit expressions for a number of particular cases (see Albrecher et al.
(2020) for details). An unfortunate consequence of this procedure is that the result-
ing multivariate model is necessarily (asymptotically) tail-independent. This can
also be seen from an alternative interpretation of the above resulting random vector
as the one obtained from stopping each component of a multivariate stable(αi) Lévy
process (with independent components, cf. Kyprianou (2006)) at the (dependent)
multivariate phase-type times from the Kulkarni class. However, in many applica-
tions one observes possible dependence in the tails, and a proper modelling of that
tail dependence is a particular concern in risk management.

In this paper, we propose another way to extend Kulkarni’s multivariate phase-
type class to formulate a new class MPH∗α of multivariate Mittag-Leffler distribu-
tions that does allow for tail dependence. Concretely, we return to the interpretation
of a matrix Mittag-Leffler distributed random variable as the absorption time of a
finite state-space semi-Markov process with (state-dependent) ML distributed so-
journ times and one absorbing state, see Albrecher et al. (2019). This involves the
consideration of Kolmogorov forward equations with fractional derivates of order α.
We then impose the reward structure element of Kulkarni’s multivariate construc-
tion on this semi-Markov process. Interestingly, the joint Laplace transform of the
resulting random vector is again explicit, and on the analytical side differs from the
one of the construction in Albrecher et al. (2020) merely by the fact that the power
α is applied to the scalar product of each reward vector and the vector of Laplace
arguments rather than to the Laplace arguments themselves (with the additional
restriction that the value for α in each component now has to be the same). This
approach leads to an attractive complement candidate for the modelling of multi-
variate matrix Mittag-Leffler distributions which allows for dependence in the tail.
In a way, the present approach naturally extends Kulkarni’s approach onto the ap-
propriate more general semi-Markovian process governed by fractional Kolmogorov
forward equations. As compared to the approach in Albrecher et al. (2020), the
stretching of time is here applied continuously until absorportion, rather than only
on the final absorption times, allowing for a different degree of flexibility in the fine
structure of the dependence modelling across the different random components.
Figure 11.1 depicts the relation between the respective models in the literature,
and highlights the fact that the MPH∗α class proposed here is a natural next step
from a conceptual point of view.

The remainder of the paper is organized as follows. In Section 11.2 we review
some relevant background on phase-type and (matrix) Mittag-Leffler distributions.
Section 11.3 develops the class MPH∗α of multivariate fractional phase-type distri-
butions as a reward-based multivariate construction using a time-fractional sample
path approach with matrix ML distributed marginals. It is shown that this new
class (as well as its extension to powers) is itself dense among all distributions on
the positive orthant in several ways, and a characterization in terms of a product
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Exp(λ) ML(α, δ), Pillai (1990)
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Figure 11.1: Schematic representation of distributions related to multivariate frac-
tional phase–type distributions. Each arrow indicates a generalization.

representation is provided. Finally, it is shown that any linear combination of the
random components is again matrix ML distributed (possibly with an additional
atom at zero). In Section 11.4 we illustrate two particular cases that lead to explicit
density representations. Section 11.5 concludes the paper.

11.2 Background

11.2.1 Phase–type distributions (PH)

Consider a state space E = {1, 2, . . . , p, p+ 1}, and a Markov jump process {Xt}t≥0

evolving on E such that the first p states are transient and the state p + 1 is
absorbing. The intensity matrix of such a process has the form

Λ =

(
T t
0 0

)
,

where T is a sub-intensity matrix of dimension p × p, consisting of jump rates
between the transient states rates. We further specify an initial distribution, con-
centrated on the transient states 1, ..., p, by πk = P(X0 = k) for k = 1, . . . , p. Thus,
if we write π = (π1, . . . , πp), we have that πe = 1, where e is the p-dimensional
column vector of 1’s. We also write by convention

t = −Te,

which is a column vector whose elements are the intensities of jumping to the
absorbing state. A phase–type distribution is defined as the absorption time of Xt,
that is, if we let

τ = inf{t > 0|Xt = p+ 1},
we say that τ follows a phase–type distribution with parameters π,T , and write
τ ∼ PH(π,T ). In general, the parametrization is non-identifiable, in the sense that
several initial vectors and sub-intensity matrices can result in the same distribution.
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The density and distribution function of τ ∼ PH(π,T ) are given by

f(x) = πeTxt, x > 0,

F (x) = 1− πeTxe, x > 0,

where the exponential of a matrix M is defined by the formula

exp(M) =
∞∑
n=0

Mn

n!
.

