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Summary

“The advantage of knowing about risks is that we can change our behavior

to avoid them.”

(Robert F. Engle, Risk and volatility: Econometric models and financial prac-

tice, Noble Lecture, 2003)

In the processing of the financial crisis of 2007/2008 it became clear to both, practitioners

and researchers, that enterprise risk management (ERM), as it had been applied until

then, was flawed, vulnerable and allowed for excessive risk taking.1 The questions arose

as to how risks can be measured reliably and how it can be ensured that the results of

ERM are efficiently integrated into the steering process of financial institutions. In the

aftermath, new, more consistent and prudential regulatory frameworks have been set up

for financial institutions, such as Basel III for banks and Solvency II for insurance com-

panies in the European Union. These provide guidance for an adjusted risk management

procedure and can be seen as a “major step ahead”, cf. Doff (2016). However, there still

remains space for improvement in several aspects of, two of which this work addresses:

the lack of transparency of risk measurement methodologies and the lack of reliability of

regulatory measurement approaches.

Firstly, the lack of transparency of complex risk measurement methodologies has been

identified as one of the central disadvantages of risk management prior to the financial

crisis, cf. for instance Stulz (2008). Stulz in particular sees “providing the board and

management with timely information that enables them to assess the consequences of

retaining or discarding risks” as one of the central tasks of risk management. Similarly,

Aven (2016) identifies the description and presentation of the results “in a way that is

useful to decision makers and that clearly presents the assumptions made and their justi-

fication in terms of the knowledge on which the assessment is based” as one of the central

issues of risk measurement and management. If these requirements for a company’s risk

management are not fulfilled, the results cannot be adequately incorporated into a fi-

nancial institution’s decision-making process. This leads then – in the worst case – to

inappropriate risk steering. Although the new regulatory expectations resulting from the

1Cf. for instance Aebi et al. (2012), Eling and Schmeiser (2010) or Huber and Scheytt (2013) among
many others.
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financial crisis provide some guidance in that sense, the lack of transparency is still a

key challenge for a company’s risk management practices today, cf. for instance Wilson

(2015, p. 599).

Secondly, the lack of reliability of regulatory approaches to risk measurement, such as

the Solvency II standard formula, poses a crucial challenge to tackle. A general criticism

of such standardized approaches has been formulated by Scherer and Stahl (2021) who

state that they “lack sound economic and mathematical reasoning”. On the one hand,

this is a valid statement, since there is a lot of evidence in the literature that a standard-

ized approach may provide adverse steering incentives.2 On the other hand, regulatory

requirements have to address a broad audience. Large companies exposed to the super-

visory authorities would theoretically have the capacities to set up a risk measurement

environment that evaluates risk more precisely and firm-specificly than the regulatory

approaches. However, small or medium-sized companies may lack these capacities but

are nevertheless able to conduct their risk measurement in a reasonable manner based

on the regulatory suggestions. From that point of view, the regulatory approaches have

a certain raison d’être and it seems reasonable to adjust the risk measurement instead,

bringing it in line with a complex measurement in a feasible manner.

More generally speaking, it is standard in risk management to measure risk based on a

single number, resulting for example from regulatory requirements, internal models or

risk measures, such as the Value-at-Risk or the Tail-Value-at-Risk. This number has a

great impact on steering decisions within a company and is influenced, for instance, by

the segment volumes within a company or the asset volumes in a portfolio optimization

context. These volumes are now the adjustment screws for the decision makers to avoid

excessive risk taking or to optimize the risk-return profile of the company. However, for

effective decision making, it is necessary to know beforehand how the overall risk changes

when the volumes change. Thus, there is a functional relationship between the volumes

and the risk which we want to evaluate later on.

To address the two problems mentioned before, stress scenarios have been increasingly

focused upon and are nowadays expected by regulatory authorities as part of the risk

management, cf. for instance EIOPA (2015) and BaFin (2017). A broad strand of liter-

ature in the stress scenario context deals with the identification of stochastic scenarios,

2Cf. for instance Becker and Ivashina (2015), Chen et al. (2019), Fischer and Schlütter (2015), Braun
et al. (2017) or Pfeifer and Strassburger (2008).
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stressing the underlying distribution of the risk vector which comprises single risky po-

sitions, to be evaluated.3 These approaches can provide a reasonable evaluation of a

company’s current risk situation and are therefore quite relevant. However, they are

again complicated to communicate to a financial institution’s board due to their theoret-

ical complexity. Therefore, they only allow a tackling of the second problem mentioned.

Another suggestion is to derive stress scenarios by decomposing the multivariate risk dis-

tribution of the evaluated risk vector. This then results in deterministic stress scenarios,

the outcomes of which can easily be aggregated towards the overall portfolio risk. There

is a strand of literature in research dealing with capital allocations providing such a de-

composition of risk vectors.4 One of the well-studied methodologies in that sense is the

gradient capital allocation, also known as the Euler-allocation, cf. Tasche (2008). Pre-

cisely speaking, the gradient capital allocation points out the marginal impact of segment

or asset volumes on diversified capital needs. It thus shows which segments or assets to

marginally expand or reduce in order to achieve an optimal risk-return profile, cf. Tasche

(2008). However, the informative value of capital allocation methods is limited when con-

sidering non-marginal portfolio changes. This is because risk diversification is typically

not linear, but rather exhibits curvatures. Due to the fact that only a single scenario is

derived, capital allocations provide a linear function depending on risk volumes such that

this curvature cannot be captured. For example, the risks of a fund’s investments into

a new asset category may be well diversified with other risks as long as the investments

are of small volume; after expanding investments into the new category, these risks can

shape the bank’s overall risk profile. Another widely-employed approach to the definition

of stress scenarios is the Principal Component Analysis (PCA), cf. Hull (2018, pp.488

ff.). It decomposes a given risk distribution into multiple scenarios which are orthogonal

in the sense of the Pearson correlation. By selecting multiple scenarios, the curvature in

the functional relationship can theoretically be captured. However, the PCA assumes a

multivariate elliptical distributed risk vector, imposing a severe and in practice often not

fulfilled restriction.

This work now provides a suggestion for how to determine so-called “orthogonal convex-

ity scenarios” (OCS). We will show that the OCS allow to address both aforementioned

3Cf. for instance Pesenti et al. (2019), Makam et al. (2021), Packham and Woebbeking (2019) or
Breuer and Csiszár (2013a).

4Cf. Guo et al. (2021) for a detailed overview of the different methods.
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problems in the deterministic sense. We will thereby obtain a flexible and reliable risk

measurement tool that is also easy to communicate.

Chapter 1 first develops the necessary theory, introducing the OCS technically. Gen-

erally, the scenarios are based on the so-called “hybrid approach” for risk measurement,

cf. Rosenberg and Schuermann (2006), which allows univariate risk distributions to

be heavy-tailed and skewed. In a second step, univariate risks are aggregated using a

relatively simple square-root formula. However, the hybrid approach is generally only

valid for elliptical distributions. In particular, we base the scenarios on the hybrid ap-

proach in connection with so-called sensitivity-implied tail correlation matrices provided

by Paulusch and Schlütter (2022). The authors show that the hybrid approach thereby

meets first and second-order sensitivities in line with a pre-specified “true” risk measure-

ment. By basing the determination of the OCS on Paulusch and Schlütter (2022), we

can ensure that the resulting scenario-based risk measurement has the same properties

to meet first and second-order sensitivities of the underlying “true” risk. Notably, the

aforementioned gradient capital allocation only meets the first-order sensitivities due to

its linearity resulting from the single scenario situation. However, examples in Gründl

and Schmeiser (2007, pp. 208 -314) highlight that adding new contracts to an insurance

portfolio may lead to errors in pricing of insurance contracts when they are based on the

gradient capital allocation due to changing portfolio structures. The main challenge is

that changing diversification effects can not be captured.5 To overcome this problem,

it has already been suggested by Gourieroux et al. (2000) to also consider second-order

derivatives of the Value-at-Risk or a risk measure in general. However, to employ such a

methodology, the user has to collect second order sensitivities for all portfolio combina-

tions in terms of the Hessian matrix. These can become difficult to interpret and therefore

does not reasonably allow the communication of the current risk profile to stakeholders.

We show that our OCS allow the depiction of second-order sensitivities in such a simple

manner that they can be used to communicate the risk profile and its potential changes.

We find that the suggested approach allows for a reasonable approximation of the true

risk in the sense of a second-order polynomial in the neighborhood of an actual portfolio,

allowing the evaluation of marginal and even non-marginal portfolio changes that may

be considered. Notably, the approach makes no distributional assumptions, whereby tail-

5Similar results in the context of portfolio optimization are provided by Buch et al. (2011).
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dependencies of the risk drivers can be depicted and – by including several scenarios –

changing diversification effects are reflected. Chapter 1 further provides several applica-

tions of OCS in terms of risk contributions, risk communication and risk limiting.

Overall, our approach, based on deterministic scenarios, provides the risk management

department of a financial institution with a methodology to communicate not only the

current risk situation to the board in a simple manner, but also provides a foundation

for steering decisions. Therefore, we are able to tackle the lack of transparency of risk

measurement results without losing information.

Chapter 2 employs the scenarios developed in Chapter 1 to tackle the regulatory re-

quirements of the “Own Risk and Solvency Assessment” (ORSA) under Solvency II.

Therein, the management is expected to assess whether its risk profile deviates from

the assumptions underlying the Solvency Capital Requirements (SCR) calculations, cf.

EIOPA (2015), Guidelines 2 & 12. More precisely, BaFin (2016) expects insurers to “take

into account risks that are not or not adequately included in the standard formula” and

“must develop a suitable assessment procedure for them”. To develop such a method-

ology, the ORSA, Guidelines 4 & 7, suggest employing (reverse) scenario analyses and

stress testing, but leave the question open how to identify these.6 Doff (2016) highlights

that stress testing makes it possible to “include specific risks that are absent from the

current Solvency II framework”. To identify such missing risks and at the same time to

adjust the risk measurement, we derive orthogonal convexity scenarios. To evaluate the

proposition, a partial internal model (IM) in line with Gatzert and Martin (2012) and

Eckert et al. (2016) is set up to represent the true market risk resulting from a portfolio

comprising bond and stock investments. Its outcome is denoted by f IM. Additionally,

the risk is measured in line with the standard formula (SF) of Solvency II for the market

risk sub-module, the outcome of which is then denoted by fSF . We find that fitting

the internal model for recent interest rate and bond data, leads to a severe gap between

the results based on f IM and fSF. We show that this gap can be directly approximated

based on the OCS. In particular, we find that government bonds, which are considered to

be spread risk free under Solvency II, have to be precisely included in the measurement

process. Our observations here are in line with Gatzert and Martin (2012), who highlight

exactly this problem. Again, due to only weak assumptions made, the approach allows for

6Cf. EIOPA (2015).



Summary 6

a widely applicable and at the same time simple representation of this gap. Furthermore,

we show that rewriting the approximation outcome as

fSF(u) + g(u) ≈ f IM(u)

with u reflecting asset volumes, allows for an extension of the standard formula that meets

the true risk in the sense of first- and second-order sensitivities. Therein, g represents the

approximation of f IM(u) − fSF(u) based on the OCS. Overall Chapter 2 contributes to

the literature in three ways: firstly, we can validate the shortcomings of standardized ap-

proaches. Secondly, a practical idea of how to address the ORSA requirements for stress

scenarios is presented. Thirdly, it is empirically evaluated as to how meaningful scenarios

for an exemplary company may look. The last part may also provide the regulator with

a starting point for additional actions: by identifying the OCS-based function g for a

representative insurer, we also obtain representative scenarios that could be provided to

an insurer to then extend its risk measurement and thereby adjust the standard formula

in a reasonable way.

Chapter 3 embeds the OCS methodology in the context of systemic risk with the aim

of highlighting how the scenarios can improve the risk steering within a specific context.

Systemic risk is a major threat to modern economies and societies making it necessary

for a regulator to address these risks. A strand of literature, therefore, deals with an

appropriate definition of capital requirements. To this end, Acharya et al. (2017) have

lately suggested a tax policy for financial institutions. Their approach is based on the

so-called “Systemic Expected Shortfall” (SES) measuring the marginal contributions of

companies to the overall systemic risk. It is to be noted that the approach corresponds to

the gradient capital allocation from the enterprise risk management literature, cf. again

Tasche (2008). As previously mentioned, the gradient capital allocation faces the prob-

lem that only marginal changes – in context of the systemic risk – in volumes can be

considered. In this sense, the OCS provide an extension to the approach of Acharya

et al., since the first OCS can be chosen in such a way that it directly coincides with the

gradient capital allocation and therefore with the SES. In the enterprise risk management

context, Buch et al. (2011) suggest employing second-order derivatives with respect to

segment volumes in order to extend the gradient capital allocation. Unfortunately, when

the number of companies to be considered for the determination of systemic risk becomes
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too high, the Hessian matrix reflecting second-order sensitivities becomes difficult to fit,

cf. for instance Gourieroux et al. (2000). OCS, by considering second-order sensitivities,

provide a reasonable starting point in order to avoid miss-evaluations and distorted steer-

ing incentives. In this chapter, we use publicly available data of “systemically relevant

institutions”, indicated by the Financial Stability Board (FSB) annually. We find empir-

ical evidence that the SES along with OCS indeed allows for a more robust evaluation of

contributions of individual firms to systemic risk. In particular, such a combination allows

the quick evaluation of systemic risk when volumes of the financial institutions change.

Furthermore, our empirical analysis provides evidence that insurance companies, which

have not been designated as systemically relevant by the FSB, indeed play an important

role.
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Chapter 1

Enhancing Gradient Capital Allocation with

Orthogonal Convexity Scenarios*

Abstract

Gradient capital allocation, also known as Euler allocation, is a technique used to re-
distribute diversified capital requirements among different segments of a portfolio. The
method is commonly employed to identify dominant risks, assessing the risk-adjusted
profitability of segments, and establishing for limit systems. However, capital alloca-
tion can be misleading in all these applications because it only accounts for the current
portfolio composition and ignores how diversification effects may change with a portfolio
restructuring. This paper proposes enhancing the gradient capital allocation by adding
”orthogonal convexity scenarios” (OCS). OCS identify risk concentrations that poten-
tially drive portfolio risk and become relevant after restructuring. OCS have strong ties
with principal component analysis (PCA), but they are a more general concept and com-
patible with common empirical patterns of risk drivers being fat-tailed and increasingly
dependent in market downturns. We illustrate possible applications of OCS in terms of
risk communication and risk limits.

JEL classification: G28, G32, D62, H23.

Keywords: Risk capital allocation, Scenario analysis, Risk communication, Risk limit-

ing

*Earlier versions of this paper were presented at the CEQURA 2020, the annual meeting of the
DVfVW 2021, the International Congress of Insurance: Mathematics and Economics 2021, the ARIA
annual meeting 2021 and the annual meeting of the German Finance Association 2021.
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1.1 Introduction

Risk diversification within an investment portfolio or multi-segment firm can help to re-

duce the portfolio’s potential loss. Capital needs for the portfolio, e.g. on the basis of

Value-at-Risk or Expected Shortfall, are therefore typically lower for the portfolio than

the sum of capital needs for the portfolio segments stand-alone. The gradient (synony-

mous Euler) capital allocation mechanism distributes the diversified capital requirement

back to portfolio segments. It is thus a relatively simple tool to inform stakeholders which

segments are dominant risk drivers when accounting for risk diversification in the portfo-

lio. Precisely speaking, the gradient capital allocation points out the marginal impact of

segment volumes on diversified capital needs. Therefore, it enables drawing conclusions

about which segments to marginally expand or reduce to achieve an optimal risk-return

profile (cf. Tasche, 2008).1

The informative value of gradient capital allocation is limited, however, when realistically

considering non-marginal portfolio changes. In fact, risk diversification is typically not

linear, but rather exhibits curvatures. For example, risks of a fund’s investments into a

new asset category may be well diversified with other risks as long as the investments are

of small volume. Yet, after expanding investments into the new category, these risks could

substantially shape the bank’s overall risk profile. Examples in Gründl and Schmeiser

(2007, pp. 308-314) highlight errors in pricing of insurance contracts based on capital

allocation when new contracts are added to an existing portfolio and hence the structure

of the portfolio changes. Similarly, Buch et al. (2011) show that a control problem for

portfolio optimization can fail when only relying on first-order derivatives; to reach the

optimum, the authors propose a correction term that includes second-order derivatives.

Gourieroux et al. (2000) identify an efficient stock portfolio—with risk being measured

by Value-at-Risk instead of the variance—and to this end employ first and second-order

derivatives of Value-at-Risk.

Whereas second-order derivatives could enhance the accuracy of forecasting the effects

of portfolio restructuring on capital needs, they convey a more elusive information struc-

ture than the gradient capital allocation. Technically, one has to collect second-order

1Recently, there has been growing interest in meaningful risk decomposition in line with gradient-
based capital allocation. For this purpose, Schilling et al. (2020) propose a martingale representation
theorem (MRT) decomposition to decompose the dynamic risks of a company into individual components.
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derivatives with respect to all combinations of portfolio segments in a Hessian matrix.

Especially for situations with many portfolio segments, such a Hessian matrix is difficult

to interpret. Therefore, neither the gradient capital allocation nor the Hessian matrix

provide a straightforward means to communicate to decision makers how the risk profile

of a portfolio is affected by restructuring. While it may be possible to calculate the ex-

act capital requirement of a new portfolio by re-running the risk model, as proposed by

Gründl and Schmeiser (2007), the challenge remains how decision-makers can reach an

insightful understanding of the risk situation beforehand in order to identify promising

portfolio changes.

This paper regards the gradient capital allocation as a first scenario and shows that a

small set of further deterministic scenarios may approximate the original risk measure-

ment including its most relevant curvatures.2 Our scenarios decompose the multivariate

risk distribution similarly to a principal component analysis (PCA). Whereas the compo-

nents of the traditional PCA are orthogonal in terms of Pearson correlations, we define

orthogonality based on the marginal contribution of portfolio components on diversified

capital. Our method builds on the “hybrid approach” of risk measurement introduced by

Rosenberg and Schuermann (2006). The hybrid approach allows univariate risk distribu-

tions to be heavy-tailed and skewed, and aggregates univariate risk measurements using

a square-root formula. Whereas the square-root formula in connection with the Pearson

correlation matrix can aggregate risks accurately only in case of multivariate elliptical

distributions, Paulusch and Schlütter (2022) introduce the so-called “sensitivity-implied

tail correlation matrix”. With the latter matrix, the hybrid approach accurately reflects

first and second-order sensitivities of an original “true” risk measurement irrespective of

an elliptical distribution assumption. Using this set-up, we translate the original risk

measurement into a measurement based on “orthogonal convexity scenarios” (OCS). The

OCS-based risk measurement reflects the original risk measurement in terms of (i) all

first-order derivatives (i.e. the gradient capital allocation) and (ii) second-order deriva-

tives with respect to portfolio changes in a certain subspace.

We explain several applications of our proposed OCS approach to outline its advantages

compared to traditional methods. The stochastic distributions of the segments’ profits

2In this sense, our target differs from that of articles such as Breuer and Csiszár (2013), who identify
stress scenarios of the input factors of risk models, for example to assess the model risk relating to
changes in these factors.
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or losses used include skewed and heavy-tailed distributions which are partly connected

with a Gumbel copula modeling increased tail dependencies. Portfolio risk is measured

by the 99% Value-at-Risk of unexpected losses.

Our example substantiates that convexity of portfolio risk has to be evaluated from

a holistic perspective. Considering a stylized financial institution with three business

segments, the traditional gradient allocation (i.e. our first OCS) misses the true Value-

at-Risk especially when the volumes of segments 1 and 2 move in the same direction

(e.g. both are increased) but the volume of segment 3 moves in the opposite direction

(is reduced). In terms of stochastic distributions, this is because segments 1 and 2 ex-

hibit an increased tail dependence; segment 3 is well diversified in the initial portfolio,

but it includes heavy-tailed risks that could become dominant if the segment is over-

proportionally expanded. Accordingly, our second OCS assigns segments 1 and 2 values

of the same sign, but segment 3 a value of the opposite sign. As for the gradient alloca-

tion, the values of all OCS can be regarded as a meaningful realization of the multivariate

distribution of segment risks.

A first application of OCS is therefore to support the communication of risk concen-

trations and diversification effects between risk modelers on the one hand and decision

makers and other stakeholders on the other. In fact, this communication has been re-

garded in the literature as both challenging and essential to establishing effective and

value-adding Enterprise Risk Management.3 While the gradient capital allocation is a

relatively simple tool to communicate dominant risk drivers and natural hedging effects

in the initial portfolio, our additional OCS can provide a more solid understanding, since

they account for changes in risk diversification following portfolio changes which are par-

ticularly impactful for the risk diversification pattern.

Secondly, OCS can support the graphical visualization of portfolio risk in order to pro-

vide another tool for risk communication or to serve as a starting point for validating the

risk model. In a plot of multivariate realizations of the segment’s profits or losses, OCS

generally lie on the surface of an ellipsoid. The orientation of this ellipsoid reflects risk

contributions in the initial portfolio (i.e. the gradient allocation), and its width reflects

convexity of portfolio risk. In the special case of a multivariate elliptical distribution, the

3Communication gaps between risk modelers and decision makers have been identified as a trigger of
the 2007-2008 financial crisis, cf. (Stulz, 2008, p. 45) and Eling and Schmeiser (2010, p. 16), and are
still considered as a central challenge in Enterprise Risk Management, cf. Wilson (2015, p. 599), Aven
(2016, p. 10).
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orientation of the ellipsoid coincides with the OLS regression function when regressing a

segment’s profits on the entire portfolio’s profits; convexity of portfolio risk depends on

the standard deviation of the regression’s residuals.

Thirdly, the gradient capital allocation can be applied as a basis for breaking down a port-

folio risk limit to portfolio segments.4 In this sense, segments receiving higher amounts

from the gradient allocation have a higher impact on the overall portfolio risk and should

therefore be more strictly limited and monitored. However, the effectiveness of the limit

system in this set-up is only ensured as long as the gradient allocation correctly reflects

the risk structure of the portfolio, i.e. the composition of the portfolio may not change

too much. OCS can help integrate the latter condition directly into the risk limit system.

For this purpose, we propose risk limits of first and second order: while first-order limits

are defined with the condition of the portfolio’s risk structure remaining within certain

constraints, second-order limits monitor whether this condition is met. We demonstrate

that second-order limits are tight for segments that exert a strong convex impact on

diversified capital and are hence likely to become relevant risk drivers; segments with a

slight convex impact, in turn, receive a loose limit.

The remainder of this article is structured as follows. Section 1.2 provides a suggestive

example concerning a financial firm’s RORAC outlining the limitation of the gradient

capital allocation and how OCS can address it. Section 1.3 provides the general set-up

and defines quality criteria of a scenario-based risk measurement. Section 1.4 defines the

gradient scenario and identifies its shortcomings in terms of the defined quality criteria.

PCA-scenarios are then presented and discussed. Section 1.5 defines OCS, presents their

structural relationship with the gradient scenario and with PCA-scenarios, and shows

how they make the scenario-based risk measurement suitable in terms of the quality

criteria. Section 1.6 outlines possible applications of OCS. Section 1.7 concludes.

1.2 Motivating example: RORAC maximization

Let us consider a financial institution with three business segments. The segments can

deliver random profits or losses.5 The firm’s overall potential losses are measured by

the 99% Value-at-Risk of 100 monetary units. The gradient capital allocation splits the

Value-at-Risk to the three segments with values 30.8 + 45.1 + 24.1 = 100. Suppose the

4Cf. Jorion (2006), Buch et al. (2011), Erel et al. (2015).
5Details about the distribution assumptions are presented later in section 1.6.1.
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segments’ expected profits are 1.4+2.2+1.4 = 5. Therefore, the Return on Risk-Adjusted

Capital (RORAC) of the entire firm is 5/100=5%, and based on the gradient allocation,

the segments’ RORACs are 1.4/30.8=4.55%, 2.2/45.1=4.87%, and 1.4/24.1=5.81%.

According to Tasche (2008, p. 428 f.), the gradient allocation is “RORAC compatible”.

Hence, given that the RORACs of segments 1 and 2 (segment 3) are smaller (larger)

than the RORAC of the entire firm, the firm’s RORAC increases when segments 1 and

2 are slightly reduced and segment 3 is slightly expanded. However, analogous to what

Buch et al. (2011, p. 3006) point out for their example, it is unclear to what extent the

segments should change.

