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Abstract

This master’s thesis is about applications of self-exciting Hawkes processes in insurance

mathematics. The Hawkes process framework allows to investigate an insurance risk model

with an interesting type of dependence, namely a claim arrival process which displays

endogenously caused temporal clustering (for instance caused by an outcoming claim

payment that induces a stream of subsequent payments). We first extensively study prop-

erties of Hawkes processes, in particular the exponential specification which is the focus

of this thesis. After reviewing results from classical risk theory and some of its extensions,

we introduce a risk model based on a general compound Hawkes process. We derive its

theoretical properties, in particular a law of large numbers and a central limit theorem

which allows a pure diffusion approximation of the model and analytical calculation of

finite-time and infinite-time ruin probabilities. Using empirical insurance data from the

class of legal expenses insurance, we corroborate that the model is able to accurately re-

flect reality. Finally, we use the diffusion approximation of the model to study the optimal

investment problem of an insurer whose claim arrival process displays temporal clustering

using a mean-variance framework. We quantify the effect of the risk-enhancing clustering

feature on the optimal investment strategy and attainable returns given a risk boundary

using results for a holistic asset-liability management approach.



Zusammenfassung

Diese Masterarbeit beschäftigt sich mit der Anwendung von selbst-anregenden Hawkes

Prozessen in der Versicherungsmathematik. Im Rahmen dieser Betrachtung lässt sich ein

Risikomodell mit einer interessanten Art der Abhängigkeit, nämlich Schadenszahlungen,

deren Ankunftszeiten einen endogen verursachten temporären Clustering-Effekt aufweisen

(beispielsweise verursacht durch eine ausgehende Schadenszahlung, welche eine Reihe von

folgenden Auszahlungen auslöst), studieren. Wir beschäftigen uns zunächst eingehend

mit den Eigenschaften von Hawkes Prozessen, insbesondere der exponentiellen Spezifika-

tion, welche den Fokus dieser Arbeit darstellt. Nachdem einige Resultate der klassischen

Risikotheorie und einiger ihrer Erweiterungen rekapituliert werden, führen wir ein Risiko-

modell basierend auf einem allgemeinen zusammengesetzten Hawkes Prozess ein. Wir

leiten seine theoretischen Eigenschaften, insbesondere ein Gesetz der großen Zahlen und

einen zentralen Grenzwertsatz her, welcher eine Approximation des Modells durch einen

reinen Diffusionsprozess und die analytische Berechnung von Ruinwahrscheinlichkeiten

im endlichen und unendlichen Zeithorizont ermöglicht. Unter Verwendung empirischer

Daten aus dem Bereich der Rechtsschutzversicherung bestätigen wir, dass das Modell in

der Lage ist, den realen Sachverhalt angemessen abzubilden. Abschließend verwenden wir

die obige Approximation des Modells, um das Investitions-Problem eines Versicherers,

dessen Schadensankunftszeiten einen zeitlichen Clustering-Effekt aufweisen, im Rahmen

der Portfoliotheorie nach Markowitz (Ertrags-Risiko-Effizienzlinie) zu untersuchen. Wir

quantifizieren den Effekt der risikoerhöhenden Clustering-Eigenschaft auf die optimale

Investmentstrategie sowie die erzielbare Rendite gegeben einer Risikolimitierung unter

Verwendung eines Ansatzes des ganzheitlichen Bilanzstrukturmanagements.
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List of symbols and abbreviations

a.e. almost every(where)

a.s. almost surely

càdlàg right continuous with left limits (continue à

droite, limite à gauche)

c.d.f. cumulative distribution function

c.p. ceteris paribus

(F)CLT (functional) central limit theorem

i.i.d. independent and identically distributed

LLN law of large numbers

LQ linear-quadratic

MLE maximum likelihood estimate / estimation

MVE mean-variance efficient

p.d.f. probability distribution function

RMGCHP risk model based on general compound

Hawkes processes

r.p. ruin probability

r.v. random variable(s)

w.r.t. with respect to

N0 Natural numbers including 0

R Real numbers

D([0,∞) ,R) Skorokhod space (collection of càdlàg func-

tions mapping to R) on [0,∞) equipped with

Skorokhod’s J1 topology

C([0, T ];Rn×k) Continuous bounded deterministic functions

on [0, T ] with values in Rn×k

L2
F([0, T ];Rm) Rm-valued, progressively measurable and

square integrable random variables on [0, T ]

with P-a.s. finite L2
F -norm.
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Chapter 1

Introduction

Ever since the introduction of the classical Cramer-Lundberg risk model in the early 20th

century, it has served as the theoretical basis for risk theory and it has been of interest to

generalize it in ways that incorporate more of the challenges insurers face in the real world.

In reality, insurance claims usually do not arrive evenly and independently over time, but

display some sort of time-dependence or even clustering with periods of relative calm and

short periods with a large number of occurrences. The causes for this phenomenon can

be exogenous, for example seasonalities (e.g. wintery road conditions causing more car

accidents) or occurrence of natural catastrophes (e.g. hurricane seasons), and have been

studied using Cox (doubly stochastic Poisson) models (see e.g. Albrecher and Asmussen

2006, Dassios and Jang 2003). However, a maybe even more interesting type of depen-

dence to study is endogenously caused clustering, where a claim occurrence itself triggers

a stream of subsequent occurrences. This case can be investigated within the framework of

self-exciting Hawkes processes, a versatile class of simple point processes that were intro-

duced by Hawkes 1971 and have since found applications in various fields like seismology

(Ogata 1999), neuroscience (Truccolo 2016) and finance (overview in Bacry, Mastromat-

teo, and Muzy 2015). The motivation for using Hawkes processes in insurance risk theory

is manifold: For some classes of (re-)insurance claims (e.g. earthquake insurance or health

insurance in regions subject to pandemics), the main interest is understanding the tem-

poral clustering phenomenon in order to mitigate risk to the insurer’s portfolio. This is

gaining general importance in an increasingly interconnected, globalised world where risks

more easily gain a systematic characteristic and where risks of natural catastrophes be-

come more imminent due to climate change. In other cases, the main insight from using

a Hawkes process may come from its interpretation as a branching process, where an

initial claim occurrence triggers a stream of subsequent claim payments. It is of natu-

ral interest for an insurer to understand and estimate the temporal structure of these

3



CHAPTER 1. INTRODUCTION 4

payment streams, ideally from the moment of the first claim occurrence, for reservation

purposes. While there are extensive amounts of research about Hawkes processes in fi-

nance, its applications to insurance problems are quite recent: The first to consider a risk

model with Hawkes claims arrivals were Stabile and Torrisi 2010, who derive the asymp-

totic behavior of ruin probabilities and asymptotically efficient simulation laws assuming

light-tailed claims. Their work was extended by Zhu 2013 who considered subexponential

claims. Dassios and Zhao 2012 considered a risk process with claim arrivals following a

dynamic contagion process, generalising the Hawkes process and the Cox process and thus

including both self-excited and externally excited jumps. Jang and Dassios 2013 studied

a bivariate shot noise self-exciting process for insurance, including a constant rate of ex-

ponential decay, which they show could be used for the modelling of discounted aggregate

losses from catastrophic events. Very recently, Cheng and Seol 2018 derived a diffusion

approximation and thus expressions for the ruin probabilities of a risk model with Hawkes

claims arrivals. They found that the diffusion limit is a Gaussian process that can be de-

composed into a centered Gaussian process and an independent Brownian motion. While

all these works are theoretically very promising and provide extensions of classical theo-

retical results, they often only provide (asymptotic) estimates which are not necessarily

easily applicable or understandable. Furthermore, to the best of our knowledge, there is

no application of a Hawkes risk model to empirical insurance data to this date. Therefore,

we build on the risk model based on a general compound Hawkes process introduced by

Swishchuk 2017b, whose convenient theoretical properties include a law of large numbers,

implying a net profit condition and premium principle, and a functional central limit the-

orem, allowing an approximation of the risk process by a jump diffusion process. We use

these results to deduce a pure diffusion approximation by a simple Brownian motion with

drift which allows the analytical calculation of ruin probabilities in closed form. As an-

other application, we use this approximation to study the optimal investment problem of

an insurer in an incomplete market whose claim arrival process follows a Hawkes process

using a mean-variance framework and results from Xie, Li, and Wang 2008. We show how

not only the expected number and size of claims, but also their temporal distribution and

potential clustering has to be taken into account in an insurer’s asset-liability manage-

ment in order to adhere to given risk limitations. Furthermore, we check the applicability

of the Hawkes risk model, the diffusion approximation and the ruin probability estimates

on real empirical data from the class of legal expenses insurance.

The remainder of this thesis is structured as follows:

Chapter 2 summarizes some mathematical background knowledge which will be used

throughout the thesis without further explanation. Chapter 3 provides an extensive

overview of properties of Hawkes processes, in particular the exponential specification

which is the focus of this thesis. The foundations of classical risk theory and its exten-
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sions are studied in Chapter 4, before we combine Hawkes processes and risk models in

Chapter 5. We first review some previous work (as mentioned above) and then introduce

the risk model based on a general compound Hawkes process and its theoretical proper-

ties. Afterwards, the implementation of the model with empirical insurance data follows in

Chapter 6. Lastly, the application to an optimal investment problem is studied in Chap-

ter 7. The thesis is concluded by highlighting limitations and potential future research

opportunities in Chapter 8.



Chapter 2

Preliminaries

In the following, we review some definitions and theorems which we assume the reader to

be familiar with. They are well-known results and thus will be stated without proof here.

More background information can be found in the recommendable books by Grimmett

and Stirzaker 2006 (probability theory), Woess 2009 (Markov chains), Schmidli 2018 (risk

theory) and Yong and Zhou 1999 (stochastic controls). For the scope of this thesis, the

following section can act as a glossary for all basic definitions and results which appear

without further explanation later on. As a prerequisite, we assume all random variables to

be defined on some probability space (Ω,F ,P), where Ω is a set, F a σ-algebra of subsets

of Ω and P a probability measure on (Ω,F).

Probability Theory

Definition 2.1 (Modes of convergence (Grimmett and Stirzaker 2006, p. 308)). Let

X,X1, X2, · · · be random variables on the same probability space (Ω,F ,P). We say

• Xn → X almost surely, written Xn
a.s.→ X, if the event

{ω ∈ Ω : Xn(ω)→ X(ω) as n→∞} has probability 1.

• Xn → X in distribution, written Xn
D→ X, if

Fn(x) := P(Xn ≤ x)→ P(X ≤ x) =: F (x) as n→∞

for all points x at which the function F (x) is continuous.

There are other modes of convergence (e.g. in probability or in mean) which we don’t list

here as they do not appear in this thesis.

6



CHAPTER 2. PRELIMINARIES 7

Note that convergence in distribution is innately linked to Skorokhod spaces (sets of all

càdlàg functions over a given domain) as any distribution function is by definition a càdlàg

function. We will only use the space D([0,∞) ,R) here, i.e. the space of càdlàg functions

on R+ equipped with Skorokhod’s J1 topology. For a background on this, see Skhorokhod

2014 or Billingsley 1999.

Definition 2.2 (Conditional probability (Grimmett and Stirzaker 2006, p. 9)). For two

events A and B, if P(B) > 0, then the conditional probability that A occurs given that

B occurs is defined to be

P(A|B) =
P(A ∩B)

P(B)
.

Theorem 2.3 (Law of total probability (Grimmett and Stirzaker 2006, p. 10)). Let

B1, B2, · · · , Bn be a partition of Ω such that P(Bi) > 0 for all i. Then

P(A) =
n∑
i=1

P(A|Bi)P(Bi).

Theorem 2.4 (Probability integral transform (Angus 1994)). Let X be a random variable

with distribution function F and quantile function F−1. Then:

• Let U ∼ Unif(0, 1). Then F−1(U)
d
= X and

• F (X)
d
= U if and only if F is continuous,

where
d
= denotes equality in distribution.

Theorem 2.5 (Law of large numbers (Grimmett and Stirzaker 2006, p. 326)). Let {Xi}
be a sequence of i.i.d. random variables with E[Xi] =: m1 and E[X2

i ] < ∞ and let

Zn :=
n∑
i=1

Xn. Then for n→∞,

Zn
n
−→ m1

almost surely.

Theorem 2.6 (Central limit theorem (Grimmett and Stirzaker 2006, p. 194)). Let {Xi}
be a sequence of i.i.d. random variables with E[Xi] =: m1 <∞ and

Var[Xi] =: σ2 ∈ (0,∞), and let Zn :=
n∑
i=1

Xn. Then for n→∞,

Zn − nm1√
nσ2

D−→ Z

where Z is standard normally distributed.
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Theorem 2.7 (Hahn’s theorem / CLT for stochastic processes (Whitt 2002, p. 226f)).

Let {Xi} ≡ {Xi(t) : t ≥ 0} be a sequence of i.i.d. random elements of D ≡ D([0,∞) ,R)

with E[Xi(t)] = 0 and E[Xi(t)
2] <∞ for all t. If for all 0 < T <∞ there exist continuous

and non-decreasing real-valued functions g and f on [0, T ] and numbers a > 1/2 and

b > 1 such that

E[(X(u)−X(s))2] ≤ (g(u)− g(s))a (2.1)

and

E[(X(u)−X(t))2(X(t)−X(s))2] ≤ (f(u)− f(t))b (2.2)

for all 0 ≤ s ≤ t ≤ u ≤ T with u− s < 1, then

Zn(t) :=

n∑
i=1

(Xi(t)− E[Xi(t)])

√
n

D−→ Z

in D and Z is an a.s. continuous, mean-zero Gaussian process with the covariance function

of X1.

Theorem 2.8 (Wald equation (Wald 1944)). Let {Xi} be a sequence of real-valued, i.i.d.

random variables and let N(t) ≥ 0 be an integer-valued r.v. independent of the sequence

{Xi}. Suppose E[N(·)] <∞ and E[Xi] <∞. Then

E
[ N(t)∑
i=1

Xi

]
= E[X1]E[N(t)].

Theorem 2.9 (Law of total variance (Blitzstein and Hwang 2015, p. 401)). Let X and

Y be random variables on the same probability space and assume Var[Y ] <∞. Then

Var[Y ] = E[Var(Y |X)] + Var(E[Y |X]).

The last two results imply that if {Xi} is a sequence of i.i.d. random variables andN(t) ≥ 0

an integer-valued random variable independent of the sequence {Xi}, then it holds

Var
( N(t)∑

i=1

Xi

)
=: Var(Y (t)) = E[Var(Y (t)|N(t)] + Var(E[Y (t)|N(t)])

= E[N(t)Var(X1)] + Var(N(t)E[X1])

= Var(X1)E[N(t)] + E[X1]2Var(N(t)).
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Markov Chains

Definition 2.10 (Markov chain (Grimmett and Stirzaker 2006, p. 214)). Let

X = {X0, X1, · · · } be a sequence of random variables which take values in some countable

set S, called the state space. The process X is a Markov chain if it satisfies the Markov

condition:

P(Xn = x|X0 = x0, X1 = x1, · · · , Xn−1 = xn−1) = P(Xn = x|Xn−1 = xn−1)

for all n ≥ 1, x, x0, · · · , xn−1 ∈ S. The chain X is called homogeneous if

P(Xn = j|Xn−1 = i) = P(X1 = j|X0 = i)te∀n, i, j.

The initial distribution ν is defined as the vector of probabilities of the initial state, i.e.

νi = P(X0 = i) for all i ∈ S.

Definition 2.11 (Transition probabilities (Grimmett and Stirzaker 2006, p. 214f)). The

transition matrix P = (pij) of a Markov Chain X is the |S| × |S| matrix of transition

probabilities

pij = P(Xn = j|Xn−1 = i).

The n-step transition matrix P (m,m+ n) is the matrix of transition probabilities

pij(m,m+ n) := P(Xm+n = j|Xm = i).

By the Chapman-Kolmogorov equations it holds that P (m,m+ n) = P n.

Definition 2.12 (Characteristics of states (Grimmett and Stirzaker 2006, p. 220ff)).

texttexttext• A state i ∈ S is called recurrent if

P(Xn = i for some n ≥ 1|X0 = i) = 1,

which means that the probability of eventually returning to state i, having started

in state i, is 1.

• A recurrent state is called positive recurrent, if the mean recurrence time (the ex-

pected time it takes to return to state i) is finite.

• The period d(i) of a state i is defined as the greatest common divisor of the number

of steps after which returning to the same state i is possible, i.e. d(i) = gcd{n :

pii(n) > 0}. A state i ∈ S is called aperiodic if d(i) = 1 and periodic otherwise.

• A state i communicates with a state j (i→ j) if pij(m) > 0 for some m ≥ 0, meaning

that if the chain starts from i, it might visit state j with positive probability. If i→ j

and j → i, we say i and j intercommunicate (i↔ j).
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Definition 2.13 (Irreducible Markov chain (Grimmett and Stirzaker 2006, p. 223ff)). A

set C ⊂ S is called irreducible if i ↔ j for all i, j,∈ C. If this holds for all i, j ∈ S, the

whole Markov chain is called irreducible. This means that the chain, having started from

any state i ∈ S, may ever visit any state j ∈ S with positive probability.

Lemma 2.14 (Grimmett and Stirzaker 2006, p. 224). If i↔ j, then i is recurrent if and

only if j is recurrent.

Lemma 2.15 (Grimmett and Stirzaker 2006, p. 225). If S is finite, then at least one state

is recurrent and all recurrent states are positive recurrent.

Definition 2.16 (Stationary distribution (Grimmett and Stirzaker 2006, p. 227)). The

vector π∗ is called a stationary distribution of a Markov chain if π∗ has entries (π∗j : j ∈ S)

such that:

• π∗j ≥ 0 for all j, and
∑

j∈S π
∗
j = 1,

• π∗ = π∗P , which means π∗j =
∑

i∈S π
∗
i pij for all j.

Theorem 2.17 (Stationary distribution (Grimmett and Stirzaker 2006, p. 227)). An

irreducible Markov Chain has a stationary distribution π∗ if and only if all the states are

positive recurrent. In this case, π∗ is the unique stationary distribution.

Note that the results above imply that an irreducible Markov Chain on a finite state space

S must automatically be positive recurrent, so an irreducible Markov chain on a finite

state space always has a unique stationary distribution.

Theorem 2.18 (Ergodic theorem (Woess 2009, p. 69)). Let X be a positive recurrent,

irreducible Markov chain with stationary distribution π∗ and f : X → R an integrable

function w.r.t. π∗, that is
∑
x∈S
|f(x)|π∗(x) < ∞, then for any initial distribution it holds

that

lim
n→∞

1

n

n−1∑
i=0

f(Xi) =
∑
x∈S

f(x)π∗(x) = Eπ∗ [X0] a.s. (2.3)

Therefore, a state x ∈ S is called ergodic if it is positive recurrent and aperiodic and an

irreducible Markov chain is called ergodic if all x ∈ S are ergodic.

Definition 2.19 (Continuous-time Markov chain (Grimmett and Stirzaker 2006, p. 256)).

Let X = {X(t) : t ≥ 0} be a family of random variables taking values in some countable

state space S and indexed by the halfline [0,∞). The process X is called a continuous-time

Markov chain if it satisfies the following Markov property:

P(X(tn) = x|X(t1) = x1, X(t2) = x2, · · · , X(tn−1) = xn−1) = P(X(tn) = x|X(tn−1) = xn−1)

for all x, x1, · · · , xn−1 ∈ S and any sequence t1 < t2 < · · · < tn of times.
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Definition 2.20 (Markov process (Grimmett and Stirzaker 2006, p. 406)). The

continuous-time process X, taking values in R, is called a Markov process if it holds

P(X(tn) ≤ x|X(t1) = x1, X(t2) = x2, · · · , X(tn−1) = xn−1) = P(X(tn) ≤ x|X(tn−1) = xn−1)

for all x, x1, · · · , xn−1 and any sequence t1 < t2 < · · · < tn of times.

Stochastic processes and stochastic calculus

Definition 2.21 (Wiener Process / Brownian Motion (Grimmett and Stirzaker 2006, p.

516)). A stochastic process W = {W (t) : t ≥ 0} is called (standard) Brownian motion if

it fulfills the following properties:

• W (0) = 0 almost surely,

• W has independent increments, i.e. the random variables (W (t)−W (s)) and (W (v)−
W (u)) are independent for all 0 ≤ u < v ≤ s < t <∞,

• W (s+ t)−W (s) ∼ N(0, σ2t) for all s, t ≥ 0 where σ2 is a positive constant,

• the paths of W are a.s. continuous.

We call the stochastic process X(t) = µt + σW (t) a Brownian motion with drift µ and

volatility σ (or simply (µ, σ)-Brownian motion) for µ ∈ R and σ ∈ (0,∞).

Definition 2.22 (Gaussian Process (Grimmett and Stirzaker 2006, p. 406)). A real-valued

continuous-time process X is called a Gaussian process if each finite-dimensional vector

(X(t1), X(t2), · · · , X(tn)) has the multivariate normal distribution N(µ(t), V (t)) for some

mean vector µ and some covariance matrix V which may depend on t = (t1, t2, · · · , tn).

A Gaussian process is called centered if its mean function µ(t) is identically zero.

Definition 2.23 (Stationarity (Grimmett and Stirzaker 2006, p. 361)). The process

X = {X(t) : t ≥ 0}, taking values in R, is called (strongly) stationary if the families

{X(t1), X(t2), · · · , X(tn)} and {X(t1 + h), X(t2 + h), · · · , X(tn + h)}

have the same joint distribution for all t1, t2, · · · , tn and h > 0.
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Theorem 2.24 (Itô formula (Grimmett and Stirzaker 2006, p. 545)). Let X be an Itô dif-

fusion, i.e. an adapted process on some probability space (Ω,F ,P) fulfilling the stochastic

differential equation

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t)

where µ and σ are functions from R+ × R → R and W (t) is a Brownian motion. Let

Y (t) := f(t,X(t)), where f ∈ C1,2 is once resp. twice continuously differentiable in t resp.

X(t), then Y (t) is also an Itô diffusion, given by

dY =
[
fx(t,X)µ(t,X) + ft(t,X) +

1

2
fxx(t,X)σ2(t,X)

]
dt+ fx(t,X)σ(t,X)dW (t).

Corollary 2.25 (Product rule). Let X and Y be two Itô diffusions fulfilling

dX(t) = µXdt+ σXdW (t) and

dY (t) = µY dt+ σY dW (t)

respectively, where we suppress the arguments of µ and σ for notational convenience.

Then the product X(t)Y (t) is also an Itô diffusion, satisfying

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + d〈X, Y 〉(t)

= (Y (t)µX +X(t)µY + σXσY )dt+ (Y (t)σX +X(t)σY )dW (t).

Theorem 2.26 (Multi-dimensional Itô formula). Let W = (W1, · · · ,Wm) be an m-

dimensional Brownian motion and X = (X1, · · · , Xn) be an n-dimensional Itô process

with

dXi(t) = µi(t,X(t))dt+
m∑
j=1

σij(t,X(t))dWj(t), for i = 1, · · · , n.

Let Y (t) := f(t,X(t)), where f ∈ C1,2 is once resp. twice continuously differentiable in t

resp. X(t). Then Y (t) is also an Itô diffusion, given by

dY = df(t,X(t)) = ft(t,X(t))dt+
n∑
i=1

fXidXi(t) +
1

2

n∑
i=1

m∑
j=1

fXiXjd〈Xi, Xj〉(t),

where

d〈Xi, Xj〉(t) =
m∑
k=1

σik(t,X)σjk(t,X)dt.
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Theorem 2.27 (Itô formula for jump diffusion processes (Privault 2019, p. 577)). Let

X be an adapted process on some probability space (Ω,F ,P) fulfilling the stochastic

differential equation

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t) + η(t,X(t))dN(t)

where µ, σ and η are functions from R+×R→ R, W (t) is a Brownian motion and N(t) is

a counting process. Let Y (t) := f(t,X(t)), where f ∈ C1,2 is once resp. twice continuously

differentiable in t resp. X(t), then the SDE for Y (t) is given by

dY (t) =
[
fx(t,X(t))µ(t,X(t)) + ft(t,X(t)) +

1

2
fxx(t,X(t))σ2(t,X(t))

]
dt+

fx(t,X(t))σ(t,X(t))dW (t) + (f(t,X(t))− f(t−, X(t−)))dN(t),

where f(t−) = lim
s↗t

f(s) denotes the left limit.

Theorem 2.28 (First passage time for Brownian motion (Schmidli 2018, p. 109)). Let

W (t) be a (µ, σ2)-Brownian motion with µ > 0 and τ = inf{t ≥ 0 : u + W (t) < 0} for

u ≥ 0. Then

P(τ ≤ t) = 1− Φ

(
µt+ u

σ
√
t

)
+ e

−2uµ

σ2 Φ

(
µt− u
σ
√
t

)
and

P(τ <∞) = e
−2uµ

σ2 .

Stochastic control theory

We introduce some basic definitions and results from Yong and Zhou 1999 that might

help to understand the results in Section 7.2 in a broader context.

Definition 2.29 (State equation (Yong and Zhou 1999, p. 62f)). Given a filtered prob-

ability space (Ω,F , {Ft},P) with an m-dimensional standard Brownian motion W (·),
consider a controlled stochastic differential equation, also called the state equation:

dx(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dW (t),

x(0) = x0 ∈ Rn,
(2.4)

where b : [0, T ] × Rn × U → Rn, σ : [0, T ] × Rn × U → Rn×m, with U a given separable

metric space and T ∈ R+ fixed. The function u(·) is called control and represents the policy
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of the decision-makers. The policy at each timepoint t might only depend on available

information from the past (that is stored in Ft), therefore the set of feasible controls is

given by

U [0, T ] = {u : [0, T ]× Ω→ U |u(·) is {Ft}-adapted}.

x(·) is called state and might be subject to some state constraint, for example of the form

x(t) ∈ S(t), for all t ∈ [0, T ],P− a.s.,

where S(t) : [0, T ]→ 2Rn . Finally, the cost functional is defined as

J(u(·)) = E
[ T∫

0

f(t, x(t), u(t))dt+ h(x(T ))

]
. (2.5)

Definition 2.30 ((Weak) Admissibility and problem formulation (Yong and Zhou 1999,

p. 64)). (Ω,F , {Ft},P,W (·), u(·)) (or, if the context is clear, simply u(·)) is called (w)-

admissible control, and (x(·), u(·)) a (w)-admissible pair, if

• (Ω,F , {Ft},P) is a filtered probability space,

• W (·) is an m-dimensional standard Brownian motion defined on (Ω,F , {Ft},P),

• u(·) is an {Ft}-adapted process on (Ω,F ,P) with values in U ,

• x(·) is the unique solution of (2.4) on (Ω,F , {Ft},P) under u(·),

• some state constraints (e.g. as above) are fulfilled,

• f(·, x(·), u(·)) ∈ L1
F(0, T,R) and h(x(T )) ∈ L1

FT (Ω,R), where L1
F(0, T,R) here de-

notes the set of all {F}t-adapted R-valued processes X(·) such that

E
[ T∫

0

|X(t)|dt
]
< ∞ and L1

FT (Ω,R) the set of all FT -measurable, R-valued random

variables X such that E[|X|] <∞.

The set of all (w-)admissible controls is denoted Uwad[0, T ]. The prefix w- stands for weak

formulation and will be omitted from now on as we only consider this formulation here.

The stochastic optimal control problem is then stated as:

Minimize (2.5) over Uad[0, T ], i.e. seek ϕ̄ ∈ Uad[0, T ] (if it exists) such that

J(ϕ̄) = inf
ϕ∈Uad[0,T ]

J(ϕ).
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A particular case which will be of interest here are so-called stochastic linear-quadratic

(LQ) problems, which have a linear (in both x(·) and u(·)) state equation and a quadratic

cost functional. Let T > 0 be given and for any (s, y) ∈ [0, T ) × Rn, consider the non-

homogeneous linear equation:

dx(t) = [A(t)x(t) +B(t)u(t) + b(t)]dt

+
m∑
j=1

[Cj(t)x(t) +Dj(t)u(t) + σj(t)]dWj(t), tet ∈ [s, T ]

x(s) = y,

(2.6)

where A,B,Cj, Dj, b, σj are deterministic, matrix-valued functions. Additionally, consider

the quadratic cost functional

J(s, y, u(·)) = E
[

1

2

T∫
s

[〈Q(t)x(t), x(t)〉+2·〈Sx(t), u(t)〉+〈R(t)u(t), u(t)〉]dt+1

2
〈Gx(T ), x(T )〉

]
.

(2.7)

Assume that the coefficients fulfil

A,Cj ∈ L∞(0, T ;Rn×n), B,Dj, S
′ ∈ L∞(0, T ;Rn×k),

Q ∈ L∞(0, T ;Sn), R ∈ L∞(0, T ;Sk), G ∈ Sn,

b, σj ∈ L2(0, T ;Rn), j = 1, 2, · · · ,m.

(2.8)

Under these assumptions, (2.6) has a unique solution x(·) ∈ L2
F(s, T ;Rn) and (2.7) is

well-defined. For any s ∈ [0, T ), denote by U [s, T ] the set of all (Ω,F ,P,W (·), u(·)) (or

simply all u(·)) satisfying

• (Ω,F ,P) is a complete probability space,

• W (t) is an m-dimensional standard Brownian motion on (Ω,F ,P) over [s, T ] and

F st = σ{W (r) : s ≤ r ≤ t},

• u(·) ∈ L2
F(s, T ;Rk),

• under u(·), for any y ∈ Rn (2.6) admits a unique solution x(·) on (Ω,F , {F st },P),

• the right-hand side of (2.7) is well-defined under u(·).

The stochastic linear-quadratic optimal control problem is then stated as

Definition 2.31 (Stochastic LQ problem (Yong and Zhou 1999, p. 301)). For each

(s, y) ∈ [0, T ]× Rn, find ū(·) ∈ U [s, T ] such that

(SLQ)teJ(s, y; ū(·)) = inf
u(·)∈U [s,T ]

tJ(s, y;u(·)) = V (s, y),

where V is called the value function of problem (SLQ).
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The book by Yong and Zhou 1999 devotes the whole Chapter 6 (p. 281ff) to the solution of

LQ problems and shows that in the LQ case, the approaches via the maximum principle

and dynamic programming are equivalent and can lead to the Riccati equation which

delivers an optimal control in a linear state feedback form.

Definition 2.32 (Stochastic Riccati equation associated with SLQ (Yong and Zhou 1999,

p. 314)). Let P (·) ∈ C1([s, T ];Sn) be the solution of

Ṗ + PA+ A′P + C ′PC +Q

− (B′P + S +D′PC)′(R +D′PD)−1(B′P + S +D′PC) = 0, tea.e. t ∈ [s, T ],

P (T ) = G,

R +D′PD > 0, tea.e.t ∈ [s, T ],

(2.9)

and Z(·) ∈ C1([s, T ];Rn) be the solution of the backward SDE

Ż + [A−B(R +D′PD)−1(B′P + S +D′PC)]′Z

+ [C −D(R +D′PD)−1(B′P + S +D′PC)]′PZ + Pb = 0, tea.e. t ∈ [s, T ],

Z(T ) = 0.

(2.10)

Theorem 2.33 (Optimal control for SLQ (Yong and Zhou 1999, p. 315)). Let (2.8) hold,

and let P (·) ∈ C1([s, T ];Sn) and Z(·) ∈ C1([s, T ];Rn) be the solutions of (2.9) and (2.10)

respectively, for some s ∈ [0, T ), such that

BΨ, DΨ ∈ L∞(s, T ;Rn×n), where

Ψ = (R +D′PD)−1[B′P + S +D′PC],

and

Bψ,Dψ ∈ L2(s, T ;Rn), where

ψ = (R +D′PD)−1[B′Z +D′Pσ].

Then problem (SLQ) is solvable at s with the optimal control ū(·) being of a state feedback

form,

ū(t) = −Ψ(t)x(t)− ψ(t), textt ∈ [s, T ], (2.11)

and

V (s, y) =
1

2
〈P (s)y, y〉+ 〈Z(s), y〉

+
1

2
E
[ T∫
s

(2〈Z, b〉+ 〈Pσ, σ〉 − |(R +D′PD)
1
2ψ|2)dt

]
, te∀y ∈ Rn.

(2.12)

We will study a mean-variance portfolio selection problem as a specialised case of (SLQ)

in Chapter 7.



Chapter 3

Hawkes processes

3.1 Definition and notation

Many commonly encountered questions in reality, however complex their background

mechanisms might be, can essentially be described as understanding a sequence of random

future events. The two central questions then are how many events will occur and at what

times those occurrences will take place. Some examples include

• Customers entering a shop during a given day. It is in the shopkeeper’s interest to

estimate how many customers will arrive (to ensure sufficient supplies) and when

they will do so (if there are peak hours, he might need to employ several clerks to

avoid long waiting times for the customers).

• Earthquakes occuring in a given geographical region during a year. In this case,

the number of occurrences might be less crucial than the occurrence times. If time

points with an especially high likelihood of an earthquake occuring soon in the future

could be identified, the population could be alerted or even evacuated in time and

casualties might be avoided.

• Incoming buy- and sell-orders for a given underlying that will eventually drive the

asset price.

Although these examples come from diverse areas and are influenced by very different

environmental factors, they all have in common that they can be described by a sequence

of points on a timeline (representing events, which are in this context always assumed

to occur in an instant, e.g. the moment a customer enters the shop). Studying these

problems comes down to understanding the temporal distribution and mutual influence

of the points and finding a stochastic process that adequately models these point patterns.

17
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Given a point in time t, assume that all information about the process up until this time

is available, and this knowledge about all past event times is stored in the history H(t)

and is the only information influencing the properties of the process at time t. In other

words, what happens in the present moment may only depend on the (known) past, but

not on (unknown) future events - this is sometimes called evolutionarity (see Rasmussen

2011). Furthermore, we focus on processes where no two events occur at the exact same

time, so their occurrence times form a strictly increasing sequence. To formalize this idea,

we now give a concise summary of some background knowledge on the theory of point

processes that can be found in Laub, Taimre, and Pollett 2015. Basic knowledge about

probability theory and statistics will be assumed. For an extensive treatment of general

point processes and some mathematical background we refer to Daley and Vere-Jones

2003 and Daley and Vere-Jones 2008.

Definition 3.1 (Counting process). A counting process is a stochastic process (N(t) :

t ≥ 0) taking values in N0 that satisfies N(0) = 0, is almost surely (a.s.) finite, and is a

right-continuous step function with increments of size +1. Further, denote byH(u), u ≥ 0,

the history of the arrivals up to time u, i.e. (H(u) : u ≥ 0) is a filtration.

The counting process N(t) counts the number of arrivals up to time t. An interchangeable

way to characterize a process is by the sequence of random arrival times T = {t1, t2, ...}
describing the times at which the process N(·) has jumped.

Definition 3.2 (Point process). If a sequence of random variables T = {t1, t2, · · · },
taking values in [0,∞), has P(0 ≤ t1 ≤ · · · ) = 1, and the number of points in a bounded

region is a.s. finite, then T is a (simple) point process.

An example of a realisation of a point process T = {t1, t2, · · · } and the corresponding

counting process N(t) is given in Figure 1.

A very intuitive way to characterize a point process is by its conditional intensity function:

Definition 3.3 (Conditional Intensity Function). Consider a counting process N(·) with

associated history H(·). If a non-negative, H(t)-measurable function λ∗(t) exists such that

λ∗(t) = lim
h→0

E[N(t+ h)−N(t)|H(t)]

h
, (3.1)

then it is called conditional intensity function of N(·).

