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1. Introduction

1.1. Motivation

In developed countries, defined benefit (DB) and defined contribution (DC) pension schemes
are still the most popular types of occupational retirement plans. In a DB scheme, the
employee’s pension benefit is determined by a formula that takes into account years of ser-
vice for the employer and wages or salary. So in a DB scheme the sponsoring companies
basically promise their employees a guaranteed pension payment. In DC schemes, on the
other hand, the sponsoring company (and often also its employees) pay fixed contributions,
usually as a percentage of the salary, to an external pension fund. These contributions are
then invested in financial assets and the benefit at retirement depends on the performance
of investment returns experienced during the membership.
In a DB scheme the market risk is borne completely by the employer, while in a DC scheme
the customer carries all of the market risk. Another form of occupational pension schemes
are hybrid pension plans which are a combination of DB and DC schemes where both par-
ties carry some risk. For example, in Germany, “pure” DC plans without any guarantee
had not existed at all until the “Betriebsrentenstärkungsgesetz” came into effect in 2018
and the new pension scheme “Zielrente” started being used. This is a retirement plan
without guarantee, so basically a pure DC scheme. Before this new law was enacted, in
all the pension schemes in Germany some sort of guarantee had been prescribed by law.
Such a shift from DB towards DC schemes could not only be observed in Germany in
the last years, but actually in most industrialized countries of today’s world. The main
reasons for this are the constantly increasing life expectancy and the current low interest
rate environment.
In such a case of forced joint investments, where the pension beneficiaries carry the in-
vestment risk, the question, how an optimal investment strategy along with an adequate
rule how to share the aggregate terminal wealth at retirement can be obtained, arises.
Of course, this question is of high relevance for both pension schemes with and without
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1. Introduction

guarantees.

In order to fully understand the optimization problem faced by a collective of investors it
seems inevitable to first take a closer look at the corresponding individual optimization
problem. The question about optimal investments for individuals, unrestricted or under
portfolio insurance, is not really new to the academic world. The individual unrestricted
optimization problem is analyzed in Merton (1969, 1971) or, for instance, also in Karatzas
et al. (1987) and Cox and Huang (1989). The investment under portfolio insurance is
considered, for example, in Basak (1995), Grossman and Zhou (1996) and Jensen and
Sørensen (2001).
The collective optimization where a group of agents is tied together in their investment
decision has also already been studied heavily, for example in Dumas (1989), Weinbaum
(2009) or, more recently, also in Jensen and Nielsen (2016) and Branger et al. (2018).

1.2. Objectives

In the thesis, we will consider various possibilities to address the problems of finding an
optimal investment strategy and redistributing the obtained terminal payoff among the
participants in the pool. All the approaches will be considered with and without an inter-
est rate guarantee.
We will use a Black-Scholes market and assume that each individual is modeled by a con-
stant relative risk aversion (CRRA) utility function with her own specific risk aversion
parameter. To be able to present approaches that yield a terminal payoff to a pool of
investors with different risk aversions along with an adequate sharing rule, we first need to
take a closer look at the optimal investment problem for a single investor in the market.
The individual unrestricted terminal payoff can then be used to assess the losses or gains
incurred by the joint investment for each individual.
Whenever dealing with a collective of investors, we would like to use a Pareto efficient
payoff for a given sharing rule. A terminal payoff is Pareto efficient if it is not possible
to increase one investor’s expected utility without simultaneously decreasing another indi-
vidual’s expected utility by using a different payoff. Pareto efficiency is a frequently used
criterion in economics when dealing with a group of agents facing a joint decision in a
financial environment, see for example Wilson (1968), Amershi and Stoeckenius (1983),
Huang and Litzenberger (1985) or Kreps (2012).
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1. Introduction

In the setting considered here, where the collective consists of investors with different
CRRA utility functions, such Pareto efficient payoffs can be obtained by maximizing a
weighted sum of the individual utility levels. For any choice of the weights the resulting
payoff is going to be Pareto efficient which means that there are basically infinitely many
such Pareto efficient payoffs. Therefore, the focus of the thesis lies on analyzing these
payoffs and finding a neat choice of these weights that take into account all the members
of the pool in a fair way.

1.3. Structure

There are three chapters in the remainder of the thesis. We will start with reviewing
the unrestricted individual solution for each investor who maximizes her expected utility
of terminal wealth in Chapter 2. This is the classic Merton problem which results in a
constant mix strategy. After that, we include an interest rate guarantee in the individual
optimization problem. In this case, the investment strategy is no longer constant but
state dependent. The chapter is concluded by a comparison between the setting with and
without guarantee. This chapter is mainly based on Jensen and Sørensen (2001).
In Chapter 3 we then consider a collective of individuals who are forced to jointly invest
their total initial wealth. The first best payoff is equal to the sum over all individually op-
timal payoffs, and the corresponding sharing rule is state-dependent. Realistic contracts,
however, will have a linear sharing rule where the percentage of the terminal payoff ob-
tained at the end is known before the initial wealth is invested. Having introduced linear
sharing rules, we first consider strategies where the total capital of the pool is invested
according to some risk aversion parameter that usually lies between the smallest and the
largest risk aversion parameter of the pool. So the problem is basically reduced to the
individual investment problem from Chapter 2 and all the relevant characteristics can be
determined explicitly. For the case without a guarantee this results in a constant mix
strategy. If guarantees are included, the investment strategy is no longer constant but can
still be determined explicitly. The main reason for using this approach is, among further
advantages which will be presented later, its simplicity which makes the procedure very
easy to communicate. Chapter 3 is then concluded with an analysis of Pareto efficient
payoffs which are obtained from maximizing a sum of the weighted individual utility func-
tions. These payoffs will also be analyzed with and without an interest rate guarantee.
Since it is not clear from the beginning how the weights should be chosen when dealing
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1. Introduction

with Pareto efficient payoffs the chapter will be concluded by a numerical analysis with
respect to the weights and the derivation of an appropriate choice of them. Chapter 3 is
mainly based on the ideas presented in Branger et al. (2018), Jensen and Nielsen (2016)
and Jensen and Sørensen (2001).
Chapter 4 concludes the thesis and briefly summarizes the most important results pre-
sented in Chapters 2 and 3. It is followed by the appendix, in which the basic methods of
Monte Carlo simulation applied throughout the thesis are explained and the R codes used
for the numerical analyses are listed.
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2. Individual Optimization Problem

In this chapter we will consider one individual in a financial market starting with an initial
wealth v. This individual is modeled by a CRRA utility function u(x) = x1−γ

1−γ where γ > 0,
γ 6= 1. This investor aims to maximize her expected utility of the final accumulated wealth
at a finite time horizon T <∞.
In this chapter the most important, mostly well known results in this field of study will
be presented. First the individual investment problem without any constraints will be
reviewed. After that, we will assume that the terminal payoff needs to meet a specific
interest rate guarantee. But before that, we will first have a closer look at the financial
market that will be used throughout all the following chapters.

2.1. Financial Market

Let
(
Ω,F , {Ft}t∈[0,T ], P

)
be a stochastic basis. The filtration {Ft}t∈[0,T ] is the standard

filtration of {Wt}t∈[0,T ] which is a standard Brownian motion under P . Throughout the
thesis we will assume that the assets traded in the financial market follow the Black-Scholes
model, that is, there are the following two assets traded in the market:

• a risk-free asset B that earns a constant interest rate r, that is,

dBt = rBtdt, B0 = 1, or, equivalently,

Bt = ert.

5



2. Individual Optimization Problem

• a risky asset following a geometric Brownian motion with instantaneous rate of return
µ > r and volatility σ > 0, that is,

dSt = µStdt+ σStdWt, S0 = s, or, equivalently,

St = s exp
((
µ− 1

2σ
2
)
t+ σWt

)
. (2.1)

Under these assumptions the state price density process {Mt}t∈[0,T ] is uniquely determined
and has the following properties (see for example Rogers (2013) or Karatzas and Shreve
(1998)):

• The state price density process is determined by the following stochastic differential
equation:

dMt = −Mt (rdt+ λdWt) , M0 = 1, λ = µ− r
σ

.

The solution is given by

Mt = exp
(
−rt− 1

2λ
2t− λWt

)
. (2.2)

In particular, Mt follows a log-normal distribution for all t ∈ (0, T ].

• For any contingent T -claim VT the corresponding price at time t can be determined
as

Vt = 1
Mt

E[MTVT | Ft] for all t ≤ T . (2.3)

• Rearranging equation (2.1), we obtain

Wt = 1
σ

(
log

(
St
S0

)
−
(
µ− 1

2σ
2
)
t
)
.

Now we can combine this equation with (2.2) and obtain the following representation
of the state price density:

Mt = exp
(
−rt− 1

2λ
2t− λ

σ

(
log

(
St
S0

)
−
(
µ− 1

2σ
2
)
t
))

= exp
(
−rt− 1

2λ
2t+ λ

σ

(
µ− 1

2σ
2
)
t

)(
St
S0

)−λ
σ

. (2.4)
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2. Individual Optimization Problem

From (2.4) we make an important observation. Since λ are σ are always greater than
0, we see that high stock prices, or a good performance of the financial market, lead
to a low state price density. On the other hand, low stock prices imply an increase
in the state price density. In other words, the market performs well (bad) if and
only if the state price density is low (high). This observation is important for some
of the following sections, where we will plot a specific terminal payoff against the
state price density to see how this payoff behaves depending on the performance of
the financial market.