Suppose segments 1 and 2 each reduce their businesses by 25% and segment 3 expands

by 50%. If the segments’ risk contributions in the new portfolio were similar to those

in the initial portfolio, then the gradient allocation could estimate the new Value-at-

Risk in terms of 0.75 · 30.8 + 0.75 · 45.1 + 1.5 · 24.1 = 93.1. The new RORAC was

therefore (0.75 · 1.4 + 0.75 · 2.2 + 1.5 · 1.4)/93.1 = 4.8/93.1 = 5.2%. However, risks of

segment 3 are much more dominant in the new portfolio and the segment’s contribution

is severely underestimated by the given gradient allocation. Recognizing the distribution

assumptions in the example, the true Value-at-Risk of the new portfolio is 101.9, and the

new RORAC is 4.8/101.9 = 4.7%, thus lower than for the initial portfolio.

We now describe the initial portfolio’s risk structure using the gradient allocation and

one additional orthogonal convexity scenario (OCS). In the present example, the next

OCS assigns the values −19.0, −33.1 and 52.1 to the three segments. It thus points out

that losses in segment 3 could occur at the same time as gains in segments 1 and 2 (or

the other way around). The Value-at-Risk for the new portfolio can be estimated by the

root sum of squares with the two scenarios, i.e.√
(0.75 · 30.8 + 0.75 · 45.1 + 1.5 · 24.1)2 + (0.75 · (−19.0) + 0.75 · (−33.1) + 1.5 · 52.1)2

=
√
93.12 + 39.12 = 100.9,

which is much closer to the new portfolio’s true Value-at-Risk (101.9) than the esti-

mate with only the gradient allocation (93.1). OCS thus provide in simple terms a

decision-making basis for decision makers. Since OCS go beyond the purely marginal

informativeness of the gradient allocation, they prevent the company from missteering.
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1.3 Targets of a scenario-based risk measurement

The technical basis of our considerations is a mapping from a vector u = (u1, ..., un)
T ∈

R
n, with n ∈ N, to a real-valued risk measurement,

f : U → R (1.1)

with U ⊆ Rn being open and convex. Function f(u) represents the firm’s target value

and will be referred to as the original risk measurement going forward. The vector u

defines the composition of the firm’s portfolio, U is the set of admissible portfolios and

uinitial ∈ U is the firm’s initial portfolio. The technical assumption throughout our paper

is

Assumption (A): f(u), as defined in (1.1), is positive homogeneous of degree one, i.e.

for all λ > 0 we have f(λ · u) = λ · f(u). Moreover, f(uinitial) > 0 and f(u) is twice

continuously differentiable at uinitial ∈ U .

A classical example for specifying f(u) considers an n-dimensional portfolio with vector

u containing exposures to risk factors.6 Let the random vector X = (X1, ..., Xn)
T model

the losses (or gains in case of negative values) of the portfolio’s n positions with finite

expectations. Hence,

uTX =
n∑

i=1

uiXi

is the loss (or gain) of the portfolio. Let ϱ be a law-invariant, positive homogeneous and

translation-invariant risk measure.7 The original risk measurement can then be defined

as the risk measurement of unexpected portfolio losses,

fstoch : U → R, u 7→ ϱ
(
uTX

)
− E

(
uTX

)
(1.2)

The differentiability of fstoch(u) depends on the risk measure and the multivariate distri-

bution of X. It is discussed, for instance, in Gourieroux et al. (2000), Tasche (2008) and

Hong and Liu (2009).

There are several further examples of f(u) which comply with Assumption (A). For ex-

ample, f(u) can be a deterministic risk measurement in the sense of the hybrid approach

6This specification is consistent with, for example, Rockafellar et al. (2000), Zanjani (2002), Tasche
(2008).

7McNeil et al. (2015, p. 275 ff.) summarize desirable properties of risk measures.
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of Rosenberg and Schuermann (2006).8 The hybrid approach is employed in some reg-

ulatory capital requirement frameworks, such as the Solvency II standard formula for

insurance regulation in the European Union. Moreover, Assumption (A) is consistent

with the risk measurement based on the contingent claims approach in Myers and Read

(2001) and Erel et al. (2015),9

Our target is to approximate f(u) using a measurement based on deterministic scenar-

ios x ∈ R
n. We do not necessarily restrict ourselves to a single scenario, but allow for

m ∈ {1, ..., n} scenarios, x1, ..., xm. Function gm(u) provides an approximation of f(u)

based on m scenarios:

gm : Rn → R, u 7→

√√√√ m∑
j=1

(
xT
j u
)2

(1.3)

In terms of the stochastic approach in (1.2), the scenarios x1, ..., xm can be viewed as

realizations of the random vector X.10 For each scenario xj, u
Txj is the portfolio loss (or

gain) conditioned on scenario xj having been realized.

In case of m = 1 scenario, gm(u) simplifies to
∣∣xT

1 u
∣∣. For m > 1, the root sum of squares

in (3.10) is analogous to risk aggregation for elliptical distributions and thus consistent

with a risk measurement based on a Principal Component Analysis (PCA), as we will

discuss later in section 1.4.2. In other words, the risk aggregation in (3.10) coincides with

the hybrid approach of Rosenberg and Schuermann (2006), with the correlation matrix

being an identity matrix.

Going forward, we investigate to what extent gm(u) is in line with the original risk mea-

surement f(u). Specifically, we study whether gm(u) may serve as a local approximation

of f(u) at an initial portfolio uinitial. To this end, we will assess gm(u) based on the

following “quality criteria” (QC):

(QC1) Reflect the risk of the initial portfolio:

For the initial portfolio uinitial ∈ U , we have gm(uinitial) = f(uinitial).

(QC2) Reflect first-order sensitivities:

Let V1 ⊆ Rn be a space of possible portfolio changes. Starting from uinitial ∈ U ,

gm(u) accurately reflects the change in portfolio risk due to a marginal exposure

8Paulusch (2017) deals with homogeneity of risk measurement in the sense of the hybrid approach.
9For details about the homogeneity assumption in connection with the Default Put Option, cf. Milden-

hall (2004).
10This notion of a scenario is consistent with McNeil and Smith (2012).
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change in the direction of v ∈ V1, i.e.

∂

∂h
gm(uinitial + h · v)

∣∣
h=0

=
∂

∂h
f(uinitial + h · v)

∣∣
h=0

for all v ∈ V1

(QC3) Reflect second-order sensitivities:

Let V2 ⊆ V1 be a space of possible portfolio changes. Starting from uinitial ∈ U ,

gm(u) accurately reflects second-order derivatives of portfolio risk with respect to

exposure changes in the directions of v1, v2 ∈ V2, i.e.

∂2

∂h1∂h2

gm(uinitial + h1 · v1 + h2 · v2)
∣∣
h1=h2=0

=

=
∂2

∂h1∂h2

f(uinitial + h1 · v1 + h2 · v2)
∣∣
h1=h2=0

for all v1, v2 ∈ V2

If the scenario-based risk measurement gm(u) satisfies (QC2) with V1 = Rn, then the

scenario-based risk measurement provides “correct” marginal steering signals in the sense

of Tasche (2008), as they are in line with those of the true risk measurement. Technically,

(QC2) implies that the gradient capital allocation based on gm(u) coincides with the one

based on f(u), i.e.

gm (uinitial) =
n∑

i=1

ui ·
∂

∂ui

gm(u)
∣∣∣
uinitial

=
n∑

i=1

ui ·
∂

∂ui

f(u)
∣∣∣
uinitial

= f (uinitial) (1.4)

Apparently, Eq. (1.4) shows that (QC1) holds as a side effect. In turn, criterion (QC3)

points out that gm(u) reflects (at least in part) the curvature of f(u). (QC3) therefore

aims for overcoming limitations of the gradient capital allocation, as identified for example

by Buch et al. (2011).

1.4 Existing approaches

1.4.1 The gradient scenario

The gradient capital allocation principle defines an n-dimensional vector which we call

the “gradient scenario” and use as a starting point of our analysis. We define

xgrad := ∇uf(u)
∣∣
u=uinitial

(1.5)
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In connection with definition (1.2) and the risk measure VaR, assuming a situation where

VaR is coherent, the gradient scenario coincides with the so-called “Least Solvent Likely

Event” (LSLE) suggested by McNeil and Smith (2012).11 Proposition 1.1 states that

xgrad is the only scenario which provides a local linear approximation of f(u), and it is

unique in this sense.

Proposition 1.1. Consider m = 1 with the gradient scenario defined in (3.8). Then,

gm(u) fulfills criteria (QC1) and (QC2) with V1 = Rn.

1.4.2 Principal component analysis (PCA)

PCA identifies important patterns of a multivariate distribution and thus allows for defin-

ing multiple scenarios. Consider the original risk measurement f(u) = fstoch(u) from (1.2).

Let Σ denote the covariance matrix of X, and let the vectors wi ∈ Rn, i = 1, ..., n, denote

the eigenvectors of Σ. Then the random variables wT
i ·X and wT

j ·X, i ̸= j, are pairwise

uncorrelated, since

cov
(
wT

i ·X, wT
j ·X

)
= wT

i · Σ · wj = 0 (1.6)

Moreover, scenarios can be defined as

xPCA
j :=

Σ · wj√
wT

j Σwj

· z (1.7)

with j = 1, ..., n and some factor z > 0. For two special cases, Eq. (1.7) allows for a

proper scenario-based risk measurement, as Proposition 1.2 points out.

Proposition 1.2. Assume that the original risk measurement is defined by f(u) =

fstoch(u) from (1.2) and that the covariance matrix Σ of the random vector X exists. For

m ∈ {1, ..., n}, let w1, ..., wm ∈ R
n, denote the eigenvectors of Σ relating to its positive

eigenvalues sorted in descending order. Suppose that one of the following conditions holds:

a. Risk measure ϱ is the standard deviation. In Eq. (1.7), z is set to 1.

b. X follows an elliptical distribution with the risk measure ϱ being proportional to the

standard deviation by factor z > 0.12

11The coincidence is proven by McNeil and Smith (2012) in Corollary 4.4.
12For elliptical distributions, the condition of proportionality is satisfied, e.g. for Value-at-Risk and

Expected Shortfall. For example, whenX follows a multivariate normal distribution and the risk measure
is the Value-at-Risk with confidence level ζ, then the factor z is the ζ-percentile of the standard normal
distribution.
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Define function gm(u) according to (3.10) in connection with the scenarios in Eq. (1.7).

For u ∈ span{w1, . . . , wm}, we have gm(u) = f(u). Moreover, if uinitial ∈ span{w1, . . . , wm},

gm(u) satisfies (QC1), (QC2) with V1 = Rn and (QC3) with V2 = span{w1, . . . , wm}.

Hence, irrespective of the number of PCA-scenarios used, these scenarios reflect the true

risk measurement in terms of the gradient allocation with respect to all risks and, to a

limited extent, in terms of convexity if the conditions of Proposition 1.2 are fulfilled and

if uinitial ∈ span{w1, . . . , wm}.

The conditions in Proposition 1.2 are, however, quite restrictive. For downside risk mea-

sures, such as Value-at-Risk and Expected Shortfall, X must include neither skewed

marginal distributions nor increased tail dependencies. As an example, PCA has been

considered as a useful tool for measuring interest rate risks of a bond portfolio in “normal

times”.13 In a low-yield environment, however, lower bounds for interest rates may be-

come more relevant (cf. Christensen and Rudebusch, 2015), suggesting that interest rates

follow a skewed distribution and implying that PCA-scenarios can not properly reflect

the Value-at-Risk (cf. Schlütter, 2021).

1.5 Orthogonal convexity scenarios (OCS)

1.5.1 Defining OCS

To derive a scenario-based risk measurement with useful results for non-elliptical distri-

butions, we replace the covariance matrix with a more general measure for stochastic

dependencies. Paulusch and Schlütter (2022) demonstrate that a risk measurement f(u)

fulfilling assumption (A) can be approximated by a deterministic function which has

the structure of the hybrid approach of Rosenberg and Schuermann (2006). Specifically,

the second-order Taylor polynomial of f 2(u) at uinitial can be presented using a matrix

function

Pf2(u) = 0.5uTHu (1.8)

with H being the Hessian matrix of f 2(u) evaluated at u = uinitial.
14 Taking the square-

root on both sides of (1.8) provides a local approximation of f(u):

gTaylor(u) =
√
Pf2(u) =

√
0.5uTHu (1.9)

13Cf. Frye (1997), Golub and Tilman (1997) and Hull (2018, pp. 204 ff.).
14Cf. Paulusch and Schlütter (2022), Theorem 1.
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gTaylor(u) reflects f(u) at uinitial up to second-order derivatives.

Recall that the PCA builds on vectors wi implying that the random variables wT
i · X

and wT
j · X are pairwise uncorrelated, cf. line (1.6). In our proposed approach, we

identify vectors w1, ..., wm that are pairwise orthogonal in a context that allows for useful

scenarios as a basis of gm(u). Mathematically, orthogonality is defined in connection with

a symmetric bilinear form ⟨., .⟩ and two vectors wi, wj are called orthogonal if ⟨wi, wj⟩ = 0.

Lemma 1.1 introduces the symmetric bilinear form that we use later on.

Lemma 1.1. Let assumption (A) be fulfilled and let H denote the Hessian matrix of

f 2(u) evaluated at uinitial ∈ U . Then

⟨wi, wj⟩H :=
∂2

∂hi∂hj

f 2 (uinitial + hiwi + hjwj)
∣∣
hi=hj=0

= wT
i Hwj (1.10)

defines a symmetric bilinear form on U × U .

The basic idea behind the orthogonal convexity scenarios is to select linear independent

vectors w1, ..., wm ∈ Rn which span a subspace V ⊆ Rn with uinitial ∈ V . The vectors

w1, ..., wm should be pairwise orthogonal in the sense of ⟨., .⟩H and satisfy ⟨wi, wi⟩H > 0

for all i = 1, ...,m. Then, any u ∈ V can be represented as15

u =
m∑
j=1

⟨wj, u⟩H
⟨wj, wj⟩H

· wj (1.11)

Let

ũj =
⟨wj, u⟩H
⟨wj, wj⟩H

· wj for j = 1, ...,m (1.12)

Then we have

uTHu = (ũ1 + ...+ ũm)
T H (ũ1 + ...+ ũm)

= ũT
1Hũ1 + ...+ ũT

mHũm (1.13)

where the last equation follows from the pairwise orthogonality of the wj (which im-

plies pairwise orthogonality of the ũj). Lemma 1.2 defines vectors xOCS
j , which we call

orthogonal convexity scenarios (OCS).

15Cf. for example Clay et al. (2015, p. 341), Theorem 5.
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Lemma 1.2. Let the assumptions of Lemma 1.1 be fulfilled. For m ∈ {1, ..., n}, assume

that w1, ..., wm ∈ Rn are pairwise orthogonal in the sense of ⟨., .⟩H and satisfy ⟨wi, wi⟩H >

0 for all i = 1, ...,m. For all j ∈ {1, ...,m}, define

xOCS
j :=

Hwj√
2wT

j Hwj

(1.14)

Then ((
xOCS
j

)T
u
)2

= 0.5ũT
j Hũj (1.15)

with ũj being defined as in line (1.12) based on wj and u.

According to Eq. (1.14), each OCS is determined based on an underlying portfolio vector

wj. Condition ⟨wi, wi⟩H > 0 means that f(u) is locally at uinitial strictly convex with

respect to changes in direction wi. The assumption is satisfied, for example, if f(u) is

specified by Eq. (1.2) with a risk measure that satisfies the convexity axiom.

Based on Lemma 1.2 we can derive the OCS-based risk measurement of portfolio u ∈ V .

To this end, entering Eq. (1.15) into Eq. (1.13) implies

g2m(u) =
m∑
j=1

((
xOCS
j

)T
u
)2

= 0.5
m∑
j=1

ũT
j Hũj

(1.13)
= 0.5uTHu

(1.8)
= Pf2(u) (1.16)

Taking the square-root on both sides of Eq. (1.16) implies that gm(u) in connection with

the OCS from Eq. (1.14) approximates the true risk measurement f(u) in the sense of a

second-order Taylor approximation at u = uinitial. Theorem 1.1 outlines this result.

Theorem 1.1. Let the assumptions of Lemma 1.2 be fulfilled and assume that uinitial ∈

span{w1, ..., wm}. Then gm(u) as defined in line (3.10) in connection with the scenar-

ios xOCS
j defined in Eq. (1.14), for j = 1, ...,m, fulfills (QC1), (QC2) with V1 = Rn

and (QC3) with V2 = span{w1, . . . , wm}. For u ∈ span{w1, . . . , wm}, we have gm(u) =

gTaylor(u).

The statements of Theorem 1.1 are analogous to those of Proposition 1.2. Hence, OCS

allow a generalization of the PCA-based risk measurement with respect to skewed distri-

butions and increased tail dependencies.

The condition uinitial ∈ span{w1, ..., wm} can be ensured by setting w1 = uinitial. Corol-

lary 1.1 shows that the corresponding first OCS then coincides with the gradient scenario

defined in Eq. (3.8).
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Corollary 1.1. Let the assumptions of Lemma 1.1 be fulfilled and w1 = uinitial. Then we

have

xOCS
1 = xgrad

with xOCS
1 being defined as in Eq. (1.14) and xgrad as in Eq. (3.8).

Therefore, OCS can consistently extend the concept of the gradient scenario as introduced

in Section 3.1: in addition to the gradient scenario, portfolio risk is communicated with

the scenarios xOCS
2 , ..., xOCS

m . Based on these scenarios, gm(u) not only accurately reflects

marginal portfolio changes (as it does based on the single gradient scenario), but also

reflects how diversification effects alter when the portfolio is changed in directions within

the subspace V2.

The selection of the OCS, i.e. the selection of the vectors w1, ..., wm, determines the space

V2 for which the scenario-based risk measurement gm(u) meets the curvature of f(u) in

the sense of (QC3), cf. Theorem 1.1. The selection should therefore be made against

the background of practical considerations, such that V2 contains conceivable portfolio

changes in light of restrictions of the firm’s overall strategy, regulation, etc.

Section 1.5.2 provides guidance on the selection of OCS in the general case. Afterwards,

section 1.5.3 explains the selection for an analysis in which the addition of a particular

portfolio segment is of interest.

1.5.2 Selecting OCS

This section proposes an iterative approach to select the most meaningful OCS. In this

regard, we aim to minimize the approximation error and note that the approximation

error for any portfolio u ∈ U can be decomposed into two parts:

f(u)− gm(u) = f(u)− gTaylor(u)︸ ︷︷ ︸
Error part 1

+ gTaylor(u)− gm(u)︸ ︷︷ ︸
Error part 2

(1.17)

Only the error part 2 depends on the employed scenarios. For m = n OCS being used,

error part 2 is zero for all portfolios u. To select a further scenario, we therefore focus on

the error part 2.

Suppose that m vectors w1, ..., wm have been selected in line with the assumptions of

Lemma 1.2 and with uinitial ∈ span{w1, ..., wm}. Based on these vectors, scenarios have



1.5. Orthogonal convexity scenarios (OCS) 22

been determined with Eq. (1.14). With Eq. (1.11), we can write any u ∈ U as

u =
m∑
j=1

⟨wj, u⟩H
⟨wj, wj⟩H

· wj︸ ︷︷ ︸
=:ũ

+uremainder (1.18)

Given that ⟨uremainder, wi⟩H = 0 for all i = 1, ...,m, we focus on the subset of vectors that

are orthogonal to w1, ..., wm,

U⊥ =
{
u ∈ Rn such that ⟨u,wi⟩H = 0 for all i = 1, ...,m

}
, (1.19)

Starting from an arbitrary portfolio ũ ∈ span{w1, ..., wm}, we identify vector wm+1 ∈ U⊥

with the largest error type 2, i.e.

wm+1 = argmax
{
gTaylor(ũ+ w)− gm(ũ+ w) with w ∈ U⊥ and ∥w∥2 = 1

}
(1.20)

Appendix 1.8.2 shows that the searched vector wm+1 does not depend on ũ ∈ span{w1, ..., wm},

and can be rewritten as

argmax
{
gTaylor(w) with w ∈ U⊥ and ∥w∥2 = 1

}
(1.21)

Moreover, the Appendix shows that wm+1 can be identified as the solution of an eigenvalue

problem provided that H is positive semidefinite. Adding a further scenario based on

wm+1 in connection with Eq. (1.14) ensures that the error type 2 is eliminated in the

identified direction, i.e. gm+1(ũ+ wm+1) = gTaylor(ũ+ wm+1).

1.5.3 OCS on the surface of an ellipsoid

As a starting point for risk visualizations, Corollary 1.2 shows that the scenarios defined

by Eq. (1.14) are on the surface of an ellipsoid. For n = 2 or n = 3, the ellipsoid can be

added into a scatter plot of realizations of the random vector X.

Corollary 1.2. Let the assumptions of Lemma 1.2 be fulfilled and assume that H is

invertible. Then, all scenarios xOCS
j as defined by Eq. (1.14) are on the surface of the

ellipsoid

{v ∈ Rn | vTH−1v ≤ 0.5} (1.22)

As an example for a situation which allows a two-dimensional visualization, we analyze

the situation of adding a particular asset to a preexisting portfolio. Formally, we consider

n = 2 risks withX1 reflecting the risks of the preexisting portfolio, X2 the risks of the asset
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of interest and uinitial = (1, 0)T. For this “contribution analysis”, Corollary 1.3 derives two

OCS which inform about the first and second-order sensitivity of the portfolio’s aggregate

risk with respect to adding X2.

Corollary 1.3. Let the assumptions of Lemma 1.2 be fulfilled with n = 2 and uinitial =

(1, 0)T, and let hij denote the entries of H. We set w1 = uinitial, w2 = (−h12/h11, 1)
T and

determine xOCS
1 and xOCS

2 by Eq. (1.14). Let xOCS
ij denote entry j of vector xOCS

i . We

have xOCS
21 = 0 and the function value, gradient and Hessian matrix are given by

f(uinitial) = xOCS
11

∇uf(uinitial) = xOCS
1

Hf (uinitial) =

0 0

0
(xOCS

22 )
2

xOCS
11


Based on the two OCS defined in Corollary 1.3, the ellipsoid from line (1.22) can be

added into a two-dimensional scatter plot of realizations of X1 and X2. We will call the

ellipsoid in this context the “contribution ellipsoid”. It allows us to link the marginal

impact and the convexity of adding X2 for the aggregate portfolio risk with the scatter

plot.

1.5.4 Example: Multivariate elliptical distribution

For the case of X following a multivariate elliptical distribution, some of our results about

OCS can be linked to well-known concepts.

Proposition 1.3. Let the assumptions of Proposition 1.2 be fulfilled. We have

a. H = 2z2Σ

b. For given w1, ..., wm, we have xOCS
j = xPCA

j as defined in Eq. (1.14) and (1.7).

c. Vectors w1, ..., wm being the eigenvectors of Σ corresponding to positive eigenvalues

in descending order satisfy the selection approach in section 1.5.2.

d. For z = 1, the ellipsoid defined in line (1.22) coincides with the ellipsoid of concen-

tration introduced by Darmois (1945), which is defined as16

{v ∈ Rn : vTΣ−1v ≤ 1} (1.23)

16This definition is used by Nordström (1991, p. 397).
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e. Let w1 = uinitial. Then each entry j of xOCS
1 satisfies

xOCS
1j = βj · f(uinitial)

with

βj =
cov
(
Xj,X

T · uinitial

)
var
(
XT · uinitial

)
Assertion b. means that OCS scenarios coincide with PCA-scenarios when the conditions

of Proposition 1.3 are fulfilled and the vectors w1, ...wm are the eigenvectors of Σ. Ac-

cording to assertion d., the ellipsoid in line (1.22) is a stretched version from the ellipsoid

of Darmois (1945) if z > 1. It is also a shifted and stretched or compressed version of the

ellipsoid of concentration proposed by Cramér (1946).17

Assertion e. points out that the first OCS (i.e. the gradient capital allocation) relates to

the Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965) and Mossin

(1966). For multivariate normal distributions, this relation was already shown by Panjer

(2002), who refers to the βj as “internal betas”. Starting from this notion, convexity

of portfolio risk is driven by the residuals of an (internal) CAPM-like regression of the

profits of each portfolio segment on the total portfolio’s profits. Higher OCS point out

which group of segments exhibit volatile and highly correlated residuals. We follow up

on this analogy in Appendix 1.8.3.