The Laplace transform is given by

L(u) = π(uI − T )−1t, (11.1)

and is always a rational function, well defined for u > Re(λm), where Re denotes
the real part and where λm is the eigenvalue of T with largest real part, and I
denotes the identity matrix.

The class of phase–type distributions is closed both under mixing and convolu-
tion, which means that also Erlang distributions, Coxian distribution and mixtures
thereof are PH distributions. The class is also dense in the class of all distribu-
tions on the positive real line (in the sense of weak convergence). This means that
any distribution with support on R+ may be approximated arbitrarily well by a
phase–type distribution (of sufficiently high dimension).

11.2.2 Multivariate phase–type distributions (MPH∗)

The class of MPH∗ was originally introduced in Kulkarni (1989) and is constructed
as follows. Let τ ∼ PH(π,T ) and let {Xt}t≥0 be the underlying Markov jump. For
i = 1, ..., n, let rk = (r1k, r2k, ..., rpk)

′ (column vector) and define

Yk =

∫ τ

0

p∑
i=1

rik1{Xt = i}dt, k = 1, ..., n.

If we interpret rik as the reward rate earned by the process Xt when it is in state i,
then Yk is the total amount of reward earned according to rk prior to absorption.
Let R denote the p× n matrix

R = (r1, ..., rn).

whose the columns consist of the different reward rates leading to the variables
Y1, ..., Yn. Then we say that Y = (Y1, ..., Yn) has a multivariate distribution of the
MPH∗ type and we write Y ∼ MPH∗(π,T ,R). The multivariate Laplace transform
of Y ∼ MPH∗(π,T ,R) is given by

E(e−〈Y ,θ〉) = π(∆(Rθ)− T )−1t, (11.2)

where ∆(v) denotes the diagonal matrix which has v as diagonal.



250 CHAPTER 11. MULTIVARIATE FRACTIONAL PH DISTRIBUTIONS

Multivariate phase–type distributions are dense on Rn
+, and the marginals and

their linear combinations are univariate phase–type distributions, which make them
a very flexible and attractive class of distributions for statistical as well as non-
statistical applications. However, statistical fitting of this class is still in an exper-
imental stage, since the main dimensionality difficulties of the univariate case are
exacerbated with the introduction of the additional parameters of R.

We refer the reader to Bladt and Nielsen (2017) for a recent comprehensive text
on phase–type distributions, both in the uni– and multivariate cases.

11.2.3 Univariate fractional phase–type distributions (PHα)

A Mittag-Leffler (ML) distribution Pillai (1990) has a density of the form

fλ,α(x) = λxα−1Eα,α(−λxα), λ > 0, 0 < α ≤ 1, (11.3)

where

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, β ∈ R, α > 0

is the so–called Mittag–Leffler function, and we denote the corresponding class
by ML(α, λ). Note that Pillai’s definition Pillai (1990) of the ML distribution is
recovered with ρ−αi = λi. For α = 1, (11.3) reduces to the density of an exponential
random variable. Recently, in Albrecher et al. (2019), a matrix version of the ML
distribution with Laplace transform

π(uαI − T )−1t, 0 < α ≤ 1, (11.4)

was introduced, which for α = 1 reduces to the one of a phase–type distribution
(cf. (11.1)). For scalar I and T one recovers the classical ML distribution. While
the class of distributions with Laplace transform (11.4) was referred to as a matrix
ML distribution in Albrecher et al. (2019), we suggest to assign to it the additional
name fractional phase-type distribution (PHα(π, T ))), as this will lead to a simple
and somewhat more consistent nomenclature in the sequel. As shown in Albrecher
et al. (2019), the density and distribution function are given by

f(x) = xα−1πEα,α (Txα) t,

F (x) = 1− πEα,1 (Txα) e,

where

Eα,β(Txα) =
∞∑
k=0

T kxαk

Γ(αk + β)
=

1

2πi

∮
γ

Eα,β(zxα)(zI − T )−1 dz, (11.5)

with γ denoting a simple path enclosing the eigenvalues of T . For X ∼PHα(π, T )
we have the product representation