Definition 3.4 (Compensator). For a counting process N(·) with conditional intensity

function λ∗(·), the non-decreasing function

Λ(t) =

t∫
0

λ∗(s)ds (3.2)
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Figure 1: An example of a realisation of a point process T = {t1, t2, · · · , t7} and the corresponding

counting process N(t).

is called the compensator of the counting process. It is technically defined as the unique,

non-descreasing H(t)-predictable function with Λ(0) = 0 such that the ”compensated”

counting process N(t) − Λ(t) =: M(t) a.s. for t ≥ 0 is a H(t) local martingale (Doob-

Meyer-decomposition of N).

Intuitively, λ∗(t) can be interpreted as the expected rate of arrivals at time t of the process

N(t) conditioned on its history H(t). λ∗(t) was originally called the hazard function and

defined by using the distributions of the time intervals between events as

λ∗(t) =
f ∗(t)

1− F ∗(t)

where F ∗(t) and f ∗(t) are the conditional c.d.f. (and p.d.f.) of the next arrival time, say

tk+1, given the history until the last arrival time tk < t, given by

F ∗(t) := F ∗(t|H(tk)) =

t∫
tk

P(tk+1 ∈ [s, s+ ds]|H(tk))ds =:

t∫
tk

f ∗(s|H(tk))ds.

Intuitively we can see how these two definitions coincide: if we consider a very small time

interval [t, t+ dt] and assume there have been exactly k arrivals before time t, it holds

f ∗(t)

1− F ∗(t)
=

P(tk+1 ∈ [t, t+ dt]|H(t))

P(tk+1 ≥ t|H(t))
=

P(tk+1 ∈ [t, t+ dt], tk+1 ≥ t|H(t))

P(tk+1 ≥ t|H(t))

= P(tk+1 ∈ [t, t+ dt]|tk+1 ≥ t,H(t)) = P(tk+1 ∈ [t, t+ dt]|H(t))

= 1 · P(tk+1 ∈ [t, t+ dt]|H(t)) + 0 · P(tk+1 > t+ dt|H(t))
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= E[N(dt)|H(t)] = lim
h→0

E[N(t+ h)−N(t)|H(t)]

h
.

In the first and second line, we use that tk+1 ∈ [t, t+ dt] is of course a subset of tk+1 ≥ t

and the definition of conditional probability and H(t) respectively. In the last line, N(dt)

denotes the number of arrivals in an interval of length dt and we recall that for a simple

point process, no two arrival times can coincide and thus in an infitesimal timespan there

can only be 0 or 1 arrival. By Daley and Vere-Jones 2003, if the conditional intensity

function exists, it uniquely determines the finite-dimensional distributions of the point

process and can thus be used as a characterization. More generally, it can be used to

classify certain classes of point processes. For instance:

• If λ∗(t) is independent of H(t), the associated process is a renewal process.

• If an arrival causes λ∗(t) to increase, the associated process is called self-exciting.

This causes temporal clustering of T and thus λ∗(t) must be chosen carefully to

avoid the event of explosion, meaning the occurrence of an infinite number of event

in a finite time interval.

• On the contrary, if an arrival causes λ∗(t) to drop, the process is called self-regulating

and thus the arrival times of new events appear quite regular.

Example (Poisson process). A Poisson process N(t) with intensity λ is a counting process

with conditional intensity function λ∗(t) = λ for all t. Equivalently, a Poisson process can

be defined as

• A counting process N(t) with independent increments, i.e. the random variables

(N(t)−N(s)) and (N(v)−N(u)) are independent for all 0 ≤ u < v ≤ s < t <∞,

and (N(s+ t)−N(s)) ∼ Poi(λt) for all t > 0.

• A point process {t1, t2, · · · } whose interarrival times are distributed (tk− kk−1 : k ≥
1) ∼ Exp(λ) and independent, where t0 = 0.

Note that the exponential distribution is the unique continuous distribution which has

the feature of memorylessness, i.e. an interarrival time t̂ fulfils

P(t̂ > s+ t|t̂ > s) = P(t̂ > t) for all s, t ≥ 0.

As the exponential distribution and the Poisson process are intrinsically linked, the Pois-

son process likewise has the unique status of a point process with memoryless times

between arrivals.
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Example (Inhomogeneous Poisson process). An inhomogeneous Poisson process N(t)

with rate λ(t) is a counting process with independent increments such that (N(t)−N(s)) ∼

Poi(Λ(t)− Λ(s)) for all 0 ≤ s ≤ t <∞, where Λ(t) =
t∫

0

λ(u)du.

Example (Renewal process). A simple point process {t1, t2, · · · } is called ordinary re-

newal process if the interarrival times (tk − kk−1 : k ≥ 1) are i.i.d..

The assumption of conditionally independent interarrival times (or independent incre-

ments) in the last examples might not always be supportable in reality. In an inter-

connected economy, a credit default event in one company might very well affect other

companies. An earthquake that recently occurred in one region usually increases the likeli-

hood of more earthquakes (so-called aftershocks) following soon (Ogata 1988). To capture

these phenomena, we now turn to the class of self-exciting processes, namely Hawkes pro-

cesses. The Hawkes process was first introduced by Hawkes 1971 as a simple point process

with self-exciting property, clustering effect and long memory. It has since been studied

extensively and applied to model e.g. earthquake occurrences (Ogata 1999), trade orders

(Da Fonseca and Zaatour 2013), credit defaults (Errais, Giesecke, and Goldberg 2010) or

incoming insurance claims (Stabile and Torrisi 2010, Cheng and Seol 2018).

Definition 3.5 (One-dimensional Hawkes process). Consider N(t), t ≥ 0, a counting

process with history (H(t), t ≥ 0) that satisfies

P(N(t+ h)−N(t) = m|H(t)) =


λ∗(t)h+ o(h), m = 1

o(h) m > 1.

1− λ∗(t)h+ o(h), m = 0

(3.3)

Suppose its conditional intensity function is of the form

λ∗(t) = λ+

t∫
0

µ(t− s)dN(s) (3.4)

where λ > 0 is called background intensity and the non-increasing function µ : (0,∞)→
[0,∞) is called excitation function. Assume that µ(·) 6= 0 to avoid the trivial case of a

homogeneous Poisson process. The process N(·) is called a Hawkes process.

Note that using the observed sequence of arrival times (t1, t2, · · · , tk) up to time t, the

conditional intensity can be written as

λ∗(t) = λ+
∑
ti<t

µ(t− ti). (3.5)
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The one-dimensional Hawkes process in general is very versatile, as theoretically there

are countless options to choose the excitation function. However, as mentioned above, the

conditional intensity function of a self-exciting process should be chosen in a way that

avoids explosion of the number of arrivals. This is achieved by restricting our focus to

so-called stationary processes, which (in the one-dimensional case) fulfill the following

Definition 3.6 (Stationarity condition). A Hawkes process is called stationary if its

excitation function µ(·) fulfills

µ̂ :=

∞∫
0

µ(s)ds < 1. (3.6)

As shown e.g. in Massouli and Bremaud 1996, the above condition implies that there is a

unique (asymptotic) stationary version of the Hawkes process N(t), which in the context of

simple point processes means that the distribution of N(·) is time-invariant. This implies

that a stationary Hawkes process N(·) has asymptotically stationary increments, and the

intensity process λ∗(·) is an asymptotically stationary process. In the following, we will

present the two most common choices of excitation function.

Example (Exponential decay). The exponentially decaying excitation function is of the

form µ(t) = αe−βt with parameters α > 0, β > 0. Hence the conditional intensity is given

by

λ∗(t) = λ+

t∫
0

αe−β(t−s)dN(s) = λ+ α
∑
ti<t

e−β(t−ti) (3.7)

Then, the stationarity condition (3.6) corresponds to

µ̂ =

∞∫
0

αe−βsds = α
[
− 1

β
e−βs

]s=∞
s=0

=
α

β

[
− 0 + 1

]
=
α

β
< 1 ⇐⇒ α < β. (3.8)

In this case, each new arrival makes the conditional intensity instantly jump up by α and

as time passes, the influence of the arrival vanishes as the intensity decays back to the

background rate exponentially with rate β. Thus, the larger the ratio α
β
, the stronger the

influence of the self-exciting feature on the total number of arrivals. Figure 2 shows four

sample paths of the conditional intensity function over time for different values of α and

β to illustrate their influence. This is the most commonly used choice for the excitation

function and will also be our focus in later chapters of this thesis. Section 3.5 will go

into further detail about the analytical convenience and properties of this specification of

excitation function.
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Example (Power Law). The power law excitation function is of the form µ(t) =
k

(c+(t−s))1+η with parameters c > 0, k > 0, η > 0. Hence the conditional intensity writes as

λ∗(t) = λ+

t∫
0

k

(c+ (t− s))1+η
dN(s) = λ+

∑
ti<t

k

(c+ (t− ti))1+η
(3.9)

and the stationarity condition (3.6) corresponds to

µ̂ =

∞∫
0

k

(c+ s)1+η
ds = k

[
− 1

η
(c+ s)−η

]s=∞
s=0

=
k

η

[
− 0 + c−η

]
=
kc−η

η
< 1 ⇐⇒ k < ηcη.

In this case, interpreting the parameters c, k and η is not as straightforward as in the last

example, but roughly one could say that k corresponds to α describing the upward move

of the intensity caused by an arrival (the magnitude of its influence), η corresponds to β

determining how longlasting the impact of the arrival is and c describes a temporal shift

to keep the intensity bounded when (t − ti) is close to 0 (see Rizoiu et al. 2017). Ogata

1988 used the power law specification for the prediction of aftershocks of an earthquake

(captured in a geological model called Omori’s law). Some authors have stated that e.g.

for applications in finance a Hawkes process with power law decay might often reflect

empirical data better than a Hawkes process with exponential decay (Bacry, Dayri, and

Muzy 2012, Zhang 2016), but as the latter one is analytically and computationally much

more convenient, it is often preferred.
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(a) λ = 1, α = 2, β = 5 (b) λ = 1, α = 4, β = 5

(c) λ = 1, α = 2, β = 10 (d) λ = 1, α = 4, β = 10

Figure 2: Plotting the conditional intensity λ∗(t) for different realisations of exponentially decaying

Hawkes processes illustrates the influence of α and β. In all cases, the background intensity is λ = 1

and we observe the intensity decaying back to this level in between events. Figure (a) shows that λ∗(t)

jumps up slightly at each arrival for a relatively low α value, but due to the relatively low β, the influence

does not vanish until some time later. For instance, the cluster starting shortly before time 2 does not

display very high intensity values, but is rather spread out over time. In Figure (b), the value of α is

doubled (c.p.) leading to much stronger clustering as the weak dampening effect of β cannot match the

strong self-exciting factor for each new arrival. Note that the y-scale even had to be adapted in this plot.

Figure (c) pairs a low self-excitement factor α with a doubled dampening factor of β leading to small

clusters that vanish quickly over time. This leads to more isolated spikes as opposed to e.g. (a) where the

effect is more spread out over time. Finally, (d) combines relatively high α and β values, leading to ”high

spikes”, i.e. a strong increase of λ∗(t) at new arrivals that is quickly dampened again. The simulation

method used to obtain the point processes underlying these sample paths of the corresponding conditional

intensity λ∗(t) is detailed in Section 3.3.
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3.2 Immigration-birth-representation

In this section, we will introduce another representation of the Hawkes process, the so-

called immigration-birth or clustering representation. It will be especially interesting for

us due to its interpretation in the insurance context in Chapter 6. For background informa-

tion on branching theory and the most well-known branching process, a Galton-Watson-

process, we refer to Grimmett and Stirzaker 2006, Chapter 5.4. In order to understand

the Hawkes process as a branching process, suppose we are studying the demographic de-

velopment in a country where a person can arrive either via immigration or via birth. The

arrival of an immigrant is called a parent event of generation 0 that initiates a cluster of

child events (descendants of generations 1, 2, · · · who arrive via birth). A Hawkes process

{t1, · · · , tk} on an interval [0, T ] can be represented as a Poisson cluster process with the

following structure:

Proposition 3.7 (Hawkes clustering representation, Bacry, Mastromatteo, and Muzy

2015). Consider a (non-necessarily finite) time interval [0, T ] on which we define a sequence

of events {ti}ki=1 according to the following procedure:

• Consider a set of immigrant events {t0i }k
0

i=1 according to a homogeneous Poisson

process with intensity λ > 0 on the interval [0, T ].

• Each immigrant t0i′ generates a sequence of first-generation events {t1i }k
1

i=1 following

an inhomogeneous Poisson process with time-dependent rate µ(t−t0i′) on the interval

[t0i′ , T ].

• This procedure is iterated from generation (n− 1) to generation n to obtain the nth

generation offspring sequence {tni }k
n

i=1, until no more events are generated in [0, T ].

The union of all events
⋃
j

{tji}k
j

i=1 corresponds to the point process generated by a Hawkes

process with intensity (3.4).

Note that this clustering representation can be equivalently taken as a definition for the

Hawkes point process once one considers only the (ordered) union of all events without

taking the generation into account. An illustration of the Hawkes process as a branching

process can be seen in Figure 3, taken from Laub, Taimre, and Pollett 2015.

Viewing a Hakwes process as a branching process is often preferable to understand its

stability properties. While the stationarity condition (3.6) might seem abstract when

introduced as a requirement on the conditional intensity function, it has an easily under-

standable interpretation in the context of the clustering representation. If an immigrant

enters the system at time ti ∈ R, they produce offspring at rate µ(t− ti) at future times
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Figure 3: An example realisation of a Hawkes process represented as a collection of three clusters

(immigration-birth-representation). Immigrants (parent events) are marked by squares, descendants (child

events) by circles and the crosses on the time axis denote the Hawkes point process (ordered events, with-

out taking the generation information into account).

t > ti. Their offspring (first generation) again produces offspring (second generation) and

so on - members of all generations are called descendants of the original arrival. Let Zi

denote the random number of offspring in the nth generation (where Z0 = 1 denotes the

immigrant). Let the branching ratio be denoted as µ̂ and defined as introduced in (3.6)

µ̂ =

∞∫
0

µ(s)ds. (3.10)

Then, the expected number of offspring of generation i for one immigrant is (Grimmett

and Stirzaker 2006, Chapter 5.4, Lemma 2):

E[Zi] = E[Z1]i = µ̂i,

and the total expected number of descendants for one immigrant is given by

E
[ ∞∑
i=1

Zi
]

=
∞∑
i=1

E[Zi] =
∞∑
i=1

µ̂i =
∞∑
i=0

µ̂i − 1 =

 1
1−µ̂ − 1 = µ̂

1−µ̂ , µ̂ < 1

∞ µ̂ ≥ 1

where we use the convergence of the geometric series for µ̂ < 1. Thus we can use the

branching process terminology to describe the behaviour of a Hawkes model by the ex-

pected number of descendants generated by each immigrant (see Bacry, Mastromatteo,

and Muzy 2015):

• µ̂ < 1 corresponds to sub-critical or stationary case where each parent event gen-

erates on average less than one child event. This implies that the total number of

offspring events of each parent event is a.s. finite.

• µ̂ > 1 is the super-critical case in which more than one child event is generated by

each parent event. In that case the expected total offspring of a parent is infinite

leading to an explosion of the population.
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• The case µ̂ = 1 is the critical case, where the total number of offspring events has

large fluctuations leading to a divergence of the expected number of generations and

thus explosion of the expected population.

We can now see how the stationarity condition (3.6), µ̂ < 1, is necessary to avoid explosion

of the Hawkes process and from now on, we will always assume this condition to be fulfilled.

Note that for µ̂ ∈ (0, 1), the branching ratio µ̂ can be interpreted as the probability that

a random arrival was generated endogenously (a child event) as opposed to an exogenous

arrival (a parent event). This can be seen from the ratio of the number of descendants to

the size of the whole ”family” (children + original parent), as it holds

E
[
∞∑
i=1

Zi

]
1 + E

[
∞∑
i=1

Zi

] =

µ̂
1−µ̂

1 + µ̂
1−µ̂

= µ̂.

In financial applications, this branching representation of the Hawkes process was first

used by Filimonov and Sornette 2012 to quantify the endogeneity or reflexivity in financial

markets. The idea was to differentiate price changes (e.g. in futures contracts) according

to whether they occur due to actual exogenous news or are caused by endogenous feedback

processes of the trading activity itself. They used this quantification of a critical state of

the financial market (defined as a situation of diverging endogeneous trading activity in

the absence of any external driving) to predict so-called flash crashes as had occurred

in some US markets in 2010 supposedly due to the activity of high-frequency traders.

Hardiman, Bercot, and Bouchaud 2013 analyze (and partly correct) their findings in a

related work showing that financial market activity has been evolving around the critical

state (µ̂ ≈ 1) for some time. Motivated by this result, Hardiman and Bouchaud 2014

introduce a model-independent approximation for the branching ratio based only on the

mean and variance of the event count.

As we will see in Chapter 6, the branching ratio is a very interesting quantity to consider

in insurance applications. The great advantage when working with an empirical insurance

data set as in this thesis (as opposed to financial market data) is that it is possible to

calculate an ”empirical branching ratio” from the data in order to compare it with the

estimate implied by the fitted Hawkes model.

Before moving on to the next section, we introduce two important results which were

derived using the cluster representation of the Hawkes process:

Theorem 3.8 (Law of large numbers for Hawkes process (Laub, Taimre, and Pollett 2015,

Daley and Vere-Jones 2008)). Let N(t) be a stationary Hawkes process with conditional
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intensity function λ∗(t) as in (3.4). Let 0 < µ̂ =
∞∫
0

µ(s)ds < 1. Then, as t→∞, it holds

E[λ∗(t)] =
E[dN(t)]

dt
−→ λ

1− µ̂
a.s.

and therefore
N(t)

t
−→ λ

1− µ̂
.

Proof. See Laub, Taimre, and Pollett 2015, Daley and Vere-Jones 2008.

Theorem 3.9 (Central limit theorem for Hawkes process (Laub, Taimre, and Pollett

2015, Theorem 1)). If N(t) is a stationary Hawkes process with conditional intensity

function λ∗(t) as in (3.4) and

0 < µ̂ =

∞∫
0

µ(s)ds < 1 and

∞∫
0

sµ(s)ds <∞,

then the number of Hawkes process arrivals in (0, t] is asymptotically normally distributed.

More precisely

P
(
N(t)− λ

1−µ̂t√
λ

(1−µ̂)3 t
≤ y

)
t→∞−→ P(Z ≤ y),

where Z is a standard normally distributed r.v..

Proof. See Hawkes and Oakes 1974.

3.3 Simulation

The ability to simulate a point process is useful for a variety of reasons. When studying

a complex process, simulating a number of sample paths may give an idea of what this

process typically looks like and help to estimate statistics that cannot be calculated ana-

lytically (e.g. the expected number of events on an interval of given length). Furthermore,

simulated data can be used to check the functionality of methods to be used on empirical

data sets. This section will introduce one method to procude Hawkes process realisations,

the so-called modified thinning algorithm, in detail and give a brief overview of other

approaches. All this information and a more extensive overview can be found in Laub,

Taimre, and Pollett 2015. The method of thinning was first used by Lewis and Shedler

1979 to generate an inhomogeneous Poisson process and was later adapted by Ogata 1981
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for Hawkes process simulation. The underlying idea is that a homogeneous Poisson pro-

cess, say with rate λ, can be easily generated by drawing i.i.d. Exp(λ)-distributed random

variables representing the interarrival times (see the example in Section 3.1). To generate

an inhomogeneous Poisson process with time-dependent rate λ(t), one chooses an upper

bound M ≥ λ(·) and generates a homogeneous process with rate M , i.e. interarrival times

are drawn i.i.d. Exp(M)-distributed. As this process is ”too fast” (i.e. it generally has

too many events), points have to be removed probabilistically. This is accomplished by

drawing a random variable Ui ∼ Unif(0,M) for each candidate point ti and keeping the

point only if Ui ≤ λ(ti). Intuitively, this means that a large number of points are created

evenly over time and the higher the intensity during some time period, the fewer points

will be removed, so this period will finally have a relatively high number of events (and

vice versa for periods with lower intensity). In fact, the two steps of generating and prob-

abilistically removing arrivals are not conducted disjointly, but each generated arrival is

immediately checked (and potentially removed). Essentially, the same approach can be

used to simulate a Hawkes process, the difference being that one cannot set a fixed upper

bound M beforehand as the intensity λ∗(t) depends on the random realisation of the point

process. However, one common assumption is that λ∗(t) does not increase in periods with-

out any arrivals. Thus one starts with a bound of e.g. M∗ = λ and subsequently for each

arrival tk that is generated, the upper bound M∗ is adjusted to λ∗(tk + ε), where ε > 0

is chosen as a very small value. This reflects that the intensity is potentially highest just

after a new arrival has been registered. In case the arrival candidate was kept, M∗ will

be adjusted upward (due to the self-exciting feature that a new arrival will increase the

intensity), in case it was rejected, the adjustment will be downward to reflect the passage

of time without a new arrival (and the effect of the last accepted arrival will meanwhile

have diminished). The rest of the procedure is identical to the former case. The formal

algorithms are given below and an example (taken from Laub, Taimre, and Pollett 2015)

is displayed in Figure 4. This also serves to illustrate the main difference in the time-

dependence of the intensity between a non-homogeneous Poisson process and a Hawkes

process. In the former case, the time-dependence of λ(t) is deterministically given by some

external factor and not influenced by the realisation of the process itself. The interarrival

times are generated as Exp(M), where M is a fixed value set before the beginning of the

simulation. This could represent a situation where the probability of an event depends on

seasonalities over time, e.g. the likelihood of a hurricane occuring during a year usually

depends on the season. In the Hawkes case on the other hand, λ∗(t) stochastically depends

on the realisation of the process over time, and the distributions of each interarrival time

(drawn as Exp(M∗)) always depends on all the other arrivals preceeding it. As described

above, this is more suitable for a situation such as the occurrence of earthquakes, which

do not display fixed seasonalities, but rather depend on former earthquake occurrences in
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the same region.

Input: T, λ(·), M such that λ(·) < M on [0,T]

initialization t = 0, NHPP = ();

while t < T do

temp = Exp(M);

t = t + temp;

U = Unif(0,M);

if t < T and U ≤ λ(t) then

NHPP = (NHPP,t);

end

end

return NHPP

Algorithm 1: Generate a non-homogeneous Poisson process by thinning.

Input: T, λ∗(·) with λ∗(·) non-increasing in periods without arrivals

initialization t = 0, HP = ();

ε = 10−10;

while t < T do

M∗ = λ∗(t+ ε);

temp = Exp(M∗);

t = t + temp;

U = Unif(0,M∗);

if t < T and U ≤ λ∗(t) then

HP = (HP,t);

end

end

return HP

Algorithm 2: Generate a Hawkes process by modified thinning.
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(a) Non-homogeneous Poisson process with λ(t) = 2 + sin(t), with M = 4.

(b) Exponential Hawkes process with (λ, α, β) = (1, 1, 1.1).

Figure 4: Examples of the (modified) thinning algorithm to generate a non-homogeneous Poisson process

and an exponential Hawkes process. All candidates for arrivals are plotted together with the value of

their corresponding Unif(0,M) variable, and marked with a green circle in case the arrival was kept and

a red cross in case it was deleted. The resulting point process is marked with green squares on the time

axis. This illustrates how the probability of an arrival being removed depends on the current state of the

intensity function. The blue line marking the upper bound M emphasizes the difference between the two

cases: In the upper picture, it is constant over the whole simulation, and in the lower picture, it has to

be adjusted after each potential arrival.

There are several alternative simulation methods which are described briefly in Laub,

Taimre, and Pollett 2015. The inverse compensator method relies on the converse of the

random time change theorem (introduced in Section 3.4 as Theorem 3.11). Essentially,

the inverse of the compensator defined in 3.4 can be used to transform a unit rate Pois-

son process {t∗1, t∗2, · · · } into any general point process {t1, t2, · · · } corresponding to the

compensator, by iteratively solving

t∗1 =

t1∫
0

λ∗(s)ds, textt∗k+1 − t∗k =

tk+1∫
tk

λ∗(s)ds.

This is described in detail e.g. in Daley and Vere-Jones 2003 (Algorithm 7.4.III) and

was first used in a modified version for Hawkes processes in Ozaki 1979. Another

method is based on the clustering representation of the Hawkes process introduced in

Section 3.2. It generates a homogeneous Poisson process with background rate λ for the

arrivals representing immigrants and for each immigrant, say at time ti, it generates
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an inhomogeneous Poisson process with time-dependent intensity µ(t − ti) on (ti,∞)

representing its descendants.

3.4 Parameter estimation and goodness of fit testing

Apart from being able to simulate a typical realisation of a process, another essential

tool when working with data is inference or parameter estimation. Given a set of data

points which are suspected to follow a pattern described by a parametric model, the

goal is to find the set of parameters that best decribe the data at hand. Goodness of

fit methods are then used to check how closely the proposed model (with the obtained

set of parameters) actually matches the observed data set, in the hope of determining

(or at least getting an indication of) whether the model is suitable. The basic principles

and a variety of methods for parameter estimation are studied in any statistics course

and will not be reiterated at this point, but a recommendable source for an extensive

overview is e.g. Czado and Schmidt 2011. One of the most common methods is maximum

likelihood estimation, which relies on finding the likelihood function L(θ) (as a function

of the parameter set θ and the observed data, which we drop as an argument here) and

maximizing it over all feasible sets of parameter values θ ∈ Θ, i.e. finding the parameter

set that makes the observed data point realisation most likely. Formally, the maximum

likelihood estimate is defined as θ̂ = argmaxθ∈ΘL(θ). Equivalently, the log-likelihood

function l := log(L) can be used and is often computationally more convenient as it

replaces multiplication with summation. As will be the case for the Hawkes process, often

the (log-)likelihood function cannot be optimized analytically, therefore it is often helpful

to express it in a way that facilitates numerical optimization. We will now recapitulate the

likelihood function for a general point process and then derive the log-likelihood function

explicitly for two Hawkes processes, namely exponentially decaying and power law.

Theorem 3.10 (Point process likelihood (Daley and Vere-Jones 2003, Proposition

7.2.III)). Let N(·) be a regular point process on [0, T ] for some finite T > 0, and let

{t1, · · · , tk} denote a realisation of N(·) over [0, T ]. Then, the likelihood L of N(·) is

expressible in the form

L =
[ k∏
i=1

λ∗(ti)
]
exp

(
−

T∫
0

λ∗(u)du

)
. (3.11)

Proof. See Daley and Vere-Jones 2003.
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(3.11) implies that the log-likelihood can be derived as

l =
k∑
i=1

log(λ∗(ti))−
T∫

0

λ∗(u)du =
k∑
i=1

log(λ∗(ti))− Λ∗(T ), (3.12)

where Λ∗(·) denotes the compensator.

Example (Exponential decay log-likelihood). In this case the conditional intensity is

given as λ∗(t) = λ + α
∑
ti<t

e−β(t−ti). Thus the compensator for an interval [0, T ] with

arrivals {t1, · · · , tk} can be computed as

Λ(T ) =

T∫
0

λ∗(u)du =

t1∫
0

λ∗(u)du+
k−1∑
i=1

ti+1∫
ti

λ∗(u)du+

T∫
tk

λ∗(u)du

=

t1∫
0

λdu+
k−1∑
i=1

ti+1∫
ti

(
λ+ α

∑
tj<u

e−β(u−tj)du

)
+

T∫
tk

(
λ+ α

∑
tj<u

e−β(u−tj)du

)

= λT + α
k−1∑
i=1

ti+1∫
ti

i∑
j=1

e−β(u−tj)du+ α

T∫
tk

k∑
j=1

e−β(u−tj)du

= λT + α

k−1∑
i=1

i∑
j=1

ti+1∫
ti

e−β(u−tj)du+ α
k∑
j=1

T∫
tk

e−β(u−tj)du

= λT − α

β

[ k−1∑
i=1

i∑
j=1

(e−β(ti+1−tj) − e−β(ti−tj)) +
k∑
j=1

(e−β(T−tj) − e−β(tk−tj))

]

= λT − α

β

[ k∑
i=1

(e−β(tk−ti) − e−β(ti−ti)) +
k∑
i=1

(e−β(T−ti) − e−β(tk−ti))

]

= λT − α

β

[ k∑
i=1

(e−β(T−ti) − 1)

]

(3.13)

where we first split up the integral into the segments between the arrivals and insert the

specification of λ∗(t). After exchanging summation and integration and computing the

integrals, we realize that the double summation part forms a kind of telescopic series (in

i) and thus many terms cancel. We thus change j to i and further observe that including

the summand for i = k (whose value is 0) allows to combine the two sums. Inserting λ∗(t)

and Λ(T ) into (3.12) yields

l =
k∑
i=1

log

(
λ+ α

i−1∑
j=1

e−β(ti−tj)
)
− λT +

α

β

[ k∑
i=1

(e−β(T−ti) − 1)

]
.
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Unfortunately, the double summation in the first term makes optimizing this form of the

log-likelihood function computationally inefficient. However, Ozaki 1979 introduced a way

of circumventing this problem by using a recursion: For i ∈ {1, · · · , k}, let A(i) be defined

as

A(i) =


0 for i = 1,
i−1∑
j=1

e−β(ti−tj) = e−β(ti−ti−1)(1 + A(i− 1)) for i ∈ {2, · · · , k}.

Then, l can be expressed as

l =
k∑
i=1

log(λ+ αA(i))− λT +
α

β

[ k∑
i=1

(e−β(T−ti) − 1)

]
. (3.14)

Note that this recursion implies that the joint process (λ∗(t), N(t)) is Markovian for this

choice of excitation function (see Liniger 2009, Remark 1.22), a property that will be

essential in Section 3.5.

Example (Power law log-likelihood). In the power law case λ∗(t) is given by

λ∗(t) = λ +
∑
ti<t

k
(c+t−ti)1+η . Thus, analogously to above, the compensator for an interval

[0, T ] with arrivals {t1, · · · , tk} is given by

Λ(T ) =

T∫
0

λ∗(u)du =

t1∫
0

λ∗(u)du+
k−1∑
i=1

ti+1∫
ti

λ∗(u)du+

T∫
tk

λ∗(u)du

= λT +
k−1∑
i=1

ti+1∫
ti

i∑
j=1

k

(c+ u− tj)1+η
du+

T∫
tk

k∑
j=1

k

(c+ u− tj)1+η
du

= λT + k
k−1∑
i=1

i∑
j=1

ti+1∫
ti

1

(c+ u− tj)1+η
du+ k

k∑
j=1

T∫
tk

1

(c+ u− tj)1+η
du

= λT + k
k−1∑
i=1

i∑
j=1

−1

η

[
(c+ ti+1 − tj)−η − (c+ ti − tj)−η

]
+ k

k∑
j=1

−1

η

[
(c+ T − tj)−η − (c+ tk − tj)−η

]
= λT − k

η

( k∑
i=1

(
(c+ tk − ti)−η − (c+ ti − ti)−η

)
+

k∑
i=1

(c+ T − ti)−η − (c+ tk − ti)−η
)

= λT − k

η

k∑
i=1

(
(c+ T − ti)−η − c−η

)
= λT +

k

η

k∑
i=1

(
c−η − (c+ T − ti)−η

)
Thus, the log-likelihood is given by

l =
k∑
i=1

log

(
λ+

i−1∑
j=1

k

(c+ t− ti)1+η

)
− λT − k

η

k∑
i=1

(
c−η − (c+ T − ti)−η

)
,



CHAPTER 3. HAWKES PROCESSES 35

where unfortunately in this case the double summation in the first term cannot be avoided,

thus the estimation is computationally very slow for large data samples.

As the log-likelihood function in neither case can be optimized analytically, we rely on

numerical optimization by using the Nelder-Mead optimization implemented in the R-

package lme4 to minimize the negative log-likelihood function. Table 1 in the Appendix

gives a few examples of the estimation results for simulated exponential Hawkes processes

with different parameter values (λ, α, β). We observe that generally the maximum likeli-

hood method is very effective on simulated, sufficiently large data sets and the consistency,

asymptotic normality and efficiency of the estimator were proven by Ogata 1978. How-

ever, for empirical data sets some concerns about numerical disadvantages of the method,

such as bias for small sample sizes, dependence on the initial parameter values leading

to get stuck in local optima and performance issues for very large samples (especially

for high-frequency trading applications) have been raised e.g. in Da Fonseca and Zaatour

2013 and Filimonov and Sornette 2015. This motivated the derivation of a generalized

method of moments for paramater estimation of exponential Hawkes processes in Da

Fonseca and Zaatour 2013 based on their results introduced in Section 3.5. Other recent

works on parameter estimation for Hawkes processes include an Expectation Maximiza-

tion based technique based on the cluster representation of the Hawkes process in Veen

and Schoenberg 2008 and different non-parametric approaches, e.g. in Bacry, Dayri, and

Muzy 2012 and Lewis and Mohler 2011. However, for the purposes of this thesis we found

the maximum likelihood method to be suitable and sufficiently fast for the exponential

case and thus this method will be used for the empirical data sets in Chapter 6.

When working with empirical point data, after fitting a Hawkes model the next step

is to determine the appropriateness of the model for the observed data. Laub, Taimre,

and Pollett 2015 give an overview of approaches to test the goodness of fit of a Hawkes

model. The basic tool for all of these approaches is the following theorem which allows

to transform any point process realisation {t1, t2, · · · , tk} into a unit rate Poisson process

using the compensator of the point process.

Theorem 3.11 (Random Time Change Theorem (Daley and Vere-Jones 2003, Propo-

sition 7.4.IV)). Let {t1, t2, · · · , tk} be a realisation over time [0, T ] from a point process

with conditional intensity function λ∗(·). If λ∗(·) is positive over [0, T ] and Λ(T ) < ∞
a.s. then the transformed points {t∗1, · · · , t∗k} = {Λ(t1), · · · ,Λ(tk)} form a Poisson process

with unit rate. Λ(·) denotes the compensator of the point process.

Proof. See Daley and Vere-Jones 2003.

As in our case the closed form of the compensator for an exponential Hawkes process is



CHAPTER 3. HAWKES PROCESSES 36

known from (3.13), one can test the quality of the parameter estimation by transforming

the original timepoints and performing standard fitness tests (see e.g. Laub, Taimre, and

Pollett 2015 or Cox and Lewis 1966 for an extensive overview) for a unit rate Poisson

process on the transformed datapoints. A simple test is to check whether the interarrival

times {τ ∗1 , τ ∗2 , · · · } := {t∗1, t∗2 − t∗1, · · · } are i.i.d. Exp(1) distributed. This can be done

by creating a quantile-quantile plot comparing theoretical and empirical quantiles, where

a good fit would be indicated by points closely following the identity line. A qualitative

independence test can be conducted by plotting the series of transformed points (Uk, Uk+1),

where Uk := 1 − e−(t∗k−t
∗
k−1), on the unit square [0, 1] × [0, 1] and visually examining if

the points are evenly scattered (theoretically, by the probability integral transform, they

should be uniformly distributed). The results for the example estimations from Table 1

are displayed in Figure 29.

We have hinted several times that the Hawkes process with exponentially decaying inten-

sity has been most commonly used in applications (e.g. Embrechts, Liniger, and Lin 2011,

Muni Toke and Pomponio 2011, Rambaldi, Pennesi, and Lillo 2015) and will be the focus

on this work due to its analytical convenience. In this section, in particular we have seen

this convenience in the recursive expression of the log-likelihood function that allows fast

numerical optimization. The next section will go into more detail about the analytical

properties of the exponential Hawkes process that increase the tractability of this model

in a way that often outweighs the disadvantages of choosing such a fixed, quite restrictive

parametric model specification.