1.6 Applications

1.6.1 Analyzing a portfolio of business segments

We consider a financial institution with three segments as in section 1.2. The random

vector X = (X1, X2, X3)
T models the segments’ losses (positive realizations) or gains

(negative realizations). The vector u ∈ R3 reflects the sizes of segments, with the initial

portfolio being characterized by uinitial = (1, 1, 1)T. The distributions of X2 and X3 are

right-skewed (lognormal and Gamma), while X1 is normally distributed. The stochastic

dependencies of X1 and X2 are modeled by a Gumbel copula with a parameter Θ = 2

which models increased tail dependencies. The dependency of X1+X2 and X3 is modeled

by a Gaussian copula with correlation parameter ρ = 0. The true risk measurement

f(u) is defined by Eq. (1.2) in connection with the 99% Value-at-Risk, and we have

17The statement follows immediately with the definition in Nordström (1991, p. 397).
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f(uinitial) = 100. Figure 1.1 summarizes the distribution assumptions and presents the

univariate risks and the gradient scenario. The gradient scenario points out that segment

2 is currently the most dominant risk in the portfolio.

Figure 1.1 Distribution assumptions of the numerical example with three risks, X1, X2

and X3. Column “Expected profit” shows the expectation of each random variable multi-
plied with -1 (since positive realizations reflect losses and negative reflect gains); column
“Univariate Value-at-Risk” depicts V aR0.99 (Xi) − E(Xi); the gradient scenario in the
last column is determined as ∇uf(u) |u=uinitial

.

Table 1.1 presents the OCS and PCA-scenarios.18 The first OCS is selected as the gradient

scenario and thus replicates the last column of Figure 1.1. The last row of Table 1.1 the

relative error between gm(u) and gTaylor(u),

Max. error part 2 =

∣∣gTaylor(um+1)− gm(um+1)
∣∣

gTaylor(um+1)
, (1.24)

with portfolio um+1 being selected as in Eq. (1.21).

For a risk measurement based solely on the gradient scenario, we identify portfolio u2 =

(0.71, 0.49, 1.81)T which is falsely assessed with xgrad · u2 = 87.2. In fact, diversification

effects decrease in u2, and the true risk hence amounts to f(u2) = 107.0. The Taylor

approximation is gTaylor(u2) = 108.7, and we thus calculate

Max. error part 2 =
|108.7− 87.2|

108.7
= 19.6% (1.25)

The second OCS is determined by incorporating w2 = u2 into Eq. (1.14). In this OCS,

18To select the OCS, we have set w1 = uinitial. Weightvectors w2 and w3 have been selected, suc-
cessively minimizing the error between the stochastic risk measurement f(u) and the approximation
gm(u) as outlined in Appendix 1.8.2. PCA-scenarios have been determined according to Eq. (1.7). The
calculations are based on Monte Carlo simulations of (X1, X2, X3)

T with 1,000,000 simulation paths.
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a loss in segment 3 is accompanied by gains in the first two segments. Hence, it states

that portfolio risk increases when segment 3 is expanded and the first two segments

are reduced. Such a portfolio restructuring would reduce favorable diversification effects

between X1 + X2 on the one hand and X3 on the other hand. The loss potential of

segment 3, modeled by the right-skewed Gamma distribution, would therefore become a

more relevant driver of the portfolio’s tail risk.

In the third OCS, a loss in segment 1 is accompanied by a gain in segment 2 (and a

small gain in segment 3). This scenario points out that an expansion of segment 1 with a

reduction of segment 2 (or the other way around) would reduce favorable diversification

effects between these two segments.

The left part of Table 1.2 shows how the OCS-based risk measurement evaluates non-

marginal segment expansions. For segment 2, an expansion can be well estimated by the

gradient scenario (with an error of -2.0%), given that segment 2 is already the dominant

risk driver and expanding this segment does not materially impact diversification effects.

Using a second OCS makes a small contribution and allows a reduction of the error to

0.5%. Segment 3 is not the dominant risk driver in the initial portfolio, and hence its

expansion has a more convex influence on the aggregate risk. Therefore, the gradient

scenario causes a relatively large error of −8.6%, and the second OCS helps to reduce

the error to −0.9%.

The PCA-scenarios in the right part of Table 1.1—from a qualitative point of view—

describe the risk situation similarly to the OCS. In the first and second PCA-scenario,

losses occur in the first two segments simultaneously or in the third segment respectively.

The third PCA-scenario is similar to the third OCS. Using all three PCA-scenarios, the

scenario-based risk measurement of the initial portfolio, i.e. gPCA
3 (uinitial), is very close to

100 and hence almost correct. However, the PCA-scenarios do not point out that segment

2 is currently the dominant risk driver. Therefore, g3(u) substantially understates the

sensitivity of the aggregate portfolio risk with respect to the size of segment 2:

∂

∂u2

gPCA
3 (uinitial) = 30.2 < 45.1 =

∂

∂u2

f (uinitial) (1.26)

Therefore, the PCA-based risk measurement leads to substantial misevaluations for port-

folios in an environment of uinitial, as shown in the last row of Table 1.1. Specifically, the

right part of Table 1.2 points out that a non-marginal expansion of segment 2 is measured



27 Essays on the Scenario-based Measurement of Financial Risks

OCS PCA
Segment i x1i x2i x3i x1i x2i x3i

(Gradient) (2nd OCS) (3rd OCS)
1 30.8 -18.9 12.7 47.5 -3.8 9.9
2 45.1 -33.2 -10.6 35.6 -5.2 -13.1
3 24.1 52.1 -2.1 6.9 52.8 -0.6
Max. error part 2 19.6% 1.6% 0.0% 42.0% 18.9% 17.6%

Table 1.1 OCS and PCA-scenarios for the example from section 1.6.1. The last row shows
the maximal error part 2 as defined in Eq. (1.24).

unew f (unew) gOCS
m (unew) gPCA

m (unew)
m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

(1, 2, 1)T 148.1 145.1 148.9 149.3 125.7 131.5 132.6
(−2.0%) (0.5%) (0.8%) (−15.1%) (−11.2%) (−10.5%)

(1, 1, 2)T 135.8 124.1 134.6 134.6 97.0 136.9 136.9
(−8.6%) (−0.9%) (−0.9%) (−28.6%) (0.8%) (0.8%)

Table 1.2 We consider two potential new portfolios, unew = (1, 2, 1)T and unew = (1, 1, 2)T,
i.e. expansions of segment 2 or segment 3. Column f (unew) depicts the true risk measure-
ments, i.e. the 99% Value-at-Risk of unexpected losses for the new portfolio. Columns
under gOCS

m (unew) provide the risk measurement based on m = 1, 2 or 3 OCS. Columns
under gPCA

m (unew) provide the risk measurement based on PCA-scenarios. The lower lines
provide relative errors between scenario-based and true risk measurement (i.e. errors part
1 and 2 from Eq. (1.17) in total). Errors beyond 5% (10%) are highlighted in (dark)
grey.

based on PCA-scenarios with an error of −10.5% even if all three PCA scenarios are used.

1.6.2 Risk visualization

Figure 1.2 presents the ellipsoid as defined in (1.22) in a scatter plot of 50,000 realizations

of the random vector (X1, X2, X3)
T. Realizations with an aggregate loss above the 99%

Value-at-Risk, i.e. x1 + x2 + x3 > f(uinitial) = 100, are colored in red; the others are

colored in gray. The black plane satisfies x1 + x2 + x3 = 100 and thus separates the

red and gray realizations. We call this plane the VaR-plane, since it marks realizations

with an aggregate loss that equals the portfolio’s Value-at-Risk. The blue line reflects

the gradient scenario, the two green lines reflect the other two OCS.

The plot on the left-hand side of Figure 1.2 shows that the ellipse is wide in the direction

of the second OCS, pointing out that the risks of segment 3 are currently well diversified

with those of segments 1 and 2 for realizations that are close to the VaR-plane, and that

risks of segment 3 could become more dominant if this segment were to be expanded.
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The plot on the right-hand side shows that the ellipse is narrow from the perspective

of the x1-x2 plane: given that risks of segments 1 and 2 are highly correlated along the

VaR-plane, an exchange of these risks would hardly impact the aggregate Value-at-Risk.

We next continue the example with a contribution analysis, as described in section 1.5.3.

Figure 1.2 The 3d plots show 50,000 realizations of (X1, X2, X3)
T and the ellipsoid from

(1.22) from two perspectives. The blue line depicts the gradient scenario; the green lines
depict the second and third OCS.

The construction of Figure 1.3 is analogous to Figure 1.5. The upper part of Figure 1.3

investigates an expansion of segment 2. In light of section 1.5.3, we consider X1+X2+X3

as the risks of the pre-existing portfolio and X2 as risks which are to be added. The left-

hand side of Figure 1.3 presents the contribution ellipsoid in a scatter plot of realizations

of portfolio returns, X1 + X2 + X3, vs. realizations of X2, X3. On the right-hand side,

the blue curve depicts function

f̃(h) = ϱ(X1 +X2 +X3 + h ·Xi)

for i = 2, 3; the red line depicts a first-order approximation of it based on the gradient

scenario, i.e. g̃1(h) as in Eq. (3.10). The y-coordinate of the respective gradient scenario

x̃OCS
1 on the left-hand side coincides with the increase of the red line from h = 0 to 1 as

stated in Corollary 1.3. The green curve on the right-hand side depicts g̃2(h) and hence

additionally includes xOCS
2 in the approximation of f̃(h). The y-coordinate of the second

OCS, x̃OCS
2 , directly relates to the convexity of f̃(h), as also stated in Corollary 1.3.
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Comparing contribution ellipsoids in the upper and lower parts of Figure 1.3 exhibits two

differences of the segments. Firstly, due to the larger y-coordinate of x̃OCS
1 , the ellipsoid

of segment 2 is directed upwards more strongly than for segment 3, pointing out that X2

is connected more strongly to tail risks of the portfolio than X3. Secondly, because of

the larger y-coordinate of x̃OCS
1 , the contribution ellipsoid of segment 3 is wider than the

one for segment 2. Consequently, a non-marginal extension of segment 3 can make X3

a dominant risk in the portfolio, and f̃(h) is hence more curved for segment 3 than for

segment 2.

Figure 1.3 Left hand-side: scatter plot of X2 (bottom part) and X3 (lower part) vs.
X1+X2+X3 with contribution ellipsoids and OCS. Right part: Aggregate Value-at-Risk
according to true risk measurement (blue curve), gradient scenario (red line) and first
two OCS (green curve).
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1.6.3 Risk limiting

In their “Principles for An Effective Risk Appetite Framework”, the Financial Stability

Board (2013, p. 6. f.) requires financial institutions to install risk limits in order to

allocate their aggregate risk appetite to lower levels such as business segments or risk

categories. In this sense, the gradient capital allocation could be a starting point for risk

limits, as it points out how much a marginal expansion of segments affects the company’s

risk. If several segments change their volumes adversely, the composition of diversification

effects changes, and hence the segments’ contributions to the company’s overall risk alter.

Therefore, the initially defined risk limits may become ineffective. Buch et al. (2011, p.

3005) propose limits that build on the gradient capital allocation per business segment.

To ensure that the aggregate limit is not breached, the authors include a parameter Λ,

which is an upper bound for the largest eigenvalue of the Hessian matrix of f(u) on the set

of portfolios U . A drawback of their approach is that Λ does not recognize that convexity

may vary across segments, i.e. that volume changes in some segments may change the

risk profile of the portfolio more immediately than others. We now outline an approach

that overcomes this drawback.

Suppose the firm from section 1.6.1 holds enough equity capital to increase the aggregate

Value-at-Risk from 100 to 120. OCS allow for a natural starting point to define risk

limits in two stages: a first-order limit is based on the gradient scenario controlling the

aggregate risk conditioned on the portfolio composition not having changed too much.

In addition, second-order limits based on additional OCS control the stability of the

portfolio composition.

The left side of Figure 1.4 depicts combinations of u1 and u2 with u3 = 1 being fixed; the

right side of the Figure depicts combinations of u1 and u3 with u2 = 1 being fixed. The

combinations below the green curve are admissible if risk limits are implemented based

on the true risk measurement, i.e.

f(u) ≤ 120
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Using the OCS in Table 1.1, we allocate limits as∣∣∣(xOCS
1

)T
u
∣∣∣ ≤ √

1202 − 2 · 152 = 118.11 (1.27)∣∣∣(xOCS
2

)T
u
∣∣∣ ≤ 15 (1.28)∣∣∣(xOCS

3

)T
u
∣∣∣ ≤ 15 (1.29)

ensuring that

gm(u) ≤ 120

The left-hand sides of Ineq. (1.27) - (1.29) are linear in ui and depicted in Figure 1.4

by the red line (gradient scenario), blue lines (second OCS) and dashed blue lines (third

OCS). The gray colored area marks portfolios that meet all limits in Ineq. (1.27) - (1.29).

In the u1u2-plane on the left-hand side Figure 1.4, the area of admissible portfolios is wider

than in the u1u3-plane on the right-hand side: a substitution of the risks of segment 1

with those of segment 2 hardly impacts the risk profile given that they are both strongly

connected with each other through the Gumbel copula. In contrast, if risks of segment 1

are substituted with those of segment 3, the risk profile changes more immediately, since

risks of segment 3—which are currently well diversified—become more dominant for the

risk profile. A practical implementation of the proposed limits in the given example could

be that segments are allowed to increase their business by up to 20% (first-order limits)

and a central department regularly supervises the adherence to second-order limits. If a

second-order limit is breached, first-order limits have to be adjusted. Limits in the sense

of Ineq. (1.27) - (1.29) should be conservative and account for a potential remainder of

f(u)− gm(u), i.e. the right-hand sides of these inequalities should add up to a total limit

of 120 − maxu∈U |f(u)− gm(u)|.19 In the given example, gm(u) slightly overestimates

f(u), and the remainder hence does not appear in the limits.

19Starting points for assessing the remainder are provided by Paulusch and Schlütter (2022) Proposition
1 and Appendix I.
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Figure 1.4 The green curves reflect u1u2-combinations (left side, u3 = 1 is fixed), and
u1u3-combinations (right side, u2 = 1 is fixed), such that f(u1, u2, u3) = 120. The
red lines reflect combinations satisfying the gradient scenario limit in Ineq. (1.27) with
equality. The blue lines (dashed blue lines) reflect combinations satisfying the further
OCS limits in Ineq. (1.28) (Ineq. (1.29)) with equality. The gray colored area marks
portfolios meeting all limits in Ineq. (1.27) - (1.29).

1.7 Conclusion

This paper proposes a new methodology for translating portfolio risk into multivariate

scenarios of portfolio segments’ profits and losses. Our proposed orthogonal convexity

scenarios (OCS) extend the gradient capital allocation principle in the sense that they

inform about second-order sensitivities of portfolio risk with respect to the volumes of

portfolio components. Specifically, OCS demonstrate which combinations of expansions

or reductions of portfolio segments can cause a substantial amplification of risk concen-

trations. OCS can also be viewed as a generalization of Principal Component Analysis,

providing a second-order local approximation of portfolio risk without the need for as-

suming an elliptical distribution. We demonstrate applications of OCS in terms of risk

communication, visualization and risk limiting.

Throughout this article, we assume that the risk model, i.e. the original risk measurement

f(u), is well established and allows for calculating first and second-order derivatives. The

estimation of first- and/or second-order derivatives based on sample data or a Monte

Carlo simulation is addressed in many articles, for example, in Gourieroux et al. (2000),
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Hong and Liu (2009), Gómez et al. (2022), Gribkova et al. (2022), Paulusch and Schlütter

(2022). It seems promising that OCS can favor the estimation of second-order derivatives.

For this purpose, one could set up an iterative process that uses OCS to identify particu-

larly relevant directional derivatives to which the estimation could pay special attention.

We leave this however beyond the scope of this paper and for future research.
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1.8 Appendix

1.8.1 Proofs

1.8.1.1 Proof of Proposition 1.1

For all v ∈ Rn, we have

∂

∂h
g1 (uinitial + hv)

∣∣
h=0

= (∇ug1 (uinitial))
T · v =

(
∇u

((
xgrad

)T · u
))T

· v

=
(
xgrad

)T · v Eq. (3.8)
= (∇uf (uinitial))

T · v =
∂

∂h
f (uinitial + hv)

∣∣
h=0

Therefore, (QC2) holds with V1 = R
n and (QC1) follows by line (1.4).

1.8.1.2 Proof of Proposition 1.2

Note that the standard deviation of uTX is
√
uTΣu. Therefore, in both cases a. and b.,

the original risk measurement can be written as

f(u) = z ·
√
uTΣu (1.30)

with a constant z > 0. For all u ∈ span{w1, ..., wm}, there are constants λ1, ..., λm ∈ R

such that

u =
m∑
i=1

λiwi (1.31)

and we have

g2m(u) =
m∑
j=1

((
xPCA
j

)T
u
)2 Eq. (1.7)

= z2 ·
m∑
j=1

 wT
j · Σ√
wT

j Σwj

· u

2

Eq. (1.31)
= z2 ·

m∑
j=1

 wT
j · Σ√
wT

j Σwj

·
m∑
i=1

λiwi

2

= z2 ·
m∑

i,j=1

λ2
i ·

wT
j · Σ · wi√
wT

j Σwj

2

Eq. (1.6)
= z2 ·

m∑
i=1

λ2
i ·

(
wT

i · Σ · wi√
wT

i Σwi

)2

= z2 ·
m∑
i=1

λ2
i · wT

i · Σ · wi

Eq. (1.31)
= z2 · uT · Σ · u Eq. (1.30)

= f 2(u)

By definition in lines (3.10) and (1.30), gm(u) ≥ 0 and f(u) ≥ 0. Therefore, g2m(u) =

f 2(u) implies gm(u) = f(u). For uinitial ∈ span{w1, ..., wm}, the statements about (QC1)

and (QC3) thus follow immediately.
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1.8.1.3 Proof of Lemma 1.1

With assumption (A), the second equation of (1.10) holds because the differential operator

is linear. ⟨., .⟩H defines a symmetric bilinear form, since we have for all w1, w2, w3 ∈ U

and all λ ∈ R: (i) ⟨w1, w2⟩H = wT
1 Hw2 = wT

2 Hw1 = ⟨w2, w1⟩H due to the symmetry of

H; (ii) ⟨w1 + w2, w3⟩H = (w1 + w2)
THw3 = wT

1 Hw3 + wT
2 Hw3 = ⟨w1, w3⟩H + ⟨w2, w3⟩H ;

(iii) ⟨λ · w1, w2⟩H = (λ · w1)
THw2 = λ · wT

1 Hw2 = λ · ⟨w1, w2⟩H .

1.8.1.4 Proof of Lemma 1.2

We have

((
xOCS
j

)T
u
)2 Eq. (1.14)

=

 Hwj√
2wT

j Hwj

T

u

2

=
1

2wT
j Hwj

· (wT
j Hu)2 =

(⟨wj, u⟩H)2

2⟨wj, wj⟩H

=
(⟨wj, u⟩H)2

2 (⟨wj, wj⟩H)2
· wT

j Hwj = 0.5 ·
(

⟨wj, u⟩H
⟨wj, wj⟩H

· wj

)T

H

(
⟨wj, u⟩H
⟨wj, wj⟩H

· wj

)
Eq. (1.12)

= 0.5ũT
j Hũj

1.8.1.5 Proof of Theorem 1.1

By definition in lines (3.10) and (1.9), gm(u) ≥ 0 and gTaylor(u) ≥ 0 for all u ∈ U . Hence,

Eq. (1.16) implies gm(u) = gTaylor(u) for all u ∈ span{w1, ..., wm}. This implies (QC1).

According to Theorem 1 from Paulusch and Schlütter (2022), gTaylor(u) satisfies (QC2)

and (QC3) with V1 = V2 = R
n. Since gm(u) = gTaylor(u) for u ∈ span{w1, ..., wm}, we can

conclude that (QC3) holds with V2 = span{w1, ..., wm}. Focusing on (QC2), we calculate

with the definition of OCS in Eq. (1.14) in connection with Eq. (3.10)

g2m(u) =
m∑
i=1

((
xOCS
i

)T
u
)2

=
m∑
i=1

(
wT

i Hu√
2wT

i Hwi

)2

The gradient of g2m(u) evaluated at uinitial is obtained as

∇ug
2
m(uinitial) = 2 ·

m∑
i=1

wT
i Huinitial

2wT
i Hwi

· wT
i H

Given that uinitial ∈ span{w1, . . . , wm}, we can write analogously to Eq. (1.11)

uinitial =
m∑
j=1

⟨wj, uinitial⟩H
⟨wj, wj⟩H

· wj (1.32)
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Noting that wiHwj = 0 for all i ̸= j, we have

∇ug
2
m (uinitial) =

m∑
i,j=1

⟨wj, uinitial⟩H
⟨wj, wj⟩H

wT
i Hwj

wT
i Hwi

· wT
i H =

m∑
i=1

⟨wi, uinitial⟩H
⟨wi, wi⟩H

· wT
i H

= uT
initialH

Eq. (1.8)
= ∇uPf2 (uinitial) (1.33)

According to Assumption (A), f(u) > 0 in an environment of uinitial. Therefore, line

(1.33) implies

∇ugm (uinitial) = ∇ugTaylor (uinitial) = ∇uf (uinitial) , (1.34)

where the last equality follows from Theorem 1 of Paulusch and Schlütter (2022).

1.8.1.6 Proof of Corollary 1.1

We have

xgrad = ∇uf(uinitial)
Eq. (1.34)

= ∇ugm (uinitial)
Eq. (1.9)

= ∇u

√
0.5uTHu

∣∣
u=uinitial

=
Huinitial√

2uT
initialHuinitial

Eq. (1.14)
= xOCS

1

where the last equation uses w1 = uinitial.

1.8.1.7 Proof of Corollary 1.2

For all j = 1, . . . ,m, we have

(
xOCS
j

)T
H−1xOCS

j

Eq. (1.14)
=

1

2wT
j Hwj

· wT
j H

TH−1Hwj

H is symmetric
=

1

2wT
j Hwj

· wT
j Hwj = 0.5

1.8.1.8 Proof of Corollary 1.3

w1 and w2, as defined, are orthogonal in the sense of ⟨., .⟩H , since

wT
1 Hw2 = (1, 0) ·

 0

−h2
12/h11 + h22

 = 0

Inserting w2 into Eq. (1.14) implies

xOCS
2 =

1√
2(h22 − h2

12/h11)

 0

h22 − h2
12/h11

 =
1√
2

 0√
h22 − h2

12/h11

 (1.35)
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Corollary 1.1 implies ∇uf(uinitial) = xOCS
1 and Eq. (1.4) implies

f(uinitial) = (∇uf(uinitial))
T · uinitial =

(
xOCS
1

)T · uinitial = xOCS
11 (1.36)

Let Hg(u) and Hg2(u) denote the Hessian matrices of functions g(u) and g2(u) evaluated

at u. The chain rule and product rule for multivariate functions imply

Hg2(uinitial) = ∇u

[
2g(u) (∇ug(u))

T
] ∣∣

u=uinitial

= 2∇ug(u) (∇ug(u))
T + 2g(u)Hg(u)

∣∣
u=uinitial

⇔ Hg(uinitial) =
1

g(u)

(
0.5Hg2(u)−∇ug(u) (∇ug(u))

T
) ∣∣

u=uinitial

Theorem 1.1⇔ Hf (uinitial) =
1

f(u)

(
0.5H −∇uf(u) (∇uf(u))

T
) ∣∣

u=uinitial

Eq. (1.36)
=

1

xOCS
11

(
0.5H − xOCS

1

(
xOCS
1

)T)
(1.37)

Inserting w1 = (1, 0)T into Eq. (1.36) provides

xOCS
1

(
xOCS
1

)T
=

1

2wT
1 Hw1

Hw1 (Hw1)
T =

1

2h11

h11

h12

 (h11, h12)

=
1

2

h11 h12

h12 h2
12/h11

 (1.38)

Inserting line (1.38) into (1.37) implies that entry (2,2) of Hf (uinitial) is

1

2xOCS
11

(
h22 − h2

12/h11

) Eq. (1.35)
=

(
xOCS
21

)2
xOCS
11

and that all other entries of Hf (uinitial) are zero.

1.8.1.9 Proof of Proposition 1.3

a. Line (1.30) implies f 2(u) = z2 · uTΣu and H = ∇u (z
2 · 2Σu) |u=uinitial

= 2z2Σ.

b. Starting from the definition in line (1.14) and using assertion a., we have

xOCS
j =

Hwj√
2wT

j Hwj

=
2z2Σwj√
2wT

j 2z
2Σwj

=
Σwj√
wT

j Σwj

· z = xPCA
j

c. To identify w1, we can neglect condition ⟨u,wi⟩H = 0 in U⊥ from Eq. (1.19), since there

are no formerly selected wi. Then, the eigenvector of Σ relating to its largest eigenvalue

solves Eq. (1.21) noting that g2Taylor(u) = z2uTΣu. Due to H = 2z2Σ, the eigenvalues of

Σ are a multiple of those of H, and the two matrices’ eigenvectors coincide. With vectors
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w1, ..., wm being identified as eigenvectors corresponding to the m largest eigenvalues, the

columns of matrixM in Appendix 1.8.2 can be set to the eigenvectors relating to the other

positive eigenvalues of Σ. Therefore, Λ = MTHM includes the remaining eigenvalues of

H. Since MTM is the identity matrix of dimension ñ − m, the smallest eigenvalue of

Λ−0.5MTMΛ−0.5 is the inverse of the largest eigenvalue of H, say λ−1
max. wm+1 from Eq.