2.2. Unrestricted Optimization Problem

In the first setting the investor is allowed to invest her initial capital without any restric-
tions. The only assumption made is that her trading strategy is self-financing. So if πt
denotes the fraction of wealth allocated to the risky asset and Vt is the wealth at time t,
then the wealth process is going to evolve according to the following stochastic differential
equation:

dVt = (r + πt(µ− r))Vtdt+ σπtVtdWt , V0 = v. (2.5)

The optimization problem of this investor will then have the following form:

max
{πt}t∈[0,T ]

E
[
V 1−γ
T

1− γ

]
subject to (2.5). (2.6)

This is a classic Merton problem which can be solved through dynamic programming (see
Merton (1969, 1971)). We will, however, approach this problem in a different way (see
also Pliska (1986), Karatzas et al. (1987) or Cox and Huang (1989)): Let us denote by
CT = CT (v) the set of contingent claims payable at time T for which a self-financing,
replicating investment strategy exists, given that the initial capital available is v. Then
we can rewrite our dynamic problem (2.6) as a static one, in which the focus does not lie
on the optimal investment strategy but instead on the terminal wealth maximizing the
expected utility:

max
VT

E
[
V 1−γ
T

1− γ

]
subject to VT ∈ CT .
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2. Individual Optimization Problem

This problem can be reformulated one more time by noting that all contingent claims are
replicable in a complete market. As the Black-Scholes market is complete, we observe that
for any random variable VT ∈ FT the following two conditions are equivalent:

VT ∈ CT ⇔ E [MTVT ] = v.

Using this observation, we can now proceed in the same way as Jensen and Sørensen (2001)
instead of solving the dynamic optimization problem (2.6):

• First we solve the static problem

max
VT

E
[
V 1−γ
T

1− γ

]
subject to E [MTVT ] = v. (2.7)

• Having determined the optimal terminal payoff V ∗T , it is possible to determine the
corresponding self-financing investment strategy. For this we will first determine
the optimal wealth process {V ∗t }t∈[0,T ] explicitly, and then use Itô’s formula (see for
example Korn (2014) or Brigo and Mercurio (2007)) in combination with (2.5). In
section 2.2.2 this approach will be explained in detail.

In the following three subsections we will focus on optimization problem (2.7). First we
will determine the optimal terminal wealth, followed by the corresponding investment
strategy. In the last subsection we will compute the optimal level of expected utility and
introduce the certainty equivalent which will be used to compare the well-being of different
investors throughout the thesis.

2.2.1. Optimal Terminal Wealth

Denoting by η the Lagrangian multiplier, the first order conditions of (2.7) are given by:

V −γT − ηMT = 0, (2.8)

E[MTVT ] = v. (2.9)

As a first step, we can rewrite (2.8) to obtain

VT = (ηMT )−
1
γ . (2.10)

8



2. Individual Optimization Problem

Now we need to compute the Lagrangian multiplier η by combining this equation with
(2.9):

η−
1
γ = v

E
[
M

1− 1
γ

T

] = v exp
(r + 1

2λ
2
)(

1− 1
γ

)
T − 1

2λ
2
(

1− 1
γ

)2

T

 ,

where we have used (2.2) and that MT follows a log-normal distribution under P . There-
fore, the Lagrangian multiplier is given by

η = v−γ exp
(r + 1

2λ
2
)

(1− γ)T + 1
2λ

2γ

(
1− 1

γ

)2

T

 . (2.11)

Combining this result with (2.10), we obtain the well-known solution of (2.7) in the same
form as Branger et al. (2018):

V ∗T = (ηMT )−
1
γ = v exp

(r + 1
2λ

2
)(

1− 1
γ

)
T − 1

2λ
2
(

1− 1
γ

)2

T

M− 1
γ

T . (2.12)

Here we clearly see that the optimal terminal wealth is decreasing in the state price density
MT . Recalling the observation made from (2.4), this makes perfect sense, as low (high)
values of MT imply a good (bad) performance of the financial market and thus, a high
(low) terminal wealth.
It is also possible to express V ∗T in terms of ST (see also Branger et al. (2018)). Combining
(2.4) with (2.12), we get

V ∗T = v exp
r + 1

2λ
2 − 1

2λ
2
(

1− 1
γ

)2

− λ

σγ

(
µ− 1

2σ
2
)T

(ST
S0

) λ
σγ

.

Using the notation

m(γ) := µ− r
γσ2 = λ

γσ
,

we end up with

V ∗T = v exp
(

(1−m(γ))
(
r + 1

2m(γ)σ2
)
T
)(

ST
S0

)m(γ)
, (2.13)

9



2. Individual Optimization Problem

so V ∗T is a power function of the stock price ST . As m(γ) is strictly positive for all γ > 0,
the terminal wealth is clearly increasing in the stock price ST . This is basically the same
observation as the one we already made from (2.12). In the next section we will also see
that m(γ) is exactly the constant fraction held in the risky asset at all times. We can
now distinguish two cases (the case ST = S0 can only occur with probability zero and is
therefore ignored):

• ST/S0 > 1: In this case a higher proportion m(γ) yields a higher payoff.

• ST/S0 < 1: In such a scenario a higher fraction m(γ) leads to a lower terminal
wealth.

So people allocating a larger fraction of their wealth to the risky asset face higher gains
and losses than people who act more conservatively.

2.2.2. Investment Strategy

Having determined the optimal terminal payoff V ∗T explicitly, we can also determine the
corresponding self-financing investment strategy. For this we first need to determine the
optimal wealth process {V ∗t }t∈[0,T ]. This can be done using (2.3):

V ∗t = E
[
MT

Mt

V ∗T
∣∣∣ Ft]

= (ηMt)−
1
γ E

(MT

Mt

)1− 1
γ

∣∣∣∣∣ Ft


= (ηMt)−
1
γ E

(MT

Mt

)1− 1
γ

 ,
where the last equation results from the independent increments of the Brownian motion.
Using equation (2.2), we first observe that

(
MT

Mt

)1− 1
γ

= exp
(
−r(T − t)

(
1− 1

γ

)
− 1

2λ
2(T − t)

(
1− 1

γ

)
− λ

(
1− 1

γ

)
(WT −Wt)

)
.

10



2. Individual Optimization Problem

As WT −Wt is normally distributed, we get

E
[(

MT

Mt

)1− 1
γ

]

= exp
(
−r(T − t)

(
1− 1

γ

)
− 1

2λ
2(T − t)

(
1− 1

γ

)
+ 1

2λ
2
(

1− 1
γ

)2
(T − t)

)
. (2.14)

Now we can use (2.11) to get

η−
1
γE

(MT

Mt

)1− 1
γ

 = v exp
rt(1− 1

γ

)
+ 1

2λ
2t

(
1− 1

γ

)
− 1

2λ
2
(

1− 1
γ

)2

t

 . (2.15)

Using again (2.2), we obtain

M
− 1
γ

t = exp
(
r

γ
t+ 1

2
λ2

γ
t+ λ

γ
Wt

)
. (2.16)

Finally, we obtain V ∗t as the product of (2.15) and (2.16) (see also Jensen and Sørensen
(2001)):

V ∗t = η−
1
γE

(MT

Mt

)1− 1
γ

M− 1
γ

t

= v exp
(
rt+ λ2t

(
1
γ
− 1

2γ2

)
+ λ

γ
Wt

)
. (2.17)

Having determined V ∗t , we can now use Itô’s lemma to determine the dynamics of the
wealth process. Define

f(t, z) = v exp
(
rt+ λ2t

(
1
γ
− 1

2γ2

)
+ λ

γ
z

)
,

clearly a twice continuously differentiable function. Then we have

∂f

∂t
(t, V ∗t ) =

(
r + λ2

(
1
γ
− 1

2γ2

))
V ∗t ,

∂f

∂z
(t, V ∗t ) = λ

γ
V ∗t , and

∂2f

∂z2 (t, V ∗t ) = λ2

γ2V
∗
t .

11



2. Individual Optimization Problem

Therefore, the wealth dynamics can be described as

dV ∗t =
(
r + λ2

(
1
γ
− 1

2γ2

))
V ∗t dt+ λ

γ
V ∗t dWt + λ2

2γ2V
∗
t dt

=
(
r + λ2

γ

)
V ∗t dt+ λ

γ
V ∗t dWt

=
(
r + (µ− r)µ− r

σ2γ

)
V ∗t dt+ µ− r

σ2γ
σV ∗t dWt .

Comparing this stochastic differential equation with the process given in (2.5), we see that
the investment strategy is given by

πt = π = m(γ) = µ− r
γσ2 (2.18)

which is called the Merton portfolio (Merton (1971)). So the optimal investment strategy
is to hold a constant fraction in the risky asset over time. This fraction is smaller for more
risk averse investors and larger for individuals with a low risk aversion.

2.2.3. Expected Utility and Certainty Equivalent

In this section we first want to determine the indirect utility process for each point in time
t which is defined by

Jt(v, T, γ) = E [u(V ∗T ) | Ft] = E
[

(V ∗T )1−γ

1− γ

∣∣∣∣∣ Ft
]
.

