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Chapter 1

Introduction

In many aspects of our everyday lives, uncertainty is at play, and when this concerns the
occurrence of an event that may have adverse consequences, one talks about risk. Once
identified, a risk can be managed. This process is called risk management, and in broad
terms it consists of:

(a) Quantifying the likelihood and consequences of the risk.

(b) Responding accordingly, by either avoiding, mitigating, transferring or accepting
the risk.

In the insurance and banking industry, within large companies and among certain public
administration sectors, this process is performed explicitly and extensively, with a variety
of tools, which often includes a probabilistic analysis. The present thesis follows this
wake, and contributes to topics related to both (a) and (b), with a focus on so-called tail
risk.

Hereafter, we recall some concepts that will be useful in the remainder, and we sum-
marize the main contributions of this thesis.

1.1 Risk modelling
In risk management, a probabilistic analysis usually starts with treating the risk under
consideration as a random variable, say X , which one then assumes to follow some prob-
ability distribution or model F (x) = P(X ≤ x). In the remainder, larger values of X
denote more adverse scenarios, so for instance X may represent some annual insurance
claim amount, the loss of value of an asset, or the severity level of a natural disaster, such
as the magnitude of an earthquake or a wind-speed measure during a hurricane.

The distribution of a risk can then serve to calculate some measures of risk and other
summarizing quantities (such as the value-at-risk, expected shortfall, or simply the mean,
variance or skewness), which are subsequently used to take decisions on pricing, mitiga-
tion or transfer of that risk, to perform an allocation of resources (capital), or to compare
the risk with some other risks.

17



18 CHAPTER 1. INTRODUCTION

1.1.1 Model selection
In most cases the distribution of a risk is unknown, and for determining (estimating) it
one may consider a variety of sources of information, such as

• The knowledge of the random mechanism generating the risk. For example, if the
risk is known to result from the aggregation (multiplication) of a sufficiently large
number of independent random factors, then, under some conditions, as a result of
the central limit theorem, its distribution will be reasonably well approximated by
a (Log)Normal distribution.

• Some characterizing properties. For instance, if the risk is continuous (discrete)
and satisfies the memoryless property P(X > x + u|X > u) = P(X > x) for
all x, u > 0 (x, y ∈ N0), then it necessarily follows an Exponential (Geometric)
distribution. Another example of a characterizing property would be invariance of
the distribution under a change of scale (i.e. scale invariance), which points towards
power laws, such as the Pareto distribution.

• Some available data (observed past realizations of the risk), which may be analysed
with statistical tools such as quantile-quantile or mean-excess plots, and used to fit
a suitable distribution (see e.g. the books by McNeil et al. [62], Beirlant et al. [11]
and Albrecher et al. [1] for details).

For illustration purposes, we recall some well-known continuous and discrete distribu-
tions in Table 1.1 and 1.2.

1.1.2 Estimated and predictive distributions
When resulting from a finite amount of data, an estimated (fitted) distribution will likely
differ from the true distribution. From a risk management perspective, the potential error
in the estimation of a distribution constitutes an additional source of risk (epistemic un-
certainty), which can be treated as different from the original risk (aleatoric uncertainty)
and shall be considered (for some background on the dichotomy between aleatoric and
epistemic uncertainty, see e.g. Der Kiureghian and Ditlevsen [29], Aven and Zio [7] and
Scherer and Stahl [72]). For instance, assume that limited resources must be allocated to
two independent risks with identical estimated marginal distributions, but one of them has
been obtained with significantly less data than the other. In this situation, the epistemic
uncertainty inherent to each of these two risks evidently differs, and it is intuitive that one
shall allocate unequal resources to them, despite their estimated marginal distributions
being identical.

There exist several methods allowing to build a distribution that accounts for the epis-
temic uncertainty relative to a risk. In the Bayesian framework, a distribution of this type
is referred to as a predictive distribution (or posterior predictive distribution), which can
be seen as an “average distribution” (the average of several possible distributions, with
averaging probabilities being influenced by the data), by contrast to an estimated (fitted)
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Distribution Probability density function f(x) = d
dx
F (x) Parameters

Uniform(a, b) 1
b−a

, x ∈ [a, b] a, b ∈ R, with a < b

Normal(µ, σ) 1
σ
√
2π
e−

1
2
(x−µ

σ
)2 , x ∈ R µ ∈ R, σ > 0

LogNormal(µ, σ) 1
σx

√
2π
e−

1
2
(
ln(x)−µ

σ
)2 , x > 0 µ ∈ R, σ > 0

Exponential(λ) λe−λx, x > 0 λ > 0

Pareto(τ, α) αταx−α−1, x > τ τ, α > 0

Table 1.1: Some well-known continuous distributions.

distribution, which tends to rather be a “modal distribution” (the “most likely” true dis-
tribution given the data). For contributions on the relevance of predictive distributions
in the context of risk management, see e.g. Cairns [19], Gerrard and Tsanakas [47] and
Bignozzi and Tsanakas [12, 13].

1.1.3 Model and parameter uncertainty
In practice, the estimation of a distribution is often performed according to a parametric
approach, which can be summarized as follows. In a first step the risk under considera-
tion is assumed to follow a distribution (or model) that belongs to a family of distributions
indexed by a parameter (possibly a vector ; see Table 1.1 and 1.2 for examples of para-
metric distributions). The value of that parameter is then estimated from the data, and one
checks if the corresponding distribution provides a satisfying fit. If so, then that distribu-
tion is considered as the “correct” one, and otherwise the process may be repeated with
another parametric distribution family. As a result, under a parametric approach the epis-
temic uncertainty can be decomposed into the potential error in the selection of the model
(model uncertainty) and in the estimation of the parameter (parameter uncertainty). In
many situations this distinction turns out to be useful (notably when building a predictive
distribution), e.g. because it allows to reflect the eventual different degree of uncertainty
one may have regarding the selected model and estimated parameter.

1.2 The body and the tail of a distribution
When modelling risks, it is often relevant to distinguish the body (or bulk, central part) of
the distribution, from its tails (left and right). Loosely speaking, the body of a distribution
F consists of a (limited) interval of values within which that distribution concentrates
most of its probability mass, and hence where most occurrences of the risk X will fall.
By contrast, the left-tail and right-tail of a distribution constitute less likely values of the
risk, which deviate (potentially by far) from the body, by being respectively smaller and
larger. Since here larger values of X denote more adverse scenarios and we adopt a risk
management standpoint, we will focus on the right tail of F , which we will simply refer
to as the tail of the distribution.
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Distribution Probability mass function P(X = x) Parameters

Bernoulli(p) px(1− p)1−x, x ∈ {0, 1} p ∈ [0, 1]

Binomial(n, p)
(
n
x

)
px(1− p)n−x, x ∈ {0, ..., n} n ∈ N0, p ∈ [0, 1]

NegativeBinomial(r, p)
(
x+r−1

x

)
px(1− p)r, x ∈ N0 r ∈ N+, p ∈ [0, 1]

Poisson(λ) λxe−λ

x!
, x ∈ N0 λ > 0

Table 1.2: Some well-known discrete distributions.

There are several reasons for distinguishing the body and tail of a distribution, which
include:

• In practice, the body and tail of the distribution of a risk often turn out to exhibit
behaviours of a different kind, which may therefore be better modelled separately.
For instance, most data points of an observed sample may cluster according to some
Normal shape, and at the same time the largest observations (order statistics) may
signal some heavy-tail behaviour.

• The data will by definition be scarcer in the tail of a distribution than in its body, and
different statistical methods may therefore be appropriate for these two regions. For
example, one may be reluctant to extend a fitted distribution into the tail, beyond
the largest observation, and therefore rely on some alternative technique to model
that part of the distribution.

• The purpose of risk modelling may be the calculation of some quantity that depends
solely on the tail of distribution, such as the value-at-risk (quantile) or expected
shortfall of X at some high level.

1.2.1 Types of tails
The tail of a distribution encapsulates crucial information regarding the behaviour of a
risk. The study of the tail behaviour is therefore an important topic in risk management,
and one may distinguish several categories.

Heavy- and light-tailed distributions

Let F (x) = 1−F (x) = P(X > x) be the survival function of X . Then X is said to have
a heavy tail if its survival function decreases slower than that of an Exponential random
variable, i.e.

lim
x→∞

F (x)

e−λx
= ∞, for all λ > 0.

Otherwise X is said to have a light tail. Heavy-tailed distributions have the ability to pro-
duce much larger deviations than light-tailed distributions. For instance, if X has a heavy
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tail, then its expectation E[X] may or may not be finite, but if it has a light tail, then E[X]
is necessarily finite.

Another important quantity is the so-called mean-excess function. Let xF be the right
endpoint of F (note that since the right endpoint of the Exponential distribution is infinite,
by the above definition a heavy-tailed distribution F implies xF = ∞). The mean-excess
function of X is defined as eX(u) = E[X|X > u], for u < xF , i.e. the expectation of X
given that X exceeds the threshold u. If X has a heavy tail and E[X] < ∞, there exists
some threshold x∗ < xF such that eX(u) is strictly increasing for all u > x∗, meaning
that at some point, the larger the threshold u, the larger X is expected to be. In terms of
risk, this opens the door to catastrophes (“the worse it has been, the worse it is expected
to be”). By contrast, if X is light-tailed, then there exists a x∗ < xF such that eX(u) is
strictly decreasing for all u ∈ (x∗, xF ), and the mean-excess function of an Exponential
random variable is constant. Note that E[X] = ∞ implies eX(u) = ∞, for all u.

In Table 1.1, the LogNormal and Pareto distributions are heavy-tailed, and the Exponen-
tial and Normal distributions are light-tailed. The Uniform distribution is also light-tailed,
as any other distribution F with xF <∞.

Sub-exponential distributions

Another way to classify distributions according to their tail behaviour is the concept of
sub-exponentiality. Let X1, ..., Xn be n ≥ 2 mutually independent and identically dis-
tributed (iid) positive random variables with common distribution F and xF = ∞, and
consider the sum Sn = X1 + ...+Xn for n ≥ 1. The distribution of Sn is

F ∗n(x) = P(Sn ≤ x) =

∫ x

0

F (x− y) dF ∗n−1(y),

with F ∗1 = F , and F ∗n is the nth convolution of F with itself.

The sum Sn may be large because two or more Xi are relatively large, or only one (i.e.
its maximum Mn = max{X1, ..., Xn}) is large. When the latter option is far more likely
than the former, i.e. P(Sn > x) ∼ P(Mn > x) as x ↑ ∞, Sn shall have roughly n times
more chances to exceed some large threshold than an individual Xi. That property can be
formalized in mathematical terms as

lim
x→∞

F ∗n(x)

F (x)
= n, (1.1)

in which case F is said to belong to the class S of sub-exponential distributions (Teugels
[76]), and we write F ∈ S. Chistyakov [23] proved that (1.1) for n = 2 already implies
F ∈ S.

It is clear that from a risk management viewpoint, the tail of a distribution F ∈ S can
be considered dangerous, since it has the ability to produce not so rarely some realiza-
tions that exceed by far most others. Also, note that all sub-exponential distributions are
heavy-tailed, but the converse it not true, see e.g. Embrechts et al. [32].
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Extreme value index

Another approach to characterize the tail of a distribution is provided by extreme value
theory. Let X1, ..., Xn be n iid random variables X with marginal distribution F . The
latter has right endpoint xF ≤ ∞ and is assumed to be ultimately continuous. Consider
now the maximum Mn = max{X1, ..., Xn}. In that setting, the Fisher-Tippett-Gnedenko
theorem [40, 48] states that if one can find some normalising constants cn > 0 and dn ∈ R
such that

lim
n→∞

P
(
Mn − dn

cn
≤ x

)
= lim

n→∞
F (cnx+ dn)

n = G(x)

for some non-degenerate distribution G, then G is necessarily of one of the following
forms:

Fréchet: Φα(x) =

{
0, x ≤ 0,

exp(−x−α), x > 0,
α > 0,

Gumbel: Λ(x) = exp(−e−x), x ∈ R,

Weibull: Ψα(x) =

{
exp(−(−x)α), x ≤ 0,

1, x > 0,
, α > 0,

(1.2)

and we say that F is in the max-domain of attraction (MDA) of G, which we write
F ∈ MDA(G).

The Fisher-Tippett-Gnedenko theorem is one of the two main theorems of extreme value
theory, the other being the Pickands-Balkema-de Haan theorem [8, 69], which concerns
the limit distribution of (X − u|X > u) as u → xF . For classical textbooks on that
topic, we refer to Embrechts et al. [32], Beirlant et al. [11] and de Haan and Ferreira
[28]. Since we are interested in the classification of tails here, it is sufficient to notice that
the Fisher-Tippett-Gnedenko theorem establishes a class of distributions (those resulting
in a non-trivial asymptotic behaviour of limn→∞Mn after a proper linear normalisation),
which splits into the Fréchet, Gumbel and Weibull MDAs. Those three sub-classes can
then be shown to have some specific properties (see [32] for details):

• F ∈ MDA(Φα) ⇔ xF = ∞ and F can be written as F (x) = ℓ(x)x−α, where ℓ(x)
is a slowly varying function, i.e.

lim
x→∞

ℓ(tx)

ℓ(x)
= 1, for all t > 0.

So if F is in the Fréchet MDA, then it has an infinite right endpoint and a Pareto-
type tail, with parameter α.

• F ∈ MDA(Λ) ⇔ xF ≤ ∞ and there exists some z < xF such that F can be written
as

F (x) = c(x) exp

(
−
∫ x

z

g(t)

a(t)
dt

)
, z < x < xF ,
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where limx→xF
c(x) = c > 0 and limx→xF

g(x) = 1, and a(x) is a positive and con-
tinuous function such that limx→xF

a′(x) = 0. Note that the above representation
is not unique, and a possible choice of a(x) is a(x) = eX(x), i.e. the mean-excess
function of X . A distribution F that belongs to the Gumbel MDA may therefore
have a finite or infinite right endpoint, and its asymptotic tail behaviour mixes that
of the Exponential distribution, with the respective behaviours of functions a(x),
c(x) and g(x).

• F ∈ MDA(Ψα) ⇔ xF < ∞ and F (xF − x−1) = ℓ(x)x−α, i.e. if F is in the
Weibull domain, then it necessarily has a finite right endpoint, and in the limit its
tail behaves like a bounded power law.

After up to a multiplication of their argument by a constant, the three distributions in (1.2)
can be assembled into the so-called Generalized Extreme Value (GEV) distribution

Hξ(x) =

{
exp(−(1 + ξx)−1/ξ), if ξ ̸= 0,

exp(− exp(−x)), if ξ = 0,

where 1 + ξx > 0, and ξ ∈ R is called the extreme value index. It can then be shown that
(again, see [32])

F ∈ MDA(Φα) ⇔ F ∈ MDA(Hξ), with ξ = α−1 > 0,

F ∈ MDA(Λ) ⇔ F ∈ MDA(Hξ), with ξ = 0,

F ∈ MDA(Ψα) ⇔ F ∈ MDA(Hξ), with ξ = −α−1 < 0,

so the GEV puts distributions in the Fréchet, Gumbel and Weibull MDA into a continuum,
where they are characterized by their extreme value index ξ. The latter index may then
finally be interpreted as ranking those distributions according to their “dangerousness”,
since

• ξ > 0: F has a Pareto-type tail with parameter α = ξ−1, and the larger ξ, the
heavier the tail,

• ξ ≤ 0: F has a tail that is lighter than a Pareto-type tail, and for ξ < 0, the smaller
ξ, the lighter the tail.

However, the Gumbel domain (ξ = 0) includes a large variety of distributions, with
both heavy tails (e.g. the LogNormal distribution) and light tails (such as the Normal
distribution, or any distribution with ξ = 0 and xF < ∞). Also, some distributions with
ξ = 0 and xF <∞ may have a lighter tail than some distributions with ξ < 0.

1.3 Risk measures
In risk management, the purpose of a probabilistic analysis is often to summarize the
risk under consideration through a scalar quantity, which is referred to as a risk measure.
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That quantity then typically serves to calculate some performance measure, an amount of
resource (e.g. capital) to hold for backing the risk, or to compare risks among each other.
The common notation for a risk measure associated with a random variable X is ρ[X],
where ρ denotes a functional mapping the distribution of X to R.

1.3.1 Coherent risk measures
In their influential paper, Artzner et al. [4] established the following list of four desirable
properties of risk measures (and call a risk measure satisfying all of them, a coherent risk
measure):

• Translation invariance: ρ[X + b] = ρ[X] + b, for any constant b ∈ R. Adding a
constant value to the risk shall change its measure by the same amount.

• Positive homogeneity: ρ[aX] = aρ[X], for any constant a ≥ 0. The measure of a
risk shall be proportional to its size.

• Monotonicity: P(X1 ≤ X2) = 1 ⇒ ρ[X1] ≤ ρ[X2]. A risk X1 that almost surely
has a smaller realization than another risk X2 shall be measured smaller.

• Sub-additivity: ρ[X1+X2] ≤ ρ[X1]+ρ[X2]. Two risks held together shall be mea-
sured smaller than separated, i.e. ρ shall reflect the diversification effect of pooling
risks together.

Note that some of these properties may not be desirable in some contexts. For instance, in
insurance the positive homogeneity property may not always be justified (scaling up risks
could lead to non-linear changes for a risk measure, see e.g. the discussion on premium
principles in Albrecher et al. [1]). Dhaene and al. [31] pointed out that under sub-additive
risk measures, merging risks leads to potentially larger shortfall, which is not so desirable
from a regulatory viewpoint, when the risk measures serve to calculate capital require-
ments.

1.3.2 Value-at-risk and expected shortfall
We now recall and discuss two risk measures that are frequently considered in risk man-
agement: the value-at-risk (VaR) and the expected shortfall.

The VaR of a random variable X at level p is defined as

VaRp[X] = inf{x ∈ R : F (x) ≥ p}, p ∈ [0, 1],

and it thus corresponds to the quantile of X at level p. Note that the VaR is not a coherent
risk measure, because it fails to satisfy the sub-additivity property in general (which does
not prevent it to be sub-additive in many instances).



1.3. RISK MEASURES 25

The VaR arises naturally in case one is interested in the event of a risk exceeding some
threshold. For example, whenX denotes the loss of an entity (e.g. an insurance company)
and k its capital, one is typically interested in the ruin eventX > k. Accordingly, one may
be willing to determine the amount of capital required to keep the probability of a ruin
at some low target level β, in which case the capital shall be set at k = VaR1−β[X]:
If F is continuous at VaR1−β[X], then by definition the resulting ruin probability is
P(X > VaR1−β[X]) = β. If not, then VaR1−β[X] is the smallest capital amount that
makes the ruin probability smaller than β. In fact, this approach has even been made
compulsory in the European Union, since the solvency capital requirement of an insur-
ance complying with Solvency II regulation is defined as the VaR at level p = 99.5% of
its net asset position under a one-year time horizon [34].

It is worth mentioning that VaR as a risk measure has been criticised by several authors.
For instance, Artzner et al. [4] argued that since VaR is not sub-additive in general, it
might discourage diversification. Also, VaR focuses on one point of the distribution, and
hence it may measure two risks equally despite their respective tails being possibly very
different. In not well regulated or constrained environments, this may create incentives
for worsening the potential shortfall (“Après nous, le déluge”). See e.g. Embrechts et al.
[33] for a recent contribution on that, in a context of solvency capital optimization.

The expected shortfall at level β of a random variable X is defined as

ESp[X] =
1

1− p

∫ 1

p

VaRγ[X] dγ, p ∈ [0, 1).

It is interesting to note that it can alternatively be expressed as

ESp[X] = E[X|X > VaRp[X]] +
P(X = VaRp[X])

1− p
VaRp[X], p ∈ [0, 1), (1.3)

and hence for F being continuous at VaRp[X] we have

ESp[X] = E[X|X > VaRp[X]], p ∈ [0, 1),

the right term being the so-called conditional tail expectation at level p, which is yet
another risk measure. Also, from Equation (1.3) we can further write

ESp[X] = VaRp[X] + eX(VaRp[X]) +
P(X = VaRp[X])

1− p
VaRp[X], p ∈ [0, 1),

which exhibits the connection between the expected shortfall and the mean-excess func-
tion (see e.g. Pflug and Romisch [68]).

The expected shortfall is a coherent risk measure, and in contrast to the VaR, it ac-
counts for the whole tail behaviour of X . This is usually seen as an advantage, but it
also makes the expected shortfall being potentially more sensitive to the choice of the
model, and hence less robust against model uncertainty. Also, note that E[X] = ∞ yields
ESp[X] = ∞, for all p ∈ [0, 1). The expected shortfall is therefore not useful to measure
risk for infinite mean models.
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1.4 Reinsurance
Reinsurance is a particular type of risk-transfer mechanism, under which an insurer (the
reinsured, or first-line insurer, cedent) cedes to another insurer (the reinsurer) a part of his
risks, and pays in exchange a reinsurance premium. There are several motivations for an
insurer to buy reinsurance, such as

• Reducing the probability to suffer losses that are hard to digest.

• Stabilizing business results.

• Reducing required capital.

• Increasing underwriting capacity.

• Accessing benefits from larger diversification pools.

For a detailed discussion of the above motivations, and more generally, an extensive treat-
ment of topics related to reinsurance, we refer to Albrecher et al. [1].

1.4.1 Choice of reinsurance
From a mathematical point of view, the relationship between an insurer and a reinsurer
can be represented (and simplified) as follows: The insurer sells one or more insurance
contracts to its policyholder, after which he bears the total risk X , but has collected the
total premium PX . The insurer may then purchase a reinsurance cover, under which he
will cede the portion R = r(X) (the ceded loss) of X to the reinsurer, and in turn pay the
corresponding reinsurance premium PR = π[R]. The function r denotes the ceded loss
function, i.e. the pre-defined rule that determines the amount to be paid by the reinsurer,
depending on the realization of X . And the functional π is the premium principle, i.e.
the risk measure that the reinsurer applies to R for determining the reinsurance premium
PR. Under a reinsurance cover, the part of X and PX being retained by the insurer are
thus D = X − R (the retained loss) and PD = PX − PR (the retained premium), and the
reinsurer has the net position PR −R.

The insurer can usually choose r among a set of candidates proposed by the reinsurer,
say C, and each choice of r will then result in a potentially different reinsurance premium
π[r(X)], the premium principle π being chosen by the reinsurer. In this setting, the best
choice of r arises as an interesting problem, which can typically be tackled by considering
some optimization problem, e.g.

r∗ = argmax
r∈C

φ[r(X)], (1.4)

where φ is some functional representing an appropriate objective for the insurer.

For instance, let Lr = D − PD = X − r(X) − PX + π[r(X)] be the potential loss
of the insurer under ceded loss function r (so −Lr is the corresponding potential profit).



1.4. REINSURANCE 27

Let further ρ[Lr] be the solvency capital that the insurer must hold to cover Lr. Then
examples of the objective φ[r(X)] are

• Total cost or total risk exposure (Cai and Tan [18]): φ[r(X)] = ρ[Lr + PX ], so in
that case φ[r(X)] is to be minimized.

• Expected profit (Kull [59] and Albrecher and Cani [2]): φ[r(X)] = E[−Lr] −
i

1−i
ρ[Lr], for ρ being translation invariant, and i denotes some cost-of-capital rate.

• Return on risk adjusted capital (RORAC): φ[r(X)] = E[−Lr]/ρ[Lr].

Many variants of problem (1.4) have been considered, e.g. with a budget constraint for
the reinsurance premium (Cheung et al. [20]), with some non-insurable (background)
risk standing besides X (Dana and Scarsini [26]), when the insurer and reinsurer have
heterogeneous beliefs regarding the distribution ofX (Boonen [16]), and when the choice
of reinsurance is to be made simultaneously for several risks (Zhu et al. [83]), to cite a
few (for an overview, see Albrecher et al. [1] and Cai and Chi [17]).

1.4.2 Reinsurance forms and premium principles
For illustration purposes, we list three examples of ceded loss functions that are often
considered, both in practice and in the actuarial literature:

• Quota-Share (QS): r(x) = ax, where a ∈ (0, 1) denotes the proportionality factor.
Under a Quota-Share, the insurer thus shares a portion a of X to the reinsurer, i.e.
R = aX .

• Stop-Loss (SL): r(x) = (x− d)+, where d ≥ 0 is called the deductible. So under a
SL cover, only the part of X exceeding d is ceded to the reinsurer.

• Bounded Stop-Loss (BSL): r(x) = min{(x − d)+, ℓ}, with d ≥ 0 being again the
deductible, and ℓ > 0 is called the limit or layer. As its name indicates, a BSL is
simply the bounded version of a SL, i.e. the reinsurer will not pay more than ℓ.

Finally, we further mention three instances of premium principles:

• Expected value principle: π[R] = (1+ θ)E[R], where θ ≥ 0 is some safety loading
factor.

• Standard-deviation principle: π[R] = E[R] + βS[R], where β > 0 is again some
loading factor, and S[R] denotes the standard-deviation of R.

• Risk-adjusted or Wang principle: π[R] =
∫∞
0
w(P(R > x)) dx, with w(u) being a

non-negative increasing and concave function such that w(0) = 0 and w(1) = 1.

For more examples of both reinsurance forms and premium principles and instructive
discussions about these topics, we again refer to Albrecher et al. [1].
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1.5 Contributions of this thesis

This thesis contains results in the field of risk modelling, both with and without parameter
and model uncertainty, as well as reinsurance, with applications that are mostly related to
tail risk. The article on which Chapter 5 is based has already been published in Insurance:
Mathematics and Economics.

In Chapter 2, we consider the problem of risk estimation under parameter and model
uncertainty. For so-called transformed location-scale distribution families, we prove that
when only parameter uncertainty is involved, a special type of predictive distribution can
be built and used to calculate a capital that yields a targeted solvency probability, despite
parameter uncertainty. This extends some of the results in Gerrard and Tsanakas [47] to
a more general framework. These results are then used to derive an explicit and simple
analytical formula for the capital estimator of a Pareto random loss, which can be used
even in the particular case where the data consists of consecutive order statistics rather
than a complete random sample. Afterwards, we test the robustness of this capital estima-
tor against potential model misspecification, for distributions with a Pareto-type tail. As
a by-product, we also provide a new explanation of the connection between Bayesian and
fiducial inference.

By accounting for epistemic uncertainty, predictive distributions tend to reflect risk bet-
ter than estimated distributions. This naturally makes them more conservative, which
is sometimes viewed as a drawback: At the end of the risk assessment process, limited
resources (e.g. capital) are available, and by being too conservative one may not be ef-
fective. While this objection is a valid concern, we believe that it does not account for
an important (and often implicit) aspect of many risk management decision processes:
The assessment of risk often serves to ultimately perform some kind of trade-off between
several competing risks for allocating limited resources, rather than determining absolute
resource amounts to isolated risks. In such a situation, since anyway limited resources
are available, if each risk is modelled with a predictive distribution, the conservative as-
pect likely ceases to be an issue. Correspondingly, since predictive distributions tend to
reflect risk better than estimated distributions, they may allow for potentially better re-
source allocation decisions. In Chapter 3, we illustrate this by considering a setting where
limited resources must be allocated separately to two risks, and parameter uncertainty is
involved for each of them. Through a simple example, we show the ability of predictive
distributions to indeed yield better resource allocations than a certain type of estimated
distributions. This chapter therefore contributes to the existing literature advocating in
favour of predictive distributions in risk management problems, see e.g. Cairns [19], Ger-
rard and Tsanakas [47] and Bignozzi and Tsanakas [12, 13].