(1.41) is the corresponding eigenvector of Σ, since

wT
m+1Σwm+1 =

wT
m+1Hwm+1

2z2
=

sTΛ−0.5MTHMΛ−0.5s

2z2sTΛ−0.5MTMΛ−0.5s
=

sTs

2z2λ−1
max

=
λmax

2z2

d. With z = 1, the conditions in lines (1.22) and (1.23) are equivalent, since vTH−1v ≤

0.5 ⇔ vT(2Σ)−1v ≤ 0.5 ⇔ vTΣ−1v ≤ 1.

e. With assertion b. and w1 = uinitial, noting that Corollary 1.1 implies xOCS
1 = xgrad

1 and

using Eq. (1.30), we have

xOCS
1j

f(uinitial)
=

(
Σw1√
wT

1 Σw1

· z
)

j

z ·
√

uT
initialΣuinitial

=
Σj. · uinitial

uT
initialΣuinitial

=
cov
(
Xj,X

T · uinitial

)
var
(
XT · uinitial

) = βj

1.8.2 Lagrange procedure for OCS selection

We start with the Lagrangian for identifying wm+1, i.e.

L1(w, γ0, γ1, ..., γm) = gTaylor(ũ+ w)− gm(ũ+ w) + γ0 ·
(
wTw − 1

)
+

m∑
i=1

γi · wT
i Hw

In this Lagrangian, we can omit the term gm(ũ + w), since it vanishes in the first-order

condition: for any w ∈ U⊥, we have gm(ũ + w) = gm(ũ), and hence ∇wgm(ũ + w) = 0.

Since the target function gTaylor(ũ+w) is non-negative, we can replace it with its square

and rewrite

g2Taylor(ũ+ w) = 0.5 · (ũ+ w)TH(ũ+ w) = 0.5 ·
(
ũTHũ+ 2ũTHw + wTHw

)
= 0.5ũTHũ+ 0.5wTHw

Omitting the constant term and the factor 0.5, the target function becomes wTHw.

Let ñ ≤ n denote the rank of H. We assume that m < ñ, since Theorem 1 otherwise

implies that there is no remaining error part 2. Define a matrix M ∈ R
n×(ñ−m) with

rank(HM) = ñ−m, Mv ∈ U⊥ for all v ∈ Rñ−m and the columns of M being orthogonal

in the sense of ⟨., .⟩H . To ensure that w ∈ U⊥, we set w = Mv and identify v maximizing
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g2Taylor(Mv) using the simpler Lagrangian

L2(v, γ) = vTMTHMv + γ
(
vTMTMv − 1

)
(1.39)

We define Λ = MTHM , which by construction is a diagonal matrix with all diagonal

elements being positive, since rank(HM) = ñ − m and H is positive semidefinite. Let

λ1, ..., λñ−m denote the diagonal elements of Λ and let the matrix Λ−0.5 be a diagonal

matrix with diagonal entries λ−0.5
1 , ..., λ−0.5

ñ−m. We substitute v = Λ−0.5s and rewrite the

Lagrangian in line (1.39) as

L2(s, γ) = sTΛ−0.5ΛΛ−0.5s+ γsTΛ−0.5MTMΛ−0.5s

= sTs+ γsTΛ−0.5MTMΛ−0.5s

The first-order condition of maximizing L2(s, γ) includes

∇sL2(s, γ) = 2s+ 2γΛ−0.5MTMΛ−0.5s = 0 (1.40)

which is satisfied if s is an eigenvector of Λ−0.5MTMΛ−0.5. We select s relating to the

smallest eigenvalue of Λ−0.5MTMΛ−0.5. Finally, we determine portfolio wm+1 with the

largest approximation error and satisfying ∥wm+1∥2 = 1 as

wm+1 =
1√

sTΛ−0.5MTMΛ−0.5s
·MΛ−0.5s (1.41)

Scenario wm+2 can immediately be identified by inserting the eigenvector relating to the

second smallest eigenvalue into line (1.41) and so on.

1.8.3 Asset selection

Consider an investor with initial wealth w0 who selects the portfolio weight α of a capital

asset I with stochastic return rI and invests 1−α into the market portfolio with stochastic

return rM . Portfolio risk is measured analogous to line (1.2). Based on α, the function is

f̃(α) = ϱ (w0 · (α · rI + (1− α) · rM))− E (w0 · (α · rI + (1− α) · rM)) (1.42)

With X1 = w0 · rM , X2 = w0 · rI and uinitial = (1, 0)T, define xOCS
i as in Corollary 1.3. For

general distributions of returns, OCS explain how adding asset I to the portfolio affects
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portfolio risk:

f̃(0) = xOCS
11 (1.43)

∂

∂α
f̃(0) = xOCS

12 − xOCS
11 (1.44)

∂2

∂α2
f̃(0) =

(
xOCS
22

)2
xOCS
11

(1.45)

Assume now that the returns rM and rI jointly follow a normal distribution with standard

deviations σM and σI and correlation ρ. Let ϱ be the Value-at-Risk with confidence level

ζ and zζ denote the ζ-percentile of the standard normal distribution. We can then specify

Equations (1.43), (1.44) and (1.45) as

f̃(0) = xOCS
11 = zζ · w0 · σM (1.46)

∂

∂α
f̃(0) = xOCS

11 · x
OCS
12 − xOCS

11

xOCS
11

= xOCS
11 · (βI − 1) (1.47)

∂2

∂α2
f̃(0) = xOCS

11 · σ2
I/σ

2
M ·
(
1− ρ2

)
(1.48)

According to line (1.47), the classical CAPM-beta, βI = cov(rI , rM)/var(rM), reflects the

first-order derivative of the portfolio Value-at-Risk with respect to adding asset I. Line

(1.48) states that convexity is large if the return on asset I has a large standard deviation

σI and is uncorrelated with the return of the market portfolio. The right part of Figure

Figure 1.5 Asset selection with normally distributed returns. Left-hand side: scatter plot
of asset I’s returns vs. market portfolio returns together with ellipsoids, linear regression
and OCS. Right part: Portfolio Value-at-Risk according to true risk measurement, f̃(α),
(blue curve) and first-order approximation of f̃(α) at α = 0 (red line).
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1.5 depicts function f̃(α) for normally distributed returns with w0 = 1,20 σM = 0.05,

σI = 0.06, ρ = 0.4 and ζ = 99%. In α = 0, f̃(α) decreases, since marginally adding asset

I improves portfolio diversification. For larger α-values, the portfolio becomes more con-

centrated in risks of asset I, and hence f̃(α) increases. The left part of Figure 1.5 shows

both OCS in a scatter plot of 10,000 realizations of unexpected returns, i.e. rI − E(rI)

vs. rM −E(rM). Realizations are colored in red if the market portfolio experiences a loss

beyond the 99% Value-at-Risk and gray otherwise.

There are clear connections between the two parts of the Figure: The x-coordinate

of x̃OCS
1 is the portfolio Value-at-Risk for w0 being invested completely in the mar-

ket portfolio. The y-coordinate of x̃OCS
1 provides an assessment of f̃(1) in the sense

of a linear approximation starting at α = 0 (cf. the red line on the right side of

Figure 1.5). The y-coordinate of x̃OCS
2 translates via Eq. (1.45) into the convexity

f̃ ′′(0) =
(
xOCS
22

)2
/xOCS

11 = 0.1282/0.116 = 0.1407.

20Thanks to w0 = 1, the left part of Figure 1.5 plots the unexpected returns; for general values of w0,
we had to plot realizations of Xi − E(Xi) = wi · ri for i ∈ {I,M}.
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Chapter 2

Identifying Scenarios for the Own Risk and Solvency

Assessment of Insurance Companies*

Abstract

Most insurers in the European Union determine their regulatory capital requirements
based on the standard formula of Solvency II. However, there is evidence that the stan-
dard formula inaccurately reflects insurers’ risk situation and may provide misleading
steering incentives. In the second pillar, Solvency II requires insurers to perform a so-
called “Own Risk and Solvency Assessment” (ORSA). In their ORSA, insurers must
establish their own risk measurement approaches, including those based on scenarios, in
order to derive suitable risk assessments and address shortcomings of the standard for-
mula. The idea of this paper is to identify scenarios in such a way that the standard
formula in connection with the ORSA provides a reliable basis for risk management de-
cisions. Using an innovative method for scenario identification, our approach allows for
a simple but relatively precise assessment of marginal and even non-marginal portfolio
changes. We numerically evaluate the proposed approach in the context of market risk
employing an internal model from the academic literature and the Solvency Capital Re-
quirement (SCR) calculation under Solvency II.

JEL classification: G22, G28, G32.

Keywords: Risk measurement, Enterprise Risk Management, Own Risk and Solvency

Assessment, Solvency II

*Earlier versions of this paper were presented at the annual meeting of the DVfVW 2022, the Inter-
national Congress of Insurance: Mathematics and Economics 2022 and the ARIA annual meeting 2022.
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2.1 Introduction

Even in modern regulation systems such as Solvency II, the majority of insurance com-

panies determine their capital requirements using a pre-specified standard formula rather

than a self-developed internal risk capital model.1 However, various academic papers show

that the risk landscape may not be realistically depicted on the basis of such a standard-

ized approach, which can lead to incorrect steering incentives when portfolio decisions

are made. A relatively well known deficiency of the Solvency II standard formula is that

it disregards credit risks of any government counterparties in the European Economic

Area (EEA) or the Organisation for Economic Co-operation and Development (OECD).2

Gatzert and Martin (2012), for instance, identify this problem and show that there is a

gap between the results of an internal risk model and those of the standard formula in the

context of market risks. Becker and Ivashina (2015) find empirical evidence that regula-

tory constraints on insurance companies investing in the corporate bond market can lead

to portfolio distortions. Chen et al. (2019) find that relying on the square root rule for

the calculation of risk-based capital (RBC) may provide a misleading view of changing

diversification effects. In the case of equity risk, Fischer and Schlütter (2015) show that

insurers’ asset selection is highly sensitive to parameters of the standard formula and

can end up too risky or conservative. Braun et al. (2017) find that the standard formula

is likely to have an adverse impact on life insurers’ asset allocation, as it hinders insur-

ers in selecting an efficient investment portfolio. Furthermore, Pfeifer and Strassburger

(2008) provide evidence that for several classes of distributions, the standard formula

underestimates the true Solvency Capital Requirements (SCR). A more general criticism

regarding the regulatory framework is formulated by Scherer and Stahl (2021), stating

that the Solvency II standard formula ”lacks sound economic and mathematical reason-

ing”. A mitigation of the standard formula’s deficiencies could potentially be offered by

second pillar requirements. These requirements aim to improve insurers’ Enterprise Risk

Management and to this end require — in addition to the standard formula — stress

tests and scenario analyses. These approaches aim to extend the regulatory risk mea-

surement “in order to provide an adequate basis for the assessment of the overall solvency

1For instance, the European Insurance and Occupational Pensions Authority (EIOPA) states in their
annual Insurance Statistics report regarding the own funds, cf. EIOPA (2019), that 2,470 of the 2,658
insurers evaluated base their risk calculations on the standard formula provided by Solvency II.

2Cf. BaFin (2016).
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needs”, cf. EIOPA (2015), Guideline 7. Similarly, the requirements for the Own Risk and

Solvency Assessment (ORSA) of an insurer expect to “also take into account risks that

are not or not adequately included in the standard formula, and must develop a suitable

assessment procedure for them”, cf. BaFin (2016).

In general, stress scenarios are a tool to “help decision makers understand better the level

of resilience of the organization”, cf. Albrecher et al. (2018, Chapter 5.5). In the litera-

ture, there are several different suggestions on how to identify (reverse) stress scenarios

by stressing the underlying distribution of risk drivers: for example, Korn and Müller

(2021) apply the worst-case scenario in the setting of a portfolio optimization. Pesenti

et al. (2019) employ the Kullback-Leibler divergence measure, Makam et al. (2021) use

the χ2 divergence considering a discrete sample to derive stress scenarios. Breuer and

Csiszár (2013) suggest identifying stress scenarios by using a relative entropy measure to

ensure plausibility. However, they do not address the ORSA requirements explicitly to

quantify scenarios that are not captured by the standard formula. A different idea more

in line with the ORSA requirements is provided by McNeil and Smith (2012), proposing

the so-called “least solvent likely event” (LSLE), a deterministic scenario that allows for

a reliable evaluation of risk resulting from a given portfolio.3

This paper proposes a new approach to identify ORSA scenarios. We assume that the

insurer’s strategy can be expressed by an exposure vector u ∈ Rn. The entries of u can

represent, for example, investments in asset categories or sizes of the insurer’s lines of

business. Corresponding to strategy u, the function f true(u) provides the capital require-

ment which satisfies the safety level defined in pillar 1 (i.e. the 99.5% Value-at-Risk).

f true(u) can be considered as the outcome of a perfect internal model. Function fSF(u)

presents the capital requirement according to the standard formula. Our target is to

identify scenarios which approximate the residual

f true(u)− fSF(u) (2.1)

To this end, we consider gm(u) as the risk measurement of strategy u based onm scenarios.

If gm(u) approximates the residual in (2.1), then the standard formula in connection with

3Notably, McNeil and Smith (2012, Corollary 4.4) show that their suggestion coincides with the so-
called ”gradient scenario”, which is often also referred to as Euler allocation, cf. for instance Tasche
(2008).
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ORSA scenarios provides an approximation of the true risk:

f true(u) ≈ fSF(u) + gm(u) (2.2)

Our technical basis to derive scenarios for function gm(u) are so-called “orthogonal con-

vexity scenarios” (OCS) as proposed by Aigner and Schlütter (2022). The aim of OCS

is to translate the risk measurement of a portfolio into a small number of multivariate

realization vectors. In contrast to the aforementioned stress scenario literature, OCS

therefore do not change the risk distribution.By construction, OCS are orthogonal in

the sense of sensitivity-implied tail correlations, as proposed by Paulusch and Schlütter

(2022), and hence their use is not limited to elliptical distributions. Additionally, by

employing deterministic scenarios, a combination with the standard formula leads to a

deterministic risk measurement in the right–hand side of Eq. (2.2). We show that such a

combination with only a single OCS can then be set to reflect the outcome of the internal

model for the initial portfolio as well as all first-order derivatives. The approach thus

coincides with the well known Euler capital allocation.4 When additional scenarios are

taken into account, second-order derivatives are also reflected correctly. By approximat-

ing the internal model not only in a linear way, the scenarios reflect how portfolio-wide

diversification effects alter when the portfolio volumes are changed. Deriving scenarios

for a representative insurer could thereby provide a regulatory authority with a tool that

can be handed out to insurance companies as an addition to the standard formula.

Numerically, the suggestion is evaluated based on Gatzert and Martin (2012) and Eckert

et al. (2016) dealing with market risks. In the latter, the authors employ an internal

model which comprises the risks of three sub-modules, the outcome of which is consid-

ered as the true portfolio risk. A difference in risk capital between the internal model

and the standard formula is found, providing a good starting point for the scenario-based

extension of the regulatory approach.

This article contributes to the literature in three ways: Firstly, it highlights the short-

comings of a standardized approach to risk measurement. Secondly, a practical idea is

presented on how to formalize and implement the suggestions of the ORSA. Thirdly,

empirical indications are given as to what meaningful scenarios in the sense of the ORSA

might look like for an example company.

4Cf. for instance Tasche (2008), Buch et al. (2011), or Guo et al. (2021).
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The remainder of this article is structured as follows. section 2.2 presents the ideas of

Aigner and Schlütter (2022) for the determination of scenarios. Section 2.3 summarizes

the suggestion of Solvency II for the measurement of market risk as well as an internal

model counterpart given by Eckert et al. (2016) and Gatzert and Martin (2012). Section

2.4 numerically evaluates the goodness of the suggested extension of the standard for-

mula. Section 2.5 provides concluding remarks about the concrete practical usefulness of

the proposed approach.

2.2 Orthogonal convexity scenarios for the ORSA

We suppose that a company’s risk can be specified by inspecting a random vector

X = (X1, ..., Xn)
T

with Xi modeling the losses (or gains in case of negative values) of the ith risk driver.

The Xi could be losses resulting from risks of the various submodules in the standard

formula, but they could also be defined at a more granular level. For example, in section

2.3, we will consider the Xi to reflect losses from single equity and bond investments. It

is further assumed that the insurer can change its portfolio by linearly scaling the Xi.

To this end, we introduce an exposure vector u ∈ Rn representing the portfolio volumes.

The true risk function can then be defined, in line with Solvency II, as

f true : Rn → R (2.3)

u 7→ ϱ(XTu)− E(XTu)

with ϱ being a risk measure. For the identification of scenarios later on, it is sufficient to

assume that ϱ is homogeneous of degree one and law-invariant. Paulusch (2017) ensures

that the common risk measure under Solvency II, the 99.5% Value-at-Risk, fulfills this

property. Notably, our method could also be applied in connection with the Expected

Shortfall, for example, cf. also Paulusch (2017). The function f true could then be derived

from a stochastic model or a “perfect” internal model.

Secondly, we will inspect the regulatory standard formula that measures the risk of port-

folio u in terms of

fSF : Rn → R, u 7→ fSF(u) (2.4)
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which is explicitly specified in the ORSA, cf. EIOPA (2015).5 We assume that both

functions, f true(u) and fSF(u), are twice continuously differentiable in a neighborhood of

an initial portfolio uinitial. The central concern that we would like to tackle is that f true(u)

and fSF(u) may deviate, and we will thus inspect and approximate the residual

fdiff(u) = f true(u)− fSF(u) (2.5)

Here, situations that are not captured by the standard formula can be considered. In order

to approximate fdiff(u) relying on deterministic scenarios also taking into account tail

dependencies, the approach presented by Aigner and Schlütter (2022) will be used.6 The

authors suggest employing so-called “orthogonal convexity scenarios” (OCS) resulting in

a scenario-based risk-measurement function

gm : Rn → R (2.6)

u 7→

√√√√ m∑
i=1

(
(xOCS

i )
T
u
)2

with 1 ≤ m ≤ n a pre-specified number of scenarios that should be considered and xOCS
i ,

i = 1, . . . ,m, denoting the OCS.7 The latter are defined as

xOCS
i =

wT
i H√

2 · wT
i Hwi

(2.7)

with weightvectors w1, . . . , wm ∈ Rn andH the Hessian matrix of
(
fdiff

)2
.8 The weightvec-

tors have to be specified by the user of the method and are supposed to be selected or-

thogonally in the sense of the bilinearform

⟨wi, wj⟩H = wT
i Hwj (2.8)

5Although this paper focuses on the standard formula for insurance companies, the methodology
could also be adapted to other models which are to be compared to a benchmark model.

6There is some literature dealing with tail dependencies such as Mittnik (2014) and Paulusch and
Schlütter (2022).

7These scenarios can be understood as realizations of the risk vector X in Eq. (2.9).
8Appendix 2.6.2 highlights how to calibrate the Hessian matrix.
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withH as before. Appendix 2.6.3 provides some guidance on how to identify the necessary

weightvectors. Explicitly, it can be ensured that

xOCS
1 = ∇uf

diff (uinitial)

such that the first scenario coincides with the Euler allocation of fdiff. The OCS approach

can also be interpreted as an extension of the ”Least solvent likely event” (LSLE) intro-

duced by McNeil and Smith (2012) by including additional scenarios that can capture

the convexity of the approximated risk measurement.

By basing the identification of the scenarios on the Hessian matrix, the function gm is

capable of capturing non-linear dependencies and heavy tails in the portfolio as out-

lined by Paulusch and Schlütter (2022).9 When now approximating f true(u) by the sum

fSF(u) + gm(u), it fulfills the properties summarized in Proposition 2.1.

Proposition 2.1. Let 1 ≤ m ≤ n, f true(u) and fSF(u) as before and f true (uinitial) >

fSF (uinitial). Then, it holds:

1) f true (uinitial) = fSF(uinitial) + gm(uinitial)

2) For all v ∈ Rn, it is

∂

∂h
f true (uinitial + hv) |h=0=

∂

∂h

(
fSF (uinitial + hv) + gm (uinitial + hv)

)
|h=0

3) For v1, v2 ∈ span{w1, . . . , wm}, it is

∂2

∂h1∂h2

f true (uinitial + h1v1 + h2v2) |h1=h2=0=

=
∂2

∂h1∂h2

(
fSF (uinitial + h1v1 + h2v2) + gm (uinitial + h1v1 + h2v2)

)
|h1=h2=0

Therein, gm is as in Eq. (2.6) in connection with xOCS
i ’s as in (2.7).

The proof is presented in Appendix 2.6.1. From Proposition 2.1, we see that an extension

of the standard formula adding risk resulting from OCS indeed allows an approximation

of the true risk measurement function in the sense of first and second order sensitivities.

9In the literature, it is often suggested to identify scenarios on the basis of the covariance matrix such
that the scenarios can be found through the application of Principal Component Analysis (PCA), cf. for
instance Hull (2018). Aigner and Schlütter (2022) highlight that relying on such a linear measure may
lead to a misinterpretation of the company’s risk situation.
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2.3 Calibration of ORSA scenarios for market risk

To derive ORSA scenarios in the sense of section 2.2, we have to calibrate the two risk

measurements based on the true risk which will be represented by an internal model

and the one based on the regulatory requirements. This is done in the following two

subsections. Specifically, we restrict the analysis to a market risk setting including equity,

interest rate and spread risk, and set up a specific portfolio.

2.3.1 Specification of f true

To meet the requirements of the regulatory authority in Europe, we employ as risk mea-

sure ϱ in (2.3) the VaR to a confidence level of 99.5% such that the true risk is given

by

f true : Rn → R

u 7→ VaR0.995

(
XTu

)
− E

(
XTu

)
with a random risk vector

X = (X1, . . . , Xn)
T (2.9)

consisting of n = nB + nS risk drivers comprising nB ∈ N bond and nS ∈ N stock invest-

ments. Without loss of generality, we assume that X1, . . . , XnB
reflect the losses/gains

resulting from bonds and XnB+1, . . . , XnB+nS
those from stock investments. For f true

to be well-defined, we then have to specify X. For notational reasons, we rewrite the

risk vector X =
(
XB, XS

)T
to represent losses/gains resulting from bonds and stocks

separately after one year. In order to determine these stochastic vectors

XB = (XB
1 , . . . , X

B
nB

)T

XS = (XS
1 , . . . , X

S
nS
)T

we follow Eckert et al. (2016), who suggest modeling stock investments in combination

with a reduced form credit risk model for defaultable bond exposure. Therefore, they let

the stochastic default intensity (hazard rate) h(t) follow a Vasicek (1977) process. The

resulting model in Eckert et al. (2016) can be written as
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dr(t) = κ · (θ − r(t)) dt+ ζdWr(t)

dh1(t) = χ1 · (o1 − h1(t)) dt+ Γ1dWh1(t)

. . .

dhnB
(t) = χnB

· (onB
− hnB

(t)) dt+ ΓnB
dWhnB

(t)

dS1(t) = µ1S1(t)dt+ σ1 · S1(t)dWS1(t)

. . .

dSnS
(t) = µnS

SnS
(t)dt+ σnS

· SnS
(t)dWSnS

(t)

whereW (t) =
(
Wr(t),Wh1(t), . . . ,WhnB

,WS1 , . . . ,WSnS

)T
is a standard Brownian motion

with a symmetric correlation matrix RIM implying that the valuation of market risk takes

into account interest rate risk, credit risk, equity risk as well as dependencies between

them.10 Herein, κ and χi define the speeds of mean reversion, θ and oi the long-term

means, and ζ and Γi the volatilities of the processes for i = 1, . . . , nB. Additionally, stock

investments are assumed to follow geometric Brownian motions.11 Here, there are closed

form solutions for the pricing of stock investments given by

Si(t) = Si(0) · exp
(
µSi

−
σ2
Si

2
· t+ σSi

·
√
tWSi

)
for i = nB+1, . . . , nB+nS, cf. for instance Gatzert and Martin (2012, Eq. (7)), modeling

the stock value at time t. Since we are interested in the stochastic losses of each stock

investment, we set

(
XS
)
i
:= − (Si(1)− Si(0)) (2.10)

for i = 1, . . . , nS.
12 Notably, we will set Si(0) = 1 later on.