For each t this is the optimal level of expected utility based on the information available at
time t. In particular, for t = 0 we obtain the optimal level of expected utility. To compute
this process we first need to observe from (2.12) that

(V ∗T )1−γ = (ηMT )−
1−γ
γ .
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2. Individual Optimization Problem

As Mt is Ft-measurable and using the independent increments of the Brownian motion,
we can rewrite the indirect utility process in the following way:

Jt(v, T, γ) = 1
1− γ (ηMt)−

1−γ
γ E

(MT

Mt

)− 1−γ
γ

∣∣∣∣∣ Ft


= 1
1− γ (ηMt)1− 1

γ E

(MT

Mt

)1− 1
γ

 . (2.19)

Using equations (2.11) and (2.14), we get

η−
1−γ
γ E

(MT

Mt

)− 1−γ
γ


= v1−γ exp

((
r + 1

2γλ
2
)
T − 1

γ

(
r + 1

2λ
2
)
t− 1

2γ2 (1− γ)λ2t

)1−γ

. (2.20)

Combining (2.19) and (2.20), we obtain the indirect utility process as

Jt(v, T, γ) = v1−γ

1− γ exp
((

r + λ2

2γ

)
T − 1

γ
rt− λ2

2γ2 t

)1−γ

M
− 1−γ

γ

t . (2.21)

Therefore, the optimal level of expected utility has the following form (see also Jensen and
Sørensen (2001)):

J0(v, T, γ) =

(
v exp

((
r + λ2

2γ

)
T
))1−γ

1− γ . (2.22)

Throughout the thesis we will use the certainty equivalent return to compare the well-
being of different investors. The certainty equivalent return can be computed from an
investor’s expected utility and will allow us to compare the well-being of individuals with
different levels of risk aversion and different utility functions. We will follow the definition
given in Branger et al. (2018): For a terminal wealth VT the certainty equivalent wealth
is given by

u (CE(VT )) = E[u(VT )] or, equivalently,

CE(VT ) = E
[
V 1−γ
T

] 1
1−γ . (2.23)
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2. Individual Optimization Problem

This is the deterministic level of wealth that would lead to the same level of expected
utility as the random wealth VT . The certainty equivalent return is then defined as the
deterministic rate of return y(VT ) that yields the same expected utility as the random
wealth VT would:

u
(
vey(VT )T

)
= E[u(VT )] or, equivalently,

y(VT ) = 1
T

log
(
CE(VT )

v

)
. (2.24)

Using (2.22), we see that the certainty equivalent return for VT = V ∗T is given by

y∗ = y (V ∗T ) = 1
T

log
(
CE (V ∗T )

v

)

= 1
T

log
((1− γ)J0(v, T, γ))

1
1−γ

v


= r + 1

2
(µ− r)2

γσ2 . (2.25)

2.3. Optimization Problem with Interest Rate Guarantee

In practical applications a lot of investors also like to meet a certain, predetermined inter-
est rate guarantee to make sure that their invested wealth is protected from bad scenarios
of the financial market. This situation is typical for insurance companies, as insurers often
include guarantees in their products to ensure that a minimum benefit is paid to the cus-
tomer in the end. For example, in unit-linked life insurance products guarantees are often
included to protect the customers from a bad performance of the stock market. The pur-
pose of this section is, therefore, to include an interest rate guarantee in the optimization
problem (2.7). As a consequence, the investor considered is now no longer able to choose
her investment strategy without any restrictions. Let g < r denote the guaranteed rate of
return that needs to be achieved by the investor. Then the new optimization problem can
be written as

max
ṼT

E
[
Ṽ 1−γ
T

1− γ

]
subject to E

[
MT ṼT

]
= v, and

ṼT ≥ vegT .
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2. Individual Optimization Problem

This problem is also known in the literature as the optimal investment problem under
portfolio insurance and has been studied extensively already: Grossman and Vila (1989)
consider this problem in a discrete-time model. In Jensen and Sørensen (2001) this exact
problem is analyzed in a more general continuous-time financial market with more than
one risky asset. The approach in this article is basically the same as here since the price
processes of the assets are considered to be a given input on a person’s investment decision.
Grossman and Zhou (1996) and Basak (1995), on the other hand, focus on the effects of
portfolio insurance on market equilibrium and asset price processes. A more recent article
related to this field of research would also be Gabih et al. (2009). Here no lower bound is
put on the terminal wealth but instead only on the expected loss.
In the following we will further investigate this problem. We will determine the optimal
terminal wealth, the corresponding investment strategy and the resulting expected utility
along with the certainty equivalent return. We will start with the terminal wealth in the
next section.

2.3.1. Optimal Terminal Wealth

We will follow Jensen and Sørensen (2001) to determine the optimal terminal payoff of the
portfolio insurance problem. Denoting by η1 and η2 the Lagrangian multipliers, the first
order conditions of the problem can be obtained as:

Ṽ −γT − η1MT − η2 = 0,

η2
(
ṼT − vegT

)
= 0.

Here we have to distinguish two cases:

• η2 = 0: In this case the guarantee is not effective and we end up with Ṽ ∗T = (η1MT )−
1
γ .

• η2 > 0: If this is the case, the guarantee is effective and we will get Ṽ ∗T = vegT .

So the solution can be written as

Ṽ ∗T = max
{

(η1MT )−
1
γ , vegT

}
.

For the case where (η1MT )−
1
γ > vegT , that is, when the guarantee is not effective, the

optimal payoff is proportional to M
− 1
γ

T . As a consequence, it is also proportional to V ∗T ,
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2. Individual Optimization Problem

as can be seen in (2.12). Therefore, it can be written as

Ṽ ∗T = max
{
vegT , xV ∗T

}
, (2.26)

where x =
(
η1
η

)− 1
γi has to lie in the interval (0, 1), as η1 > η needs to hold necessarily.

This can be seen as follows: If we assumed that η1 ≤ η, we would obtain V ∗T ≤ Ṽ ∗T a.s.
where the strict inequality holds with positive probability. However, this would clearly be
a contradiction to the budget constraint. The case x = 0 would also lead to contradiction
in the budget constraint since we assume g < r.
The question is now how this x can be determined. In order to answer this question we
rewrite (2.26) as follows:

Ṽ ∗T = xV ∗T + max
{
vegT − xV ∗T , 0

}
. (2.27)

The second term in this equation is a put option with underlying xV ∗T and strike price
vegT . Let Pt = Pt(v, g, T, x) denote the price of this put option at time t, then for t = 0
we obtain the condition

v = xv + P0 . (2.28)

Our goal is now to determine the price of the put option P0. We will do this by computing
the wealth process {Ṽ ∗t }t∈[0,T ]. From this we can then easily deduce the value of the put
option Pt and, in particular, P0. We start with the following observation resulting from
(2.3):

MtṼ
∗
t = E

[
MT Ṽ

∗
T | Ft

]
= E

[
xMTV

∗
T +MT max{0, vegT − xV ∗T } | Ft

]
.
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2. Individual Optimization Problem

It follows that

Ṽ ∗t = xV ∗t + E
[
MT

Mt

max{0, vegT − xV ∗T }
∣∣∣ Ft]

= xV ∗t + xE

MT

Mt

(
vegT

x
− V ∗T

)
1{

vegT

x
>V ∗T

} ∣∣∣∣∣ Ft


= xV ∗t + xE

MT

Mt

vegT

x
1{

vegT

x
>V ∗T

} ∣∣∣∣∣ Ft


︸ ︷︷ ︸
(I)

−xE

MT

Mt

V ∗T 1
{
vegT

x
>V ∗T

} ∣∣∣∣∣ Ft


︸ ︷︷ ︸
(II)

. (2.29)

Now we can use (2.12) to determine the two conditional expectations. For the first one
this can be done as follows:

(I) = vegT

x
E

MT

Mt

1{
vegT

x
>(ηMT )−

1
γ

} ∣∣∣∣∣ Ft


= vegT

x
E

MT

Mt

1{
1
η

(
vegT

xM
−1/γ
t

)−γ
<
MT
Mt

} ∣∣∣∣∣∣ Ft
 . (2.30)

We define

X := WT −Wt√
T − t

.

This is a standard normally distributed random variable under P that is independent of
Ft. Now we know from (2.2) that

MT

Mt

= exp
(
−r(T − t)− 1

2λ
2(T − t)− λ(WT −Wt)

)
= exp

(
−r(T − t)− 1

2λ
2(T − t)− λ

√
T − tX

)
,

and thus we observe that

1
η

 vegT

xM
− 1
γ

t

−γ < MT

Mt
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2. Individual Optimization Problem

holds if and only if

−r(T − t)− 1
2λ

2(T − t)− λ
√
T − tX > −γ log

 vegT

xM
− 1
γ

t

− log η .

This inequality is equivalent to

X <

γ log
(

vegT

xM
− 1
γ

t

)
+ log η − r(T − t)− 1

2λ
2(T − t)

λ
√
T − t

=
γ (log v + gT − log x) + logMt + log η − r(T − t)− 1

2λ
2(T − t)

λ
√
T − t

=: D1(t) .

This expression can be further simplified using (2.2) and (2.11):

D1(t) =
γ((g − r)T − log x) +

(
1

2γ − 1
)
λ2T − λWt

λ
√
T − t

.