The Fisher-Tippett-Gnedenko theorem provides the only possible non-degenerate limit
distributions for the linearly normalised maximum of a large sample of independent and
identically distributed random variables, and it is one of the foundational results of ex-
treme value theory. That theorem naturally compares with the central limit theorem,
which establishes the normality of linearly normalised sample sums, under some mild
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conditions. However, unlike the central limit theorem, the Fisher-Tippett-Gnedenko the-
orem can be applied in various ways in a given situation, and this potentially results in
different limit distributions for the considered sample maximum. In Chapter 4, we use
this aspect of the Fisher-Tippett-Gnedenko theorem to propose an alternative family of
extreme value distributions, which contains both the Weibull and Fréchet distributions,
but where the Gumbel distribution is modified, and ends up being endowed with a shape
parameter. Also, we mention several directions for extending this work, which may result
in interesting new results in extreme value theory.

In Chapter 5 we finally study a special type of reinsurance cover, for which the ceded
loss function not only depends on the loss of the cedent, but is also contingent upon his
performance, for instance measured in terms of his loss ratio compared to the average loss
ratio of the market. We show that this type of reinsurance may be efficiently used to man-
age risk in the presence of financial distress cost, when the cover is provided to a cohort
of insurers with positively correlated loss experience. In addition to theoretical results we
quantitatively illustrate the potential performance improvement in a numerical example
Interestingly, this can lead to an improvement for the insurer and reinsurance at the same
time, which is not so common in this type of literature. This chapter thus contributes to
the literature on the optimal choice of reinsurance (see Albrecher et al. [1] and Cai and
Chi [17] for an overview), as well as potentially to initiatives in the reinsurance industry.





Chapter 2

Risk estimation under parameter and
model uncertainty

This chapter is based on L. Vincent (2022): Risk estimation under parameter and model
uncertainty. Preprint, University of Lausanne [79].

Abstract. This chapter considers the problem of risk estimation under parameter and
model uncertainty, when a random loss must be backed with some capital, with the objec-
tive to reach a target solvency probability. We prove that for a large class of distributions
that are frequently used in risk management, when only parameter uncertainty is involved,
a (Bayesian) predictive distribution can be built, which allows to calculate a capital that
can be expected to yield the target solvency probability, despite parameter uncertainty.
This extends some of the results in Gerrard and Tsanakas [47] to a more general frame-
work. We then use these results to derive a simple analytical formula for the capital
estimator of a Pareto random loss, which can be used even in case the data consists of
consecutive order statistics, rather than a complete random sample. Afterwards, we test
the robustness of this capital estimator against potential model misspecification, for dis-
tributions with a Pareto-type tail. As a by-product, we also provide a new explanation of
the connection between Bayesian and fiducial inference.

2.1 Introduction

2.1.1 Aleatoric and epistemic uncertainty
In the modern practice of risk management, one often seeks to represent risks (random
outcomes that may have adverse consequences) with probability distributions (or simply
distributions), which one then uses to compute risk measures and other useful quantities.
However, in most cases the distribution of a risk (assuming it exists) is unknown and must
therefore be estimated. For doing so, one relies on some estimation technique, which
typically consists to fit a distribution to the data (observed past realizations of the risk).
Throughout the years, statisticians have developed numerous such fitting techniques, with
a variety of potentially desirable properties. Still, as good as those techniques might be,
when performed under a limited amount of data, the resulting estimated distribution is

31
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likely to differ from the true one.

From a risk management perspective, the potential error in the estimation of a distri-
bution constitutes an additional source of risk (epistemic uncertainty), which can be
treated as different from the original risk (aleatoric uncertainty ; for some background
on the dichotomy between aleatoric and epistemic uncertainty, see e.g. Der Kiureghian
and Ditlevsen [29] and Aven and Zio [7]). While the manifestation of epistemic uncer-
tainty tends to depend on the particular technique by which the distribution of a risk is
estimated, it can be considered as always present when that estimation is performed un-
der a limited amount of data, and it shall be considered. For instance, assume that limited
resources must be allocated to two independent risks with identical estimated marginal
distributions, but one of them has been obtained with significantly less data than the other.
In this situation, the epistemic uncertainty inherent to each of these two risks evidently
differs, and it is intuitive that one shall allocate unequal resources to them, despite their
estimated marginal distributions being identical. In the risk management literature, it has
been shown multiple times and in various frameworks that failure to account for epistemic
uncertainty yields incorrect (and usually too optimistic) risk assessment, see for instance
Gerrard and Tsanakas [47], Fröhlich and Weng [43] and Pitera and Schmidt [70].

There exist several methods that allow to build a distribution reflecting both the aleatoric
and epistemic uncertainty relative to a risk. In the Bayesian framework, a distribution of
this type is referred to as a predictive distribution (or posterior predictive distribution).
For calculating it (more details are provided in Section 2.5.2), one must start by assuming
that the true but unknown distribution of the risk belongs to a set of known candidate
distributions (or distribution family), which are thus possible descriptions of its aleatoric
uncertainty. Before the data is taken into account, the uncertainty (or belief) that one has
about which distribution is the true one is quantified in terms of prior probabilities. Using
the data, these prior probabilities are then updated to posterior ones (according to Bayes’
formula), and the latter are taken as a quantitative representation of epistemic uncertainty.
Afterwards, all possible distributions are averaged according to their respective posterior
probabilities, and the resulting distribution, termed the predictive distribution, serves to
describe the risk under consideration.

The predictive distribution of a risk is thus an average distribution, which by construction
indeed accounts for both its aleatoric and epistemic uncertainty. Also, it generally differs
from an estimated (fitted) distribution, just as the mean of a random variable typically
differs from its mode. To say it differently, an estimated distribution aims at answering
an ontological question (“What is the true distribution of the risk?”), where a predictive
distribution reflects the risk from a rather personal viewpoint (“How does this risk appear
to me, i.e. considering the potentially limited knowledge I have of it?”).

2.1.2 Model and parameter uncertainty
In practice the estimation of a distribution is often done according to a parametric ap-
proach, which can be summarized as follows. In a first step the risk under consideration
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is assumed to follow a distribution (or model) that belongs to a family of distributions
indexed by a parameter (possibly a vector). The value of that parameter is then estimated
from the data, and one checks if the corresponding distribution provides a satisfying fit.
If so, then that distribution is taken as the estimated one, and otherwise the process may
be repeated with another parametric distribution family. As a result, under a paramet-
ric approach the epistemic uncertainty can be decomposed into the potential error in the
selection of the model (model uncertainty) and in the estimation of the parameter (param-
eter uncertainty). Using that distinction, several authors have considered the special case
where the distribution of a risk belongs to a known parametric family, but the value of the
parameter is not known, i.e. there is no model uncertainty and the epistemic uncertainty
therefore consists of only parameter uncertainty. They proposed several methods for that
situation, which allow to account for both the aleatoric and parameter uncertainty of the
risk.

For instance, Gerrard and Tsanakas [47] considered the case of a risk whose distribu-
tion belongs to a transformed location-scale family, which refers to a distribution family
that can be expressed as a strictly increasing transformation of a location-scale family and
include several models being frequently used in risk management (see Section 2.3.2). In
that setting, they proposed two different approaches for calculating a threshold value (cap-
ital amount), which is expected to yield a given target failure (ruin) probability, despite the
parameter of the distribution being unknown: (i) Using an estimated distribution (the one
corresponding to the maximum likelihood estimate of the parameter), but with a modified
target failure probability. Under this approach, the estimated distribution thus represents
the aleatoric uncertainty, and the modification of the target failure probability accounts
for parameter uncertainty. (ii) Using a predictive distribution, together with the initial
target failure probability. Fröhlich and Weng [43] then obtained a similar results, but us-
ing fiducial distributions, which can be seen as predictive distributions, but the selection
of the prior is done indirectly, through the so-called fiducial argument (see Section 2.9).
Bignozzi and Tsanakas [12, 13] considered the notion of residual risk, which corresponds
to a risk measure (such as the value-at-risk and expected shortfall) applied to the differ-
ence between a risk (in terms of a random loss) and the corresponding capital estimator.
They shown that capital estimators can be built, using either parametric bootstrapping or
a predictive distribution, which lower the impact of parameter uncertainty on the residual
risk (and even fully compensate it for some risk measures and location-scale families).
Pitera and Schmidt [70] revisited the notion of unbiasedness in the context of financial
risk estimation and backtesting procedures, and used it to compare various estimators, for
several risk measures (mainly the value-at-risk and expected shortfall), both theoretically
(under the assumption of a normally distributed risk) and with NASDAQ data.

2.1.3 The present contribution
In this chapter, we consider the setting where the risk represents a future random loss,
whose parametric distribution belongs to a transformed location-scale family. The loss
must be backed with some capital, which, ideally, yields some target solvency probabil-
ity. That loss could for instance represent the aggregate loss of an insurance company
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complying with Solvency II regulation, who must therefore hold a capital that leaves it
with a solvency probability of at least 99.5% over a one-year time horizon. Other exam-
ples are public infrastructures such as dykes or nuclear plants, which are often supposed
to be built so as to cope with various types of extreme natural events that are expected to
occur, for instance, once every 10′000 years (in that case the target annual solvency prob-
ability would be 99.9%). Note that for those other examples the loss and capital would
typically not be in monetary units.

However, in that setting, we assume that parameter uncertainty is at play (and possibly
model uncertainty too), which prevents to calculate the desired capital amount, and hence
the latter estimated from some available data. Our setting is thus closely related to that
of Gerrard and Tsanakas [47] (but our problem is formulated in terms of solvency rather
than failure or ruin), and our main contributions consist of:

(a) Firstly, we extend the above-mentioned approach (ii) of Gerrard and Tsanakas [47]
by relaxing some of their assumptions (see Remark 2.5.2), and show that a predic-
tive distribution can also be built in that more general framework, which allows to
calculate a capital that yields a target expected solvency probability, despite param-
eter uncertainty.

(b) Secondly, we use the above to obtain an explicit and simple formula for calculating
the capital of a random loss following a Pareto distribution. Thanks to (a), that
formula can not only be used when the data is a Pareto random sample, but also
when it consists of consecutive order statistics of a larger Pareto random sample.

(c) Thirdly we consider the situation where one ignores the overall model of the random
loss, but one knows that its distribution has a Pareto-type tail. That situation can
be seen as a particular type of model uncertainty, and we propose addressing it by
using the formula obtained in (b), to calculate the capital using only the largest
order statistics of the data. This approach is then illustrated through a numerical
example.

The result in (a) relies on a lemma that we prove in this chapter, and from which inci-
dentally an interesting discussion arises on the connection between Bayesian and fiducial
inference. Yet, since that discussion relates to statistical inference rather than risk man-
agement, it is not linked with the core topic of this article, and we moved it to appendix.

The rest of the chapter is organized as follows. In Section 2.2, we introduce our no-
tation and provide some useful reminders. In Section 2.3, we describe the setting and
assumptions that we consider in the sequel. In Section 2.4, we introduce and discuss the
notion of expected solvency probability. In Section 2.5, we first recall and illustrate the
result according to which, when parameter uncertainty is involved, capital calculation via
simple maximum likelihood estimation does not provide the targeted solvency probabil-
ity in general. Afterwards, we derive the results (a), and provide some calculation details
and examples. In Section 2.6 we consider the Pareto case, and hence treat (b). In Section
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2.7, we address (c), i.e. capital calculation when both parameter and model uncertainty
are involved. Section 2.8 then concludes, and in the appendix we discuss the connection
between Bayesian and fiducial inference in Section 2.9, whereas the proofs are provided
in Section 2.10.

2.2 Preliminaries
In the remainder, all random variables are defined on the common probability space
(Ω,F ,P). Also, all random variables and random vectors are written in capital let-
ters, and all vectors are written in bold letters. We denote the set of real numbers by
R = (−∞,+∞), and that of positive and strictly positive real numbers respectively by
R0 = [0,+∞) and R+ = (0,+∞).

Let Q = (Q1, ..., Qd) be a continuous random vector of dimension d ≥ 1 (note that a
random variable can be defined as a random vector of dimension 1, so the notation rela-
tive to random vectors that is hereafter introduced also applies to random variables). The
ith greatest element (order statistics) of Q are denoted by Qi:d, for each i, so Q1:d ≤
... ≤ Qd:d. The joint cumulative distribution function (cdf) and joint probability den-
sity function (pdf) of Q at x = (x1, ..., xd) ∈ Rd are written as FQ(x) = P(Q1 ≤
x1, ..., Qd ≤ xd) and fQ(x) = d

dx1
· · · d

dxd
FQ(x). The copula and copula density of Q at

u = (u1, ..., ud) ∈ [0, 1]d are denoted by CQ(u) = P(FQ1(Q1) ≤ u1, ..., FQd
(Qd) ≤ ud)

and cQ(u) = d
du1

· · · d
dun

CQ(u). The version of Q, given that another random vector R
has value r, is denoted by (Q|R = r), and we write the corresponding conditional cdf
and pdf by FQ|R(·|r) and fQ|R(·|r). If the distribution of Q depends on some parameter
θk, then depending on the context we may write Q as Q(θ), and its cdf, pdf, copula and
copula density are denoted by FQ(·;θ), fQ(·;θ), CQ(·;θ) and cQ(·;θ).

Consider some mapping s(·) : Rd → Rz, where z ≥ 1. Then the resulting random
vector S = s(Q) = (S1, ..., Sz) is said to be a statistic of Q. If the distribution of Q de-
pends on a parameter θ, so does the distribution of any statistic S = s(Q) = (S1, ..., Sz),
and hence we may write S and each Si as S(θ) and Si(θ).

There exist various types of statistics, and for later use we recall that of a sufficient statis-
tic.

Definition 2.2.1. Let S = s(Q) be a statistic. If fQ(x;θ) can be decomposed as

fQ(x;θ) = γ1(s(x);θ)γ2(x), for all x ∈ R and θ ∈ P ,

where γ1(·;θ) and γ2(·) are two non-negative functions, and γ2(·) does not depend on θ,
then S is said to be a sufficient statistic of Q.

Finally, the value-at-risk at level p ∈ [0, 1] of a random variableQ is written as VaRp[Q] =
inf{x ∈ R : FQ(x) ≥ p}. Also, we recall that for any increasing and continuous function
ζ(·) and p ∈ [0, 1], we have

VaRp[ζ(Q)] = ζ(VaRp[Q]). (2.1)
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For a proof, see e.g. Theorem 1 in Dhaene et al. [30].

2.3 The setting

2.3.1 General setting
Let Y be a continuous random variable representing a future loss, whose distribution de-
pends on a two-dimensional parameter θ = (θ1, θ2). We ignore the value of θ, but we
know the distribution family DY = {fY (·;θ),θ ∈ P}, with P = R × R+ being the set
of possibles values for θ, or parameter space for short. Also, we observed the realization
of sample X = (X1, ..., Xn), where X1, ..., Xn are n > 1 continuous random variables.
The marginal distribution of each Xi depends on the same parameter θ as Y , and each
marginal family DXi

= {fXi
(·;θ),θ ∈ P} is assumed to be known. Note that since the

distribution of each Xi depends on θ, so does the distribution of X.

It is then assumed that

X(θ) and Y (θ) are independent, for all θ ∈ P . (A1)

Regarding random variablesX1(θ), ..., Xn(θ), they may or may not be mutually indepen-
dent and identically distributed (iid). For example, X can be a random sample of size n
(iid case), or the n largest order statistics of a larger random sample (non-iid case). How-
ever in any case, we assume that the dependence structure of X(θ) does not depend on θ,
which in terms of the copula CX(·;θ) means that

CX(·;θ) is independent of θ, (A2)

and we thus write CX(·;θ) = CX(·). Moreover, we assume that CX(·) is known. There-
fore, since on the one hand each distribution family DXi

is known, and on the other hand
by Sklar’s theorem [75] for any θ ∈ P we have

fX(x;θ) = cX(FX1(x1;θ), ..., FXn(xn;θ))
n∏

i=1

fXi
(xi;θ), for all x ∈ Rn,

the pdf fX(·;θ) is also known, for all θ ∈ P .

The respective domains of X(θ) and Y (θ) may or may not depend on θ, and we write
them as X (θ) = {x ∈ Rn : fX(x;θ) > 0} and Y(θ) = {y ∈ R : fY (y;θ) > 0}.
Finally, the domains of X and Y induced by P are denoted by X = ∪θ∈PX (θ) and
Y = ∪θ∈PY(θ).

2.3.2 Transformed location-scale families
Each marginal distribution family DXi

is assumed to be a transformed location-scale fam-
ily. So, by definition, for each i we can find a strictly increasing function gi(·) : R →
Xi ⊆ R, such that Xi(θ) can be written as

Xi(θ) = gi(θ1 + θ2Ui), for all θ ∈ P , (2.2)
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where, letting g−1
i (·) being the inverse of gi(·), and e = (0, 1), the random variable Ui

is defined as Ui = g−1
i (Xi(e)), and hence it is continuous and its distribution does not

depend on θ. It may be recognized that the distribution family of random variable θ1 +
θ2Ui is by definition a location-scale family, with location and scale parameters θ1 and
θ2. Therefore, since DXi

is the distribution family of the transformed random variable
Xi(θ) = gi(θ1 + θ2Ui), it is said to be a transformed location-scale family. In Example
2.3.1 the Pareto distribution is shown to define a transformed location-scale family, and
other examples are listed in Table 2.1.

Example 2.3.1. Let Ui be an Exponential(1) random variable. Let further gi(x) = ex, and
consider the resulting random variable Xi(θ) = gi(θ1 + θ2Ui) = eθ1+θ2Ui , with θ ∈ P . It
may be checked that Xi(θ) has pdf

fXi
(x;θ) = θ−1

2 (eθ1)θ
−1
2 x−θ−1

2 −11{x > eθ1},

where 1{E} is the indicator function of the event E. While unusually parametrized, this
turns out to be the pdf of a Pareto(τ, α) random variable, where τ = eθ1 and α = θ−1

2 .
Also, since here gi(·) is a strictly increasing function, the distribution family of Xi(θ)
is by construction a transformed location-scale family. Therefore, the Pareto distribution
defines a transformed location-scale family.

Define the mappings g(·) and g−1(·), such that

g(x) = (g1(x1), ..., gn(xn)), for all x ∈ Rn,

and
g−1(x) = (g−1

1 (x1), ..., g
−1
n (xn)), for all x ∈ X ,

and note that from Assumption (A2), random vectors X(e) and X(θ) have the same
copula, for all θ ∈ P . Therefore, letting U = g−1(X(e)) = (U1, ..., Un), Assumption
(A2) and Equation (2.2) allow to write X(θ) as

X(θ) = g(θ1 + θ2U), for all θ ∈ P , (2.3)

where θ1+θ2U = (θ1+θ2U1, ..., θ1+θ2Un), by convention. The domain of U is denoted
by U .

The distribution family DY is also assumed to be a transformed location-scale family,
and hence as for each Xi, we can find a strictly increasing function h(·) : R → Y ⊆ R
such that Y (θ) can be written as

Y (θ) = h(θ1 + θ2V ), for all θ ∈ P , (2.4)

where V = h−1(Y (e)).

We now illustrate the above overall setting with an example, which will then reappear
throughout this article.
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Distribution family gi(x) fUi
(x) fXi

(x;θ)

Uniform(α, β)
x

1, x ∈ (0, 1) 1
β−α

, x ∈ (α, β)

α, β ∈ R, and α > β Uniform(0, 1) θ1 = α, θ2 = β − α

Normal(µ, σ)
x

φ(x), x ∈ R 1
σ
φ
(
x−µ
σ

)
, x ∈ R

µ ∈ R, σ > 0 Normal(0, 1) θ1 = µ, θ2 = σ

Log-Normal(µ, σ)
ex

φ(x), x ∈ R 1
σx
φ
( ln(x)−µ

σ

)
, x > 0

µ ∈ R, σ > 0 Normal(0, 1) θ1 = µ, θ2 = σ

Pareto(τ, α)
ex

e−x, x > 0 αταx−α−1, x > τ

τ > 0, α > 0 Exponential(1) θ1 = ln(τ), θ2 = α−1

Weibull(λ, κ)
ex

ex−ex , x ∈ R κ
λ
(x
λ
)κ−1e−(x/λ)κ , x > 0

λ > 0, κ > 0 −Gumbel(0, 1) θ1 = ln(λ), θ2 = κ−1

Table 2.1: Examples of transformed location-scale families. The function φ(·) denotes
the pdf of a Normal(0, 1) random variable.

Example 2.3.2. Let U1, ..., Un and V be mutually independent Exponential(1) random
variables, with gi(x) = ex, for each i, and h(x) = ex. Then as seen in Example 2.3.1,
for θ ∈ P , each Xi(θ) = eθ1+θ2Ui and Y (θ) = eθ1+θ2V are Pareto(eθ1 , θ−1

2 ), so each
distribution family DXi

and DY is a transformed location-scale family. Moreover, since
U1, ..., Un and V are mutually independent, so are X1(θ), ..., Xn(θ) and Y (θ), and As-
sumption (A1) and (A2) are thus satisfied. Also, note that each gi(·) and h(·) map R to
R+. As a result, we have Xi = R+, for each i, and Yi = R+, and finally X = Rn

+.

2.3.3 Equivariant statistic
Consider a pair of functions t1(·) and t2(·), each mapping X to a subset of R, and satisfy-
ing the equivariance properties

t1(g(θ1 + θ2g
−1(x))) = θ1 + θ2t1(x), for all x ∈ X and θ ∈ P , (P1)

and
t2(g(θ1 + θ2g

−1(x))) = θ2t2(x), for all x ∈ X and θ ∈ P . (P2)

For the ease of notation, we may then assemble t1(·) and t2(·) into the single mapping
t(·) = (t1(·), t2(·)).

There exist many such pairs of functions. For instance, the average and standard-deviation
of g−1(x) can be shown to satisfy Properties (P1)-(P2), respectively. Hereafter we provide
another illustration, with more details.
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Example 2.3.3. Consider the setting of Example 2.3.2, so that gi(x) = ex and g−1
i (x) =

ln(x), for each i, and the ith order statistic of g−1(x) is thus g−1
i:n (xi:n) = ln(xi:n). Then

the pair of functions

t1(x) = g−1
1:n(x1:n) = ln(x1:n), for all x ∈ X ,

and

t2(x) =
n∑

i=1

(g−1
i:n (xi:n)− g−1

1:n(x1:n)) =
n∑

i=1

(ln(xi:n)− ln(x1:n)), for all x ∈ X ,

respectively satisfy Properties (P1)-(P2): Consider the transformation g(θ1 + θ2g
−1(x)),

for x ∈ X . Since each gi(·) is strictly increasing, if θ ∈ P , then the transformation
g(θ1+θ2g

−1(x)) preserves the order of g−1(x) and we can thus write the ith order statistic
of g(θ1 + θ2g

−1(x)) as gi:n(θ1 + θ2g
−1
i:n (xi:n)) = eθ1+θ2 ln(xi:n), for each i. This yields

t1(g(θ1 + θ2g
−1(x))) = θ1 + θ2 ln(x1:n) = θ1 + θ2t1(x) and t2(g(θ1 + θ2g

−1(x))) =∑n
i=2(θ2 ln(xi:n) − θ2 ln(x1:n)) = θ2t2(x), for all x ∈ X and θ ∈ P , so Properties

(P1)-(P2) are indeed both satisfied.

For an arbitrary pair of such functions, consider the resulting statistic T = t(X) =
(T1, T2), where thus T1 = t1(X) and T2 = t2(X). Then Equation (2.3) and Properties
(P1)-(P2) make T being an equivariant statistic, in the sense that

T(θ) = (θ1 + θ2W1, θ2W2), for all θ ∈ P , (2.5)

with W = t(g(U)), and hence W1 = t1(g(U)) and W2 = t2(g(U)).

The domain of W is denoted by W , and we can for instance write it as W = {t(g(u)),u ∈
U}, so W depends on the distribution of U, via U , as well as on the functions t1(·) and
t2(·), via t(·). In the remainder, we assume that, among all the pairs t1(·) and t2(·) satis-
fying Properties (P1)-(P2), the distribution of U allows to find at least one such that

W ⊆ P . (A3)

Accordingly, from now on, the functions t1(·) and t2(·) are considered to satisfy Assump-
tion (A3), in addition to Properties (P1)-(P2).

Example 2.3.4. Consider the setting of Example 2.3.2, and let t1(·) and t2(·) be as in
Example 2.3.3. Then, after a few calculation steps, we obtain T1(θ) = θ1 + θ2U1:n and
T2(θ) = θ2

∑n
i=2(Ui:n − U1:n), so W1 = U1:n and W2 =

∑n
i=2(Ui:n − U1:n). For As-

sumption (A3) to be satisfied, the domain of W1 needs to be a subset of R, and that of W2

a subset of R+. Under the setting of Example 2.3.2, U1, ..., Un are mutually independent
Exponential(1) random variables. The domain of W1 is thus R+, and it then only remains
to check that of W2. But, beforehand, we would like to recall the well-known Rényi rep-
resentation [71], which for a sequence of mutually independent Exponential(1) random
variables U1, ..., Un allows to write

(U1:n, ..., Un:n)
d
=

(
1∑

j=1

U∗
j

n− j + 1
, ...,

n∑
j=1

U∗
j

n− j + 1

)
, (2.6)
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where d
= denotes the equality in distribution and U∗

1 , ..., U
∗
n are again mutually indepen-

dent Exponential(1) random variables. The latter will be useful again later in this article,
and here it allows to write

W2
d
=

n∑
i=2

i∑
j=2

U∗
j

n− j + 1
=

n∑
j=2

n∑
i=j

U∗
j

n− j + 1
=

n∑
j=2

U∗
j . (2.7)

The random variable W2 thus follows an Erlang(n − 1, 1) distribution, which can be
defined with either domain R0, or R+. In this article we follow the second option, leading
to W = R2

+ ⊂ P . In conclusion, we have shown that under the setting of Example 2.3.2,
the functions t1(·) and t2(·) introduced in example 2.3.3 ensures Assumption (A3) to be
satisfied.

The domain of T(θ) is defined as T (θ) = {t ∈ R2 : fT(t;θ) > 0}. Note that here and
throughout this article t denotes a vector t = (t1, t2), where t1 and t2 are two quantities,
which must not be confused with the functions t1(·) and t2(·). The domain of T induced
by P is then written as T = ∪θ∈PT (θ), and from Assumption (A3) it satisfies

T = P . (2.8)

Using t1(·) and t2(·), we then define the mapping a(·), as

a(x) =
g−1(x)− t1(x)

t2(x)
, for all x ∈ X .

This yields the statistic A = a(X) = g−1(X)−T1

T2
, which from Equations (2.3) and (2.5)

can be expressed as

A =
U−W1

W2

. (2.9)

Since W1 and W2 are functions of U only, they do not depend on θ, and hence nor does
the distribution of A, which by definition makes it being an ancillary statistic (see e.g.
Basu [10] for some background).

Besides that, from T and Y we define the random variable B = h−1(Y )−T1

T2
, and according

to Equations (2.4) and (2.5), the latter can be expressed as

B =
V −W1

W2

. (2.10)

Therefore, as for A, the distribution B does not depend on θ. However, B is calculated
from both X (via T) and Y , and it is thus not a statistic of X, contrarily to A. Also, note
that Assumption (A1) makes U = g−1(X(e)) and V = h−1(Y (e)) being independent.
Therefore, since V is a continuous random variable, so is B.

Finally, notice that by construction X and Y can be rewritten using A, B and T, as

X = g(T1 + T2A), (2.11)

and
Y = h(T1 + T2B), (2.12)

which will be helpful later.
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2.4 Expected Solvency probability
In the setting of Section 2.3, assume that we need to determine an amount of capital to
back the future loss Y , so as to reach a given target solvency probability of p ∈ [0, 1],
where p is typically smaller but close to 1. By definition, this amount of capital corre-
sponds to the value-at-risk of Y at level p, and shall therefore be calculated as

VaRp[Y (θ)] = inf{x ∈ R : FY (x;θ) ≥ p}.