For the evaluation of bond investments, we have to take into account spread and interest

rate risk. As our model states, we assume the interest rate process to follow a Vasicek

(1977) process

dr(t) = κ · (θ − r(t)) dt+ ζdWr(t)

10For more details on the model, cf. Eckert et al. (2016).
11The selection of geometric Brownian motions for modeling stocks is quite common in the literature,

cf. for instance Islam and Nguyen (2020) or Graf and Korn (2020).
12In Eq. (2.10), negative values are reported such that positive values represent losses later on.
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allowing us to determine the price of a non-defaultable zero coupon bond with maturity

T as13

P (t, T ) = exp(−Mr(t, T ) + 0.5 · V 2
r (t, T )), with

Mr(t, T ) = r(t) · 1− exp(−κ · (T − t))

κ
+ θ ·

(
(T − t)− 1− exp(−κ · (T − t))

κ

)
V 2
r (t, T ) =

ζ2

κ2

(
(T − t)− 2 · 1− exp(−κ(T − t))

κ
+

1− exp(−2κ(T − t))

2κ

)
Furthermore, in line with Eckert et al. (2016) we follow Duffie and Singleton (1999) to

account for credit risk in the valuation of defaultable bonds. Therefore, default events

for a given bond i are modeled by a Cox process with a stochastic hazard rate hi(t).

Moreover, the model of Duffie and Singleton (1999) allows us to take into account de-

pendencies between credit spread and interest rate by using correlated Brownian motions

Wr(t),Whi
(t), i = 1, . . . , nB. Additionally, a recovery of the market value is assumed

such that in the case of a default at time τ , each bond pays a fraction of its value before

the default

δR(τ) · PRMV (τ−, T )

with δR(t) denoting the recovery rate,
14 PRMV (t−, T ) = lims↗τ P

RMV (s, T ) and PRMV (t, T )

the pre-default price at time t < τ of a recovery of market value (RMV) defaultable bond

with maturity T . Then, the price of a defaultable bond is

PRMV (t, T ) = EQ
(
exp

(
−
∫ T

t

(r(u) + si(u)) du

))
with the credit spread si(t) = (1 + δR(t)) · hi(t). Since the hazard rates are assumed to

follow a Vasicek (1977) process, the spread risks si(t) follow —according to Itô’s Lemma—

again a Vasicek (1977) process given by

dsi(t) = χi · (ôi − si(t))dt+ Γ̂idWhj

with ôi = (1− δR) · oi, Γ̂i = (1 − δR)Γi and a constant recovery rate δR(t) = δR. Then,

Eckert et al. (2016) provide the following closed form solutions for the price of a RMV

13These formulas are presented for example in Eckert et al. (2016) and Schönbucher (2003).
14In general, the recovery rate could be stochastic, but for simplicity, we assume a constant recovery

rate later on.
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defaultable bond as

PRMV
i (t, T ) = P (t, T ) exp

(
−Msi(t, T ) + 0.5 · V 2

si
+ Ci(t, T )

)
, with

Msi(t, T ) = si(t) ·
1− exp(−χi(T − t))

χi

+ ôi ·
(
(T − t)− 1− exp(−χi(T − t))

χi

)
V 2
si
(t, T ) =

Γ̂2
i

χ2
i

(
(T − t)− 2 · 1− exp(−χi(T − t))

χi

+
1− exp(−2χi(T − t))

2χi

)
, and

Ci(t, T ) = ρr,hi

ζΓ̂i

κχi

(
(T − t)− 1− exp(−κ(T − t))

κ
− 1− exp(−χ(T − t))

χi

+
1− exp(−(κ+ χi))(T − t)

κ+ χi

)

where ρr,hi
reflects the correlation of the standard Brownian motions Wr(t) and Whi

(t).

The price of a defaultable bond i with hazard rate hi and maturity Ti at time t is then

derived as

Bi(t) =

Ti∑
h=t+1

CFi(h) · PRMV
i (t, h)

with cash flows

CFi(t) =



ci(t) · FVi, if (t < Ti) ∧
(
τBi > t

)
(1 + ci(t)) · FVi, if (t = Ti) ∧

(
τBi > t

)
δR ·Bi(t− 1), if t = τBi

0, else

(2.11)

depending on the time of default τBi , coupon ci(t) and time t. Herein, the face values

FVi are scaled such that Bi(0) = 1 for all i = 1, . . . , nB. Since we are again interested in

potential losses/gains after one year, we set

(
XB
)
i
= −(Bi(1)−Bi(0)) (2.12)

with i = 1, . . . , nB. In case of a mixed portfolio consisting of stocks and bonds, the

market value risk vector is then

X =
(
(XB)T, (XS)T

)T
with XB and XS as in (2.12) and (2.10) respectively. Here, the risk measure function in

(2.3) is well-defined. By selecting the face value as in (2.11), the cash flows are adjusted
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in a way that ensures that
(
XTu

)
i
represents a loss with a value of ui at t = 0. The

portfolio volumes can be steered by adjusting the ui.

2.3.2 Specification of fSF

The Solvency II framework suggests a module structure making it necessary to calculate

equity, interest rate and spread risks separately on a sub-module basis, cf. Figure 2.1. The

risks are then aggregated towards the market module by the so-called square-root formula

denoted by fSF. In particular, we calculate three different values: Mkteq, Mktint and

Figure 2.1 Structure for the SCR calculation in the style of Gatzert and Martin (2012);
only sub-modules that are taken into account later on are presented.

Mktsp representing the capital requirement of the sub-modules respectively. Liquidity,

concentration, property and currency risk will be excluded in the following analysis for

the sake of simplicity. In this section, we mainly adopt the notation of Gatzert and Martin

(2012). For notational reasons, we set the exposure vector as u =
((

uB
)T

,
(
uS
)T)T ∈ Rn

with

uB = (uB
1 , . . . , u

B
nb
)T ∈ RnB

uS = (uS
1 , . . . , u

S
ns
)T ∈ RnS

distinguishing between exposures referring to bond investments, uB ∈ RnB , and those

referring to stocks, uS ∈ RnS .

2.3.2.1 Interest rate risk

First, the risk resulting from a change of the term structure is determined within the

interest rate risk sub-module. For this purpose, we calculate the present value (PV) of
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all interest-rate-sensitive exposures—namely uB—by discounting their cash flows (CF)

using the risk-free interest rate structure rf (t) which is published monthly by EIOPA, cf.

Table 2.7. Specifically, we have to calculate for i = 1, . . . , nB

PV int
i =

Ti∑
t=1

CF i(t)

(1 + rf (t))
t (2.13)

with Ti the maturity and CF i(t) the cash flow of investment i at time t. For face values

FVi as discussed in the section before and a coupon payment ci(t) at time t, the cash

flow for bond i is given by

CF i(t) =

ci(t) · FVi, if t < Ti

(1 + ci(t)) · FVi, if t = Ti

(2.14)

for i = 1, . . . , nB. The upward shocked present values are then calculated as

(
PV int

up

)
i
=

Ti∑
t=1

CF i(t)

(1 + max (rf (t) · (1 + sup(t)) , 0.01))t
(2.15)

where the maximum in the denominator is in line with European Commission (2015,

Article 166) and ensures that there is at least a shock of one percent. Furthermore, for

the downward shock we calculate

(
PV int

down

)
i
=

Ti∑
t=1

CF i(t)

(1 + max (rf (t) · (1 + sdown(t), 0)))t
(2.16)

with the maximum in the denominator accounting for the current low-level interest rate

environment. In both cases, it is again i = 1, . . . , nB. The shocks sup(t), sdown(t) are

provided by European Commission (2015, Article 166 and 167) and shown in Table 2.7.

Interpreting the results in Eq. (2.13), (2.15) and (2.16) as vectors in RnB , allows us to

determine the overall risk of the sub-module interest rate as

Mktint(u
B) = max

((
PV int − PV up

int

)T
uB,

(
PVint − PV down

int

)T
uB
)

depending on the part of the exposure vector reflecting bond investments.

2.3.2.2 Spread risk

Changes in the credit spread on exposures are considered in the rating-based risk sub-

module of the Solvency II standard approach. The risk consists of three uncorrelated
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groups: the SCR of bonds Mktbondssp , of securization positions Mktsecurizationsp and of credit

derivatives Mktcdsp which are then easily added up to the total risk of the sub-module

spread

Mktsp = Mktbondssp +Mktsecurizationsp +Mktcdsp

For simplicity, we will restrict our analysis only to bond assets, ignoring securization

positions and credit derivatives. The SCR calculation for spread risk then takes into

account the current value MVsp,i(0) = uB
i of bond i = 1, . . . , nB. The stress referring

to each bond depends on shocks that can be specified by including their ratings, which

are publicly available, and their durations. In order to determine the latter, we rely on

the Macaulay (1938) duration with a floor of one, as suggested by European Commission

(2015, Article 176). Given that there is only one coupon period per year, it can be

determined as

durationi = min

(∑T
t=1 t · CF i(t) · (1 + rf (t))

−t∑T
t=1 CF i(t) · (1 + rf (t))

−t
· 1

1 + rY tM

, 1

)

for i = 1, . . . , nB with rf and CF i(t) the cash flow as before. Furthermore, we need to

specify the yield to maturity rY tM which is obtained by solving

PV int
i =

Ti∑
t=1

CF i(t) · (1 + rY tM)−t

where PV int
i is calculated as in (2.13) and Ti as before.15 Given the rating and the

duration of each bond, European Commission (2015, Article 176) further outlines how

to specify the stresses stressi for i = 1, . . . , nB explicitly, cf. Tables 2.8 and 2.9. Here,

the SCR of the spread risk sub-module (in the simplified version only including bonds)

is calculated as

Mktsp
(
uB
)
= max

(
nB∑
i=1

uB
i · stressi, 0

)
= max

(
stressTuB, 0

)
It should be noted that for bonds issued by governments belonging to the EEA or the

OECD, the stress, according to BaFin (2016), is always zero percent, and hence theMktsp

is also zero when the exposure is a respective bond.

15For the numerical calculation, there are several common approaches, such as the Newton-Raphson
method which we will employ later on.
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2.3.2.3 Equity risk

In order to calculate the capital requirements resulting from equity risk, we first have to

cluster the nS stock assets within our portfolio in (2.9) into “global” and “other”. The

class “global” comprises all exposures transacted in countries that are members of the

European Economic Area (EEA) or the Organisation for Economic Co-operation and

Development (OECD), cf. CEIOPS (2010) and European Commission (2015). Without

loss of generality, we assume that the first kglobal ∈ N entries of u represent the exposure to

“global” investments and the rest kother = nS−kglobal the exposure to “other” investments.

“Global” stocks are easily multiplied with shockglobal = 0.3 and “other” investments are

assumed to have a higher risk and therefore are assigned a shock of shockother = 0.4.16

With these specifications, one can directly calculate the market values of both classes by

summing up the market values at time t = 0, denoted byMVeq,i(0) = uS
i , i = 1, . . . , nS for

all assets in the respective class and multiplying it with the respective shock parameter

Mkteq, global(u
S) = max

0.3 ·
kglobal∑
i=1

uS
i , 0


Mkteq, other(u

S) = max

0.4 ·
nS∑

i=kglobal+1

uS
i , 0


with kglobal+kother = nS.

17 In order to aggregate the classes with respect to diversification

effects, EIOPA (2011) recommends the aggregation via the square-root formula

Mkteq(u
S) =

√
xTReqx

with x =
(
Mkteq,global

(
uS
)
,Mkteq,other

(
uS
))T

and the correlation matrix

16The stresses are adjusted here to avoid pro-cyclical effects of adverse capital market developments,
cf. Gatzert and Martin (2012) for more details.

17For further details on the specification of the shocks including strategic participation, adjustments
etc. cf. Gatzert and Martin (2012). These are excluded in this paper for the sake of tractability, but the
process in the simulation study later on would work equivalently.
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Req =

Global Other( )
1 0.75 Global

0.75 1 Other

Notably, a portfolio only consisting of stocks is just exhibited to the equity sub-module,

and the solvency capital requirement (SCR) calculation of the market risk module ends

with this sub-module, cf. Figure 2.1.

2.3.2.4 Aggregation of the sub-modules

Following European Commission (2015), the three sub-modules, equity, interest rate and

spread are assumed to be correlated by

RSF =

Interest rate Equity Spread


1 A A Interest rate

A 1 0.75 Equity

A 0.75 1 Spread

where the correlation parameter A is conditional on the result of Mktint as

A =

0.5, if Mktint(u
B) =

(
PVint − PV down

int

)T
uB

0, if Mktint(u
B) = (PVint − PV up

int)
T uB

Then, the overall market risk of a portfolio u ∈ NnS+nB can be calculated with a square-

root formula resulting in a specification of the function in (2.4) as

fSF : Rn → R (2.17)

u 7→
√

xTRSFx

with x =
(
Mktint(u

B),Mkteq(u
S),Mktsp(u

B)
)T ∈ Rn and n = nB + nS. It is shown in

Appendix 2.6.5 that fSF is indeed homogeneous of degree one, a necessary property for

the application of OCS in the latter.
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2.3.3 Portfolio set-up

Let us now construct a (theoretical) portfolio, the market risk of which will be determined

on the basis of the approaches presented in the last two sections. We assume an investment

portfolio consisting of nB = 5 bond investments, cf. Table 2.1, and nS = 2 stocks, cf.

Table 2.2. Furthermore, we assume that we are equally invested in each of those positions

such that we set the initial portfolio as uinitial = 17 – with u1, . . . , u5 presenting the bond

and u6, u7 the stock investments.18 Since there is a strict distinction between spread and

default risk in the regulatory requirements, we assume that none of the bonds default

until their maturity. We exclude default risk in the internal model here, such that

the numerical analysis is indeed in line with the solvency calculation of the market risk

module.

The SCR based on the standard formula can now directly be derived on the basis of the

given specifications. Notably, the spread risk for the governmental bonds is set to zero,

since Germany and Spain are both part of the EEA.

For the internal model, we take into account correlated standard Wiener processes with

Bi Typei ratingi maturityi Coupon (in %) ci χi oi Γi

1 Corporate AA 16 8.00 0.0392 0.0269 0.0004
2 Corporate A 12 2.95 0.0180 0.0240 0.0009
3 Corporate BBB 11 5.75 0.0373 0.0453 0.0027
4 Government BB 10 1.75 0.2201 0.5670 0.2299
5 Government A 10 0.50 0.0139 -0.0070 0.0022

Table 2.1 Specifications of the bonds that are taken into account. B1: Deutsche Bank
AG, B2: Commerzbank AG, B3: E.ON SE, B4: Greece and B5: Spain. The parameters
χi, oi and Γi refer to the Vasicek processes and are estimated on the basis of spread data
between 09/2011 and 09/2021.

the correlation matrix RIM as discussed in section 2.3.1. The entries of RIM have been

estimated relying on monthly data between 09/2011 and 09/2021 and are presented in

Table 2.3. The stocks are then modeled by Monte Carlo simulations with 5,000,000

paths following geometric Brownian motions with the parameters as in Table 2.2. Here,

S1, namely Euro Stoxx, represents the investment in a “global” asset and S2, Shanghai

Stock Exchange (SSE) composite index, in an “other” asset. Both potential classes in

18The choice of the initial portfolio is arbitrary thanks to homogeneity of f true and fSF as long as
f true(uinitial) > fSF(uinitial).
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the equity risk sub-module are thus covered.

The interest rate is modeled on the basis of a Vasicek (1977) process with a long–term

Si Indexi categoryi µi σi

1 Euro Stoxx Global 0.0750 0.1611
2 Shanghai SE composite index Other 0.0632 0.2091

Table 2.2 Annualized parameters for the specification of the geometric Brownian mo-
tions representing stock investments. The values are estimated on monthly data between
09/2011 and 09/2021.

mean θ = −0.0225, the speed of mean reversion of κ = 0.0046 and a drift of σ = 0.0015.

The parameters have been estimated on the basis of monthly EURIBOR data between

09/2011 and 09/2021 and relying on Maximum Likelihood estimation, cf. for instance

Fergusson and Platen (2015). Furthermore, the initial value is set to r(0) = θ.

As possible bond investments, a mixture of corporate and government bonds is considered.

Their specifications are presented in Table 2.1. Employing again Maximum Likelihood

estimation, the hazard processes can be fitted with the parameters presented in Table

2.1. Additionally, the recovery rate is set constant to δR = 0.61.19

With these specifications, we can now define

r h1 h2 h3 h4 h5 S1 S2

r 1
h1 0.1864 1
h2 0.1025 0.4518 1
h3 0.0848 0.2443 0.3165 1
h4 -0.0186 0.0310 -0.0846 -0.0147 1
h5 0.1617 0.4263 0.6409 0.5236 -0.0832 1
S1 -0.0865 -0.0213 0.0916 -0.2930 -0.0095 -0.1998 1
S2 -0.2118 0.0629 -0.1576 -0.1366 0.0789 -0.1818 0.3365 1

Table 2.3 The entries of correlation matrix RIM . The values represent the correlation
between stocks, bonds and interest rate r based on monthly data from 09/2011 to 09/2021.

fdiff(u) = f true(u)− fSF(u)

We can now identify OCS as in Eq. (2.7) such that gm(u) as in Eq. (2.6) approximates

fdiff. To this end, Appendix 2.6.2 and Appendix 2.6.3 provide the necessary technical

19Eckert et al. (2016) note a high sensitivity of the model to changes of δR, but for our purpose a
change in the recovery rate would lead to similar results.
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details specifying the Hessian matrix H of
(
fdiff

)2
and the weightvectors wi, i = 1, . . . ,m,

which are crucial for the definition.

2.4 Results

Let us put ourselves in the situation of an investor who has seven units to invest in the

portfolio specified in section 2.3.3. Table 2.4 shows what the risk capital looks like when

investing all units separately in each asset and when investing in an equally weighted

portfolio uinitial = 17. We observe that there is a severe gap between the two approaches

u fSF(u) f true(u) Relative difference
(7, 0, 0, 0, 0, 0, 0)T 0.933 0.931 0.21%
(0, 7, 0, 0, 0, 0, 0)T 1.008 0.848 18.87%
(0, 0, 7, 0, 0, 0, 0)T 1.469 0.806 82.26%
(0, 0, 0, 7, 0, 0, 0)T 3.367 6.697 −49.72%
(0, 0, 0, 0, 7, 0, 0)T 0.602 0.887 −32.13%
(0, 0, 0, 0, 0, 7, 0)T 2.1 2.626 −20.03%
(0, 0, 0, 0, 0, 0, 7)T 2.8 3.198 −12.45%

uinitial 1.300 1.478 −12.04%

Table 2.4 The SCRs based on f true investing seven units separately in each of the seven
assets and in an equally weighted portfolio are presented.

when investing in assets separately. And even including diversification effects, we observe

a severe underestimation of the true risk by

fSF (uinitial)

f true (uinitial)
− 1 =

1.300

1.478
− 1 = −12.04%

Such an underestimation may lead to a capital buffer too low to cover investment risks,

as outlined for instance by Asadi and Al Janabi (2020).

Inspecting a common tool of capital allocation, the Euler allocation, of both measure-

ments at uinitial, cf. Table 2.5, also provides evidence that there is a severe gap between

the two approaches. Notably, the entries of the gradient add up to the capital require-

ment for uinitial in both cases, cf. Tasche (2008). We can thus conclude that changing

diversification effects are not captured when basing risk measurement on the square-root

formula, since the slope of the two functions in uinitial strongly differ. This observation

is in line with Chen et al. (2019), who find empirical evidence that the standard formula

does not reflect changing diversification effects correctly.

To approximate then the difference fdiff(u) = f true(u)− fSF(u) the OCS provided in Ta-
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i ∇uf
SF
i ∇uf

true
i Relative difference

1 0.126 0.068 85.29%
2 0.136 0.062 122.95%
3 0.190 0.058 229.34%
4 0.316 0.756 −58.20%
5 0.056 0.064 −11.11%
6 0.201 0.203 −1.96%
7 0.277 0.267 3.74%∑

1.300 1.478 −12.04%

Table 2.5 Euler allocations of f true and fSF and their relative difference. ∇u represents
the gradient.

ble 2.6 are determined as suggested in section 2.2 such that we obtain an approximation

fSF(u) + gm(u) of f
true(u) in the sense of Proposition 2.1.20 In a first step, we use only a

i Asseti xOCS
1i

xOCS
2i

xOCS
3i

xOCS
4i

xOCS
5i

xOCS
6i

xOCS
7i

1 B1 -0.057 -0.001 0.027 -0.034 0.013 0.012 0.004
2 B2 -0.075 -0.001 0.026 -0.031 0.011 0.008 0.002
3 B3 -0.130 0.002 0.044 -0.016 -0.011 -0.008 -0.002
4 B4 0.440 -0.002 -0.020 0.113 -0.088 -0.003 -0.016
5 B5 0.006 -0.002 -0.004 -0.048 0.040 -0.006 0.004
6 S1 0.005 0.071 -0.038 0.007 0.006 -0.005 0.071
7 S2 -0.011 -0.069 -0.034 0.008 0.029 0.002 -0.063

Table 2.6 Orthogonal convexity scenarios for the definition of the approximation function
gm(u) as in section 2.2.

single scenario. That scenario xOCS
1 mainly reflects losses in bond investment B4 and is

equal to the Euler allocation of fdiff such that

7∑
i=1

xOCS
1i

= 0.178 = fdiff(uinitial) = f true(uinitial)− fSF(uinitial)

Including this additional scenario comes with two advantages: Firstly, we ensure that the

risk resulting from the initial portfolio uinitial is estimated precisely. Secondly, first order

sensitivities of the true risk are met by our approximation. Employing further scenarios

then allows us to fit a quadratic approximation of f true in uinitial even allowing us to meet

second order sensitivities of the true risk landscape.

20Notably, for the determination it has been set w1 = uinitial, w2 = (0, 0, 0, 0, 0, 1,−1)T and w3 =
(0.2, 0.2, 0.2, 0.2, 0.2, 0.5,−0.5)T since those are the business decisions we want to evaluate later on.
Appendix 2.6.3 sketches how Aigner and Schlütter (2022) select the OCS without pre-given decisions
considered as well, and the following calculations could be conducted in the same way.
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For illustration, let us numerically evaluate the goodness of the approximation. Therefore,

we shift the portfolio in the direction

unew(h) = uinitial + h · (0, 0, 0, 0, 0, 1,−1)T (2.18)

for h ∈ R. This new portfolio represents a shift between stock investments keeping the

exposure to the five bond investments constant. For positive values of h, we shift our

portfolio from the “other” investment, S2, in the direction of the “global” one, S1. For

negative h the shift is opposite, from “global” to “other”.

The resulting SCRs based on the different approaches are presented in Figure 2.2 for

h ∈ [−1, 1]. There, we see that the overall capital requirement according to the standard

formula (red curve) always underestimates the true risk (black curve). Furthermore, we

see that it strictly decreases when shifting the portfolio away from S2 in the direction of

S1, which is reflected by the consistently negative slope. However, the true risk actually

increases if the portfolio is shifted “too far” away from S2 (positive h) due to changing

diversification effects that are not captured by the standard formula. Generally, we can

say that first and second order sensitivities in uinitial = 17 (for h = 0) are not reflected

correctly.

By extending the standard formula with only m = 1 OCS (orange curve), we can adjust

the risk measurement function in a sense that the true risk in uinitial is reflected correctly

and that even first order sensitivities of f true in all directions are met. The latter is due

to the selection of the Euler allocation of fdiff as first scenario. Such an extension is a

good starting point, but also does not take into account changing diversification effects,

since it still has a consistently negative slope in line with the standard formula.

Including m = 2 scenarios (blue curve) allows a fit with a quadratic approximation

function that also overcomes this second problem. We observe that now—additional to

the properties of the extension with one scenario—even second order sensitivities are met

in a neighbourhood of uinitial. We thus obtain a risk measurement function that is also

capable of evaluating non-marginal portfolio shifts.

In order to inspect the goodness of the extension more granularly, let us inspect a more

complex shift impacting all portfolio positions simultaneously

unew(h1, h2) = uinitial + h1 ·
(
1

5
,
1

5
,
1

5
,
1

5
,
1

5
,−1

2
,−1

2

)T

+ h2 · (0, 0, 0, 0, 0, 1,−1)T (2.19)
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Figure 2.2 SCRs on the basis of the different risk measurement functions evaluating
unew(h) as in Eq. (2.18).

for h1, h2 ∈ R. If we set there h1 = 0, we would again inspect a portfolio shift in the

sense of Eq. (2.18). Setting h2 = 0 would then reflect a shift away from stock into

bond investments for positive h and vice versa for negative ones. Notably, the directions

have been chosen such that the overall investment sum does not change. Comparing

the resulting SCRs on the basis of OCS leads to the results presented in Figure 2.3 for

h1, h2 ∈ [−1, 1].