Since Mt is Ft-measurable and using the independent increments of the Brownian motion,
we can rewrite (2.30) as follows:

(I) = vegT
∫ D1(t)

−∞
exp

(
−r(T − t)− 1

2λ
2(T − t)− zλ

√
T − t

) 1√
2π
e−

z2
2 dz

= vegT e−r(T−t)Φ
(
D1(t) + λ

√
T − t

)
.

Here Φ(·) is the cumulative distribution function of the standard normal distribution.
Now that the first conditional expectation in (2.29) is computed, we can move on to the
second one:

(II) = xη−
1
γE

MT

Mt

M
− 1
γ

t

(
MT

Mt

)− 1
γ

1{X<D1(t)}

∣∣∣∣∣ Ft


= x (ηMt)−
1
γ E

(MT

Mt

)1− 1
γ

1{X<D1(t)}

∣∣∣∣∣ Ft
 .

Since

(
MT

Mt

)1− 1
γ

= exp
(
−r(T − t)

(
1− 1

γ

)
− 1

2λ
2(T − t)

(
1− 1

γ

)
− λ
√
T − t

(
1− 1

γ

)
X

)
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we obtain the following representation of (II):

(II) = x (ηMt)−
1
γ

∫ D1(t)

−∞
e(1− 1

γ )(−r(T−t)− 1
2λ

2(T−t)−zλ
√
T−t) 1√

2π
e−

z2
2 dz

= x (ηMt)−
1
γ e−r(T−t)(1− 1

γ )e−
1
2λ

2(T−t)(1− 1
γ ) 1

γ Φ (D2(t)) , (2.31)

where

D2(t) = D1(t) + λ
√
T − t

(
1− 1

γ

)
.

Now we can use (2.11) again to simplify (2.31) by observing

η−
1
γ e−r(T−t)(1− 1

γ )e−
1
2λ

2(T−t)(1− 1
γ ) 1

γ = v exp
((

1− 1
γ

)(
rt+ 1

2λ
2t

1
γ

))
.

As a consequence, (2.31) can be further simplified:

(II) = xv exp
((

1− 1
γ

)(
rt+ 1

2λ
2t

1
γ

))
Φ (D2(t))M

− 1
γ

t .

Here we can use (2.17) to simplify (II) even further:

(II) = xvΦ (D2(t)) exp
((

1− 1
γ

)(
rt+ 1

2λ
2t

1
γ

)
+ 1
γ

(
rt+ 1

2λ
2t+ λWt

))
= xV ∗t Φ (D2(t)) ,

where the last equality is obtained from (2.17). Now we can put everything together and
obtain the complete process as

Ṽ ∗t = xV ∗t + vegT e−r(T−t)Φ
(
D1(t) + λ

√
T − t

)
− xV ∗t Φ (D2(t)) . (2.32)

In particular, the price of the put option at any time t is given by

Pt = vegT e−r(T−t)Φ
(
D1(t) + λ

√
T − t

)
− xV ∗t Φ (D2(t)) .

For t = 0 we obtain the same result as Jensen and Sørensen (2001):

P0 = vegT e−rTΦ
(
d1 + λ

√
T
)
− xvΦ (d2) ,
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where

d1 = D1(0) = γ ((g − r)T − log(x))
λ
√
T

+
(

1
2γ − 1

)
λ
√
T ,

d2 = D2(0) = d1 +
(

1− 1
γ

)
λ
√
T .

Since we know from (2.28) that

(1− x)v = P0 ,

we obtain

1− x = egT e−rTΦ
(
d1 + λ

√
T
)
− xΦ (d2)

which is equivalent to

1 = xΦ (−d2) + e(g−r)TΦ
(
d1 + λ

√
T
)
. (2.33)

We need to determine x numerically from this equation. Since the right-hand-side of (2.33)
is increasing in x (for a proof see Jensen and Sørensen (2001)), we could for example use
the bisection method to obtain x numerically. The corresponding R code can be found in
Appendix B.

2.3.2. Investment Strategy

Having determined the wealth process Ṽ ∗t in (2.32), we can now determine the self-financing
investment strategy {π̃t}t∈[0,T ] used for obtaining the terminal payoff (2.26). We will do
this in a similar way as in Section 2.2.2 using Itô’s formula. We define the following twice
continuously differentiable function:

f(t,Wt) = xV ∗t + vegT e−r(T−t)Φ
(
D1(t) + λ

√
T − t

)
− xV ∗t Φ (D2(t)) .
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Then we have

∂f

∂Wt

(t,Wt) = x
λ

γ
V ∗t − vegT e−r(T−t)ϕ

(
D1(t) + λ

√
T − t

) 1√
T − t

− xλ
γ
V ∗t Φ (D2(t)) + xV ∗t ϕ (D2(t)) 1√

T − t
,

where

ϕ(z) = 1√
2π
e−

z2
2

is the density of the standard normal distribution. Taking a look at the stochastic differ-
ential equation in (2.5) and Itô’s formula, we observe that

∂f

∂Wt

(t,Wt)dWt = σπ̃tṼ
∗
t dWt

which leads to

π̃t =
∂f
∂Wt

(t,Wt)
σṼ ∗t

. (2.34)

2.3.3. Expected Utility and Certainty Equivalent

Having computed x and Ṽ ∗T , it is also possible to determine the indirect utility process
explicitly. Using (2.26), it can be obtained as follows:

J̃t(v, T, γ) = E


(
Ṽ ∗T
)1−γ

1− γ

∣∣∣∣∣ Ft


= E


(
vegT

)1−γ

1− γ 1{vegT>xV ∗T }

∣∣∣∣∣ Ft
+ E

[
(xV ∗T )1−γ

1− γ 1{vegT≤xV ∗T }

∣∣∣∣∣ Ft
]
.

The first expectation can be obtained in a similar way as in Section 2.3.1 and is given
by

E


(
vegT

)1−γ

1− γ 1{vegT>xV ∗T }

∣∣∣∣∣ Ft
 = u

(
vegT

)
Φ (D1(t)) . (2.35)
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The second conditional expectation can be determined as follows:

E
[

(xV ∗T )1−γ

1− γ 1{vegT≤xV ∗T }

∣∣∣∣∣ Ft
]

= x1−γ

1− γ (ηMt)−
1−γ
γ E

(MT

Mt

)− 1−γ
γ

1{vegT≤xV ∗T }

∣∣∣∣∣ Ft
 , (2.36)

where

E

(MT

Mt

)− 1−γ
γ

1{vegT≤xV ∗T }

∣∣∣∣∣ Ft
 = E

(MT

Mt

)1− 1
γ

1{vegT≤xV ∗T }

∣∣∣∣∣ Ft


= e−r(T−t)(1− 1
γ )e−

1
2λ

2(T−t)(1− 1
γ ) 1

γ (1− Φ (D2(t)))

has already been computed in Section 2.3.1. Now we see that

η−
1−γ
γ = v1−γ exp

(r + 1
2λ

2
)

(1− γ)T + 1
2λ

2
(

1− 1
γ

)2

γT

1− 1
γ

.

Multiplying the previous two expressions, we obtain

η−
1−γ
γ e−r(T−t)(1− 1

γ )e−
1
2λ

2(T−t)(1− 1
γ ) 1

γ (1− Φ (D2(t)))

= v1−γ exp
((

r + 1
2γλ

2
)
T − 1

γ
rt− λ2

2γ2 t

)1−γ

(1− Φ (D2(t))). (2.37)

Using (2.37) and (2.21), we can simplify (2.36) in the following way:

x1−γ

1− γ (ηMt)−
1−γ
γ E

(MT

Mt

)− 1−γ
γ

1{vegT≤xV ∗T }

∣∣∣∣∣ Ft


= (xv)1−γ

1− γ M
− 1−γ

γ

t exp
((

r + 1
2γλ

2
)
T − 1

γ
rt− λ2

2γ2 t

)1−γ

(1− Φ (D2(t)))

= Jt(xv, T, γ)(1− Φ (D2(t))). (2.38)

Finally, adding (2.35) and (2.38), we can determine the complete indirect utility process
as

J̃t(v, T, γ) = u
(
vegT

)
Φ(D1(t)) + Jt(xv, T, γ)(1− Φ (D2(t))) .
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In particular, the optimal level of expected utility is given by (see also Jensen and Sørensen
(2001)):

J̃0(v, T, γ) = u
(
vegT

)
Φ(d1) + J0(xv, T, γ)(1− Φ (d2)).

From this we can easily compute the certainty equivalent wealth. It will be denoted by
C̃E and is given by

C̃E =
(
(1− γ)J̃0(v, T, γ)

) 1
1−γ

= v

((
egT

)1−γ
Φ (d1) + x1−γ exp

(
(1− γ)

(
r + λ2

2γ

)
T

)
(1− Φ (d2))

) 1
1−γ

.

Similarly, we will denote the certainty equivalent return by ỹ. This quantity can be
computed as follows:

ỹ = 1
T

log
(
C̃E
v

)

= 1
T (1− γ) log

(egT)1−γ
Φ (d1) + x1−γ exp

((
r + λ2

2γ

)
T

)1−γ

(1− Φ (d2))
 . (2.39)

Now that we have analyzed the individual optimization problems with and without guaran-
tee, we can compare them to each other and the effects of the guarantee can be determined.
This will be done in the following section.