However, we do not know the value of the parameter θ, so we cannot calculate the above
quantity. Let x be the observed realization of X, and remember that the distribution of
the latter random vector also depends on θ. The data x thus contains information about
that unknown parameter, and one aims to use it for estimating the above value-at-risk.

Let δp(x) be such an estimate, where δp(·) is some estimator function. Of course, for
one particular value of the observed sample x, the estimated value-at-risk δp(x) is likely
to differ from VaRp[Y (θ)]. Therefore, by holding δp(x) as capital, the resulting solvency
probability FY (δp(x);θ) is likely to differ from the targeted one of p. Yet, in order to as-
sess the reliability of the estimator δp(·), we may consider the resulting expected solvency
probability

Pθ(Y ≤ δp(X)) = Eθ[FY (δp(X);θ)] =

∫
x∈X (θ)

FY (δp(x);θ)fX(x;θ) dx, (2.13)

which can be interpreted as follows. Assume that X has not yet realized, but we already
decided to rely on some estimator δp(·), for calculating the future capital that will back
Y . At that point, the capital turns out to be the random variable δp(X), of which δp(x) is
thus the future realization. Accordingly, the resulting solvency probability is the random
variable FY (δp(X);θ), and probability (2.13) is simply its expectation.

In some situations, it is possible to find one or more estimators δp(·) with the property
to make the above expected solvency probability always equal the targeted one of p, i.e.

Pθ(Y ≤ δp(X)) = p, for all θ ∈ P . (2.14)

This potential property of an estimator makes it a good candidate for capital calculation,
since it ensures that the resulting solvency probability can be expected to equal the target
solvency probability, despite parameter uncertainty. By contrast, an estimator that does
not have property (2.14) can hardly be regarded as suitable for capital calculation under
parameter uncertainty.

Remark 2.4.1. In the literature, the above property has been considered multiple times,
by several authors and under different denominations. For instance, Francioni and Herzog
[41] called an estimator δp(·) satisfying Equation (2.14), a probability unbiased value-at-
risk estimator, Bignozzi and Tsanakas [13] said it to lead to a residual risk of zero, Pitera
and Schmidt [70] referred to it simply as an unbiased estimator, and Jarvis et al. [54] said
it to pass some percentile test (note that in the latter contribution, the reference distribution
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function of the maximum multiplier method yields infinite mean and variance, in contrast
to what was calculated in Table 2, and in the subsequent illustrations). Besides that,
in statistics (2.13) is viewed as a frequentist probability, and a value-at-risk (quantile)
estimator with property (2.14) is therefore said to be valid from a frequentist point of
view, see for instance Mukerjee and Dey [65].

2.5 Capital calculation under parameter uncertainty

2.5.1 Maximum likelihood estimation
In order to estimate the desired value-at-risk, a first option often consists to compute the
maximum likelihood estimate of θ,

θ̂(x) = argmax
θ∈P

fX(x;θ), (2.15)

then pick the corresponding distribution in DY for describing the risk Y , and finally come
up with the resulting estimated value-at-risk

δ̂p(x) = VaRp[Y (θ̂(x))] = inf{x ∈ R : FY (x; θ̂(x)) ≥ p}. (2.16)

In their Proposition 1, Gerrard and Tsanakas [47] have shown that when each DXi
and

DY are transformed location-scale families, and X1(θ), ..., Xn(θ) and Y (θ) are mutu-
ally independent given θ, the resulting expected solvency probability Pθ(Y ≤ δ̂p(X))
does not depend on θ and can thus be calculated despite not knowing the value of that
parameter. Also, and more importantly, it turns out that for finite sample size n, that prob-
ability does not equal the target solvency probability of p in general, and for relevant cases
(essentially p close to 1) it is even strictly smaller than p. This is shown for various dis-
tribution families in [47], and we illustrate it for the Pareto family in Example 2.5.1 below.

So the estimator δ̂p(·) generally leads to a capital whose solvency probability cannot be
expected to equal the targeted one, and this can be understood as follows. When esti-
mating VaRp[Y (θ)] with the estimated distribution FY (·; θ̂(x)), the maximum likelihood
estimate θ̂(x) is implicitly treated as the true parameter value, which boils down to ig-
nore parameter uncertainty. Indeed, while – given θ̂(x) – the distribution FY (·; θ̂(x)) is
one the of most likely true descriptions of Y ’s aleatoric uncertainty, it is only one among
all the other possible distributions in DY . Depending on x, the individual parameters in
θ̂(x) can be either under- or overestimating their true value. Those two kinds of esti-
mation errors tend to have non-symmetric effects on the resulting solvency probability
FY (δ̂p(x);θ), which usually do not compensate on average. Therefore, by ignoring pa-
rameter uncertainty, these eventual non-symmetric effects are not taken into account, and
this generally makes the resulting expected solvency probability Pθ(Y ≤ δ̂p(X)) differ
from the targeted one of p.

Example 2.5.1. Consider the setting of Example 2.3.2, so thatX1(θ), ..., Xn(θ) and Y (θ)
are iid Pareto(eθ1 , θ−1

2 ) random variables. The distribution of Y (θ) is thus FY (x;θ) =
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1 − ( e
θ1

x
)θ

−1
2 , for all x ≥ eθ1 and θ ∈ P , and hence the value-at-risk to be estimated may

be expressed as VaRp[Y (θ)] = eθ1−θ2 ln(1−p). Regarding the pdf of X(θ), it can be written
as

fX(x;θ) =
n∏

i=1

fXi
(xi;θ) =

n∏
i=1

fXi
(xi:n;θ)

= θ−n
2 enθ1θ

−1
2

(
n∏

i=1

xi:n

)−θ−1
2 −1

1{x1:n > eθ1}, for all x ∈ X and θ ∈ P ,

which yields maximum likelihood estimates θ̂1(x) = t1(x) and θ̂2(x) = t2(x)n
−1, where

t1(x) = ln(xi:n) and t2(x) =
∑n

i=2(ln(xi:n)− ln(x1:n)), as in Example 2.3.3. The result-
ing estimated value-at-risk is then δ̂p(x) = et1(x)−t2(x)n−1 ln(1−p). Letting T1 = t1(X) and
T2 = t2(X), we obtain the expected solvency probability Pθ(Y ≤ δ̂(X)) = P(Y (θ) ≤
eT1(θ)−T2(θ)n−1 ln(1−p)), for all θ ∈ P . Since T1(θ) = θ1 + θ2W1 and T2(θ) = θ2W2, the
latter simplifies to

Pθ(Y ≤ δ̂p(X)) = Pθ(B ≤ n−1 ln(1− p)), for all θ ∈ P , (2.17)

whereB = V−W1

W2
, as defined in Section 2.3.3, and withW1 = U1:n andW2 =

∑n
i=2(Ui:n−

U1:n). Since U and V are independent, so are V and (W1,W2). Then, on the one hand,
V is an Exponential(1) random variable. On the other hand, since the setting here is the
same as that of Example 2.3.4, from Equations (2.6) and (2.7) we have that W1 and W2

are jointly distributed as W ∗
1 = U∗

1/n and W ∗
2 =

∑n
i=2 U

∗
i , which are two independent

random variables, respectively following an Exponential(n) and Erlang(n − 1, 1) distri-
bution. Therefore, since V , W1 and W2 are mutually independent and do not depend on
θ, after some calculation steps we obtain

Pθ(Y ≤ δ̂p(X)) = 1− n

n+ 1

(
1− n−1 ln(1− p)

)−n+1

, for all θ ∈ P . (2.18)

Hence, while in the limit have

lim
n→∞

Pθ(Y ≤ δ̂p(X)) = 1− eln(1−p) = p, for all θ ∈ P ,

for finite n the expected solvency probability differs from p in general, and it is strictly
smaller than p, for p smaller but close to 1. This is illustrated in Figure 2.1, where we plot-
ted the expected solvency probability (2.18) as a function of n, for p ∈ {0.99, 0.995, 0.999}.

2.5.2 Predictive estimation
In order to account for parameter uncertainty while estimating the value-at-risk VaRp[Y (θ)],
an alternative option consists to rely on a predictive distribution, whose calculation can
be described as follows. In a first step, the unknown parameter θ = (θ1, θ2) is replaced by
an independent random vector Θ = (Θ1,Θ2), so that X = X(θ) and Y = Y (θ) become
the mixtures X = X(θ) and Y = Y (Θ), and we may write X(θ) = (X|Θ = θ) and
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Figure 2.1: Expected solvency probability Pθ(Y ≤ δ̂p(X)) as a function of the
sample size n, for a Pareto random loss Y , and target solvency probabilities p ∈
{0.99, 0.995, 0.999}.

Y (θ) = (Y |Θ = θ). The random parameter Θ is assumed to be distributed according
to some prior pdf fΘ(·), which is meant to represent our epistemic (parameter) uncer-
tainty, before considering the data. On observing x, that prior is then updated according
to Bayes’ formula, leading to the posterior pdf

fΘ|X(·|x) =
fX(x; ·)fΘ(·)∫

θ∈P fX(x;θ)fΘ(θ) dθ
. (2.19)

The predictive distribution of Y can be subsequently obtained by averaging all the distri-
butions in DY according to their posterior probabilities, as

FY |X(·|x) =
∫
θ∈P

FY (·;θ)fΘ|X(θ|x) dθ. (2.20)

That is, given prior fΘ(·) and data x, for all θ ∈ P the quantity fΘ|X(θ|x) dθ is the pos-
terior probability attributed to θ of being the true value of the unknown parameter, and
hence to FY (·;θ) of being the true description of Y ’s aleatoric uncertainty.

That predictive distribution can then be used to estimate VaRp[Y (θ)] with the resulting
predictive value-at-risk

δ̃p(x) = VaRp[Y |X = x] = inf{x ∈ R : FY |X(x|x) ≥ p}. (2.21)
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By construction, the predictive distribution FY |X(·|x) accounts for both the aleatoric and
parameter uncertainty relative to the future loss Y , and hence so does the predictive value-
at-risk δ̃p(x). Yet, the reliability of the underlying estimator δ̃p(·) will depend on the par-
ticular prior it stems from, and the choice of the latter is therefore an important step.

In the capital calculation context that we are considering here, it is natural to choose
fΘ(·) such that the resulting estimator δ̃p(·) is endowed with property (2.14). As proven
in Theorem 2.5.1 below, in the setting of this article, that is achieved by the prior

fΘ(θ) ∝ θ−1
2 , for all θ ∈ P , (2.22)

which is the well-known Jeffreys’ independence prior or right Haar prior for a location-
scale parameter. This prior has several useful properties that makes it being viewed as
some sort of objective or neutral state of epistemic uncertainty (see for instance Kass and
Wasserman [57] for details).

Remark 2.5.1. Note that (2.22) defines an improper probability distribution, i.e. one can-
not find a normalizing constant that makes it integrate to 1 on its domain. According to the
axioms of probability theory, improper priors are thus not probability distributions. This
being said, the posterior and predictive distribution resulting from an improper prior may
still be proper probability distributions. Indeed, when computing a posterior according
to Bayes’ formula (e.g. Equation (2.19) above), the prior is involved in a way that makes
its normalizing constant (when it exists) cancel out. Therefore, the normalizing constant
of a prior virtually plays no role in that formula, and its eventual non-existence (because
of impropriety of the prior) does not necessarily halt for obtaining a proper posterior and
predictive distribution. In fact, an improper prior can usually be formulated as the limit
of a sequence of proper priors (see Jaynes [55]). And while in the limit the prior becomes
an improper probability distribution, the posterior and predictive distribution in which it
is involved can remain proper.

Notice that, as for X and Y , replacing θ by Θ makes the statistic T = T(θ) become the
mixture T = T(Θ), and from Equation (2.5), the latter can be written as

T = (Θ1 +Θ2W1,Θ2W2). (2.23)

Moreover, since prior (2.22) makes the domain of Θ to be P , the respective domain of
mixtures X, Y and T are now X , Y and T , as previously introduced.

Consider then the subsequent lemma.

Lemma 2.5.1. Let each DXi
be a transformed location-scale family. Then under Assump-

tions (A1)-(A3), the prior (2.22) makes U being independent of T.

An interesting discussion arises from that lemma, on the connection between Bayesian
and fiducial inference. But since that discussion is related to statistical inference in general
rather than capital calculation, we delegate it to the appendix in Section 2.9. For our
purpose here, Lemma 2.5.1 serves to prove the following theorem, which is the main
result of this section (the proof will be given in Section 2.10).
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Theorem 2.5.1. Let each DXi
and DY be transformed location-scale families, and p ∈

[0, 1]. Then under Assumptions (A1)-(A3), the prior (2.22) leads to Pθ(Y ≤ δ̃p(X)) = p,
for all θ ∈ P .

So under the applicability conditions of Theorem 2.5.1, the value-at-risk estimator δ̃p(·)
that results from the prior (2.22) satisfies property (2.14), and hence using it for capital
calculation ensures that the resulting expected solvency probability is always equal to the
targeted one of p, despite parameter uncertainty.

Remark 2.5.2. We would like to emphasize that Theorem 2.5.1 extends Proposition 2
in Gerrard and Tsanakas [47], by relaxing three of their assumptions. Firstly, the appli-
cability conditions of Theorem 2.5.1 do not include that X1(θ), ..., Xn(θ) are mutually
independent, but only that their dependence structure does not depend on θ, as stated
in Assumption (A2). This will be useful in Section 2.6, where X1(θ), ..., Xn(θ) are n
consecutive order statistics of a larger random sample, and hence they are not mutually
independent. Secondly, Proposition 2 in [47] relies on Proposition 1 of Severini et al. [74],
which requires that the domain of X(θ), i.e. X (θ), does not depend on θ. Regarding The-
orem 2.5.1, it also applies to cases where X (θ) depends on θ, such as X1(θ), ..., Xn(θ)
being Pareto or Uniform random variables. Thirdly, in [47] the predictive distribution is
built from the maximum likelihood estimate θ̂(x). Here the predictive distribution (2.20)
is built from x directly. Since in both cases the resulting capital yields the targeted sol-
vency probability, Theorem 2.5.1 shows that for achieving the latter result, the predictive
distribution needs not to be built from θ̂(x). In fact, as proven in Proposition 2.5.2 below,
if the random vector θ̂(X) turns out to be a sufficient statistic, then using θ̂(x) rather than
x does not affect the predictive distribution, and hence it does not affect the resulting cap-
ital either. On the contrary, if θ̂(X) is not a sufficient statistic (e.g. in the Weibull case, see
Example 2.5.3), then using θ̂(x) instead of x boils down to ignore some information con-
tained in the data, and the capital ends up being affected. That point is further discussed
in the following section.

Remark 2.5.3. Among the various assumptions on which Theorem 2.5.1 relies, there is
Assumption (A1), which establishes the independences of X and Y . This assumption is
classical in predictive inference problems, but it may be relevant to consider relaxing it
in some contexts, e.g. when dealing with time series. In fact, it turns out that there are
ways to allow for the dependence of Y on X and still obtain the result of Theorem 2.5.1,
for instance by letting X enter as a parameter in the distribution of Y , as long as the
transformed location-scale structure defined by Equation (2.4) is preserved. They may be
interesting applications to consider in that direction, but we leave this for future research.

2.5.3 Calculation issues
As we just proved in Theorem 2.5.1, the value-at-risk estimator δ̃p(·) resulting from the
prior (2.22) satisfies property (2.14). If one thus wishes to use it and hold δ̃p(x) as capital,
one needs to calculate the latter quantity. This can of course be done simply by plugging
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the prior (2.22) into Formula (2.19), so as to obtain the posterior

fΘ|X(θ|x) =
fX(x;θ)θ

−1
2∫

θ′∈P fX(x;θ
′)θ′−1

2 dθ′ , for all θ ∈ P , (2.24)

then calculate the resulting predictive distribution according to Formula (2.20), and finally
invert it for obtaining δ̃p(x), as expressed in Formula (2.21). As proven in Proposition
2.5.1 below, it turns out that when T is a sufficient statistic, we may proceed differently.
But beforehand, we need to recall the following well-known result. The proof is provided
in the appendix.

Lemma 2.5.2. If S = s(X) is a sufficient statistic of X, then we have FY |X(·|x) =
FY |S(·|s(x)), for all x ∈ X .

With this, we are ready to prove the following proposition.

Proposition 2.5.1. Let each DXi
and DY be transformed location-scale families, and

write t1(x) = t1 and t2(x) = t2. If T = t(X) is a sufficient statistic, then under
Assumptions (A1)-(A3), prior (2.22) leads to

FY |X(·|x) = FB

(
h−1(·)− t1

t2

)
,

and hence
δ̃p(x) = VaRp[Y |X = x] = h(t1 + t2VaRp[B]),

for any p ∈ [0, 1].

So concretely, if one is able to find a pair of functions t1(·) and t2(·) as described in
Section 2.3.3, which make T = t(X) a sufficient statistic of X, then Proposition 2.5.1
provides a useful simplification: Indeed, if we can then find an analytical expression for
the distribution of B, so we will for FY |X(·|x) and δ̃p(x). That case is illustrated in Ex-
ample 2.5.2 and Section 2.6. If not, then we can easily approximate FY |X(·|x) and δ̃p(x),
by simulating random variable B, from U and V (again, see Section 2.6).

In some situations, there may also simply be no such sufficient statistic (see Example
2.5.3). Obviously, then Proposition 2.5.1 cannot be applied, and hence for calculating
δ̃p(x) one must proceed as previously described, using posterior (2.24). An alternative
consists of replacing the sample X by a suitable equivariant statistic T, and hence con-
sider the predictive distribution FY |T(·|t) instead of FY |X(·|x). It is easy to see from
Lemma 2.5.2 that when T is not a sufficient statistic of X, the two latter predictive distri-
butions differ (and hence so will the resulting calculated capital amounts), meaning that
considering FY |T(·|t) instead of FY |X(·|x) boils down to ignore some part of the infor-
mation contained in the data x. Yet, by doing so the predictive distribution FY |T(·|t) may
be easier to calculate, and the resulting capital estimator still satisfies property (2.14), as
hereafter proven.
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Proposition 2.5.2. Let each DXi
and DY be transformed location-scale families, and

write t = (t1, t2), where t1(x) = t1 and t2(x) = t2. Then under Assumptions (A1)-(A3),
the prior (2.22) leads to

FY |T(·|t) = FB

(
h−1(·)− t1

t2

)
,

and hence
η̃p(t) = VaRp[Y |T = t] = h(t1 + t2VaRp[B]),

for any p ∈ [0, 1]. Moreover, the value-at-risk estimator η̃p(·) satisfies Pθ(Y ≤ η̃p(T)) =
p, for all θ ∈ P .

Remark 2.5.4. We would like to underline that according to Proposition 2.5.2, any equiv-
ariant statistic T leads to a value-at-risk estimator η̃p(·) which satisfies property (2.5.2),
as long as Assumption (A3) holds. Since different equivariant statistics in general lead
to different value-at-risk estimators, Proposition 2.5.2 in fact shows the potential multi-
plicity of estimators satisfying property (2.14). However, as we previously commented,
while it may be easier to calculate, considering an estimator η̃p(·) built from an equivariant
statistic which is not also sufficient boils down to throw out some part of the information
contained in the data.

Example 2.5.2. Let X1(θ), ..., Xn(θ) and Y (θ) be iid Log-Normal(θ1, θ2) random vari-
ables. As described in Table (2.1), the Log-Normal distribution defines a transformed
location-scale family. Also, since X1(θ), ..., Xn(θ) and Y (θ) are mutually independent,
Assumptions (A1) and (A2) are both satisfied. The maximum likelihood estimates of θ1
and θ2 are then θ̂1(x) = n−1

∑n
i=1 ln(xi) and θ̂2(x) = (n−1

∑n
i=1(xi− θ̂1(x))

2)1/2. It can
be checked that the functions t1(·) = θ̂1(·) and t2(·) = θ̂2(·) satisfy Properties (P1)-(P2)
(see e.g. Lemma 3 in Gerrard and Tsanakas [47]), which endows the resulting statistic
T = (t1(X), t2(X)) with the equivariance property

T(θ) = (θ1 + θ2W1, θ2W2), for all θ ∈ P ,

where W = (W1,W2) has domain P . Assumption (A3) is thus satisfied too, and the
applicability conditions of Proposition (2.5.2) therefore hold. It is then known that under
prior (2.22) (see Example 6 in Bignozzi and Tsanakas [13]), the predictive distribution of
Y given T is

FY |T(·|t) = tn−1

(√
n− 1

n+ 1

ln(·)− t1
t2

)
,

where tn−1(·) denotes the distribution of a standard Student-t random variable with n− 1
degrees of freedom. From Proposition 2.5.2 the resulting estimator η̃p(·) satisfies property
(2.14), and hence using it for calculating the capital always leads to an expected solvency
probability of exactly p, i.e. Pθ(Y ≤ η̃p(X)) = p, for all θ ∈ P . Finally, it can be shown
that here T is a sufficient statistic of X, which with Proposition 2.5.1 leads to

FY |X(·|x) = FY |T(·|t),

and hence δ̃p(·) = η̃p(·).
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Example 2.5.3. Let X1(θ), ..., Xn(θ) and Y (θ) be iid Weibull random variables, with
scale parameter eθ1 > 0 and shape parameter θ−1

2 . As described in Table 2.1, the Weibull
distribution defines a transformed location-scale family, and the pdf of X(θ) can be writ-
ten as

fX(x;θ) = θ−n
2 e−nθ1θ

−1
2 exp

(
− e−θ1

n∑
i=1

x
θ−1
2
i

) n∏
i=1

x
θ−1
2 −1
i .

For n = 2, we may take for instance t1(·) and t2(·) as in Example 2.3.3, and verify that
then fX(x;θ) factors as

fX(x;θ) = γ1(t(x);θ)γ2(x), for all x ∈ X and θ ∈ P , (2.25)

meaning that the resulting T = t(X) is, in that particular case, a sufficient statistic of X.
But for n > 2, the pair t1(·) and t2(·) does not allow to factor fX(x;θ) as in Equation
(2.25), and T is thus no more a sufficient statistic of X. In fact, for n > 2, the sum in
Equation (2.25) makes it impossible to find a two-dimensional sufficient statistic for X.

2.6 The Pareto case
In this section, we illustrate Theorem 2.5.1 and Proposition 2.5.1, for the special case
where the data is given by n consecutive order statistics of a larger Pareto random sam-
ple. We provide here more details than in Example 2.5.2, and hence we dedicated an
entire section to the present illustration.

For k ≥ 2, let X̃1(θ), ..., X̃k(θ) and Y (θ) be iid Pareto random variables, again with
scale parameter eθ1 > 0 and shape parameter θ−1

2 > 0. The setting is thus similar to that
of Example 2.3.2, but here we observe only

X = (X1, ..., Xn) = (X̃m+1:k, ..., X̃m+n:k),

i.e. the (m + 1)th to the (m + n)th order statistics, with 0 ≤ m ≤ k − n and n ≥ 2
(note that for m = 0 and n = k we recover the standard case where the whole sample is
observed).

We now check the applicability conditions of Theorem 2.5.1 and Proposition 2.5.1: Firstly,
since X̃1(θ), ..., X̃k(θ) and Y (θ) are iid, X(θ) and Y (θ) are independent, and hence As-
sumption (A1) is satisfied. Let Ũ1, ..., Ũk and V , be mutually independent Exponential(1),
and define

U = (U1, ..., Un) = (Ũm+1:k, ..., Ũm+n:k).

We can then write Xi(θ) = eθ1+θ2Ui , for each i, and Y (θ) = eθ1+θ2V , for all θ ∈ P ,
meaning that each DXi

and DY are transformed location-scale families. Also, the copula
of U does not depend on θ, and hence nor does that of X(θ), so Assumption (A2) is
satisfied. Regarding the functions t1(·) and t2(·), we consider

t1(x) = ln(x1:n), for all x ∈ X , (2.26)
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and

t2(x) =
n∑

i=2

(ln(xi:n)−ln(x1:n))+(k−m−n)(ln(xn:n)−ln(x1:n)), for all x ∈ X . (2.27)

Here t1(·) is as in Example 2.3.3, so it satisfies Property (P1). Then, since

t2(g(θ1 + θ2g
−1(x))) =

n∑
i=2

(θ1 ln(xi:n)− θ2 ln(x1:n)) + (k −m− n)(θ2 ln(xn:n)− θ2 ln(x1:n))

= θ2t2(x), for all x ∈ X and θ ∈ P ,

the function t2(·) satisfies Property (P2). The resulting statistic T therefore satisfies the
equivariance property T(θ) = (θ1 + θ2W1, θ2W2), for all θ ∈ P , where

W1 = U1:n = Ũm+1:k,

and

W2 =
n∑

i=2

(Ui:n − U1:n) + (k −m− n)(Un:n − U1:n)

=
n∑

i=2

(Ũm+i:k − Ũm+1:k) + (k −m− n)(Ũm+n:k − Ũm+1:k).

Since from the Rényi representation we have

(Ũ1:k, ..., Ũk:k)
d
=

(
1∑

j=1

Ũ∗
j

k − j + 1
, ...,

k∑
j=1

Ũ∗
j

k − j + 1

)
, (2.28)

where Ũ∗
1 , ..., Ũ

∗
k are iid Exponential(1) random variables, it turns out that W1 and W2 are

jointly distributed as

W ∗
1 = Ũ∗

m+1:k =
m+1∑
j=1

Ũ∗
j

k − j + 1

and

W ∗
2 =

n∑
i=2

m+i∑
j=m+2

Ũ∗
j

k − j + 1
+ (k −m− n)

m+n∑
j=m+2

Ũ∗
j

k − j + 1

=
n∑

i=2

i∑
j=2

Ũ∗
j+m

k − j −m+ 1
+ (k −m− n)

n∑
j=2

Ũ∗
j+m

k − j −m+ 1

=
n∑

j=2

n∑
i=j

Ũ∗
j+m

k − j −m+ 1
+ (k −m− n)

n∑
j=2

Ũ∗
j+m

k − j −m+ 1

=
n∑

j=2

n− j + 1

k − j −m+ 1
Ũ∗
j+m + (k −m− n)

n∑
j=2

Ũ∗
j+m

k − j −m+ 1

=
n∑

j=2

Ũ∗
j+m =

m+n∑
j=m+2

Ũ∗
j ,
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so W1 and W2 are independent, with W1 being the (m + 1)th order statistic of k iid
Exponential(1) random variables and W2 follows an Erlang(n − 1, 1) distribution. Ac-
cordingly, the domain of W is W = R+ ⊂ P , and Assumption (A3) is thus satisfied.
Finally, it turns out that T is a sufficient statistic. Indeed, since X1, ..., Xn are n consecu-
tive order statistics of iid random variables X̃1, ..., X̃k, we have (see e.g. [3])

fX(x;θ) =
k!

m!(k −m− n)!
FX̃(x1;θ)

m(1− FX̃(xn;θ))
k−m−n

·
n∏

i=1

fX̃(xi;θ)1{x1 ≤ ... ≤ xn}, for all x ∈ Rn and θ ∈ P ,

where FX̃(xi;θ) = FX̃m+i:k
(xi;θ) and fX̃(xi;θ) = fX̃m+i:k

(xi;θ), for each i. With this,
we may define X (θ) = {x ∈ Rn : fX(x;θ) > 0}, for all θ ∈ P , and X = ∪θ∈PX (θ),
so that from the term 1{x1 ≤ ... ≤ xn}, if x = (x1, ..., xn) ∈ X , then x = (x1:n, ..., xn:n)
necessarily, leading to

fX(x;θ) =
k!

m!(k −m− n)!
FX̃(x1:n;θ)

m(1− FX̃(xn:n;θ))
k−m−n

·
n∏

i=1

fX̃(xi:n;θ), for all x ∈ X and θ ∈ P .