There, the left part shows the relative error of the standard formula extended by m =

1 scenario. It should be noted that we thereby obtain a reasonable approximation of

f true if we only evaluate marginal portfolio changes. When h2 is de-/increased too far,

the underlying curvature of the true risk measurement function cannot be reflected any

more. That misestimation is represented by the relative errors of fSF(unew(h1, h2)) +

g1(unew(h1, h2)) (red parts in the figure).

By including a second scenario, we are still able to approximate the true risk in a

neighborhood of uinitial, but changing diversification effects are also considered. In the

middle part of Figure 2.3, we observe that the gray parts—reflecting a relative error of

about 0%—are not linear any more, but are instead spread in all directions. At the same
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Figure 2.3 Relative errors measuring risks of portfolios unew(h1, h2) as in (2.19) on the
basis of the standard formula and its extension via orthogonal scenarios for m = 1, 2 and
3 scenarios. All results are compared to f true (unew (h1, h2)).

time, we have to accept that a slight overestimation of the true risk may occur (blue

parts), which is due to the fact that we extend the standard formula by a strictly positive

function g. Numerically, including a second and third scenario reduces the absolute

amount of the relative error from 5.86% (left) to 3.39% (middle). Notably, the inclusion

of the third scenario (right part) does not have a great impact on the maximal relative

error (3.00%), but indeed the neighbourhoodregion in which the approximation meets the

true risk (gray parts in the right) can be widened. The inclusion of even more scenarios

here also seems reasonable.
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2.5 Conclusion

This paper suggests “orthogonal convexity scenarios” (OCS) to address the requirement

for the Own Risk and Solvency Assessment (ORSA) of an insurer employing scenario

analyses. Explicitly, it is expected to ”also take into account risks that are not or not

adequately included in the standard formula, and [...] develop a suitable assessment

procedure for them” (BaFin (2016)). We show that the OCS allow the derivation of a

deterministic extension of the standard formula such that the overall risk is in line with

the true portfolio risk. The approach is applied in the context of market risks comprising

interest rate, spread and equity risks. For the set-up of the standard formula, we follow

the regulatory requirements and the the approaches from the literature. Additionally,

we use an internal model which is supposed to represent the true risk resulting from

an asset portfolio. Notably, the true risk is generally unknown in practice, at which

point an approximation becomes necessary. We find that extending the standard formula

by OCS provides a reasonable approximation of the true risk in the sense of first and

second order sensitivities. The latter property allows the evaluation of even non-marginal

portfolio shifts, since changing diversification effects are considered by the resulting risk

measurement. Although the approximation is only local, the examples in Paulusch and

Schlütter (2022) indicate that the methodology is useful for other portfolios in addition

to the calibration portfolio. The suggested approach can thus be seen as an answer to the

question of how to select scenarios in the ORSA to measure risks that are not captured by

the standard formula. Notably, since only deterministic scenarios are taken into account,

we provide an easy tool for communicating the difference between an internal model

and the standard formula to decision-makers, which has been identified as one of the

fundamental aims of stress scenarios, cf. Albrecher et al. (2018, Chapter 5.5).
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2.6 Appendix

2.6.1 Proof of Proposition 2.1

Let uinitial be arbitrary and assume f true(uinitial) > fSF(uinitial). Furthermore, assume that

f true and fSF are homogeneous of degree one and twice continuously differentiable in

uinitial. Then

fdiff(u) := f true(u)− fSF(u)

directly fulfills these properties as well. According to Aigner and Schlütter (2022, Theo-

rem 1) it then holds for the approximation function g as specified in section 2.2

fdiff (uinitial) = gm (uinitial)

∂

∂h
fdiff (uinitial + hv) |h=0 =

∂

∂h
(gm (uinitial + hv) |h=0)

∂2

∂h1∂h2

fdiff (uinitial + h1v1 + h2v2) |h1=h2=0 =
∂2

∂h1∂h2

gm (uinitial + h1v1 + h2v2) |h1=h2=0

for all v ∈ Rn and v1, v2 ∈ span{w1, . . . , wm}. Thereby, Proposition 2.1 follows.

2.6.2 Estimation of the Hessian matrix

For the identification of OCS in Eq. (2.7), we have to estimate the Hessian matrix of(
fdiff

)2
. Employing the chain rule leads to

H = 2 ·
(
Hf true −HfSF

)
·
(
fdiff (uinitial)

)
+ 2 ·

(
∇uf

diff (uinitial)
)T · ∇uf

diff (uinitial) (2.20)

with Hf true and HfSF the Hessian matrices of fSF and f true respectively, and ∇uf
diff the

gradient of fdiff all evaluated at uinitial. Furthermore, the gradient simplifies to

∇uf
diff (uinitial) = ∇uf

true (uinitial)−∇uf
SF (uinitial)

It is then necessary to estimate the single parts of Eq. (2.20). On the one hand, HfSF and

∇uf
SF (uinitial) can be determined easily by numerical derivation providing a reasonable

result, since fSF is deterministic. The identification of Hf true and ∇uf
true (uinitial), on the

other hand, is more challenging. Monte Carlo simulations can be applied in line with

Gourieroux et al. (2000) and Tasche (2009) who suggest Kernel estimators leading to a

consistent estimation of Hf true and ∇uf
true (uinitial). Thanks to Slutsky’s Theorem, (cf.
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Casella and Berger, 2002, p. 239 f.), we can then consistently estimate H in (2.20), since

it is a composition of consistent estimations.

2.6.3 Selection of weightvectors

For the identification of the necessary weightvectors w1, . . . , wm in Eq. (2.7), the user

of the methodology could follow Appendix B in Aigner and Schlütter (2022) and set

w1 = uinitial. For the identification of w2, . . . , wm, the authors define a matrix M ∈ Rn×ñ

with ñ = rank(H), such that

(Mv)T ·H · (Mv) = 0

for all v ∈ Rñ−m and the columns of M denoted as Mi also fulfill (Mi)
T HMj = 0, for

i ̸= j. Further, they define the diagonal matrix Λ = MTHM and denote by Λ−0.5 the

diagonal matrix with entries λ−0.5
1 , . . . , λ−0.5

ñ−m. The weightvectors can then be determined

as

wm+1 =
1√

sTΛ−0.5MTMΛ−0.5s
·MΛ−0.5s

where s is the eigenvector of Λ−0.5MTMΛ−0.5 which refers to the smallest eigenvalue.



2.6. Appendix 72

2.6.4 Parameters for regulatory capital requirement

t Risk-free interest rate rf (t) Relative change sup(t) Relative change sdown(t)
1 -0.00612 0.7 -0.75
2 -0.00594 0.7 -0.65
3 -0.00556 0.64 -0.56
4 -0.00513 0.59 -0.5
5 -0.00462 0.55 -0.46
6 -0.00353 0.52 -0.42
7 -0.00293 0.49 -0.39
8 -0.00232 0.47 -0.36
9 -0.00172 0.44 -0.33
10 -0.00114 0.43 -0.31
. . . . . . . . . . . .

Table 2.7 Risk-free interest rate rf structure provided by EIOPA. The data are from
08/2021. Additionally, upward and downward shocks for the interest rate module are
presented, cf. European Commission (2015).

Duration (duri) in years stressi
duri ≤ 5 3% · duri
5 < duri ≤ 10 15% + 1.7% · (duri − 5)
10 < duri ≤ 20 23.5% + 1.2% · (duri − 10)
duri > 20 min (35% + 0.5% · (duri − 20), 1)

Table 2.8 Parameters for the determination of stressi within the spread sub-module under
Solvency II regulation for bonds unrated by nominated ECAI are reported.
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2.6.5 Homogeneity of degree one of fSF

We need to show that fSF in (2.17) is homogeneous of degree one. Therefore, we let every

figure as in section 2.3.2. We can calculate forλ ∈ R and u =
((

uB
)T

,
(
uS
)T)T ∈ Rn as

in section 2.3.2

fSF(λ · u) = fSF(λ ·
((

uB
)T

,
(
uS
)T)

=
√
xT
λRSFxλ

(∗)
=
√
(λ · x)TRSF (λ · x)

= λ ·
√
xTRSFx = λ · fSF(u)

with

xλ =
(
Mktint

(
λ · uB

)
,Mkteq

(
λ · uS

)
,Mktsp

(
λ · uB

))T
x =

(
Mktint

(
uB
)
,Mkteq

(
uS
)
,Mktsp

(
uB
))T

The equality (∗) holds if and only if Mktint, Mkteq and Mktsp are also homogeneous of

degree one. Firstly, it is

Mktint
(
λ · uB

)
= max

((
PV int − PV up

int

)T (
λ · uB

)
,
(
PVint − PV down

int

)T (
λ · uB

))
= λ ·max

((
PV int − PV up

int

)T
uB,

(
PVint − PV down

int

)T
uB
)
= λMktint

(
uB
)

Secondly, it holds

Mkteq
(
λ · uS

)
=
√

x̃T
λReqx̃λ

(∗∗)
=

√
(λ · x̃)T Req (λ · x̃) = λ ·Mkteq

(
uS
)

for x̃λ =
(
Mkteq,global

(
λ · uS

)
,Mkteq,other

(
λ · uS

))T
and

x̃ =
(
Mkteq,global

(
uS
)
,Mkteq,other

(
uS
))T

. To see (∗∗), we have to observe that

Mkteq, global

(
λ · uS

)
= max

0.3 · λ ·
kglobal∑
i=1

uS
i , 0

 = λMkteq, global

(
uS
)

Mkteq, other

(
λ · uS

)
= max

0.4 · λ ·
nS∑

i=kglobal+1

uS
i , 0

 = λ ·Mkteq, other

(
uS
)

Thirdly, we can calculate

Mktsp
(
λ · uB

)
= max

(
stressT

(
λ · uB

i

)
, 0
)
= λ ·max

(
stressTuB, 0

)
= λ ·Mktsp

(
λ · uB

)
fSF thus is homogeneous of degree one.
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2.6.6 Robustness check

In order to check the robustness of the presented approach to changes in the underlying

f true, the portfolio set-up is to be changed to coincide with the parameters presented in

Eckert et al. (2016) and Gatzert and Martin (2012). On this basis, we can also consider

an investment portfolio consisting of nB = 5 bond investments, cf. Table 2.10, that are

in line with Eckert et al. (2016) and nS = 2 stocks, cf. Table 2.11. Here, the SCR

employing the standard formula can be directly calculated. For the internal model, we

Bi Typei ratingi maturityi Coupon (in %) ci
1 Corporate AA 10 2.950
2 Corporate A 10 4.550
3 Corporate BBB 11 3.500
4 Government A 15 3.000
5 Government BB 11 5.125

Table 2.10 Specifications of the bonds that are taken into account. The parameters
are taken from Eckert et al. (2016). B1: Colgate-Palmolive Company, B2: Woolworth
LTD, B3: Areva SA, B4: Poland Republic of (Government) and B5: Turkey Republic of
(Government).

again take into account correlated standard Wiener processes with correlation matrix

RIM as discussed in section 2.3.1. The entries of RIM are presented in Table 2.12 and are

again taken from Eckert et al. (2016). The stocks are then modeled as before following

geometric Brownian motions with the parameters as in Table 2.11. Here, S1, namely

MSCI World, represents the investment in a “global” asset and S2, India BSE 100, in

an “other” asset. Again, we cover both potential classes in the equity risk sub-module.

The parameters of the interest rate Vasicek (1977) process are given by κ = 0.0953,

Si Indexi ratingi µi σi

1 MSCI World Global 0.0509 0.1574
2 India BSE 100 Other 0.1043 0.3309

Table 2.11 The parameters for the specification of the geometric Brownian motions repre-
senting stock investments. The numbers are taken from Gatzert and Martin (2012) who
estimated them based on monthly data from 01/1988 to 07/2011.

θ = 0.0437 and ζ = 0.0069, cf. Eckert et al. (2016).21 Furthermore, the initial value is set

to r(0) = θ. The specifications of bond investments are presented in Table 2.10. Eckert

21These are based on the monthly “EURIBOR” data from 01/1999 to 12/2008.



2.6. Appendix 76

et al. (2016) follow then Liang et al. (2011), assuming that bonds in the same rating class

have the same parameters for their hazard rate Vasicek (1977) process which are shown

in Table 2.13. Additionally, the recovery rate is set constant to δR = 0.61 as before.

We evaluate the goodness of the approximation of f true(u) by fSF(u) + gm(u) as sug-

i r hAA hA hBBB hBB S1 S2

r 1
hAA 0.3 1
hA 0.3 0.3 1
hBBB 0.3 0.3 0.3 1
hBB 0.3 0.3 0.3 0.3 1
S1 -0.26 0 0 0 0 1
S2 -0.21 0 0 0 0 0.26 1

Table 2.12 The entries of correlation matrix RIM . The values are taken from Gatzert and
Martin (2012) and Eckert et al. (2016) who have estimated the correlation between stocks
and interest rate r based on monthly data from 01/1988 to 07/2011. The correlations
between bond classes hi and interest rate r are originally from Liang et al. (2011).

Rating χ o Γ
AA 0.9581 0.0072 0.0181
A 0.7553 0.0141 0.0126

BBB 0.5865 0.0258 0.0113
BB 0.4406 0.0781 0.0454

Table 2.13 Parameters for the Vasicek (1977) processes modeling the hazard rates de-
pending on the bond rating. The values are again taken from Eckert et al. (2016).

gested in section 2.2 for investing seven units into an equally weighted portfolio specified

as uinitial = (1, . . . , 1)T ∈ Rn. f true is evaluated on the basis of a Monte Carlo simulation

with 5,000,000 paths and it results in capital requirements of f true (uinitial) = 1.525 and

fSF (uinitial) = 1.309 resulting in a relative error of −14.20%. Following the procedure de-

scribed in section 2.2, seven scenarios can be identified which are presented in Table 2.14.

Evaluating the goodness of the performance, we again take into account the shift pre-

sented in Eq. (2.18). Figure 2.4 presents the outcomes for h ∈ [−1, 1]. There, we obtain a

similar result as in section 2.4: The standard formula is not capable of approximating the

true risk reasonably underestimating the portfolio risk, and sensitivities are also not re-

flected correctly. An extension by m = 1 orthogonal convexity scenario overcomes one of

these problems reflecting the true risk at uinitial and also first order sensitivities correctly.
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i Asseti xOC
1i xOC

2i xOC
3i xOC

4i xOC
5i xOC

6i xOC
7i

1 B1 0.0119 0.0115 -0.0147 0.0033 -0.0127 -0.0127 0.0056
2 B2 -0.0044 0.0121 -0.0155 0.0021 -0.0137 -0.0137 0.0004
3 B3 -0.0718 0.0174 -0.0239 -0.0010 -0.0213 -0.0213 0.0042
4 B4 0.0557 0.0039 0.0009 0.0119 -0.0001 -0.0001 -0.0005
5 B5 0.0534 0.0032 0.0018 -0.0163 -0.0072 -0.0072 -0.0005
6 S1 -0.0100 0.0364 0.0424 0.0018 -0.0266 -0.0266 -0.0104
7 S2 0.1814 -0.0845 0.0090 -0.0018 0.0815 0.0815 0.0013

Table 2.14 Scenarios for the definition of the approximation function gm(u) in the setting
of Eckert et al. (2016).

Extending the regulatory risk calculation by m = 2 orthogonal convexity scenarios even

allows for an inspection of non-marginal portfolio changes by reflecting the second order

sensitivities of f true at least in some subspace. With these observations, we have seen

Figure 2.4 SCRs on the basis of the different risk measurement functions evaluating
unew(h) as in Eq. (2.18) with the parameters in the internal model as reported in Eckert
et al. (2016).

that the presented approach is robust to changes of the underlying true risk measurement

function, making it applicable for a wide range of risk functions.
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Chapter 3

Scenarios of Systemic Risk*

Abstract

The so-called “systemic expected shortfall” (SES), introduced by Acharya et al. (2017),
measures a financial institution’s contribution to systemic risk of the financial market.
Acharya et al. propose taxing financial institutions based on their SES in order to in-
ternalize the social costs of systemic risk. The concept of SES leans on a well-known
methodology of corporate risk management, namely the marginal expected shortfall, or
Euler capital allocation principle. This paper shows that limitations known from the cor-
porate risk management literature are also relevant for SES. The condition underlying the
calculation of SES—the financial market being in distress—corresponds to a snapshot of
the strategies currently chosen by financial institutions, disregarding potential reactions
e.g. to a new tax. Introducing an SES-based tax therefore does not necessarily guide
firms to a social optimum. We suggest measuring (firms’ contributions to) systemic risk
by means of so-called orthogonal convexity scenarios (OCS). Our empirical investigation
demonstrates that the traditional SES inappropriately reflects systemic risk induced by
large insurance companies and Asian banks.

JEL classification: G28, G32, D62, H23

Keywords: Systemic risk, systemic expected shortfall, marginal expected shortfall, or-

thogonal convexity scenarios

*This versions of the paper was presented at the annual meeting of the DVfVW 2023.
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3.1 Introduction

Systemic risks in financial markets pose a major threat to modern economies and soci-

eties. Financial institutions, i.e. banks and insurance companies, contribute to systemic

risk by (i) holding insufficient capital and (ii) obtaining a risk profile which is associated

with high losses when the whole market is under stress. Contributing to systemic risk is

an externality, as it causes social costs such as potential governments bailouts. Measuring

systemic risk is thus necessary from a regulatory perspective, cf. for instance Feinstein

et al. (2017), in order to quantify the costs if such bailouts become necessary.

To mitigate systemic risks, a growing body of literature deals with the definition of appro-

priate capital requirements and the design of tax policies which internalize the associated

social costs. In a much recognized recent paper, Acharya et al. (2017) derive a tax pol-

icy for financial institutions which aligns the firms’ preferred risk management strategies

with the social optimum. To this end, Acharya et al. measure systemic risks using the

Expected Shortfall (ES) of assets minus capital for all firms in the financial system on

aggregate. The tax of each firm i depends on its so-called Systemic Expected Shortfall

(SES). The SES of firm i measures firm i’s contribution to systemic risk and is obtained

as the expected assets minus capital of firm i conditioned on the whole system being in

distress. Acharya et al.’s approach of using ES and SES in the context of a financial

system is inspired by well-established corporate risk management theory. This theory

tackles the question of how firms with several business segments should allocate their

firm-wide capital needs back to business segments. A prominent method is the marginal

(or Euler) capital allocation principle, which considers the impact of a marginal segment

expansion on firm-wide capital.1 The SES as proposed by Acharya et al. corresponds

to a firm using ES to determine its firm-wide capital: here, the marginal allocation (or

marginal ES) for a segment coincides with its expected losses conditioned on the firm

being in distress (cf. Hong and Liu, 2009).

The corporate risk management literature has identified an important shortcoming of

marginal capital allocation, which seems relevant for Acharya et al.’s usage of SES. Ex-

1The marginal capital allocation principle has been applied in connection with homogeneous risk
measures, such as Value-at-Risk or Expected Shortfall, cf. Gourieroux et al. (2000), Tasche (2009), Hong
and Liu (2009), Targino et al. (2015). It can also be used in connection with a firm’s Default Put Option
(DPO), which evaluates the losses of debtholders in the default case of the firm, cf. Myers and Read
(2001) and Erel et al. (2015) in connection with Mildenhall (2004).
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amples in Gründl and Schmeiser (2007, pp. 310 ff.) and Diers (2011, pp. 113 ff.) in

the insurance context highlight that marginal capital allocations strongly depend on the

firm’s current portfolio composition. When segments are dropped or a group of segments

is non-marginally expanded, natural hedges may vanish, and new risks can bring the firm

into distress. To identify a firm’s optimal mix of business segments, Buch et al. (2011)

suggest using second-order derivatives of the diversified capital with respect to segment

volumes, in addition to (first-order) marginal capital allocations. For the number of seg-

ments N being large, the complete Hesse matrix of ES becomes difficult to interpret,

as it contains N2 elements. Aigner and Schlütter (2022) propose so-called ”Orthogonal

Convexity Scenarios” (OCS). An OCS is a vector of size N containing realized losses for

each segment. Aigner and Schlütter show that the marginal capital allocation (as the

first scenario) in combination with a small number of OCS can reasonably reflect the

nonlinear relationship between diversified capital and segment volumes.

Turning back to Acharya et al.’s measure for systemic risk, the strand of literature pre-

sented highlights that the SES depends on the composition of the financial market and

can alter when firms change in size or strategy. The latter can occur, among other ways,

by introducing the proposed tax policy based on SES,2 as it is intended to induce changes

in firms’ strategies. The introduction of an SES-based tax would therefore need to happen

in a sequence of rounds where firms adjust their strategy, the SES is determined based

on the new strategies, firms adjust again, and so on. We also provide a stylized example

which shows that such a sequence does not necessarily converge to the social optimum.

This paper proposes assessing the contribution of individual firms to systemic risk on a

more robust basis by using the Systemic Expected Shortfall along with relevant Orthog-

onal Convexity Scenarios.

The empirical analysis included in this paper is based on data of “systemically impor-

tant financial institutions” indicated each year by the Financial Stability Board (FSB).

Firstly, we demonstrate how the SES in combination with OCS can be valuable for a

regulator dealing with systemic risk. We find that extending the SES through additional

OCS allows a proper reflection of changing sensitivities resulting from a change in market

capitalizations. The necessity of several rounds implementing a tax for systemic risk can

thereby be avoided. Additionally, we highlight that the resulting scenarios also allow

2Cf. Acharya et al. (2017), section 1.4.
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for an economically useful interpretation depicting the interconnectedness between the

evaluated institutions. Secondly, we illustrate scenarios for an investor distributing their

portfolio in systemically relevant institutions. There, we especially find that insurance

companies should play an important role for investment decisions. Notably, this is con-

trary to the fact that the FSB recently just designated banks as systemically important

institutions and did not consider insurance companies.

The remainder of this article is structured as follows. Section 2 describes the model

set-up and the systemic expected shortfall in line with Acharya et al. (2017). Section 3

introduces orthogonal convexity scenarios for measuring systemic risk. Section 4 explains

the estimation methodology, data sets and results of our empirical analysis. Section 5

concludes.

3.2 Measuring systemic risk

We start with presenting the basic idea of Acharya et al. (2017, pp. 6-9) in order to

measure the externality of systemic risk and internalize it into bank’s decision making

with an SES-based tax.

We consider a financial system of N banks3 Each bank i ∈ {1, ..., N} defines its strategy

with k decision variables and its choices are collected in vector ui = (ui1, ..., uik)
T ∈ Rk.

Vector u = (uT
1 , ..., u

T
N)

T ∈ R
N ·k lists the decision variables of all banks in the system.

Variable uij can define, e.g., the amount of money that bank i invests into a specific asset

class or the business volume of its segments.

Let random variable LOSSi(ui) denote the loss or lack in capital of bank i depending on

its strategy ui. The stochastic event COND(u) points out that the financial system is

in a crisis. On this basis, the social cost of systemic risk is measured as in dependence of

all banks’ strategies as

SYST : RN ·k → R (3.1)

u 7→ E

[
e ·

N∑
i=1

LOSSi(ui) · 1COND(u)

]

where e denotes a constant capturing the severity of externality costs if a crisis occurs.

3The term “bank” is used to simplify the wording and may represent other financial institutions, such
as security providers or insurance companies, as well.
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The Systemic Expected Shortfall of bank i is defined as

SESi : RN ·k → R (3.2)

u 7→ E [LOSSi(ui)|COND(u)]

and measures the contribution of bank i to systemic risk. The SES-based tax, cf. Acharya

et al. (2017, p. 12), reflects bank i’s contribution to systemic risk and is defined as

TAXi(u) = e · P (COND(u)) · SESi(u)

= E
[
e · LOSSi(ui) · 1COND(u)

]
Across all banks, the SES-based taxes sum up to the social costs of systemic risk, i.e.

N∑
i=1

TAXi(ui) = SY ST (u) (3.3)

The objective of bank i is to maximize its post-tax profit which is defined as

PROFITi (ui) = PROFIT PREi (ui)− TAXi (ui) (3.4)

with PROFIT PREi (ui) summarizing the bank’s pre-tax profit.

The regulator’s objective is maximizing social welfare, defined as

SOCIAL(u) =
N∑
i=1

PROFIT PREi(ui)− SYST(u) (3.5)

Eq. (3.4) and (3.5) in connection with Eq. 3.3 imply that the sum of all banks’ post-tax

profits coincide with social welfare. Therefore, the first-order conditions of the banks’

problems in terms of Eq. (3.4) coincide with the first-order conditions of maximizing

social welfare in terms of Eq. (3.5), i.e.