3.5 Properties of exponentially decaying Hawkes

processes

This section is mainly based on the work of Da Fonseca and Zaatour 2013 who review the

analytical properties of the exponential Hawkes process and derive a way to compute the

moments of the number of jumps of such a process over a given time interval in closed

form. We will particularly focus on the first two moments, that is the expectation and

variance of the number of jumps, as well as the autocorrelation function. Based on their

results, Da Fonseca and Zaatour 2013 even develop a new method of parameter estimation

(essentially a generalized method of moments) whose main advantages over the maximum

likelihood method is its extremely fast computation speed and thus the ability to roll

the estimation procedure to study parameter stability. These advantages are crucial in

their field of application, namely analyzing high-frequency trading activity, where data

is available on a millisecond scale and decisions have to be made instantaneously. For
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the applications of this thesis, namely insurance data, we rather use their results as

another test of the goodness of fit of the Hawkes model by comparing the moments of the

number of jumps obtained from the empirical data with the theoretical quantities given

the maximum likelihood estimate. Recall that according to (3.7) the conditional intensity

of an exponential Hawkes process is given by

λ∗(t) = λ+

t∫
0

αe−β(t−s)dN(s). (3.15)

Differentiating this equation leads to

dλ∗(t) = αdN(t) + (α

t∫
0

−βe−β(t−s)dN(s))dt

= αdN(t)− β(α

t∫
0

e−β(t−s)dN(s))dt

= αdN(t)− β(λ∗(t)− λ)dt, (3.16)

where we can add an initial condition λ∗(0) = λ0. So far we have implicitly assumed

λ0 = λ, i.e. at time 0 the process already starts in its stationary regime. Da Fonseca

and Zaatour 2013 use the more general formulation of a process that might start at an

arbitrary level λ0, but then study the limit for t → ∞ to get rid of the dependence of

the starting value λ0. Thus, they denote as λ∞ the background level λ which the process

assumes after running a sufficiently long time to arrive in its stationary regime. In any

case, an underlying assumption here is that the stationarity condition (3.8) is fulfilled,

i.e. α < β. In order to solve the above SDE, applying Itô’s Lemma for jump diffusion

processes on f(t, λ∗(t)) := eβtλ∗(t) yields

df(t, λ∗(t)) = ftdt+ fλ∗(−β(λ∗(t)− λ))dt+ (f(t,X(t))− f(t−, X(t−)))dN(t)

= βeβtλ∗(t)dt+ eβt(−β(λ∗(t)− λ))dt+ αeβtdN(t)

= λβeβtdt+ eβtαdN(t).

Integration from 0 to t gives

f(t, λ∗(t)) = f(0, λ∗(0)) +

t∫
0

λβeβsds+

t∫
0

αeβsdN(s)

= λ0 + λ[eβs]t0 + α

t∫
0

eβsdN(s)

= λ0 + λ(eβt − 1) + α

t∫
0

eβsdN(s),
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and multiplying with e−βt finally yields

λ∗(t) = λ0e
−βt + λ(1− e−βt) + α

t∫
0

e−β(t−s)dN(s)

= e−βt(λ0 − λ) + λ+

t∫
0

αe−β(t−s)dN(s).

(3.17)

Remark. On the first glance, (3.16) might remind the reader of the equation defining an

Ornstein-Uhlenbeck-process (see Uhlenbeck and Ornstein 1930) x(t) which is given by

dx(t) = θ(µ− x(t))dt+ σdW (t), textx(0) = a, (3.18)

where θ > 0, µ and σ > 0 are the parameters and W (t) is a standard Brownian motion.

µ (corresponding to λ) denotes the mean reversion level, θ (corresponding to β) the mean

reversion speed and σ (corresponding to α) the influence of the stochastic (noise) W (t).

However, there are a few fundamental differences between the processes described by

(3.16) and (3.18) respectively:

• The Ornstein-Uhlenbeck process behaves symmetrically around its mean level µ, in

particular the process x(t) can take values above and below µ making the drift term

θ(µ − x(t)) negative or positive respectively. On the contrary, for the exponential

Hawkes process λ denotes the background rate, and in the stationary regime it

always holds λ∗(·) > λ, thus λ is not a mean level, but rather a lower bound on the

process and the drift (reversion to this level) −β(λ∗(t)− λ) is always negative.

• Likewise, the stochastic influence of the noise term σdW (t) is symmetric around 0

whereas the stochastic influence of αdN(t) is always positive.

• Most importantly, in the Ornstein-Uhlenbeck case the stochastic term σdW (t) is

governed by a process W (t) which is independent of x(t). In the Hawkes process case,

we have a process X(t) = (λ∗(t), N(t)) were the dynamic of the intensity dλ∗(t) is

stochastically influenced by the jump process N(t) which in turn is probabilistically

governed by the intensity (recall the first part of Definition 3.5).

This originates the self-exciting feature of the Hawkes process where the evolution of the

intensity stochastically depends on the process itself whereas in the Ornstein-Uhlenbeck

case the stochastic influence can be interpreted as noise whose evolution is independent

from the observed process.

An essential observation is that while the Hawkes process in general in a non-Markovian

extension of the Poisson process, choosing the specification with an exponentially decaying
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intensity will lead to X(t) = (λ(t), N(t)) being a Markov process on the state space R+×N
(see Oakes 1975 or Proposition 2 of Bacry, Mastromatteo, and Muzy 2015). This property

gives access to the Dynkin formula, which will be an essential tool:

Theorem 3.12 (Dynkin formula (adapted from Revuz and Yor 1999, p. 284)). Let X(t)

be a Markov process on the state space S. Let L denote the infinitesimal generator of the

process, that is let f : S → R be a sufficiently regular function (e.g. f ∈ C2
0(Rn)) and L

the operator acting on f such that

Lf(x) = lim
h→0

Ext [f(X(t+ h))]− f(x)

h

where Ext [·] = Ex[·|H(t)] and X(t) = x. Then, for every function f in the domain of the

infinitesimal generator, the process

M(t) := f(X(t))− f(X(0))−
t∫

0

Lf(X(u))du

is a martingale relative to its natural filtration and thus, for s > t:

Et
[
f(X(s))−

s∫
0

Lf(X(u))du

]
= f(X(t))−

t∫
0

Lf(X(u))du.

This leads to the Dynkin formula:

Et[f(X(s))] = f(X(t)) + Et
[ s∫
t

Lf(X(u))du

]
(3.19)

which allows computation of conditional expectations of the Markov process X(t).

First, we compute the infinitesimal generator for the exponential Hawkes process

X(t) = (λ∗(t), N(t)):

Ext [f(X(t+ h))] = E[f(X(t+ h))|X(t) = x]

= λ∗(t)hf(λ∗(t) + β(λ− λ∗(t))h+ α,N(t) + 1)

+ (1− λ∗(t)h)f(λ∗(t) + β(λ− λ∗(t))h,N(t))

= λ∗(t)h[f(λ∗(t) + β(λ− λ∗(t))h+ α,N(t) + 1)− f(λ∗(t) + β(λ− λ∗(t))h,N(t))]

+ f(λ∗(t) + β(λ− λ∗(t))h,N(t))

where we use the first part of Definition 3.5 already keeping in mind that there can only

be no jump or exactly one jump in an infitesimal time step. The first term corresponds

to the case where one jump occurs (with probability λ∗(t)h) and the second term to the
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case without a jump (with probability (1− λ∗(t)h)). The second step only rearranges the

terms.

⇒ Lf(x) = lim
h→0

λ∗(t)[f(λ∗(t) + β(λ− λ∗(t))h+ α,N(t) + 1)− f(λ∗(t) + β(λ− λ∗(t))h,N(t))]

+ lim
h→0

f(λ∗(t) + β(λ− λ∗(t))h,N(t))− f(λ∗(t), N(t))

h

= λ∗(t)[f(λ∗(t) + α,N(t) + 1)− f(λ∗(t), N(t))] + β(λ− λ∗(t))∂f(λ∗(t), N(t))

∂λ∗

= β(λ− λ∗(t))∂f(x)

∂λ∗
+ λ∗(t)[f(λ∗(t) + α,N(t) + 1)− f(x)]. (3.20)

where we use that x = X(t) = (λ∗(t), N(t)) and the definition of the partial derivative

with respect to λ∗. The knowledge about the infinitesimal generator in (3.20) and the

Dynkin formula in (3.19) allow to derive the following set of differential equations for the

first two moments of the intensity and the number of jumps:

Lemma 3.13 (Da Fonseca and Zaatour 2013). Given a Hawkes process X(t) =

(λ∗(t), N(t)) with dynamics given by (3.16), E[N(t)],E[λ∗(t)],E[N(t)2],E[λ∗(t)2] and

E[λ∗(t)N(t)] satisfy the following set of ODE:

dE[N(t)] = E[λ∗(t)]dt (3.21)

dE[λ∗(t)] = (βλ+ (α− β)E[λ∗(t)])dt (3.22)

dE[N(t)2] = 2E[λ∗(t)N(t)]dt+ E[λ∗(t)]dt (3.23)

dE[λ∗(t)N(t)] = βλE[N(t)]dt+ (α− β)E[λ∗(t)N(t)]dt+ E[λ∗(t)2]dt+ αE[λ∗(t)]dt

(3.24)

dE[λ∗(t)2] = (α2 + 2βλ)E[λ∗(t)]dt+ 2(α− β)E[λ∗(t)2]dt. (3.25)

Proof. The steps for deriving each differential equation are the same: Choose f(X(t))

suitably, write the infinitesimal generator using (3.20) and apply Dynkin’s formula (3.19).

Then apply Fubini’s Theorem to exchange the order of integration and taking expectation

and differentiate the resulting equation w.r.t t. We show these steps explicitly for (3.21)

and (3.22) here, the rest follows analogously and can be found in Appendix B. To get

(3.21), let f(X(t)) ≡ N(t). Then the infinitesimal generator becomes

Lf(X(t)) = β(λ− λ∗(t))∂f(X(t))

∂λ∗
+ λ∗(t)[f(λ∗(t) + α,N(t) + 1)− f(λ∗(t), N(t))]

= β(λ− λ∗(t))0 + λ∗(t)[N(t) + 1−N(t)] = λ∗(t)

Dynkin’s formula (with s = t and t = 0) yields

E[N(t)] = E[f(X(t))] = f(X(0)) + E
[ t∫

0

Lf(X(u))du

]
= N(0) + E

[ t∫
0

λ∗(u)du

]
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Exchanging integration and expectation and differentiating with respect to t yields (3.21):

E[N(t)] = N(0) +

t∫
0

E[λ∗(u)]du

⇒ dE[N(t)] = E[λ∗(t)]dt.

For (3.22), let f(X(t)) ≡ λ∗(t), thus

Lf(X(t)) = β(λ− λ∗(t))∂f(X(t))

∂λ∗
+ λ∗(t)[f(λ∗(t) + α,N(t) + 1)− f(λ∗(t), N(t))]

= β(λ− λ∗(t))1 + λ∗(t)[λ∗(t) + α− λ∗(t)] = βλ+ (α− β)λ∗(t).

Dynkin’s formula (with s = t and t = 0) and Fubini’s Theorem yield

E[λ∗(t)] = λ∗(0) + E
[ t∫

0

(βλ+ (α− β)λ∗(u))du

]
= λ0 + βλt+ (α− β)

t∫
0

E[λ∗(u)]du.

Finally, differentiating gives

dE[λ∗(t)] = (βλ+ (α− β)E[λ∗(t)])dt.

The remaining parts of the proof are given in Appendix B.

Lemma 3.13 allows to derive the first and second moment of the number of jumps of an

exponential Hawkes process in its stationary regime for an interval of given length. The

results are summarized in the following proposition.

Proposition 3.14 (Da Fonseca and Zaatour 2013). Given a Hawkes process X(t) =

(λ∗(t), N(t)) with dynamics given by (3.16), the long-run expected value of the number

of jumps during an interval of length τ is given by:

lim
t→∞

E[N(t+ τ)−N(t)] =
λ

1− α/β
τ = lim

t→∞
E[λ∗(t)]τ. (3.26)

The variance of the number of jumps is given by:

Var(τ) = lim
t→∞

E[(N(t+ τ)−N(t))2]− E[N(t+ τ)−N(t)]2

=
λ

1− α/β

(
τ

(
1

1− α/β

)2

+

(
1−

(
1

1− α/β

)2)
1− e−τ(β−α)

β − α

)
. (3.27)

The covariance of the number of jumps for two non-overlapping intervals of length τ with

lag δ > 0 is given by:

Cov(τ, δ) = lim
t→∞

E[(N(t+ τ)−N(t))(N(t+ 2τ + δ)−N(t+ τ + δ))]
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− E[N(t+ τ)−N(t)]E[N(t+ 2τ + δ)−N(t+ τ + δ)]

=
λβα(2β − α)(e(α−β)τ − 1)2

2(α− β)4
e(α−β)δ. (3.28)

Note again that taking the limit for t→∞ is equivalent to assuming that the process has

reached its stationary regime with background intensity λ. Thus dependence with respect

to the initial value λ0 vanishes. Taking this limit requires the stability of the process, thus

it is implied that α < β.

Proof. The proof essentially relies on solving and combining the set of ODE derived in

Lemma 3.13. We will demonstrate the calculation of the first moment E[N(t+ τ)−N(t)]

here, the rest follows analogously from the other equations and the details can be found in

Appendix C or in Da Fonseca and Zaatour 2013. Given the initial condition E[λ∗(0)] = λ0,

we can solve the differential equation (3.22) by applying standard techniques: Multiplying

both sides of the equation with the integrating factor e(β−α)t and rearranging terms gives

e(β−α)tdE[λ∗(t)] + (β − α)e(β−α)tE[λ∗(t)]dt = βλe(β−α)tdt

d
(
e(β−α)tE[λ∗(t)]

)
= βλe(β−α)tdt

Integrating from 0 to t and inserting the initial condition leads to

e(β−α)tE[λ∗(t)]− 1λ0 =
βλ

β − α
(
e(β−α)t − 1

)
.

Finally, solving for E[λ∗(t)] gives

E[λ∗(t)] =
βλ

α− β
(
e(α−β)t − 1

)
+ λ0e

(α−β)t.

Inserting this result into the integral form of (3.21) gives

E[N(t)] = N(0) +

t∫
0

(
βλ

α− β
(
e(α−β)s − 1

)
+ λ0e

(α−β)s

)
ds

= N(0) +
βλ

α− β

[
1

α− β
e(α−β)s

]t
0

− βλt

α− β
+

λ0

α− β

[
e(α−β)s

]t
0

= N(0) +
λβ(e(α−β)t − 1− (α− β)t)

(α− β)2
+ λ0

e(α−β)t − 1

α− β
.

Thus, the expected number of jumps during an interval of length τ is given by

E[N(t+ τ)−N(t)]

= λ0
e(α−β)(t+τ) − e(α−β)t

α− β
+

βλ

(α− β)2

(
e(α−β)(t+τ) − 1− (α− β)(t+ τ)− e(α−β)t + 1 + (α− β)t

)
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=
λ0

α− β
e(α−β)t

(
e(α−β)τ − 1

)
+

βλ

(α− β)2

(
− (α− β)τ + e(α−β)(t+τ) − e(α−β)t

)
=
−τλβ
α− β

+ e(α−β)tλ0(α− β)e(α−β)τ − λ0(α− β) + λβe(α−β)τ − λβ
(α− β)2

.

Now considering lim
t→∞

makes the second term vanish (as lim
t→∞

e(α−β)t = 0 for α < β) and

thus eliminates the dependence on the initial value λ0. Therefore in the stationary regime

the expected number of jumps in an interval of length τ is given by

lim
t→∞

E[N(t+ τ)−N(t)] =
λβ

β − α
τ =

λ

1− α/β
τ.

The other results of the proposition require similar, albeit more lengthy, computations

involving the other ODEs from Lemma 3.13 and will not be detailed here.

For empirical applications, it might be more convenient to work with the autocorrelation

function of the number of jumps instead of the autocovariance.

Proposition 3.15 (Da Fonseca and Zaatour 2013). Given a Hawkes process X(t) =

(λ∗(t), N(t)) with dynamic given by (3.16) the autocorrelation function of the number of

jumps on two intervals of length τ separated by a time lag of δ > 0 is

Acf(τ, δ) =
e−2βτ (eατ − eβτ )2α(α− 2β)

2(α(α− 2β)(e(α−β)τ − 1) + β2τ(α− β))
e(α−β)δ. (3.29)

Note that the above expression is always positive for α < β, independent of the back-

ground intensity λ and exponentially decaying with the lag δ. This emphasizes the typical

feature of an exponential Hawkes process, namely that the influence of events which have

occurred in the past decays exponentially as time passes.

Proof. This follows straightforward from (3.28) and (3.27) in Proposition 3.14.

These results derived by Da Fonseca and Zaatour 2013 make working with an exponential

Hawkes process for empirical data very convenient, as it is now possible to theoretically

compute the moments and autocorrelation of the number of jumps over intervals of given

length and compare them with the empirical values for the observed arrival process. In

particular testing for the typical exponentially decaying form of the autocorrelation of

the number of jumps between intervals as a function of the time lag can serve as a first

indicator of the self-exciting characteristics of an observed data set. Furthermore, com-

paring empirical and theoretical moments can serve as another measure of the goodness

of fit of a Hawkes model. This is to say that in most cases the well-known goodness of
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fit measures will show some imperfections in the model fit for empirical data, as is to

be expected if the data does not by chance happen to closely follow the quite restrictive

model specification of an exponential Hawkes process. Even in this case, the model might

be suitable to describe the pattern of event occurrences in the data set sufficiently well by

providing close estimates for the expected value, variance and autocorrelation of the num-

ber of events in given intervals. For the exponential Hawkes process, we are now equipped

with the theoretical knowledge to assess the model fit given these characteristics and will

do so in Chapter 6 for an insurance data set.

3.6 More general Hawkes processes

In the last sections, we have defined a one-dimensional Hawkes process, reviewed its

properties and explained why the rest of this thesis will focus on a Hawkes process with

exponential decay. This restriction is suitable for the scope of this thesis as it is quite easily

understandable and its analytical tractability is very convenient for applications with

empirical data. However, we would like to emphasize that self-exciting Hawkes processes

in general are a very wide and versatile class of point processes and much recent work

has been devoted to more general and arbitrarily sophisticated Hawkes models. We will

introduce some selected generalisations here as to not deviate too much from the focus of

this thesis, but to give a glimpse into the wide spectrum of Hawkes process applications

available.

3.6.1 Multi-dimensional Hawkes processes

Of course the one-dimensional Hawkes process introduced in Definition 3.5 can be ex-

tended to a multivariate version:

Definition 3.16 (Multi-dimensional Hawkes process (Bacry, Mastromatteo, and Muzy

2015)). A D-dimensional Hawkes process is a D-variate counting process N(t) =

{N i(t)}Di=1 whose associated intensity vector λ∗(t) = {λi∗(t)}Di=1 can be written as

λi∗(t) = λi +
D∑
j=1

t∫
0

µij(t− u)dN j(u)

where λ = {λi}Di=1 is a vector of (exogenous) background intensities, and Φ(t) =

{µij(t)}Di,j=1 is a matrix-valued kernel which is component-wise positive (µij(t) ≥ 0 for

each 1 ≤ i, j ≤ D), component-wise causal (if t < 0, µij(t) = 0 for each 1 ≤ i, j ≤ D) and

each component µij(t) belongs to the space of L1-integrable functions.
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Analogously to above, the intensity can be written using the past event times {t1, · · · , tk}.
In this case, for each event time it has to be indicated which component of the process

jumped at this time; this can be done by using the couples {(tm, cm)}km=1, where tm indi-

cates the event time and cm ∈ [1, · · · , D] indicates the component. Thus, the conditional

intensity at time t can be written as

λi∗(t) = λi +
k∑

m=1

µi,cm(t− tm). (3.30)

Figure 5, taken from Bacry, Mastromatteo, and Muzy 2015, shows an example realisation

of a multivariate Hawkes process, where different colours are used to indicate the

components.

Figure 5: An example realisation of a multivariate Hawkes process where the lower part shows the point

process for each component (arrival times are marked as dots), and the upper part displays the corre-

sponding counting processes.

Of course, a clustering representation of the Hawkes process can be derived analogously

in the multivariate case, see Proposition 6 of Bacry, Mastromatteo, and Muzy 2015. In

the multi-dimensional case, the stationarity condition (3.6) generalizes to

Proposition 3.17 (Bacry, Mastromatteo, and Muzy 2015, Proposition 2). The process

N(t) has asymptotically stationary increments and λ∗(t) is asymptotically stationary if

its matrix kernel has spectral radius1 ‖Φ‖ = {‖µij‖}Di,j=1 smaller than 1.

Example (Two-dimensional exponential Hawkes process). Consider a bivariate Hawkes

process with kernel matrix

Φ(t) =

(
µ(s)(t) µ(c)(t)

µ(c)(t) µ(s)(t)

)
=

(
α(s)e−β

(s)t α(c)e−β
(c)t

α(c)e−β
(c)t α(s)e−β

(s)t

)
text∀t > 0.

1The spectral radius of a square matrix is defined as the largest absolute value of its eigenvalues, see

also Appendix D.



CHAPTER 3. HAWKES PROCESSES 46

The parameters α(·) and β(·) can generally be interpreted analogously to the one-

dimensional case. However, now the process has two components which are both self-

exciting and mutually exciting. This means that an incoming event both influences the

intensity of its own component (according to the parameters α(s) and β(s), where the su-

perscript (s) indicates self-excitement) as well as the other component (via the parameters

α(c) and β(c), where the superscript (c) indicates cross-excitement). Due to the symmetry

of the kernel matrix, the stability condition in this case is simply given by (see Appendix

D)

‖Φ‖ = ‖µ(s)‖+ ‖µ(c)‖ =
α(s)

β(s)
+
α(c)

β(c)
< 1.

In Bacry et al. 2013, this specification is used to describe the upward and downward

movements of an asset price at the tick-by-tick level in order to study microstructure noise.

As they assume the price at microstructure level to display a mean-reverting behaviour,

they consider a purely mean-reverting scenario, that is µ(s)(t) = 0 and µ(c)(t) as above.

This means that instead of self-excitement, we observe mutual cross-excitement between

the processes of upward and downward jumps respectively. The conditional intensities for

upward and downward jumps are given as

λ∗u(t) = λ+

t∫
0

α(c)e−β
(c)(t−s)dNd(s),

λ∗d(t) = λ+

t∫
0

α(c)e−β
(c)(t−s)dNu(s).

The arrival of an upward price jump at time s increases the intensity of a downward

jump via the cross-excitement term α(c)e−β
(c)(t−s) and vice versa, thus leading to a self-

regulating behaviour of the price. The opposite case of a purely trend-following scenario

where µ(c)(t) = 0 and µ(s)(t) is considered in Da Fonseca and Zaatour 2013. However, this

choice essentially describes two independent self-exciting processes and does not consider

any mutual excitement (which could be considered the most interesting feature of a multi-

dimensional specification in the first place). As an extension of their model, Bacry et al.

2013 even consider an analogous 4-dimensional model to describe the joint price dynamics

of a pair of assets.

Other applications of multi-dimensional Hawkes processes include Aı̈t-Sahalia, Cacho-

Diaz, and Laeven 2015 who use such a model to describe the dynamics of asset returns

in geographically different markets across the world. A jump in one region increases the

intensity of both jumps in the same region (self-excitement) as well as other regions (cross-

excitement) leading to periods of highly clustered jumps across world markets imitating



CHAPTER 3. HAWKES PROCESSES 47

periods of crises characterized by contagion. Embrechts, Liniger, and Lin 2011 use a

multivariate Hawkes model to analyze daily stock market index data, where the arrivals

describe extreme positive (above the 90%-quantile) and negative (below the 10%-quantile)

exceedances of the daily log-return.

3.6.2 Marked Hawkes processes

Another feature that can be incorporated into a point process are marks which can be

used to differentiate different types of events. For example in a series of earthquake oc-

curences, it might be of interest to describe not only the occurrence time, but also the

magnitude of the earthquake as this has a substantial influence on the development of

aftershocks. Likewise, in a model describing credit default events, it might be sensible to

differentiate between defaults caused by temporary illiquidity (where the firm has a chance

of recovering in the future) and defaults caused by insolvency. This motivates defining a

marked multivariate Hawkes process as a sequence of event times, components and marks

{(tm, cm, ξm)}km=1, where usually the marks ξm are supposed to be i.i.d. random variables

drawn with each event time. It is assumed that events with different marks influence the

conditional intensity differently, thus (3.30) becomes

λi∗(t) = λi +
k∑

m=1

µi,cm(t− tm, ξm).

Typically, it is assumed that the kernel can be factorized into the self-/cross-excitement

of the processes and the effect of the marks, i.e. µij(t, ξ) = µij(t)χij(ξ).

Such a model was originally used for earthquakes times and magnitudes in the ETAS

(epidemic type aftershock sequence) model by Ogata 1988. As to finance applications,

Fauth and Tudor 2012 use a 4-dimensional marked Hawkes model to describe the in-

crease/decrease of the bid/ask price where each incoming transaction is marked by its

transaction volume. Embrechts, Liniger, and Lin 2011 extended their work on multivari-

ate Hawkes models to analyze stock market data by using a marked three-dimensional

model to study an equally weighted portfolio of three indices, where events are consid-

ered to be days with very small (below 1%-quantile) or very large (above 99%-quantile)

returns, and the marks are used to code the excess of each index w.r.t. its quantile.

For more details on applications of Hawkes processes in finance, Bacry, Mastromatteo,

and Muzy 2015 provides a very comprehensive overview.



Chapter 4

Risk theory

In this chapter, we will recapitulate some basic definitions and results of classical risk the-

ory and briefly introduce some extensions of the classical Cramer-Lundberg risk model.

This will give us the necessary background knowledge in order to combine risk theory

with Hawkes processes in the subsequent chapter and relate the results obtained therein

to classical ones. This chapter is based on Schmidli 2018 and Rolski 2001 who provide

very extensive and recommendable reads for an introduction to risk theory.

The business of an insurance company is usually based on a multitude of different portfo-

lios, such as policies covering theft, fire, automobile or earthquake damage. Each portfolio

is characterized by a different source of insurance risk and has deterministic as well as

stochastic characteristics, such as:

• The observed time period [0, T ], where the time horizon T depends on the planning

or bookkeeping period of the company, usually 1 to 5 years.

• The initial capital or initial reserve u of a portfolio can be interpreted as the amount

of capital that is set aside at time 0 to cover expenses from this portfolio until

premium payments have been received. As we will see later, it can also be understood

as a risk buffer determined by regulatory requirements.

• The premium income C(t) describes the total premium amount earned from the

portfolio during the time period [0, t]. Setting an adequate premium rate for each

policy is one of the most crucial tasks of any insurance company and we will see the

principles that come into play here shortly.

• The number of claims up to time t, described by a counting process N(t) or equiv-

alenty by a sequence of claim arrival times 0 ≤ t1 < t2 < · · · < tk ≤ T . Of course,

this is a random process, thus choosing the right stochastic model to describe the

48
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arrivals of incoming claims is crucial in order to estimate risk correctly.

• Each incoming claim, say at time ti, has a claim size Yi. The sequence of claim sizes

{Yi} is often assumed to be formed of i.i.d. random variables. Thus the aggregate

claim amount
N(t)∑
i=1

Yi is a random sum of random variables that captures all the

stochastic aspects of the risk process.

In the following, we will introduce how the above concepts are formalized in a risk model.

4.1 The classical risk model

4.1.1 Definition and notation

First, it is natural to assume that the whole risk of a portfolio can be split into several

independent single risks, e.g. for a portfolio of car insurances, each policy covers one

individual customer who might be involved in an accident. Equivalently, the time interval

[0, T ] can be split into independent, equal smaller intervals such that there can be at

most one claim per policy and interval. If the probability of a claim occuring is then p,

the number of claims per policy is then a Bernoulli random variable and the number of

claims of the whole portfolio of n individual contracts is N ∼ Bin(n, p). Now assume that

the number of policies in the portfolio (n) is rather large and the probability of a claim

occuring (p) is rather small. Let λ := np, then it follows

N ∼ Bin(n, p) = Bin(n, λ/n)
n→∞−→ Poi(λ).

This intuition naturally motivated Filip Lundberg in his fundamental work Lundberg

1903 to introcude a risk model where the number of incoming claims is decribed by a

Poisson process. Furthermore, assume that the premium payments are spread over the

whole time period and can thus be approximated as a continuous income stream for a

large portfolio of policies. This model, also known as the Cramer-Lundberg process, is the

foundation of modern risk theory and almost any more complicated model can be traced

back to it. Rolski 2001 emphasizes the importance of the Poisson process in risk theory

by stating that the exponential distribution (which is intrinsically linked to the Poisson

process) ”plays a similar crucial role in actuarial applications as the normal distribution

does in statistics”.

Definition 4.1 (Classical risk process). The classical risk process describes the surplus

of an insurance portfolio as

R(t) = u+ ct−
N(t)∑
i=1

Yi
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where u denotes the initial capital, c denotes the (continuous) premium rate and the

number of claims in the interval [0, t) is a homogeneous Poisson process N(t) with rate λ.

The claims Yi are i.i.d. positive random variables with distribution function G and mean

m1 independent of N(t).

Remark (Compound Poisson process). Note that the random sum of random variables
Nt∑
i=1

Yi, where N(t) is a Poisson process and Yi is an i.i.d. sequence of random variables is

called a compound Poisson process.

For an insurance company, probably the most important consideration is to ensure that

the surplus R(t) does not fall below a certain critical level, w.l.o.g. 0.

Definition 4.2 (Ruin time). The ruin time is defined as

τ = inf{t > 0 : R(t) < 0}

where inf∅ =∞.

Definition 4.3 (Probability of ruin). The probability of ruin in a finite time interval

(0, T ] is defined as

Ψ(u, t) = P(τ ≤ t|R(0) = u) = P( inf
0<s≤t

R(s) < 0|R(0) = u) (4.1)

and the probability of ultimate ruin as

Ψ(u) = lim
t→∞

Ψ(u, t) = P(inf
t>0
R(t) < 0|R(0) = u). (4.2)

Conversely, δ(u) = 1−Ψ(u) is called survival probability.

Note that the word ”ruin” is only a technical term as it does not refer to actual ruin

in reality for two reasons: In practice, the critical limit would never be set as 0, but

rather a certain level given by regulatory requirements. If the surplus of the portfolio

decreased too close towards the critical level, the company would react before the level

was actually breached (e.g. by raising premiums). Furthermore, the event of ”ruin” in

one portfolio does not equate to ”bankruptcy” of the whole company which is usually

built on a diversified set of various portfolios. Therefore, the probability of ruin does

not refer to an actual positive probability of bankruptcy but should rather be seen as

a useful tool in decision making, i.e. calculating premiums, reserving capital as risk

buffers for certain portfolios or determining reinsurance levels. Nonetheless, we will use

the terms ”ruin” and ”probability of ruin” without further comment in the remain-

der of this thesis. An example realisation of a classical risk process R(t) is given in Figure 6.
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Figure 6: An example realisation of the classical risk model over the time period [0, T ] = [0, 10]. The

initial capital is set as u = 1.5, the premium rate as c = 1.3 and incoming claims follow a Poisson process

with rate λ = 1 and their sizes are i.i.d. ∼ Exp(γ) with γ = 1. In this example, ruin occurs within the

observed time interval, namely at τ ≈ 6.2. One can either consider the process as terminated once ruin

occurs, or one might consider that the company might be able to carry on with the portfolio through

borrowing from other branches of the business until the portfolio becomes profitable again or until it has

been restructured.

We start with the question of how the premium for a portfolio should be set. Clearly, it

should be the primary interest of an insurance company to avoid a situation where ruin

occurs with probability 1. It holds:

Lemma 4.4 (Net Profit Condition (adapted from Schmidli 2018, p. 21)). Let

R(t) = u+ ct−
Nt∑
i=1

Yi be given as in Definition 4.1. Then

• If c < λm1, then R(t)
t→∞−→ −∞ a.s. That means ruin is unavoidable, i.e. Ψ(u) = 1.

• If c = λm1, then lim sup
t→∞

R(t) = − lim inf
t→∞

R(t) =∞, also implying Ψ(u) = 1.

• If c > λm1, then R(t)
t→∞−→ ∞ a.s. and P(R(t) ≥ 0te∀t) > 0.

Proof. The first and third statement follow directly from the law of large numbers. Con-

sider

lim
t→∞

R(t)

t
= lim

t→∞

(
u

t
+ c− 1

t

N(t)∑
i=1

Yi

)

= c− lim
t→∞

1

t

N(t)∑
i=1

Yi

= c− lim
t→∞

N(t)

t
· 1

N(t)

N(t)∑
i=1

Yi
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Applying the law of large numbers to each factor yields

lim
t→∞

R(t)

t
= c− λm1 a.s.,

which imply the statements of the lemma.

The second statement requires some deep theory of random walks (e.g. Rolski 2001, p.

234f) and will not be detailed here.

This obviously implies that the premium rate c must be chosen such that c > λm1, this

is called the net profit condition. There are many approaches to setting the premium, the

easiest and most commonly used is the following:

Definition 4.5 (Expected value principle (adapted from Schmidli 2018, p. 21)). The

expected value principle sets the premium rate c as

c = (1 + θ)λm1,

where θ > 0 is called the safety loading.

In general, finding the ruin probability is a non-trivial problem that can be solved ex-

plicitly only for a few choices of distribution function G even in the (simplest) case of

the classical risk model. In general, one can find that Ψ(u) fulfils the following defective

renewal equation

Theorem 4.6 (Rolski 2001, p. 164).

Ψ(u) =
λ

c

( ∞∫
u

(1−G(x))dx+

u∫
0

Ψ(u− x)(1−G(x))dx

)
, (4.3)

Ψ(0) =
λm1

c
.

Example. If claim sizes are assumed to be i.i.d. ∼ Exp(γ), the ruin probability can be

explicitly calculated as

textΨ(u) =
λ

cγ
e(λ

c
−γ)u.

This convenience is one of the reasons why the prime example of light-tailed claims is

often a sequence of i.i.d. ∼ Exp(γ) random variables.
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As (4.3) can unfortunately not be solved explicitly for general choices of G, a substantial

amount of research has been devoted to finding bounds and approximations for the ruin

probability. Lundberg derived the adjustment coefficient, which allows finding an upper

bound on Ψ(u) (called Lundberg’s inequality) and deriving the Cramer-Lundberg approx-

imation on Ψ(u) for u → ∞ (e.g. Schmidli 2018, p. 92ff). Alternatively, for a specific

model, the ruin probability could of course always be estimated numerically by Monte-

Carlo simulation. Another approach is to find a suitable approximation on R(t) for which

the ruin probability can be computed (or approximated better) and using the result as

an approximation for Ψ(u) in the original model. This will be detailed in the following

section.

4.1.2 Diffusion approximation

In this section, we will introduce the diffusion approximation for the classical risk model.

The idea is to contruct a sequence of classical risk processes that converges weakly to a

diffusion limit. We will see that in this case the limit is a Brownian motion, which is very

convenient as it gives access to many well-known results and applications.

Proposition 4.7 (Schmidli 2018, p. 108f). Let {R(n)(t)} be a sequence of Cramer-

Lundberg processes with initial capital u, claim arrival rates λ(n) = nλ, claim sizes {Y (n)
i }

with distributions G(n)(x) = G(
√
nx) (and mean E[Y

(n)
1 ] = m1√

n
=: m

(n)
1 ) and premium

rates

c(n) =

(
1 +

c− λm1

λm1

√
n

)
λ(n)m

(n)
1 = c+ (

√
n− 1)λm1.