Since we are dealing with the Pareto distribution, we thus obtain

fX(x;θ) =
k!

m!(k −m− n)!
FX̃(x1:n;θ)

m

(
eθ1

xn:n

)(k−m−n)θ−1
2

· θ−n
2 enθ1θ

−1
2

( n∏
i=1

xi:n

)−θ−1
2 −1

1{x1:n > eθ1}, for all x ∈ X and θ ∈ P .

Letting ς(θ) = θ−n
2 e(k−m)θ1θ

−1
2 and γ2(x) = k!

m!(k−m−n)!
(
∏n

i=1 xi:n)
−1, this results in

fX(x;θ) = ς(θ)FX̃(x1:n;θ)
mx−(k−m−n)θ−1

2
n:n

( n∏
i=1

xi:n

)−θ−1
2

1{x1:n > eθ1}γ2(x)

= ς(θ)FX̃(x1:n;θ)
m

(
x(k−m−n)
n:n xn1:n

n∏
i=1

xi:n
x1:n

)−θ−1
2

1{x1:n > eθ1}γ2(x)

= ς(θ)FX̃(x1:n;θ)
m

(
xk−m
1:n

(xn:n
x1:n

)(k−m−n)
n∏

i=1

xi:n
x1:n

)−θ−1
2

1{x1:n > eθ1}γ2(x)

= ς(θ)FX̃(e
t1(x);θ)m

(
e(k−m)t1(x)+t2(x)

)−θ−1
2 1{t1(x) > θ1}γ2(x)

= γ1(t(x);θ)γ2(x), for all x ∈ X and θ ∈ P ,

where γ1(t(x);θ) = ς(θ)FX̃(e
t1(x);θ)m

(
e(k−m)t1(x)+t2(x)

)−θ−1
2 1{t1(x) > θ1}, and by

definition T = t(X) is a sufficient statistic of X.
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The applicability conditions of Theorem 2.5.1 and Proposition 2.5.1 are thus satisfied,
and the prior (2.22) leads to

FY |X(·|x) = FB

(
ln(·)− t1

t2

)
where t1 = t1(x) and t2 = t2(x). Here in B = V−W1

W2
, the random variable V is an

Exponential(1), and the respective distributions of W1 and W2 are as stated above. More-
over, U and V are independent and W is a function of U only, so V and W are inde-
pendent. Therefore, since W1 and W2 are also independent, the triplet V , W1 and W2 are
mutually independent, which after some calculation steps leads to

FY |X(x|x) = 1− k −m

k + 1

(
1 +

ln(x)− t1
t2

)−n+1

, for x ≥ et1 ,

and hence
δ̃p(x) = et1+t2ρ(k,m,n,p), for p ≥ m+ 1

k + 1
, (2.29)

where ρ(k,m, n, p) = (( k+1
k−m

)(1− p))
−1
n−1 . For x < et1 , we may distinguish two cases:

If m = 0 (and thus n = k, i.e. the whole sample is observed), then the predictive distri-
bution is

FY |X(x|x) =
1

n+ 1

(
1− n

ln(x)− t1
t2

)−n+1

, for x < et1 ,

and hence
δ̃p(x) = et1+t2ϱ(n,p), for p <

1

n+ 1
,

where ϱ(n, p) = 1
n
(1− ((n+ 1)p)

−1
n−1 ).

Alternatively, if m > 0, then we did not find an analytical expression for FY |X(·|x), and
hence neither for δ̃p(x). So if m > 0 and we wish to calculate FY |X(x|x) or δ̃p(x) for
some x < et1 or p < m+1

k+1
, then we can either perform a numerical integration, using

the posterior (2.24) in Formula (2.20), or we may simply approximate the distribution
of B = V−W1

W2
by simulating V , W1 and W2, and then rely on the formulas provided by

Proposition 2.5.1 to obtain the quantity of interest.

2.7 Capital calculation under parameter and uncertainty
In the previous section we considered the problem of capital calculation under parameter
uncertainty, and hence the model was assumed to be known. We now consider the fol-
lowing variant, which includes a certain type of model uncertainty: Assume that we do
not know the overall distribution of Y , but we know that it has a Pareto-type tail. That
distribution can thus be written as

F (x) = 1− ℓ(x)x−α, for x ≥ 0,
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for some unknown scale parameter α > 0 and function ℓ(·) satisfying limx→∞ ℓ(x) =
τ ∈ (0,+∞). Besides, we observe the realization x̃ = (x̃1, ..., x̃k) of sample X̃ =
(X̃1, ..., X̃k), where X̃1, ..., X̃k are k > 1 mutually independent past occurrences of Y .
The desired capital is expected to be high enough, and hence to lie in the region where the
function ℓ(·) is close to have converged towards its constant value τ , where the behaviour
of Y is close to that of a Pareto(τ, α) random variable.

In that setting, we consider calculating the capital for backing Y , using the value-at-risk
estimator of the previous section (i.e. the one for the strict Pareto distribution, given by
Formula (2.29) for p ≥ m+1

k+1
), but to evaluate it with only the n greatest order statistics of

x̃, so with m = k − n and x = (x1, ..., xn) = (x̃k−n+1:k, ..., x̃k:k), where n is typically
not too large with respect to k. Hereafter, we assess the potential performance of this
approach by means of the following example.

We consider four scenarios for the true distribution of Y :

• The Pareto distribution F (x) = 1− ( τ
x
)α, for x > τ , with τ = 1 and α = 2.

• The Burr distribution F (x) = 1− υ
υ+xα , for x > 0, with υ = 1 and α = 2.

• The Fréchet distribution F (x) = e−x−α , for x > 0, with α = 2.

• The one-sided Student-t distribution F (x) = 2
∫ x

−∞
√
νπ

Γ( ν+1
2

)

Γ( ν
2
)
( ν
ν+y2

)
ν+1
2 dy − 1,

for x > 0, with ν = 2.

If the true distribution of Y is Pareto, then the model coincides with the one under which
the estimator (2.29) has been obtained, and the expected solvency probability will then be
exactly p, in accordance with Theorem 2.5.1. If not, then a model misspecification is at
play, and the expected solvency probability will differ from p. In the latter case, we will
be able to assess the robustness of estimator (2.29), by comparing the resulting expected
solvency probability with the targeted one of p.

The parameters τ, α, υ and ν were chosen so that the resulting Burr, Fréchet and one-
sided Student-t distributions can all be written as F (x) = 1 − ℓ(x)x−2, where each time
ℓ(x) = (1 − F (x))x2 and limx→∞ ℓ(x) = 1. For large x, these three distributions thus
behave like the Pareto distribution with scale parameter 1 and shape parameter 2. The four
distributions are plotted in Figure 2.2, and the corresponding log-log plots can be found in
Figure 2.3. As one can see, the Burr, Fréchet and one-sided Student-t distributions have
essentially converged to the Pareto distribution already at x ≈ 5.

For target solvency probability p = 0.995 and k ∈ {20, 50, 100, 200}, we plotted in
Figure 2.4 the expected solvency probability P(Y ≤ δ̃0.995(X)) resulting from those four
distributions, as a function of the number of greatest order statistics n, for n ranging from
2 to 20. Notice that as the original sample size k increases, a fixed n represents a smaller
fraction of observations in the sample. So for instance, n = 20 represents 100% of the
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Figure 2.2: Comparison of distributions F (x) = 1−x−2 (Pareto), F (x) = 1− (1+x2)−1

(Burr), F (x) = e−x−2 (Fréchet), and F (x) = 2
∫ x

−∞

√
2πΓ(1.5)( 2

2+y2
)1.5 dy − 1 (one-

sided Student-t).

observations in the sample of size k = 20, but only 10% of them in the sample of size
k = 200. Regarding those plots, we may note that for the Pareto distribution, the expected
solvency probability is always equal to p = 0.995, which is an application of Theorem
2.5.1, as stated above. Regarding the Burr, Fréchet and Student-t distributions, we would
like to make the following comments:

• For a fixed k, the expected solvency probability increases in n: Note that when an
element of X is small (e.g. smaller than 3), it comes from a part of the distribution
F (x) that does not behave like the corresponding Pareto distribution, and this bi-
ases the capital estimator. For a fixed k, as n increases, more of the greatest order
statistics of X̃ are considered, which are thus more likely to take small values. That
results in a larger bias, and hence in a larger deviation of the expected solvency
probability from p.

• For a fixed n, the expected solvency probability decreases in k: The explanation
here is similar to that of the previous point. That is, as k increases, X turns out to
be the n greatest order statistics of a larger sample. Therefore as k increases, the
values in X are more likely to be large, and hence to come from the part of F (x)
that behaves like the Pareto distribution. This leads to a smaller bias of the capital
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Figure 2.3: Comparison of the log-log plots of distributions F (x) = 1 − x−2

(Pareto), F (x) = 1 − (1 + x2)−1 (Burr), F (x) = e−x−2 (Fréchet), and F (x) =
2
∫ x

−∞

√
2πΓ(1.5)( 2

2+y2
)1.5 dy − 1 (one-sided Student-t).

estimator, and hence to a smaller deviation of the expected solvency probability
from p.

• In each case, the expected solvency probability for small n (e.g. n = 2) almost
equals p, even for the very small sample size k = 20. This is due to the fact that,
for small n, the elements in X are likely taking large enough values, where F (x)
is already very close to the Pareto distribution. As already commented, this results
in a small bias of the capital estimator, and hence the resulting expected solvency
probability is close to p. Considering this, it turns out that the trade-off between
bias and variance which frequently occurs in statistics, is here once again present:
On the one hand, by selecting a small n one keeps the bias small, which ensures the
expected solvency probability to be close to p. But on the other hand, the smaller n,
the larger the sensitivity of δ̃p(x) with respect to the data x, and hence the greater
variability of δ̃p(X).

• In each case, the expected solvency probability is greater than p, which can be un-
derstood as follows. In Figure 2.2, we can see that the Burr, Fréchet and one-sided
Student-t distributions are each above the Pareto distribution, and the difference is
important for small x. Those distributions then converge rather quickly to the Pareto
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Figure 2.4: Expected solvency probability P(Y ≤ δ̃p(X)) under capital estimator
(2.29) of the Pareto distribution, as a function of n, for original sample sizes k ∈
{20, 50, 100, 200}, target solvency probability p = 0.995, and under potential model mis-
specification.

distribution, which makes them being flatter than the Pareto distribution, and this is
reflected in the behaviour of each Xi in X. For the Pareto case, a flatter distribution
means a heavier tail, and hence since the estimator δ̃p(·) considered here is designed
for the Pareto distribution, it interprets the behaviour of each Xi as the signal of a
heavier tail. Therefore, the resulting capital ends up being larger than it should be,
resulting in an expected solvency probability greater than p.

In conclusion, this example illustrates the relatively good robustness potential of the cap-
ital estimator (2.29) against model misspecification (in particular when the sample size is
not too small), when the model is unknown but has a Pareto-type tail.

2.8 Conclusion
In this paper, we considered the problem of capital calculation under parameter and model
uncertainty, when the risk under consideration can be described by a transformed location-
scale family. After introducing the notion of the expected solvency probability, we proved
that, when only parameter uncertainty is involved, a special type of predictive distribution



2.9. APPENDIX I: DISCUSSION ABOUT LEMMA ?? 57

can be built, which allows to calculate a capital that yields a target expected solvency
probability, despite parameter uncertainty. Also, we provided useful tools that can help
the calculation of such predictive distributions. Afterwards, for the case where the random
loss follows a Pareto distribution, we used those tools to calculate the explicit formula for
the predictive distribution and the resulting capital estimator, which can still serve in case
the data consists of consecutive order statistics, rather than a complete random sample.
Finally, we tested and showed the robustness of the latter capital estimator against poten-
tial model misspecification, for distributions with a Pareto-type tail.
Interesting extensions of this work would include to consider other risk measures, such
as the expected-shortfall, and other types of distribution families, typically with more pa-
rameters. Also, note that in this chapter we considered only the objective prior (2.22). It
can be worthwhile to consider other types of priors, with resulting capital estimators δ̃p(·)
that do not yield exactly the targeted expected solvency probability, but which could e.g.
be more robust against model misspecification in some relevant situations. Finally, it may
be interesting to consider a variant of the approach of Section 2.7, in which the number
n of greatest order statistics entering into the capital estimator may vary within each sim-
ulated scenario, to avoid considering observations falling too far from the tail. However,
note that under such an approach n becomes a random variable, and this requires a careful
treatment.

Acknowledgements. I would like to thank Hansjörg Albrecher for his valuable inputs,
which have helped me substantially improve this chapter. I would like to also thank
Andreas Tsanakas for his valuable and insightful comments.

2.9 Appendix I: Discussion about Lemma 2.5.1

In Section 2.5.2, Lemma 2.5.1 proves and outlines a key property of the prior (2.22),
which then serves in the proof of Theorem 2.5.1. This lemma turns out to also provide an
interesting explanation of the relationship between fiducial inference and Bayesian infer-
ence, which we will discuss now.

In short, fiducial inference could be described as a set of methods, allowing to perform
statistical inference about an unknown parameter (or a random variable, or a vector de-
pending on it), but which (apparently) does not require to formulate a prior, contrarily to
the Bayesian approach. Fiducial inference was coined by Fisher, as an attempt to provide
a prior-free alternative to Bayesian inference. Fisher developed his method through a se-
ries of examples, see for instance [36], [37], [38], and [39]. At that time, most statisticians
rejected fiducial inference, because it was viewed as suffering from several inconsisten-
cies, to which Fisher did not provide satisfying answers (see Zabell [82] for a detailed
and interesting description of that history). After Fisher, several authors proposed and
developed a variety of extensions (for a recent overview, we refer to Dawid [27]), and
recent and well noted contributions include e.g. Hannig [51] and Hannig et al. [52].

In the setting of this article, a fiducial inference approach would be as follows (in order
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to distinguish it from the notation of the previous sections, we write here the true but un-
known value of the parameter as θ∗ = (θ∗1, θ

∗
2)): Consider a statistic T = t(X) = (T1, T2),

as described in Section 2.3.3, so that it satisfies

T(θ∗) = (θ∗1 + θ∗2W1, θ
∗
2W2), (2.30)

On observing x, we learn that T realized to t = t(x) = (t1, t2). Therefore, letting
w = (w1, w2) be the realization of W = (W1,W2), we can update Equation (2.30) to

t = (θ∗1 + θ∗2w1, θ
∗
2w2).

Yet, we observe x (and hence t1 and t2), not w1 and w2. If we knew θ∗, we could de-
duce the two latter quantities, as w = ((t1 − θ∗1)/θ

∗
2, t2/θ

∗
2). But since we do not know

θ∗, we may assume that, in consequence, we did not learn anything about W from t.
This assumption is the key point on which most fiducial inference methods rely, and it is
usually referred to as the fiducial argument. Correspondingly, when updating T to t in
Equation (2.30), according to the fiducial argument, we may keep W random (and let its
distribution remain unchanged), which results in t = (θ∗1 + θ∗2W1, θ

∗
2W2), and hence

θ∗ = (t1 − t2W1/W2, t2/W2). (2.31)

The fiducial argument thus leads to viewing θ∗ as a random vector, and a distribution
for θ∗ can then be obtained from t and W. That distribution is referred to as a fiducial
distribution for θ∗. The random vector (2.31) can then be plugged into Y (θ∗), leading to

Y (θ∗) = h(t1 + t2B), (2.32)

where B = V−W1

W2
is defined as in the previous sections. As for θ∗, a distribution can then

be calculated for Y (θ∗), but from t and B. This distribution is called a fiducial distribu-
tion for Y (θ∗).

In this example, it seems that indeed, the fiducial distributions of both θ∗ and Y (θ∗)
have been obtained without formulating a prior, as claimed by advocates of fiducial infer-
ence. Moreover, it can be verified that the fiducial distribution for θ∗ induced by Equation
(2.31) corresponds to a Bayesian posterior fΘ|T(·|t) calculated under the objective prior
(2.22). Likewise, it is easy to see from Proposition 2.5.2, that the fiducial distribution
for Y (θ∗) induced by Equation (2.32) corresponds to a predictive distribution stemming
from the prior (2.22). While this equivalence between the fiducial and objective Bayesian
approaches is well-known (see for instance Section 7 in Fraser [42]), to the best of our
knowledge, it has only been acknowledged, and never explained.

It turns out that Lemma 2.5.1 provides the explanation, which is as follows: According to
Lemma 2.5.1, the prior (2.22) has the property to make U and T being independent, and
since W1 and W2 are both functions of U only, it also makes W and T being indepen-
dent. In fact, an inspection of the proof of Lemma 2.5.1, in particular Equation (2.33),
reveals that for U (or W) and T being independent in the Bayesian setting, the prior must
satisfy Equation (2.22). As a result, raising the fiducial argument, i.e. assuming the inde-
pendence of W from T, simply appears to be an alternative way to uniquely selecting the
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prior (2.33).

We think that this connection can be used to purge fiducial inference from its apparent
inconsistencies and paradoxes. Also, and most importantly, we believe that the fiducial
argument, interpreted in a Bayesian framework, provides a very intuitive and promising
new application of the indifference principle. But this will be the topic of further research.

2.10 Appendix II: Proofs

2.10.1 Proof of Lemma 2.5.1
By the definition of independence, for proving Lemma 2.5.1 we may simply show that

fT|U(t|u)
fT(t)

= 1, for all t ∈ T and u ∈ U ,

which we do hereafter.

Letting w1 = t1(g(u)) and w2 = t2(g(u)), according to Equation (2.23) we can write

(T|U = u) = (Θ1 +Θ2w1,Θ2w2|U = u), for all u ∈ U ,
which, since Θ is an independent random vector, simplifies to

(T|U = u) = (Θ1 +Θ2w1,Θ2w2), for all u ∈ U .
This yields

fT|U(t|u) =
d

dt1

d

dt2
P(Θ1 +Θ2w1 ≤ t1,Θ2w2 ≤ t2), for all t ∈ T and u ∈ U .

From Assumption (A3), we have w1 = t1(g(u)) ∈ R and, more importantly, w2 =
t2(g(u)) > 0, for all u ∈ U , which in the above equation leads to

fT|U(t|u) =
d

dt1

d

dt2

∫ t2
w2

0

∫ t1−θ2w1

−∞
fΘ(θ1, θ2) dθ1 dθ2

=
1

w2

fΘ

(
t1 − t2

w1

w2

,
t2
w2

)
, for all t ∈ T and u ∈ U ,

(2.33)

and hence
fT|U(t|u)
fT(t)

=
1
w2
fΘ(t1 − t2

w1

w2
, t2
w2
)∫

u′∈U
1
w′

2
fΘ(t1 − t2

w′
1

w′
2
, t2
w′

2
)fU(u′) du′

, for all t ∈ T and u ∈ U ,

where w′
1 = t1(g(u

′)) ∈ R and w′
2 = t2(g(u

′)) > 0. From Equation (2.8), we have
t1 ∈ R and t2 > 0, for all t ∈ T , and hence since w1, w

′
1 ∈ R and w2, w

′
2 > 0, for all

u,u′ ∈ U , this yields (t1− t2
w1

w2
, t2
w2
) ∈ P and (t1− t2

w′
1

w′
2
, t2
w′

2
) ∈ P , so that under the prior

(2.22), the latter equation becomes
fT|U(t|u)
fT(t)

=
1∫

u′∈U fU(u
′) du′ = 1, for all t ∈ T and u ∈ U ,

which completes the proof.
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2.10.2 Proof of Theorem 2.5.1
Let x ∈ X , a = a(x) and t = t(x) = (t1, t2), where t1 = t1(x) and t2 = t2(x).
Moreover, note that from Equation (2.8) we have t2 > 0 necessarily, and by definition the
function h(·) is strictly increasing. As a result, Equations (2.11) and (2.12) lead to

FY |X(·|x) = FY |A,T(·|a, t) = FB|A,T

(
h−1(·)− t1

t2

∣∣∣ a, t).
Then, on the one hand, Assumption (A1) makes U = g−1(X(e)) and V = h−1(Y (e))
independent, so from Equation (2.23), and since Θ is an independent random vector, we
have that V is independent of T. On the other hand, from Lemma 2.5.1 we know that
under the prior (2.22), U is independent of T. Therefore, since according to Equations
(2.9) and (2.10), both A andB can be expressed as functions of U and V only, we deduce
that prior (2.22) makes A and B being both independent of T. In the above equation, this
leads to

FY |X(·|x) = FB|A

(
h−1(·)− t1

t2

∣∣∣ a),
and hence

δ̃p(x) = VaRp[Y |X = x] = h(t1 + t2VaRp[B|A = a]),

for any p ∈ [0, 1]. Using this, together with Equation (2.12), the resulting expected
solvency probability can be expressed as

Pθ(Y ≤ δ̃p(X)) = Pθ(h(T1 + T2B) ≤ h(T1 + T2VaRp[B|A]))

= Pθ(B ≤ VaRp[B|A])

=

∫
a∈Rn

Pθ(B ≤ VaRp[B|A]|A = a)fA(a) da

=

∫
a∈Rn

Pθ(B ≤ VaRp[B|A = a]|A = a)fA(a) da, for all θ ∈ P .

By the definition of the value-at-risk, and since B is a continuous random variable, we
have Pθ(B ≤ VaRp[B|A = a]|A = a) = p, for all θ ∈ P , which results in

Pθ(Y ≤ δ̃p(X)) =

∫
a∈Rn

pfA(a) da = p, for all θ ∈ P ,

and hence Theorem 2.5.1 indeed holds.

2.10.3 Proof of Lemma 2.5.2
By Definition 2.2.1, if S = s(X) is a sufficient statistic of X, then we have

fX(x;θ) = γ1(s(x);θ)γ2(x), for all x ∈ X and θ ∈ P ,

where γ2(x) does not depend on θ. In Formula (2.19), this yields

fΘ|X(θ|x) =
γ1(s(x);θ)fΘ(θ)∫

θ′∈P γ1(s(x);θ
′)fΘ(θ

′) dθ′ , for all x ∈ X and θ ∈ P .
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Also, note that since S is a function of X only, we can write

fΘ|X(θ|x) = fΘ|X,S(θ|x, s(x)), for all x ∈ X and θ ∈ P , (2.34)

which results in

fΘ|X,S(θ|x, s(x)) =
γ1(s(x);θ)fΘ(θ)∫

θ′∈P γ1(s(x);θ
′)fΘ(θ

′) dθ′ , for all x ∈ X and θ ∈ P . (2.35)

Now consider the posterior fΘ|S(θ|s(x)). Using the law of total probability, the latter can
be written as

fΘ|S(θ|s(x)) =
∫
x′∈X

fΘ|X,S(θ|x′, s(x)) dFX|S(x
′|s(x)), for all x ∈ X and θ ∈ P .

On the one hand, since S = s(X), the random vector (X|S = s(x)) obviously cannot
take a value x′ outside the set Xs(x) = {x′ ∈ X : s(x′) = s(x)}, meaning that

dFX|S(x
′|s(x)) = 0, for all x′ /∈ Xs(x), (2.36)

and hence

fΘ|S(θ|s(x)) =
∫
x′∈Xs(x)

fΘ|X,S(θ|x′, s(x)) dFX|S(x
′|s(x)), for all x ∈ X and θ ∈ P .

(2.37)
On the other hand, according to Equation (2.35), for any x′ ∈ Xs(x), we have

fΘ|X,S(θ|x′, s(x)) = fΘ|X,S(θ|x, s(x)), for all x ∈ X and θ ∈ P ,

which in Equation (2.37) leads to

fΘ|S(θ|s(s)) =
∫
x′∈Xs(x)

fΘ|X,S(θ|x, s(x)) dFX|S(x
′|s(x))

= fΘ|X,S(θ|x, s(x))
∫
x′∈Xs(x)

dFX|S(x
′|s(x))

= fΘ|X,S(θ|x, s(x)), for all x ∈ X and θ ∈ P ,

(2.38)

where the last line stems from Equation (2.36). By assembling Equations (2.34) and
(2.38), we obtain

fΘ|X(θ|x) = fΘ|S(θ|s(x)), for all x ∈ X and θ ∈ P .

Finally, using the above result in Formula (2.20) leads to

FY |X(·|x) =
∫
θ∈P

FY (·;θ)fΘ|S(θ|s(x)) dθ = FY |S(·|s(x)), for all x ∈ X ,

and the proof is complete.



2.10.4 Proof of Proposition 2.5.1
Since T is a sufficient statistic, from Lemma 2.5.2 we have

FY |X(·|x) = FY |T(·|t),

which from Proposition 2.5.2 results in

FY |X(·|x) = FY |T(·|t) = FB

(
h−1(·)− t1

t2

)
,

and hence
δ̃p(x) = VaRp[Y |X = x] = h(t1 + t2VaRp[B]),

for any p ∈ [0, 1], so the proof is complete.

2.10.5 Proof of Proposition 2.5.2
From Equation (2.12), we have

FY |T(·|t) = FB|T

(
h−1(·)− t1

t2

∣∣∣ t).
Using the same arguments as in the proof of Theorem 2.5.1, Lemma 2.5.1 leads to B
being independent of T, hence

FY |T(·|t) = FB

(
h−1(·)− t1

t2

)
,

and
η̃p(t) = VaRp[Y |T = t] = h(t1 + t2VaRp[B]),

for any p ∈ [0, 1]. Then again, proceeding as in the proof of Theorem 2.5.1, we obtain

Pθ(Y ≤ η̃p(T)) = Pθ(h(T1 + T2B) ≤ h(T1 + T2VaRp[B]))

= Pθ(B ≤ VaRp[B])

= p, for all θ ∈ P ,

which completes the proof.



Chapter 3

A note on risk assessment under
parameter uncertainty

This chapter is based on L. Vincent (2022): A note on risk assessment under parameter
uncertainty. Preprint, University of Lausanne [78].

Abstract. In the risk management literature, it has been shown several times that (Bayesian)
predictive distributions can be constructed so as to account for parameter uncertainty in a
relevant way. Those contributions however focused on risk assessment problems involv-
ing a single risk. In this note, we show that predictive distributions may be relevant for
resource allocation problems also, when several risks are involved and parameter uncer-
tainty is present for each of them.

3.1 Introduction

3.1.1 Estimated and predictive distributions

This note considers the problem of risk assessment under parameter uncertainty. The
setting is as follows. Let X be a continuous random variable representing a risk. The
distribution of X depends on some parameter θ (possibly a vector) and is thus denoted
by F (x; θ) = Pθ(X ≤ x). The function F (x; θ) is known, but the value of θ is not.
Rather, the realization x = (x1, ..., xn) of a random vector X = (X1, ..., Xn) is observed,
where X1, ..., Xn denote n > 1 mutually independent occurrences of X . The resulting
likelihood function is ℓ(θ|x) =

∏n
i=1 f(xi; θ), where f(x; θ) = d

dx
F (x; θ) denotes the

probability density function of X .

In this setting, assume that one needs to come up with a distribution forX , so as to inform
some risk management decision process. The first option would often be to calculate the
maximum likelihood estimate θ̂(x) = argmaxθ ℓ(θ|x) of the unknown parameter, and
then use it to estimate the distribution of X simply as

F̂ (x|x) = F (x; θ̂(x)).