∇ui
PROFITi (ui) = ∇ui

SY ST (u) for all i = 1, ..., N (3.6)

In other words, if u∗ = (u∗
1, ..., u

∗
N)

T is the social optimum in terms of (3.5), then u∗
i is

also the optimal strategy of each bank i in terms of (3.4).

Our main concern is that banks’ strategies in the financial system before the tax has

been introduced, say uinitial = (uinitial
1 , ..., uinitial

N )T, may be far away from the social opti-

mum u∗. Starting in the system pre taxation, the SESi are calculated based on condi-

tion COND(uinitial) which reflects strategies uinitial. The SES-based tax penalizes bank
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strategies which create losses in situations where condition COND(uinitial) applies. It

does, however, not take into account that COND(u∗) may apply in different states of

the world than condition COND(uinitial). Hence, banks are not incentivized to reduce

losses in those situations where the financial system is most distressed if strategies u∗

were implemented. Appendix 3.6.1 provides a stylized example in order to substantiate

this line of thought.

3.3 Orthogonal convexity scenarios (OCS)

In order to overcome the limitation of the SES-based tax as explained in section 3.2, we

propose that the regulator should be in a good position to predict (i) how the social costs

SY ST change in the strategies in the financial system u and (ii) how the banks’ SES

change in u. With these predictions, the regulator could early detect banks exposing to

new risk clusters and could warn other banks that their SES-based tax will increase when

they “follow the herd” in terms of the critical engagements.

If COND(u) was fixed and unaffected by u, it would be sufficient for the regulator to

monitor how each bank’s strategy ui impacts its SES, and then add up the SES to SYST.

Banks with a large initial SES should be prioritized, i.e. their monitoring should be

particularly close. Given that COND(u) may in fact depend on u, a first challenge for

the regulator is to identify potential changes in strategies which cause that major risks

bringing the financial system into distress.

We start with an approach to make the relation u 7→ SY ST (u) more tangible. A technical

assumption allows us to employ procedures of the corporate risk management literature.4

Assumption (A): SY ST (u), as defined in (3.1), is positive homogeneous of degree one,

i.e. for all λ > 0 we have SY ST (λ · u) = λ · SY ST (u). Moreover, SY ST (uinitial) > 0

and SY ST (u) is twice continuously differentiable at uinitial.

The assumption of positive homogeneity is not guaranteed in the generically formulated

model of Acharya et al., but it seems justifiable, at least in approximation. In terms of

the original specification from Acharya et al.,5 positive homogeneity means that if, for

example, all banks increased all their investments by 5%, increase their debt by 5% and

their equity endowment by 5%, then social costs in SYST also increase by 5%.

4Analogous assumptions about the relation between portfolio segment volumes and the aggregate
portfolio risk can be found in the corporate risk management literature, e.g., in Tasche (2008), Buch
et al. (2011), Aigner and Schlütter (2022).

5The original specification of Acharya et al. is explained in Appendix 3.6.3.



3.3. Orthogonal convexity scenarios (OCS) 88

Under Assumption (A), Euler’s homogeneous function theorem allows to evaluate a firm’s

risks by multiplying risk sensitivities with volumes (cf. Tasche, 2008, p. 429). In our

context, we can rewrite the social costs of systemic risk as

SY ST (u) =
N∑
i=1

k∑
j=1

∂SY ST (u)

∂uij

· uij (3.7)

If uij reflects the business volume of bank i’s segment j, then the sensitivity of sys-

temic risk with respect to this segment, ∂SY ST
∂uij

, multiplied with volume uij provides the

contribution of this segment to the social costs of systemic risk.

The vector collecting all sensitivities,

xgrad =

(
∂SY ST

∂u11

, ...,
∂SY ST

∂unk

)T

, (3.8)

corresponds to the gradient (or Euler) capital allocation scheme.6 Considering the gra-

dient vector as fixed, Eq. (3.7) states that

u 7→ uT · xgrad (3.9)

is a linear approximation of the relation u 7→ SY ST (u). The goodness of this approx-

imation is, however, limited since SY ST (u) is not linear when COND(u) may vary in

u. The approximation in (3.9) could theoretically be improved by including second-order

derivatives in terms of the complete Hessian matrix of SY ST (u) and deriving a second-

order Taylor polynomial.7 Given that the dimension of u, i.e. N · k, might be large for

a real financial system, the Hessian matrix, which includes N2 · k2 elements, would be

difficult to interpret.

To account for the nonlinearity of SY ST (u) with a better interpretable approach than the

complete Hessian matrix, Aigner and Schlütter (2022) refer to x1 = xgrad as the “gradient

scenario” and propose to consider a small set of further “orthogonal convexity scenarios”

(OCS), x2, ..., xm. With each of the m scenarios, a risk assessment is made analogous to

6Cf., e.g., Tasche (2008), Buch and Dorfleitner (2008) and McNeil and Smith (2012) for more details.
7In the corporate risk management literature, the corresponding Hessian matrix is used in Gourieroux

et al. (2000) and Buch et al. (2011).
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line (3.9) and these assessments are aggregated with the root sum of squares,

gm : RN ·k → R (3.10)

u 7→

√√√√ m∑
l=1

uT · xl

Function gm(u) is able to reflect the curvature of SY ST (u) for strategies u in a subspace

span{w1, ..., wm} of RN ·k. Aigner and Schlütter (2022) show that the vectors wj which

are most relevant in terms of convexity of the aggregate risk can be identified by an

eigenvalue problem which is similar to a principal component analysis, but not restricted

to elliptical distributions. Proposition 3.1, which is technically equivalent to Theorem

1 in Aigner and Schlütter (2022),8 summarizes to what extent function gm(u) reflects

SYST(u).

Proposition 3.1. Let Assumption (A) be fulfilled and let H denote the Hessian matrix

of SYST2(u) evaluated at uinitial. Consider vectors w1, ..., wm ∈ R
N ·k with w1 = uinitial

and wT
i · H · wj = 0 for all 1 ≤ i < j ≤ m. Then function gm as in Eq. (3.10) in

connection with scenarios

xl =
wT

l H√
2 · wT

l Hwl

, l = 1, ...,m (3.11)

satisfies

i) SYST
(
uinitial

)
= gm(u

initial)

ii) ∂
∂h
SYST(uinitial + h · v) |h=0=

∂
∂h
gm
(
uinitial + h · v

)
for all v ∈ Rn

iii) ∂2

∂u
SYST

(
uinitial + h1 · v + h2 · v

)
|h1=h2=0=

∂
∂u
gm
(
uinitial + h1 · v + h2w

)
|h1=h2=0 for

all v, w ∈ span{w1, . . . wm}

We now turn to the relation between banks’ strategies u and each bank’s SES. To this

end, our procedure requires another assumption, namely that banks’ losses can be written

as

LOSSi(ui) =
k∑

j=1

uijXij for all i = 1, ..., N (3.12)

The random variables Xij model losses at the level of bank i’s segments, divisions or

asset classes, the volumes of which are assumed to be linearly scalable by uij. Lemma

8Therefore, a proof is omitted in this paper.
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3.1 transfers the result of Hong and Liu (2009) about the sensitivity of the Expected

Shortfall to the context of systemic risk. For notational simplicity, we summarize the

overall losses as LOSS(u) =
∑N

i=1 LOSSi (ui) for u ∈ RN ·k and denote the Value-at-Risk

to a certain α-level as V aRα

(
uTX

)
with X comprising all Xij.

Lemma 3.1. Let Assumption (A) be fulfilled, assume that the statement in line (3.12)

is fulfilled and let COND(u) be given as

LOSS(u) > V aRα

(
uTX

)
We assume further that the following three general properties hold:

i) It exists a N ·k-dimensional random vector K with E(K) < ∞ such that | LOSS(u1)−

LOSS(u2) |≤ KT | u1 − u2 | for all u1, u2 ∈ RN ·k.

ii) V aRα(u
TX) is differentiable for any u ∈ RN ·k.

iii) For any u ∈ RN ·k, the probability of LOSS(u) = V aRα

(
uTX

)
is equal to 0.

Then, we have

SESi(ui) =
k∑

j=1

∂SY ST (u)

∂uij

· uij (3.13)

for all i ∈ {1, ..., N}.

With the specific definition of COND(u) in this Lemma, Acharya et al. (2017) denote

the SESi as the Marginal Expected Shortfall, MESi. On this basis, we will empirically

study the systemic risk later on, cf. section 3.4.1 for more details. Notably, assumptions

i) - iii) are more of technical use ensuring that LOSS(u) is Lipschitz-continuous and that

calculations can indeed be conducted, cf. Hong and Liu (2009, pp. 283-284) for more

details.

Proposition 3.2 now provides a linear approximation of the SESi based on OCS.

Proposition 3.2. Let the assumptions from Lemma 3.1 be fulfilled. Let xi
l denote ele-

ments (i− 1) · k+1, ..., i · k of vector xl, i.e. those elements relating to decision variables

of bank i. For all u ∈ span{w1, ..., wm}, we have

SESi(u
initial) + (∇uSESi)

T · (u− uinitial) = (3.14)

=uT
i · xi

1 + (u− uinitial)T ·
∑m

l=2 xl(x
i
l)
T

SY ST (uinitial)
· uinitial

i
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Whereas Proposition 3.1 has shown that the OCS allow for a second-order approximation

of SY ST (u), Proposition 3.2 shows that OCS allow for a first-order approximation of the

gradient of SY ST (u), with the latter directly relating to banks’ SES, cf. Eq. (3.13).

The left hand-side of Eq. (3.14) is the first-order Taylor polynomial of SESi at uinitial,

accounting for COND(u) being adjusted to new strategies u. The first term on the

right-hand side, uT
i · xi

1, corresponds to the SES of bank i choosing strategy ui, but with

condition COND(u) being fixed at strategies uinitial. The second-term on the right-hand

side employs the OCS to forecast the change in SESi resulting from the changes in the

other banks’ strategies.

3.4 Empirical calibration of OCS for systemic risk

3.4.1 Estimation methodology

To allow for an empirical estimation of the systemic risk measures from section 3.2, we

consider the loss function for each financial institution i = 1, . . . , N given as

LOSSi (ui) =

(
w1

w0

)
i

· ui (3.15)

where the fraction
(

w1

w0

)
i
expresses the overall returns of bank i after one time period

comprising all respective decision variables.9 However, for our empirical analysis we will

employ daily returns of the N = 36 financial institutions. ui represents the market

capitalization of the ith financial institute. Further, Acharya et al. (2017, p. 13 f.) then

show based on power laws from extreme value theory that the SESi from line (3.2) relates

to the marginal expected shortfall,

MES5%
i = E

[(
w1

w0

)
i

− 1
∣∣∣I5%] , (3.16)

where the condition I5% identifies the “5% worst days for the market return”, cf. Acharya

et al. (2017, p. 13). As outlined in section 3.2, changes in firms’ strategies are likely

to impact the condition COND(u) and hence condition I5%. Specifically, changes in

strategies can cause different sizes of firms and hence different weights in the composition

of the market return.

Our empirical analysis focuses on potential changes in firm sizes measured by their mar-

9Appendix 3.6.3 shows in detail how Acharya et al. specify these returns.
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ket capitalization. We therefore specify u = (u1, ..., uN)
T ∈ RN as the current market

capitalizations in the financial system and

I5%(u) =

{
states of world s.t.

N∑
i=1

ui ·
(
w1

w0

)
i

≤ q5%

(
N∑
i=1

ui ·
(
w1

w0

)
i

)}
(3.17)

with q5% being the 5% percentile. Moreover, we replace SYST(u) from (3.1) by

ES(u) : RN → R, u 7→ E

[
N∑
i=1

ui ·
((

w1

w0

)
i

− 1

) ∣∣∣I5%(u)] (3.18)

According to Lemma 3.1, we have

∂

∂ui

ES(u) = E
[(

w1

w0

)
i

− 1
∣∣∣I5%(u)] = MES5%

i (u) (3.19)

To determine OCS based on empirical data, we have to estimate H from Eq. (3.11), i.e.

the Hessian matrix of (ES(u))2. Recall that the OCS express systemic risk for strategies

changing in directions of vectors w2, ..., wm, which point out, for example, anticipated

reactions to a new tax. To allow for a proper calibration of OCS, H needs to accurately

reflect the curvature of the systemic risk measure specifically when strategies change in

directions w2, ..., wm. We therefore do not estimate H by varying u in the direction of the

canonical unit vectors ei
10, but in the direction of relevant vectors comprised in a matrix

M ∈ RN×N . Our procedure builds on a basic assertion from differential calculus which

is summarized in Lemma 3.2.

Lemma 3.2. Consider function

f : U 7→ R, u → f(u)

with U ⊂ Rn open and assume that f is twice continuously differentiable at uinitial ∈ U .

Let H ∈ Rn×n denote the Hesse matrix of f(u) evaluated at uinitial. Let M ∈ Rn×n be

invertible and define H̃ = H ·M . Then, it holds

H̃i,j =
∂2

∂h1∂h2

f
(
uinitial + h1 · ei + h2 ·M.,j

)
For the estimation of the Hesse matrix of (ES(u))2, the columns of M will be set based

10Canonical unit vectors are vectors of dimension N · k (in our context) taking 1 on position i and 0
on all other positions.
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on relevant vectors w̃i.
11 We will determine the entries of matrix H̃

H̃i,j =
∂2

∂h1∂h2

ES
(
uinitial + h1 · ei + h2 ·M.,j

)
=

∂

∂h2

E
[(

w1

w0

)
i

− 1
∣∣∣I5%(uinitial + h2 ·M.,j)

]
(3.20)

and then derive H = H̃ ·M−1. The estimation of the interior term in (3.20), i.e.

E
[(

w1

w0

)
i

− 1
∣∣∣I5%(uinitial + h2 ·M.,j)

]
, (3.21)

is performed straightforward in line with Hong and Liu (2009, p. 284).12

3.4.2 Data

We consider n1 = 29 banks and n2 = 7 insurers, cf. Table 3.1. Notably, only banks have

been indicated by the Financial Stability Board (FSB) to be “systemically important

financial institution” lately. However, due to their high market capitalization it may be

necessary to include insurers in the analysis as well. Therefore, we relied on the report

of the FSB from 2019 also including the there listed insurance companies additional to

the 29 banks indicated in the report from 2021. We consider the daily share prices from

7th October 2012 to 7th October 2022 which are all converted to US dollar using the

respective daily exchange rates for company i = 1, . . . , 36 and which are denoted by (st)i

for day t. Explicitly, we take the relative daily changes rt as a measure for the stock

return. It is given for each firm i = 1, . . . , 36 on each day t > 1 as13

(rt)i =
(st)i
(st−1)i

− 1

Due to different public holidays in the countries where the companies are located, different

observation days are available. To address this problem, we merge the shares data by

date, dropping days in which not all shares are available.14 Finally, we weight the returns

by the market capitalizations at the 7th of October 2022, cf. Table 3.1.

11Cf. the next section for details on the identification of these directions.
12As proposed by Hong and Liu (2009, p. 284), we use a strongly consistent estimator for the 5%

percentile in (3.17) based on the order statistic. Based on those points in time (i.e. days) from our

historical data which are within I5%(u), we take the average of
wi

1

wi
0
− 1 for each bank i. Alternative

estimation approaches for (3.21) can be found in Gribkova et al. (2022) and referenced literature.
13In the sense of Acharya et al. (2017), we set

(
w1

w0

)
i
= (st)i

(st−1)1
.

14Addressing this problem differently by, for instance, setting the shares constant if data points are
not available does not lead to different results in the latter analysis.
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Company Country Market cap (in Bn. USD) Bucket

Bank of America Corp US 274.08 2

Bank of New York Mellon Corp US 31.90 1

Citigroup Inc US 81.71 3

Goldman Sachs Group Inc US 102.77 2

JPMorgan Chase & Co US 310.79 4

MetLife Inc US 50.45 Insurance

Morgan Stanley US 135.51 1

State Street Corp US 22.83 1

Wells Fargo & Co US 158.512 1

Agricultural Bank of China Ltd CN 139.23 1

Ping An Insurance Group Co of China Ltd CN 102.19 Insurance

Industrial and Commercial Bank of China Ltd CN 207.61 2

China Construction Bank Corp CN 151.32 2

Bank of China Ltd CN 121.04 2

Mitsubishi UFJ Financial Group Inc JP 55.48 2

Mizuho Financial Group Inc JP 28.11 1

Sumitomo Mitsui Financial Group Inc JP 39.66 1

Aegon NV NL 8.07 Insurance

Allianz SE DE 65.06 Insurance

AXA SA FR 51.67 Insurance

BNP Paribas SA FR 52.19 3

UniCredit SpA IT 21.00 1

Deutsche Bank AG DE 15.43 2

Societe Generale SA FR 17.02 1

Banco Santander SA ES 41.16 1

Groupe Crédit Agricole FR 24.96 1

ING Bank NL 33.63 1

Aviva PLC UK 12.47 Insurance

Barclays PLC UK 25.25 2

HSBC Holdings PLC UK 103.51 3

Prudential PLC UK 27.80 Insurance

Standard Chartered PLC UK 18.55 1

Royal Bank of Canada CA 122.94 1

Toronto-Dominion Bank CA 108.85 1

Credit Suisse Group AG CH 11.60 1

UBS Group AG CH 51.74 1

Table 3.1 The financial institutions indicated by the Financial Stability Board contribut-
ing to systemic risk are reported with including the respective buckets, their countries
and market capitalizations. The grey cells highlight the ones with the highest market
capitalization.
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3.4.3 Results

3.4.3.1 Taking a regulator’s perspective

As stated before, we are interested in changes in the current market capitalizations in

the financial system. Technically, this is given by a vector u = (u1, ..., u36)
T ∈ R36 in our

set-up. As starting composition, we choose uinitial to be the market capitalizations from

3.1.15 Further, we assume the Expected Shortfall to an α-level of 5% as risk measure, cf.

line (3.18).

In order to estimate the Hessian matrix which is necessary for the identification of the

OCS in line (3.11), we have to determine relevant directions w̃1, . . . , w̃m as outlined in

section 3.4.1. We set w̃1 = uinitial ensuring that we analyze changes in an environment

of uinitial. The weights w̃2, . . . , w̃m are then determined successively. For the sake of

simplicity, we restrict our analysis to m = 3 scenarios to be included. For the estimation

of w̃2 we run the following steps:

1) Set arbitrarily ten of the ui in uinitial to zero and denote the outcome as unew

2) Determine the new resulting ES based on unew

3) Determine the estimation error
√∑36

i=1 (MESi(unew)−MESi (MESi(uinitial)))2

We then repeat 1) – 3) for 10000 times and select w̃2 as the unew that leads to the biggest

estimation error. Thereby, it can be ensured that the selected direction reflects the one

that provides the highest error when relying only on the first scenario xOCS
1 . By choosing

ten companies arbitratly to be set to zero in 1), we consider various different shifts

away from the starting portfolio uinitial capturing the directions leading to the strongest

convexity. Similarly, we determine w̃3:

1) Set arbitrarily ten of the ui in uinitial to zero and denote the outcome as unew

2) Determine the new resulting ES based on unew

3) Determine the estimation error as
∑36

i=1 ε
2
i

The εi in 3) represent the residuals of regressingMESi(unew) byMESi(w̃1) andMESi(w̃2)

for all i = 1, . . . , 36. Again, we repeat 1) – 3) for 10000 times and select w̃3 as the di-

rection leading to the highest accumulated error
∑36

i=1 εi. Thereby, we again ensure that

15Notably, uinitial can be set freely and the choice is just made for the sake of illustration.
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the most relevant direction not reflected by w̃1 and w̃2 is chosen. Since we do not want

to determine more directions here, we fill up the columns of M , cf. section 3.4.1, with

unit vectors ei ∈ R36 such that the matrix has full rank. This property is necessary for

it to be invertible such that we can proceed as suggested in section 3.4.1.

Afterwards, we can obtain the Hessian matrix H as outlined by lines (3.20) and (3.21)

following the estimation process by Hong and Liu (2009).16 The OCS are then derived

as presented in line (3.11) in connection with weightvectors w1, . . . , wm as suggested by

Aigner and Schlütter (2022, Appendix I).

The resulting scenarios are presented in Table 3.2. We observe that the first scenario

— which coincides with the SES and the Euler allocation as shown in Lemma 3.1 and

Proposition 3.1 — distributes the highest risk to the financial institutions with the highest

market capitalizations since these companies have the most severe impact on the financial

system. The second scenario provides evidence for the importance of Asian companies

assigning the highest losses to exactly those one. Since HSBC Holdings PLC is closely

linked to the Asian market due to its history, it is not surprising that it also faces a

strong interconnectedness with them. The third scenario additionally highlights some

interconnectedness between single companies.

To numerically demonstrate that additional scenarios extending the SES are indeed help-

ful, we consider the following error measure introduced by Aigner and Schlütter (2022)

Error =
| gTaylor(um+1)− gm(um+1) |

gTaylor(um+1)
(3.22)

Therein, we employ the observation of Paulusch and Schlütter (2022) that for a positive

homogeneous risk measure of degree one the second order polynomial of f can be written

as17

gTaylor(u) :=
√
0.5 · uTHu

Further, it is

um+1 = argmax{g2Taylor(u)− g2m(u) such that || u− uinitial ||= 1}

16It is to note that the estimation process is quite sensitive to the selection of step size. We choose
h = −0.2 such that even non marginal changes in the market capitalizations can be captured.

17Notably, this is a rather weak assumption, since the typical risk measures as the Value-at-Risk and
the Expected Shortfall fulfill this property, cf.Artzner et al. (1999).
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Company 1st OCS 2nd OCS 3rd OCS

Bank of America Corp 12.125 -0.227 1.420

Bank of New York Mellon Corp 1.137 0.077 0.251

Citigroup Inc 3.521 -0.900 -0.183

Goldman Sachs Group Inc 3.728 -0.278 0.204

JPMorgan Chase & Co 11.473 -3.495 -0.014

MetLife Inc 2.112 0.119 0.479

Morgan Stanley 5.565 -0.871 0.152

State Street Corp 0.914 -0.205 0.032

Wells Fargo & Co 6.499 -0.390 1.078

Agricultural Bank of China Ltd 2.270 1.902 -0.246

Ping An Insurance Group Co of China Ltd 1.876 0.670 -0.685

Industrial and Commercial Bank of China Ltd 3.481 8.812 0.923

China Construction Bank Corp 2.519 1.810 -0.344

Bank of China Ltd 1.791 1.113 -0.818

Mitsubishi UFJ Financial Group Inc 0.795 0.358 -0.977

Mizuho Financial Group Inc 0.306 0.044 -0.343

Sumitomo Mitsui Financial Group Inc 0.513 0.179 -0.518

Aegon NV 0.299 -0.235 -0.117

Allianz SE 1.883 -0.259 -0.371

AXA SA 1.698 -0.238 -0.316

BNP Paribas SA 1.988 -1.315 -0.376

UniCredit SpA 0.816 -2.516 2.966

Deutsche Bank AG 0.614 -0.158 -0.094

Societe Generale SA 0.754 -0.537 -0.260

Banco Santander SA 1.654 -0.461 0.112

Groupe Crédit Agricole 0.923 -0.408 -0.184

ING Bank 1.441 -0.742 -0.041

Aviva PLC 0.311 -0.009 -0.089

Barclays PLC 1.043 -0.168 -0.182

HSBC Holdings PLC 1.887 -0.823 -1.611

Prudential PLC 1.115 -0.336 -0.363

Standard Chartered PLC 0.467 -0.242 -0.273

Royal Bank of Canada 3.525 0.499 0.941

Toronto-Dominion Bank 3.023 -0.467 0.284

Credit Suisse Group AG 0.468 -0.032 -0.050

UBS Group AG 1.743 -0.269 -0.389

Error 80.81 % 23.69% 0%

Table 3.2 The OCS for systemic risk are reported. The gray cells represent the highest
contributions for each scenario. Also the error introduced in line (3.22) is reported for
each scenario.
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û(h) ES(û(h)) g1(û(h)) g2(û(h)) g3(û(h))
û(1) 82.04 73.23 80.60 80.65

(-10.74%) (-1.76 %) (-1.70%)
û(1.5) 88.43 66.71 83.66 83.77

(-24.56%) (-5.40%) (-5.27%)
û(2) 111.94 60.19 90.30 90.48

(-46.23 %) (-19.33 %) (-19.18%)

Table 3.3 Overall systemic risk for û(h) as in line (3.23) based on the expected shortfall
and 1-3 OCS. In brackets the relative error compared to the ES is shown

maximizing the error between the Taylor approximation and the scenario based result

on the sphere around uinitial with a radius one. The results for all three scenarios are

reported in the last line in Table 3.1. We observe that including additional scenarios can

reduce the error drastically from 80.81% (one scenario) to 0% (three scenarios).