X
d
= W 1/αSα, (11.6)

where W ∼ PH(π, T ), and Sα is an independent positive stable random variable, cf.
Albrecher et al. (2019). Note again that for α = 1 we obtain the PH distributions
as a special case.
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11.3 Multivariate fractional phase–type distribu-

tions

11.3.1 The construction

Following Albrecher et al. (2019), we begin by constructing a semi-Markov process
which has an absorption time given by a PHα distribution. Let E = {1, 2, ..., p, p+1}
be the state space and let Q = {qij}i,j∈E denote the transition matrix of a Markov
chain {Yn}n∈N on E, where the first p states are transient and state p+1 is absorbing.
This means that {Yn}n∈N has a transition matrix of the form

Q =

(
Q1 q1

0 1

)
.

We assume that qii = 0 for all i 6= p+ 1. This chain will be the embedded Markov
chain in a Markov renewal process with Mittag-Leffler distributed holding times
defined below. Let α ∈ (0, 1] and λi > 0. For the states i = 1, ..., p, let T in,
n = 1, 2, ... be independent ML(α, λi)–distributed random variables. Let

Sn =
n∑
i=1

T Yii , n ≥ 1,

and S0 = 0. Define then the semi–Markov process

Xt =
∞∑
n=1

Yn−11{Sn−1 ≤ t < Sn}., t ≥ 0. (11.7)

The interpretation is that {Xt}t≥0 jumps between states according to the dynamics
of the Markov chain Yn, and Sn denotes the time of the n’th jump. The holding
time in state i < p + 1 is ML(α, λi). The construction is schematically shown in
Figure 11.2.

t

Xt

1
2
3

p

∼ f3

∼ f1

∼ fp

∼ f1

S1 S2 S3 S4

Figure 11.2: Construction of a semi–Markov process based on Mittag–Leffler dis-
tributed interarrivals.

Define the intensity matrix Λ = {λij}i=1,...,p+1 by

λij = λiqij, i 6= j, and λii = −λi =
∑
k 6=i

λik, i ≤ p,
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and λp+1,i = 0, and let

pij(t) = P(Xt = j|X0 = i), P (t) = {pij(t)}i,j=1,...,p,

be the probabilities that describe the dynamics of the process over the transient
states. Then we may also write the matrix Λ in the following way

Λ =

(
T t
0 0

)
. (11.8)

The matrix Λ can be associated with the intensity matrix for some Markov
jump process. However, it is important to make the distinction that here we instead
consider the semi-Markov process Xt, for which the dynamics on the transient states
are not based on the exponential function but rather the Mittag-Leffler function,
as is shown in the following result:

Theorem 11.3.1. Albrecher et al. (2019) Let {Xt}t≥0 be the semi-Markov process
constructed above. Then

P (t) = Eα,1(T tα).

Define the Caputo derivative as the following fractional generalization of the ordi-
nary differentiation operator,

c
0D

α
t x(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1x(n)(τ) dτ.

Then Theorem 11.3.1 yields the following forward and backward type of Kolmogorov
fractional differential equations:

Corollary 11.3.2. c
0D

α
t P (t) = TP (t) = P (t)T .

Proof. It is well-known that the unique solution to the scalar fractional differential
equation

c
0D

α
t x(t) = ax(t), t ≥ 0,

is given in terms of the Mittag-Leffler function

x(t) = Eα,1 (atα) .

The extension to the matrix case now follows from the representation (11.5):

c
0D

α
t P (t) =

1

2πi

∮
γ

c
0D

α
t Eα,β(ztα)(zI − T )−1 dz

=
1

2πi

∮
γ

zEα,β(ztα)(zI − T )−1 dz,

but the latter equals both TP (t) and P (t)T .