Let m1 = E[Y1] =
∞∫
0

ydG(y) and assume that m2 = E[Y 2
1 ] =

∞∫
0

y2dG(y) <∞.

Then

R(n)(t)
d−→ (u+W (t)) (4.4)

where W (t) is a (c − λm1, λm2)-Brownian motion and
d→ denotes convergence in distri-

bution.

Proof. See Grandell 1977.

The intuitive idea is that we start with the risk process R(t) = R(1)(t) and then increase

the average number of claims while decreasing their average size in a way that the expec-

tation stays at E[R(n)(t)− u] = (c− λm1)t and the distribution of R(n)(t)− u tends to a

normal distribution. The procedure is illustrated in Figure 7.
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Figure 7: Illustration of the idea of approximating the classical risk model by a diffusion process, where

the original risk process R(1)(t) has u = 10, θ = 0.1 and claim arrivals following a Poisson process with

rate λ = 1 and claim sizes ∼ Exp(0.25). For different values of n, the plots show realisations of R(n)(t)

over the period [0, 20]. We can clearly see that with increasing n, the downward jumps representing claim

arrivals get more frequent while their sizes decrease such that the risk process starts resembling a diffusion

process.

Remark. • By the Wald equation, for a compound Poisson process it holds

E
[ N(t)∑
i=1

Yi

]
= E[N(t)]E[Y1] = λtm1,

Var
[ N(t)∑
i=1

Yi

]
= λtm2,

where N(t) follows a Poisson process with rate λ and {Yi} are i.i.d. r.v. with distri-

bution G.

• The claim sizes {Yi} and {Y (n)
i } have distribution functions G(x) and

G(n)(x) = G(
√
nx) respectively and thus belong to a location-scale family.

Therefore Y
(n)

1
d
= Y1√

n
, E[Y

(n)
1 ] = m1√

n
and E[(Y

(n)
1 )2] = m2

n
.

• Thus it holds

E[R(n)(t)− u] = c(n)t− E
[N(n)(t)∑

i=1

Yi

]
= ct+ λm1t(

√
n− 1)− λntm1√

n

= (c− λm1)t

Var[R(n)(t)− u] = Var
[N(n)(t)∑

i=1

Yi

]
= λntE[(Y

(n)
1 )2] = λnt

m2

n
= λtm2
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• By subtracting u and (c− λm1)t and dividing by
√
λm2t in (4.4), we obtain

(R(n)(t)− u)− (c− λm1)t√
λm2t

d−→ W (t)

where W (t) is a standard (0, 1)-Brownian motion and we can see the resemblance

to the standard central limit theorem.

The following proposition tells us that we can use the ruin probability of the diffusion

limit as an approximation for the ruin probability of the original model.

Proposition 4.8 (Schmidli 2018, p. 109). Let R(n)(t) and W (t) be as above and let τ (n)

denote the ruin time of {R(n)(t)} and τ = inf{t ≥ 0 : u+W (t) < 0} the ruin time of the

diffusion limit. Then

lim
n→∞

P[τ (n) ≤ t] = P[τ ≤ t]

and

lim
n→∞

P[τ (n) ≤ ∞] = P[τ ≤ ∞]

Proof. The first result (finite time horizon) is a special case of Whitt 1970, Theorem 9 (see

also Grandell 1977). The second result (infinite time horizon) can be found in Schmidli

1994.

Thus it remains to find the ruin probability for the diffusion limit, which can be done by

applying well-known results for the Brownian motion.

Theorem 4.9 (Adapted from Schmidli 2018, p. 109). The finite-time and infinite-time

ruin probabilities for the classical Poisson risk model are given by

P(τ ≤ t) = 1− Φ

(
(c− λm1)t+ u√

λm2t

)
+ e

−2u(c−λm1)
λm2 Φ

(
(c− λm1)t− u√

λm2t

)
(4.5)

and

P(τ <∞) = e
−2u(c−λm1)

λm2 . (4.6)

Proof. This follows directly from Theorem 2.28 with µ = c− λm1 and σ =
√
λm2.

It has to be remarked that the accuracy of such diffusion approximations always depends

on the parameters of the model, e.g. in the above case the approximation is only accurate

if c ≈ λm1, i.e. the safety loading is relatively small. There exist some approaches for

corrected diffusion approximations, e.g. Asmussen 1984. At the same time, it is obviously

only possible to give exact evaluations about the accuracy of the approximation in the
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case where the ruin probability can be computed exactly (that is, for Exp(γ) claims in

the classical model) and thus the approximation is redundant. In any case, a diffusion

approximation can be a very convenient tool for many applications if one keeps in mind

that it stays an approximation whose accuracy depends on the model and its specific

parameters.

4.2 Extensions of the classical model

In the last section, we have introduced the classical risk model which serves as the founda-

tion of actuarial risk theory. Modelling the sum of incoming claims as a compound Poisson

process is theoretically convenient and many results can only be obtained in closed form

for this basic model. Naturally the model makes many simplifying assumptions which

might not hold true in reality. Thus, ever since its introduction, a lot of work has been

devoted to adding more sophisticated features into the classical model in order to include

phenomena from reality. We will give a short overview of the scope of more general risk

models here.

Maybe the most natural generalisation of the classical model is to replace the Poisson

process for claim arrivals by a more general process, e.g. a general renewal process. The

resulting risk model is then called renewal risk model or Sparre Andersen model as it was

first introduced in Andersen 1957.

Definition 4.10 (Renewal risk model). The renewal risk model describes the surplus of

an insurance portfolio as

R(t) = u+ ct−
N(t)∑
i=1

Yi

where u denotes the initial capital, c denotes the (continuous) premium rate and the num-

ber of claims in the interval [0, t) is a renewal process N(t) with arrival times {t1, t2, · · · }
whose interarrival times have distribution function F . The claims {Yi} are i.i.d. positive

random variables with distribution function G and mean m1 independent of N(t).

This generalizes the classical model in the sense that the lengths of periods between ar-

rivals are still independent, but the distribution of the time of the next claim is dependent

on the time of the last claim. As stated in Asmussen 2010 (p. 132f), in reality the mech-

anism generating a renewal arrival process for claims is hard to understand and therefore

the relevance of the renewal risk model has been questioned. However, one tangible ex-

ample of a renewal process would be an environment with two states and Markovian

switching between them, where each state induces Poisson arrivals with a different rate.
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A more commonly used approach is to generalize the homogeneous Poisson process N(t)

by introducing a time-dependent intensity λ(t). For the simple case that λ(t) is determin-

istic, this leads to an inhomogeneous Poisson process. This could be suitable to describe

e.g. a situation in car insurance, where the number of accidents depends on the time

during the year or the week (see Grandell 1991). A more interesting and commonly used

setting is considering a Poisson process with a stochastic (time-dependent) intensity λ(t),

a so-called doubly stochastic Poisson process or Cox process. This ”double randomization”

allows for more flexibility:

Definition 4.11. The Cox risk model describes the surplus of an insurance portfolio as

R(t) = u+ ct−
N(t)∑
i=1

Yi

where u denotes the initial capital, c denotes the (continuous) premium rate and the

number of claims in the interval [0, t) is a counting process N(t) with stochastic intensity

λ(t). The claims {Yi} are i.i.d. positive random variables with distribution function G and

mean m1 independent of N(t).

The most common specification for λ(t) is a Poisson shot noise intensity given by

λ(t) = λ+
∑
si<t

h(t− si, Zi) + ν(t)

where {si} are the arrivals of a homogeneous Poisson process with rate γ, {Zi} are i.i.d.

random variables with distribution function F independent of {si} and h(t, x) is a non-

negative function. ν(t) ≥ 0 is a stochastic term independent of h(t − si, Zi) which could

represent some initial conditions or a noise term, but is likewise often left out for modelling

purposes. If we consider so-called multiplicative shots, λ(t) takes the form

λ(t) = λ+
∑
si<t

Zi · h(t− si) + ν(t) (4.7)

where everything is as above and h(t) is again a non-negative function. This allows for

a more intuitive interpretation of the model, as used in Dassios and Jang 2003 to price

catastrophe reinsurance: There is a stream of ”normal” claims following a homogeneous

Poisson process with rate λ, but from time to time an external event such as a natural

catastrophe occurs (following a Poisson process with rate γ and arrival times {si}) and

causes a dramatic increase in the number of claims. The random variables {Zi} describe

the severity of the catastrophes. As it might take some time to report and settle all those

”extraordinary” claims, the increase in overall intensity caused by an event at time si

develops according to h(t − si). Albrecher and Asmussen 2006 study aggregate claims
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distributions and asymptotic estimates for ruin probabilites for the same Cox model.

As another application, modelling the claim arrival process directly as a Cox process is

often used to incorporate delayed claims settlement into the risk model (see Klüppelberg,

Mikosch, and Kluppelberg 1995, Macci and Torrisi 2004, Brémaud 2000). An overview of

shot-noise modeling in insurance applications is also given in Kühn 2014.

Note that (4.7) quite closely resembles (3.5), in fact Dassios and Jang 2003 even use

ν(t) ≡ 0 and h(t − si) = e−δ(t−si), giving the intensity λ(t) the form we have seen in

Figure 2. However, there is a fundamental difference: For the Cox process, there is an

independent Poisson process {si} describing stochastic occurrences of external events.

This process influences the intensity λ(t) which describes the rate of event occurrences

{ti} in the claims process N(t). In the Hawkes process case, the claims process N(t) itself

takes the role of the formerly independent Poisson process, thus the arrivals of the claims

process itself determine its underlying intensity.

Of course, there are numerous other ways of generalizing the classical model apart from

changing the arrival process N(t). Some results for the classical model were at first only

available for light-tailed claim distributions G, thus research has been devoted to obtain

the same or adjusted results for heavy-tailed claim size distributions. Some authors have

generally challenged the assumption of i.i.d. claim sizes {Yi} (Albrecher and Kantor 2002)

and the independence between claim arrival times N(t) and their sizes {Yi} (Albrecher

and Boxma 2004, Meng, Zhang, and Guo 2008, Boudreault et al. 2006). Other work has

been devoted to incorporating interest rate or inflation into the model, for example by

considering discounted claims (Léveillé and Hamel 2018, Jang 2004) or by including the

possibility of borrowing and investment into the model (Schmidli 1994).

All these generalisations contribute to the development of risk models that describe real-

world phenomena as closely as possible and are by themselves interesting topics to study.

However, the focus of this thesis will be to combine the previous two chapters, namely

Hawkes processes and risk theory in order to describe certain classes of insurance claims

which can be suspected to display self-exciting and clustering behaviour.



Chapter 5

Risk model with Hawkes processes

In this chapter, we will combine the two previous topics by considering a risk model where

claims arrive according to a Hawkes process. This is interesting in a scenario where claim

arrivals cannot be assumed to arrive independently from one another and where there

is no indication that the time-dependence of claim arrival rates is seasonal or caused by

exogeneous events like catastrophes. We will see an example of such a type of insurance

in the numerical calculations in Chapter 6.

We will first give an overview over recent work and existing results on risk models with

Hawkes processes before introducing the risk model with general compound Hawkes pro-

cesses which will be our focus. This model was introduced by Swishchuk 2017b and is

very convenient as it allows the derivation of a law of large numbers and functional cen-

tral limit theorem. The latter allows to construct a diffusion approximation which gives

access to many analytical results, such as closed formulas for finite and infinite horizon

ruin probabilities.

5.1 Previous work

The first work to consider a risk model with Hawkes claims arrivals was Stabile and Torrisi

2010 who introduce the following:

Definition 5.1 (Hawkes risk model). Let the surplus of an insurance portfolio be given

by

R(t) = u+ ct−
N(t)∑
i=1

Yi (5.1)

where u denotes the initial capital, c denotes the (continuous) premium rate and the num-

ber of claims in the interval (0, t] is denoted N(t) and follows a stationary Hawkes process

59
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with intensity (3.5). The claims {Yi} are i.i.d. positive random variables independent of

N(t) with m1 := E[Y1] <∞ and m2 := E[Y 2
1 ] <∞.

Stabile and Torrisi 2010 use the clustering representation of the Hawkes process to in-

terpret the risk model as follows: there are standard claims which occur according to a

homogeneous Poisson process with rate λ and trigger secondary claims according to the

branching structure of the Hawkes process (see Proposition 3.7). The decreasing nature

of the excitation function µ(·) of the Hawkes process (see Definition 3.5) reflects that

recent events affect the occurrence of triggered claims more than events in the distant

past. Stabile and Torrisi 2010 even compare their model to the shot-noise Cox model in

Albrecher and Asmussen 2006, pointing out the difference between the ”external events”

structure there and the internally self-exciting branching structure of the Hawkes model.

Using the theory of large deviations and assuming light-tailed claims, Stabile and Torrisi

2010 study the asymptotic behavior of infinite and finite horizon ruin probabilities and

manage to derive asymptotically efficient simulation laws. Their work represents an im-

portant first step for applying Hawkes processes in risk theory and was extended by Zhu

2013 who considered the same problems assuming (subexponential) heavy tailed claims.

However, their results are of a very theoretical nature and only allow estimations of ruin

probabilities by essentially Monte Carlo simulation and only in the limit u→∞.

Another important stream of contributions includes a risk model based on a dynamic con-

tagion process introduced by Dassios and Zhao 2011. This process generalises the Hawkes

process and the Cox process with shot noise intensity by including both self-excited and

externally excited jumps. Dassios and Zhao 2012 use the dynamic contagion process as the

claim arrival process in their risk model to derive generalisations of the Cramer-Lundberg

approximation, the Lundberg inequality and bounds for the probability of ruin with spe-

cial attention on the case of exponential jumps. They provide some numerical examples

of ruin probabilities via Monte-Carlo simulation.

Jang and Dassios 2013 study a bivariate extension of the shot noise self-exciting process

introduced in Dassios and Zhao 2012 with externally excited joint jumps (shot noise Cox

process) and two separate self-excited jumps (branching structure of a Hawkes process

with exponential rate). Furthermore, a constant rate of exponential decay that could be

interpreted as the time value of money is included in the process. They derive its theoret-

ical distributional properties and provide some simple numerical examples to show that

this point process could be used for the modelling of discounted aggregate losses from

catastrophic events. They argue that a process with self-exciting features is suitable to

capture the clustering arrival of losses caused by the increasing frequency and intensity of

natural and man-made disasters observed in practice (caused by such as global warming,
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climate change and terrorism). The bivariate process reflects that a single (catastrophic)

event might induce losses for two different lines of the insurance business. For example, a

flood or an earthquake with tsunami could result in simultaneous joint losses of automo-

biles and properties. This model is theoretically very interesting, but probably impossible

to corroborate with empirical data as it would be very hard to find an adequate data set

and conduct the model fitting.

A very recent and interesting result was derived in Cheng and Seol 2018, namely a diffusion

approximation and asymptotics for the ruin probabilities of a risk model with stationary

Hawkes claims arrivals. They use the risk model from Definition 5.1 to define the following

series of risk models, where we slightly change the presentation in order to emphasize the

analogy to the classical approximation in Proposition 4.7. Let

R(n)(t) = u+ c(n)t−
N(n)(t)∑
i=1

Yi√
n

be a sequence of risk processes from (5.1), where {Yi} are i.i.d. with m1 := E[Y1] <∞ and

m2 := E[Y 2
1 ] <∞. N (n)(·) is a Hawkes process with intensity given in (3.5), background

rate λ(n) = λn and non-increasing excitation function µ(·). The premium rate is given by

c(n) =
√
n
λm1

1− µ̂
+ k = c+ (

√
n− 1)

λm1

1− µ̂

for a constant k > 0 and µ̂ given in (3.6). Note that if the premium rate of the original

model is denoted as c, k must be given by k = c− λm1

1−µ̂ . The exact value depends on the

premium principle which is chosen for the model, for the expected value principle with

safety loading θ it follows k = λθm1

1−µ̂ .

Analogously to the classical case, we illustrate the procedure in Figure 8.

Cheng and Seol 2018 derive the following results:

Theorem 5.2 (Cheng and Seol 2018). Let X(n)(t) =
N(n)(t)∑
i=1

Yi be the aggregate claims

process and assume that µ(·) is a decreasing function with
∞∫
0

tµ(t)dt < ∞. Then, as

n→∞,
X(n)(t)− λm1t

1−µ̂ n√
n

D−→ G (5.2)

in distribution where G is a mean-zero almost surely continuous Gaussian process with

covariance function (t ≥ s),

Cov(G(t), G(s)) = m2
1

t∫
s

s∫
0

φ(u− v)dvdu+
m2s

1− µ̂
+ 2m2

1

s∫
0

u∫
0

φ(u− v)dvdu (5.3)
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Figure 8: Illustration of the idea of approximating the Hawkes risk model by a diffusion process, where

the original risk process R(1)(t) has u = 10, θ = 0.1 and claim arrivals following a Hawkes process with

parameters (λ, α, β) = (1, 2, 5) and claim sizes ∼ Exp(0.25). For different values of n, the plots show

realisations of R(n)(t) over the period [0, 20]. We can clearly see that with increasing n, the risk process

starts resembling a continuous diffusion process.

where φ : [0,∞)→ [0,∞) satisfies the integral equation

φ(t) =
µ(t)

1− µ̂
+

∞∫
0

µ(t+ v)φ(v)dv +

t∫
0

µ(t− v)φ(v)dv. (5.4)

As a result,

R(n)(t) = u+

(√
n
λm1

1− µ̂
+ k

)
t− X(n)(t)√

n

= u+ kt−
X(n)(t)− λnm1t

1−µ̂√
n

D−→ u+ kt−G(t). (5.5)

Proof. As will be detailed below, we use the clustering representation of the Hawkes pro-

cess to write X(n)(t) =
n∑
i=1

X(1)(t) =:
n∑
i=1

X(t), i.e. to decompose the aggregate claims

sum from a process with background rate λn into the sums resulting from n independent

processes with background rate λ.

Let Ñi(t) := Ni(t) − E[Ni(t)] = Ni(t) − λt
1−µ̂ , then Ñi are i.i.d. random elements of

D([0,∞) ,R) with E[Ñi(t)] = 0 and E[Ñi(t)
2] < ∞ for any t. Analogously, define

X̃i(t) = Xi(t)− λtm1

1−µ̂ . Then, assuming some regularity conditions on the second moments

of X̃i(·) (see (2.1) and (2.2) in Theorem 2.7) it follows by Hahn’s Theorem that

n∑
i=1

(Xi(t)− λtm1

1−µ̂ )

√
n

D−→ G
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in D([0,∞) ,R) where Z is an a.s. continuous, mean-zero Gaussian process with the

covariance function of X̃1. One can indeed show that (2.1) and (2.2) are fulfilled (by

mainly using the tower property - the rather lengthy calculations will not be detailed

here and can be seen in Cheng and Seol 2018), thus it remains to compute the covariance

function. It holds by Wald’s equation and the law of total variance

E[X(n)(t)] = m1E[N (n)(t)]

E[(X(n)(t))2] = Var((X(n)(t))) + E[X(n)(t)]2

= Var[Y1]E[N (n)(t)] + E[Y1]2Var[N (n)(t)] +m2
1E[N (n)(t)]2

= (m2 −m2
1)E[N (n)(t)] +m2

1(E[(N (n)(t))2]− E[N (n)(t)]2) +m2
1E[N (n)(t)]2

= (m2 −m2
1)E[N (n)(t)] +m2

1E[(N (n)(t))2].

Furthermore, Cheng and Seol 2018 infer that

E[(X(n)(t)−X(n)(s))X(n)(s)] = m2
1E[(N (n)(t)−N (n)(s))N (n)(s)]

to conclude

Cov(X(n)(t), X(n)(s)) = E[X(n)(t)X(n)(s)]− E[X(n)(t)]E[X(n)(s)]

= E[(X(n)(t)−X(n)(s))X(n)(s)] + E[(X(n)(s))2]− E[X(n)(t)]E[X(n)(s)]

= m2
1E[(N (n)(t)−N (n)(s))N (n)(s)] + E[(X(n)(s))2]−m2

1E[N (n)(t)]E[N (n)(s)]

= m2
1E[N (n)(t)N (n)(s)]−m2

1E[(N (n)(s))2] + E[N (n)(s)](m2 −m2
1)

+m2
1E[(N (n)(s))2]−m2

1E[N (n)(t)]E[N (n)(s)]

= m2
1Cov(N (n)(t), N (n)(s)) + E[N (n)(s)](m2 −m2

1).

Inserting the covariance density of the Hawkes process given in (5.4) (whose derivation

goes beyond the scope of this proof and can be found e.g. in Laub, Taimre, and Pollett

2015 (Theorem 2) for an exponential Hawkes process or Appendix E for a special case)

yields (5.3).

Proposition 5.3 (Cheng and Seol 2018). It holds in distribution that

G(t) = m1

t∫
0

H(s)ds+
m2

1− µ̂
W (t)

where H(s) is a centered stationary Gaussian process with

Cov(H(t), H(s)) = φ(t− s), forallt ≥ s,

and W (t) is a standard Brownian motion independent of H(t).
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Remark. We can clearly see the difference between the classical Poisson case and the

more involved Hawkes case. In the classical case, increasing the rate λ of jumps leads to a

simple Brownian motion as a diffusion limit, whereas in the Hawkes case the increase of

the background rate λ does not capture the self-excitation function µ(·) and therefore the

limit process is more complicated. In order to still understand the result from a classical

central limit theorem point of view, we can use the immigration-birth-representation of

the Hawkes process: Recall that the immigrant events arrive as a homogeneous Poisson

process according to the background rate and produce children independently according

to the excitation function. Thus we can decompose a stationary Hawkes process with

background rate λn and excitation function µ(·) into n independent processes, each with

background rate λ. N(t) is the total number of events from each such process, and N (n)(t)

the aggregated number from n independent processes. Therefore, we would expect N (n)(t)

to follow some sort of Gaussian law as n→∞.

In the general case, (5.4) and thus (5.3) cannot be solved explicitly. However, for the ex-

ponential Hawkes process, the expressions simplify and allow some more explicit insights.

Inserting µ(t) = αe−βt (where α < β) into (5.4) leads to

φ(t) =
αe−βt

1− α/β
+ αe−βt

∞∫
0

e−βvφ(v)dv + αe−βt
t∫

0

eβvφ(v)dv

which in fact is the equation describing the covariance density of an exponential Hawkes

process with background rate λ = 1. Appendix E highlights how to solve this equation to

obtain

φ(t) =
αβ(2β − α)

2(β − α)2
e−(β−α)t, for all t ≥ 0.

Applying (5.3) for s = t yields the variance of the Gaussian limit as

Var(G(t)) = Cov(G(t), G(t)) =
m2t

1− µ̂
+ 2m2

1

t∫
0

t2∫
0

φ(t2 − t1)dt1dt2

=
m2t

1− α/β
+

2m2
1αβ(2β − α)

2(β − α)2

t∫
0

t2∫
0

e−(β−α)(t2−t1)dt1dt2

=
m2t

1− α/β
+
m2

1αβ(2β − α)

(β − α)2

t∫
0

e−(β−α)t2 ·
[
e(β−α)t2 − 1

β − α

]
dt2

=
m2t

1− α/β
+
m2

1αβ(2β − α)

(β − α)3

t∫
0

(
1− e−(β−α)t2

)
dt2

=
m2t

1− α/β
+
m2

1αβ(2β − α)

(β − α)3

[
t+

e−(β−α)t − 1

β − α

]
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=

(
β

β − α
m2 +

αβ(2β − α)

(β − α)3
m2

1

)
t−m2

1

αβ(2β − α)

(β − α)4

(
1− e−(β−α)t

)
. (5.6)

Figure 9 compares the theoretical variance of the limit process G(t) to the empirical

variance of a risk process R(n)(t) for n = 50 over 1000 simulation runs.

(a) β = 5 (b) β = 2.1

Figure 9: In order to illustrate the explicit result for the exponential Hawkes process case, we simulate

1000 runs of a risk process R(50)(t) on a grid of step size δ = 0.01 over the period [0, 20] and calculate

the empirical variance at each time point. In (a), the underlying parameters of R(1)(t) are again u = 10,

θ = 0.1, (λ, α, β) = (1, 2, 5) (for the Hawkes claim arrival process) and γ = 0.25 (for the exponentially

distributed claim sizes). We compare the results with the theoretical variance in (5.6) as a function of

t and find that the values match very closely. It has to be remarked that in this case, as α << β, the

variance function is almost linear in time. In (b), where we leave all parameters unchanged but set β = 2.1,

we clearly observe the non-linearity in time and the match between the theoretical and empirical values

deteriorates.

We can see that the variance function of the diffusion limit is non-linear in t, which is

different from the classical case of the Poisson process that yields as standard Brownian

motion. Unfortunately, this complicates the application of the diffusion approximation for

the calculation of ruin probabilities. Cheng and Seol 2018 derive some asymptotic results

for letting u → ∞ in both the finite- and infinite-horizon case (which are outside the

scope of this thesis and will not be presented), and use numerical simulations for the limit

process G(t) in the special case of an exponential Hawkes process and exponentially or

Gamma-distributed claim sizes to approximate ruin probabilities.

In summary, while their results are theoretically very interesting and very recent, so far

their empirical applicability is quite restricted due to the complicated nature of the limit

process. Therefore, we now turn to a different Hawkes model which allows for a more

convenient result and application.
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5.2 Risk model with general compound Hawkes pro-

cesses

5.2.1 Definition and properties

Swishchuk 2017b introduces the following risk model:

Definition 5.4 (Risk model with general compound Hawkes process (Swishchuk 2017b)).

Let N(t) be a one-dimensional Hawkes process as in Definition 3.5. Let X = (Xi) be

an ergodic continuous-time Markov chain on a finite (or countably infinite) state space

S = {1, 2, · · · , n} (or S = {1, 2, · · · , n, · · · }) independent of N(t), and let a(x) be any

continuous and bounded function on S. Then a general compound Hawkes process is

defined as

H(t) = H(0) +

N(t)∑
i=1

a(Xi). (5.7)

Define the risk model R(t) based on a general compound Hawkes process as

R(t) = u+ ct−
N(t)∑
i=1

a(Xi) (5.8)

where u is the initial capital, c is the premium rate and N(t), (Xi) and a(x) are as

above. We will abbreviate this risk model based on general compound Hawkes processes

as RMGCHP.

A related model has been successfully used for modelling Limit Order Book dynamics in

Swishchuk 2017a where the a(Xi) are interpreted as a conditionally dependent sequence

of price changes which are not fixed to one-tick movements. In our insurance context, we

will adapt the interpretation of the Markov chain as described in Chapter 6 in order to

appropriately reflect incoming insurance claim sizes.

Remark. Note that as a sequence of i.i.d. random variables can be seen as a special

case of a Markov chain (by choosing the transition probabilities such that the conditional

dependence vanishes) and a Poisson process can be seen as a special case of a Hawkes

process (with excitation function µ(·) ≡ 0), RMGCHP generalizes both the Hawkes model

in Definition 5.1 as well as the classical risk model in Definition 4.1. The only limitation

is that the claim sizes in RMGCHP can take at most countably many values whereas

the other models usually assume claim sizes to follow a continuous distribution function

G. However, as we will see in detail in Chapter 6, this is not a very relevant restriction

for empirical purposes, as we can approximate any empirical distribution of claim sizes

arbitrarily well with our model by increasing the number of states |S|.
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Analogously to the classical model, Swishchuk 2017b proves a law of large numbers for

RMGCHP and uses it to derive a net profit condition and a premium principle based on

the expected value principle.

Theorem 5.5 (Law of large numbers for RMGCHP (Swishchuk 2017b)). Let R(t) be the

risk model from Definition 5.4, and let X = (Xi) be an ergodic Markov chain with state

space S and stationary probabilities π∗n. We suppose that 0 < µ̂ =
∞∫
0

µ(s)ds < 1. Then

lim
t→∞

R(t)

t
= c− a∗ λ

1− µ̂
, (5.9)

where a∗ =
∑
i∈S

a(i)π∗i .

Proof. The proof works analogously to the classical case in Lemma 4.4. Consider

lim
t→∞

R(t)

t
= c− lim

t→∞

1

t

N(t)∑
i=1

a(Xi)

= c− lim
t→∞

N(t)

t
· 1

N(t)

N(t)∑
i=1

a(Xi)

Applying the LLN for Hawkes processes (Theorem 3.8) to the first factor gives

lim
t→∞

N(t)

t
=

λ

1− µ̂
,

while the ergodic theorem for Markov chains yields

lim
t→∞

1

N(t)

N(t)∑
i=1

a(Xi) =
∑
i∈S

a(i)π∗i =: a∗

for the second factor, where π∗ is the unique stationary distribution. This proves the

statement of the theorem.

Remark. Note that if a(Xi) = Xi are i.i.d. random variables, then simply

a∗ = E[X1] =: m1.

The previous theorem implies the following net profit condition and premium principle.

Corollary 5.6 (Net profit condition and premium principle for RMGCHP (Swishchuk

2017b)). The net profit condition for RMGCHP is given as

c > a∗
λ

1− µ̂
, (5.10)

and the premium principle for RMGCHP, based on the expected value principle, is

c = (1 + θ)a∗
λ

1− µ̂
(5.11)

where θ denotes the safety loading.
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5.2.2 Diffusion approximations

In the following, we will review a functional central limit theorem by Swishchuk 2017b

which allows to approximate the risk model by a jump-diffusion process. We further use

this jump diffusion approximation to construct an approximation by a pure diffusion

process. Conveniently, the diffusion limit is found to be a Brownian motion with drift,

which admits analytical calculation of estimates for finite-time and infinite-horizon ruin

probabilities and the application of other well-known results.

Approximation by jump diffusion process

Theorem 5.7 (FCLT, Approximation by jump diffusion process (Swishchuk 2017b)). Let

R(t) be the risk model defined from Definition 5.4, and (Xi) be an ergodic Markov Chain

with stationary distribution π∗. Suppose that 0 < µ̂ =
∞∫
0

µ(s)ds < 1 and
∞∫
0

sµ(s)ds <∞.

Then:

lim
t→∞

R(t)− (u+ ct− a∗N(t))√
t

D
= σ̂Φ(0, 1) (5.12)

or in Skorokhod topology (see Skhorokhod 2014)

lim
n→∞

R(nt)− (u+ cnt− a∗N(nt))√
n

= σ̂W (t) (5.13)

where Φ(·, ·) is the Normal c.d.f. and W (t) is a standard Wiener process.

σ̂ := σ∗
√
λ/(1− µ̂), te(σ∗)2 :=

∑
i∈S

π∗i ν(i),

a∗ :=
∑
i∈S

π∗i a(i), teb(i) := a∗ − a(i),

νi := b(i)2 +
∑
j∈S

(g(j)− g(i))2P (i, j)− 2b(i)
∑
j∈S

(g(j)− g(i))P (i, j),

g := (P + Π∗ − I)−1(b(1), ..., b(n))′,

(5.14)

where P is the transition matrix of (Xi) and Π∗ is the matrix of stationary probabilities

of P , meaning that the rows of Π∗ coincide with the stationary distribution.

Proof. The proof relies heavily on the martingale method developed in Vadori and

Swishchuk 2015 and we will only sketch the main idea here. We start with the second

statement (5.13). By Definition 5.4

R(nt)− (u+ cnt− a∗N(nt))√
n

=

u+ cnt−
N(nt)∑
i=1

a(Xi)− (u+ cnt− a∗N(nt))

√
n
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=

N(nt)∑
i=1

(a∗ − a(Xi))

√
n

Thus, we need to find

lim
n→∞

N(nt)∑
i=1

(a∗ − a(Xi))

√
n

. (5.15)

For n ∈ N0, consider

R∗n =
n∑
i=1

(a(Xi)− a∗)

and let U∗n(t) be defined as in Vadori and Swishchuk 2015, (3.52), to be

U∗n(t) =
(1− (nt− bntc))R∗bntc + (nt− bntc)R∗bntc+1√

n
,

where b·c is the floor function bxc = max{m ∈ Z : m ≤ x}. Note that U∗n(t) is the

continuous function which we get by linearly extending
R∗nt√
n

to values nt /∈ N0. Theorem

3.17 in Vadori and Swishchuk 2015 then yields that

lim
n→∞

U∗n(t)
D
= σ∗W (t) (5.16)

where σ∗ is given in (5.14) and W (t) is a standard Brownian motion. The derivation of

this result is quite involved and can be reviewed in Vadori and Swishchuk 2015.

For a fixed value of t, we now change the time scale to N(nt)
n

and therefore consider

U∗n(N(nt)
n

) which is the continuous version of

R∗
n·N(nt)

n√
n

=
R∗N(nt)√

n
=

N(nt)∑
i=1

(a(Xi)− a∗)
√
n

.

This expression coincides with the negative of the expression whose limit we seek in (5.15).

From Theorem 3.8 we know that

lim
n→∞

N(nt)

n
=

λt

1− µ̂
,

therefore it holds

lim
n→∞

U∗n

(
N(nt)

n

)
D
= σ∗W

(
λt

1− µ̂

)
.

As for the standard Brownian motion it holds that W (at)
D
=
√
aW (t) for all a ∈ [0,∞),

it follows

lim
n→∞

U∗n

(
N(nt)

n

)
D
= σ∗

√
λ

1− µ̂
W (t).
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As furthermore W (t)
D
= −W (t), it follows that

lim
n→∞

N(nt)∑
i=1

(a∗ − a(Xi))

√
n

= σ∗

√
λ

1− µ̂
W (t).

This proves the statement of (5.13). To get (5.12), set n = t and t = 1 in (5.13).

Remark (Swishchuk 2017b, Remark 7). If a(Xi) = Xi are i.i.d. random variables, then

(σ∗)2 = Var[X1]

and thus

σ∗ =
√
Var[X1] =

√
E[X2

1 ]− E[X1]2 =:
√
m2 −m2

1.

The approximation can be interpreted as follows: Letting n → ∞ in (5.13) corresponds

to changing the time scale from the original time steps to a larger scale and therefore

observing the process at fewer time points. For example, instead of observing the process

each hour or each day, we only observe it monthly. Therefore, we would assume that

in between observations, more claims arrive and therefore the distribution of their sizes

starts resembling the stationary distribution. This means that the actual aggregated

claims sum
N(nt)∑
i=1

a(Xi) can be more closely approximated by a∗N(nt) together with a

random term following a standard Brownian motion. We illustrate this procedure in

Figure 10. Swishchuk et al. 2017 uses an analogous model to describe the link between

price volatility and order flow in limit order books. When studying limit order book data

on the original timescale of milliseconds, very frequent tick-sized jumps occur (order

arrivals and cancellations through high-frequency trading) that can be described e.g. by

a Hawkes process. By changing the timescale e.g. to tens of seconds or minutes, one can

study the order flow and thus the price process which is then assumed continuous and

described by a diffusion process.
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(a) n = 1 (b) n = 2

(c) n = 10 (d) n = 50

Figure 10: Illustration of the idea of changing the time scale for RMGCHP : We start with a risk process

over the period [0, 1000] (say days) with u = 10, θ = 0.1 and claim arrivals following a Hawkes process

with parameters (λ, α, β) = (1, 2, 5) and i.i.d. claim sizes with m1 = 4 and Var[X1] = 16. Now assume

we want to have an ”observation window” of length 20. In the original timescale (n = 1), this of course

corresponds to the window of the first 20 days [0, 20]. If we now change the timescale to e.g. nt = 10,

we observe the value of the process only every 10 days, i.e. at the original timepoints 10, 20, · · · . This

corresponds to a new observation window of [0, 200] days. We plot the same underlying risk process

for four different values of n above. We can see that with increasing n, the individual jumps become

less significant and the observed risk process starts resembling a diffusion. We should mention that the

y-scales differ between plots, as naturally the process can take a higher range of values if we observe it

over a longer time.