63
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By definition, F̂ (x|x) is the distribution which is most likely to have generated the data
x, and one may reasonably rely on it for describing the risk X . However, by doing so one
implicitly treats θ̂(x) as the true parameter value, which boils down to ignore parameter
uncertainty. As shown for instance by Gerrard and Tsanakas [47], Fröhlich and Weng
[43] and Pitera and Schmidt [70], this generally leads to an underestimation of risk, in
particular when the sample size n is small.

In order to account for parameter uncertainty, an alternative option is to calculate a predic-
tive distribution. To do so, one must first select a prior π(θ), which is meant to represent
one’s uncertainty about the true parameter value before considering the data x. The data
can then be used to update the prior according to Bayes’ formula, leading to the poste-
rior π(θ|x) ∝ ℓ(θ|x)π(θ). The predictive distribution is finally obtained by averaging all
possible distributions with that posterior π(θ|x), as

F̃ (x|x) =
∫
F (x; θ)π(θ|x) dθ.

The predictive distribution F̃ (x|x) is thus an average distribution, which by construction
accounts for parameter uncertainty, through π(θ|x). Also, it generally differs from the
above estimated distribution F̂ (x|x), just as the mean of a random variable typically dif-
fer from its mode.

Of course, the relevance of a predictive distribution depends on the particular prior it
stems from, and the selection of the latter is thus a question of interest. Once a prior
is selected, it is natural to compare the resulting predictive distribution with the above
estimated distribution, so as to determine the concrete consequences of taking into ac-
count parameter uncertainty. For example, say that one wishes to determine the amount
of resources (capital) required for backing X , in order to have a survival (solvency) prob-
ability of p ∈ (0, 1). This quantity is by definition the value-at-risk (or quantile) at level
p, which in principle can be calculated as δp = inf{x ∈ R : F (x; θ) ≥ p}. Yet, since θ is
unknown, so is δp, and hence the value-at-risk must be estimated. Consider the estimates
δ̂p(x) = inf{x ∈ R : F̂ (x|x) ≥ p} and δ̃p(x) = inf{x ∈ R : F̃ (x|x) ≥ p}. In order to
assess their respective reliability, one may study the properties of the related estimators
δ̂p(X) and δ̃p(X). For instance, these estimators yield the expected survival probabili-
ties E[F (δ̂p(X); θ)] and E[F (δ̃p(X); θ)], and Gerrard and Tsanakas [47] showed that for a
large class of distributions F (x; θ) that are frequently used in practice (those who belong
to a so-called transformed location-scale distribution family, which for instance include
the log-Normal, Pareto and Weibull distributions):

• On the one hand, if n <∞, then except in very rare cases, we have E[F (δ̂p(X); θ)]

̸= p, for all θ, and with E[F (δ̂p(X); θ)] < p in general when p is close to 1. That is,
in relevant cases the value-at-risk calculated from the estimated distribution F̂ (x|x)
generally leads to an expected survival probability that is smaller than the targeted
one.

• On the other hand, a non-informative prior can be selected such that E[F (δ̃p(X); θ)]
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= p, for all θ and n, so the predictive distribution F̂ (x|x) allows to reach the target
solvency probability on average, despite not knowing the parameter θ, and regard-
less of the sample size.

This example illustrates the underestimation of risk that may arise from ignoring pa-
rameter uncertainty, and the ability of predictive distributions to take it into account in
a relevant way. Other studies of this kind include for instance Bignozzi and Tsanakas
[13], where similar results were obtained, but for other risk measures, and Bignozzi and
Tsanakas [12] also considered model uncertainty. Before that, Cairns [19] also showed
the relevance of Bayesian approaches to account for parameter and model uncertainty,
through several examples related to insurance.

However, note that by accounting for parameter uncertainty, predictive distributions are
often leading to an assessment of risk that is fairly conservative, in particular when built
from a non-informative prior. For instance, in the above example, if the estimators δ̃p(X)

and δ̂p(X) indeed yield E[F (δ̃p(X); θ)] = p, for all θ, and E[F (δ̂p(X); θ)] < p, then δ̃p(X)

will take larger values than δ̂p(X) in general, and the difference can be quite substantial.
This conservative aspect of predictive distributions may be viewed as a drawback: At the
end of the risk assessment process, limited resources (e.g. capital) are available, and by
being too conservative one may not be effective. Also, we mention that while predictive
distributions allow to control survival (solvency) probabilities in a relevant way, they may
induce some potentially undesirable bias, e.g. when used for pricing risks, as pointed out
by Landsman and Tsanakas [60].

3.1.2 The content of this note
As we just commented, the ability of predictive distributions to address the problem of
parameter uncertainty in a relevant way has been demonstrated several times in the risk
management literature. Yet, in those contributions, a single risk was considered, with no
constraint on the available resources, which may differ from several practical situations.
For instance, when endowed with a limited budget, a government department responsible
for the maintenance of public infrastructures has to compare their respective failure risk,
for prioritizing the most threatening ones. An insurance or banking company that has to
determine some capital amount for each of its business lines will do so by considering
their relative risk, for then allocating them a fixed overall capital.

Here, we would like to illustrate that predictive distributions can also be relevant in the
above type of situations, i.e. when limited resources must be allocated to several com-
peting risks, and parameter uncertainty is involved for each of them. The motivation for
this is two-fold: Firstly, since the magnitude of the parameter uncertainty relative to each
risk may be unequal (e.g. as the result of different sample sizes), considering it explicitly
through a predictive distribution allows for a better assessment of each individual risk in
principle, and hence it leads to potentially better resource allocation decisions. Secondly,
when limited resources are available, if each risk is modelled with a predictive distribu-
tion, then the conservative aspect of the latter type of distributions likely ceases to be an
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issue.

Hereafter we do so by means of an example, which illustrates the above ideas in a simple
way.

3.2 Illustration
Assume that we face two risks, say X and Y , which are known to be independent. Also,
we know that both X and Y follow a Pareto distribution, with scale parameter 1 and
unknown respective shape parameters θ > 0 and λ > 0, so

FX(x; θ) = 1− x−θ, FY (x;λ) = 1− x−λ, for x > 1.

We need to allocate a limited amount of resources k > 0 separately to each of these two
risks, and we wish to do so in a way that maximizes our joint survival probability. For
instance, X and Y could represent the spendings required for making two different nu-
clear plants resilient against the maximal earthquake magnitude that will occur in their
respective geographical regions, during a given future time period.

Denote by s ≥ 0 and k − s ≥ 0 the respective shares of k that we allocate to X and
Y . Then our joint survival probability is defined as

ψk(s|θ, λ) = Pθ,λ(X ≤ s, Y ≤ k − s) = FX(s; θ)FY (k − s;λ). (3.1)

Ideally, we could simply calculate the optimal allocation

s∗k(θ, λ) = argmax
s∈[0,k]

ψk(s; θ, λ),

and end up with maximal joint survival probability

ψ∗
k(θ, λ) = ψk(s

∗
k(θ, λ); θ, λ).

However, we do not know the values of θ and λ. Instead, we observed the realizations
x = (x1, ..., xn) and y = (y1, ..., ym) of X = (X1, ..., Xn) and Y = (Y1, ..., Ym), where
X1, ..., Xn and Y1, ..., Ym are n > 1 and m > 1 mutually independent occurrences of X
and Y . Accordingly, we consider performing the above maximization using either the
estimated distributions of X and Y , or their posterior predictive distributions.

The maximum likelihood estimates of θ and λ are easily found to be θ̂(x) = n/
∑n

i=1 ln(xi)

and λ̂(y) = m/
∑m

i=1 ln(yi). This yields estimated distributions

F̂X(x|x) = 1− x−θ̂(x), F̂Y (x|y) = 1− x−λ̂(y), for x > 1, (3.2)

and the objective function (3.1) then becomes F̂X(s|x)F̂Y (k − s|y). Under the estimated
distributions, the allocation is then

ŝ∗k(x,y) = argmax
s∈[0,k]

F̂X(s|x)F̂Y (k − s|y).
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Regarding the predictive distributions of X and Y , we consider the non-informative prior
π(θ) ∝ 1{θ > 0}/θ and π(λ) ∝ 1{λ > 0}/λ. After few calculation steps this results in

F̃X(x|x) = 1−
(

n/θ̂(x)

n/θ̂(x) + ln(x)

)n

, F̃Y (x|y) = 1−
(

m/λ̂(y)

m/λ̂(y) + ln(x)

)m

, for x > 1.

(3.3)
With these distributions the objective function (3.1) becomes F̃X(s|x)F̃Y (k−s|y), so the
allocation resulting from the predictive distributions is

s̃∗k(x,y) = argmax
s∈[0,k]

F̃X(s|x)F̃Y (k − s|y).

Since the above estimated distributions and posterior predictive distributions differ, the
allocations ŝ∗k(x,y) and s̃∗k(x,y) are likely to differ too. We are thus naturally led to
compare the relevance of those two different approaches, and we will do so by consid-
ering the resulting joint survival probabilities ψk(ŝ

∗
k(x,y); θ, λ) and ψk(s̃(x,y); θ, λ), for

all possible realizations of x and y (note that by letting x and y vary, we are changing
the distributions F̂X(x|x) and F̂Y (x|y) on the one hand, and F̃X(x|x) and F̃Y (x|y) on
the other hand, which can thus be seen as a multivariate stress testing, in the sense of
Millossovich et al. [63]). We are thus interested in the behaviour of random variables

Ψ̂k(θ, λ) = ψk(ŝ
∗
k(X,Y); θ, λ) and Ψ̃k(θ, λ) = ψk(s̃

∗
k(X,Y); θ, λ),

described by their respective distributions

P(Ψ̂k(θ, λ) ≤ x) and P(Ψ̃k(θ, λ) ≤ x).

To that end, we assume the amount of resources to be k = 20, and sample sizes n ∈
{5, 10, 30} and m ∈ {5, 10, 30}. Regarding the parameters θ and λ, we consider a sym-
metric case θ = λ = 3, and a non-symmetric case θ = 3 and λ = 2. Note that in the
symmetric case X and Y are equally distributed, and under the non-symmetric case the
right tail of Y is heavier than that of X .

In Figure 3.1, we plotted distributions P(Ψ̂k(θ, λ) ≤ x) and P(Ψ̃k(θ, λ) ≤ x) under
the various sample sizes, for the symmetric case θ = λ = 3. Notice that since X and
Y are equally distributed here, random variables Ψ̂k(θ, λ) and Ψ̃k(θ, λ) remain equally
distributed under a permutation of n and m, by symmetry, and we thus removed the
redundant plots. In Figure 3.2, we again plotted distributions P(Ψ̂k(θ, λ) ≤ x) and
P(Ψ̃k(θ, λ) ≤ x) under the various sample sizes, but for the non-symmetric case θ = 3
and λ = 2. In both figures, the dots at the bottom of the plots indicate the expected joint
survival probabilities E[Ψ̂k(θ, λ)] and E[Ψ̃k(θ, λ)].

In order to help the understanding of these plots, we make the following observations:

• Distributions P(Ψ̂k(θ, λ) ≤ x) and P(Ψ̃k(θ, λ) ≤ x) always have the same right
endpoint, which equals the theoretical maximal joint survival probability ψ∗

k(θ, λ).
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Figure 3.1: Black: P(Ψ̂20(3, 3) ≤ x) (curves) and E[Ψ̂20(3, 3)] (dots). Red:
P(Ψ̃20(3, 3) ≤ x) (curves) and E[Ψ̃20(3, 3)] (dots). The sample sizes are n ∈ {5, 10, 30}
(columns) and m ∈ {5, 10, 30} (rows).

• The left tail of P(Ψ̂k(θ, λ) ≤ x) and P(Ψ̃k(θ, λ) ≤ x) correspond to realizations x
and y leading to inaccurate estimated distributions or predictive distributions, and
hence to allocations ŝ∗k(x,y) and s̃∗k(x,y) being far from the theoretical optimal
allocation s∗k(θ, λ).

• Both P(Ψ̂k(θ, λ) ≤ x) and P(Ψ̃k(θ, λ) ≤ x) are concentrated near their right end-
point, meaning that in most cases the allocations ŝ∗k(x,y) and s̃∗k(x,y) are both
close to their theoretical optimal value. From that point of view, the estimated and
predictive distributions can be considered relatively accurate in general.

• The larger the sample sizes n and m, the less parameter uncertainty, so the more
accurate the estimated and predictive distributions are. As a result, for larger n and
m the allocations ŝ∗k(x,y) and s̃∗k(x,y) are closer to their theoretical optimal value,
and hence P(Ψ̂k(θ, λ) ≤ x) and P(Ψ̃k(θ, λ) ≤ x) are more concentrated near their
right endpoint.

Regarding the comparison of P(Ψ̂k(θ, λ) ≤ x) and P(Ψ̃k(θ, λ) ≤ x), the key points are:

• P(Ψ̃k(θ, λ) ≤ x) is always under P(Ψ̂k(θ, λ) ≤ x), so compared to the allocation
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Figure 3.2: Black: P(Ψ̂20(3, 2) ≤ x) (curves) and E[Ψ̂20(3, 2)] (dots). Red:
P(Ψ̃20(3, 2) ≤ x) (curves) and E[Ψ̃20(3, 2)] (dots). The sample sizes are n ∈ {5, 10, 30}
(columns) and m ∈ {5, 10, 30} (rows).

done under the estimated distributions, the one resulting from the predictive distri-
butions is less likely to yield a joint survival probability worse (smaller) than any
value x ∈ (0, 1). The predictive distributions thus lead to a better allocation in gen-
eral, and this is well illustrated by the dots at the bottom of the plots, which indicate
the expected joint survival probabilities E[Ψ̂k(θ, λ)] and E[Ψ̃k(θ, λ)].

• As previously observed, when the sample sizes n and m increase, parameter un-
certainty decreases, so both the estimated and predictive distributions are closer to
each other, and hence so are the allocations ŝ∗k(x,y) and s̃∗k(x,y) in general. As a
result, for larger n and m the distributions P(Ψ̂k(θ, λ) ≤ x) and P(Ψ̃k(θ, λ) ≤ x)
are closer to one another. For n = m = 30, the difference almost vanished, in both
Figures 3.1 and 3.2, so the improvements provided by the predictive distributions
are really effective for small sample sizes.

Note that, while in this example the predictive distributions always lead to a better dis-
tribution of the joint survival probability than the estimated distributions, in other cir-
cumstances this may not necessarily hold. There are in fact several conflicting effects
responsible for the difference between the two above approaches, and it would be inter-
esting to study them explicitly and extensively in future research, and in a more general
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framework. Yet, the present example shows that predictive distributions may lead to bet-
ter resource allocations, and here this can be understood as follows.

First, note that while the estimated distributions F̂X(x|x) and F̂Y (x|y) are Pareto, the
predictive distributions F̃X(x|x) and F̃Y (x|y) are “Log-Pareto”. Since the true distribu-
tions are Pareto, using F̃X(x|x) and F̃Y (x|y) instead of F̂X(x|x) and F̂Y (x|y) can be
considered as introducing some sort of bias. However, given that the predictive distribu-
tions lead to better resource allocations (i.e. larger joint survival probability) in general,
this bias turns out to be negligible. Both shares ŝ∗k(x,y) and s̃∗k(x,y) thus vary around
their theoretical optimal value s∗k(θ, λ) as x and y vary, and the better performance of the
predictive distributions is in fact principally due to that s̃∗k(x,y) varies less than ŝ∗k(x,y).
The reason for this is as follows. Since F̂X(x|x) is Pareto and F̃X(x|x) is “Log-Pareto”,
the latter has a heavier tail (the same comment applies to Y , but for simplicity we will
focus on X hereafter). This yields that for sufficiently large x, F̂X(x|x) is flatter than
F̃X(x|x). Then, in the above scenarios, the resource amount k is large, in that it generally
makes s∗k(θ, λ) fall in the region where F̂X(x|x) is flatter than F̃X(x|x). Now, say that
y varies. The objective functions F̂X(s|x)F̂Y (k − s|y) and F̃X(s|x)F̃Y (k − s|y) will
consequently both vary, and hence so will the resulting shares ŝ∗k(x,y) and s̃∗k(x,y). Yet,
since F̂X(s|x) tends to be flatter than F̂X(s|x) in the region of interest (i.e. for s close to
ŝ∗k(x,y) and s̃∗k(x,y)), it is less sensitive to changes in s, which lead to larger changes in
ŝ∗k(x,y) consecutive to variations in y. So ŝ∗k(x,y) is more sensitive to y than s̃∗k(x,y).
The same reasoning applies to x, and hence the share ŝ∗k(x,y) tends to vary more than
s̃∗k(x,y) around the theoretical optimal value s∗k(θ, λ). As a result, the joint survival prob-
ability Ψ̃k(θ, λ) deviates less than Ψ̂k(θ, λ) from the theoretical maximal joint survival
probability ψ∗

k(θ, λ), and thus here the predictive distributions can be considered as lead-
ing to better resource allocations.

3.3 Conclusion
This note considered the problem of risk assessment in presence of parameter uncertainty.
Two risk assessment techniques were compared, namely estimated distributions and pre-
dictive distributions. By means of a simple example, we illustrated the ability of the
former to yield better allocations of resources, and hence, from that viewpoint, to assess
risk in a more relevant way. Possible extensions of that work would be to assume more
risks and consider model uncertainty, which will undoubtedly allow for larger improve-
ments. Finally, it will be interesting to study other objective functions (e.g. more adapted
to risk pricing), and also to compare predictive distributions with other distribution esti-
mation (fitting) techniques.
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Andreas Tsanakas for his valuable and insightful comments.



Chapter 4

An alternative path to extremes

This chapter is based on L. Vincent (2022): An alternative path to extremes. Preprint,
University of Lausanne [77].

Abstract. The Fisher-Tippett-Gnedenko theorem characterizes the only possible non-
degenerate limit distributions for the linearly normalised maximum of a large sample of
independent and identically distributed random variables, and it is one of the foundational
results of extreme value theory. That theorem naturally compares with the central limit
theorem, which establishes the normality of linearly normalised sample sums, under some
mild conditions. However, unlike the central limit theorem, the Fisher-Tippett-Gnedenko
theorem can be applied in various ways in a given situation, and this potentially results in
different limit distributions for the considered sample maximum. In this note, we discuss
this aspect of the Fisher-Tippett-Gnedenko theorem, and we use it to propose an alterna-
tive family of extreme value distributions, which contains both the Weibull and Fréchet
distributions, but where the Gumbel distribution is modified, and ends up being endowed
with a shape parameter.

4.1 Introduction

One of the foundational results of extreme value theory is the Fisher-Tippett-Gnedenko
theorem [40, 48], which is as follows (for an extensive treatment of extreme value theory,
we refer to Embrechts et al. [32], Beirlant et al. [11] and de Haan and Ferreira [28], which
are classical textbooks on that topic).

Theorem 4.1.1. (Fisher-Tippett-Gnedenko theorem) Let X1, ..., Xn be a sequence of n
mutually independent and identically distributed (iid) random variables, with common
distribution F . Let further Mn = max{X1, ..., Xn} be the corresponding sample maxi-
mum. If there exist constants cn > 0 and dn ∈ R and some non-degenerate distribution
G such that

lim
n→∞

P
(
Mn − dn

cn
≤ x

)
= F (cnx+ dn)

n = G(x), (4.1)

71
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then G is necessarily one of the three following:

Weibull : Ψα(x) = exp(−(−x)α)1{x ≤ 0}+ 1{x > 0},
Gumbel : Λ(x) = exp(−e−x),

Fréchet : Φα(x) = exp(−x−α)1{x > 0},
(4.2)

where α > 0.

Accordingly, if G indeed appears as the limit distribution in (4.1), then F is said to be
in the Maximum Domain of Attraction (MDA) of G, which is written as F ∈ MDA(G),
with G ∈ {Ψα,Λ,Φα}.

Since the Fisher-Tippett-Gnedenko characterizes the potential limit behaviour of some
linearly normalised combination of a large sample, it naturally compares with the central
limit theorem.

Theorem 4.1.2. (Classical central limit theorem) Let X1, ..., Xn be a sequence of n iid
random variables, with common mean E[X] ∈ R and variance V[X] ∈ (0,∞). Let
further Sn = X1 + ... +Xn be the corresponding sample sum, and write an =

√
nV[X]

and bn = nE[X]. Then

lim
n→∞

Sn − bn
an

d
= Z, (4.3)

where Z is a Normal(0, 1) random variable.

Yet, we may already remark one difference, namely that while the limit distribution of
a−1
n (Sn − bn) is unique, there are three different candidates for that of c−1

n (Mn − dn).
Therefore, on the one hand, for V[X] ∈ (0,∞) and sufficiently large n, the central limit
theorem allows to write

Sn
d
≈ anZ + bn, with Z ∼ Normal(0, 1). (4.4)

On the other hand, for F ∈ MDA(G) and sufficiently large n, according to the Fisher-
Tippett-Gnedenko theorem we shall have

Mn
d
≈ cnW + dn, with W ∼ G, (4.5)

but here G could be either Ψα, Λ or Φα. As a consequence, if F is unknown, then the
distribution of Sn can be approximated with that of a Normal(bn, an) random variable,
which thus only requires to estimate the parameters an and bn. But for approximating the
distribution of Mn, one must first estimate which of the three limit distributions (models)
in (4.2) applies, and then estimate the parameters cn and dn (as well as α, potentially),
which is a different and more complicated problem than simply estimating an and bn.

There is, however, a convenient ingenuity, which allows to transform that model esti-
mation problem into a parameter estimation problem: Firstly, the three distributions Ψα,
Λ and Φα may be grouped into a single parametric family G = {Gξ, ξ ∈ R}, by setting

Gξ(x) =


Ψ−1/ξ(x), ξ < 0,

Λ(x), ξ = 0,

Φ1/ξ(x), ξ > 0.

(4.6)
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We may call G the extreme value distribution family. Secondly, note that while Gξ is
the only possible non-degenerate limit for F (cnx + dn)

n, the choice of cn and dn is not
unique, which allows to endow Gξ with location and scale parameters. Indeed, if (4.1)
holds, then for any σ > 0 and µ ∈ R, the constants c′n = cn/σ and d′n = dn − µ/σ result
in

lim
n→∞

P
(
Mn − d′n

c′n
≤ x

)
= Gξ

(
x− µ

σ

)
= Gξ;µ,σ(x). (4.7)

Thirdly, the freedom of choice for µ and σ when normalising Mn can be exploited to
assemble the three distinct cases in (4.6) into a single and concise representation, due to
von Mises [64] and Jenkinson [56]. The latter is called the Generalized Extreme Value
distribution (GEV), and its formula is given by

Hξ(x) = Gξ;−1/ξ,1/ξ(x) = exp(−(1 + ξx)
−1/ξ
+ ), (4.8)

where H0(x) is interpreted as limξ→0Hξ(x) = exp(−e−x).

By construction, we have F ∈ MDA(G) ⇔ F ∈ MDA(Gξ) ⇔ F ∈ MDA(Hξ), so
(4.5) can be re-expressed using the GEV. That is, assuming F ∈ MDA(Hξ), for suffi-
ciently large n we shall have

Mn
d
≈ cnWξ + dn, with Wξ ∼ Hξ, (4.9)

and the distribution of Mn can thus be approximated by

Hξ;dn,cn(x) = Hξ

(
x− dn
cn

)
, (4.10)

which now only requires to estimate the parameters cn, dn and ξ. Therefore, as previously
mentioned, by relying on the GEV, the model estimation problem has indeed turned into
a parameter estimation one.

The use of the GEV is the standard way by which the Fisher-Tippett-Gnedenko theo-
rem is applied in practice, through the so-called block-maxima method (see e.g. Chapter
6 in Embrechts et al. [32] for details). And since the parameter ξ will rarely be estimated
at exactly 0, if the true model is the Gumbel distribution Λ, i.e. ξ = 0, then the GEV will
in general lead to approximate the latter with either a Weibull or a Fréchet distribution.

In this chapter, we show that there is not a unique way to apply the Fisher-Tippett-
Gnedenko theorem for determining the limit distribution of a sample maximum. This
is due to what we call the commutativity property of the maximum, which we explain in
Section 4.2. In Section 4.3, we use this property to derive an alternative extreme value
distribution family G∗. The latter contains both the Weibull and Fréchet distributions, as
G does, but it replaces Λ with a new type of distribution, which can be interpreted as
a Gumbel distribution endowed with a shape parameter. We then discuss that result in
Section 4.4, and finally Section 4.5 concludes this chapter.



74 CHAPTER 4. AN ALTERNATIVE PATH TO EXTREMES

4.2 On the commutativity of the maximum
We now consider a second difference between the Fisher-Tippett-Gnedenko and the cen-
tral limit theorems, which is that the action of taking the maximum commutes with strictly
increasing transformations of the sample, while summation does not: Let t be a strictly
increasing function that maps the domain of X to a subset of R. Let further t−1 be the in-
verse of t. Then we can write Mn = t(t−1(Mn)) = t(M̃n) and Sn = t(t−1(Sn)) = t(S̃n),
where thus M̃n = t−1(Mn) and S̃n = t−1(Sn). Since t is strictly increasing, this yields

M̃n = t−1(max{X1, ..., Xn}) = max(t−1(X1), ..., t
−1(Xn)), (4.11)

which is what we call the commutative property of the maximum. Regarding S̃n, we have

S̃n = t−1(X1 + ...+Xn) ̸= t−1(X1) + ...+ t−1(Xn), (4.12)

in general (unless t is the identity function), and hence the sum does not satisfy the same
commutative property than the maximum.

It stems from (4.12) that S̃n will not be a sum of iid random variables in general, in which
case the central limit theorem cannot be applied to S̃n, but only to Sn, i.e. through (4.3).
On the other hand, since X1, ..., Xn are iid random variables, so are t−1(X1), ..., t

−1(Xn).
As a result, just as Mn, M̃n is the maximum of some iid random variables, and we can
apply it the Fisher-Tippett-Gnedenko theorem. So in order to come up with a limit distri-
bution for Mn, we may either try to find constants cn and dn specific to Mn, such that

lim
n→∞

Mn − dn
cn

d
= W ∼ G. (4.13)

Or, alternatively, sinceMn = t(M̃n), we may obtain a limit distribution forMn by finding
constants c̃n and d̃n specific to M̃n, such that

lim
n→∞

t

(
M̃n − d̃n

c̃n

)
d
= t(W̃ ). (4.14)

And interestingly, the two resulting limit distributions (i.e. that of W and t(W̃ )) can dif-
fer. The two following examples illustrate this. For the explicit expressions of constants
involved in (4.15) – (4.18), see Table 3.4.4 in Embrechts et al. [32].

Example 4.2.1. Let X1, ..., Xn be iid occurrences of X ∼ LogNormal(µ, σ), with σ > 0
and µ ∈ R. Then constants cn and dn can be found such that

lim
n→∞

Mn − dn
cn

d
= W0 ∼ G0, (4.15)

i.e. the LogNormal distribution is in the Gumbel MDA. Alternatively, since X has a
LogNormal(µ, σ) distribution, we can take t(x) = exp(x) and write X = t(X̃), where
X̃ = t−1(X) = ln(X) ∼ Normal(µ, σ), and hence Mn = exp(M̃n), with M̃n =
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max{X̃1, ..., X̃n}. It turns out that the Normal distribution is also in the Gumbel MDA,
so constants c̃n and d̃n can be found such that

lim
n→∞

M̃n − d̃n
c̃n

d
= W̃0 ∼ G0. (4.16)

As a result, by properly normalisingMn, we can make it have a Gumbel limit distribution,
cf. (4.15). On the other hand, if we normalise M̃n instead, Mn = exp(M̃n) yields that Mn

will in consequence behave as

lim
n→∞

exp

(
M̃n − d̃n

c̃n

)
d
= exp(W̃0),

so that in the limit its distribution will be that of a “Log-Gumbel”, which is easily checked
to be a Fréchet(1), i.e. W̃0 ∼ Λ ⇔ exp(W̃0) ∼ Φ1.