2.4. Comparison

In this section we will compare different characteristics of the individual optimization
problem with and without interest rate guarantee. We will consider the following example
which will be used throughout the thesis from now on:

• The constant risk-free interest rate is r = 1.5%,

• the instantaneous rate of return of the risky asset is µ = 6%,

• the volatility of this asset is σ = 11%, and

• the maturity is T = 1.
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All the remaining parameters will be specified separately for each example. In this section
we will consider an investor with a relative risk aversion γ = 4 and an initial wealth v = 1.
The guarantee is given by g = 0.5%.
We will compare the three main characteristics from the previous two sections, the terminal
payoff, the self-financing investment strategy and the certainty equivalent return. The R
code used for all these computations can be found in Appendix B.
First we have a look at the terminal payoff obtained by this investor depending on the
performance of the stock market in Figure 2.1. We plot the terminal payoff against the
state price density MT . We clearly see the effect of the guarantee in this plot. The

Figure 2.1.: Comparison between individual terminal payoff with and without guarantee,
where γ = 4, v = 1, g = 0.005.

guarantee prevents the investor from bad performances of the stock market which occur
if and only if MT gets large. The price for this guarantee is, however, that more initial
wealth needs to be allocated to the risk-free asset earning a lower rate of return. This
prevents the individual from obtaining higher returns when the stock market performs
well, that is, when MT is small.
In Figure 2.2 we compare the Merton portfolio from (2.18) to one path of the investment
strategy given in (2.34). For the portfolio of the optimization problem with guarantee
we first need to simulate one path of the Brownian motion {Wt}t∈[0,T ]. Having chosen a
discretization of the time axis t1 = ∆t, . . . , ti = ti−1 + ∆t, . . . , tm = T , we can use that
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a Brownian motion has independent and normally distributed increments to do this (see
also Kroese et al. (2013) or Korn (2014)):

1. Initialize T , m, ∆t = T/m.

2. Simulate m independent standard normally distributed random variables X i, i =
1, . . . ,m.

3. Set Wti = ∑i
j=1
√

∆tXj.

The proportion of wealth allocated to the risky asset then varies over time and depends
on the performance of the financial market at any point in time t. We clearly see the

Figure 2.2.: Comparison between the fractions allocated to the risky asset with and with-
out guarantee, where γ = 4, v = 1, g = 0.005.

difference in the investment strategies in this plot. Although π̃t is not constant, it is
always below πt. The reason for this has already been explained: In order to meet the
prescribed guarantee more wealth needs to be invested in the risk-free asset than without
the restriction where the investor can decide for herself how to allocate the wealth. As a
consequence, the fraction held in the risky asset is always below the Merton portfolio.
However, from these two plots it is not clear yet whether the investor suffers a loss in
utility from the guarantee and how large this loss is. Therefore, we will now have a look at
the certainty equivalent returns. We can choose a discretization γ1, . . . , γn for the possible
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values of γ and then plot the certainty equivalent return y∗ from (2.25) and ỹ from (2.39)
against these discretized values of γ. Here we use n = 100 values for γ that are spread
equally in the interval [1/2, 10], that is γi = 1/2+ 9.5(i−1)

99 . All the remaining values between
γi−1 and γi are then obtained by linear interpolation for all i = 2, . . . , n. The results of this
procedure are given in Figure 2.3 where we compare the certainty equivalent returns with
and without guarantee. In this plot we observe the already well-known result that the

Figure 2.3.: Comparison of the certainty equivalent returns with and without guarantee
where g = 0.005.

guarantee leads to a loss, especially for the least risk averse investors (see also Jensen and
Sørensen (2001)). They could achieve a much higher rate of return if they were allowed
to invest in any way they wanted. However, the guarantee forces them to invest in the
risk-free asset with a low rate of return which creates a huge loss in the certainty equivalent
return. For the more risk averse investors, however, the situation is not that drastic. Since
highly risk averse people tend to invest most of their capital in risk-free assets, even if no
guarantee is imposed, their losses in the certainty equivalent return are much smaller than
the losses of the less risk averse people.
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From now on we will consider a collective of n investors, each starting with an initial
wealth vi, i = 1, . . . , n. The ith individual will be modeled by a CRRA utility function
ui(x) = x1−γi

1−γi as in the previous chapter. All the investors considered will be tied together
in their investment decisions, as it is the case, for example, when dealing with defined
contribution pension schemes, as mentioned in the introduction.
There are two questions that need to be addressed when such a collective of investors is
considered:

• How should the total initial wealth v = ∑n
i=1 vi be invested?

• How should the total terminal wealth VT obtained from this investment strategy be
split among the participants?

We want to find solutions to these questions such that all the participants obtain a certainty
equivalent return as close to the individual optimum y∗i = r+ µ−r

2γiσ2 from (2.25) as possible.
However, we would also like all the procedures to be easy to communicate to the members
of the collective.
Let us first consider the joint investment problem without guarantees. Clearly, there exists
an approach that manages to return to each individual her optimal unrestricted terminal
wealth: This approach would be to hold the Merton portfolio given in (2.18) for each
investor i, as described in Branger et al. (2018). So the total terminal wealth would be
given by VT = ∑n

i=1 V
(i,∗)
T , where V (i,∗)

T is the optimal terminal wealth of investor i as
given in (2.12) with γ replaced by γi and v replaced by vi. Then we can return to each
investor her individual optimal payoff V

(i,∗)
T . The corresponding proportion of terminal

wealth distributed to investor i is thus given by

αi = V
(i,∗)
T

VT
= V

(i,∗)
T∑n

i=1 V
(i,∗)
T

.
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In Branger et al. (2018) this specific way of distributing the accumulated terminal payoff
is called the first best sharing rule. A sharing rule is basically a rule after which the total
accumulated wealth VT is distributed among the participants in the pool.
This approach works similarly if all the investors are required to meet an individual interest
rate guarantee gi < r as described in Section 2.3. Then we simply need to replace V (i,∗)

T

by Ṽ (i,∗)
T from (2.26) in the above equation.

However, this sharing rule is very hard to communicate, as it depends on the stock price
at maturity ST (see (2.13)). Many individuals might not like the fact that the fraction of
terminal wealth received is not fixed in advance. Therefore, this sharing rule is not used
in most practical applications.
We would like to use a simpler sharing rule than the first best. There exists a variety of
literature dealing with a collective of investors facing a joint decision under uncertainty
and the choice of an adequate sharing rule: Wilson (1968) and Huang and Litzenberger
(1985) analyze necessary and sufficient conditions for sharing rules to be Pareto optimal
in a rather general setting. Dumas (1989) considers two individuals with different risk
preferences interacting dynamically in a complete market. Weinbaum (2009) analyzes a
social planner who maximizes a weighted sum of two individual utility functions, and
then characterizes the optimal sharing rule by a comparison to a portfolio of options,
as the terminal payoff, and therefore also the optimal sharing rule, generally cannot be
determined explicitly in the considered setting (see also Wang (1996)). Jensen and Nielsen
(2016) consider a similar social planner maximizing a weighted sum of two different utility
functions. However, in this paper the sharing rule is fixed to be linear and the focus lies
more on the suboptimality of this linear sharing rule. Branger et al. (2018) extend the
approach presented in Jensen and Nielsen (2016) to n investors instead of two.
In the following sections of this chapter we are going to follow Jensen and Nielsen (2016)
and, particularly, Branger et al. (2018) and fix the sharing rule to be linear. A formal
introduction of this specific type of sharing rules will be given in the next section. After
that, we will consider different strategies how to obtain a terminal payoff for the collective
of investors and combine them with the linear sharing rule also used in Jensen and Nielsen
(2016) and Branger et al. (2018).
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3.1. Linear Sharing Rules

We will follow the definition given in Chen and Nguyen (2018): A sharing rule is linear (or
affine) if there exist two real valued vectors a = (a1, . . . , an) and b = (b1, . . . , bn), where
ai ≥ 0, ∑n

i=1 ai = 1, and ∑n
i=1 bi = 0, such that investor i obtains

V
(i)
T = aiVT + bi

for all i = 1, . . . , n. Whenever possible, we would like to use such a linear sharing rule
because it is easy to understand and to communicate. In particular, the proportion of
terminal wealth obtained by each investor is known from the beginning and not state
dependent.
It seems natural to assign to each individual the fraction of terminal wealth being equal
to the proportion of initial wealth invested, that is,

ai = vi
v
, bi = 0 (3.1)

for all i = 1, . . . , n. This sharing rule is easily understandable and known before the invest-
ment is done. Therefore, it is well suited for practical applications. However, as we will
see in Section 3.3.1, the terminal payoff obtained by adding the individual optimal wealths∑n
i=1 V

(i,∗)
T is not the best choice in combination with this sharing rule. Additionally, when

interest rate guarantees are imposed, we can only use this sharing rule on the total payoff∑n
i=1 Ṽ

(i,∗)
T if all the guarantees gi are the same. Otherwise, it is not certain whether each

individual guarantee will be met.
However, these problems are mainly created by the investment strategy and not by the lin-
ear sharing rule. We will rather focus on maximizing some function of the total terminal
payoff instead of combining existing optimal terminal wealths in the following sections.
When doing this, another advantage of this sharing rule becomes clear: Whenever we
include individual guarantees in an optimization problem that aims to maximize some
function of the total terminal wealth of the pool, the problem reduces to a problem with
just one common guarantee. This can be seen as follows. Suppose that U(·) is some
function and we want to solve the optimization problem

max
ṼT

E
[
U(ṼT )

]
subject to E[MT ṼT ] = v, and

vi
v
ṼT ≥ vie

giT for all i = 1, . . . , n.
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Then the second condition is equivalent to

ṼT ≥ vegiT for all i = 1, . . . , n

which is fulfilled if and only if

ṼT ≥ vemaxi(gi)T .