Theorem 5.7 implies that the risk model in (5.8) for large t can be approximated by the

jump-diffusion process

R(t) ≈ Rj(t) = u+ ct− a∗N(t) + σ̂W (t) (5.17)

where a∗ and σ̂ are defined above, N(t) is a Hawkes process and W (t) is a standard

Wiener process. The subscript j denotes the jump diffusion approximation. Assuming an

exponential Hawkes process, the variance of the approximative process Rj(t) is given by

Var[Rj(t)] = (a∗)2Var[N(t)] + σ̂2t
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= (a∗)2

(
λ

1− α/β
t

(
1

1− α/β

)2

+ (∗)
)

+ (σ∗)2 λ

1− α/β
t

= t

(
(σ∗)2 λ

1− α/β
+ (a∗)2 λ

(1− α/β)3

)
− (∗∗) (5.18)

where

(∗∗) = −(a∗)2 λ

1− α/β

(
1−

(
1

1− α/β

)2)(
1− e−t(β−α)

β − α

)
> 0, (5.19)

where we have inserted the variance of the number of jumps N(t) of a stationary Hawkes

process from (3.27). Note again that we have one part of the variance which is linear

in t, and another part which is non-linear. For the classical Poisson case, we would set

α = 0 implying (∗∗) = 0, leaving only the linear part. We will examine this further in the

next section. Note that in general it is very difficult to estimate analytically how fast (or

well) the diffusion process approximates the original process. For details about the rate of

approximation for random evolutions, see Swishchuk 2000. Therefore, we will check the

accuracy of this (and the next) approximation using an empirical method in Section 6.3.

Approximation by pure diffusion process and ruin probabilities

While the last result is already quite convenient, many applications are not available or

more restricted when dealing with a diffusion process that includes jumps. Therefore, we

would now like to construct an approximation of R(t) from (5.8) by a continuous (pure)

diffusion process.

Theorem 5.8 (FCLT 2, Approximation by pure diffusion process). Let R(t) be the risk

model from Definition 5.4, and let (Xi) be an ergodic Markov Chain with stationary

probabilities π∗. We suppose that 0 < µ̂ =
∞∫
0

µ(s)ds < 1 and
∞∫
0

sµ(s)ds <∞. Then

lim
t→∞

R(t)− (u+ ct− a∗ λ
1−µ̂t)√

t

D
= σ̄Φ(0, 1)

or in Skorokhod topology (see Skhorokhod 2014)

lim
n→∞

R(nt)− (u+ cnt− a∗ λ
1−µ̂nt)√

n
= σ̄W (t) (5.20)

where Φ(·, ·) is the standard Normal c.d.f., W (t) is a standard Wiener process and

σ̄ =

√
σ̂2 + (a∗

√
λ

(1−µ̂)3 )2 where a∗ and σ̂ are defined in Theorem 5.7.

Proof. We only prove (5.20). We know from Theorem 5.7 that

lim
n→∞

R(nt)− (u+ cnt− a∗N(nt))√
n

D
= σ̂W (t)
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where σ̂ = σ∗
√
λ/(1− µ̂) and σ∗ is defined in Theorem 5.7. Let us replace in the above

equation N(nt) by its expected value λ
1−µ̂nt and thus look at

lim
n→∞

R(nt)− (u+ cnt− a∗ λ
1−µ̂nt)√

n
.

Adding and subtracting the term a∗N(nt) yields

R(nt)− (u+ cnt− a∗N(nt))√
n

+
a∗ λ

1−µ̂nt− a
∗N(nt)

√
n

.

We know by Theorem 5.7 that the first term converges to σ̂W (t) as n → ∞ with σ̂ as

above and W (t) a standard Wiener process. For the second term we apply the CLT for

Hawkes processes (Theorem 3.9) which yields

lim
n→∞

a∗ λ
1−µ̂nt− a

∗N(nt)
√
n

D
= a∗

√
λ

(1− µ̂)3
W̄ (t)

where W̄ (t) is a standard Wiener process independent of W (t). Thus for the sum of the

two limits we obtain

lim
n→∞

R(nt)− (u+ cnt− a∗ λ
1−µ̂nt)√

n
=

√
σ̂2 + (a∗)2

λ

(1− µ̂)3
Ŵ (t)

where Ŵ (t) is a standard Wiener process independent of W (t) and W̄ (t) and a∗ and σ̂

are defined in Theorem 5.7.

The theorem implies that R(t) can be approximated by the pure diffusion process

R(t) ≈ Rp(t) = u+ ct− a∗ λ

1− µ̂
t+ σ̄W (t) (5.21)

where a∗ and σ̄ are defined above and W (t) is a standard Wiener process. The subscript

p denotes the pure diffusion approximation. The variance of the approximative process

Rp(t) is thus given by

Var[Rp(t)] = σ̄2t =

(
(σ∗)2 λ

1− µ̂
+ (a∗)2 λ

(1− µ̂)3

)
t,

which we actually observe to be the linear part in (5.18). Thus, the second approximation

naturally gets rid of the non-linear contribution to the variance caused by the Hawkes

jump process by approximating the risk process by a Brownian motion with drift. We

would naturally assume this approximation to be less accurate (where the severity of the

estimation error depends on the specific parameters of the Hawkes process, compare e.g.

Figure 9), but it is very convenient nevertheless as it gives access to several analytical

results, such as ruin probability estimates in closed form.



CHAPTER 5. RISK MODEL WITH HAWKES PROCESSES 74

Theorem 5.9 (Ruin probabilities for RMGCHP). The ruin probability in the interval

(0, T ] for a risk model as in Theorem 5.8 is given by

Ψ(u, T ) = Φ

(
− u+ (c− a∗λ/(1− µ̂))T

σ̄
√
T

)
+ e−

2(c−a∗λ/(1−µ̂))

σ̄2 uΦ

(
− u− (c− a∗λ/(1− µ̂))T

σ̄
√
T

)
, (5.22)

and the ultimate ruin probability is given by

Ψ(u) = e−
2(c−a∗λ/(1−µ̂))

σ̄2 u. (5.23)

Proof. Note that

Rp(t)
D
= u+W

((
c− a∗ λ

1− µ̂

)
t, σ̄t

)
.

Then the result follows directly from Theorem 2.28 by inserting µ = c − a∗ λ
1−µ̂ , σ = σ̄

and using that 1− Φ(x) = Φ(−x).

Remark. We find our results to be in accordance with the classical results in Proposition

4.7: If we insert above the values for a Poisson arrival process (µ̂ = 0) and i.i.d. claim

sizes (a∗ = m1, σ
∗ =

√
m2 −m2

1) we find

σ̄ =
√

(σ∗)2λ+m2
1λ =

√
(m2 −m2

1)λ+m2
1λ =

√
m2λ

and thus

Rp(t)
D
= u+W ((c−m1λ)t,m2λt).

The next part of the thesis will be devoted to implementing the RMGCHP with empirical

data in order to corroborate its applicability and check the accuracy of the theoretical

results.



Chapter 6

Implementation with empirical data

Whereas the previous work on Hawkes risk models was focused on theoretical results

and sometimes numerical illustrations with simulated data, we would like to extend the

scope of RMGCHP to an application with real empirical data. This chapter is devoted

to explaining the characteristics of the empirical data set and fitting a RMGCHP to

empirical claim arrivals and sizes. Furthermore, we check the goodness of the diffusion

approximations and ruin probability estimates introduced in Chapter 5.

6.1 Properties of the empirical data set

The data set was provided by a large German insurance group and comprises claim oc-

currences from the class of legal expenses insurance, which refers to insurance protection

covering the costs of a legal dispute (e.g. lawyer expenses or fees). For this class of insur-

ance, we suspect that often once a legal dispute occurs and is reported to the insurance

company, multiple payments from (or triggered by) this case have to be expected in the

subsequent time period. This might be due to multiple receivables from lawyers and con-

sultants, an appeal of the court case being lodged or more legal matters being uncovered

and reported resulting from the initial reporting. Therefore we suspect a Hawkes process

might be suitable to model claim arrivals for this class of insurance claims. The empirical

data set is divided according to the reporting year of a claim, i.e. the year the claim has

been reported to the insurance company and thus has come to their knowledge. This is

not necessarily equal to the year of the original claim occurrence, indeed there is extensive

academic work dedicated to understanding the dynamics of delayed (IBNR and RBNS)

claims, for instance Dassios and Zhao 2013, Yuen, Guo, and Ng 2005, Boumezoued and

Devineau 2017. We observe that the majority of the claims reported within a year have

occurred the same or the previous year, but there is a non-negligible number of claims

75
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with longer delay in reporting. An example extract of the original data set is given in

Figure 11 and its features are summarized in Table 6.1. The figure illustrates that for the

same claim occurrence we often observe multiple claim payment dates corresponding to

cash outflows for the insurance company. It is of great interest for the company to under-

stand the characteristics of these cash outflows. Suppose a claim has been reported and

the first payment made, but the case is not typically closed after a single payment. It is

beneficial to already be able to estimate the amount (and ideally the temporal structure)

of the total cash outflows which have to be expected from this claim in the future. This

is essential for the purpose of reserving an adequate amount of capital to cover future

liabilities arising from this known case. As we have seen in Section 3.2, the Hawkes process

has an intuitive interpretation as an immigration-birth-process whose parameters provide

information about the expected number of children of each exogenous immigrant event

and thus the overall share of endogenously triggered events. We now see that this has an

empirically very relevant interpretation, namely the share of outgoing payments which

are actually subsequent payments in known open cases.

Figure 11: An extract from the data set of the reporting year 2010. We can see that for example the first

three rows belong to the same policy and claim occurrence (on 28.03.2002). The claim was reported in

2010 and has led to three payments by the insurer on future dates (06.05.,06.07. and 11.08.2010) with

different claim sizes (745.78, 502.78 and 4.43). The case has been closed since.

Out of the five extensive data sets, one for each of the reporting years 2010 until 2014

provided by the insurance company, the question arises how to extract a meaningful

yet usable subset. As a starting point, we concentrate on one subclass of legal expenses

insurance for our one-dimensional model, with the future idea of potentially fitting a

multivariate marked Hawkes model to compare different kinds of incoming claims and the

characteristics of their evolution. As there is no indication that one subclass is particularly

more suited than others, we select a subclass with a relatively high number of incoming

claims, indicating its relevance in the overall portfolio of the insurance company. The next

challenge is to thin the claim portfolio, as due to its sheer overall size, the average number

of claims per day would be very high. This would pose a problem as we see in Figure 11,

only the day of each claim payment is recorded as any finer granurality is not of particular
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Column Meaning Comment

VNR Policy Number One policy contract, for example one

client.

SCHDLNR
Running number of

claim per policy
A client can have several claims over the

years on the same policy.

SCHDDAT Date of claim occurrence This is the original occurrence date which

can be earlier than the reporting year and

does not immediately induce a payment.

ZAHLUNG Size of claim payment

ZHLGDATUM Date of the claim payment One claim can result in several payments

over time whose the temporal structure is

main point of interest.

LEISTUNGSART Subclass of insurance There are many types of legal expenses

insurance, in total 44 classes in the whole

dataset.

STATUS Status This indicates whether the case has been

closed or remains open.

MELDJAHR Reporting year Data sets are divided according to this, we

have data for the years 2010 to 2014.

Table 6.1: Explanation of the columns of the original data set.

interest to the insurance company. As the one-dimensional Hawkes process is a simple

point process, multiple arrivals with the same timestamp are theoretically not possible.

Therefore, for the parameter estimation, we artificially distribute the indistiguishable

arrivals uniformly over their arrival day in order to generate distinct timestamps. For a

high average number of arrivals per day, the majority of interarrival times would thus be

generated artificially, not due to the actual arrival pattern, which renders the significance

of fitting an arrival process potentially meaningless. Likewise, a very low number of overall

claim arrivals (e.g. working on individual client portfolios) simply does not contain enough

data points to conduct a stable model fitting. A first approach to thinning the portfolio

would be to filter for the year of the claim occurrence, e.g. only consider claims which

occurred in the year 2010, as we have the full ”reporting picture” for them. The problem

with this approach is that it produces a fairly skewed overall picture with a high number of

payments in the first one to two years after the occurrence and fewer payments afterwards.

Naturally, the majority of claims is reported and (at least partly) settled within the first

years after their occurrence. Fitting an arrival process to this dataset would lead to an

estimation that essentially tries to unite several different time periods into one picture
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and while doing a fair job of this, falls short to capture either of them accurately. At this

point, it could of course be considered to fit different years separately. However, one general

numerical challenge for insurance data (again due to the low timestamp granularity) is the

short overall time horizon (e.g. compared to financial data, where often millisecond time

intervals over one trading day are considered). Thus, we by all means want to use a data

set that makes use of the whole time horizon provided to us by the empirical data. Thus,

we decided to divide claim occurences according to their delay in reporting, thus from

each of the reporting years we consider claims that had occurred a fixed number of years

ago. Characterising claims this way leads to a complete division of the overall portfolio

as can be seen in Figure 12 (if all the cases (diagonals) are considered separately). This

way the claim payments include claims that have occurred in several different years which

mostly avoids the skewed picture mentioned before. We found claims with a three year

delay in reporting to provide a good overall number of claims across several subclasses

of insurance. This means that the data set under consideration in the following does not

include all claims of the overall portfolio, but only those along the marked diagonal in

Figure 12. In order to analyse the whole data set, the other cases (along the diagonals)

would have to be taken into account analogously.

Figure 12: Combinations of occurence and reporting year leading to a certain delay in reporting. By

aggregating arrivals along the diagonals, the whole data set could be reconstructed. However, in the

following, we only consider claims coming from the marked diagonal, i.e. with a three-year delay in

reporting.

6.2 Model fitting

6.2.1 Claim payment times

The data set used in the following comes from the subclass of legal insurance against

damage compensation in consequence of incidents related to traffic. It consists of claims

which occurred in the years 2007 to 2011, were reported with a delay of three years

during 2010 to 2014 and have corresponding payment dates during the time period from
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01 January 2010 to 28 July 2016. We remark that the original data set contained sporadic

payments afterwards, but we choose to restrict our focus to this period of length T = 2400

in order to guarantee a comparable process over the whole period. Furthermore, there

were several days with more than one outgoing payment. In these cases, we distribute

the indistiguishable arrivals uniformly over their arrival day in order to generate distinct

timestamps. Note that this modification is only necessary for the parameter estimation

step, as in all further applications we use increments of at least one day (thus the slightly

shifted arrivals will be counted indistinguishably again). Note that the method of adding

uniform random increments to distinguish arrivals with the same timestamp was e.g. used

in Bowsher 2007 for trading data. However, as we find adding random timestamps to

produce very unstable estimation results, we resort to deterministic uniform distribution.

After preparing the data set, we essentially follow the methods used by Da Fonseca and

Zaatour 2013 to analyze and quantify trade clustering for stock and futures data. The

first step is to test whether the claim arrivals can be described by a memoryless Poisson

distribution as assumed by the classical model. In Figure 13, the interarrival times of claim

payments are plotted against an exponential distribution. The figure indicates clearly

that a Poisson model would not be suitable for the data. Figure 14 displays the number

of payments per week (7 days) over the whole time period of 2400 days, where some

clustering of payment occurrences over time can be observed.

Figure 13: The plot of empirical interarrival times against an exponential distribution indicates that a

Poisson model would not be a suitable fit.

Next, again following Da Fonseca and Zaatour 2013, we compute the empirical autocor-
relation of the number of payments during intervals of fixed length τ separated by a lag
of length δ. Thus we compute

AC(τ, δ) =
E[(Nt+τ −Nt)(Nt+2τ+δ −Nt+τ+δ)]− E[(Nt+τ −Nt)]E[(Nt+2τ+δ −Nt+τ+δ)]√

Var(Nt+τ −Nt)Var(Nt+2τ+δ −Nt+τ+δ)
, (6.1)

where we choose the interval length as (7, 14, 21, 28) days and let the lag range from 0 to
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Figure 14: The number of claim payments per week during the time period 01 Jan 2010 to 28 July 2016

gives further indication as to the presence of clustering.

240 days by steps of 1. We plot the resulting autocorrelation values as a function of the

time lag δ in Figure 15. We note that the autocorrelation between the number of payments

in two intervals is a decreasing function of the time lag for all chosen interval lengths.

This corroborates the use of a Hawkes process as it indicates that incoming arrivals in

one period influence closely subsequent periods and this memory effect decays as time

moves on. Note that a Poisson process would assume independence between the number

of arrivals in subsequent intervals and thus a constant autocorrelation of 0 which is clearly

not the case for the data.

Figure 15: Empirical autocorrelation function, as in (6.1), of the number of claim payments on intervals

of length τ as a function of the time lag δ between the intervals. The overall trend is decreasing for

all interval lengths. Clearly, the number of claim payment arrivals on consecutive intervals can not be

assumed independent.
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Given these insights into the nature of payment arrival times, we proceed to fit a Hawkes

process with exponentially decaying intensity to the arrival process. To this end, we es-

timate the parameter set (λ, α, β) from (3.7) using the maximum likelihood estimation

described in Section 3.4. We use the Nelder-Mead optimization routine from the R R©

package lme4 to minimize the negative log-likelihood function. In order to avoid getting

stuck in a local optimum, we repeat the optimization with 100 random starting values

(λ0, α0, β0) drawn uniformly from the interval (0, 500) (such that α0 < β0) and proceed

with the estimations which yield the smallest value of the objective. The results are sum-

marized in Table 6.2.

Parameter Maximum Likelihood Estimate

λ 0.1467

α 0.0260

β 0.0334

E[N (0, 1]] 0.6621

̂E[N (0, 1]] 0.6483

Table 6.2: Parameter estimates λ̂, α̂, β̂ from MLE as well as the estimated number of arrivals on a unit

interval E[N (0, 1]] = λ̂
1−α̂/β̂

compared with the empirical expected value ̂E[N (0, 1]]. We observe that the

expected number of arrivals is matched quite closely. Note that both α̂ and β̂ are estimated quite close

to 0.

In order to test the goodness of fit of the Hawkes process, in Figure 16 we first plot

the transformed interarrival times against a unit Exponential distribution as described in

Section 3.4. We observe an improvement over the fit of a classical Poisson model in Figure

13. The qualitative independence test in Figure 17a clearly shows some patterns, but we

acknowledge that it is generally difficult to get a good fit for empirical data here, so we

at least corroborate that the transformed interarrival times seem to be uncorrelated in

Figure 17b.

Furthermore, using formulas (3.26), (3.27) and (3.29), we compare the theoretical expected

value (on a unit interval), variance (on intervals of different length) and autocorrelation

(on intervals of different lengths and time lags) of the number of jumps of an exponential

Hawkes process with parameters from Table 6.2 with the corresponding values of the

empirical arrivals in Table 6.2, Table 6.3 and Figure 18 respectively.

Overall, these tests lead us to conclude that a risk model with claim arrivals according

to a stationary Hawkes process with exponentially decaying intensity is suitable for our

data set. Next, we turn our attention to accurately describing the sizes of outgoing claim

payments.
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Figure 16: The plot of transformed interarrival times against a unit exponential distribution indicates

that an exponential Hawkes model with parameters (λ̂, α̂, β̂) from Table 6.2 would be an acceptable fit.

(a) Qualitative independence test. (b) Qualitative autocorrelation test.

Figure 17: The independence plot of the transformed interarrival times for an exponential Hawkes model

with parameters λ̂, α̂, β̂ from Table 6.2 clearly shows some patterns. However, note that in general it is

very difficult to get a good fit for empirical data for this qualitative independence test and the autocor-

relation function over time of the transformed interarrival times at least indicates that they are (almost)

uncorrelated.

6.2.2 Claim payment sizes

As we have described in Chapter 4, in insurance literature the claim sizes {Yi} are usually

supposed to be i.i.d. with distribution G having finite first two moments E[Y1] = m1

and E[Y 2
1 ] = m2. A common choice for G is an exponential distribution, say Exp(γ),

as for this choice one can e.g. obtain closed-form solutions for the ruin probabilities in

the classical case (see the example for Theorem 4.6). Thus, we could first check whether

the observed empirical claim sizes can be described by an exponential distribution. The

comparison of the empirical and theoretical distribution functions and the corresponding

QQ-plot in Figure 19 indicate that it would not be an acceptable approximation for this

data set.

Furthermore, we have seen in Section 5.1 that for previously studied risk models with

Hawkes arrivals and i.i.d. claim sizes, theoretical results are not easily applicable to em-
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Interval length (days) Theoretical Variance Empirical Variance

7 6.9208 6.9995

14 18.2587 19.0570

21 33.7908 36.1109

28 53.3054 58.3725

35 76.6013 81.7779

42 103.4878 112.5545

49 133.7836 152.2974

56 167.3165 191.2224

63 203.9232 207.0156

70 243.4485 265.7647

Table 6.3: Comparison of the theoretical variance of the number of arrivals of a Hawkes process with

parameters λ̂ = 0.1467, α̂ = 0.026, β̂ = 0.0334 according to (3.27) to the corresponding empirical variance.

pirical data and ruin probabilities can only be obtained numerically. Thus, we would like

to make use of the theoretical results for RMGCHP which assumes claim sizes to follow

a finite number of fixed jump sizes governed by the evolution of a Markov chain. For the

original use of this type of model in a limit order book context, it is natural to assume

dependent jump sizes (see Swishchuk 2017a). However, as we work with an aggregated

portfolio of insurance claims from different payment streams, it would not be reasonable

to assume a dependence of directly subsequent claim sizes in the overall portfolio here.

Thus, we reinterpret the Markov Chain (Xi) and the function a(x) from Definition 5.4 in

order for the modelled claim sizes to approximate an i.i.d. sequence following the empirical

distribution of observed claim sizes. The approximation can be made arbitrarily well by

increasing the number N of states of the Markov chain. Let Ĝ be the empirical distribution

function of the claim sizes and let B be the maximum observed claim size, thus Ĝ(B) = 1.

We set equidistant boundaries (b1, b2, · · · , bN = B) and define π∗ = (π∗1, · · · , π∗N) as

π∗1 = Ĝ(b1)

π∗2 = Ĝ(b2)− π∗1
· · · (6.2)

π∗N = Ĝ(bN)−
N−1∑
i=1

π∗i = 1−
N−1∑
i=1

π∗i ,

such that by definition
N∑
i=1

π∗i = 1.



CHAPTER 6. IMPLEMENTATION WITH EMPIRICAL DATA 84

Figure 18: Empirical autocorrelation function, as in (6.1), of the number of claim payments on in-

tervals of length τ as a function of the time lag δ between the intervals compared to the corre-

sponding theoretical value from Proposition 3.15 for an exponential Hawkes process with parameters

λ̂ = 0.1467, α̂ = 0.026, β̂ = 0.0334.

Let (Xi) be a Markov Chain on S = {1, · · · , N} with transition matrix

P =

π
∗
1 π∗2 · · · π∗N

· · · · · · · · · · · ·
π∗1 π∗2 · · · π∗N

 .

We know by Theorem 2.17 that as (Xi) is an irreducible Markov Chain on a finite state

space, it has a unique stationary distribution. Indeed, we can easily verify that the sta-

tionary distribution is again given by π∗:

π∗P = (π∗1, · · · , π∗N)

π
∗
1 · · · π∗N

· · · · · · · · ·
π∗1 · · · π∗N

 = (π∗1

N∑
i=1

π∗i , · · · , π∗N
N∑
i=1

π∗i )

= (π∗1, · · · , π∗N) = π∗. (6.3)

Furthermore, as the columns of P are constant, for each state k ∈ S it holds

P(Xi+1 = k | Xi = j) = P(Xi+1 = k | Xi = l) = π∗ktext∀j, l ∈ S, i ∈ N (6.4)

and by the Markov property and the law of total probability

P(Xi+1 = k) =
∑
j∈S

P(Xi+1 = k | Xi = j)P(Xi = j)
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Figure 19: The plot of the empirical distribution function against an exponential Exp(γ) distribution

with matching mean and the corresponding QQ-plot indicate that empirical claim sizes should not be

assumed to be i.i.d. exponentially distributed in this case.

= π∗k
∑
j∈S

P(Xi = j) = π∗ktext∀k ∈ S, i ∈ N (6.5)

Thus, the probability of realizing one state is independent of the previous state and (Xi)

describes an i.i.d. sequence.

Now, let Y be a r.v. with c.d.f. Ĝ and set

a(i) = E[Y |bi−1 < Y ≤ bi] =: E[Y |Ai] =
E[Y 1Ai ]

P(Ai)
=

E[Y 1Ai ]

π∗i
. (6.6)

Then

a∗ =
N∑
i=1

π∗i a(i) =
N∑
i=1

E[Y 1Ai ] = E[Y ]

and a(Xi) describes an i.i.d. sequence that approximates the distribution Ĝ arbitrarily

close as the number of states N → ∞. The idea is illustrated graphically in Figure 20

and for the empirical example, Table 6.4 gives the values of the equidistant boundaries

b = (b1, ..., bN = B), state values ai := a(i) and the distribution π∗i along with the value

of a∗ (which coincides with E[Y1]) for the case of a 5-state Markov chain. To replicate

empirical claim sizes, usually significantly more states would be used, for Figure 20 and

Table 6.4 the size N = 5 is chosen for the sake of presentation. Note that the number of

states should be chosen such that there is no segment without observations, as this would

not lead to an irreducible Markov chain.

Parameter Value

(b1, ..., b5 = B) (2014.2, 4028.4, 6042.6, 8056.8, 10071)

(π∗1 , ..., π
∗
5) (0.9017, 0.0720, 0.0206, 0.0032, 0.0026)

(a1, ..., a5) (499.5056, 2821.8888, 4743.6872, 7049.5920, 9199.8750)

a∗ = E[X1] 797.3672

Table 6.4: Boundaries b = (b1, ...bN ), stationary distribution π∗, state values a(i) and expected value a∗

under the stationary distribution for a 5-state Markov Chain and empirical claim sizes.
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Figure 20: This figure illustrates the approach: Equidistant boundaries (b1, ..., bN ) are set, the corre-

sponding increments of the empirical distribution function chosen as stationary distribution π∗ and a

Markov chain with corresponding transition probabilities is constructed. The state values a(i) are set as

the conditional expectations in each segment.

To corroborate that the generated claim sizes indeed describe claims with distribution

function Ĝ, we compare in Figure 21 the distribution function of the empirical claims

with its counterpart from claims generated by the Markov chain approach with 50 states

and draw the corresponding QQ-plot.

Figure 21: The distribution function of claim sizes generated by the Markov chain approach for a 50-

state Markov chain against the empirical distribution function of claim sizes indicates that the approach

replicates claim sizes as assumed. This is corroborated by the corresponding QQ-plot.

Overall, we conclude that empirical claim sizes are replicated reasonably well within the

framework of RMGCHP.

6.2.3 Risk process

In order to simulate the complete risk model from Definition 5.4, we need to estimate

values for the initial capital u and the premium rate c. As this information is not inferable

from the empirical data set, we calculate the premium rate using the expected value
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principle and Corollary 5.6 with a safety loading of θ = 0.2 and obtain

c = (1 + θ)a∗
λ

1− α/β
= 633.5552. (6.7)

This seems a reasonable number considering the number of policies in the portfolio and

the mean yearly premium for such contracts. It has to be kept in mind that in practice, the

majority of policyholders are likely to never incur a claim, providing additional premium

income for the company which is not considered in our data set. We set the initial capital

as u = 8000 which seems reasonable given a mean claim size of around 800 and an

expected number of 0.6483 claims per day. In fact, u is best thought of as a variable

indicating how much initial capital has to be provided in order for the ruin probability

over a certain period to be below a given bound. We generate L = 1000 simulations

of a risk process with u and c given above, the arrival process being an exponential

Hawkes process with parameters λ̂ = 0.1467, α̂ = 0.026, β̂ = 0.0334 and claim sizes being

generated by a Markov chain with 50 states according to the procedure described above.

Figure 22 compares the underlying empirical risk process with the first 50 simulations.

Figure 22: Plotting the empirical risk process with parameters u = 8000 and c = 633.5552 against 50

simulated paths of RMGCHP with arrivals following an exponential Hawkes process with λ̂ = 0.1467, α̂ =

0.026, β̂ = 0.0334 and claims following a Markov chain with 50 states as described in Section 6.2.2. Note

that in the first part of the graph, the empirical process seems to have an extraordinarily high upward

drift and is on the ”upper bound” of the simulations. This is reasonable as for the first period, our data

set is naturally missing payments from claims which were reported before the start of the observation

period and continue to induce payments within it. This dynamic disappears as we pass on further in time,

the high drift vanishes and the empirical process is well covered by the simulations.

In order to further assess whether our simulated paths accurately depict the empirical

one, we compare the fluctuations over time and the final value at time T = 2400 using

the metrics

Ŝ(L) =
1

L

L∑
i=1

max(R̂i(t))−min(R̂i(t))

max(R(t))−min(R(t))
(6.8)
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Parameter Value

Ŝ 1.2032

F̂ 1.1151

R(T ) (Empirical) 287,829

E[R̂(T )] (Simulation) 320,970√
Var[R̂(T )] (Simulation) 144,571

Table 6.5: We assess how well simulations using a Hawkes arrival process and claim sizes generated by

the Markov Chain approach replicate the empirical risk process using fluctuations and final capital values

as metrics.

F̂ (L) =
1

L

L∑
i=1

R̂i(T )

R(T )
(6.9)

where L denotes the number of simulated paths, R̂i(t) refer to the simulated risk processes

and R(t) to the benchmark (empirical process). Note that the metric Ŝ was suggested by

Zhang 2016 in the context of comparing the fit of Hawkes models with exponential and

power law kernels to empirical data. Table 6.5 gives an overview of the results.

Overall, we conclude that RMGCHP is able to describe the empirical data set reasonably

well.

6.2.4 Branching ratio

As mentioned before, a convenient feature of using a Hawkes process is its interpretation

as an immigration-birth-process. Given the estimated parameters of our model and the

empirical data set, we can compare the theoretical branching ratio α
β

(the ratio of endoge-

nously triggered events, i.e. secondary payments) with its empirical counterpart. Recall

that for an exponential Hawkes process the branching ratio is equal to n =
∞∫
0

µ(s)ds = α
β
.

Given the estimated parameters for our empirical data, we obtain an estimated branching

ratio of α̂

β̂
= 0.026

0.0334
= 0.7784, indicating that around 78% of incoming claims are actually

generated endogenously. The ”empirical branching ratio” (which can be found simply by

looking at the original data set including client and claim policy number and counting

secondary payments) is found to be 0.5119, indicating that the real branching ratio was

overestimated by the Hawkes process. Note however that due to the ”capped” time hori-

zon some claims in the dataset are still open, which means that 0.5119 is a lower bound

for the branching ratio we would obtain by observing the process until all claims are

fully settled. The reason for the overestimation might be the following: An exponential

Hawkes process assumes a strictly decreasing excitation function, thus the probability
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of a subsequent payment being triggered strictly decreases over time. This assumption

is questionable for an empirical data set as delays in payments naturally occur due to

processing times, operational delays etc. making the autocorrelation decay slower than it

would be without these ”real-world side effects”. In order to match the interarrival times

and the slower autocorrelation decay, the Hawkes process estimate might tend to favor

estimates with smaller values of β̂ − α̂, distorting the ratio α̂

β̂
to become larger than the

actual branching ratio of the original process.

In fact, some authors suggest that for empirical data (in finance), the exponential kernel

is not the most favourable choice and i.e. a (long-range) power law kernel should be used

(e.g. Zhang 2016). Another promising approach would be to use a model-independent

branching ratio approximation as developed in Hardiman and Bouchaud 2014. For the

moment, we conclude that the exponential Hawkes process is able to capture the develop-

ment of arrival times over time quite accurately but tends to attribute too many events

to endogenous clustering potentially due to real-world (delay) effects.

6.3 Diffusion approximations and ruin probabilities

After reassuring that the RMGCHP is suitable for the empirical data set, we proceed to

check the accuracy of the diffusion approximations introduced in Section 5.2.2. We start

with Theorem 5.7, more precisely (5.13), and proceed as suggested in Swishchuk et al.

2017: We compare the standard deviation on the right-hand side of (5.13) multiplied by
√
n to its empirical counterpart on the left-hand side, that is the standard deviation of

R(nt)− (u+ cnt− a∗N(nt)) =

N(nt)∑
k=1

(a(Xk)− a∗). (6.10)

To this end, we choose t as the original time scale of one day and let n run from 1 day to

30 days by steps of 1 day. At each step int, we compute the value of the process

(R(int)− (cint− a∗N(int)))− (R((i− 1)nt)− (c(i− 1)nt− a∗N((i− 1)nt))),

thus considering intervals of length e.g. one day in the first step. We compare the standard

deviation of these values to the standard deviation theoretically obtained on the right-

hand side of (5.13) multiplied by
√
n, that is σ̂

√
nt. Note that this approximation should

be naturally only accurate for large n, however due to our relatively short time frame of

T = 2400 days, for large n (6.10) is only based on few observations. To ensure statistical

significance, we thus choose the sequence of n such that each observation for the empirical

standard deviation value is based on at least 80 data points. The results are summarized

in Figure 23 and we can see that for small n they look quite accurate.
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(a) Original Data. (b)
√
·-transformed data to stabilize variance.

Figure 23: Error estimation of jump diffusion approximation by comparison of standard deviations of

empirical process in (6.10) and corresponding theoretical values from Theorem 5.7. Theoretical values are

calculated for a Markov chain with N = (2, 5, 10, 20, 50) states, where the standard deviation naturally

approaches the empirical value as N increases.

We proceed analogously for Theorem 5.8, (5.20), with µ̂ := α
β

for the exponential Hawkes

process. This time we compare the standard deviation of

R(nt)− (u+ cnt− a∗ λ

1− α/β
nt) =

(N(nt)∑
k=1

a(Xk)− a∗
λ

1− α/β
nt

)
(6.11)

with its counterpart on the right-hand side in (5.20), that is
√
ntσ̄. The results can be seen

on the left-hand side of Figure 24. In this case the approximation is not very accurate. This

most likely originates in the approximation via the CLT which always entails a hardly

measurable approximation error depending on the model parameters. As we have seen in

Section 5.2.2, the variance of the pure diffusion and the jump diffusion approximation are

given by

Var[Rp(t)] = (σ̄)2t

and

Var[Rj(t)] = t

(
(σ∗)2 λ

1− α/β
+ (a∗)2 λ

(1− α/β)3

)
− (∗∗)

= (σ̄)2t− (∗∗)

respectively, where

(∗∗) = −(a∗)2 λ

1− α/β

(
1−

(
1

1− α/β

)2)(
1− e−t(β−α)

β − α

)
> 0.

We again note that the pure diffusion approximation naturally does not capture the (neg-

ative) non-linear influence (∗∗) on the variance. Indeed, if we plot the standard deviation

of (6.11) against
√
σ̄2n− (∗∗)(nt) (the theoretical jump-diffusion standard deviation) on

the right-hand side of Figure 24, we see a very close match. However, the absolute value
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(a) Original Data.

text

(b) Original Data, with correction term (∗∗)
from (5.19).