Example 4.2.2. Let X1, ..., Xn be iid occurrences of X ∼ Weibull(κ, λ), with κ > 0
and λ > 0. Note that here we are considering the “classical” Weibull distribution, which
can be expressed as F (x) = 1 − exp(λxκ), x > 0, and it must not be confused with the
“extremal” (or “negative”) Weibull in (4.2). The Weibull distribution is in the Gumbel
MDA, meaning that constants cn and dn can be found, so as to obtain

lim
n→∞

Mn − dn
cn

d
= W0 ∼ G0. (4.17)

On the other hand, since X has a Weibull distribution, we can take t(x) = x1/κ and write
X = t(X̃), where thus X̃ = t−1(X) = Xκ ∼ Exponential(λ), so

Mn = M̃1/κ
n .

Furthermore, since the Exponential distribution is also in the Gumbel MDA, there again
exist constants c̃n and d̃n, such that

lim
n→∞

M̃n − d̃n
c̃n

d
= W̃0 ∼ G0. (4.18)

Therefore, (4.17) and (4.18) allow to come up with two different limit distributions for
Mn = M̃

1/κ
n . That is, either we apply the Fisher-Tippett-Gnedenko theorem to Mn and

make it have a Gumbel distribution, as in (4.17). Or we do it to M̃n instead. For instance,
for κ = 1/2 this leads to

lim
n→∞

(
M̃n − d̃n

c̃n

)2
d
= W̃ 2

0 ,

i.e. a squared Gumbel random variable. The general case κ > 0 requires to be handled
more carefully. Indeed, since the domain of W̃0 is R, the expression W̃

1/κ
0 could be

undefined for W0 < 0, e.g. when κ = 2. To solve this potential issue, we can take

t(x) = sign(x) |x|1/κ,
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which is strictly increasing. Accordingly, we have

Mn = t(M̃n) = sign(M̃n) |M̃n|1/κ, (4.19)

where thus M̃n = sign(Mn) |Mn|κ, from t−1(x) = sign(x) |x|κ. By then applying the
Fisher-Tippett-Gnedenko theorem to M̃n in (4.19), we obtain

lim
n→∞

sign
(
M̃n − d̃n

c̃n

) ∣∣∣∣M̃n − d̃n
c̃n

∣∣∣∣1/κ d
= sign(W̃0) |W̃0|1/κ, (4.20)

where

P(sign(W̃0) |W̃0|1/κ ≤ x) =

{
exp(−e(−x)κ), x ≤ 0,

exp(−e−xκ
), x > 0,

for all κ > 0. (4.21)

Therefore, similarly to what we did in Example 4.2.1, we illustrated two different ways
to come up with an asymptotic distribution for Mn. That is, either we apply the Fisher-
Tippett-Gnedenko theorem to Mn directly (the left-hand side of (4.19)), which yields a
Gumbel distribution, or to M̃n (in the right-hand side of (4.19)), which results in the
distribution (4.21).

So in a given situation, unlike the central limit theorem, the Fisher-Tippett-Gnedenko
theorem can be applied in different ways, which in fact correspond to different types
of normalisation of Mn. For instance, in Example 4.2.1, the limit distribution of Mn is
Gumbel under a proper location-scale (i.e. linear) normalisation, cf. (4.15). And since in
that example we took t(x) = exp(x), the location-scale normalisation of M̃n in (4.16)
corresponds to a scale-power normalisation of Mn, i.e.

t

(
t−1(Mn)− d̃n

c̃n

)
= exp

(
ln(Mn)− d̃n

c̃n

)
= snM

pn
n ,

where pn = 1/c̃n and sn = exp(−d̃n/c̃n), we have that Mn goes to a Fréchet distribution
under a scale-power normalisation (see e.g. Pantcheva [67] and Barakat et al. [9] for con-
tributions on this specific type of normalisation). The same comment applies to Example
4.2.2, but since there we considered t(x) = sign(x) |x|1/κ, the normalising operation of
Mn in (4.20) is

t

(
t−1(Mn)− d̃n

c̃n

)
= sign

(
sign(Mn) |Mn|κ − d̃n

c̃n

) ∣∣∣∣sign(Mn) |Mn|κ − d̃n
c̃n

∣∣∣∣1/κ,
(4.22)

and hence it is not of a location-scale or scale-power type. For simplicity we call it
hereafter a polynomial normalisation.

4.3 The alternative extreme value distribution family
Let us now extend the idea of Example 4.2.2, and consider applying the Fisher-Tippett-
Gnedenko theorem within the polynomial normalisation (4.22), but in the general case,



4.3. THE ALTERNATIVE EXTREME VALUE DISTRIBUTION FAMILY 77

i.e. when X is not necessarily a Weibull(κ, λ) random variable. We show that this leads
to a new extreme value distribution family, where the Weibull and Fréchet are preserved,
but the Gumbel distribution is replaced by a version of it endowed with a shape parameter.

So let us take t as in Example 4.2.2, i.e.

t(x) = sign(x) |x|1/κ,

for some κ > 0. We thus have t−1(x) = sign(x) |x|κ, and we write again X = t(X̃)
and Mn = t(M̃n), where thus X̃ = t−1(X) = sign(X) |X|κ and M̃n = t−1(Mn) =
sign(Mn) |Mn|κ.

Let F̃ be the distribution of X̃ . Assuming

F̃ ∈ MDA(Gξκ), with ξ ∈ R, (4.23)

the Fisher-Tippett-Gnedenko theorem yields that there exist constants c̃n and d̃n, such that

lim
n→∞

M̃n − d̃n
c̃n

d
= W̃ξκ ∼ Gξκ,

and hence

lim
n→∞

t

(
t−1(Mn)− d̃n

c̃n

)
= sign(W̃ξκ) |W̃ξκ|1/κ.

Depending on ξ, the right-hand side of the above equation has distribution:

• Case ξ < 0: Since κ > 0, we have ξκ < 0, so W̃ξκ has distribution Ψ−1/(ξκ) and
hence domain (−∞, 0], which leads to

P(sign(W̃ξκ) |W̃ξκ|1/κ ≤ x) = Ψ−1/(ξκ)(−(−x)κ) = Ψ−1/ξ(x).

• Case ξ = 0: In that case ξκ = 0, so W̃ξκ = W̃0 has distribution Λ, domain R, and
we obtain

P(sign(W̃0) |W̃0|1/κ ≤ x) =

{
exp(−e(−x)κ), x ≤ 0,

exp(−e−xκ
), x > 0,

= Υκ(x), for all κ > 0,

which is in fact as in (4.21).

• Case ξ > 0: Here W̃ξκ has distribution Φξκ and hence domain (0,∞), resulting in

P(sign(W̃ξκ) |W̃ξκ|1/κ ≤ x) = Φ1/(ξκ)(x
κ) = Φ1/ξ(x).

By then reassembling those three distinct cases, we obtain that under Assumption (4.23)
and the polynomial normalisation (4.22), the sample maximum Mn has the limit distribu-
tion

G∗
ξ,κ(x) = P(sign(W̃ξκ) |W̃ξκ|1/κ ≤ x) =


Ψ−1/ξ(x), ξ < 0,

Υκ(x), ξ = 0,

Φ1/ξ(x), ξ > 0,

resulting in the alternative extreme value distribution family G∗ = {G∗
ξ,κ, ξ ∈ R, κ > 0}.
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4.4 Discussion

It is well-known that the Gumbel MDA contains very different types of distributions, both
light- and heavy-tailed, and this was partly illustrated in Examples 4.2.1 and 4.2.2, where
we recalled that the Normal, LogNormal, Exponential and “classical” Weibull distribu-
tions are all in the Gumbel MDA. In addition, unlike the “extremal” Weibull and Fréchet
distributions Ψα and Φα, the Gumbel distribution Λ has no shape parameter. Therefore,
when applied to the maximum of a sample with marginal distribution F ∈ MDA(Λ), the
linear normalisation turns out to be a “Procrustean” operation, since it always makes it
have a single parameterless distribution Λ, no matter of its original characteristics.

Interestingly, while the polynomial normalisation that we considered above let the Weibull
and Fréchet MDAs unchanged, it creates a somewhat new MDA. The latter is character-
ized by the distribution Υκ, which can be interpreted as a Gumbel distribution endowed
with a shape parameter, and it is thus more diverse than the Gumbel MDA. For instance,
it allows to distinguish the limit distributions of sample maxima of two different “classi-
cal” Weibull distributions, as long as they have different shape parameters κ, see Example
4.2.2. Also, if F is unknown but believed to be in the MDA of Υκ, then κ will be an
unknown parameter to be estimated, just as α (or ξ) for the Weibull and Fréchet MDAs,
and this allows for a potentially better fit.

Moreover, it is worthwhile noting that Υκ can be interpreted as the distribution of the
log of a random variable that has an “extremal” Weibull left-tail and a Fréchet right-tail,
after a proper handling of negative values. This suggests the possibility to adapt the ap-
proach of Section 4.3, so as to obtain a concise version of G∗

ξ,κ, say H∗
ξ,κ, very much

like the GEV, but where the Weibull and Fréchet distributions would be special cases of
H∗

ξ,κ, instead of the Gumbel distribution being a special case of Hξ. This is left for future
research.

4.5 Conclusion

In this chapter, we outlined that there is not a unique way to apply the Fisher-Tippett-
Gnedenko theorem in a given situation, contrarily to the central limit theorem. We used
this aspect of the Fisher-Tippett-Gnedenko theorem, to propose an alternative family of
extreme value distributions, which contains a version of the Gumbel distribution endowed
with a shape parameter. We then discussed the eventual possibility to use the latter distri-
bution to construct an alternative GEV. Given the close relationship between the Fisher-
Tippett-Gnedenko and the Pickands-Balkema-de Haan theorems (which characterizes the
possible limit distributions of the conditional excess of random variables over a large
threshold, instead of sample maxima), it is natural to extend the results of this chapter to
the latter theorem, and this will be the topic of future work. Finally, it will also be inter-
esting to assess whether similar results can be obtained for limit theorems of multivariate
extreme value theory.
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Chapter 5

Structured reinsurance deals with
reference to relative market
performance

This chapter is based on L. Vincent, H. Albrecher and Y. Krvavych (2021): Structured
reinsurance deals with reference to relative market performance. Published in Insurance:
Mathematics and Economics, 101, 125-139 [80].

Abstract. In this chapter we study a specific type of structured reinsurance deals, for
which the indemnification scheme is contingent upon the performance of the cedent, for
instance measured in terms of his loss ratio compared to the average loss ratio of the mar-
ket. We show that this type of deals may be efficiently used to manage risk in the presence
of financial distress cost when the cover is provided to a cohort of insurers with positively
correlated loss experience. In addition to theoretical results we quantitatively illustrate
the potential performance improvement in a numerical example.

5.1 Introduction
Reinsurance is considered to be one of the key strategic levers used to manage risk and op-
timise capital and its cost in order to preserve and enhance shareholder value. Along with
other risk levers, such as underwriting portfolio mix, diversification, asset mix, funding
composition and dividend policy, it is often used to address the following key issues:

1. Risk-taking: what risks to write, where, and how much.

2. Risk retention: what part of risk to retain and what part to transfer.

3. Funding and cost of funding: how to fund the retained risk (i.e., debt, equity, rein-
surance or hybrids) and at what cost.

Conventional forms of reinsurance – whilst being efficient in finding optimal risk manage-
ment strategies to address mainly (2) and (3) and to some extent (1) – are uni-dimensional

81
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focusing on insurance risk only and thus result in a local optimisation. In contrast, struc-
tured reinsurance deals are more flexible allowing to manage different parts of enterprise
risk of the insurance company in a holistic way and thus enable global risk optimisation.
Reinsurance companies offer such deals in various forms, concrete examples being catas-
trophe bonds, finite risk solutions or multi-line products. For a broad overview, we refer
to Culp [25] and Albrecher et al. [1].

A frequently used type of reinsurance deal consists of an indemnification scheme that – in
addition to the insurance risk – depends on the realization of one or more observable ran-
dom variables (triggers) which are related to other sources of risk the insurer is exposed
to. Structured deals of this type are sometimes referred to as contingent covers, i.e. the
nature of the risk transfer applying is contingent upon the realization of such additional
random variable(s). Contingent covers have already been studied by several authors and
under different denominations. For example, Gründl and Schmeiser [49] discussed sev-
eral approaches to pricing double-trigger contracts, which refer to reinsurance deals for
which the indemnity is triggered if both the reinsured loss exceeds a fixed deductible and
some capital market index falls below a pre-defined threshold value. Asimit et al. [6] con-
sidered a framework in which an insurer shares his risk with a reinsurer according to an
indemnification scheme that may vary with the risk environment, and showed that for a
wide class of risk measures layer-type indemnities with parameters that vary with the risk
environment can minimize the resulting sum of risk measures of insurer and reinsurer. In
other contributions, contingent covers are considered but the random variables they de-
pend on are not related to any source of risk the insurer is already exposed to, and thus the
contingent nature of the indemnification scheme is used as a purely mathematical tool.
For instance, Gajek and Zagrodny [46] found that for an insurer being endowed with a
fixed budget to purchase reinsurance, if the loss to be reinsured has discrete components,
then covers contingent upon the realization of an independent random event can provide
the insurer with a lower ruin probability than those which are not. Under the name of ran-
dom treaties, Guerra and Centeno [50] used contingent reinsurance as a mathematical tool
(and intermediate step) to solve an optimal reinsurance problem for deterministic treaties.
In a framework with regulatory solvency constraints and cost of capital, Albrecher and
Cani [2] studied a form of stop-loss cover, where the deductible is randomized according
to an independent external mechanism and they showed that this can yield higher expected
profits than traditional stop-loss covers.

While these three latter contributions reveal interesting properties of contingent covers,
the main purpose of such covers in practice is to increase the efficiency of the risk trans-
fer, by focusing it on the scenarios where the cedent expects to need it the most regarding
his overall financial risk, and hence to appropriately mitigate that risk for a smaller rein-
surance premium. It is therefore intuitive that for a contingent cover to be relevant, the
random variable(s) it depends on should somehow be related to the overall financial re-
sult of the insurer. Among many different sources of potential losses contributing to the
overall financial result, we would like to distinguish:

• Insurance (core) risk, which consists of the risks the insurer expects to make money
on and generate return on capital (underwriting, reserving, catastrophe).
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• Peripheral (non-core) risks, such as investment risk and operational risk, which are
contained and actively managed to reduce leakages and additional drag on capital.

• Frictional cost, which emerges as the result of insufficient and/or inefficient control
of risk.

In the actuarial literature, the peripheral risks of an insurer are sometimes referred to as
background risks. While in practice peripheral risks and frictional cost should be con-
sidered as two distinct sources of potential losses, from a mathematical point of view the
latter can also be treated as a materialisation of background risk. Multiple contributions
have shown that the presence of background risk can influence the choice of reinsurance
made by an insurer. For instance, Dana and Scarsini [26], Lu et al. [61] and Chi and Wei
[22] showed that the optimal traditional (non-contingent) reinsurance cover can be influ-
enced by the presence of a background risk. Fan [35] considered an insurer maximizing
his expected utility and facing a background risk, and proved the stop-loss reinsurance
with a deductible being contingent upon the realization of the background risk to be opti-
mal in this setup.

In this chapter we consider a structured reinsurance deal whose indemnification scheme is
contingent upon the performance of the insurer buying it, for instance measured in terms
of his loss ratio relative to the average loss ratio of the market, or relative performance for
short. There are several arguments for doing so, which we explain hereafter.
On the one hand, as the insurer incurs larger insurance losses, his solvency is at stake,
which may put him into financial distress. During such periods, the insurer will face ad-
ditional expenses (the path to ruin is costly), such as the ones related to the intervention
of the regulator or the increased difficulty of issuing new debt or acquiring new busi-
ness. These expenses, once combined together, are referred to as the financial distress
cost (see e.g. Froot et al. [44]), which is a particular type of non-negligible frictional
cost. Moreover, since the market stakeholders partly assess the performance of insurers
by benchmarking them to one another, the ones who perform below the average will typ-
ically go through worse financial distress periods and thus have a larger financial distress
cost. For this reason, but also simply because a bad relative performance is in general
the consequence of large insurance losses, the overall financial risk of an insurer can be
expected to be well related with his relative performance, which makes the latter an inter-
esting candidate to be used in a contingent cover.
On the other hand, since the worse the relative performance of a particular insurer is, the
better the one of the other insurers will be, a reinsurance company selling covers of this
kind to several insurers in a given market will benefit from some degree of hedging.

It is hence assumed that a key driver of the need (demand) for this special type of reinsur-
ance is the financial distress cost (this is also in line with findings in Krvavych and Sherris
[58]). We will consider the above simple structured reinsurance deal as a toy model and
assess the benefits it might bring when used for optimising capital resources to enhance
firm value. In particular, we want to quantify the potential improvements, for both the
insurer(s) and the reinsurer, when the latter offers such covers simultaneously to various
insurers. To do so, in a simple yet realistic model, we consider a representative insurer
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who manages his risk according to a scenario-based approach and seeks to minimize his
reinsurance premium. We solve the resulting optimal reinsurance problem and explicitly
derive the optimal reinsurance cover, both when contingent covers are available and when
they are not. The optimal contingent and traditional covers are then compared, first theo-
retically and then quantitatively, by means of a numerical application.

The rest of the chapter is organised as follows. In Section 5.2, we formulate a model
in which the insurer faces both an insurance risk and financial distress cost, and we then
describe the two forms of reinsurance he has at his disposal, namely contingent and tra-
ditional covers. In Section 5.3, we formulate the optimization problem that allows us to
determine both the optimal contingent cover and the optimal traditional one. In Section
5.4, the optimal contingent and traditional reinsurance covers are explicitly derived, and
their properties are discussed and compared. In Section 5.5, we give a concrete appli-
cation in which we are able to determine the cases where the optimal contingent cover
outperforms the traditional one, and we quantify the eventual improvements. Finally, we
provide a conclusion in Section 5.6.

5.2 Preliminaries

5.2.1 The Model
In this paper, all random variables are defined on the probability space (Ω,F ,P). Let
PX ≥ 0 be the total premium received by an insurer for covering an (annual aggregate)
insurance loss. This insurance loss is represented by the non-negative random variable X
with distribution function FX(x) = P(X ≤ x).

As a tool to manage his risk, the insurer may purchase a reinsurance cover, under which
he will cede the portion R (the ceded loss) of his insurance loss to a reinsurance company
(the reinsurer), and in turn pay the corresponding reinsurance premium PR. That rein-
surance premium is defined as PR = π[R], where the functional π : Ω → R+ satisfying
π[0] = 0 is the premium principle, that is, the rule determining the amount to be paid by
the insurer for ceding R.

Under a reinsurance cover, the part of X and PX being retained by the insurer are thus
D = X − R (the retained loss) and PD = PX − PR (the retained premium). Here, for
simplicity the insurer is assumed to face only one other source of loss, namely the finan-
cial distress cost. The latter is assumed to depend on the retained loss and is therefore
denoted YD. The cash-flows are considered to occur according to the following sequence:
the insurer first receives PX and pays PR at the same time (t = 0), and then one year later
(t = 1) he pays D and YD. We refer to the sum

HD := D + YD

as the insurer’s retained risk.
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The financial distress cost is modelled as a function of the excess of the retained loss
over the retained premium, and its concrete shape depends on the insurer’s relative per-
formance described by the discrete random variable Z, leading to

YD = gZ
(
(D − PD)+

)
=
∑
z∈Z

gz
(
(D − PD)+

)
· 1{Z = z},

where gz : R+ → R+ is the financial distress cost function for the risk scenario z and
1{Z = z} the indicator function of the event Z = z. We assume that

gz(x) is continuous and increasing in x, with gz(0) = 0, for all z. (A1)

(throughout this paper, we write “increasing” for “non-decreasing” and “decreasing” for
“non-increasing”). As a consequence, the financial distress cost is non-negative, and can
only be greater than 0 if the retained loss of the insurer exceeds the retained premium. In
practice, the shape of each function gz would typically be linked to the market capitaliza-
tion of the insurer, as studied by Froot [45].

The insurer is part of an insurance market with a total of n ≥ 2 insurers. Let V and
V n be variables measuring at t = 1 the performance realized during the elapsed year by
the insurer and the market, respectively. Typically V is a function of X , and V n is based
on public data. For instance, in the concrete example in Section 5.5, we will consider the
insurer’s loss ratio V = X/PX , and V n will be the average loss ratio of the market.

The relative performance of the insurer is now modelled as Z := s(V, V n), where s :
R+ × R+ → R is a bivariate step function. It is assumed that both the insurer and the
reinsurer know the function s. The relative performance Z is thus a random variable at
t = 0, whose realization can be known with no ambiguity by both the insurer and the
reinsurer at t = 1. Correspondingly, Z is a discrete random variable that represents mu-
tually exclusive scenarios for the realization of the relative performance of the insurer at
t = 1, and we denote its domain by Z .

Consider a risk scenario z ∈ Z . The random variable (X | Z = z) has the conditional
distribution function FX|Z=z(x) = P(X ≤ x | Z = z), and we denote its Value-at-Risk at
one particular β ∈ [0, 1] by

ρz[X] := VaRβ[X|Z = z] = inf{x : FX|Z=z(x) ≥ β}.

Then, we make the two additional assumptions

ρz[X] increases in z, (A2)

and
gz(x) increases in z, for all x, (A3)

so Z can be seen as measuring how bad the relative performance of the insurer has been.
From this, we finally define supZ as the worst-case scenario.
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Remark 5.2.1. Studies on the optimal choice of reinsurance in the presence of back-
ground risk (or a related risk factor) often consider the property of stochastic increasing-
ness (see e.g. Dana and Scarsini [26], Lu et al. [61] and Chi and Wei [22]). Note that in
our framework the stochastic increasingness of X in Z – i.e. having P(X > x | Z = z)
that increases in z, for all x – is a sufficient, but not a necessary condition for (A2).

5.2.2 Traditional and Contingent Reinsurance
The ceded loss of a traditional reinsurance cover is computed as

R = f(X)

where f : R+ → R+ is a pre-defined deterministic function, referred to as the ceded loss
function. For instance, the ceded loss function of a quota-share (qs) cover at x ∈ R+ is
f qs(x) = a · x, where a ∈ [0, 1] is the proportionality factor, and the one of a (traditional)
bounded stop-loss (tbsl) (also referred to as limited stop-loss or one-layer reinsurance
cover) is

f tbsl(x; d, ℓ) = min{(x− d)+, ℓ},

where d ≥ 0 is the deductible (or retention) and ℓ ≥ 0 the limit (or layer). The reader
interested in a broader overview of traditional reinsurance covers can refer to Albrecher
et al. [1].

In contrast to traditional reinsurance, under a contingent cover the type of the ceded loss
function (or the values of the parameters involved in it) can depend on the realization
of one or more random variables. For a reinsurance cover being contingent upon the
realization of Z, the ceded loss is computed as

R = fZ(X) =
∑
z∈Z

fz(X) · 1{Z = z},

where fZ denotes the contingent ceded loss function that depends on Z (so fz is the ceded
loss function when Z = z).

Remark 5.2.2. Any traditional ceded loss function f is a special case of a contingent one
with fz = f for all z. Consequently, any result that holds in general for contingent ceded
loss functions, also holds for the traditional ones.

The contingent version of a bounded stop-loss (cbsl) has ceded loss function

f cbsl
Z (x; dZ , ℓZ) = min{(x− dZ)+, ℓZ} =

∑
z∈Z

min{(x− dz)+, ℓz} · 1{Z = z},

where dz ≥ 0 and ℓz ≥ 0 are the pre-defined deductible and limit that apply if Z = z, and
dZ =

∑
z∈Z dz · 1{Z = z} and ℓZ =

∑
z∈Z ℓz · 1{Z = z} are the resulting contingent

deductible and contingent limit.
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5.3 Choice of Reinsurance

5.3.1 The Optimization Problem
Sometimes insurers are willing (or constrained by law) to measure and manage their risk
in several distinct risk scenarios, rather than on the average over all the risk scenarios.
When an insurer does so, but contingent reinsurance is not available (for instance because
the realized risk scenario is not observable), he usually has no other choice than purchas-
ing the traditional cover that fits his needs under the worst-case risk scenario and therefore
tends to pay a high reinsurance premium. A typical example of a non-observable realized
risk scenario is the one of model risk (or model uncertainty, ambiguity), that is, when an
insurer considers multiple probability models to describe his risk but cannot determine
which is the correct one (for a suggestion of mixing of quantile levels over different such
scenarios, see e.g. Cohignac and Kazi-Tani [24]). In that case, if the insurer wants to man-
age his risk over all the considered models by purchasing a reinsurance cover, then he will
have to make his choice under the worst one. In the literature, this situation is referred
to as worst-case or minimax (maxmin) optimization. For recent studies on that topic we
refer to Asimit et al. [5], Birghila and Pflug [15] and Birghila et al. [14]. If, by contrast,
the realized risk scenario is observable (for instance, whether a hailstorm occurs or not
in a particular geographical region and time period), then using it in a contingent reinsur-
ance cover allows the insurer to choose a potentially different indemnification scheme for
each risk scenario, which lowers the reinsurance premium but still achieves the desired
mitigation of risk.

The nature of the financial distress cost motivates a scenario-based measurement of risk
for each z separately. For the purposes of this paper, we thus consider, for all z, the
concrete conditional risk measure

ρz[HD] = VaRβ[HD|Z = z],

where β is typically large. If the insurer enters into a reinsurance deal at t = 0, then
ρz[HD] corresponds to the funds needed at t = 1 in order to limit his ruin probability to at
most 1− β in scenario z. The insurer then sets his maximal acceptable level of riskiness
k ≥ 0, and chooses the reinsurance cover so that none of the resulting conditional risk
measures exceeds it. Concretely, if the insurer does so and has the funds k (and hence
the capital k − PD) available at t = 1, then for any realization of Z his ruin probability
is at most 1− β, which represents an additional level of safety over simply having a ruin
probability of at most 1− β.

Remark 5.3.1. For an insurer managing his risk according to the approach described
above, the choice of the maximal acceptable level of risk k will depend on several factors,
such as the resulting retained premium, the capital available and the objective function.
While the determination of this choice is a question of interest, it is outside the scope of
this paper. Therefore, in order to keep our results general, we will consider the maximal
acceptable level of risk to be chosen exogenously and assume k to be given. However, the
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optimality results from Section 5.4 can be used in a second step to determine k endoge-
nously.

Since in general there will be several covers reducing all the conditional risk measures to
at most k, we are led to the mathematical problem of choosing the contingent cover with
the smallest premium. Also, in order to avoid ending up with a cover that has undesirable
properties, as in Asimit et al. [6] we restrict this choice to ceded loss functions in the set

C(1) =
{
fZ : 0 ≤ fz(x) ≤ x and both fz(x) and x−fz(x) are increasing functions, for all z

}
,

where the first condition ensures that the insurer cedes a loss that is neither negative
nor greater than the original loss, and the second one reduces moral hazard from both
parties within each risk scenario. The constraints in C(1) are in fact an extension of those
suggested by Huberman et al. [53], that were for traditional reinsurance covers only.

Remark 5.3.2. While restricting the choice of ceded loss functions to C(1) reduces moral
hazard within each risk scenario, the insurer may still have an incentive to misreport X
and hence V in order to increase his ceded loss fZ(X). In practice, there may, however,
be ways to deal with this issue applying a proper level of governance and auditing.