Theorem 11.3.3. Albrecher et al. (2019) Let {Xt}t≥0 be a semi-Markov process
constructed as above, with Λ given by (11.8). Let τ = inf{t ≥ 0 : Xt = p+1} denote
the time until absorption. Then τ has a PHα(π,T ) distribution, with cumulative
distribution function given by

Fτ (u) = 1− πEα,1(Tuα)e.
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With this representation we are now ready to impose a reward structure on the
different states of the process, thereby creating a dependent random vector in a way
that extends the MPH∗ naturally.

For the absorption time τ as defined in Theorem 11.3.3, let now rik, i = 1, ..., p,
k = 1, ..., n be non–negative numbers and define

Yk =

∫ τ

0

p∑
i=1

rik1{Xt = i}dt, k = 1, ..., n.

Form the column vectors rk = (r1k, r2k, ..., rpk), k = 1, ..., n, and matrix

R = (r1, ..., rn).

The random variable Yk is interpreted as the total reward earned until absorption
of {Xt}, where rik is the reward earned during sojourns in state i of the variable
k. Hence column k of R defines a reward structure which defines variable Yk. See
Figure 11.3 for a visual representation of the construction.

t

Xt

1
2
3
4
5
6

S1 S2 S3 S4 S5 S6 t

absorption

Figure 11.3: Visual representation of the construction of the PH∗α class. Here,
three dimensions are considered: the first collects rewards during the blue holding
times, corresponding to the first three states; the second during black holding times
(independent of the first, in this case); and the third during green holding times
(independent of the second, but not independent of the first).

We are interested in studying the joint distribution of Y = (Y1, ...., Yn). To this
end, let θ = (θ1, ..., θn) and

Hi(θ) = E
(
e−〈Y ,θ〉

∣∣X0 = i
)
.

Condition on the first sojourn time Zi1 in state i, which has a Mittag–Leffler dis-
tribution with parameters (λi, α). Let Y i1 denote the corresponding vector of re-
wards earned during [0, Zi1) and let Y r denote the remaining rewards earned during
[Zi1, τ). Then Y = Y i1 + Y r and Y i1 = Zi1ri. By the Markov renewal property,

E
(
e−〈Y ,θ〉

∣∣X0 = i
)

= E
(
e−〈Y i1,θ〉

∣∣X0 = i
)
E
(
e−〈Y r,θ〉

∣∣X0 = i,XZi1

)
= E

(
e−Zi1〈ri,θ〉

∣∣X0 = i
)
E
(
e−〈Y r,θ〉

∣∣X0 = i,XZi1

)
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Since Zi1 is Mittag–Leffler distributed with parameters (λi, α), one gets

E
(
e−Zi1〈ri,θ〉

∣∣X0 = i
)

=
1

1 + 〈ri,θ〉αλ−1
i

.

Recalling that Q = {qij} contains the transition probabilities for the embedded
Markov chain, we then have by a first step argument that

Hi(θ) =
1

1 + 〈ri,θ〉αλ−1
i

(
qi,p+1 +

∑
j 6=i

qijHj(θ)

)
.

Using that tij = λiqij, ti = qi,p+1λi we get that

λiHi(θ) + 〈ri,θ〉αHi(θ) = ti +
∑
j 6=i

tijHj(θ)

which implies that

〈ri,θ〉αHi(θ) =

p∑
j=1

tijHj(θ) + ti.

In vector notation, with ∆(Rθ)α denoting the diagonal matrix which has 〈ri,θ〉α,
i = 1, ..., p, on its diagonal, we then write

∆(Rθ)αH(θ) = TH(θ) + t

or

H(θ) = (∆(Rθ)α − T )−1 t.

If X0 ∼ π, we then get that the joint Laplace transform for Y is given by

LY (θ) = π (∆(Rθ)α − T )−1 t. (11.9)

Definition 11.3.4. The joint distribution of rewards Y = (Y1, ..., Yn), characterized
by its Laplace transform (11.9), is said to have a multivariate fractional phase–type
distribution, and we shall denote it by

Y ∼ MPH∗α(π,T ,R).