Figure 24: (a) Error estimation of pure diffusion approximation by comparison of standard deviations of

empirical process in (6.11) and corresponding theoretical values from Theorem 5.8. Theoretical values are

calculated for a Markov chain with N = (2, 5, 10, 20, 50) states, where the standard deviation increases

as N increases. We observe that the theoretical values largely overestimate the empirical ones for this

data set. (b) Plotting the theoretical standard deviation values from Theorem 5.8, corrected by (∗∗) from

(5.19), shows a very close match of theoretical and empirical values.

of the term (∗∗) decreases as the difference β − α increases, thus for suitable parameters

the additional error of the pure diffusion approximation becomes almost negligible.

In Section 5.2.2, we have seen how the pure diffusion approximation can be used to

estimate finite and infinite time ruin probabilities and would finally like to check the

accuracy of those results empirically. In Figure 25 we compute and plot the finite-horizon

ruin probability for increasing t from 1 until 350 days as well as the infinite-horizon ruin

probability and compare them with values obtained from L = 1000 simulations of the

corresponding RMGCHP and of the pure diffusion approximation process. For the original

data set, clearly the calculated ruin probabilities overestimate the simulated ones, an effect

that originates from the large estimation error of the pure diffusion approximation. As

we have seen above, the diffusion coefficient tends to overestimate the standard deviation

of the risk process and therefore an exaggerated ruin probability is assigned. Assuming

the same claim size parameters and a different set of parameters for the Hawkes arrival

process such that β − α is no longer very close to 0 leads to a significant increase in the

accuracy of the ruin probability estimation as displayed in Figure 25.

We conclude that the pure diffusion approximation of RMGCHP is generally suitable

for calculating ruin probabilities for a risk model with Hawkes claims, however, for any

application it has to be kept in mind that the approximation error can become very large

depending on the model parameters. In any case, having such a closed-form formula for the

ruin probability can give helpful indications in practice, where an insurer often faces the

challenge of estimating how much capital has to be reserved at one point in time in order

to limit the probability of the event that the value of (a part of) his insurance portfolio
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(a) (λ, α, β) = (0.1467, 0.026, 0.0334) (b) (λ, α, β) = (1, 2, 5)

Figure 25: (a) We calculate finite-time ruin probabilities for intervals [0, t), where t ranges from 1 to

350 days by steps of 1, and the infinite-time ruin probability according to Theorem 5.9. We compare

their values to finite-time ruin probabilities for t from 1 to 350 days by steps of 10 obtained from

1000 simulations of RMGCHP and the pure diffusion approximation process. For this case, there is

a large discrepancy between RMGCHP and the pure diffusion approximation, as seen in Figure 24,

due to the small difference in β and α. (b) Changing the parameters of the Hawkes arrival process to

(λ, α, β) = (1, 2, 5) and leaving everything else equal (apart from the premium rate, which has to be

calculated anew as c = 1594.734) leads to a significant increase in the accuracy of the ruin probability

estimation. This is due to the fact that with increasing β − α, the influence of the inaccuracy (∗∗)
diminishes.

falls below a certain lower bound during a future time period. Of course, the relevant

threshold here would usually not be 0 (indicating a positive probability of insolvency),

but at least a certain amount acting as an emergency risk buffer according to regulatory

requirements. For some claim classes it is thus essential to understand how dependencies

between claim arrivals can cause temporal clustering and how this feature affects the

risk of ”ruin”. The ruin probability estimates from our model with self-exciting Hawkes

processes might serve as a helpful tool here. In the next chapter, we will look at another

application of the pure diffusion approximation of RMGCHP.



Chapter 7

Optimal investment

7.1 Background and market model

The goal of this chapter is to apply the results for RMGCHP in order to investigate how

replacing the classical Poisson process for claim arrivals by a self-exciting Hawkes process

influences the risk of the insurance company and their optimal investment decisions. In

general, portfolio selection refers to the challenge of allocating the available wealth of an

individual or company (from now on: an investor) into different assets with the goal of

optimizing some criterion. This criterion depends on the investor’s preferences and re-

straints, but typically involves maximizing factors like the expected return or expected

utility of final wealth or minimizing financial risk that occurs as the future developments

of most assets are uncertain. Modern portfolio theory is based on the work of Markowitz

1952 who was the first to highlight the importance of diversification for efficient port-

folio selection. Markowitz uses the expected return (assuming the investor c.p. always

deems more return better than less) as well as the variance of returns (which is assumed

as non-desirable and should be limited) as the criteria for portfolio selection. Therefore,

for each given expected return value, the portfolio with the smallest variance, i.e. the

efficient portfolio is searched (or vice versa, for each given risk value, the portfolio with

the highest expected return). Plotting all efficient combinations of risk and return in the

mean-variance plane gives the mean-variance efficient (MVE) frontier. Ever since the in-

troduction of this concept and the work of Markowitz 1956 who found the expression of

the MVE frontier for a single-period setting, a substantial amount of research has been

devoted to generalisations and extensions. Examples would be the introduction of con-

sumption (Merton 1975) or labor income (Koo 1998) into the model. Another important

step was to generalize beyond a one-period setting. In multi-period portfolio selection, it

has been very common to consider maximizing expected utility functions of the terminal

93
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wealth, i.e. E[U(X(T ))], where U is a utility function describing the investor’s prefer-

ences, e.g. of a power, log or exponential form. This is due to the fact that dynamic

programming principles are accessible for these formulations due to the tower property,

implying E[E[U(X(T ))|Fm]Fn] = E[U(X(T ))|Fn], where {Fk} is the underlying filtra-

tion and n ≤ m. However, an expected utility setting often makes the tradeoff between

risk and expected return more implicit and thus the investment decision less intuitive.

To use an explicit mean-variance formulation, a term of the form U(E[X(T )]), where U

is a nonlinear (specifically quadratic) utility function, is involved. This is an important

point as it renders the tower property inaccessible. Due to this ”inconvenience” of the

mean–variance objective function for dynamic programming, it has first been challenging

to generalize Markowitz’ result to a multi-period or continuous-time setting. Analytical

solutions for the mean-variance setting were finally derived by respectively Li and Ng

2000 and Zhou and Li 2000, who use the framework of stochastic LQ control. Li, Chan,

and Ng 1998 generalized the setting to consider safety-first portfolio selection while Zhu,

Li, and Wang 2004 and Bielecki et al. 2005 considered bankruptcy control or bankruptcy

prohibition for the mean–variance portfolio selection in multi-period or continuous-time

settings, respectively. When working in the insurance setting, it is important to keep in

mind that any portfolio management decisions should be subject to risk management

considerations, in particular keeping in mind potential future cash outflows from the in-

surance business that have to be covered. The fields of asset liability management (ALM)

and liability-driven investment strategies (LDI) deal with this challenge and provide a

holistic framework that takes both sides of a company’s balance sheet into account when

determining investment decisions. For an overview, the book by Zenios and Ziemba 2007

is recommended. It is clear that if we want to study optimal investment in the insurance

context, considering a liability should be included. At the same time, the mean-variance

approach has the advantage of being intuitively understandable and explicitly displaying

the trade-off between risk and reward. Furthermore, Bäuerle 2005 highlights the rele-

vance of the mean-variance criterion in insurance by using it to find the optimal dynamic

proportional reinsurance strategy. Therefore, we turn our attention to research on mean-

variance portfolio selection with liability, which was first investigated in a single-period

setting by Sharpe and Tint 1990. Based on the work of Li and Ng 2000, Leippold, Trojani,

and Vanini 2004 derived explicitly the optimal strategy and the MVE frontier for a multi-

period asset–liability management problem. Chiu and Li 2006 worked on the analogous

problem in a continuous-time setting. Xie, Li, and Wang 2008 generalize their results by

considering an incomplete market where the evolution of assets and liability are possibly

correlated. They use an embedding technique similar to the one in Zhou and Li 2000, but

based on the more general stochastic LQ control technique from Yong and Zhou 1999. As

their result is the more general one, we will work with the setting of Xie, Li, and Wang
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2008, where in particular the liability is supposed to follow a Brownian motion with drift.

Thus, the idea is to use the pure diffusion approximation of RMGCHP to represent the

(negative) liability and then employ the results from Xie, Li, and Wang 2008 to show

how the MVE frontier, optimal strategy and attainable expected return change under a

Hawkes process given a fixed risk constraint (i.e. a boundary on the variance of terminal

wealth). This could be viewed as an approach to quantifying the impact of clustering in

the claims arrival process on the whole (insurance and investment management) business

of the company.

We start by formalizing the market model and the optimization problem at hand as in

Xie, Li, and Wang 2008. Let (Ω,F ,P,F) be a complete probability space equipped with

the filtration F = (F(t))t∈[0,T ] generated by an (n + 1)-dimensional Brownian motion

{(W0(t),W1(t), · · · ,Wn(t))′ : t ∈ [0, T ]} for n ∈ N, where 0 < T < ∞ is a fixed time

horizon, F0 = {∅,Ω}, FT = F and the superscript ”′” indicates the transpose of a vector

or matrix. Denote by C([0, T ];Rn×k) the class of continuous bounded deterministic func-

tions on [0, T ] with values in Rn×k. Consider a financial market with (m+ 1) assets being

traded continuously, where m ≤ n and the assets are labelled i = 0, 1, ...,m, where i = 0

refers to the riskfree asset. The price of the risk-free asset S0(t) evolves according to the

ODE

dS0(t) = r(t)S0(t)dt, textS0(0) = 1, (7.1)

where r(t) ∈ C([0, T ];R+) denotes the risk-free interest rate. The price processes

S1(t), · · · , Sm(t) of the risky assets evolve according to the SDEs

dSi(t) = µi(t)Si(t)dt+ σi(t)Si(t)dW (t), textSi(0) = si ∈ R

i = 1, · · · ,m
(7.2)

where W (t) := (W1(t), ...,Wn(t))′ and σi(t) := (σi1(t), ..., σin(t)) ∈ C([0, T ];R1×n) denotes

the volatility of the ith risky asset, thus define the matrix

σ(t) := (σ1(t), · · · , σm(t))′ ∈ C([0, T ];Rm×n) (7.3)

and let

µ(t) := (µ1(t), · · · , µm(t))′ ∈ C([0, T ];Rm×1) (7.4)

denote the rate of return of the risky assets. As described before, the company also has

to take into a account a stochastic liability which is modelled as a Brownian motion with

drift. Denote the company’s cumulative liability at time t by L(t) and assume L(t) evolves

according to the SDE

dL(t) = g(t)dt+ υ(t)dB(t), textL(0) = l, (7.5)
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where B(t) is a standard Brownian motion.

Denote by ρj(t) the correlation coefficient between B(t) and Wj(t) for j = 1, · · · , n and

let

ρ(t) := (ρ1(t), · · · , ρn(t))′ ∈ C([0, T ];Rn×1) (7.6)

be the correlation coefficient vector. Thus B(t) can be expressed as

B(t) = ρ(t)′W (t) +
√

1− ρ(t)′ρ(t)W0(t) (7.7)

where B(t),W0(t),W1(t), · · · ,Wn(t) are standard Brownian motions and ρ(t)′ρ(t) ≤ 1 for

all t ∈ [0, T ]. Combining (7.5) and (7.7), L(t) evolves according to

dL(t) = g(t)dt+ υ(t)ρ(t)′dW (t) + υ(t)
√

1− ρ(t)′ρ(t)dW0(t), textL0 = l (7.8)

Thus, the evolution of the liability is generally assumed to be dependent of the risky

assets’ prices and in particular for ρ(t)′ρ(t) < 1 the risk arising from the liability can

never be completely eliminated by trading the assets. For ρ(t)′ρ(t) = 1 the assets and the

liability are driven by the same source of randomness but as long as n > m, the market

is incomplete. Only for the case n = m and ρ(t)′ρ(t) = 1, the risk from the liability can

be completely hedged by trading the m available assets. Assume that for i = 1, ...,m and

j = 1, ..., n, r(t), µi(t), σ(t)ij, g(t), υ(t), ρ(t)j are deterministic functions of t, µi(t) > r(t),

and there exists ε > 0 such that σ(t)σ(t)′ ≥ εIm for any t ∈ [0, T ], where Im is the m×m
identity matrix.

Definition 7.1 (Trading strategy). Denote by ηi(t) the number of units of asset i held

by the company at time t. Then ϕi(t) := ηi(t)Si(t) denotes the amount of money invested

in asset i at time t. Let ϕ(t) := (ϕ1(t), · · · , ϕm(t))′, then we call the process ϕ := {ϕ(t) :

t ∈ [0, T ]} a trading strategy.

Remark. One could alternatively define η(t) := (η1(t), · · · , ηm(t))′ as a trading strategy,

but the above formulation is the commonly used one within the framework of stochastic

LQ problems as it allows to deduce the state equation (wealth) in a convenient form.

We assume that the company can dynamically adjust its investment portfolio during the

time period [0, T ] without incurring transaction fees or short-selling restrictions. Further-

more, we only consider self-financing trading strategies, which means that no money can

be taken out (no consumption) or additionally added (no other income) to the investment

portfolio during the observed period. This implies the following:

Definition 7.2 ((Net) Wealth process). Let X(t) be the net wealth of the company at

time t, assume the company at time t = 0 is equipped with an initial endowment of w > 0

and an initial liability l, such that its net initial wealth is x = w− l > 0. Then X(t) fulfils

dX(t) =
m∑
i=0

ηi(t)dSi(t)− dL(t), textX0 = x > 0. (7.9)
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Inserting (7.1),(7.2) and (7.8), (7.9) is equivalent to

dX(t) =
m∑
i=0

ηi(t)dSi(t)− dL(t)

= η0(t)r(t)S0(t)dt+
m∑
i=1

ηi(t)Si(t)(µi(t)dt+ σi(t)dW (t))− g(t)dt− υ(t)ρ(t)′dW (t)

− υ(t)
√

1− ρ(t)′ρ(t)dW0(t)

= ϕ0(t)r(t)dt+
m∑
i=1

ϕi(t)(µi(t)dt+ σi(t)dW (t))− g(t)dt− υ(t)ρ(t)′dW (t)

− υ(t)
√

1− ρ(t)′ρ(t)dW0(t) +
m∑
i=1

ϕi(t)r(t)dt−
m∑
i=1

ϕi(t)r(t)dt

= X(t)r(t)dt+ ϕ(t)(µ(t)− r(t)1)dt− g(t)dt+ ϕ(t)′σ(t)dW (t)− υ(t)ρ(t)′dW (t)

− υ(t)
√

1− ρ(t)′ρ(t)dW0(t)

= (r(t)X(t) + b(t)ϕ(t)− g(t))dt+ (ϕ(t)′σ(t)− (υ(t)ρ(t))′)dW (t)

− υ(t)
√

1− ρ(t)′ρ(t)dW0(t),

where b(t) = µ(t)− r(t)1 and 1 denotes the unit vector of length m.

In summary, (7.9) becomes

dX(t) = (r(t)X(t) + (µ(t)− r(t)1)′ϕ(t)− g(t))dt+ (ϕ(t)′σ(t)− (υ(t)ρ(t))′)dW (t)

− υ(t)
√

1− ρ(t)′ρ(t)dW0(t)

X(0) = x.

(7.10)

Remark. If ϕ(t) is a self-financing trading strategy s.t. the wealth process is positive

P-a.s. for all t ∈ [0, T ], we can define a self-financing relative portfolio process as π(t) :=

(π1(t), · · · , πm(t))′ where

πi(t) =
ϕi(t)

X(t)
,

and π0(t) := 1 − π(t)′1. Thus π(t) describes the fraction of the total wealth invested in

each asset at time t. This can sometimes be more convenient as the weights add up to 1

and thus strategies are more easily comparable across assets with different price processes.

In the classical market model (complete market without liability), (7.10) can be expressed

in terms of π, which turns out not to be convenient in the present market model.

We now limit the set of all trading strategies to so-called admissible ones.

Definition 7.3 (Set of admissible trading strategies). The set of admissible trading strate-

gies for initial wealth x is defined as

A(x) :=
{
ϕ : ϕ(t) ∈ L2

F([0, T ];Rm), (X(t), ϕ(t)) satisfies (7.10)} (7.11)
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where L2
F([0, T ];Rm) denotes all Rm-valued, progressively measurable and square inte-

grable random variables on [0, T ] under P with

(
E
[ T∫

0

|ε(t)|2dt
]) 1

2

<∞, text∀ε(t) ∈ L2
F([0, T ];Rm).

We are now ready to introduce the optimization problem whose solution describes the

mean-variance efficient frontier in our market model. A strategy ϕ ∈ A(x) is considered

optimal if it solves the optimization problem

P (χ)te min
ϕ∈A(x)

t(−E[X(T )] + χVar[X(T )]) (7.12)

which is equivalent to the classical mean-variance model where χ ∈ [0,∞) expresses the

weight (or importance) assigned to the objective Var[X(T )] by the company. Define

ϕP (χ) := {ϕ : ϕ is an optimal strategy of P (χ)}.

Unfortunately, P (χ) is not a standard stochastic optimal control problem and is hard

to solve directly due to the term E[X(T )]2 in its cost function. We therefore review the

results of Zhou and Li 2000 who show how to infer from the original problem (7.12) an

auxiliary problem which is a standard stochastic optimal linear-quadratic problem. The

optimal solution of (7.12) can then be located using the solution of the auxiliary problem.

This allows us to obtain the mean-variance efficient frontier for the original problem in

closed form as shown in Xie, Li, and Wang 2008.

7.2 Optimal strategy and mean-variance efficient

frontier

In this section, we will review the solution of the problem P (χ) in order to obtain the

mean-variance efficient frontier in closed form for the market model in Section 7.1. This

relies on the work of Zhou and Li 2000 and Xie, Li, and Wang 2008. To give an overview

of general stochastic optimal control theory (see Yong and Zhou 1999) would be outside

the scope of this thesis, but the basic terms that are needed here are reviewed in Chapter

2. Xie, Li, and Wang 2008 introduce the auxiliary problem

A(χ, ω)te min
ϕ∈A(x)

tE[χX2(T )− ωX(T )] (7.13)

and define

ϕA(χ,ω) := {ϕ : ϕ is an optimal strategy of A(χ, ω)},
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where ω ∈ R is given beforehand. The following theorem shows the relationship between

problems P (χ) and A(χ, ω).

Theorem 7.4 (Zhou and Li 2000). For any χ > 0, it holds that

ϕP (χ) ⊆
⋃
ω∈R

ϕA(χ,ω).

Moreover, if ϕ∗ ∈ ϕP (χ), then ϕ∗ ∈ ϕA(χ,ω) with ω∗ = 1 + 2χE[X∗(T )], where X∗(t) is the

wealth process associated with the strategy ϕ∗.

Proof. See Zhou and Li 2000.

The theorem implies that any optimal solution of P (χ) (as long as it exists) can be found

by solving problem A(χ, ω). The auxiliary problem A(χ, ω) is now a standard stochastic

optimal control problem parameterized by (χ, ω) which has an objective function of the

form E[U(X(T ))] as well as a LQ structure. To solve the auxiliary problem, first define

γ :=
ω

2χ
and Y (t) := X(t)− γ.

Thus, (7.10) becomes

dY (t) = (r(t)Y (t) + (µ(t)− r(t)1)′ϕ(t) + r(t)γ − g(t))dt+ (ϕ(t)′σ(t)− (υ(t)ρ(t))′)dW (t)

− υ(t)
√

1− ρ(t)′ρ(t)dW0(t)

Y (0) = y := x− γ, (7.14)

and the objective of (7.13) becomes

E[χ(Y (T ) + γ)2 − ω(Y (T ) + γ)] = E
[
χY 2(T ) + 2χY (T )

ω

2χ
+ χ

ω2

4χ2
− ωY (T )− 2 · ω2

2 · 2χ

]
= E

[
χY 2(T )− ω2

4χ

]
.

Thus, the auxiliary problem is equivalent to

A(γ)te min
ϕ∈Λ(y)

tE
[
χ

2
Y 2(T )

]
=: min

ϕ∈Λ(y)
tJ(ϕ, γ), (7.15)

where the set of admissible strategies is given as

Λ(y) := {ϕ : ϕ(t) ∈ L2
F
(
[0, T ];Rm

)
, (Y (t), ϕ(t)) fulfils (7.14)}.

The optimal cost functional of (7.15) is defined as

J∗ := J(ϕ∗, γ) = inf
ϕ∈Λ(y)

tJ(ϕ, γ),
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where ϕ∗ is the optimal solution of A(γ).

So now the first step is to solve A(γ). To this end, Xie, Li, and Wang 2008 combine the

results from Zhou and Li 2000 and general stochastic LQ optimal control theory in Yong

and Zhou 1999 to obtain the following result.

Theorem 7.5 (Optimal feedback control (Xie, Li, and Wang 2008)). Consider the Riccati

differential equation

d%(t)

dt
+ (2r(t)− ς(t))%(t) = 0,

%(T ) = χ,

%(t)σ(t)σ(t)′ > 0 for a.e. t ∈ [0, T ],

(7.16)

along with the adjoint ODE

dφ(t)

dt
+ (r(t)− ς(t))φ(t) + (r(t)γ + κ(t))%(t) = 0,

φ(T ) = 0,

(7.17)

where

τ(t) := (σ(t)σ(t)′)−1(µ(t)− r(t)1)′ ∈ C([0, T ];Rm×1), (7.18)

ζ(t) := (σ(t)σ(t)′)−1σ(t)(−υ(t)ρ(t)) ∈ C([0, T ];Rm×1), (7.19)

ς(t) := (µ(t)− r(t)1)τ(t) ∈ C([0, T ];R+), (7.20)

κ(t) := −(µ(t)− r(t)1)ζ(t)− g(t) ∈ C([0, T ];R). (7.21)

If (7.16) and (7.17) have solutions %(t) ∈ C([0, T ];R+) and φ(t) ∈ C([0, T ];R) respectively,

then the stochastic LQ problem A(γ) has an optimal feedback control

ϕ∗(Y (t)) = −τ(t)(Y (t) + ϑ(t))− ζ(t), textt ∈ [0, T ]. (7.22)

The corresponding optimal cost functional is given by

J∗ =
1

2

T∫
0

[−(τ(t)ϑ(t) + ζ(t))′(σ(t)σ(t)′)(τ(t)ϑ(t) + ζ(t))%(t)

+ 2(r(t)γ − g(t))φ(t) + υ2(t)%(t)]dt+
1

2
%(0)y2 + φ(0)y, (7.23)

where ϑ(t) := φ(t)
%(t)

.

Remark. Note that problem A(γ) is a special case of (SLQ) in Definition 2.31 with

coefficients

A(t) = r(t), B(t) = µ(t)− r(t)1, b(t) = γr(t)− g(t)
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Cj(t) = 0, Dj(t) = σj(t), σj(t) = −ν(t)ρj(t), ∀j = 1, · · · , n

Q(t), R(t), S(t) ≡ 0, G = χ, (s, y) = (0, x− γ).

Inserting these coefficients into (2.9) and (2.10) yields (7.16) and (7.17) respectively.

Analogously, (2.11) becomes (7.22) and (2.12) simplifies to (7.23). The mean-variance

problem as a special case of a stochastic LQ problem is further studied in Yong and Zhou

1999 (Chapter 6, Section 8). We will now prove the theorem.

Proof. The first step is to show that ϕ∗(t) is an admissible solution. Inserting (7.22) into

(7.14) yields

dY (t) = (r(t)Y (t) + (µ(t)− r(t)1)′(−τ(t)(Y (t) + ϑ(t))− ζ(t)) + r(t)γ − g(t))dt

+ ((−τ(t)(Y (t) + ϑ(t))− ζ(t))′σ(t)− (υ(t)ρ(t))′)dW (t)− υ(t)
√

1− ρ(t)′ρ(t)dW0(t)

= ((r(t)− (µ(t)− r(t)1)′τ(t))Y (t)− (µ(t)− r(t)1)′τ(t)ϑ(t)− (µ(t)− r(t)1)′ζ(t)

+ r(t)γ − g(t))dt+ (−τ(t)′σ(t)Y (t)− τ(t)′σ(t)ϑ(t)− ζ(t)′σ(t)− (υ(t)ρ(t))′)dW (t)

− υ(t)
√

1− ρ(t)′ρ(t)dW0(t)

= [(r(t)− ς(t))Y (t)− ς(t)ϑ(t) + κ(t) + r(t)γ]dt+ (−τ(t)′σ(t)Y (t)− τ(t)′σ(t)ϑ(t)

− ζ(t)′σ(t)− (υ(t)ρ(t))′)dW (t)− υ(t)
√

1− ρ(t)′ρ(t)dW0(t)

Y (0) = y.

(7.24)

As %(t) ∈ C([0, T ];R+) and φ(t) ∈ C([0, T ];R), it is also ϑ(t) ∈ C([0, T ];R). Therefore,

the drift and diffusion coefficient in (7.24) are Lipschitz continuous and by Theorem 2.9

in Karatzas and Shreve 1998 it follows that (7.24) admits a unique strong solution Y ∗(t)

such that

E[ sup
t∈[0,T ]

|Y ∗(t)|2] ≤ K(T )(1 + |y|2),

where K(T ) > 0 is constant associated with the terminal time. Thus, ϕ∗(Y (t)) ∈ Λ(y) is

an admissible control. For any ϕ ∈ Λ(y), let Y (t) be the state variable associated with

the control ϕ. We now show that ϕ∗(Y (t)) is an optimal feedback control of state variable

Y (t). We first use Itô’s formula to obtain 1
2
d(%(t)Y 2(t)) and d(φ(t)Y (t)). First note that

by Itô’s formula with f(t, x(t)) = x2,

d(Y 2(t)) =
(
2Y (t)(r(t)Y (t) + (µ(t)− r(t)1)′ϕ(t) + r(t)γ − g(t))

+ 0.5 · 2[(ϕ(t)′σ(t) + δ(t)′)2 + (δ0(t))2]
)
dt

+ 2Y (t)(ϕ(t)′σ(t) + δ(t)′)dW (t) + 2Y (t)δ0(t)dW0(t),

where δ(t) := −(υ(t)ρ(t)) and δ0(t) := −υ(t)
√

1− ρ(t)′ρ(t). By (7.16) we know

d%(t) = −(2r(t)− ς(t))%(t)dt, therefore by the product rule it holds

1

2
d(%(t)Y 2(t)) =

1

2

[
− Y 2(t)(2r(t)− ς(t))%(t) + %(t)[2r(t)Y 2(t) + 2Y (t)(µ(t)− r(t)1)′ϕ(t)
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+ 2Y (t)r(t)γ − 2Y (t)g(t) + (ϕ(t)′σ(t) + δ(t)′)2 + (δ0(t))2]
]
dt+

+
1

2
%(t) · 2 · Y (t)(ϕ(t)′σ(t) + δ(t)′)dW (t) +

1

2
%(t) · 2 · Y (t)δ0(t)dW0(t)

=
1

2

[
ς(t)%(t)Y 2(t) + 2Y (t)%(t)

(
(µ(t)− r(t)1)′ϕ(t) + r(t)γ − g(t)

)
+
(
ϕ(t)′σ(t)σ(t)′ϕ(t) + 2ϕ(t)′σ(t)δ(t) + δ(t)′δ(t) + (δ0(t))2

)
%(t)

]
dt

+ %(t)Y (t)(ϕ(t)′σ(t) + δ(t)′)dW (t) + %(t)Y (t)δ0(t)dW0(t).

Likewise, as from (7.17) we know dφ(t) = −(r(t)− ς(t))φ(t)− (r(t)γ + κ(t))%(t) and thus

by the product rule

d(φ(t)Y (t)) =
[
φ(t)(r(t)Y (t) + (µ(t)− r(t)1)′ϕ(t) + r(t)γ − g(t)) + Y (t)(−(r(t)− ς(t))φ(t)

− (r(t)γ + κ(t))%(t))
]
dt+ φ(t)(ϕ(t)′σ(t) + δ(t)′)dW (t) + φ(t)δ0(t)dW0(t)

=
[
Y (t)ς(t)φ(t)− (r(t)γ + κ(t))%(t)Y (t) + φ(t)

(
(µ(t)− r(t)1)′ϕ(t)

+ r(t)γ − g(t)
)]
dt+ φ(t)(ϕ(t)′σ(t) + δ(t)′)dW (t) + φ(t)δ0(t)dW0(t).

Note that integrating the above equations from 0 to T , taking expectations and adding

them together yields

E
[ T∫

0

1

2
d(%(t)Y 2(t))

]
+ E

[ T∫
0

d(φ(t)Y (t))

]
=

= E
[

1

2
%(T )︸︷︷︸

=χ

Y 2(T )− 1

2
%(0)Y 2(0)

]
+ E[φ(T )︸︷︷︸

=0

Y (T )− φ(0)Y (0)]

= E
[
χ

2
Y 2(T )

]
− 1

2
%(0)y2 − φ(0)y

= J(ϕ, γ)− 1

2
%(0)y2 − φ(0)y

where we have used the terminal values in (7.16) and (7.17) and the definition of J(ϕ, γ).

Inserting the expressions from above (where we use that for our integrands the expectation

of an integral w.r.t. a Brownian motion is 0) gives

J(ϕ, γ)− 1

2
%(0)y2 − φ(0)y

=
1

2
E
[ T∫

0

(
ς(t)%(t)Y 2(t) + 2Y (t)%(t)

(
(µ(t)− r(t)1)′ϕ(t) + r(t)γ − g(t)

)
+
(
ϕ(t)′σ(t)σ(t)′ϕ(t) + 2ϕ(t)′σ(t)δ(t) + δ(t)′δ(t) + (δ0(t))2

)
%(t)

+ 2Y (t)ς(t)φ(t)− 2(r(t)γ + κ(t))%(t)Y (t) + 2φ(t)
(
(µ(t)− r(t)1)′ϕ(t) + r(t)γ − g(t)

))
dt

]
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=
1

2
E
[ T∫

0

(
ς(t)%(t)Y 2(t) + 2Y (t)%(t)

(
(µ(t)− r(t)1)′ϕ(t)− κ(t)− g(t)

)
+
(
ϕ(t)′σ(t)σ(t)′ϕ(t) + 2ϕ(t)′σ(t)δ(t) + δ(t)′δ(t) + (δ0(t))2

)
%(t)

+ 2Y (t)ς(t)φ(t) + 2φ(t)
(
(µ(t)− r(t)1)′ϕ(t) + r(t)γ − g(t)

))
dt

]
Resubstituting the expressions for ς(t) = τ(t)′(σ(t)σ(t)′)τ(t), (µ(t) − r(t)1) =

(σ(t)σ(t)′)τ(t), φ(t) = ϑ(t)%(t) and κ(t), δ(t) and δ0(t) as above yields

J(ϕ, γ)− 1

2
%(0)y2 − φ(0)y

=
1

2
E
[ T∫

0

(
τ(t)′(σ(t)σ(t)′)τ(t)%(t)Y 2(t) + 2%(t)Y (t)τ(t)′(σ(t)σ(t)′)ϕ(t)

+ 2Y (t)%(t)
(
τ(t)′(σ(t)σ(t)′)ζ(t) + g(t)− g(t)

)
+ 2Y (t)ϑ(t)%(t)τ(t)′(σ(t)σ(t)′)τ(t)

+ 2ϑ(t)%(t)ϕ(t)′(σ(t)σ(t)′)τ(t) + 2φ(t)r(t)γ − 2φ(t)g(t) + ϕ(t)′(σ(t)σ(t)′)ϕ(t)%(t)

+ 2ϕ(t)′σ(t)δ(t)%(t) + υ(t)ρ(t)′ρ(t)υ(t)%(t) + υ(t)2(1− ρ(t)′ρ(t))%(t)

)
dt

]
.

Rearranging the terms, using that ζ(t) = (σ(t)σ(t)′)−1σ(t)δ(t) and adding and substract-

ing the term (τ(t)ϑ(t) + ζ(t))′(σ(t)σ(t)′)(τ(t)ϑ(t) + ζ(t))%(t) yields

J(ϕ, γ)− 1

2
%(0)y2 − φ(0)y

=
1

2
E
[ T∫

0

(
τ(t)′(σ(t)σ(t)′)τ(t)%(t)Y 2(t) + 2τ(t)′(σ(t)σ(t)′)ϕ(t)%(t)Y (t)

+ 2Y (t)%(t)τ(t)′(σ(t)σ(t)′)
(
τ(t)ϑ(t) + ζ(t)

)
+ 2ϕ(t)′(σ(t)σ(t)′)

(
τ(t)ϑ(t) + ζ(t)

)
%(t)

+ ϕ(t)′(σ(t)σ(t)′)ϕ(t)%(t) + (τ(t)ϑ(t) + ζ(t))′(σ(t)σ(t)′)(τ(t)ϑ(t) + ζ(t))%(t)

− (τ(t)ϑ(t) + ζ(t))′(σ(t)σ(t)′)(τ(t)ϑ(t) + ζ(t))%(t) + 2φ(t)(r(t)γ − g(t)) + υ(t)2%(t)

)
dt

]
.

Realizing that the first part of the integrand can be written as a quadratic form gives

J(ϕ, χ)− 1

2
%(0)y2 − φ(0)y =

1

2
E
[ T∫

0

(τ(t)Y (t) + ϕ(t) + τ(t)ϑ(t) + ζ(t))′(σ(t)σ(t)′)%(t)

× (τ(t)Y (t) + ϕ(t) + τ(t)ϑ(t) + ζ(t))dt

]

+
1

2

T∫
0

[
− (τ(t)ϑ(t) + ζ(t))′(σ(t)σ(t)′)(τ(t)ϑ(t) + ζ(t))%(t)

+ 2(r(t)γ − g(t))φ(t) + υ2(t)%(t)
]
dt.
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Note that the first summand (whose integrand is a quadratic form) is ≥ 0 due to the

assumption %(t)(σ(t)σ(t)′) > 0 in (7.16) (which is automatically fulfilled due to σ(t)σ(t)′ ≥
εIm). Therefore

J(ϕ, χ)− 1

2
%(0)y2 − φ(0)y ≥ 1

2

T∫
0

[
− (τ(t)ϑ(t) + ζ(t))′(σ(t)σ(t)′)(τ(t)ϑ(t) + ζ(t))%(t)

+ 2(r(t)γ − g(t))φ(t) + υ2(t)%(t)
]
dt,

with equality if and only if the first summand above equals 0, i.e.

τ(t)Y (t) + ϕ(t) + τ(t)ϑ(t) + ζ(t) ≡ 0

⇐⇒ ϕ(t) = −τ(t)(Y (t) + ϑ(t))− ζ(t).

This implies that the feedback control given in (7.22) is indeed an optimal control and

adding 1
2
%(0)y2 + φ(0)y above gives the corresponding optimal cost functional given in

(7.23).

Solving the resulting ODE for ϑ(t) using (7.16) and (7.17) (see Appendix F) in this case

yields an explicit expression for ϑ(t) as

ϑ(t) =

T∫
t

κ(s)e

t∫
s
r(z)dz

ds+ γ

(
1− e

−
T∫
t
r(z)dz

)
. (7.25)

As the auxiliary problems A(γ) and A(χ, ω) are equivalent, we directly obtain the optimal

feedback control of the auxiliary problem A(χ, ω) as

ϕ∗(X(t)) = −τ(t)(X(t) + ϑ(t)− γ)− ζ(t), textt ∈ [0, T ], (7.26)

where τ(t), ζ(t) and ϑ(t) are given in (7.18),(7.19) and (7.25) respectively.