In mathematical terms, the optimal contingent reinsurance cover can be formulated as

f
(1)
Z ( · ; k) = argmin

fZ( · ; k)∈C(1)(k)

π[fZ(X)], (5.1)

where
C(1)(k) =

{
fZ ∈ C(1) : ρz[HX−fZ(X)] ≤ k, for all z

}
is the set of admissible contingent ceded loss functions for a given maximal acceptable
level of riskiness k.

Remark 5.3.3. If instead of reducing the conditional risk measure ρz[HD] to at most
k for each risk scenario z, we considered it to be done for VaRβ[HD] globally, then in
many cases ceding less risk in more dangerous risk scenarios is the optimal strategy for
minimizing the reinsurance premium (see e.g. some solutions in Asimit et al. [6]). A
contingent cover with such a property might, however, be viewed as a theoretical op-
timization tool rather than a risk management instrument that could be implemented in
practice. So among other advantages, the scenario-based approach above can be seen as
a way to prevent the optimal contingent cover to have this possibly undesirable property.

Regarding the traditional reinsurance cover that will be used as a benchmark for the opti-
mal contingent one, we consider the same problem as (5.1), but with C(1) replaced by

C(2) =
{
f : 0 ≤ f(x) ≤ x and both f(x) and x− f(x) are increasing functions

}
.

The best choice of the benchmark cover can then be formulated as

f (2)( · ; k) = argmin
f( · ; k)∈C(2)(k)

π[f(X)], (5.2)

where
C(2)(k) =

{
f(x) ∈ C(2) : ρz[HX−f(X)] ≤ k, for all z

}
.
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Remark 5.3.4. When the relative performance and the financial distress cost are ignored,
the constraints on the conditional risk measures in C(2)(k) can be replaced by the single
condition VaRβ[X − f(X)] ≤ k. If reinsurance is priced according to the expected value
principle, the optimal reinsurance problem (5.2) then becomes the dual problem of (3.10)
in Chi and Tan [21], which consists in the minimization of VaR[X − f(X)] + π[f(X)]
under the set of admissible ceded loss functions C(2). Problem (5.2) is thus closely related
to (3.10) in Chi and Tan [21], and as a consequence so is problem (5.1), as it is simply a
relaxed version of (5.2) (the difference being the set of admissible ceded loss functions,
with C(2)(k) ⊆ C(1)(k)). Note that problems (5.1) and (5.2) slightly differ in spirit from
the formulation of many other optimal reinsurance problems in the literature, in that the
measure of risk is to be made acceptable rather than minimal (see also [1, Sec.8], the
review paper Cai and Chi [17] and references therein). In our formulation, the insurer can
make an explicit trade-off between the reinsurance premium and his maximal acceptable
measure of riskiness k, see also Remark 5.3.1.

5.3.2 The Premium Principle
In this paper, problems (5.1) and (5.2) will be solved for monotone premium principles.

Definition 5.3.1. The premium principle π is said to be monotone if for any two ceded
losses R and R̃, having R ≤ R̃ almost surely always results in π[R] ≤ π[R̃].

An important property of monotone premium principles is that they preserve the order
relationships of contingent ceded loss functions.

Definition 5.3.2. If two contingent ceded loss functions fZ and f̃Z satisfy fz(x) ≤ f̃z(x)
for all x and z, then fZ is said to be pointwise smaller than f̃Z , and we write fZ ⪯ f̃Z .

We state this property formally:

Property 5.3.1. If π is a monotone premium principle, then for any two ceded loss func-
tions fZ and f̃Z satisfying fZ ⪯ f̃Z , we have π[fZ(X)] ≤ π[f̃Z(X)].

A well-known instance of a monotone premium principle is the expected value premium
principle

π[R] = (1 + θ) E[R],

where E[R] is the expectation of R and θ ≥ 0 the safety loading factor. Another example
is the risk-adjusted premium principle introduced by Wang [81] (also referred to as Wang
or distortion premium principle)

π[R] =

∫ ∞

0

w(P(R > x)) dx,

with w(u) being a non-negative increasing and concave function such that w(0) = 0 and
w(1) = 1.



90 CHAPTER 5. STRUCTURED REINSURANCE DEALS

5.4 Optimality Results

5.4.1 Preliminaries
We begin by recalling Theorem 1 from Dhaene et al. [30], according to which for any
increasing and continuous function η(x) and β ∈ [0, 1], the Value-at-Risk of a random
variable X satisfies

VaRβ[η(X)] = η(VaRβ[X]). (5.3)

Given the definition of the financial distress costs YD, the retained risk of the insurer can
alternatively be expressed as

HD = hZ(D;PD) =
∑
z∈Z

hz(D;PD) · 1{Z = z},

where
hz(x; p) = x+ gz

(
(x− p)+

)
is a function of x that depends on both p and z. More specifically, we have that

hz(x; p) is a continuous and strictly increasing function of x, (5.4)

from (A1),
hz(x; p) decreases in p, (5.5)

and finally
hz(x; p) increases in z, (5.6)

from (A3).

Note that in absence of reinsurance, the insurer’s retained risk is HX = hZ(X;PX).

We then define the random variables

h−1
Z (u; p) =

∑
z∈Z

h−1
z (u; p) · 1{Z = z}

where h−1
z (u; p) = inf{x : hz(x; p) ≥ u} is the inverse function of hz(x; p), and

ρZ [X] =
∑
z∈Z

ρz[X] · 1{Z = z}.

For i = 1, 2, the minimal reinsurance premium and the related retained premium resulting
from problem (i) are denoted

P
(i)
R (k) = π[f

(i)
Z (X; k)] and P

(i)
D (k) = PX − P

(i)
R (k),

and the retained risk of the insurer is

H
(i)
D (k) = hZ

(
X − f

(i)
Z (X; k);P

(i)
D (k)

)
,

where f (2)
Z ( · ; k) = f (2)( · ; k).

Let us derive the following results.
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Proposition 5.4.1. For i = 1, 2, let π be a monotone premium principle and k the maximal
acceptable level of riskiness. If the set C(i)(k) of candidates is non-empty, then problem
(i) admits a solution.

Proof. For i = 1, 2, let j ≥ 1 be an integer and z ∈ Z . Let further fZ( · ; k, xj−1,z, xj,z) be
the pointwise smallest element of C(i)(k) for x ∈ [xj−1,z, xj,z) and Z = z (or an arbitrarily
chosen one of them, if there are several), where x0,z = 0 and xj−1,z ≤ xj,z for all j and z.
Since by definition

fZ( · ; k, xj−1,z, xj,z) ∈ C(i)(k), for all j and z, (5.7)

the functions fz(x; k, xj−1,z, xj,z) and x − fz(x; k, xj−1,z, xj,z) are both increasing in x,
and hence they are both continuous in x too, which yields

fz(xj,z; k, xj−1,z, xj,z) = fz(xj,z; k, xj,z, xj+1,z), for all j and z. (5.8)

Let then
fZ(x; k) =

∑
z∈Z

fz(x; k) · 1{Z = z},

where
fz(x; k) =

∑
j≥1

fz(x; k, xj−1,z, xj,z) · 1{x ∈ [xj−1,z, xj,z)}.

Given (5.7), we know that fz(x; k) and x − fz(x; k) are both increasing in each interval
(xj−1,z, xj,z). Therefore, since (5.8) yields that fz(x; k) is continuous in x at x = xj,z, for
all j and z, we have that fz(x; k) and x− fz(x; k) are both increasing in x, which yields

fZ( · ; k) ∈ C(i)(k). (5.9)

By definition, we have that fZ( · ; k) ⪯ f̃Z( · ; k), for any f̃Z( · ; k) ∈ C(i)(k), and hence
from (5.9) we deduce that fZ( · ; k) is the pointwise smallest element in C(i)(k). Since
π is a monotone premium principle, Property 5.3.1 yields f (i)

Z ( · ; k) = fZ( · ; k), which
proves the result.

Proposition 5.4.2. For i = 1, 2, let π be a monotone premium principle and k(i)inf the small-
est maximal acceptable level of riskiness for which problem (i) admits a solution. Then
problem (i) admits a solution for any k ≥ k

(i)
inf , and the resulting minimal reinsurance

premium P
(i)
R (k) decreases in k, down to 0 for k ≥ ρsupZ [HX ].

Proof. For i = 1, 2, consider the maximal acceptable levels of riskiness k and k̃ satisfying
k
(i)
inf ≤ k ≤ k̃. By definition, for any fZ( · ; k) ∈ C(i)(k) we have fZ( · ; k) ∈ C(i)(k̃),

leading to
C(i)(k) ⊆ C(i)(k̃). (5.10)

Since by definition problem (i) admits a solution for the maximal acceptable level of risk-
iness k(i)inf , the set C(i)(k

(i)
inf) is non-empty and hence from (5.10), neither is C(i)(k), which,

given Proposition 5.4.1, proves that problem (i) admits a solution for any k satisfying
k ≥ k

(i)
inf .
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Therefore, since k and k̃ satisfy k(i)inf ≤ k ≤ k̃, the solutions f (i)
Z ( · ; k) and f (i)

Z ( · ; k̃)
are both defined, and from (5.10), they satisfy f (i)

Z ( · ; k) ⪯ f
(i)
Z ( · ; k̃). Given that π

is monotone, from Property 5.3.1 this last relationship yields P (i)
R (k) ≤ P

(i)
R (k̃), which

proves that P (i)
R decreases in k for any k ≥ k

(i)
inf .

Finally, consider the case where the insurer cedes no loss to the reinsurer, and hence
R = 0 for any realization of X and Z. The corresponding contingent ceded loss function
is

fZ(x) = 0, for all x and any realization of Z, (5.11)

which belongs to both C(i). Since by definition π[0] = 0, the reinsurance premium result-
ing from (5.11) is

PR = 0, (5.12)

and for each z, the related conditional risk measure is thus ρz[HX ]. By virtue of (5.3) and
(5.4), the latter can be rewritten as

ρz[HX ] = hz(ρz[X];PX). (5.13)

By considering properties (5.4) and (5.6) in (5.13), and since ρz[X] is assumed to increase
in z, the conditional risk measure ρz[HX ] increases in z, which leads to

ρz[HX ] ≤ ρsupZ [HX ], for all z. (5.14)

As a consequence, if
k ≥ ρsupZ [HX ], (5.15)

then from (5.14) we know that (5.11) belongs to C(i)(k). Moreover, since by the definition
of π the reinsurance premium must be non-negative, from (5.12) we deduce that under
(5.15), the contingent ceded loss function (5.11) is a solution to problem (i), which proves
that P (i)

R (k) = 0 whenever k ≥ ρsupZ [HX ].

Lemma 5.4.1. For any k ≥ 0 and v ≥ 0, the pointwise smallest f ∈ C(2) satisfying
f(v) ≥ v − k is f(x) = min{(x− k)+, ℓ}, where ℓ = (v − k)+.

Proof. Let us first consider the case 0 ≤ k < v: the smallest value f(v) satisfying
f(v) ≥ v − k then is f(v) = v − k. For any f ∈ C(2), we have

0 ≤ f(x)− f(y) ≤ x− y, for all y ≤ x,

which can be partitioned into

0 ≤ f(v)− f(x) ≤ v − x, for x ∈ [0, v), (5.16)

and
0 ≤ f(x)− f(v) ≤ x− v, for x ∈ [v,∞). (5.17)

With f(v) = v − k, inequalities (5.16) and (5.17) become

x− k ≤ f(x) ≤ v − k, for x ∈ [0, v),
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and
v − k ≤ f(x) ≤ x− k, for x ∈ [v,∞),

from what we deduce that the pointwise smallest f ∈ C(2) satisfying f(v) ≥ v − k is

f(x) =


0 , for x < k,

x− k , for k ≤ x < v,

v − k , for x ≥ v,

= min{(x− k)+, v − k}.

(5.18)

For the case 0 ≤ v ≤ k, we have v − k ≤ 0, which means that the pointwise smallest
f ∈ C(2) satisfying f(v) ≥ v − k is

f(x) = 0, for all x. (5.19)

Finally, if we let ℓ = (v − k)+, reassembling (5.18) and (5.19) establishes the result.

5.4.2 Optimal Contingent Reinsurance Cover
In the following theorem, we derive the optimal reinsurance cover when contingent covers
are allowed.

Theorem 5.4.1. Let π be a monotone premium principle and k the maximal accept-
able level of riskiness satisfying k ≥ k

(1)
inf = inf

{
k : h−1

supZ
(
k;P

(1)
D (k)

)
≥ 0

}
. Then

f
(1)
Z ( · ; k) = f cbsl

Z

(
· ; dZ(k), ℓZ(k)

)
, i.e. a contingent bounded stop-loss cover is opti-

mal, with contingent deductible dZ(k) = h−1
Z

(
k;P

(1)
D (k)

)
and contingent limit ℓZ(k) =(

ρZ [X]− dZ(k)
)
+

.

Proof. By Proposition 5.4.2, we know that for k ≥ k
(1)
inf , the solution f (1)

Z ( · ; k) is defined
and thus belongs to ∈ C(1)(k), meaning that

ρz[H
(1)
D (k)] ≤ k, for all z. (5.20)

but also
0 ≤ f (1)

z (x; k) ≤ x, for all z, (5.21)

and
f (1)
z (x; k) and x− f (1)

z (x; k) are increasing functions, for all z. (5.22)

From (5.3) and (5.4), each inequality ρz[H
(1)
D (k)] ≤ k can be rewritten as

ρz[X − f (1)
z (X; k)] ≤ h−1

z

(
k;P

(1)
D (k)

)
,

which, since (5.3) and (5.22) yield ρz[X − f
(1)
z (X; k)] = ρz[X] − f

(1)
z (ρz[X]; k), means

that (5.20) is equivalent to

f (1)
z (ρz[X]; k) ≥ ρz[X]− h−1

z

(
k;P

(1)
D (k)

)
, for all z. (5.23)
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By reassembling (5.21) for x = ρz[X] with (5.23), we obtain

ρz[X] ≥ f (1)
z (ρz[X]; k) ≥ ρz[X]− h−1

z

(
k;P

(1)
D (k)

)
, for all z,

from what we deduce that since f (1)
Z ( · ; k) is defined, we have

h−1
z

(
k;P

(1)
D (k)

)
≥ 0, for all z. (5.24)

Given (5.6), for the inequalities in (5.24) to be satisfied, it is necessary and sufficient that

h−1
supZ

(
k;P

(1)
D (k)

)
≥ 0. (5.25)

Moreover, from (5.4), (5.5) and Proposition 5.4.2, we have that

h−1
supZ

(
k;P

(i)
D (k)

)
is strictly increasing in k, for i = 1, 2, (5.26)

and therefore (5.25) is equivalent to k ≥ inf
{
k : h−1

supZ
(
k;P

(1)
D (k)

)
≥ 0
}

, which proves
that

k
(1)
inf = inf

{
k : h−1

supZ
(
k;P

(1)
D (k)

)
≥ 0
}
.

Subsequently, since X is a positive random variable, we have

ρz[X] ≥ 0, for all z. (5.27)

If we now define f cbsl
z

(
x; dz(k), ℓz(k)

)
= min

{(
x − dz(k)

)
+
, ℓz(k)

}
, where dz(k) =

h−1
z

(
k;P

(1)
D (k)

)
and ℓz(k) =

(
ρz[X]− dz(k)

)
+

, then from Lemma 5.4.1 and given (5.24)
and (5.27), we have that f cbsl

z

(
· ; dz(k), ℓz(k)

)
is, for all z, the pointwise smallest fz

satisfying (5.21), (5.22) and (5.23). As a result,

f cbsl
Z

(
· ; dZ(k), ℓZ(k)

)
=
∑
z∈Z

f cbsl
z

(
· ; dz(k), ℓz(k)

)
· 1{Z = z}

is the pointwise smallest contingent ceded loss function in C(1)(k), which, from Property
5.3.1 and since π is a monotone premium principle, proves that f (1)

Z ( · ; k) = f cbsl
Z

(
· ; dZ(k), ℓZ(k)

)
for k ≥ k

(1)
inf .

Several observations concerning the optimal contingent ceded loss function are in order.
Firstly, for each scenario z, the deductible dz(k) corresponds to the threshold amount at
which the insurance loss X yields a retained risk of k for the insurer. Since dz(k) =

h−1
z (k;P

(1)
D (k)), from (5.4) we have dz(k) ≤ k for all z. Moreover, if k ≤ P

(1)
D (k), or if

for a particular scenario z there is no financial distress cost (gz(x) = 0 for all x), then we
have dz(k) = k. Subsequently, if dz(k) < ρz[X], then the related limit ℓz(k) is strictly
positive (ℓz(k) > 0), whereas whenever dz(k) ≥ ρz[X] one has no risk transfer for the
scenario z (ℓz(k) = 0).
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Secondly, given property (5.6), the deductible dz(k) decreases in z, and thus, as ρz[X]
is assumed to increase in z, the limit ℓz(k) also increases in z. From this we get

f (1)
z ( · ; k) ⪯ f

(1)
z̃ ( · ; k), whenever z ≤ z̃, (5.28)

meaning that the worse the relative performance of the insurer is, the more extended his
optimal reinsurance cover will be.

Thirdly, under f (1)
Z ( · ; k), the retained risk of the insurer has, for each scenario z, the

conditional distribution

F
H

(1)
D (k)|Z=z

(x) = P
(
H

(1)
D (k) ≤ x

∣∣ Z = z
)

= P
(
X − f (1)

z (X; k) ≤ h−1
z

(
x;P

(1)
D (k)

) ∣∣∣ Z = z
)

=


FX|Z=z

(
h−1
z

(
x;P

(1)
D (k)

))
, if x < k,

FX|Z=z

(
h−1
z

(
x;P

(1)
D (k)

)
+ ℓz(k)

)
, otherwise.

At x = k, this conditional distribution amounts to

F
H

(1)
D (k)|Z=z

(k) = FX|Z=z

(
h−1
z

(
k;P

(1)
D (k)

)
+ ℓz(k)

)
= FX|Z=z

(
dz(k) + ℓz(k)

)
= FX|Z=z

(
dz(k) +

(
ρz[X]− dz(k)

)
+

)
= 1− α , if ℓz(k) > 0,

≥ 1− α , otherwise,

(5.29)

and has the probability mass

FX|Z=z

(
dz(k) + ℓz(k)

)
− FX|Z=z

(
dz(k)

)
.

The unconditional distribution function of the retained risk of the insurer is then

F
H

(1)
D (k)

(x) = P
(
H

(1)
D (k) ≤ x

)
=
∑
z∈Z

F
H

(1)
D (k)|Z=z

(x) · P(Z = z),

which, at x = k, amounts to

F
H

(1)
D (k)

(k)

{
= 1− α , if ℓz(k) > 0 for all z,
≥ 1− α , otherwise

and has the probability mass∑
z∈Z

(
FX|Z=z

(
dz(k) + ℓz(k)

)
− FX|Z=z

(
dz(k)

))
· P(Z = z).
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Finally regarding the conditional risk measures, from (5.29) we have

ρz[H
(1)
D (k)]

{
= k , if ℓz(k) > 0,

≤ k , otherwise.

Hence, for each scenario z for which reinsurance is required (ℓz(k) > 0), the optimal
contingent bounded stop-loss only just satisfies the related constraint on the conditional
risk (ρz[H

(1)
D (k)] = k).

5.4.3 Optimal Benchmark Traditional Reinsurance Cover
In the following theorem, we derive the optimal reinsurance cover when contingent covers
are not allowed.

Theorem 5.4.2. Let π be a monotone premium principle and k be the maximal accept-
able level of riskiness satisfying k ≥ k

(2)
inf = inf

{
k : h−1

supZ
(
k;P

(2)
D (k)

)
≥ 0

}
. Then

f (2)( · ; k) = f tbsl
(
· ; d(k), ℓ(k)

)
, i.e. a traditional bounded stop-loss cover is opti-

mal among all traditional covers, with deductible d(k) = h−1
supZ

(
k;P

(2)
D (k)

)
and limit

ℓ(k) =
(
ρsupZ [X]− d(k)

)
+

.

Proof. By Proposition 5.4.2, we know that for k ≥ k
(2)
inf , the solution f (2)( · ; k) is defined

and thus belongs to ∈ C(2)(k), so that

ρz[H
(2)
D (k)] ≤ k, for all z, (5.30)

but also
0 ≤ f (2)(x; k) ≤ x, (5.31)

and
f (2)(x; k) and x− f (2)(x; k) are increasing functions. (5.32)

Following the same steps as in the proof of Theorem 5.4.1, we obtain that ρz[H
(2)
D (k)] ≤ k

can be rewritten as
ρz[X]− f (2)(ρz[X]) ≤ h−1

z

(
k;P

(2)
D (k)

)
.

On the one hand, given (A2) and (5.32), the left-hand side of that last inequality increases
in z. On the other hand, from (5.6) its right-hand side decreases in z. As a result, in order
to fulfil (5.30), it is necessary and sufficient that f (2)( · ; k) satisfies

f (2)(ρsupZ [X]) ≥ ρsupZ [X]− h−1
supZ

(
k;P

(2)
D (k)

)
. (5.33)

By reassembling (5.31) for x = ρsupZ [X] and z = supZ with (5.33), we obtain

ρsupZ [X] ≥ f (2)(ρsupZ [X]; k) ≥ ρsupZ [X]− h−1
supZ

(
k;P

(2)
D (k)

)
,

from which we deduce
h−1
supZ

(
k;P

(2)
D (k)

)
≥ 0. (5.34)
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With this, by applying the same reasoning as in the proof of Theorem 5.4.1, we can prove
that

k
(2)
inf = inf

{
k : h−1

supZ
(
k;P

(2)
D (k)

)}
. (5.35)

If we now define f tbsl
(
x; d(k), ℓ(k)

)
= min

{(
x−d(k)

)
+
, ℓ(k)

}
, where d(k) = h−1

supZ
(
k;P

(2)
D (k)

)
and ℓ(k) =

(
ρsupZ [X]− d(k)

)
+

, then from Lemma 5.4.1 and given (5.27) and (5.34), we
have that f tbsl

(
· ; d(k), ℓ(k)

)
is the pointwise smallest f satisfying (5.31), (5.32) and

(5.33), and hence it is the pointwise smallest ceded loss function in C(2)(k), which by
Property 5.3.1 for a monotone premium principle proves the result.

Remark 5.4.1. In their Theorem 3.2, Chi and Tan [21] proved the traditional bounded
stop-loss to solve the problem of minimizing VaRβ[X − f(X)] + π[f(X)], when the
set of admissible ceded loss functions is C(2) and reinsurance is priced according to the
expected value premium principle. As outlined in Remark 5.3.4, that problem is similar in
spirit to both Problems (5.1) and (5.2) of the present paper, and the appearance of bounded
stop-loss structures in our optimal solutions is therefore intuitive.

We conclude this section with the following observations concerning the optimal bench-
mark cover:
Firstly, the deductible d(k) corresponds to the amount at which the insurance lossX yields
a retained risk of k for the insurer, given that he has the relative performance Z = supZ .
Since d(k) = h−1

supZ(k;P
(2)
D (k)), from (5.4) we have d(k) ≤ k, and if k ≤ P

(2)
D (k), or

if there is no financial distress cost (gz(x) = 0 for all x and z), then we have d(k) = k.
Subsequently, if the deductible d(k) satisfies d(k) < ρsupZ [X], then the limit ℓ(k) is
strictly positive (ℓ(k) > 0). On the other hand, if d(k) ≥ ρsupZ [X], then the benchmark
traditional bounded stop-loss implies no risk transfer (ℓ(k) = 0).

Secondly, under f (2)( · ; k), the retained risk of the insurer has, for each scenario z, the
conditional distribution

F
H

(2)
D (k)|Z=z

(x) = P
(
H

(2)
D (k) ≤ x | Z = z

)
= P

(
X − f (2)(X; k) ≤ h−1

z

(
x;P

(2)
D (k)

) ∣∣ Z = z
)

=


FX|Z=z

(
h−1
z

(
x;P

(2)
D (k)

))
, if x < hz

(
d(k);P

(2)
D (k)

)
,

FX|Z=z

(
h−1
z

(
x;P

(2)
D (k)

)
+ ℓ(k)

)
, if x ≥ hz

(
d(k);P

(2)
D (k)

)
,

where hsupZ
(
d(k);P

(2)
D (k)

)
= k and hence

hz
(
d(k);P

(2)
D (k)

)
≤ hz̃

(
d(k);P

(2)
D (k)

)
≤ k, whenever z ≤ z̃ ≤ supZ,

from (5.6).
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At x = hz
(
d(k);P

(2)
D (k)

)
, this conditional distribution amounts to

F
H

(2)
D (k)|Z=z

(
hz
(
d(k);P

(2)
D (k)

))
= FX|Z=z

(
d(k) + ℓ(k)

)
= FX|Z=z

(
d(k) +

(
ρz[X]− d(k)

)
+

)
= 1− α , if ℓ(k) > 0 and z = supZ,

≥ 1− α , otherwise,

(5.36)

and has the probability mass

FX|Z=z

(
d(k) + ℓ(k)

)
− FX|Z=z

(
d(k)

)
.

The unconditional distribution function of the retained risk of the insurer is then

F
H

(2)
D (k)

(x) = P
(
H

(2)
D (k) ≤ x

)
=
∑
z∈Z

F
H

(2)
D (k)|Z(x|z) · P(Z = z),

and has, at each
x ∈

{
hz
(
d(k);P

(2)
D (k)

)
, z ∈ Z

}
,

the probability masses of at least{(
FX|Z=z

(
d(k) + ℓ(k)

)
− FX|Z=z

(
d(k)

))
· P(Z = z), z ∈ Z

}
.

Finally regarding the conditional risk measures, from (5.36) we have

ρz[H
(2)
D (k)]

= k , if ℓ(k) > 0 and z = supZ,

≤ k , otherwise,
(5.37)

meaning that when reinsurance is required (ℓ(k) > 0), the benchmark cover only just sat-
isfies the constraint on the conditional risk measure for the worst-case scenario (ρsupZ [H

(2)
D (k)] =

k).

5.4.4 Comparison
We now compare the optimal contingent bounded stop-loss and its benchmark, when the
same monotone premium principle π and maximal acceptable level of riskiness k apply.
We assume the latter to be such that the solutions f (1)

Z ( · ; k) and f (2)( · ; k) are both de-
fined.

We start by showing that an optimal contingent cover always leads to a smaller rein-
surance premium than an optimal traditional cover:
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Proposition 5.4.3. Let π be a monotone premium principle and k the maximal acceptable
level of riskiness. Then k(1)inf ≤ k

(2)
inf and for all k ≥ k

(2)
inf

P
(1)
R (k) ≤ P

(2)
R (k). (5.38)

Proof. By Proposition 5.4.2, problems (5.1) and (5.2) both admit a solution for k ≥
max{k(1)min, k

(2)
min}. As C(2)(k) ⊆ C(1)(k), problem (5.2) is hence just a constrained version

of problem (5.1), so that

P
(1)
R (k) ≤ P

(2)
R (k), for k ≥ max{k(1)inf , k

(2)
inf }. (5.39)

To complete the proof, it only remains to show that k(1)inf ≤ k
(2)
inf . By the definitions of k(1)inf

and k(2)inf and from (5.26), we have

h−1
supZ

(
k;P

(1)
D (k)

)
≥ 0, for k ≥ k

(1)
inf ,

and
h−1
supZ

(
k;P

(2)
D (k)

)
≥ 0, for k ≥ k

(2)
inf ,

and hence (5.5) and (5.39) yield

h−1
supZ

(
k;P

(1)
D (k)

)
≥ h−1

supZ
(
k;P

(2)
D (k)

)
≥ 0, for k ≥ max{k(1)inf , k

(2)
inf }. (5.40)

Let us now assume that k(1)inf > k
(2)
inf . In that case, since

hsupZ
(
k
(1)
inf ;P

(1)
D (k

(1)
inf )
)
= 0 and hsupZ

(
k
(2)
inf ;P

(2)
D (k

(2)
inf )
)
= 0,

from (5.26) and (5.40) we would have

0 ≥ hsupZ
(
k
(1)
inf ;P

(2)
D (k

(1)
inf )
)
> 0,

which is not possible, so that necessarily k(1)inf ≤ k
(2)
inf .