Remark 11.3.5. Note that the only (yet subtle) difference between the Laplace
transform of the GMML distribution introduced in (Albrecher et al., 2020, Eq.15)
and the corresponding expression (11.9) above is that the power α is applied after
and not before the left-multiplication with the reward matrix. One consequence is
that the scalar parameter α represents the regular variation index for all marginals
alike, in contrast to the GMML construction in Albrecher et al. (2020), where
different values were possible for each component. However, the extension to powers
as described in Section 11.3.2 allows to alleviate that issue when desirable.



11.3. MULTIVARIATE FRACTIONAL PHASE–TYPE DISTRIBUTIONS 255

11.3.2 Denseness properties of the MPH∗α class and an ex-
tension

As members of PHα, the marginals of the MPH∗α class all have regularly varying tails
with (the same) index α < 1 (which in particular entails an infinite mean). In order
to allow for more flexibility, a simple extension is to consider (possibly different)
powers of each random component, which leads to arbitrary positive index of regular
variation for each component.
LetX ∼ MPH∗α(π,T ,R) with density fX(x1, ..., xn). Let ν = (ν1, ..., νn) for νi > 0,
i = 1, ..., n and consider the transformed random vector

Y = X1/ν = (X
1/ν1
1 , ..., X1/νn

n ),

for which the joint density is given by

fY (y1, ..., yn) =

(
n∏
i=1

νiy
νi−1
i

)
fX(yν11 , ..., y

νn
n ).

We refer to this enlarged class as the MPH∗1/να class. Then we have the following
result:

Theorem 11.3.6.

[(i)]

1. The class MPH∗α(π,T ,R) is dense in the class of distributions on Rn
+.

2. For any fixed α, the class MPH∗1/να (π,T ,R) is dense in the class of distribu-
tions on Rn

+.

3. For any fixed vector of positive tail indices (α/ν1, ..., α/νn), the class
MPH∗1/να (π,T ,R) is dense in the class of distributions on Rn

+.

Proof. In Section 11.4.1, it will be shown that for the particular subclass of feed-
forward type with transition matrix (11.11) and reward matrix (11.12) the identity
(11.13) holds and therefore the GMML and PH∗α classes agree in that particular
case. For this particular structure, the phase–type case α = 1 is still dense on Rn

+,
but then the proof of all three items above follows along the same lines as Theorem
4.10 in Albrecher et al. (2020).

Notice that (iii) in particular shows that we can approximate any distribution on Rn
+

arbitrarily closely through distributions in MPH∗1/να (π,T ,R) with a pre-specified
regularly varying index for each marginal.
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11.3.3 A product representation

We proceed to show a representation theorem which sheds some light on the de-
pendence structure of the MPH∗α class.

Theorem 11.3.7. Let Y have Laplace transform (11.9). Then

Y
d
= RTW 1/α • Sα, (11.10)

where W 1/α = (W
1/α
1 , . . . ,W

1/α
n ) with W = (W1, ...,Wn) ∼ MPH∗(π,T , I) (see

(11.2)), and where Sα = (S1
α, . . . , S

n
α) is a vector of independent stable random

variables, each with Laplace transform exp(−uα). Here, • refers to Schur (or entry-
wise) multiplication of vectors.

Proof. We first recall that for generic vectors u,v we have

〈Ru,v〉 = 〈u,RTv〉,

from which

E(exp(−〈u,RTW 1/α • Sα〉)) =

∫
Rn+

E(exp(−〈Ru,w1/α • Sα〉)) dFW (w)

=

∫
Rn+

exp(−[(Ru)α1w1 + · · ·+ (Ru)αnwn]) dFW (w)

=

∫
Rn+

exp(−〈(Ru)α,w〉) dFW (w)

= π (∆(Ru)α − T )−1 t.

The above result gives insight into how tail dependence is created (in contrast
to the analogous Theorem 6 in Albrecher et al. (2020)): the reward matrix R de-
termines how the a priori independent stable components Siα are combined towards
tail-dependent components Yi, (i = 1, . . . , n), with tail dependence asymptotically
being concentrated on lines whith slopes governed by R.