It now remains to deduce the optimal strategy and the efficient frontier of the original

problem P (χ). Substituting (7.26) into (7.10) (where X∗(t) denotes the wealth process

under the optimal strategy) gives

dX∗(t) =
[
r(t)X∗(t) + (µ(t)− r(t)1)′(−τ(t)(X∗(t) + ϑ(t)− γ)− ζ(t))− g(t)

]
dt

+
[
(−τ(t)(X∗(t) + ϑ(t)− γ)− ζ(t))′σ(t) + δ(t)′

]
dW (t) + δ0(t)dW0(t)

=
[
(r(t)− (µ(t)− r(t)1)′τ(t))X∗(t)− (µ(t)− r(t)1)′τ(t)ϑ(t) + (µ(t)− r(t)1)′τ(t)γ

− (µ(t)− r(t)1)′ζ(t)− g(t)
]
dt

+
[
− τ(t)′σ(t)(X∗(t) + ϑ(t)− γ)− ζ(t)′σ(t) + δ(t)′

]
dW (t) + δ0(t)dW0(t)

=
[
(r(t)− ς(t))X∗(t)− ς(t)ϑ(t) + ς(t)γ + κ(t)

]
dt

+
[
− τ(t)′σ(t)(X∗(t) + ϑ(t)− γ)− ζ(t)′σ(t) + δ(t)′

]
dW (t) + δ0(t)dW0(t),
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X∗(0) = x.

Taking expectation on both sides yields

dE[X∗(t)] =
[
(r(t)− ς(t))E[X∗(t)]− ς(t)ϑ(t) + ς(t)γ + κ(t)

]
dt,

E[X∗(0)] = x.

We can solve the above ODE by applying the standard technique of multiplying both sides

with e

s∫
0

(ς(u)−r(u))du
, integrating both sides from 0 to t and solving for E[X∗(t)] (detailed in

Appendix F). This gives

E[X∗(t)] = xe

t∫
0

(r(u)−ς(u))du
+

t∫
0

(ς(s)γ + κ(s)− ς(s)ϑ(s))e

t∫
s

(r(u)−ς(u))du
ds (7.27)

for all t ∈ [0, T ]. Inserting t = T and (7.25) yields

E[X∗(T )] = xe

T∫
0

(r(u)−ς(u))du
+

∫ T

0

ς(s)γe

T∫
s

(r(u)−ς(u))du
ds

+

∫ T

0

κ(s)e

T∫
s

(r(u)−ς(u))du
ds−

∫ T

0

ς(s)e

T∫
s

(r(u)−ς(u))du
∫ T

s

κ(z)e

s∫
z
r(u)du

dzds︸ ︷︷ ︸
I2

−
∫ T

0

ς(s)γe

T∫
s

(r(u)−ς(u))du
ds+ γ

∫ T

0

ς(s)e
−
T∫
s
r(u)du

e

T∫
s

(r(u)−ς(u))du
ds︸ ︷︷ ︸

I1

.

We calculate I1 and I2 as follows:

I1 =

∫ T

0

ς(s)e

s∫
T

ς(u)du

ds =

[
e

s∫
T

ς(u)du

]T
0

=

1− e
−
T∫
0

ς(u)du

 ,
and

I2 =

∫ T

0

κ(s)e

T∫
s

(r(u)−ς(u))du
ds−

∫ T

0

∫ T

s

ς(s)κ(z)e

T∫
s

(r(u)−ς(u))du
e

s∫
z
r(u)du

dzds

=

∫ T

0

κ(s)e

T∫
s

(r(u)−ς(u))du
ds−

∫ T

0

∫ z

0

ς(s)κ(z)e

T∫
s

(r(u)−ς(u))du
e

s∫
z
r(u)du

dsdz

=

∫ T

0

κ(s)e

T∫
s

(r(u)−ς(u))du
ds−

∫ T

0

∫ z

0

ς(s)κ(z)e

T∫
z
r(u)du

e
−
T∫
s
ς(u)du

dsdz

=

∫ T

0

κ(s)e

T∫
s

(r(u)−ς(u))du
ds−

∫ T

0

κ(z)e

T∫
z
r(u)du

∫ z

0

ς(s)e

s∫
T

ς(u)du

dsdz

=

∫ T

0

κ(s)e

T∫
s

(r(u)−ς(u))du
ds−

∫ T

0

κ(z)e

T∫
z
r(u)du

[
e

s∫
T

ς(u)du

]z
0

dz
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=

∫ T

0

κ(s)e

T∫
s

(r(u)−ς(u))du
ds−

∫ T

0

κ(z)e

T∫
z
r(u)du

e
−
T∫
z
ς(u)du

dz +

∫ T

0

κ(z)e

T∫
z
r(u)du

e
−
T∫
0

ς(u)du
dz

=

∫ T

0

κ(z)e

T∫
z
r(u)du

e
−
T∫
0

ς(u)du
dz.

In summary, we can conclude that one can write E[X∗(T )] as

E[X∗(T )] = a+ bγ, (7.28)

with

a :=

T∫
0

κ(t)e

T∫
t
r(u)du−

T∫
0

ς(u)du
dt+ xe

T∫
0

(r(u)−ς(u))du
,

b := 1− e
−
T∫
0

ς(u)du
.

(7.29)

Analogously, we proceed with E[X∗(t)2], where we first have to apply Itô’s formula with

f(t, x(t)) = x2 to obtain

dX∗(t)2 = 2X∗(t)
[
(r(t)− ς(t))X∗(t)− ς(t)ϑ(t) + ς(t)γ + κ(t)

]
dt

+
1

2
· 2 ·

[(
− τ(t)′σ(t)(X∗(t) + ϑ(t)− γ)− ζ(t)′σ(t) + δ(t)′

)2
+ δ0(t)2

]
dt

+ 2X∗(t)
[
(−τ(t)′σ(t)(X∗(t) + ϑ(t)− γ)− ζ(t)′σ(t) + δ(t)′

]
dW (t) + 2X∗(t)δ0(t)dW0(t)

=
[
2X∗(t)2(r(t)− ς(t))− 2X∗(t)ς(t)ϑ(t) + 2X∗(t)ς(t)γ + 2X∗(t)κ(t)

]
dt

+
[
τ(t)′σ(t)σ(t)′τ(t)

(
X∗(t)2 + 2X∗(t)(ϑ(t)− γ) + (ϑ(t)− γ)2

)
+ ζ(t)′σ(t)σ(t)′ζ(t) + δ(t)′δ(t) + δ0(t)2

]
dt

+ 2
[
(τ(t)′σ(t)σ(t)′ζ(t)− τ(t)′σ(t)δ(t))

(
X∗(t) + ϑ(t)− γ

)
− ζ(t)′σ(t)δ(t)

]
dt

+ 2X∗(t)
[
(−τ(t)′σ(t)(X∗(t) + ϑ(t)− γ)− ζ(t)′σ(t) + δ(t)′

]
dW (t) + 2X∗(t)δ0(t)dW0(t)

=
[
2X∗(t)2(r(t)− ς(t))− 2X∗(t)ς(t)ϑ(t) + 2X∗(t)ς(t)γ + 2X∗(t)κ(t)

]
dt

+
[
ς(t)X∗(t)2 + 2X∗(t)ς(t)(ϑ(t)− γ) + ς(t)(ϑ(t)− γ)2

+ δ(t)′σ(t)′(σ(t)σ(t)′)−1σ(t)σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t) + δ(t)′δ(t) + δ0(t)2
]
dt

+
[
2(X∗(t) + ϑ(t)− γ)[τ(t)′σ(t)σ(t)′ζ(t)− τ(t)′σ(t)δ(t)]− 2δ(t)′σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t)

]
dt

+ 2X∗(t)
[
(−τ(t)′σ(t)(X∗(t) + ϑ(t)− γ)− ζ(t)′σ(t) + δ(t)′

]
dW (t) + 2X∗(t)δ0(t)dW0(t)

=
[
X∗(t)2(2r(t)− ς(t)) + 2X∗(t)κ(t) + ς(t)(ϑ(t)− γ)2 + δ(t)′δ(t)

− δ(t)′σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t) + δ0(t)2
]
dt

+ 2X∗(t)
[
(−τ(t)′σ(t)(X∗(t) + ϑ(t)− γ)− ζ(t)′σ(t) + δ(t)′

]
dW (t) + 2X∗(t)δ0(t)dW0(t)

where we have used that ς(t) = τ(t)′σ(t)σ(t)′τ(t), ζ(t) = (σ(t)σ(t)′)−1σ(t)δ(t) and

τ(t)′σ(t)σ(t)′ζ(t)− τ(t)′σ(t)δ(t) = τ(t)′σ(t)σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t)− τ(t)′σ(t)δ(t) = 0.
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Thus, in summary

dX∗(t)2 =
[
(2r(t)− ς(t))X∗(t)2 + 2κ(t)X∗(t) + ς(t)(ϑ(t)− γ)2 + δ(t)′δ(t)

− δ(t)′σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t) + δ0(t)2
]
dt

+ 2X∗(t)[−τ(t)′σ(t)(X∗(t) + ϑ(t)− γ)− ζ(t)′σ(t) + δ(t)′
]
dW (t) + 2X∗(t)δ0(t)dW0(t),

X∗(0)2 = x2.

Taking expectation on both sides gives

dE[X∗(t)2] =
[
(2r(t)− ς(t))E[X∗(t)2] + 2κ(t)E[X∗(t)] + ς(t)(ϑ(t)− γ)2 + δ(t)′δ(t)

− δ(t)′σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t) + δ0(t)2
]
dt,

E[X∗(0)2] = x2.

Solving the above ODE by applying standard methods (see Appendix F) yields

E[X∗(t)2] = x2e

t∫
0

(2r(u)−ς(u))du
+

t∫
0

(
2κ(s)E[X∗(s)] + ς(s)(ϑ(s)− γ)2 + δ(s)′δ(s)

− δ(s)′σ(s)′(σ(s)σ(s)′)−1σ(s)δ(s) + δ0(s)2
)
e

t∫
s

(2r(u)−ς(u))du
ds.

(7.30)

For t = T , according to Xie, Li, and Wang 2008, analogously to above E[X∗(T )2] can be

written as

E[X∗(T )2] = η + bγ2

where b is given in (7.29) and η is given by

η := 2xe

T∫
0

(r(u)−ς(u))du
T∫

0

κ(t)e

T∫
t
r(u)du

dt+ e

T∫
0

ς(u)du
( T∫

0

κ(t)e

T∫
t
r(u)du−

T∫
0

ς(u)du
dt

)2

+ x2e

T∫
0

(2r(u)−ς(u))du
+

T∫
0

[
δ(t)′δ(t)− δ(t)′σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t) + δ0(t)2

]
e

T∫
t

(2r(u)−ς(u))du
dt.

(7.31)

We know by Theorem 7.4 that any optimal solution of the original problem P (χ) can be

obtained via the solution of the auxiliary problem A(χ, ω∗) where ω∗ = 1 + 2χE[X∗(T )],

and we know by (7.28) that E[X∗(T )] = a+ bγ∗ with γ∗ = ω∗

2χ
by definition. Therefore

ω∗ = 1 + 2χ(a+ bγ∗) = 1 + 2χ

(
a+ b

ω∗

2χ

)
= 1 + 2χa+ bω∗

⇐⇒ ω∗ =
1 + 2χa

1− b
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and

γ∗ =
ω∗
2χ

=
1 + 2χa

2χ(1− b)
=

1

2χ(1− b)
+

a

1− b
. (7.32)

Thus, the optimal strategy (i.e. the optimal feedback control of P (χ)) is given by (7.26)

with γ = γ∗ given in (7.32).

The variance of the terminal wealth is given by

Var(X∗(T )) = E[X∗(T )2]− (E[X∗(T )])2

= η + b(γ∗)2 − (a+ bγ∗)2 = b(1− b)(γ∗)2 − 2abγ∗ + η − a2. (7.33)

This leads to the following result.

Theorem 7.6 (Mean-variance efficient frontier (Xie, Li, and Wang 2008)). The efficient

frontier of the mean-variance portfolio selection problem P (χ), if it ever exists, is given

by

Var[X∗(T )] =
e
−
T∫
0

ς(z)dz

1− e
−
T∫
0

ς(z)dz

E[X∗(T )]−

xeT∫0 r(z)dz +

T∫
0

κ(t)e

T∫
t
r(z)dz

dt

2

+

T∫
0

[
(δ0(t))2 + δ(t)′δ(t)− δ(t)′σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t)

]
e

T∫
t

(2r(z)−ς(z))dz
dt

=:
e
−
T∫
0

ς(z)dz

1− e
−
T∫
0

ς(z)dz

[E[X∗(T )]−D1]2 +D2 (7.34)

for E[X∗(T )] ≥ D1, where ς(t) and κ(t) are defined in (7.20) and (7.21) respectively,

δ(t) := −υ(t)ρ(t) ∈ C([0, T ];Rn×1) and δ0(t) := −υ(t)
√

1− ρ(t)′ρ(t).

Proof. The formula for Var[X∗(T )] follows from the above calculations by using

γ∗ = E[X∗(T )]−a
b

and inserting the explicit expression for a, b and η from (7.29) and (7.31).

First, rewrite (7.33) as

Var[X∗(T )] = b(1− b)(γ∗)2 − 2abγ∗ + η − a2

=
1− b
b

(
b2(γ∗)2 − 2ab2γ∗

1− b
+
b(η − a2)

1− b

)
=

1− b
b

(
(bγ∗ + a)2 − 2abγ∗

1− b
+
bη − a2

1− b

)
.

Then substitute bγ∗ = E[X∗(T )]− a from (7.28) and use square addition to obtain

Var[X∗(T )] =
1− b
b

(
E[X∗(T )]2 − 2a

1− b
(E[X∗(T )]− a) +

bη − a2

1− b

)
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=
1− b
b

((
E[X∗(T )]− a

1− b
)2 − a2

(1− b)2
+

2a2

1− b
+
bη − a2

1− b

)
=

1− b
b

(
E[X∗(T )]− a

1− b︸ ︷︷ ︸
=:y1

)2

− a2

b(1− b)
+

2a2

b
+
bη − a2

b︸ ︷︷ ︸
=:y2

.

Clearly, it holds that

1− b
b

=
e
−
T∫
0

ς(z)dz

1− e
−
T∫
0

ς(z)dz

,

therefore it remains to be shown that y1 and y2 coincide with D1 and D2 as they are

stated in the theorem. First consider y1, where by definition of a and b in (7.29) it holds

y1 =
a

1− b
=

T∫
0

κ(t)e

T∫
t
r(u)du−

T∫
0

ς(u)du
dt+ xe

T∫
0

(r(u)−ς(u))du

e
−
T∫
0

ς(u)du

= xe

T∫
0

r(u)du
+

T∫
0

κ(t)e

T∫
t
r(u)du

dt.

Furthermore, for y2 it holds

y2 = − a2

b(1− b)
+

2a2

b
+
bη − a2

b
= − a2

b(1− b)
+
bη + a2

b
. (7.35)

We first compute a2 and bη:

a2 =

( T∫
0

κ(t)e

T∫
t
r(u)du−

T∫
0

ς(u)du
dt

)2

+ 2x

T∫
0

κ(t)e

T∫
t
r(u)du−

T∫
0

(2ς(u)−r(u))du
dt

+ x2e

T∫
0

2(r(u)−ς(u))du

bη = 2xe

T∫
0

(r(u)−ς(u))du
T∫

0

κ(t)e

T∫
t
r(u)du

dt+ e

T∫
0

ς(u)du
( T∫

0

κ(t)e

T∫
t
r(u)du−

T∫
0

ς(u)du
dt

)2

+ x2e

T∫
0

(2r(u)−ς(u))du
+D2

− 2xe

T∫
0

(r(u)−2ς(u))du
T∫

0

κ(t)e

T∫
t
r(u)du

dt−
( T∫

0

κ(t)e

T∫
t
r(u)du−

T∫
0

ς(u)du
dt

)2

− x2e

T∫
0

2(r(u)−ς(u))du
− (1− b)D2.
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Therefore, it follows that

a2 + bη = bD2 + 2xe

T∫
0

(r(u)−ς(u))du
T∫

0

κ(t)e

T∫
t
r(u)du

dt

+ e

T∫
0

ς(u)du
( T∫

0

κ(t)e

T∫
t
r(u)du−

T∫
0

ς(u)du
dt

)2

+ x2e

T∫
0

(2r(u)−ς(u))du

= bD2 +
a2

e
−
T∫
0

ς(u)du

= bD2 +
a2

1− b
.

Inserting this result into (7.35) yields

y2 = − a2

b(1− b)
+
bη + a2

b
= − a2

b(1− b)
+
bD2 + a2

1−b

b

= − a2

b(1− b)
+

a2

b(1− b)
+D2 = D2.

This concludes the proof.

We note that

e
−
T∫
0

ς(z)dz

1− e
−
T∫
0

ς(z)dz

> 0, tee

T∫
0

r(z)dz
> 1, tee

T∫
t

(2r(z)−ς(z))dz
> 0,

and furthermore it can be shown that D2 ≥ 0 (see Xie, Li, and Wang 2008).

Note that (7.34) reveals the trade-off between risk (measured in terms of variance) and

return (mean) of the terminal wealth: For a given expected return level, the risk that must

be accepted is given by (7.34), and vice versa. The minimum-variance-portfolio is reached

for E[X∗(T )] = D1 and entails a variance of D2 ≥ 0. In particular, the only case where in

the presence of liability it holds D2 = 0, i.e. a risk-free portfolio on the efficient frontier can

be reached, occurs for n = m and ρ(t)′ρ(t) = 1. In this case σ(t)′(σ(t)σ(t)′)−1σ(t) = Im
and thus [

(−υ(t)
√

1− ρ(t)′ρ(t))2 + δ(t)′δ(t)− δ(t)′σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t)
]

= [−υ(t)0 + δ(t)′δ(t)− δ(t)′δ(t)] = 0

This is the case when the financial market is complete and the risk from the liability can

be completely hedged by trading the assets.

Remark. Note that from the above result in (7.34), we can deduce the formula (e.g.

known from the lecture notes of the TUM lecture Investment Strategies, p. 42) for the

dynamic mean-variance efficient frontier in the ”classical” case where there is no liability
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(i.e. g(t) ≡ 0, υ(t) ≡ 0), the market is complete (i.e. m = n), the initial wealth is x = 1

and all coefficients are constant (i.e. r(t) ≡ r, µ(t) ≡ µ, σ(t) ≡ σ). This implies above

τ(t) ≡ τ = (σσ′)−1(µ− r1), textς(t) ≡ ς = (µ− r1)τ

ζ(t) ≡ 0, textκ(t) ≡ 0, textϑ(t) = γ
(
1− e−r(T−t)

)
.

Denote for now E[X∗(T )] =: m̄,Var[X∗(T )] =: s̄2, then it follows from (7.34)

s̄2(m̄) =
e−ςT

1− e−ςT
[
m̄− erT

]2
=

1

eςT − 1

[
m̄− erT

]2
.

This is equivalent to

s̄(m̄) =
1√

e||γ̄||2T − 1
· (m̄− erT )

⇐⇒ m̄(s̄) = erT +
√
e||γ̄||2T − 1 · s̄,

where γ̄ = σ−1(µ− r1). Therefore, we can see that the results of Xie, Li, and Wang 2008

describe a more general case in accordance with known results.

In their paper, Xie, Li, and Wang 2008 give numerical examples to show how the incom-

pleteness of the market and the introduction of a liability influence the efficient frontier.

They further show the influence of varying the parameters T, x, g(t), υ(t), ρ(t) on the effi-

cient frontier and the optimal strategy. For our purposes, particularly varying the diffusion

υ(t) of the liability is relevant. Thus, in the next section we apply the results from this

section in order to study how the optimal investment decision of an insurance company

is altered when its liability follows a risk process with Hawkes arrivals instead of Poisson

arrivals.

7.3 Application to Hawkes risk model

For the assets, we use the parameters from the numerical example in Xie, Li, and Wang

2008 which are summarized in Table 7.1. This means we consider an incomplete mar-

ket with one riskfree asset and one risky asset whose evolution is governed by a two-

dimensional Brownian motion. However, this type of market incompleteness is not an

essential factor in our example and could likewise be simplified to a one-dimensional

Brownian motion.

To describe the company’s liability, we use the pure diffusion approximation of the (neg-

ative) risk process, i.e. following (5.21) we set

Lp(t) := −Rp(t) = −u+

(
λ

1− α/β
a∗ − c

)
t+ σ̄W (t)

= −u− θa∗ λ

1− α/β
t+ σ̄W (t)

(7.36)
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Parameter n m T x r µ σ = (σ1, σ2) ρ = (ρ1, ρ2)′

Value 2 1 1 10 0.06 0.12 (0.15, 0.25) (0.65, 0.10)′

Table 7.1: Asset parameters, taken from Xie, Li, and Wang 2008. The initial wealth x was adapted to fit

this example.

where λ, α and β are the parameters of the Hawkes arrival process, θ is the safety loading

of the premium, a∗ and σ̄ are given in Theorem 5.8 and we use that W (t) is a standard

Brownian motion and therefore has the same distribution as −W (t). Keeping the previous

notation, this corresponds to l = −u, g(t) ≡ −θa∗ λ
1−α/β and υ(t) ≡ σ̄. For the sake of

presentation and comparability, we will now assume that incoming claim sizes are i.i.d.

with a∗ = E[X1] =: m1 = 0.5, Var[X1] = 0.5 and E[X2
1 ] =: m2 = 1. We compare claim

arrival processes with the same expected number of arrivals on any interval in order to

analyze the difference in risk arising from the variance of the number of arrivals. Table

7.2 gives an overview of these quantities for Poisson and Hawkes processes.

Process Parameters E[N(0, t)] Var[N(0, t)]

Poisson λP λP t λP t

Hawkes λ, α, β λ
1−α/β t

λ
1−α/β (t( 1

1−α/β )2 + (1− ( 1
1−α/β )2)1−e−t(β−α)

β−α )

Table 7.2: Comparison of the expected number and variance of arrivals on an interval of length t for a

Poisson and an exponential Hawkes process. Formulas for the Hawkes process case are derived in Section

3.5.

Remark. Note in Table 7.2 that for a Poisson process E[N(0, t)] = Var[N(0, t)] whereas

for a Hawkes process E[N(0, t)] < Var[N(0, t)] for any t > 0. We can show this by realizing

that in the Hawkes case for

Var[N(0, t)] =
λ

1− α/β

(
t

(
1

1− α/β

)2

+

(
1−

(
1

1− α/β

)2)
︸ ︷︷ ︸

:=v1

1− e−t(β−α)

β − α

)
︸ ︷︷ ︸

=:v2

it holds that v1 < 0 and thus v2 ≥ t. This is sufficient as λ
1−α/β > 0.

As 0 < α
β
< 1, also 0 < 1− α

β
< 1, and thus 1

1−α
β
> 1 and v1 < 0.

We know from the Taylor series of ex that ∀x ∈ R it holds

ex ≥ 1 + x ⇐⇒ 1− ex ≤ −x.

Thus it holds for x = −t(β − α) that

1− e−t(β−α)

β − α
≤ t(β − α)

β − α
= t. (7.37)
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As v1 < 0, it holds

v2 = t

(
1

1− α/β

)2

+

(
1−

(
1

1− α/β

)2)
︸ ︷︷ ︸

<0

1− e−t(β−α)

β − α︸ ︷︷ ︸
≤t by (7.37)

≥ t

(
1

1− α/β

)2

+

(
1−

(
1

1− α/β

)2)
t = t.

and this shows the claim.

Table 7.3 gives the parameter values chosen for our numerical example where we compare

a Poisson and two Hawkes processes.

Process (λ, α, β) E[N(0, 1)] Var[N(0, 1)]
g(t) ≡ −θm1

E[N(0, 1)]
υ(t) ≡ σ̄ Var(Lp(T ))

Poisson (2.5,−,−) 2.5 2.5 −0.25 1.3693 1.8750

Hawkes 1 (1.25, 0.5, 1) 2.5 4.0980 −0.25 1.9365 3.4799

Hawkes 2 (0.75, 0.7, 1) 2.5 5.9393 −0.25 2.8626 8.1944

Table 7.3: Liability parameters, where the safety loading for the premium calculation is θ = 0.2. Pa-

rameters are chosen such that E[N(0, 1)] and g(t) are equal for all cases as we would only like to study

the difference arising from the change in variance. The second Hawkes process has a higher share of

endogeneous events α/β, which corresponds to stronger influence of self-excitement and clustering.

In Figure 26 we plot the mean-variance efficient frontiers for all three cases using (7.34).

We recognize that changing the Poisson process to a Hawkes process with increasing

presence of clustering will shift the frontier away from the vertical axis and thus lead

to a higher risk for the same expected return level. Table 7.4 shows the values of D1

(expected terminal wealth of minimum-variance portfolio) and D2 (minimum attainable

variance), indicating the higher risk introduced by the Hawkes process. However, the

frontier becomes ”steeper” and above an intersection point at a certain level of risk,

higher returns can be attained (this is due to the correlation of the liability and the asset

processes - if we choose ρ = (0, 0), the shift is strictly to the lower right as can be seen

in Figure 26). As effectively we increase the diffusion of the liability while leaving other

parameters untouched, these results are consistent with Xie, Li, and Wang 2008, Figure

1e.

We will now consider optimal strategies in different contexts. In this section, we have used

ϕ(X(t)) to emphasize the connection between the control ϕ and the corresponding state

variable X(t). In the following, we change the notation to ϕ(t) for convenience, as we like

to think of the strategy as dynamically evolving over time. However, keep in mind that ϕ

still also depends on X(t).
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(a) ρ = (0.65, 0.1). (b) ρ = (0, 0).

Figure 26: Comparison of mean-variance efficient frontiers for parameters given in Tables 7.1 and 7.3. This

is consistent with the observation in Figure 1e of Xie, Li, and Wang 2008 that increasing the volatility of

the liability will shift the frontier away from the vertical axis. However, notice that in the case ρ 6= (0, 0)

the steepness of the frontier increases such that the frontiers intersect at a certain variance level. This

implies that for an investor that is willing to accept a very high level of risk, the Hawkes process case

implies higher attainable expected returns.

Process D1 D2 D1 D2

text ρ = (0.65, 0.1) ρ = (0, 0)

Poisson 10.9980 1.6055 10.8760 1.9497

Hawkes 1 11.0486 3.2110 10.8760 3.8994

Hawkes 2 11.1311 7.0167 10.8760 8.5210

Table 7.4: Values of D1 and D2 for the three processes and two different choices of ρ. Note that D1

corresponds to the expected terminal wealth of the minimum-variance portfolio and D2 to its variance.

As shown in Xie, Li, and Wang 2008, D2 > 0 unless the market is complete and the liability is completely

hedgeable by the tradeable assets. Naturally, D2 increases for the Hawkes process cases.

7.3.1 Optimal Strategy for given expected return level

As in Xie, Li, and Wang 2008, first assume the company would like to obtain a certain

expected return level, say 15%, i.e. E[X(T )∗] = 11.5. Table 7.5 shows the minimum

attainable variance of terminal wealth and the optimal strategy at the initial time 0

for all three cases. As could be expected from Figure 26, in the case of the Hawkes

processes, a higher variance must be accepted in order to attain the desired level of

expected return, which entails the need for a higher initial investment in the risky asset.

For the same expected return level, we plot a realisation of the optimal investment in the

risky asset ϕ∗1(t) over time in Figure 27. To this end, standard Brownian motions W0(t)

and W (t) = (W1(t),W2(t))′ are simulated over [0, T ] = [0, 1] on a grid of step size 0.001,

and the evolution of wealth X(t) and the optimal strategy ϕ∗(t) are calculated iteratively

using (7.10) and (7.26) respectively.
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Process Var[X∗(T )] (ϕ∗0(0), ϕ∗1(0)) Var[X∗(T )] (ϕ∗0(0), ϕ∗1(0))

text ρ = (0.65, 0.1) ρ = (0, 0)

Poisson 7.4294 (−0.0201, 10.0201) 10.9495 (−0.0029, 10.0029)

Hawkes 1 7.9210 (−0.0272, 10.0272) 12.8992 (−0.0029, 10.0029)

Hawkes 2 10.1618 (−0.0389, 10.0389) 17.5208 (−0.0029, 10.0029)

Table 7.5: Optimal strategies ϕ∗(t) at t = 0, X(t) = X0 = x from (7.26) for a given expected return

level of 15%, thus E[X∗(T )] = 11.5. Note that in the Hawkes cases, more is initially invested in the risky

asset in the case ρ = (0.65, 0.1). For the case ρ = (0, 0), the strategy does not depend on the process

(as can be seen from (7.19) and (7.26) respectively, ζ and therefore ϕ∗ do not depend on υ), but the

attainable variance increases in the Hawkes cases. This corresponds to the observation in Figure 26 that

for attaining this level of E[X∗(T )], a higher risk Var[X∗(T )] must be accepted.

(a) Underlying standard Brownian Motions
(W0,W ).

(b) Optimal absolute investment in risky asset
ϕ∗1(t).

(c) Optimal relative investment in risky asset
π∗1(t).

(d) Wealth X∗(t) given optimal strategy.
text

Figure 27: One realisation of the optimal investment in the risky asset until the final time T = 1, for

ρ = (0.65, 0.1). Standard Brownian motions W0(t) and W (t) = (W1(t),W2(t))′ were simulated over

[0, T ] = [0, 1] on a grid of step size 0.001, and the evolution of wealth X∗(t) and the optimal strategy

ϕ∗1(t) calculated iteratively using (7.10) and (7.26).
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7.3.2 Optimal Strategy for given risk level

Usually an insurance company’s main interest and responsibility is to limit the risk it is

subjected to. So now we want to study attainable return levels and corresponding optimal

strategies for a given level of accepted risk. In the first step, we set the maximum level

of risk (measured in variance of terminal wealth) to v̄ = 8 and list in Table 7.6 the

corresponding attainable return levels and corresponding optimal strategies for all three

cases. We use the same pure diffusion approximation as above with parameters given in

Table 7.3.

Process E[X∗(T )] (ϕ∗0(0), ϕ∗1(0)) E[X∗(T )] (ϕ∗0(0), ϕ∗1(0))

text ρ = (0.65, 0.1) ρ = (0, 0)

Poisson 11.5240 (−0.4051, 10.4051) 11.3876 (1.7984, 8.2016)

Hawkes 1 11.5038 (−0.0877, 10.0877) 11.2972 (3.2480, 6.7520)

Hawkes 2 11.3374 (2.5680, 7.4320) − −

Table 7.6: Optimal strategies ϕ∗(t) at t = 0, X(t) = X0 = x from (7.26) for a given maximum variance

level of v̄ = 8. In the Hawkes case, when restricted to the same level of variance, the initial investment

in the risky asset must be lowered and a lower expected return level E[X∗(T )] can be attained. For the

second Hawkes case, in the case ρ = (0.65, 0.1) part of the initial wealth would be invested in the riskfree

asset instead of short-selling it to allow a higher initial investment in the risky asset. In the case ρ = (0, 0),

the variance restriction of v̄ = 8 would even not be attainable for the more volatile Hawkes process.

It has to be kept in mind that as the computation of the mean-variance efficient frontier

and the optimal strategies rely on the pure diffusion approximation of the risk process,

the approximation error might be large. Indeed, as we have seen in Section 6.3, the ap-

proximation tends to overestimate the standard deviation of the risk process and thus the

risk assigned in the Hawkes case might tend to be exaggerated. Thus, in order to get to a

more accurate estimation, we use our knowledge about the jump diffusion approximation.

By (5.17) it is given by

Lj(t) := −Rj(t) = −u− ct+ σ̂W (t) + a∗N(t)

= −u− (1 + θ)m1
λ

1− α/β
t+ σ̂W (t) +m1N(t)

=: −u+ ĝt+ σ̂W (t) +m1N(t)

(7.38)

where N(t) is the number of jumps of a Hawkes process with parameters (λ, α, β) on the

interval (0, t] . This corresponds to l̂ = −u, ĝ(t) ≡ −(1 + θ)m1
λ

1−α/β and υ̂(t) ≡ σ̂, where

the values in this case are given in Table 7.7.

As naturally Theorem 7.5 is only applicable for a liability following a Brownian motion

with drift (without jumps), we need an approximative approach in order to use Lj(t)

instead of Lp(t) for the liability process. In order to find an approximative optimal strategy
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Process (λ, α, β) E[N(0, 1)] Var[N(0, 1)]
ĝ(t) ≡ −(1 + θ)m1

E[N(0, 1)]
υ̂(t) ≡ σ̂ Var[Lj(T )]

Poisson (2.5,−,−) 2.5 2.5 −1.5 1.1180 1.8750

Hawkes 1 (1.25, 0.5, 1) 2.5 4.0980 −1.5 1.1180 2.2744

Hawkes 2 (0.75, 0.7, 1) 2.5 5.9393 −1.5 1.1180 2.7347

Table 7.7: Liability parameters for the jump diffusion approximation, where the safety loading for the

premium calculation is θ = 0.2. Note that υ̂ does not differ for the three cases, instead the difference in

variance of the liability process stems from the added jump process N(t). Furthermore, the last column

indicates a smaller difference in variance of the liability process than assumed by the pure diffusion

approximation (last column of Table 7.3).

for a given level of accepted risk v̄, we initially omit the jump part of Lj(t) and use

Theorem 7.5 with the liability process given by

L̂j(t) = u+ ĝt+ υ̂ρ′W (t) + υ̂
√

1− ρ′ρW0(t)

where ĝ and υ̂ are given in Table 7.7. This implies that the jumps are considered to be

a part of the liability which is independent from the assets and thus is not taken into

consideration when calculating the optimal strategy. This is an assumption that could be

interpreted in practice as a part of the liability that is not hedgeable by trading the assets

in the market and therefore has to be taken into account through separate capital acting

as a risk buffer. This means that in order to take into account the additional variance

introduced by the jumps, the original variance boundary has to be adjusted according to

Var[X∗(T )] = Var[A∗(T )− Lj(T )] = Var[A∗(T )− (L̂j(T ) +m1N(T ))]

jumps indep.
= Var[A∗(T )− L̂j(T )] +m2

1Var[N(T )]
!

= v̄

⇐⇒ Var[A∗(T )− L̂j(T )]
!

= v̄ −m2
1Var[N(T )] =: ˆ̄v

where A∗(T ) denotes the terminal value of the asset part under the optimal strategy. The

efficient frontier in this case (note that it is the same for all three processes as the difference

lies in the jump part that is not depicted in the frontier) for both choices of ρ is depicted

in Figure 28 together with the shifted variance boundaries.

When comparing the result, in particular the attainable expected terminal wealth, to the

one from the pure diffusion approximation in Table 7.6, the expectation of the jump part,

that is m1E[N(1)] = 1.25 has to be subtracted from the estimate given by the MVE

frontier obtained using L̂j(t). The results for parameters in Table 7.7 are given in Table

7.8.

In order to corroborate that this approach is feasible, we set the number of simulation

runs to K = 10000 and set the variance boundary for each case to ˆ̄v. We simulate the
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(a) ρ = (0.65, 0.1). (b) ρ = (0, 0).