Remark 5.4.2. Proposition 5.4.3 proves that for any given maximal acceptable level of
riskiness k ≥ k

(2)
inf , the optimal contingent bounded stop-loss is worth a smaller reinsur-

ance premium than its benchmark, which yields a larger retained premium and hence a
greater risk bearing capacity for the insurer. Under the optimal contingent bounded stop-
loss, the insurer can thus typically afford to choose a larger maximal acceptable level of
riskiness, which, according to Proposition 5.4.2, will make that reinsurance cover even
cheaper than its benchmark. However, since the choice of the maximal acceptable level
of riskiness is not dealt with in this paper (cf. Remark 5.3.1), we will pursue our analysis
by comparing the optimal contingent cover and its benchmark under the same k.

With this result, we are now able to compare in more detail f (1)
Z ( · ; k) and f (2)( · ; k).

Indeed, since (5.38) yields P (1)
D (k) ≥ P

(2)
D (k), given (5.5) we have dsupZ(k) ≥ d(k) and

thus ℓsupZ(k) ≤ ℓ(k), which results in

f
(1)
supZ( · ; k) ⪯ f (2)( · ; k) (5.41)
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and hence
f
(1)
Z ( · ; k) ⪯ f (2)( · ; k), (5.42)

from (5.28). That last relationship implies by definition

f
(1)
Z (X; k) ≤ f (2)(X; k), for any realization of X and Z, (5.43)

which can be seen as the counterpart of (5.38). That is, while the optimal contingent
bounded stop-loss is cheaper than its benchmark, it also yields a smaller ceded loss.

Remark 5.4.3. We can distinguish two factors responsible for the difference between
P

(1)
R (k) and P (2)

R (k). On the one hand, by definition the optimal contingent bounded stop-
loss varies with Z, which makes it being adapted to the need of the insurer (in terms of
reduction of the conditional risk measures) for each scenario. In contrast, the benchmark
cover cannot vary with Z and, as shown by (5.37), it fits the need of the insurer only
for the worst-case scenario, leaving him over-reinsured for the other scenarios, which
contributes to a higher premium. On the other hand, the optimal contingent bounded
stop-loss cover results in a larger retained premium than its benchmark, which for the
worst-case scenario yields a smaller financial distress cost. As a result, while one could
expect the ceded loss functions f (1)

supZ( · ; k) and f (2)( · ; k) to be equal (they both serve the
insurer’s need under the worst-case scenario), their order relationship is given by (5.41),
and the latter contributes to making the benchmark cover being more expensive than the
optimal contingent bounded stop-loss.

At this point, it is interesting to note that whereas (5.43) results in

X − f
(1)
Z (X; k) ≥ X − f (2)(X; k), for any realization of X and Z,

the optimal contingent bounded stop-loss does not necessarily yield a larger retained risk
for the insurer. Indeed, due to (5.38), it can happen that the financial distress cost

Y
(2)
D (k) = gZ

((
X − f (2)(X; k)− P

(2)
D (k)

)
+

)
exceeds

Y
(1)
D (k) = gZ

((
X − f

(1)
Z (X; k)− P

(1)
D (k)

)
+

)
,

for some X and Z, in which case the difference Y (2)
D (k) − Y

(1)
D (k) may be large enough

to result in H(1)
D (k) < H

(2)
D (k). However, when that happens, the difference H(2)

D (k) −
H

(1)
D (k) will be non-negligible only if the retained risk of the insurer is dominated by the

financial distress cost.

In any case, by the design of problems (5.1) and (5.2), the optimal contingent bounded
stop-loss and its benchmark both bring all the conditional risk measures to at most the
maximal acceptable level of riskiness k and hence, from this viewpoint, they mitigate
the risk equivalently. However, the contingent cover does it for a smaller reinsurance
premium and thus leaves more potential profits for the insurer. In Section 5.5, we will
quantify the difference between P (1)

R (k) and P (2)
R (k) in a concrete example.
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Remark 5.4.4. In the light of Remark 5.4.3, it is intuitive that the main factors determin-
ing how small P (1)

R (k) will be relative to P (2)
R (k) are, on the one hand, how over-reinsured

the insurer will be for the scenarios different from supZ , and on the other hand, how
much weight is given to these scenarios. If reinsurance is priced according to the ex-
pected value premium principle (as it will be in the concrete example from Section 5.5),
the difference between P (2)

R (k) and P (1)
R (k) can be expressed as

P
(2)
R (k)− P

(1)
R (k) = (1 + θ) ·

∑
z∈Z

∆z(k),

where ∆z(k) =
(
E[f (2)(X; k)|Z = z] − E[f (1)

z (X; k)|Z = z]
)
· P(Z = z). Corre-

spondingly, this difference will be substantial if ∆z(k) is large for some z (which occurs
when ρz[X] is significantly smaller than ρsupZ [X], as that increases the difference be-
tween ℓz(k) and ℓ(k) and subsequently between f (1)

z ( · ; k) and f (2)( · ; k)) and at the
same time P(Z = z) is large.

Finally, from the reinsurer’s perspective, while (5.38) means that offering f (1)
Z ( · ; k) in-

stead of f (2)( · ; k) yields less potential profits, it also yields less risk, cf. (5.43). Whether
selling contingent covers instead of traditional ones will improve the risk-to-profit of the
reinsurer will hence depend on the concrete situation, particularly on the degree of neg-
ative dependence between the relative performance of each insurer. However, we will
show in the next section that in several realistic cases, selling contingent covers can in-
deed improve the risk-to-profit of the reinsurer.

Remark 5.4.5. Note that in the absence of financial distress costs (gz(x) = 0 and hz(x; p) =
h−1
z (x; p) = x for all p, x and z), there is in fact no need for Z to still model the relative

performance of the insurer. Any other contingent cover based on an external (discrete) Z
can then also be considered, with the above results still being applicable, as long as one
assures (A2) to hold.

5.5 Numerical Illustration
In this section we will consider a concrete numerical illustration in detail. We assume
an insurance market with n = 3 (and later n = 5) insurers. They are all assumed to be
identical in distribution.

5.5.1 Concrete Model Specifications

For the marginal distribution of Xi (i = 1, . . . , n) representing the aggregate loss of
insurer i, we consider the following composite (splicing) model (see e.g. Scollnik [73])
with density function

b(x) = λ · φ(x;µ, σ, s) + (1− λ) · ν(x;α, s),
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Figure 5.1: Random samples of the random vector (U1, U2), with Uniform[0, 1] marginals
and F-Clayton(τ) copula, for τ = 0, 0.5, 1. On these plots, each random sample contains
104 realizations.

where

φ(x;µ, σ, s) =

1
x
· exp

(
− 1

2
·
(

lnx−µ
σ

)2)
∫ s

0
1
y
· exp

(
− 1

2
·
(

ln y−µ
σ

)2)
dy

· 1{0 < x ≤ s},

is the density function of a Log-Normal(µ, σ) random variable, upper-truncated at s > 0,
and

ν(x;α, s) = α · sα

xα+1
· 1{x > s},

the density function of a Pareto(α,s) random variable. This density function b allows to
model the loss with a Log-Normal bulk of the distribution and a Pareto tail, which is often
considered to be realistic. For the parameters, we set α = 2.2 and s = 1′800, and then
choose λ, µ and σ so that E[Xi] = 1′000 and b is continuous and differentiable at x = s,
which yields λ ≈ 0.9009, µ ≈ 6.5728 and σ ≈ 0.6476. The resulting standard deviation
is
√

Var[Xi] ≈ 1′780.

The dependence structure of the random vector (X1, X2, ..., Xn) is modelled according
to an Archimedean survival copula with generator ϕ(t) = t−1/τ − 1, which is an n-
dimensional Flipped-Clayton (or F-Clayton, for short) copula with parameter τ (see e.g.
Nelsen [66]). In addition to interpolate between independence (τ = 0) and comonotonic-
ity (τ = ∞), this copula allows for right-tail dependence and is therefore appropriate
to our context, since it is not rare for reinsurers to face tail dependence when reinsuring
losses. In the following applications, we will consider three dependence scenarios: mu-
tual independence (τ = 0), medium tail dependence (τ = 0.5) and strong tail dependence
(τ = 1). Figure 5.1 illustrates random samples drawn from a bivariate F-Clayton(τ) cop-
ula for these three cases.
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As the above specifications do not allow an explicit expression of the joint distribution
function of (X1, ..., Xn), we will consider the respective empirical joint distribution based
on 107 sample points instead for all calculations.

For simplicity of notation, we now re-identify X1 with X . The total premium PX and
the reinsurance premium PR are both assumed to be computed according to the expected
value principle (with safety loading θX = 0.2 and θR = 0.5, respectively). The total
premium is thus PX = 1′200 and the retained premium after reinsurance amounts to

PD = 1′200− 1.5 · E[R].

As mentioned in Section 5.3.2, the expected value principle is monotone and hence
f cbsl
Z

(
· ; dZ(k), ℓZ(k)

)
and f tbsl

(
· ; d(k), ℓ(k)

)
are indeed the solutions to problems (5.1)

and (5.2), respectively.

In practice, a conditional distribution FX|Z=z and a financial distress cost function gz
must be estimated for all z ∈ Z . If too many risk scenarios are considered in Z, this can
be a difficult task and may significantly increase model risk. For this reason, we consider
here the simple case of the binary measure of relative performance

Z = 1{V > 1.5 · n

0.5 + n
· V n} = 1{V > 1.5 · V n−1},

where Vi = Xi/PXi
is the loss ratio of insurer i (and hence V = X/PX), V n = 1

n
·
∑n

i=1 Vi
the average loss ratio of the market and V n−1 = 1

n−1
·
∑n

i=2 Vi the average loss ratio of
the insurer’s n − 1 competitors. The insurer is thus viewed as realizing a notably bad
relative performance if his loss ratio is greater than 1.5 times the average loss ratio of
his competitors. The resulting domain of Z is correspondingly Z = {0, 1}. Notice that,
since the insurers are assumed to be identical, they all receive the same total premium and
hence the relative performance simplifies to

Z = 1{X > 1.5 ·Xn−1},

where Xn−1 =
1

n−1
·
∑n

i=2Xi.

For the financial distress cost, we assume

YD = 0.5 · Z · (D − PD)+.

Therefore, if both a bad relative performance occur (Z = 1) and the retained loss exceeds
the retained premium, then each two additional monetary units of retained loss result in
one monetary unit of financial distress cost. The resulting financial distress cost function
gz(x) = 0.5 · z · x is continuous in x and increasing in both x and z with gz(0) = 0, in
accordance with Assumptions (A1) and (A3). Also, we have hz(x; p) = x+0.5·z·(x−p)+,
which yields that the optimal contingent bounded stop-loss has deductibles

dz(k) =

{
k , for z = 0,
2
3
· k + 1

3
·min{k, P (1)

D (k)} , for z = 1,
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n = 3 n = 5

τ 0 0.5 1 0 0.5 1

P(Z = 1) 0.2713 0.2440 0.2103 0.2253 0.2066 0.1749

ρ0[HX ] 2′238 4′339 5′814 2′092 4′227 5′782

ρ1[HX ] 18′351 16′932 14′475 19′962 18′529 15′780

Table 5.1: Conditional risk measures ρ0[HX ] and ρ1[HX ] resulting from the model inputs,
together with the the probability that the insurer incurs a bad relative performance P(Z =
1), for n = 3, 5 and τ = 0, 0.5, 1.

and limits

ℓz(k) =

{(
ρ0[X]− d0(k)

)
+

, for z = 0,(
ρ1[X]− d1(k)

)
+

, for z = 1,

while the benchmark has deductible

d(k) =
2

3
· k + 1

3
·min{k, P (2)

D (k)},

and limit
ℓ(k) =

(
ρ1[X]− d(k)

)
+
,

cf. Section 5.4. For the operators ρ0 and ρ1, we set β = 0.995.

In order to illustrate the model described above, we show in Table 5.1 the values of the
conditional risk measures ρ0[HX ] and ρ1[HX ], together with the probability P(Z = 1),
for n = 3, 5 and τ = 0, 0.5, 1. Note that in all cases ρz[HX ] increases in z, in accordance
with Assumption (A2).

Figure 5.2 depicts the plots of the conditional distribution functionsFHX |Z=0 andFHX |Z=1,
as well as the unconditional distribution function FHX

for each choice of n and τ . We ob-
serve from Table 5.1 and Figure 5.2 that there is a significant difference between the
conditional distributions FHX |Z=0 and FHX |Z=1 (and hence between their 99.5%-quantile
ρ0[HX ] and ρ1[HX ]), with the unconditional FHX

being in between. The significant dif-
ference between FHX |Z=0 and FHX |Z=1 indicates that the measure Z of the relative per-
formance distinguishes two risk scenarios in which the risk faced by the insurer (and
hence his need for reinsurance) is clearly distinct, which makes Z being an appropriate
candidate to be used in a contingent reinsurance cover. The distance between the curves
naturally decreases with τ and increases with n: The parameter τ models the strength
of the right-tail dependence between the Xi’s. For larger τ , the realizations of the Xi’s
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Figure 5.2: Conditional distribution functions FHX |Z=0 and FHX |Z=1, together with the
unconditional distribution function FHX

, for n = 3, 5 and τ = 0, 0.5, 1.

will be closer to each other and hence less information on X will be carried by the events
Z = 0 and Z = 1. At the same time, increasing the market size n lowers the variance
of Xn−1 and hence allows for potentially larger deviations of X from 1.5 ·Xn−1, which
explains that the distance between FHX |Z=1 and FHX

increases with n.

The same effects also drive the probability to experience a bad relative performance
P(Z = 1) as given in Table 5.1. That probability decreases in both τ and n. For larger τ
the realizations of the Xi’s will be closer to each other, making the exceedance of X over
1.5 ·Xn−1 less likely. Since increasing n lowers the variance of Xn−1, that also makes it
less likely that Z = 1 occurs caused by a small realization of Xn−1.

5.5.2 The insurer’s viewpoint

In this section, we analyse the position of the insurer, when he purchases either the opti-
mal contingent bounded stop-loss or its benchmark. The quantities to follow turn out to
vary considerably with the given maximal acceptable level of riskiness. For the clarity of
the plots, we thus consider the intermediate range of maximal acceptable levels of riski-
ness k ∈ [1′200, 10′000]. For n = 3, 5 and τ = 0, 0.5, 1, the lower bound is greater than
both k(1)inf and k(2)inf , which ensures that both f (1)

Z ( · ; k) and f (2)( · ; k) are defined.
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Figure 5.3: Reinsurance premiums, for n = 3, 5 and τ = 0, 0.5, 1.

In Figure 5.3, we plot the reinsurance premiums P (1)
R (k) and P (2)

R (k) for n = 3, 5 and
τ = 0, 0.5, 1. In accordance with Proposition 5.4.3, it shows that for all the considered
maximal acceptable levels of riskiness, the reinsurance premium for the optimal contin-
gent bounded stop-loss is smaller than the one for its benchmark. If we then compare the
difference between P (1)

R (k) and P (2)
R (k) for the various values of τ and n, we notice that

it notably increases with τ . The reason for this is the following: By (5.28) and (5.43), for
any given monotone premium principle π and maximal acceptable level of riskiness k we
have

f
(1)
0 ( · ; k) ⪯ f

(1)
1 ( · ; k) ⪯ f (2)( · ; k), (5.44)

and the only difference between f (1)
1 ( · ; k) and f (2)( · ; k) is the retained premium involved

in the related parameters d1(k), ℓ1(k), d(k) and ℓ(k). In the present example, for all the
considered maximal acceptable levels of riskiness the distance between f (1)

1 ( · ; k) and
f (2)( · ; k) is very small, and hence so is ∆1(k). As a result, given that here P (2)

R (k) −
P

(1)
R (k) = 1.5 ·

(
∆0(k) + ∆1(k)

)
, what prevails in the latter difference is

∆0(k) =
(
E[f (2)(X; k)|Z = 0]− E[f (1)

0 (X; k)|Z = 0]
)︸ ︷︷ ︸

(a)

·P(Z = 0)︸ ︷︷ ︸
(b)

.

where (a) quantifies how much the benchmark makes the insurer being over-reinsured
with respect to the contingent cover and (b) is the related weight. As shown in Table 5.1,
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Figure 5.4: Relative difference of the reinsurance premiums, for n = 3, 5 and τ =
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the difference between ρ0[X] and ρ1[X] decreases in τ , which leads to (a) being decreas-
ing in τ (cf. Remark 5.4.4). On the other hand, the probability P(Z = 0) = 1−P(Z = 1)
increases in τ (see Table 5.1 and the respective discussion above). While these two ef-
fects are conflicting, it turns out that the increase in τ of (b) dominates, which leads
P

(2)
R (k)− P

(1)
R (k) to increase with τ .

Since in absolute terms, the above curves are quite close to each other, it may be more
instructive to consider the relative difference P (1)

R (k)/P
(2)
R (k)−1 instead, which is plotted

in Figure 5.4 for n = 3, 5 and τ = 0, 0.5, 1. The bend appearing in each plot occurs at
k = ρ0[X] , and its presence can be understood as follows. While the deductibles d0(k),
d1(k) and d(k) are all increasing in k, the limits ℓ0(k), ℓ1(k) and ℓ(k) are all decreasing
in k, which makes the reinsurance premiums P (1)

R (k) and P
(2)
R (k) both to be decreas-

ing in k, as shown by Figure 5.3 and in accordance with Proposition 5.4.2. However,
whereas for k < ρ0[X], the limits ℓ0(k), ℓ1(k) and ℓ(k) are all strictly decreasing in k, for
k ∈ [ρ0[X], ρ1[HX ]), the limit ℓ0(k) is constant at 0 and hence only ℓ1(k) and ℓ(k) remain
strictly decreasing. As a result, for k ∈ [ρ0[X], ρ1[HX ]) the reinsurance premium P

(1)
R (k)

decreases less in k than P (2)
R (k) does, resulting in that particular bend in the relative dif-

ference curve P (1)
R (k)/P

(2)
R (k)− 1 at k = ρ0[X].
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Figure 5.5: Standard-deviation of the reinsurer’s loss ratio, for n = 3, 5 and τ = 0, 0.5, 1.

Finally, Figure 5.3 already showed that the more likely it is for the worst-case scenario not
to occur, the cheaper (and hence the more advantageous for the insurer) the optimal con-
tingent bounded stop-loss will be in comparison to its benchmark. Figure 5.4 confirms it,
showing that the relative difference can be about −25% for τ = 0.5 and −55% for τ = 1.
That is, an increased degree of dependence among insurers is in fact advantageous for the
performance of this cover. Also, we would like to emphasize that similar results could be
obtained using other measures of relative performance, as long as they imply one or more
large ∆z(k) (cf. Remark 5.4.4).

5.5.3 The reinsurer’s viewpoint
In order to assess whether selling contingent covers instead of traditional ones improves
the risk-to-profit measure of the reinsurer or not, we will consider his loss ratio in two
distinct (extreme) situations: either the reinsurance covers he sells are all of optimal con-
tingent bounded stop-loss type, or they are all benchmark covers. The resulting reinsurer’s
loss ratios are then

W (1)
m:n(k) =

∑m
i=1 f

(1)
Zi

(Xi; k)∑m
i=1 P

(1)
Ri

(k)
and W (2)

m:n(k) =

∑m
i=1 f

(2)
Zi

(Xi; k)∑m
i=1 P

(2)
Ri

(k)
,

where m ∈ {1, ..., n} is the number of insurers that the reinsurer sold covers to and Zi is
the relative performance of the ith insurer.
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At t = 0, these two loss ratios are random variables which have, for any m and k ≥ k
(2)
inf

the common expectation

E[W (1)
m:n(k)] = E[W (2)

m:n(k)] = 2/3. (5.45)

In order to characterise the difference between W (1)
m:n(k) and W (2)

m:n(k), we will thus focus
on their standard-deviation, denoted by

Q(1)
m:n(k) =

√
Var[W (1)

m:n(k)] and Q(2)
m:n(k) =

√
Var[W (2)

m:n(k)].

Remark 5.5.1. Since reinsurance is priced according to the expected value principle with
a unique risk margin of 0.5, the standard deviations of the reinsurer’s loss ratio Q(1)

m:n(k)

and Q(2)
m:n(k) can alternatively be expressed as

Q(1)
m:n(k) =

√
Var
[∑m

i=1 f
(1)
Zi

(Xi; k)
]

1.5 · E
[∑m

i=1 f
(1)
Zi

(Xi; k)
] and Q(2)

m:n(k) =

√
Var
[∑m

i=1 f
(2)(Xi; k)

]
1.5 · E

[∑m
i=1 f

(2)(Xi; k)
] ,

(5.46)
meaning that Q(1)

m:n(k) and Q(2)
m:n(k) are just the scaled (by a factor 2/3) coefficients of

variation of the total reinsurance claims
∑m

i=1 f
(1)
Zi

(Xi; k) and
∑m

i=1 f
(2)(Xi; k), respec-

tively.

In Figure 5.5, we plot Q(1)
m:n(k) and Q(2)

m:n(k) for n = 3, 5 and τ = 0, 0.5, 1. We firstly
observe that for all n and τ ,Q(1)

m:n(k) andQ(2)
m:n(k) are both decreasing inm, which reveals

and quantifies the diversification effect of pooling risks for the reinsurer. We notice that
for all n and τ , Q(1)

m:n(k) and Q(2)
m:n(k) are both increasing in k. The reason for this is the

following: As k increases, the part of theXi’s that is transferred to the reinsurer decreases
(ℓ0(k), ℓ1(k) and ℓ(k) are all decreasing in k) and is shifted to the right tail (d0(k), d1(k)
and d(k) are all increasing in k), which reduces proportionally more the expectations of∑m

i=1 f
(1)
Zi

(Xi; k) and
∑m

i=1 f
(2)(Xi; k) than their standard deviations and hence makes

Q
(1)
m:n(k) and Q(2)

m:n(k) both increase in k, from (5.46).

In Figure 5.6 we consider the relative difference Q(1)
m:n(k)/Q

(2)
m:n(k) − 1 for n = 3, 5 and

τ = 0, 0.5, 1, which like for the premium differences before may be more instructive to
study. We firstly notice that, as for P (1)

R (k)/P
(2)
R (k)− 1, the curves Q(1)

m:n(k)/Q
(2)
m:n(k)− 1

all contain a bend, which occurs at k = ρ0[X] in every case. The reason for this is
the following: For the considered maximal acceptable levels of riskiness, the limit ℓ0(k)
decreases faster than ℓ1(k) in k when k < ρ0[X], and slower when k ≥ ρ0[X]. The
difference between ℓ0(k) and ℓ1(k) thus increases in k for k < ρ0[X], and decreases for
k ≥ ρ0[X]. Then, given that for all i the potential difference between f (1)

0 (Xi; k) and
f
(1)
1 (Xi; k) depends directly and positively on the one between ℓ0(k) and ℓ1(k), increas-

ing k when k < ρ0[X] will add some variability to each f (1)
Zi

(Xi; k) and hence also to∑m
i=1 f

(1)
Zi

(Xi; k), while for k ≥ ρ0[X] it will remove some. As a result, Q(1)
m:n(k) tends to

increase in k faster for k < ρ0[X] than it does for k ≥ ρ0[X], which results in the notable
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Figure 5.6: Relative difference of the standard-deviations of the reinsurer’s loss ratio, for
n = 3, 5 and τ = 0, 0.5, 1.

bend that occurs in the relative difference Q(1)
m:n(k)/Q

(2)
m:n(k)− 1 at k = ρ0[X].

We observe that for a single reinsurance deal (m = 1), this relative difference is al-
ways positive, meaning that the loss ratio of each optimal contingent bounded stop-loss
cover has a greater standard deviation than the one of the benchmark. This comes from
the fact the optimal contingent bounded stop-loss inherits from its property of varying
with the relative performance some variability that the benchmark does not have. As a
result, while on the one hand the contingent bounded stop-loss reduces the expectation of
the ceded loss over the one of the benchmark, on the other hand it reduces proportionally
less its standard deviation. The ceded loss f (1)

Z (X; k) therefore has a greater coefficient
of variation than f (2)(X; k), which from (5.46) yields Q(1)

1:n(k)/Q
(2)
1:n(k)− 1 > 0.

We note that Q(1)
m:n(k)/Q

(2)
m:n(k) − 1 decreases in m. The explanation for that is as fol-

lows: On the one hand, by construction the Zi’s tend to be negatively correlated, which
introduces some degree of negative dependence between the ceded losses f (1)

Zi
(Xi; k).

On the other hand, since the ceded loss function f (2)( · ; k) is increasing, the ceded
losses f (2)(X; k), ..., f (2)(Xm; k) have the same dependence structure as X , ..., Xm.
Because of this, when the reinsurer sells reinsurance covers to more insurers in the mar-
ket (when m increases), if these covers are the optimal contingent bounded stop-loss,
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then he benefits from a larger diversification effect than if they are the benchmark ones.
The standard deviation Q(1)

m:n(k) thus decreases faster than Q(2)
m:n(k) in m, which makes

Q
(1)
m:n(k)/Q

(2)
m:n(k)− 1 to be decreasing in m.

Finally, when m approaches n, the relative difference Q(1)
m:n(k)/Q

(2)
m:n(k) − 1 turns neg-

ative. Therefore, if the reinsurer has a large market share, then while keeping the same
expectation of the loss ratio (cf. (5.45)), in several cases selling contingent covers rather
than the traditional benchmark ones makes him benefit from a smaller standard devia-
tion of his loss ratio. Figure 5.6 illustrates that the improvement is substantial when the
insurers’ losses are positively dependent. This is particularly noteworthy, as in this case
positive dependence has a favourable impact for both the insurers and the reinsurer, which
is rather uncommon in risk sharing constructions. Also, it suggests that such a favourable
effect for the reinsurer may still be obtained using another measure of relative perfor-
mance Z, as long as one ensures that it sufficiently introduce negative dependence among
the contingent covers.

5.6 Conclusion
In this paper we studied the efficiency of contingent reinsurance covers as a particular ex-
ample of structured reinsurance deals. Since for insurers the performance relative to other
market participants is quite important in terms of potential financial distress costs, we in-
vestigated a reinsurance form that pays more in scenarios where the financial distress cost
is increased. On the marginal side of the insurer, this can lead to a performance improve-
ment, and for a reinsurer offering similar covers to several market participants there also
can be a beneficial diversification effect. Under certain assumptions on the performance
and risk measures involved, we proved optimality results of such a cover from the view-
point of the insurer. We further illustrated the results in a detailed numerical example,
where we also showed the hedging effect for the reinsurer writing several simultaneous
such contracts to market participants.
It was the purpose of this paper to propose a new perspective for the analysis and the
intuitive understanding of potential advantages of this structured reinsurance deal, which
is why we deliberately chose a rather simple model that allowed to keep the calculations
tractable and led to explicit results. Naturally, there are various directions in which the
present results can be extended. Next to possibly different performance and risk mea-
sures than the ones considered in the paper, it could also be interesting to generalize the
analysis to other reinsurance premium principles, and to reinsurance pricing techniques
that are more specific to the individual reinsurer’s situation rather than applying a general
principle. Furthermore, it will be interesting to see to what extent the results of this paper
still hold in more heterogeneous (re)insurance markets.
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