Due to the linear sharing rule we only need to consider the maximal guarantee in the op-
timization problem. Since we were able to derive this result without using the structure of
ṼT or U(·), this result holds for all joint investment problems where the linear sharing rule
(3.1) is used, especially for the strategies in the following two sections. As a consequence,
when considering guarantees in the following, we will only focus on the case where one
joint guarantee is imposed.

Now that we have an idea how to distribute the total terminal payoff to each individ-
ual, we need to come up with an idea how to invest the aggregate amount of capital v.
Based on Chapter 2 we could assume that the fund manager responsible for investing v in-
vests this amount in a similar way as an individual with a relative risk aversion γ̄ would do.
This proceeding has several advantages. First, we can get the terminal wealths explicitly
from Chapter 2 for both the case with and without guarantee. Secondly, the investment
strategy πt is constant over time, at least for the case without guarantees, and, for both
cases, it is known explicitly. The purpose of the next section is therefore, to consider the
joint investment with such a joint risk aversion parameter γ̄. This approach has already
been analyzed in Jensen and Sørensen (2001), Jensen and Nielsen (2016) and Branger et al.
(2018). The following section is mainly based on Jensen and Sørensen (2001), where this
approach is studied with and without guarantee, and on Branger et al. (2018), where only
the case without guarantee is considered, but in more detail than in Jensen and Sørensen
(2001).

3.2. Investment with a Joint Risk Aversion Parameter

In this section we assume that the fund manager who is responsible for investing the
total initial wealth v invests this amount in a similar way as an individual with a relative
risk aversion γ̄ would do. This new risk aversion parameter γ̄ is usually chosen between
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mini(γi) and maxi(γi) to make sure that the utility losses are not spread too widely between
the participants. The terminal wealth VT is then shared linearly as in (3.1), that is,
V

(i)
T = vi

v
VT . This is obviously the same result as the one that would be obtained if all the

individuals invested vi according to the relative risk aversion γ̄.
As usual, we will first consider the unrestricted case without guarantee and then move on
to the case where an interest rate guarantee is imposed.

3.2.1. Case without Guarantee

For the case without guarantee the terminal wealth VT and the investment strategy can
be obtained from equations (2.12) and (2.18) with γ̄ instead of γ. In this section, we will
denote by V ∗T the optimal terminal payoff with respect to γ̄, that is,

V ∗T = (ηMT )−
1
γ̄ ,

where

η = v−γ̄ exp
(r + 1

2λ
2
)

(1− γ̄)T + 1
2λ

2γ̄

(
1− 1

γ̄

)2

T

 .
Now the only thing remaining for us to compute is the indirect utility process. It is defined
as

Jt(vi, T, γi, γ̄) = E
[
u
(
vi
v
V ∗T

) ∣∣∣ Ft] = E
[

(vi
v
V ∗T )1−γi

1− γi

∣∣∣∣∣ Ft
]
.

First we observe that

(V ∗T )1−γi = (ηMT )−
1−γi
γ̄ .

Therefore, the indirect utility process can be written as

Jt(vi, T, γi, γ̄) = 1
1− γi

(ηMt)−
1−γi
γ̄

(
vi
v

)1−γi
E

(MT

Mt

)− 1−γi
γ̄

∣∣∣∣∣ Ft
 . (3.2)

31



3. Investment Pools

We can now proceed analogously to Section 2.2.3 to compute this expectation. Using (2.2),
(2.11) and the fact that a Brownian motion has independent increments, we obtain

η−
1−γi
γ̄ E

(MT

Mt

)− 1−γi
γ̄

∣∣∣∣∣ Ft
 = η−

1−γi
γ̄ E

(MT

Mt

)− 1−γi
γ̄


= v1−γi exp

((
r + λ2

γ̄

)
T − 1

γ̄

(
r + λ2

2

)
t− (1− γi)

λ2

2γ̄2 t−
λ2

2γ̄2γiT

)1−γi
. (3.3)

Using (3.3), we can simplify (3.2) and obtain the indirect utility process as

Jt(vi, T, γi, γ̄) = 1
1− γi

(ηMt)−
1−γi
γ̄

(
vi
v

)1−γi
E

(MT

Mt

)− 1−γi
γ̄


= v1−γi

i

1− γi
exp

((
r + λ2

γ̄
− λ2

2γ̄2γi

)
T − 1

γ̄

(
r + λ2

2 + (1− γi)
λ2

2γ̄

)
t

)1−γi
M
− 1−γi

γ̄

t . (3.4)

The expected utility of an investor with relative risk aversion γi who invests according to
the relative risk aversion γ̄ is therefore given by (see also Jensen and Sørensen (2001)):

J0(vi, T, γi, γ̄) =

(
vi exp

((
r + λ2

γ̄

)
T − λ2

2γ̄2γiT
))1−γi

1− γi
. (3.5)

The certainty equivalent wealth for investor i can then be obtained as follows:

CEi = ((1− γi)J0(vi, T, γi, γ̄))
1

1−γi

= vi exp
((

r + λ2

γ̄

)
T − λ2

2γ̄2γiT

)
.

Hence, the certainty equivalent return is given by

ȳi = r + λ2

γ̄
− λ2

2γ̄2γi = r +
(

1
γ̄
− γi

2γ̄2

)
λ2. (3.6)

Some important observations about this new certainty equivalent are:

• If γi = γ̄, we get y∗i = ȳi, so in this case the investment strategy coincides with that
of investor i and thus, this person receives her optimal terminal wealth.
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• If γi 6= γ̄, then we always have ȳi < y∗i . This can be seen as follows:

ȳi = y∗i +
(

1
γ̄
− γi

2γ̄2

)
λ2 − λ2

2γi

= y∗i −
λ2

2

(
1
γi
− 2
γ̄

+ γi
γ̄2

)

= y∗i −
λ2

2γi

(
1− γi

γ̄

)2

< y∗i .

So clearly, each investor with a risk aversion differing from γ̄ is going to suffer a loss
in utility from the joint investment which is not a surprising result. Furthermore,
we make the following observation:

– If γi < γ̄, the term λ2

2γi

(
1− γi

γ̄

)2
is decreasing in γi.

– If, on the other hand, γi > γ̄, the term λ2

2γi

(
1− γi

γ̄

)2
is increasing in γi.

So the largest losses are always suffered by the investors whose risk aversion deviates
the most from the joint parameter γ̄. These results have also been shown in Branger
et al. (2018) already.

3.2.2. Case with Guarantee

Now we assume that the accumulated wealth v needs to earn a prescribed interest rate
g < r, that is, we postulate VT ≥ vegT . The total terminal payoff Ṽ ∗T and the fraction
invested in the risky asset can then be obtained from the equations (2.26) and (2.34).
So again, we only need to determine the indirect utility process. We can proceed as
follows:

J̃t(vi, T, γi, γ̄) = E


(
vi
v
Ṽ ∗T
)1−γi

1− γi

∣∣∣∣∣ Ft


= E


(
vie

gT
)1−γi

1− γi
1{vegT>xV ∗T }

∣∣∣∣∣ Ft
+ E

[
(xV ∗T )1−γi

1− γi
1{vegT≤xV ∗T }

∣∣∣∣∣ Ft
]
,
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where x is determined numerically from the equation

1 = xΦ
(
−d̄2

)
+ e(g−r)TΦ

(
d̄1 + λ

√
T
)

with

d̄1 = γ̄((g − r)T − log(x))
λ
√
T

+
(

1
2γ̄ − 1

)
λ
√
T ,

d̄2 = d̄1 +
(

1− 1
γ̄

)
λ
√
T .

The first expectation can be obtained in a similar way as in Section 2.3.1 and is given
by

E


(
vie

gT
)1−γi

1− γi
1{vegT>xV ∗T }

∣∣∣∣∣ Ft
 = ui

(
vie

gT
)

Φ
(
D1(t)

)
, (3.7)

where

D1(t) =
γ̄((g − r)T − log x) +

(
1

2γ̄ − 1
)
λ2T − λWt

λ
√
T − t

.

The second conditional expectation is a straightforward extension of the calculations per-
formed in Section 2.3.3 and can be computed as follows:

E


(
xvi
v
V ∗T
)1−γi

1− γi
1{vegT≤xV ∗T }

∣∣∣∣∣ Ft


= x1−γi

1− γi

(
vi
v

)1−γi
(ηMt)−

1−γi
γ̄ E

(MT

Mt

)− 1−γi
γ̄

1{vegT≤xV ∗T }

∣∣∣∣∣ Ft


= x1−γi

1− γi

(
vi
v

)1−γi
(ηMt)−

1−γi
γ̄ e

1−γi
γ̄

r(T−t)+ 1−γi
2γ̄ (1+ 1−γi

γ̄ )λ2(T−t)
(

1− Φ
(
D

(i)
2 (t)

))
(3.8)

with

D
(i)
2 (t) = D1(t)− 1− γi

γ̄
λ
√
T − t .
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Using (2.11), we obtain

η−
1−γi
γ̄ e

1−γi
γ̄

r(T−t)+ 1−γi
2γ̄ (1+ 1−γi

γ̄ )λ2(T−t)
(

1− Φ
(
D

(i)
2 (t)

))

= v1−γi exp
((

r + λ2

γ̄
− γi

2γ̄2λ
2
)
T −

(
r

γ̄
+ λ2

2γ̄ + λ2

2γ̄2 −
γi

2γ̄2λ
2
)
t

)1−γi (
1− Φ

(
D

(i)
2 (t)

))
.