11.3.4 Distribution of projections

Consider Y ∼ MPH∗α(π,T ,R) with Laplace transform (11.9). We are interested
in the distribution of the linear combination 〈Y ,w〉 of the components for some
non–zero, non–negative vector w. Split the state space of E in E+ and E0 according
to whether (Rw)i is positive or zero, respectively, and decompose π = (π+,π0)
and

T =

(
T++ T+0

T 0+ T 00

)
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accordingly. Then consider the Laplace transform for 〈Y ,w〉, which is

E
(
e−u〈Y ,w〉

)
= E

(
e−〈Y ,uw〉

)
= π (∆((Ruw)α)− T )−1 t

= π (uα∆((Rw)α)− T )−1 t

= π

(
uα∆((Rw)α)+ − T++ −T+0

−T 0+ −T 00

)−1

t

= (π+,π0)

(
A11 A12

A21 A22

)(
t+
t0

)
,

where

A11 =
(
uα∆((Rw)α)+ − T++ − T+0(−T 00)−1T 0+

)−1

=

(
uαI −∆((Rw)α)−1

+

[
T++ + T+0(−T 00)−1T 0+

])−1

∆((Rw)α)−1
+

= (uαI − Twα)−1 ∆((Rw)α)−1
+ ,

A12 = (uαI − Twα)−1 ∆(Rwα)−1
+ ∆((Rw)α)−1

+ ,

A21 = (−T 00)−1T 0+ (∆(uαI − Twα)−1 ∆((Rw)α)−1
+ ,

A22 = (−T 00)−1
(
I + T 0+ (uαI − Twα)−1 ∆((Rw)α)−1

+ T+0(−T 00)−1
)

and
T w = ∆

(
(Rw)α+

)−1 (
T++ + T+0 (−T 00)−1 T 0+

)
.

Let
πw = π+ + π0 (−T 00)−1 T 0+.

Then

π+A11 + π0A21 = πw (uαI − Tw)−1 ∆((Rw)α)−1
+ ,

π+A12 + π0A22 = π0(−T 00)−1 + πw (uαI − Tw)−1 ∆((Rw)α)−1
+ T+0(−T 00)−1.

Now inserting (
t+
t0

)
= −Te =

(
−T++e− T+0e
−T 0+e− T 00e

)
,

we get

(π+A11 + π0A21) t+ + (π+A12 + π0A22) t0

= π0(I − (−T 00)−1T 0+)e+ πw (uαI − Tw)−1 tw

= 1− πwe+ πw (uαI − Tw)−1 tw

with
tw = −Twe.

Thus we have proved the following result.
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Theorem 11.3.8. Let Y ∼ MPH∗α(π,T ,R) and w ≥ 0 be a non–zero vector. Then
〈Y ,w〉 has a distribution with an absolutely continuous part being PHα(πw,Tw)
distributed, where

πw = π+ + π0 (−T 00)−1 T 0+

T w = ∆
(
(Rw)α+

)−1 (
T++ + T+0 (−T 00)−1 T 0+

)
and an atom at zero of size 1− πwe.

As a simple consequence of the above result, one can retrieve the form of the
marginal distributions for any choice of T and R:

Corollary 11.3.9. Let τ ∼ PHα(π,T ). Let r = (r1, ..., rp) be a non–zero non–
negative vector of rewards. Let {Xt}t≥0 denote the semi–Markov process which
generates τ and define

Y =

∫ τ

0

p∑
i=1

ri1{Xt = i}dt

which is the total reward earned up to time τ . Then Y has a distribution with an
absolutely continuous part having a PHα(π̃, T̃ ) form, where

π̃ = π+ + π0 (−T 00)−1 T 0+

T̃ = ∆
(
rα+
)−1 (

T++ + T+0 (−T 00)−1 T 0+

)
and an atom at zero of size 1− π̃e.

Remark 11.3.10. In case all rewards are strictly positive, the translation between
PHα distributions with and without rewards is even simpler: Consider the process
{Xt}t≥0 defined in (11.7) underlying a PHα(π,T ) distribution, and assume that a
reward ri > 0 is earned when the process is in state i, i = 1, 2, ..., p. Then the total
reward earned up to the time of absorption is PHα(π,S) distributed with

S = ∆(r−α)T ,

where r−α = (r−α1 , ..., r−αp ). Hence a reward of rate ri in state i may be achieved by
dividing row i of T by rαi . This can also be seen directly from the construction of
the semi-Markov process, since the λi are scale parameters.