To further demonstrate the advantage of additional scenarios, we inspect how the risk

measurement process can be improved inspecting single potential changes in the sizes

of market capitalizations. Therefore, we investigate a change in market capitalizations

starting from uinitial in the sense of

û(h) = uinitial − h · uchange (3.23)

Therein, uchange ∈ R36 is set such that all entries referring to institutions with a regsitered

office in Asia and, additionally, the entries reflecting the Royal Bank of Canada, MetLife

and Bank of New York Mellon are eqal to 1.5. All other entries are set to −0.66. Thereby,

we model a change in the sense of the second OCS from Table 3.1. It is to note that

for uchange it holds
∑36

i=1 (uchange)i = 0. Thus, it does only reflect reallocations in market

capitalizations but no increase or decrease in the overall capitalizations. Table 3.3 reports

the outcomes and the relative errors for this new composition based on the SES, includ-

ing additional OCS and the “true” measurement. We observe that including additional

scenarios to the SES can reduce the relative error compared to the results based on the

expected shortfall. Notably, the situation h = 2 reflects that all companies except the

above highlighted one become bankrupt. This is for sure a quite unrealistic example, but

for illustration it allows us to observe that there is a certain convexity in the systemic risk

not captured by the SES. Further, it is to note that the third scenario does not improve

the measurement by a lot. This is due to the selection of ũ(h) which is mostly reflected

by the second OCS already.
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In terms of changing sensitivities, we inspect Figure 3.1. There, we compare the marginal

expected shortfall evaluated at the starting portfolio uinitial and evaluated for w̃2 and w̃3

as identified before. If the sensitivities would not change, we would expect the marginals

to lie on a angle-bisecting line. As we note, this is not the case. In the left part of

the figure we can see that the sensitivities with respect to the companies highlighted in

red, differ. Namely, these institutions are the Asian companies taken into account in our

sample. Technically, the OCS allow to meet not just first order but also second-order

sensitivities of the expected shortfall, cf. Proposition 3.1. Thereby, also the effect of

changing sensitivities can be captured. A similar, but less severe effect can be observed

in the right part of the figure inspecting the marginals at w̃3. Notably, there other com-

panies face changing sensitivities. Per construction these are exactly the ones highlighted

by the third OCS.

3.4.3.2 Taking an investor’s perspective

Let us now put ourselves now in the situation of an investor — instead of the regulator as

before – who wants to invest in an equally weighted portfolio comprising all systemically

relevant companies. Instead of seeing the portfolio u as vector of market capitalizations,

we can also assume it to be the weights of investment decisions. Therefore, we only

investigate potential returns and do not multiply them with the market capitalizations.

Let us assume, an investor has 36 units to invest and decides to put it in an equally

weighted portfolio uinitial = 136.
18 We can then derive OCS as before and obtain the

results provided in Table 3.4. Therein, we observe return scenarios. We have to interpret

the entries as returns in percent and positive values are set to reflect losses. It is to note

that the scenarios look very different compared to Table 3.2 since we do no longer deal

with systemic risk in general but just implicitly. The first scenario again coincides with

the Euler-allocation principle and assigns the highest losses to the European companies.

The second OCS highlights the importance of insurance companies to be considered

distributing losses to them. Overall, it is to note that insurance companies should play a

relevant role in the decision making of an investor since they are assigned high losses.

18Benartzi and Thaler (2001) find evidence that the so-called naive strategy is widely used. This
may be viewed critically due to more sophisticated investment rules available such as the mean-variance
optimal portfolio by Markowitz (1952). However, DeMiguel et al. (2009) point out that investing in
an equally weighted portfolio can still be a reasonable choice since it does not need any parameter
estimation.
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Figure 3.1 Changing sensitivities for new portfolio compositions are shown. The left
part compares the marginal expected shortfall at the starting portfolio uinitial with the
marginals at w̃2. The right part does the same for w̃3.
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Company 1st OCS 2nd OCS 3rd OCS

Bank of America Corp 3.82 -1.41 -0.48

Bank of New York Mellon Corp 3.03 0.24 -0.38

Citigroup Inc 4.07 -1.03 -0.56

Goldman Sachs Group Inc 3.18 -1.02 -0.47

JPMorgan Chase & Co 3.26 -0.56 -0.42

MetLife Inc 3.78 -0.57 -0.33

Morgan Stanley 3.8 -0.64 -0.29

State Street Corp 3.47 -0.42 0.25

Wells Fargo & Co 3.39 -0.93 -0.51

Agricultural Bank of China Ltd 1.49 -0.14 -0.04

Ping An Insurance Group Co of China Ltd 1.88 0.78 0.37

Industrial and Commercial Bank of China Ltd 1.5 0.37 -0.02

China Construction Bank Corp 1.63 0.53 0.04

Bank of China Ltd 1.48 0.16 0.01

Mitsubishi UFJ Financial Group Inc 1.82 1.05 -0.4

Mizuho Financial Group Inc 1.49 4.83 -2.04

Sumitomo Mitsui Financial Group Inc 1.63 1.06 0.04

Aegon NV 4.61 0.36 0.2

Allianz SE 3.36 3.51 2.74

AXA SA 3.87 0.79 -0.13

BNP Paribas SA 4.46 -0.22 0.89

UniCredit SpA 4.59 -2.17 1.05

Deutsche Bank AG 4.33 -0.73 1

Societe Generale SA 5.31 0.11 1.01

Banco Santander SA 4.27 -0.72 0.9

Groupe Crédit Agricole 4.42 0.02 0.66

ING Bank 4.52 -0.51 -0.01

Aviva PLC 3.09 0.4 0.15

Barclays PLC 3.51 -1.19 -0.39

HSBC Holdings PLC 2.19 0.24 -1.17

Prudential PLC 3.63 0.59 -0.37

Standard Chartered PLC 2.95 -0.02 -1.19

Royal Bank of Canada 2.27 -1.63 -0.4

Toronto-Dominion Bank 2.4 -1.38 -0.46

Credit Suisse Group AG 3.99 0.04 0.28

UBS Group AG 3.49 0.19 0.49

Table 3.4 We provide the resulting scenarios for the investor’s perspective. Notably, we
have to interpret positive values as losses. The gray cells highlight the 25% highest losses
per scenario.

3.5 Conclusion

This paper demonstrates how Orthogonal Convexity Scenarios can extend the Systemic

Expected Shortfall introduced by Acharya et al. (2017) in order to measure systemic risk.
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We demonstrate how changes in the current portfolio composition can lead to non-optimal

results with respect to the social wellfare by including the tax suggested by Acharya et al..

We also demonstrate that, by including OCS into the analysis, the potential convexity in

systemic risk can be captured. This allows to evaluate systemic risk even if the market

carpitalizations of the relevant companies change. We highlight this effect by employing

returns data of the financial institutions designated as “systemically important financial

institution” by the Financial Stability Board (FSB) (status 2022). We explicitly include

insurance companies in our analysis which are often not considered in the discussion about

systemic risk. However, they are quite important due to their high market capitalization

in the system and our analysis shows that they contribute to the overall systemic risk.
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3.6 Appendix

3.6.1 Example: SES-based tax does not induce social optimum

To create an example as simple as possible, we build on the set-up from section 3.4.1.

There are N = 2 banks in the financial system. The distribution of
(

w1

w0

)
i
is governed

through a regime-switching model, similar to, e.g., Ang and Chen (2002, p. 447 f.). The

random variable Y is uniformly distributed on the interval [amin, amax] = [−0.5, 2.5]. At

time 1, one of the regimes s1 or s2 will occur each with a 0.5 probability. Conditioned on

regime sj, the distribution of bank i’s return is given by(
w1

w0

)
i

∣∣∣
sj
= βi(sj) · Y (3.24)

For regime 1, we set β1(s1) = 1.5 and β2(s1) = 1; for regime 2, we set β1(s2) = −0.25 and

β2(s2) = 1.5. Banks decide on their market capitalizations u1 and u2. Bank i’s utility is

modelled with an exponential utility (EUT) function, exhibiting constant absolute risk

aversion (CARA). The risk preference parameter is λ1 = 1.5 for bank 1 and λ2 = 5.5 for

bank 2. Bank i’s expected utility is therefore

EUTi(ui) = 1− 0.5 ·
2∑

j=1

∫ amax

x=amin

exp (−λi · ui · βj(si) · x)
amax − amin

dx

= 1− 0.5 ·
2∑

j=1

exp (−λi · ui · βj(si) · amin)− exp (−λi · ui · βj(si) · amax)

(amax − amin) · λi · ui · βj(si)
(3.25)

We measure the pre-tax profit of bank i with the certainty equivalent (CE) relating to

line (3.25), i.e.

1− exp (−λi · CEi(ui)) = EUTi(ui)

⇔ CEi(ui) = − 1

λi

log (1− EUTi(ui)) (3.26)

In the absence of a tax on systemic risk, banks choose strategies which maximize CEi(ui).

We find that the optimal strategies are uNO TAX = (uNO TAX
1 , uNO TAX

2 )T = (0.397, 0.284)T.
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Social costs from systemic risk are measured with ES(u), as defined in line (3.18), and

social welfare with19

SOCIAL(u) = CE1(u1) + CE2(u2)− ES(u) (3.27)

The regulator’s objective in line (3.27) is maximized by uSOCIAL
1 = 0.0964 and uSOCIAL

2 =

0.1347.

We study the effects of introducing an SES-based tax. The objective of bank i becomes

CEi(ui)− TAX i(ui) = CEi(ui)− ui ·MES5%
i (u) (3.28)

As shown in line (3.16), MES5%
i (u) depends on I5%(u), which in turn depends on the

banks’ strategies. For I5%(u) being determined based on uNO TAX, the tax is

TAX1(u1) = 0.525 · u1 and TAX2(u2) = 0.35 · u2 (3.29)

For I5%(u) being determined based on uSOCIAL, the tax is

TAX1(u1) = 0.411 · u1 and TAX2(u2) = 0.461 · u2 (3.30)

Being confronted with the tax in (3.30), banks’ post tax profit is maximal for strategy

uSOCIAL; this result is in line with Proposition 1 from Acharya et al. (2017). Realistically,

however, the starting point of the system pre-taxation is uNO TAX. Being confronted with

the tax corresponding to uNO TAX in (3.29), banks adjust their strategies to u1 = 0.045

and u2 = 0.162. According to these strategies, MES5%
i (u) is 0.256 for bank 1 and 0.534

for bank 2. Considering a multistage process, Table 3.5 presents banks’ strategies at

the beginning of the stage, and the MES5%
i (u) corresponding to these strategies. From

stage to stage, MES5%
i (u) varies between two pairs of value, which alternately assign a

relatively heavy contribution to one bank and a light contribution to the other bank; the

MES therefore always deviates from the rather balanced MES in (3.30). In consequence,

banks react to taxation by taking strategies that too much concentrated either on bank

1 or bank 2. After stage 3, the strategies and MES repeat alternately and hence, the

system never converges to the social optimum.

19For simplicity, we disregard here costs of debt insurance, i.e. component P 2 in Acharya et al. (2017,
p. 9). Note, however, that Acharya et al. allow for two parameters c and e which weight the utility of
bank owners and the social costs of systemic risk. If these parameters are large, costs of debt insurance
are negligible.
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Stage u1 u2 MES1 MES2

1 (pre taxation) 0.397 0.284 0.525 0.350
2 0.043 0.162 0.256 0.534
3 0.184 0.119 0.525 0.350
4 0.043 0.162 0.256 0.534
5 0.184 0.119 0.525 0.350

Table 3.5 The strategies maximizing banks’ profits in the presence of an SES-based tax
are reported.

3.6.2 Proof of Lemma 3.1

With the assumptions i) - iii) it follows from Hong and Liu (Theorem 3.1 2009) that

∂

∂uij

SY ST (u) =
∂

∂uij

E
[
LOSS(u) | LOSS(u) ≥ V aRα

(
uTX

)]
=

= E
[

∂

∂uij

LOSS(u) | LOSS(u) ≥ V aRα

(
uTX

)]
Writing LOSSi(ui) as in Eq. (3.12), it is ∂

∂uij
LOSS(u) = Xij. Then, it is

k∑
j=1

∂

∂uij

SY ST (u) · uij =
k∑

j=1

E
[
Xij | LOSS(u) ≥ V aRα

(
uTX

)]
· uij = SESi(u)

3.6.3 Specification of LOSSi and COND in line with Acharya

et al. (2017)

We start from the model set-up as defined in Acharya et al. (2017, pp. 6-9) including the

following decision variables for each bank i = 1, . . . , N . First, (xj)i reflects the amount

of investments in assets j = 1, ..., k and are comprised in the total assets as

ai =
k∑

j=1

(xj)i

To finance these investments, a bank can use equity endowment, denoted by (w0)i, at

time t = 0 or by taking debt bi such that it amounts

(w0)i + bi = ai
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At time t = 1, (rj)i reflects the per dollar pay-off of asset j invested by bank i.20 The

total market value of each bank is then denoted by

yi = ŷi − ϕi

where ϕi are the costs of financial distress and

ŷi =
J∑

j=1

(rj)i (xj)i

reflects the pre-distress income. The costs of distress are assumed to depend on th market

value of bank assets and the facial value f i of the outstanding debt

ϕi = Φ(ŷi, fi) .

In especial, the face value of debt is set, such that it holds

bi = αifi + (1− αi)E [min (fi, yi)]

where αi is a fraction ot debt that is assumed to be guaranteed by the government. Over-

all, these decision variables of bank i are then subsumed by the vector

ui = ((x1)i , . . . , (xk)i , bi, (w0)i). Moreover, the vector u =
(
(u1)

T , ..., (uN)
T
)T

∈ RN ·(J+2)

contains the decision variables of all banks in the system.

At time t = 1 the net worth of a bank is given as

(w1)i = ŷi − ϕi − fi

In terms of the total system, we denote the aggregate assets and the aggregate debt at

time t = 1 as

A =
N∑
i=1

ai and

W1 =
N∑
i=1

(w1)i

In such a set-up a financial crisis occurs if the aggregate capital W1 falls below a fraction

z of the assets A.

20Notably, Acharya et al. (2017) allow for assets to be bank-specific reflecting differences in investment
opportunities.
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3.6.4 Proof of Proposition 3.2

LetHSYST(u),Hgm(u) andHg2m
(u) = 2

∑m
l=1 xlx

T
l denote the Hessian of functions SY ST (u),

gm(u) and g2m(u) evaluated at u. We rewrite Eq. (3.13) as

SESi(u) = (∇ui
SY ST )T · ui (3.31)

and hence, we have

∇uSESi(u
initial) =

(
HSYST(u

initial)
)
.,dec(i)

· uinitial
i +∇ui

SY ST (3.32)

with dec(i) = {(i− 1) · k + 1, ..., i · k} denoting the positions of the decision variables of

bank i in u, and ∇ui
SY ST being an (N · k)-dimensional column vector which includes

∇ui
SY ST (uinitial) in entries dec(i) and 0 in all other entries. Note that

∇ug
2(u) = 2g(u) · ∇ug(u)

Hg2(u) = 2g(u) ·Hg(u) + 2∇ug(u) (∇ug(u))
T

⇒ Hg(u
initial) =

1

g(uinitial)

(
m∑
l=1

xlx
T
l − x1x

T
1

)
=

∑m
l=2 xlx

T
l

SY ST (uinitial)
(3.33)

For all u1, u2 ∈ span{w1, ..., wm}, the last assertion of Proposition 3.1 implies uT
1HSY ST (u

initial)·

u2 = uT
1Hg(u

initial) · u2. Therefore,

SESi(u
initial) + (∇uSESi)

T · (u− uinitial)

Eq. (3.32)
= SESi(u

initial) + (u− uinitial)T ·
(
HSYST(u

initial)
)
.,dec(i)

· uinitial
i

+(u− uinitial)T · ∇ui
SY ST

Eq. (3.33)
= SESi(u

initial) + (u− uinitial)T ·
∑m

l=2 xl(x
i
l)
T

SY ST (uinitial)
· uinitial

i

+uT
i · xi

1 − (uinitial
i )T · xi

1

= uT
i · xi

1 + (u− uinitial)T ·
∑m

l=2 xl(x
i
l)
T

SY ST (uinitial)
· uinitial

i

3.6.5 Proof of Lemma 3.2

Let Dv denote the first order directional derivative in the direction v ∈ Rn, such that

∂

∂h1

f(uinitial + h1 · v) = Dvf(u
initial)
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It is now a result from basic Analysis that

Dvf(u
initial) = ⟨v,∇uf(u

initial)⟩ = vT · ∇uf(u
initial)

where ⟨, ⟩ denotes the euclidean dot product and∇ the gradient of f . To obtain the second

order directional derivative in the direction v, w ∈ Rn, denoted as DwDvf(u
initial) =

∂2

∂h1∂h2
f(uinitial + h1 · v + h2 · w), we employ the chain rule and write

DwDvf(u
initial) = ⟨w,∇(Dvf(u

initial))⟩ = ⟨w, ⟨v, ∂2

∂2u
f(uinitial)⟩⟩ = ⟨w, ⟨v,H⟩⟩ = wTHv

In summary, we obtain

∂2

∂h1∂h2

f(uinitial + h1 · v + h2 · w) = wTHv

Setting w = ei iteratively and v = M.,j shows then Lemma 3.2.

3.6.6 Derivation of MES in the example from Appendix 3.6.1

Per definition, it is Y ∈ [−0.5, 2.5] and

βi (sj) =



1.5, if i=j =1

1, if i=2, j =1

−0.25, if i = 1, j =2

1.5, if i = j = 2

Overall, we are interested in the expected shortfall of the combined portfolio depending

on exposures u = (u1, u2)
T

Z(u) :=

(
w0

w1

)
1

· u1 +

(
w0

w1

)
2

· u2
Eq.(3.24)

= (β1(sj) · u1 + β2(sj) · u2) · Y (3.34)

differentiating between regime j = 1 and j = 2. Notably, the calculations are only done

for j = 1 and could be analogously derived for j = 2

With the specification of Y to lie in a certain interval [amin, amax], we can define breaks

as shown in Figure 3.2 which distinguish between the respective regimes and depend on
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Figure 3.2 We report the density function of Z(u) as in Eq. (3.34) graphically. Notably,
the intervals depend on the selection of portfolio u and are not necessarily equidistant.

the exposure u = (u1, u2)
T

k1(u) = min (amin · β1(s1) · u1 + amin · β2(s1) · u2, amin · β1(s2) · u1 + amin · β2(s2) · u2)

k2(u) = max (amin · β1(s1) · u1 + amin · β2(s1) · u2, amin · β1(s2) · u1 + amin · β2(s2) · u2)

·k3(u) = min (amax · β1(s1) · u1 + amax · β2(s1) · u2, amax · β1(s2) · u1 + amax · β2(s2) · u2)

k4(u) = max (amax · β1(s1) · u1 + amax · β2(s1) · u2, amax · β1(s2) · u1 + amax · β2(s2) · u2)

In especial, k1(u) is the lowest and k4(u) the highest possible value, which the random

variable in Eq. (3.34) can take. The respective quantile function qα(u) of the random

variable, depending on the confidence level α and the exposure vector u, is then given by

solving ∫ qα(u)

k1(u)

fZ(u)(x)dx = α

and results in

qα(u) =


k1(u) + 2α(k4(u)− k1(u)), if k2(u)−k1(u)

k4(u)−k1(u)
> 2α(

2α·(k3(u)−k2(u))+k2(u)+
k1(u)·(k3(u)−k2(u))

k4(u)−k1(u)

)
(
1+

k3(u)−k2(u)
k4(u)−k1(u)

) , else

only differentiating between state 1 and state 2. We can then derive the expected shortfall
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by solving

ESα(u) = − 1

α

∫ α

0

qγ(u)dγ

resulting in

ESα(u) = −qα(u) + k1(u)

2
(3.35)

if k2(u)−k1(u)
k4(u)−k1(u)

> 2α and

ESα(u) =−
(
0.25 · k2(u)− k1(u)

k4(u− k1(u))
· (k1(u) + k2(u))

)
· α−1 (3.36)

+

((
α− k2(u)− k1(u)

k4(u− k1(u))
· α
)
· 0.5 · (qα(u) + k2(u))

)
· α−1

otherwise. Taking then the derivative of Eq. (3.35) and (3.36) with respect to u then

allows to determine the MES5%
i (u)
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Conclusion
This work provides and deeply evaluates a newly developed methodology for a scenario-

based risk measurement. We theoretically develop so-called “orthogonal convexity sce-

narios” in chapter 1, where we demonstrate that they allow the translation of portfolio

risk into several multivariate scenarios concerning profits or losses of portfolio compo-

nents. Aggregating the outcomes resulting from the scenarios then allows the properly

depiction of the overall risk of the evaluated portfolio. In particular, due to the selec-

tion of multiple scenarios, the scenario-based measurement even allows the capturing of

new risk situations when the exposures to the single risk factors change.21 This prop-

erty allows the overcoming of the deficiencies faced by the gradient capital allocation, cf.

Tasche (2009) or McNeil and Smith (2012). We can thus gain a more detailed insight

into the composition of a risk portfolio in a simple, deterministic manner, thereby di-

rectly addressing the first problem mentioned at the beginning of this work, namely the

lack of communicability of risk measurement. Technically, we determine scenarios in a

similar way to the well-studied “Principal Component Analysis” (PCA). The PCA may

be a useful tool but is limited to multivariate elliptically distributed risk vectors and to

linear dependencies, since it is based on the covariance matrix. Instead we employ a more

sophisticated methodology – the so-called “sensitivity-implied tail-correlation matrix” –

by Paulusch and Schlütter (2022). Here, no distributional assumption to the evaluated

risk vector is necessary and nonlinear dependencies can also be captured. This opens a

wide field of applications for our scenarios. Some of them are already sketched in chapter

1, and two are evaluated in detail in chapters 2 and 3 of this work.

The first general application studied addresses the limitations of regulatory approaches

that do not necessarily meet the true risk. As outlined in the literature, cf. for instance

Gatzert and Martin (2012) or Eckert et al. (2016), there may be a gap between the risk

measurement results based on a standardized approach, such as regulatory approaches,

and the “true” portfolio risk faced by a financial institution. We show that approximat-

ing the residual between the two approaches based on the OCS allows the identification

of risks that are not captured by the regulatory calculations. We namely observe that

the assumption made under Solvency of government bonds being spread-risk free, is not

21For instance, a company may decide to reallocate their capital among the risk drivers.
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valid.22 Moreover, we demonstrate empirically by considering stock and bond invest-

ments in the context of insurance companies and market risk that the scenario-based

measurement indeed allows the closing of the gap between the two approaches. The OCS

provide a tool in this case adjusting the standard formula to meet the true risk of an

insurance company. A regulatory authority may then, for instance, derive the OCS for

an exemplary insurer and provide the outcome to the insurance companies supervised in

addition to the standard formula.

The second application of the OCS that is demonstrated in detail refers to systemic risk.

This type of risk imposes a significant threat to modern economies in general by po-

tentially leading to social costs such as bailout payments by governments. By holding

insufficient capital or setting up a portfolio that faces high losses when the whole market

is under stress, individual companies contribute to systemic risk. In order to internal-

ize systemic risk into capital requirements placed on financial institutions, there is some

literature that designs tax policies to buffer the associated social costs. We show that

the OCS can extend and improve the taxing methodology provided by Acharya et al.

(2017). The approach relies on the so-called “Systemic Expected Shortfall” (SES), which

shows several similarities to the gradient capital allocation. However, the gradient capital

allocation is shown to be of limited use by the examples in Gründl and Schmeiser (p. 310

ff. 2007) and Diers (pp. 113 ff. 2011). We show that the OCS extend the approach by

including additional scenarios such that changes in the contribution of single companies

to the overall systemic risk are reflected. We thereby provide the regulator with a tool

to quantify and adjust taxing and capital requirements for systemic risk.

Overall, this work can help to answer the central questions remaining open to risk man-

agement nowadays that we posed at the beginning: we provide a simple but reliable risk

measurement methodology that is easy to communicate but can depict the risk profile of

a company in a broader sense than competing approaches. We also provide suggestions

of how to directly implement the recommendations in terms of regulatory requirements,

addressing the problem of potentially misleading risk steering based on standardized ap-

proaches. Finally, we show the effectiveness of the OCS-based risk measurement in several

settings and based on theoretical and empirical considerations.

22This observation is in line with Gatzert and Martin (2012).
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