Combining this result with (3.8) and using (3.4), we get

E


(
xvi
v
Ṽ ∗T
)1−γi

1− γi
1{vegT≤xV ∗T }

∣∣∣∣∣ Ft
 = Jt(xvi, T, γi, γ̄)

(
1− Φ

(
D

(i)
2 (t)

))
. (3.9)

Finally, adding (3.7) and (3.9), we obtain the complete indirect utility process as

J̃t(vi, T, γi, γ̄) = ui
(
vie

gT
)

Φ(D1(t)) + Jt(xvi, T, γi, γ̄)
(

1− Φ
(
D

(i)
2 (t)

))
.

In particular, the optimal level of expected utility is given by (see also Jensen and Sørensen
(2001)):

J̃0(vi, T, γi, γ̄) = ui
(
vie

gT
)

Φ
(
d̄1
)

+ J0(xvi, T, γi, γ̄)
(
1− Φ

(
d̄

(i)
2

))
, (3.10)

where

d̄
(i)
2 = D

(i)
2 (0) = d̄1 + γi − 1

γ̄
λ
√
T ,

and J0(xvi, T, γi, γ̄) is given in (3.5).
Now the certainty equivalent wealth can be computed from (3.10) as follows:

C̃Ei(vi, T, γi, γ̄) =
(
(1− γi)J̃0(vi, T, γi, γ̄)

) 1
1−γi

= vi

(egT)1−γi Φ
(
d̄1
)

+
(
x exp

((
r + λ2

γ̄

)
T − λ2

2γ̄2γiT

))1−γi (
1− Φ

(
d̄

(i)
2

)) 1
1−γi

.

As a consequence, the certainty equivalent return is given by

ỹi(vi, T, γi, γ̄) = 1
T

log
(
C̃Ei(vi, T, γi, γ̄)

vi

)

= 1
T (1− γi)

log
(egT)1−γi Φ

(
d̄1
)

+
(
x exp

((
r + λ2

γ̄

)
T − λ2

2γ̄2γiT

))1−γi (
1− Φ

(
d̄

(i)
2

)) .
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At the end of the previous section we have already mentioned some advantages of the
approach described in this section. If we consider the case without guarantees, one last
advantage of this procedure is that the wealth obtained is Pareto efficient among all the
constant mix strategies if γ̄ is chosen between mini γi and maxi γi (for a proof see Branger
et al. (2018)). However, as we will see in the following chapter, such constant mix strategies
are, in general, not Pareto efficient if we do not restrict the optimization problem to
constant mix strategies.
Therefore, we will follow Branger et al. (2018) and Jensen and Nielsen (2016) and focus on
generally Pareto efficient payoffs in the following section. We will start by giving a formal
definition of Pareto efficiency and then show that all the terminal payoffs considered so
far, are, in general, not Pareto efficient under our linear sharing rule. Jensen and Nielsen
(2016) have already performed a numerical analysis in which they show that such Pareto
efficient payoffs yield higher wealth equivalents than the constant mix strategy considered
in Section 3.2.1. This effect can be observed most clearly when the risk aversion parameters
of the two members in the collective differ widely. For our analysis, we will, of course, rely
on the certainty equivalent return, as in the previous sections. Additionally, we will not
only compare the Pareto efficient payoff to the terminal wealth resulting from the constant
mix strategy but also to the first best payoff (given by the sum of the individual optima),
and we will both analyze the case with and without guarantee.

3.3. Pareto Efficient Payoffs

In this section we will focus on Pareto efficient payoffs combined with the linear sharing rule
from (3.1). Pareto efficiency here means that no investor can increase her utility without
simultaneously decreasing another investor’s utility. For a mathematical definition, we
will follow Branger et al. (2018): Let V be the set of all admissible terminal payoffs that
can be obtained assuming that the initial wealth is v, that is,

V = {VT : E [MTVT ] = v} .

• We assume that the linear sharing rule defined in (3.1) is used. Furthermore, let
V1, V2 ∈ V . Then V1 is called a Pareto improvement of V2 if

E
[
ui

(
vi
v
V1

)]
≥ E

[
ui

(
vi
v
V2

)]
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for all i = 1, . . . , n, where strict inequality holds for at least one i ∈ {1, . . . , n}.

• The set of Pareto efficient payoffs VPE ⊂ V is defined as the set of all admissible
payoffs such that there does not exist a Pareto improvement:

VPE = {VT ∈ V : There exists no V ′T ∈ V s.t. V ′T is a Pareto improvement of VT} .

Whenever possible, we should use a Pareto efficient payoff. Therefore, the question arises
how such payoffs can be characterized. If we assume that all the investors have positive
initial wealth vi > 0 for all i = 1, . . . , n, then, according to Branger et al. (2018), the set
of Pareto efficient payoffs can be represented as follows:

VPE =
{
V ∗T ∈ V : V ∗T = argmax

VT∈V
E
[
n∑
i=1

βiui

(
vi
v
VT

)]
, βi ≥ 0,

n∑
i=1

βi = 1
}
. (3.11)

3.3.1. Pareto Efficient Payoffs Without Guarantee

Based on the representation of Pareto efficient payoffs in (3.11) we will now follow Branger
et al. (2018) and Jensen and Nielsen (2016) and solve the following optimization problem:

max
VT

E

 n∑
i=1

βi

(
vi
v
VT
)1−γi

1− γi

 subject to E[MTVT ] = v. (3.12)

The first order conditions of this problem are given by

n∑
i=1
βi

(
vi
v

)1−γi
V −γiT = νMT , (3.13)

E[MTVT ] = v, (3.14)

where ν > 0 is the Lagrangian multiplier which needs to be determined in such a way
that the budget constraint (3.14) is fulfilled. Except for a few special cases, we first need
to determine ν numerically, and then, using this ν, the optimal VT can be determined
numerically from (3.13) for given values of MT . These special cases are the following:

• βi = 1 for exactly one i and βj = 0 for all j 6= i: In this case the problem is reduced
to Merton’s optimization problem with just one investor as described in Section 2.2.
Clearly, investor i reaches her individual unrestricted utility in this case, whereas
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all the other investors suffer a larger loss in utility, the more their risk aversions γj
deviate from γi.

• γi = γ for all i = 1, . . . , n: If all the risk aversion parameters coincide, then the
problem is again reduced to the individual optimization problem with one investor
having risk aversion γ. All the investors reach their individual optimal wealth and
expected utility.

• n = 2, γ2 = 2γ1: Here equation (3.13) becomes a quadratic polynomial and can be
solved analytically using the quadratic formula. The solution is given by (see Jensen
and Nielsen (2016)):

VT =

 2β2
(
v2
v

)1−2γ1√
β2

1

(
v1
v

)2(1−γ1)
+ 4β2

(
v2
v

)1−2γ1
νMT − β1

(
v1
v

)1−γ1


1/γ1

.

For more general cases it is not possible to determine ν or VT explicitly. Hence, we need to
use numerical procedures. The algorithm used here is based on the following idea: For a
given value of ν we can determine VT numerically using the bisection method. Therefore,
we could create a set of realizations of MT and then determine a corresponding set of
realizations of VT . The mean of the product of these realizations gets closer to E[MTVT ],
the larger the number of realizations N is, due to the law of large numbers. Then we can
compare this mean to v and try the next value of ν. To find the right value for ν we can
again use the bisection method. We keep looking for the right value of ν until the mean
is close enough to v, that is, until the budget constraint is (approximately) fulfilled. A
pseudo code of this algorithm is given in the following. From now on, we will denote by tol
an arbitrarily small number greater than zero. This is the error by which our numerical
result is allowed to deviate from the theoretical result. The corresponding R code can be
found in Appendix B.

1. Initialize r, µ, σ, λ = µ−r
σ
, T , tol, N , n, βi, γi, vi .

2. Use bisection method to obtain ν s.t. the budget constraint is fulfilled: Choose νh
and νl (higher and lower bounds for ν).

3. While
∣∣∣ 1
N

∑N
j=1M

j
TV

j
T − v

∣∣∣> tol:

3.1. Create N realizations of a standard normally distributed random variable Xj ∼
N (0, 1), i = 1, . . . , N .
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3.2. Compute N realizations of the state price density at T :
M j

T = exp
(
−rT − 1

2λ
2T − λ

√
TXj

)
.

3.3. Set ν = 1
2(νh + νl).

3.4. Use bisection method to obtain V j
T for each j = 1, . . . , N . Choose V j,h

T and V j,l
T

(higher and lower bounds for V j
T ).

3.5. While maxj
∣∣∣∑n

i=1 βi
(
vi
v

)1−γi (
V j
T

)−γi − νM j
T

∣∣∣> tol:

3.5.1. V j
T = 1

2

(
V j,l
T + V j,h

T

)
for all j = 1, . . . , N .