11.4 Two specific examples

11.4.1 The feed-forward case

The MPH∗α class shares an important sub-class of distributions with the GMML
class introduced in Albrecher et al. (2020). The so-called feed–forward sub-class is
based on a special structure of the matrix components given as follows.
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Let C1, ...,Cn be sub–intensity matrices and let D1, ...,Dn be non–negative
matrices such that −Cie = Die. Define the initial vector as β = (π,0, ...,0) and
the matrix

T =


C1 D1 0 · · · 0
0 C2 D2 · · · 0
0 0 C3 · · · 0
...

...
...

...
...
...

...
0 0 0 · · · Cn.

 . (11.11)

The reward matrix consists of

R =


e 0 0 · · · 0
0 e 0 · · · 0
0 0 e · · · 0
...

...
...

...
...
...

...
0 0 0 · · · e

 . (11.12)

In this case it is immediate that

∆ (Rθ)α = ∆ (Rθα) (11.13)

in which case the respective distributions in the GMML and MPH∗α classes coincide
(cf. Remark 11.3.5). Correspondingly, the explicit forms of the Laplace transform
and density can be found in Theorem 8 of Albrecher et al. (2020) (choosing α1 =
· · · = αn = α for the present context).
Note, however, that in general we do not have GMML ⊂ MPH∗α nor that GMML ⊃
MPH∗α (keeping in mind that the GMML class contains distributions with possibly
different tail index in each marginal and no possible tail dependence, whereas the
MPH∗α class contains distributions with the same tail index for the marginals, but
possible tail dependence), see also Figure 11.1.

11.4.2 A two-dimensional explicit example with tail depen-
dence

Suppose that X = (X1, X2) ∼ MPH∗α(π,T ,R), where

π = (π1,π2,π3), T =

T 11 T 12 T 13

0 T 22 0
0 0 T 33

 , and R =

e e
e 0
0 e

 ,

πi are pi–dimensional vectors and T ij are pi×pj –dimensional matrices for i = 1, 2, 3.
As usual we let

t = (t1, t2, t3)′ = −Te.

Hence ti is the vector of rates for jumping to the absorbing state from block i =
1, 2, 3. Denote the set of transient states by E = {1, 2, ...., p1 + p2 + p3} and let
E1 = {1, 2, ..., p1} denote the states corresponding to the first block, E2 = {p1 +
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1, ..., p1 + p2} the states of the second block and E3 = {p1 + p2 + 1, ..., p1 + p2 + p3}
the states of the third block.

The joint density function of the underlying multivariate phase–type distribution
X = (X1, X2) ∼ MPH∗(π,T ,R) is given by (see (Bladt and Nielsen, 2017, p.448))

f (x1, x2) =



π1e
T 11x2T 12e

T 22(x1−x2)t2, 0 < x2 < x1

π1e
T 11x1T 13e

T 33(x2−x1)t3, 0 < x1 < x2

π1e
T 11x1t1, x1 = x2

π2e
T 22x1t2, x1 > 0, x2 = 0

π3e
T 33x2t3, x1 = 0, x2 > 0.

There is a component of sharing rewards in this structure. If the Markov jump
process is started in a state in E1, then reward is earned for both variables X1 and
X2, and if t1 6= 0, then there is a positive probability that the underlying process
will exit to the absorbing state directly from the Block 1, in which case X1 = X2.

We shall now consider the distribution of Y with Laplace transform (11.9). First
we notice that

∆(Rθ)α =

(θ1 + θ2)αI 0 0
0 θα1 I 0
0 0 θα2 I

 ,

where the dimensions of the identity matrices I are p1, p2 and p3, respectively. Let

A11 = ((θ1 + θ2)αI − T 11)−1 =

∫ ∞
0

e−(θ1+θ2)xxα−1Eα,α(T 11x
α) dx

A22 = (θα1 I − T 22)−1 =

∫ ∞
0

e−θ1yyα−1Eα,α(T 22y
α−1) dy

A33 = (θα2 I − T 33)−1 =

∫ ∞
0

e−θ2yyα−1xEα,α(T 33y
α−1) dy.