Figure 28: Mean-variance efficient frontier for parameters given in Tables 7.1 and 7.7. Note that there is

only one frontier in each case as the difference lies in the jump part which is not depicted in the frontier,

but affects the variance boundary. Due to the higher variance of the number of jumps of the Hawkes

processes, the boundary has to be shifted further to the left which implies a lower attainable expected

terminal wealth.

continuous part of Lj(t) on a grid with step size δ = 0.001 over [0, T ] = [0, 1] according to

L̂j(t) = u+ ĝt+ υ̂ρ′W (t) + υ̂
√

1− ρ′ρW0(t),

then calculate X̂∗(t) and ϕ̂∗1(t) iteratively using (7.10) and (7.26) respectively and set

ϕ̂∗0(t) = X̂∗(t)− ϕ̂∗1(t). Over all simulation runs, we calculate empirical mean and variance

of X̂∗(T ) and compare them with the theoretical values in Table 7.8. We then simulate

Lj(t) including jumps as

Lj(t) = −u+ ĝt+ υ̂ρ′W (t) + υ̂
√

1− ρ′ρW0(t) +m1N(t),

where for each run, the same realisations of W (t) and W0(t) as above are used and N(t) is

the number of jumps of a Hawkes (or Poisson) process on (0, t]. For the simulation of the

jumps it is worth noting that instead of simulating a point process on [0, T ] for each of

the K simulations, we simulate one process on [0, KT ] and map the realisation of jumps

on the interval ((k − 1)T, kT ] to the interval (0, T ] to be used in the kth simulation. This

ensures that the theoretical mean and variance of the number of jumps are met by the

simulations and not negatively distorted over the relatively short time span [0, 1]. This

could otherwise happen as a Hawkes process with an expected value of 2.5 jumps per

time unit might simply not have enough time to develop any clustering. The optimal

strategy ϕ∗1(t), i.e. the optimal amount invested in the risky asset calculated from (7.26),

is kept fixed as calculated under L̂j(t) (thus ϕ∗1(t) = ϕ̂∗1(t)), but the wealth process X∗(t)

is calculated anew according to (7.10) with Lj(t) in place of L̂j(t) and the investment

in the riskless asset is adjusted accordingly as ϕ∗0(t) = X∗(t) − ϕ∗1(t). The results of the

simulation are given in Table 7.9, where we observe that the optimal strategy calculated

by using the modified jump diffusion approximation with a shifted variance boundary ˆ̄v

adheres to the original boundary v̄ when jumps are included, i.e. the theoretical approach

described above is feasible.
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Process m2
1Var[N(T )] ˆ̄v E[X̂∗(T )](−1.25) ϕ̂∗(0)

Poisson 0.625 7.375 12.7862 (11.5362) (0.0164, 9.9836)

Hawkes 1 1.0245 6.9755 12.7694 (11.5194) (0.2860, 9.7140)

Hawkes 2 1.4848 6.5152 12.7493 (11.4993) (0.6083, 9.3917)

(a) ρ = (0.65, 0.1)

Process m2
1Var[N(T )] ˆ̄v E[X̂∗(T )](−1.25) ϕ̂∗(0)

Poisson 0.625 7.375 12.6770 (11.4270) (1.7815, 8.2185)

Hawkes 1 1.0245 6.9755 12.6598 (11.4098) (2.0564, 7.9436)

Hawkes 2 1.4848 6.5152 12.6393 (11.3893) (2.3853, 7.6147)

(b) ρ = (0, 0)

Table 7.8: For two choices of ρ we give the attainable expected terminal wealth (corrected for jumps)

and the corresponding optimal strategy at time t = 0 for an original variance boundary of v̄ = 8, where

we correct for the variance introduced by the jump part of the liability which is not included in the

calculation of the optimal strategy. We observe that the approach still indicates a lower attainable return

and a lower initial investment in the risky asset in the Hawkes cases. However, the differences are not

as extreme as in Table 7.6, in particular the variance restriction is now attainable by the second Hawkes

process in case ρ = (0, 0). This comparison between the processes is more realistic as it eliminates the

large overestimation of risk of the pure diffusion approximation in the Hawkes cases.

In this chapter we have dealt with the case of an insurance company that can invest in

assets traded on the market, but is burdened by a liability process that continuously af-

fects the available capital and cannot be completely hedged by trading the assets. This is

relevant in practice as managing asset investments in a way that maximizes returns while

assuring sustainable and responsible liability management is a crucial challenge for any

insurer. We have highlighted the economic implications of a claim process where claims

tend to display clustering as opposed to claims occuring independently over time by sub-

stituting a Poisson claims process by two examples of self-exciting Hawkes processes. For

a given level of accepted risk, although the expected claim number and size over the ob-

served time horizon is identical, the clustering characteristics of the Hawkes process entails

a higher risk which implies a lower risk allowance in the asset investment strategy and

thus lower attainable returns. This emphasizes the insurer’s need to not only estimate the

expected future number and size of claims accurately, but also their temporal distribution

over the observed period, i.e. the presence of clustering, in order to make sure given risk

allowances are not breached undeliberately.

In this chapter we have dealt with the case of an insurance company that can invest in

assets traded on the market, but is burdened by a liability process that continuously af-

fects the available capital and cannot be completely hedged by trading the assets. This is

relevant in practice as managing asset investments in a way that maximizes returns while
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text Modified jump diffusion L̂j(t) Jump diffusion Lj(t)

Process ˆ̄v
E[X̂∗(T )]

(theor.)
E[X̂∗(T )] Var[X̂∗(T )] E[X∗(T )] Var[X∗(T )]

Poisson 7.375 12.7862 12.7981 7.4314 11.5215 8.0951

Hawkes 1 6.9755 12.7694 12.7625 6.8574 11.4647 7.9095

Hawkes 2 6.5152 12.7493 12.7396 6.4614 11.4333 7.9706

(a) ρ = (0.65, 0.1)

text Modified jump diffusion L̂j(t) Jump diffusion Lj(t)

Process ˆ̄v
E[X̂∗(T )]

(theor.)
E[X̂∗(T )] Var[X̂∗(T )] E[X∗(T )] Var[X∗(T )]

Poisson 7.375 12.6770 12.7012 7.3738 11.4026 8.0085

Hawkes 1 6.9755 12.6598 12.6805 7.0197 11.3795 8.0556

Hawkes 2 6.5152 12.6393 12.5743 6.5046 11.3495 8.0080

(b) ρ = (0, 0)

Table 7.9: For K = 10000 simulations, we give the shifted variance boundaries and the theoretically

attainable expected terminal wealth X̂∗(T ) under the modified jump diffusion liability L̂j(t) for each

case. Comparing these values with the empirical mean and variance boundary of X̂∗(T ), we observe that

they are matched quite closely. Keeping the optimal investment in the risky asset fixed and calculating

the wealth process X∗(T ) under the jump diffusion liability Lj(t), we observe that the original variance

restriction v̄ = 8 is met. Note that in the case ρ 6= (0, 0) some inaccurary is observable due to the

theoretical assumption of independent jumps.

assuring sustainable and responsible liability management is a crucial challenge for any

insurer. We have highlighted the economic implications of a claim process where claims

tend to display clustering as opposed to claims occuring independently over time by sub-

stituting a Poisson claims process by two examples of self-exciting Hawkes processes. For

a given level of accepted risk, although the expected claim number and size over the ob-

served time horizon is identical, the clustering characteristics of the Hawkes process entails

a higher risk which implies a lower risk allowance in the asset investment strategy and

thus lower attainable returns. This emphasizes the insurer’s need to not only estimate the

expected future number and size of claims accurately, but also their temporal distribution

over the observed period, i.e. the presence of clustering, in order to make sure given risk

allowances are not breached undeliberately.
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Conclusion

In this thesis, we have introduced a risk model with claim arrivals based on a general

compound Hawkes process and shown that it is suitable to model empirical data from

the class of legal expenses insurance. We have studied its theoretical properties (LLN and

FCLT) and derived a pure diffusion approximation which allows the analytical calcula-

tion of ruin probabilities and the application of results from asset-liability management

to study the influence of a Hawkes claim arrival process on optimal investment strategies

for an insurer in an incomplete market. Our results complement and extend current re-

search on risk theory with self-exciting Hawkes processes. They allow to incorporate the

real-world phenomenon of claims triggering subsequent claims and the peril of a result-

ing ”contagion effect” into ruin probability estimations and asset-liability management

considerations. Within the current extensive framework of regulatory requirements, our

results can give indications about the enhanced risk introduced by claim arrival clustering

and how to take it into account in order to adhere to given risk constraints.

At the same time, there are many approaches to generalize the present work in poten-

tial future research: As highlighted in Chapter 3, we have currently restricted our focus

to a one-dimensional, exponential Hawkes process. As the knowledge about theoretical

properties of Hawkes processes is steadily being advanced, more general specifications

might become available for empirical usage. These could include processes with other ex-

citation functions (e.g. long-range power law or mixed kernels) to incorporate real-world

delay effects or multi-dimensional, marked Hawkes processes to model the evolution and

interdependence of several classes of insurance claims. The status quo of Hawkes risk

models summarized in Chapter 4 shows that there have been quite recent advancements

(in particular the work of Cheng and Seol 2018) which can serve as a basis for further

empirical implementation. In Chapter 5, we derived two approximations for the Hawkes

risk model and have remarked that their accuracy (in particular for the pure diffusion

121
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approximation) heavily depends on the model parameters. The analytical estimation of

the rate of approximation is generally very complicated, but could be studied in future

research, where Swishchuk 2000 could serve as background knowledge. With respect to

the applications to empirical data in Chapter 6, we started by studying data from legal ex-

penses insurance as we suspected a Hawkes process to be adequate here and the data was

readily available with convenient granularity. However, there are obviously other classes

of insurance where an empirical study would be of interest, in particular e.g. earthquake

(re-)insurance or health insurance in regions with pandemics. Furthermore, as we have

seen that the main interest for an insurer might be the branching structure of a Hawkes

arrival process, it might be of interest to use empirical data for independent branching

ratio approximation. The last chapter investigated an optimal investment problem under

a mean-variance framework. It would naturally be of interest to study other objectives of

insurers, e.g. studying an optimal strategy that minimizes the ruin probability by using an

exponential utility function (see Browne 1995). Another generalisation would be to use an

example with various risky assets with time-dependent deterministic (or even stochastic)

parameters.
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pp. 471–507. isbn: 978-3-7643-6209-6.

Ozaki, Tohru (1979). “Maximum likelihood estimation of Hawkes’ self-exciting point pro-

cesses”. In: Annals of the Institute of Statistical Mathematics 31.1, pp. 145–155.

Privault, Nicolas (2019). Lecture Notes on Stochastic Calculus for Jump Processes. url:

http://www.ntu.edu.sg/home/nprivault/MA5182/stochastic-calculus-jump-

processes.pdf.

Rambaldi, Marcello, Paris Pennesi, and Fabrizio Lillo (2015). “Modeling foreign exchange

market activity around macroeconomic news: Hawkes-process approach”. In: Physical

review. E, Statistical, nonlinear, and soft matter physics 91.1, p. 012819.

Rasmussen, Jakob G. (2011). “Temporal point processes: the conditional intensity func-

tion.” In: url: http://people.math.aau.dk/~jgr/teaching/punktproc11/tpp.pdf.

Revuz, Daniel and Marc Yor (1999). Continuous Martingales and Brownian Motion. Cor-

rected Third Printing of the Third Edition. Vol. 293. Grundlehren der mathematischen

Wissenschaften, A Series of Comprehensive Studies in Mathematics. Berlin and Heidel-

berg: Springer. isbn: 978-3-642-08400-3.

http://www.ntu.edu.sg/home/nprivault/MA5182/stochastic-calculus-jump-processes.pdf
http://www.ntu.edu.sg/home/nprivault/MA5182/stochastic-calculus-jump-processes.pdf
http://people.math.aau.dk/~jgr/teaching/punktproc11/tpp.pdf


BIBLIOGRAPHY 128

Rizoiu, Marian-Andrei et al. (2017). A Tutorial on Hawkes Processes for Events in Social

Media. url: http://arxiv.org/pdf/1708.06401v2.

Rolski, Tomasz (2001). Stochastic processes for insurance and finance. Reprinted. Wiley

series in probability and statistics. Chichester: Wiley. isbn: 0471959251.

Schmidli, Hanspeter (1994). “Diffusion approximations for a risk process with the possibil-

ity of borrowing and investment”. In: Communications in Statistics. Stochastic Models

10.2, pp. 365–388.

– (2018). Risk theory. Springer actuarial lecture notes. Cham: Springer. isbn: 978-3-319-

72004-3.

Sharpe, William F. and Lawrence G. Tint (1990). “Liabilities— A New Approach”. In:

The Journal of Portfolio Management 16.2, pp. 5–10.

Skhorokhod, Anatoliy V. (2014). Studies in the Theory of Random Processes. Newbury-

port: Dover Publications. isbn: 9780486642406.

Stabile, Gabriele and Giovanni Luca Torrisi (2010). “Risk Processes with Non-stationary

Hawkes Claims Arrivals”. In: Methodology and Computing in Applied Probability 12.3,

pp. 415–429.

Swishchuk, Anatoliy (2000). Random Evolutions and their Applications: New Trends.

Vol. 504. Mathematics and Its Applications. Dordrecht: Springer. isbn: 978-90-481-

5441-8.

– (2017a). General Compound Hawkes Processes in Limit Order Books. url: http://

arxiv.org/pdf/1706.07459v2.

– (2017b). Risk Model Based on General Compound Hawkes Processes. url: http://

arXiv.org/pdf/1706.09038.

Swishchuk, Anatoliy et al. (2017). Compound Hawkes Processes in Limit Order Books.

url: http://arxiv.org/pdf/1712.03106v1.

Truccolo, Wilson (2016). “From point process observations to collective neural dynamics:

Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining”. In:

Journal of physiology, Paris 110.4 Pt A, pp. 336–347.

Uhlenbeck, G. E. and L. S. Ornstein (1930). “On the Theory of the Brownian Motion”.

In: Physical Review 36.5, pp. 823–841.

Vadori, Nelson and Anatoliy Swishchuk (2015). “Strong Law of Large Numbers and Cen-

tral Limit Theorems for Functionals of Inhomogeneous Semi-Markov Processes”. In:

Stochastic Analysis and Applications 33.2, pp. 213–243.

Veen, Alejandro and Frederic P. Schoenberg (2008). “Estimation of Space–Time Branch-

ing Process Models in Seismology Using an EM–Type Algorithm”. In: Journal of the

American Statistical Association 103.482, pp. 614–624.

Wald, Abraham (1944). “On Cumulative Sums of Random Variables”. In: The Annals of

Mathematical Statistics 15.3, pp. 283–296.

http://arxiv.org/pdf/1708.06401v2
http://arxiv.org/pdf/1706.07459v2
http://arxiv.org/pdf/1706.07459v2
http://arXiv.org/pdf/1706.09038
http://arXiv.org/pdf/1706.09038
http://arxiv.org/pdf/1712.03106v1


BIBLIOGRAPHY 129

Whitt, Ward (1970). “Weak Convergence of Probability Measures on the Function Space

$C[0, \infty)$”. In: The Annals of Mathematical Statistics 41.3, pp. 939–944.

– (2002). Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and

Their Application to Queues. Springer Series in Operations Research and Financial

Engineering. New York, NY: AT&T. isbn: 0387953582.

Woess, Wolfgang (2009). Denumerable Markov chains: Generating functions, boundary

theory, random walks on trees. EMS Textbooks in mathematics. Zürich: European
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Appendix

A Parameter estimation and goodness of fit testing

for simulated data

For four different parameter sets (λ, α, β), we simulate an exponential Hawkes process

on the interval [0, 1000] and then use the maximum likelihood method to estimate the

parameters (λ̂, α̂, β̂) for the realisation of each process {t1, t2, · · · }. In each case, the length

of the observed interval leads to more than 1600 arrivals which can be considered a

large enough data set to produce reliable estimates. We use the implementation of the

Nelder-Mead algorithm from the R package mle4 to minimize the negative value of the

log-likelihood function given in (3.14) with bounds [0, 500] on each parameter value. As

concerns about dependence of the result on the initial parameter set have been raised, we

use the four sets of (λ, α, β) as starting parameters in each case. We observe that apart

from in one case, the algorithm gives the same, quite accurate results for all sets of initial

parameter values. In the case where different initial parameters lead to different results,

the result closest to the true parameter values turns out to be the one with the lowest

value of the objective function (negative log-likelihood). This leads us the approach of

using several sets of different starting values and picking the result with the lowest value

of the objective when working with empirical data sets.
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(λ, α, β) N(T )
Initial parameters

(λ0, α0, β0)

Maximum likelihood estimates

(λ̂, α̂, β̂)

Value of objective

−l(λ̂, α̂, β̂)

(1, 2, 5) 1621 (1, 2, 5) (0.9887, 2.0201, 5.1987) 597.2086

(1, 2, 2.1) (0.9887, 2.0201, 5.1987) 597.2086

(1, 0.2, 0.5) (0.9887, 2.0201, 5.1987) 597.2086

(10, 200, 400) (0.9887, 2.0201, 5.1987) 597.2086

(1, 2, 2.1) 24476 (1, 2, 5) (1.0364, 1.9653, 2.0518) −65126.02

(1, 2, 2.1) (1.0364, 1.9653, 2.0518) −65126.02

(1, 0.2, 0.5) (1.0364, 1.9653, 2.0518) −65126.02

(10, 200, 400) (1.0364, 1.9653, 2.0518) −65126.02

(1, 0.2, 0.5) 1594 (1, 2, 5) (1.1079, 0.1394, 0.4559) 834.6009

(1, 2, 2.1) (1.1079, 0.1394, 0.4559) 834.6009

(1, 0.2, 0.5) (1.1079, 0.1394, 0.4559) 834.6009

(10, 200, 400) (1.5940, 0, 490.3411) 850.8030

(10, 200, 400) 19956 (1, 2, 5) (9.8339, 198.561, 391.4656) −56373.87

(1, 2, 2.1) (9.8339, 198.561, 391.4656) −56373.87

(1, 0.2, 0.5) (9.8339, 198.561, 391.4656) −56373.87

(10, 200, 400) (9.8339, 198.561, 391.4656) −56373.87

Table 1: Results of parameter estimation using the maximum likelihood method on simulated exponential

Hawkes processes with four different parameter sets.

We give an example for the goodness of fit testing method using the random time change

theorem introduced in Section 3.4. For the first set of true parameters (λ, α, β) = (1, 2, 5)

above, we transform the 1621 simulated arrival times using the compensator of the ex-

ponential Hawkes process given in (3.13) given the estimated parameters (λ̂, α̂, β̂) =

(0.9887, 2.0201, 5.1987). We then compare the interarrival times of the transformed pro-

cess {t∗1, t∗2, · · · } against an Exp(1)-distribution using a QQ-plot. Furthermore, we plot the

transformed points (Uk, Uk+1), where Uk := 1−e−(t∗k−t
∗
k−1), on the unit square [0, 1]× [0, 1]

to check for independence according to the probability integral transform. The results are

displayed in Figure 29.
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(a) t (b) t

Figure 29: (a) shows the QQ-plot of interarrival times of the transformed point process given (λ̂, α̂, β̂)

against a Exp(1) distribution. We observe a very good fit indicated by the data points following the QQ-

line very closely. (b) shows the series (Uk, Uk+1) plotted in the unit square, where they are scattered quite

evenly without any noticeable patterns indicating independence of the transformed interarrival times.

B Proof of Lemma 3.13 continued

Proof of Lemma 3.13 continued. text

For (3.23) choose f(X(t)) ≡ N(t)2, then

Lf(X(t)) = β(λ− λ∗(t))0 + λ∗(t)[(N(t) + 1)2 −N(t)2] = λ∗(t)[2N(t) + 1] = 2N(t)λ∗(t) + λ∗(t)

Dynkin’s formula (with s = t and t = 0) and Fubini’s Theorem yield

E[N(t)2] = N(0)2 + E
[ t∫

0

2N(u)λ∗(u) + λ∗(u)du

]

= N(0)2 + 2

t∫
0

E[N(u)λ∗(u)]du+

t∫
0

E[λ∗(u)]du

Finally, differentiating gives

dE[N(t)2] = 2E[N(t)λ∗(t)]dt+ E[λ∗(t)]dt

For (3.24), let f(X(t)) ≡ λ∗(t)N(t). Analogously to above,

Lf(X(t)) = β(λ− λ∗(t))N(t) + λ∗(t)[(λ∗(t) + α)(N(t) + 1)− λ∗(t)N(t)]

= βλN(t)− βλ∗(t)N(t) + λ∗(t)[λ∗(t) + αN(t) + α]

= βλN(t)− βλ∗(t)N(t) + λ∗(t)2 + λ∗(t)αN(t) + λ∗(t)α

= (α− β)λ∗(t)N(t) + βλN(t) + λ∗(t)α + λ∗(t)2
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⇒ E[λ∗(t)N(t)] = λ0N(0) + (α− β)

t∫
0

E[λ∗(u)N(u)]du+ βλ

t∫
0

E[N(u)]du

+ α

t∫
0

E[λ∗(u)]du+

t∫
0

E[λ∗(u)2]du

⇒ dE[λ∗(t)N(t)] = (α− β)E[λ∗(t)N(t)]dt+ βλE[N(t)]dt+ αE[λ∗(t)]dt+ E[λ∗(t)2]dt.

For (3.25), let f(X(t)) ≡ λ∗(t)2. As above,

Lf(X(t)) = β(λ− λ∗(t))2λ∗(t) + λ∗(t)[(λ∗(t) + α)2 − λ∗(t)2]

= 2βλλ∗(t)− 2βλ∗(t)2 + α2λ∗(t) + 2αλ∗(t)2

= (α2 − 2βλ)λ∗(t) + 2(α− β)λ∗(t)2

⇒ E[λ∗(t)2] = λ2
0 + (α2 − 2βλ)

t∫
0

E[λ∗(u)]du+ 2(α− β)

t∫
0

E[λ∗(u)2]du

⇒ dE[λ∗(t)2] = (α2 − 2βλ)E[λ∗(t)]dt+ 2(α− β)E[λ∗(t)2]dt.

C Proof of Proposition 3.14 continued

Proof. We proceed analogously for the second moment by additionally making use of

(3.23),(3.24) and (3.25). Define

I = E[(N(t2)−N(t1))2] = E[Et1 [N(t2)2]− 2N(t1)Et1 [N(t2)] +N(t1)2],

where we have used the tower property and Et1 [·] := E[·|F(t1)]. By ODE (3.23) and (3.21)

respectively, it holds that

Et1 [N(t2)2] = N(t1)2 + 2

t2∫
t1

Et1 [λ∗(u)N(u)]du+

t2∫
t1

Et1 [λ∗(u)]du,

and

Et1 [N(t2)] = N(t1) +

t2∫
t1

Et1 [λ∗(u)]du,

which implies

I =

t2∫
t1

E[λ∗(u)N(u)]du

︸ ︷︷ ︸
=:I1

+

t2∫
t1

E[λ∗(u)]du− 2N(t1)

t2∫
t1

Et1 [λ∗(u)]du

︸ ︷︷ ︸
=:I2

.
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Using (3.24) it holds

I1 =

t2∫
t1

e(α−β)(u−t1)E[λ∗(t1)N(t1)]du+

t2∫
t1

u∫
t1

e(α−β)(u−s)[βλE[N(s)]+E[(λ∗(s))2]+αE[λ∗(s)]
]
dsdu,

whereas using (3.22) for I2 yields

I2 = E[λ∗(t1)N(t1)]

t2∫
t1

e(α−β)(u−t1)du+ βλE[N(t1)]

t2∫
t1

u∫
t1

e(α−β)(u−s)dsdu.

Using that E[N(s)] = E[N(t1)]+
s∫
t1

E[λ∗(u)]du by (3.21), substituting I1 and I2 into I and

rearranging the terms yields

I =

t2∫
t1

E[λ∗(u)]du+ 2

t2∫
t1

u∫
t1

e(α−β)(u−s)[βλ s∫
t1

E[λ∗(u)]du+ E[(λ∗(s))2] + αE[λ∗(s)]
]
dsdu.

Thus, we calculate the expected second moment of the number of jumps during an interval

of length τ by first conditioning on F(t) and considering E[(N(t+τ)−N(t))2], which as we

see above depends on E[λ∗(t)] and E[(λ∗(t))2]. The dependence of these expressions w.r.t.

the starting value λ0 is again eliminated by considering the limit as t→∞, thus taking the

process to its stationary regime. Denote for now lim
t→∞

E[λ∗(t)] = Λ and lim
t→∞

E[(λ∗(t))2] =

Λ2. Using the above expression for I with t1 = t and t2 = t + τ and letting t → ∞ then

yields

lim
t→∞

E[(N(t+ τ)−N(t))2] = τΛ + 2βλΛ lim
t→∞

t+τ∫
t

u∫
t

e(α−β)(u−s)

s∫
t

drdsdu

+ 2(Λ2 + αΛ)

t+τ∫
t

u∫
t

e(α−β)(u−s)dsdu,

where

t+τ∫
t

u∫
t

e(α−β)(u−s)

s∫
t

drdsdu = − τ 2

2(α− β)
− τ

(α− β)2
+
e(α−β)τ − 1

(α− β)3

t+τ∫
t

u∫
t

e(α−β)(u−s)dsdu = − τ

α− β
+
e(α−β)τ − 1

(α− β)2
.

Substracting lim
t→∞

E[N(t + τ) − N(t)]2 (which is known from (3.26)) and combining the

terms finally yields (3.27).

The autocovariance function is deduced analogously by considering E[(N(t1) −
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N(t))(N(t3) − N(t2))] where t < t1 < t2 < t3 and τ1 := t1 − t, δ := t2 − t1, τ2 := t3 − t2.

By successive application of the tower property, we obtain

E[(N(t1)−N(t))(N(t3)−N(t2))] = E[Et[Et1 [Et2 [(N(t1)−N(t))(N(t3)−N(t2))]]]].

Using that N(t) and N(t1) are Ft2-measurable and the computations for the first moment

(on (N(t3)−N(t2))) yields for the innermost expectation

Et2 [(N(t1)−N(t))(N(t3)−N(t2))] = (N(t1)−N(t))

·
[
λβ(e(α−β)τ2 − 1− (α− β)τ2)

(α− β)2
+ λ∗(t2)

e(α−β)τ2 − 1

α− β

]
.

Everything in the above expression is Ft1-measurable apart from λ∗t2 , so for the next

conditioning step, we need to remember that by the calculations for the first moment we

also know

Et1 [λ∗(t2)] =
βλ

α− β
(
e(α−β)δ − 1

)
+ λ∗(t1)e(α−β)δ.

So for the last conditioning (on Ft) we need to remember likewise

Et[λ∗(t1)] =
βλ

α− β
(
e(α−β)τ1 − 1

)
+ λ∗(t)e(α−β)τ1 ,

and Et[λ∗(t1)N(t1)] which is known from the previous calculations.

Finally, letting t→∞ and setting τ1 = τ2 = τ yields

lim
t→∞

E[(N(t+ τ)−N(t))(N(t+ 2τ + δ)−N(t+ τ + δ))] =

λβα(2β − α)(e(α−β)τ − 1)2

2(α− β)4
e(α−β)δ +

λ2β2

(β − α)2
τ 2,

where substracting E[N(τ)]2 yields (3.28).

D Stability of two-dimensional exponential Hawkes

process

Recall that the matrix kernel for our bivariate exponential Hawkes process is given by

Φ(t) =

(
µ(s)(t) µ(c)(t)

µ(c)(t) µ(s)(t)

)
=

(
α(s)e−β

(s)t α(c)e−β
(c)t

α(c)e−β
(c)t α(s)e−β

(s)t

)
text∀t > 0.

and the stability condition in this case is that that the spectral radius of ‖Φ‖ = {‖µij‖}Di,j=1

should be smaller than 1, where the spectral radius is simply the largest (absolute) eigen-

value. We know from the one-dimensional-case that ‖Φ‖ is given by

‖Φ‖ =

(
α(s)/β(s) α(c)/β(c)

α(c)/β(c) α(s)/β(s)

)
=:

(
η(s) η(c)

η(c) η(s)

)
.
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The eigenvalues µ1, µ2 of ‖Φ‖ are then given by the solutions of det(µ1−‖Φ‖) = 0, where

1 is the (2× 2)-identity matrix. Thus

det

(
µ− η(s) −η(c)

−η(c) µ− η(s)

)
= (µ− η(s))

2 − η2
(c) = µ2 − 2η(s)µ+ η2

(s) − η2
(c) = 0

has solutions

µ1,2 =
2η(s) ±

√
4η2

(c)

2
= η(s) ± η(c).

As both η(s) and η(c) are positive, the spectral radius of ‖Φ‖ is η(s) + η(c), which yields the

stability condition.

E Exponential Hawkes process covariance density

We would like to compute the covariance density φ(t) of an exponential Hawkes process

with background rate λ = 1, which is described by the equation

φ(t) =
αe−βt

1− α/β︸ ︷︷ ︸
=:g1(t)

+αe−βt
∞∫

0

e−βvφ(v)dv

︸ ︷︷ ︸
=:g2(t)

+αe−βt
t∫

0

eβvφ(v)dv

︸ ︷︷ ︸
=:g3(t)

.

This is a Wiener-Hopf type integral equation and can be solved by using the Laplace

transform as described for the general case in Laub, Taimre, and Pollett 2015, Theorem

2. Recall that the Laplace transform of a function f(t) is given by

L{f(t)}(s) =

∞∫
0

f(t)e−stdt, text∀t ≥ 0.

Let n denote the branching ratio, in this case n = 1
1−α/β . Thus, the Laplace transforms of

g1(t), g2(t) and g3(t) are given by

L{g1(t)}(s) =
α

1− α/β

∞∫
0

e(β+s)tdt =
αn

β + s
,

L{g2(t)}(s) =

∞∫
0

(
αe−βt

∞∫
0

e−βvφ(v)

)
e−stdt = α

∞∫
0

e−βvφ(v)

∞∫
0

e−(s+β)tdtdv

=
α

s+ β

∞∫
0

e−βvφ(v)dv =
α

s+ β
L{φ(t)}(β),
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and

L{g3(t)}(s) =

∞∫
0

(
αe−βt

t∫
0

eβvφ(v)

)
e−stdt = α

∞∫
0

e−(β+s)t

t∫
0

eβvφ(v)dvdt

=
α

s+ β
L{φ(t)}(s).

Putting everything together using the linearity of the Laplace transform yields

L{φ(t)}(s) =
α

s+ β

(
n+ L{φ(t)}(β) + L{φ(t)}(s)

)
,

where choosing s = β implies

L{φ(t)}(β) =
α

2β

(
n+ 2L{φ(t)}(β)

)
⇐⇒ L{φ(t)}(β) =

αn

2(β − α)
.

Thus for general s it holds

L{φ(t)}(s) =
α

s+ β

(
n+

αn

2(β − α)
+ L{φ(t)}(s)

)
⇐⇒ L{φ(t)}(s) =

α
s+β

(
n+ αn

2(β−α)

)
1− α

s+β

=
αn(2β − α)

2(β − α)(s+ β − α)
.

Therefore, the covariance density φ(t) is given by

φ(t) = L−1

(
αn(2β − α)

2(β − α)(s+ β − α)

)
=
αn(2β − α)

2(β − α)
L−1

(
1

s+ β − α

)
=
αβ(2β − α)

2(β − α)2
e−(β−α)t,

where L−1 denotes the inverse Laplace transform and we have resubstituted n = β
β−α .

F Auxiliary calculations for proof of Theorem 7.5

We would like to solve the following linear ODE for E[X∗(t)]:

dE[X∗(t)] =
[
(r(t)− ς(t))E[X∗(t)]− ς(t)ϑ(t) + ς(t)γ + κ(t)

]
dt,

E[X∗(0)] = x.

We first rewrite the ODE in standard form:

dE[X∗(t)]

dt
+ (ς(t)− r(t))E[X∗(t)] = −ς(t)ϑ(t) + ς(t)γ + κ(t)
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E[X∗(0)] = x.

The standard technique of multiplying both sides with the integrating factor e

s∫
0

(ς(u)−r(u))du

yields

d

(
E[X∗(s)]e

s∫
0

(ς(u)−r(u))du
)

= (−ς(s)ϑ(s) + ς(s)γ + κ(s))e

s∫
0

(ς(u)−r(u))du
.

Integrating both sides of the equation from 0 to t and using the initial condition

E[X∗(0)] = x yields

E[X∗(t)]e

t∫
0

(ς(u)−r(u))du
− x =

t∫
0

(−ς(s)ϑ(s) + ς(s)γ + κ(s))e

s∫
0

(ς(u)−r(u))du
ds.

Finally, solving for E[X∗(t)] yields (7.27):

E[X∗(t)] = xe

t∫
0

(r(u)−ς(u))du
+

t∫
0

(ς(s)γ + κ(s)− ς(s)ϑ(s))e

t∫
s

(r(z)−ς(z))dz
ds.

text

We would like to solve the following ODE for E[X∗(t)2]:

dE[X∗(t)2] =
[
(2r(t)− ς(t))E[X∗(t)2] + 2κ(t)E[X∗(t)] + ς(t)(ϑ(t)− γ)2 + δ(t)′δ(t)

− δ(t)′σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t) + δ0(t)2
]
dt,

E[X∗(0)2] = x2.

Again, we can rewrite the equation in standard form

dE[X∗(t)2]

dt
+ (ς(t)− 2r(t))E[X∗(t)2] =2κ(t)E[X∗(t)] + ς(t)(ϑ(t)− γ)2 + δ(t)′δ(t)

− δ(t)′σ(t)′(σ(t)σ(t)′)−1σ(t)δ(t) + δ0(t)2,

where we abbreviate the right-hand side as C(t) for now. Multiplying both sides with the

integrating factor e

s∫
0

(ς(u)−2r(u))du
yields

d

(
E[X∗(s)2]e

s∫
0

(ς(u)−2r(u))du
)

= C(s)e

s∫
0

(ς(u)−2r(u))du
.

Integrating from 0 to t and inserting the initial condition E[X∗(0)2] = x2 yields

E[X∗(t)2]e

t∫
0

(ς(u)−2r(u))du
− x2 =

t∫
0

C(s)e

s∫
0

(ς(u)−2r(u))du
ds.
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By solving the equation for E[X∗(t)2] and resubstituting C(s), we finally obtain (7.30):

E[X∗(t)2] = x2e

t∫
0

(2r(u)−ς(u))du
+

t∫
0

(
2κ(s)E[X∗(s)] + ς(s)(ϑ(s)− γ)2 + δ(s)′δ(s)

− δ(s)′σ(s)′(σ(s)σ(s)′)−1σ(s)δ(s) + δ0(s)2
)
e

t∫
s

(2r(u)−ς(u))du
ds.

To calculate the expression for ϑ(t), recall that %(t) and φ(t) are given by the equations

%̇(t) + (2r(t)− ς(t))%(t) = 0,

%(T ) = χ,

%(t)σ(t)σ(t)′ > 0 for a.e. t ∈ [0, T ],

and

φ̇(t) + (r(t)− ς(t))φ(t) + (r(t)γ + κ(t))%(t) = 0,

φ(T ) = 0,

where (̇) denotes the derivative w.r.t. t.

First, note that in this case the equation for %(t) simplifies to a linear ODE which can

be easily solved by the standard method of multiplying both sides with the integrating

factor e
∫

(ς(s)−2r(s))ds, integrating the resulting equation from t to T , using the terminal

condition and solving for %(t). This clearly yields

%(t) = χe
−
T∫
t

(ς(s)−2r(s))ds
.

Let ϑ(t) := φ(t)
%(t)

, then by the quotient rule

ϑ̇(t) =
%(t)φ̇(t)− φ(t)%̇(t)

%2(t)

=
%(t)(ς(t)− r(t))φ(t)− %2(t)(γr(t) + κ(t))− φ(t)(ς(t)− 2r(t))%(t)

%2(t)

=
φ(t)%(t)r(t)− %2(t)(γr(t) + κ(t))

%2(t)

= ϑ(t)r(t)− (γr(t) + κ(t)),

ϑ(T ) = 0.

This is again a linear ODE for ϑ(t) which we can solve by multiplying both sides with

e−
∫
r(s)ds, integrating the resulting equation from t to T , inserting the terminal condition

and solving for ϑ(t). This yields (7.25).
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