Then

(∆(Rθ)α − T )−1 =

A11 A11T 12A22 A11T 13A33

0 A22 0
0 0 A33

 .

Hence

LX(θ) = π (∆(Rθ)α − T )−1 t

= π1A11t1 + π2A22t2 + π3A33t3 + π1A11T 12A22t2 + π1A11T 13A33t3.
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The term

π1A11T 12A22t2

= π1

∫ ∞
0

e−(θ1+θ2)xxα−1Eα,α(T 11x
α) dx T 12

∫ ∞
0

e−θ1yyα−1Eα,α(T 22y
α−1) dy t2

= π1

∫ ∞
0

∫ ∞
0

e−(θ1+θ2)x−θ1yxα−1yα−1Eα,α(T 11x
α)T 12Eα,α(T 22y

α) dx dy t2

= π1

∫ ∞
0

∫ ∞
0

e−θ1(x+y)−θ2xxα−1yα−1Eα,α(T 11x
α)T 12Eα,α(T 22y

α) dy dx t2

= π1

∫ ∞
0

∫ ∞
x

e−θ1z−θ2xxα−1(z − x)α−1Eα,α(T 11x
α)T 12Eα,α(T 22(z − x)α) dz dxt2

= π1

∫ ∞
0

e−θ2xxα−1Eα,α(T 11x
α)T 12

∫ ∞
x

e−θ1z(z − x)α−1Eα,α(T 22(z − x)α)dz dx t2,

which is hence the Laplace transform for the joint density of the form

π1x
α−1Eα,α(T 11x

α)T 12(y − x)α−1Eα,α(T 22(y − x)α)t2

when Y1 > Y2. A similar argument applies to π1A11T 13A33t3. The terms π2A22t2
and π3A33t3 correspond to the Laplace transform where one of the variables is
equal to zero, while the term π1A11t1 corresponds to the joint Laplace transform
when Y1 = Y2. In conclusion,

fY (x, y) =



π1y
α−1Eα,α(T 11y

α)T 12(x− y)α−1Eα,α(T 22(x− y)α)t2, 0 < y < x

π1x
α−1Eα,α(T 11x

α)T 13(y − x)α−1Eα,α(T 33(y − x)α)t2, 0 < x < y

xα−1π1Eα,α(T 11x
α)t1, x = y

xα−1π2Eα,α(T 22x
α)t2, x > 0, y = 0

xα−1π3Eα,α(T 33x
α)t3, x = 0, y > 0.

An atom at zero (with point mass 1− πe) could also have been achieved for both
cases by letting πe < 1. Figure 11.4 depicts a corresponding density, along with
simulated data from the same distribution. The parameters are chosen to be α =
0.9, π1 = (1/2, 1/2), π2 = π3 = 0, and

T 11 =

(
−3 2
0 −4

)
, T 12 = T 13 =

(
0 1/2
1 1

)
, T 22 = T 33

(
−1 1
0 −2

)
,

which implies that there is no mass at x = 0, y = 0, or x = y. One clearly observes
the resulting tail dependence across the respective slopes.

11.5 Conclusion

In this paper we propose an extension of Kulkarni’s construction method to de-
fine a new class of multivariate distributions with matrix Mittag-Leffler distributed
marginals. Based on a time-fractional sample path approach of an underlying semi-
Markov jump process, this new class allows for dependence in the tails, yet still a
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Figure 11.4: Density and 1500 simulated data from a bivariate MPH∗α distribution.

rather explicit representation. We work out in detail how this class complements
an earlier construction of a multivariate Mittag-Leffler distribution in Albrecher
et al. (2020). The main contribution of this paper is on the conceptual and math-
ematical side. It will be interesting in future research to complement the present
contribution by developing fitting procedures for real multivariate data sets in ap-
plications, which exploit the explicit expressions obtained for this new class and
study its versatility in more detail. It will also be challenging to study procedures
that decide about the appropriate dimensions of the underlying matrices in concrete
applications.
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Csörgő, S., Deheuvels, P., and Mason, D. (1985). Kernel estimates of the tail index
of a distribution. Ann. Statist., 13(3):1050–1077.
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