3.5.2. For each j with ∑n
i=1 βi

(
vi
v

)1−γi (
V j
T

)−γi − νM j
T > 0 set V j,l

T = V j
T .

3.5.3. For each j with ∑n
i=1 βi

(
vi
v

)1−γi (
V j
T

)−γi − νM j
T < 0 set V j,h

T = V j
T .

3.6. If
(

1
N

∑N
j=1M

j
TV

j
T − v > 0

)
, then νl = ν.

3.7. If
(

1
N

∑N
j=1M

j
TV

j
T − v < 0

)
, then νh = ν.

For the simulation of the standard normally distributed random variables Xj we first
create a stratified random sample U1, . . . , UN of standard uniformly distributed random
variables as described in Appendix A.2. We use the following parameters:

• Total number of realizations: N = 106.

• Number of strata: K = 104.

• The strata are defined as Ai =
(
i−1
K
, i
K

)
for all i = 1, . . . , K.

Here the proportional allocation is used, so we need Ni = piN . Since the distribution
considered here is uniform, we obtain pi = 1

K
. Therefore, we get Ni = N

K
= 100. Hav-

ing created this set of realizations, we can apply the inverse transformation method (see
Appendix A.1) to create a stratified set of realizations of a standard normally distributed
random variable.
Having computed η, we can use steps 3.4 and 3.5 of the above algorithm to create realiza-
tions of VT for a given set of realizations of MT . Then we can use (A.1) to estimate the
expected utility and the certainty equivalent wealth and return for each individual in the
pool. Since NiK = N the estimator in (A.1) simplifies as follows:

̂̀= 1
N

K∑
i=1

Ni∑
j=1

f
(
X i
j

)
.
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This is simply the mean over all the realizations created. Therefore, we obtain the following
estimators for the certainty equivalent wealth and return:

ĈEi =
 1
N

N∑
j=1

(
vi
v
V j
T

)1−γi
 1

1−γi

,

ŷi = 1
T

log
(
ĈEi
vi

)
. (3.15)

Now that we are able to compute the Pareto efficient aggregated terminal wealth, we can
compare this payoff to the payoffs considered in Sections 3.1 and 3.2. We will see that, in
general, neither the first best payoff with linear sharing rule nor the constant mix strategy
with γ̄ = (∏n

i=1 γi)
1/n are Pareto efficient if we allow for all possible investment strategies

to be used and do not restrict the optimization problem to constant mix strategies. If the
risk aversion parameters differ widely, then the individual losses in utility get larger for
these two cases than for the Pareto efficient payoff. A rather similar result could already
be seen in Jensen and Nielsen (2016), at least for the constant mix strategy. We will
consider the following example:

• There are n = 2 investors tied together in the pool,

• they have the same initial wealth v1 = v2 = 1, and

• their relative risk aversions are given by γ1 = 1/2, γ2 = 10.

In the following we will numerically determine a value for β1 such that both investors
obtain a higher certainty equivalent return from the Pareto efficient payoff than from the
other two cases. We can use the bisection method to find such a value for β1. For the
payoff obtained from the constant mix strategy this can, for example, be done as follows:

1. Initialize r, µ, σ, λ = µ−r
σ
, T , tol, N , n, βi, γi, vi .

2. Choose higher and lower bounds βh1 = 1 and βl1 = 0 for β1.

3. While ŷ1 < ȳ1 or ŷ2 < ȳ2:

3.1. Set β1 = 1
2

(
βh1 + βl1

)
.

3.2. Compute ŷi for this β1 and ȳi.

3.3. If ŷ1 < ȳ1 and ŷ2 > ȳ2, then βl1 = β1.

3.4. If ŷ1 > ȳ1 and ŷ2 < ȳ2, then βh1 = β1.
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Because of the criterion in step 2 this algorithm will stop as soon as one value for β1 is
found for which both investors are better off with the Pareto efficient payoff. However, it
is important to keep in mind that there exist more than one such values for β1 which can
fulfill this criterion.

Now we first consider the case where the total terminal wealth is given by the sum of
the unrestricted optimal payoffs combined with the linear sharing rule. Here we obtain
β1 = 0.99 using the bisection method. In Figure 3.1 we compare the total terminal wealths.
From the figure it is not really clear which payoff the preferable one is. While the Pareto

Figure 3.1.: Comparison between Pareto efficient terminal payoff and payoff obtained by
adding the individual optimal terminal wealths, where γ1 = 1/2, γ2 = 10,
vi = 1, β1 = 0.99.

efficient payoff is higher in more extreme scenarios (both good and bad) the first best
payoff is higher in most rather common scenarios. To figure out which payoff is better we
need to compute the certainty equivalent return for both investors. For the Pareto efficient
payoff this is now straightforward and has already been explained. The estimator for the
certainty equivalent return of this payoff is given in (3.15).
The question remains how we can compute the certainty equivalent returns for the payoff
that is given by the sum of the individual optimal terminal wealths. We know that investor
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i obtains the following payoff at T :

V
(i)
T = vi

v

n∑
j=1

V
(j,∗)
T .

Hence, the certainty equivalent wealth has the following form:

CEi

vi
v

n∑
j=1

V
(j,∗)
T

 = E


vi
v

n∑
j=1

V
(j,∗)
T

1−γi


1
1−γi

= vi
v
E


 n∑
j=1

V
(j,∗)
T

1−γi


1
1−γi

.

From (2.13) we know that

V
(j,∗)
T = vj exp

(
(1−m(γj))

(
r + 1

2m(γj)σ2
)
T
)(

ST
S0

)m(γj)
,

and from (2.1) we know that

ST = S0 exp
((
µ− 1

2σ
2
)
T + σWT

)
.

Combining these two equations, we get

V
(j,∗)
T = vj exp

(
(1−m(γj))

(
r + 1

2m(γj)σ2
)
T
)

exp
(
m(γj)

(
µ− 1

2σ
2
)
T +m(γj)σWT

)
= vj exp

(
(1−m(γj))

(
r + 1

2m(γj)σ2
)
T +m(γj)

(
µ− 1

2σ
2
)
T +m(γj)σWT

)
= vjcj exp (m(γj)σWT ) , (3.16)

where

cj = exp
(

(1−m(γj))
(
r + 1

2m(γj)σ2
)
T +m(γj)

(
µ− 1

2σ
2
)
T
)

(3.17)
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is only a constant. As a consequence, if we assume that X is a standard normally dis-
tributed random variable, we can write

E


 n∑
j=1

V
(j,∗)
T

1−γi
 = E


 n∑
j=1

vjcj exp (m(γj)σWT )
1−γi


= E


 n∑
j=1

vjcj exp
(
m(γj)σ

√
TX

)1−γi


=
∫ ∞
−∞

 n∑
j=1

vjcj exp
(
m(γj)σ

√
Tx
)1−γi

1√
2π

exp
(
−x

2

2

)
dx .

This integral can easily be computed numerically (see Appendix B for the corresponding
R code). After that, we can use equation (2.24) to determine the corresponding certainty
equivalent return. This certainty equivalent return will be denoted by y′i, that is,

y′i = 1
T

log
CEi

(
vi
v

∑n
j=1 V

(j,∗)
T

)
vi

 . (3.18)

Now we are able to compute the certainty equivalent returns for both investors. The values
are provided in Table 3.1. Since both values are greater when the Pareto efficient payoff is
used, it follows that the terminal wealth obtained by adding the individual optimal payoffs
is not Pareto efficient when the linear sharing rule is used.

γ1 = 1/2 γ2 = 10
Pareto efficient 0.1520 -0.2885

Sum of unrestricted optimal payoffs 0.1448 -0.3043

Table 3.1.: Comparison between certainty equivalent returns obtained from Pareto efficient
terminal payoff and payoff obtained by adding the individual optimal terminal
wealths, where γ1 = 1/2, γ2 = 10, vi = 1, β1 = 0.99.

For the constant mix strategy the first value that we obtain from the bisection method is
β1 = 0.7. In Figure 3.2 the aggregated terminal wealth of the investors is again plotted
against the state price density MT . We obtain a rather similar result as in Figure 3.1.
Here we observe that the Pareto efficient payoff is much higher than the payoff obtained
from the constant mix strategy in extremely good and bad scenarios. On the other hand,
the constant mix strategy yields a higher payoff in the more common states.
Computing the certainty equivalent returns, we see that the constant mix strategy with
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γ̄ = √γ1γ2 is not Pareto efficient because both certainty equivalent returns are smaller
than the ones obtained from the Pareto efficient payoff. The actual numbers can be found
in Table 3.2. The returns of the Pareto efficient payoff are estimated as in (3.15). The
values of the constant mix strategy can be computed using (3.6).

Figure 3.2.: Comparison between Pareto efficient and constant mix terminal payoff, where
γ1 = 1/2, γ2 = 10, γ̄ = √γ1γ2, vi = 1, β1 = 0.7.

γ1 = 1/2 γ2 = 10
Pareto efficient 0.0855 -0.0312

γ̄ 0.0815 -0.0775

Table 3.2.: Comparison between certainty equivalent returns for Pareto efficient and con-
stant mix payoff, where γ1 = 1/2, γ2 = 10, γ̄ = √γ1γ2, vi = 1, β1 = 0.7.

3.3.2. Pareto Efficient Payoffs With Interest Rate Guarantee

Now we assume that the total wealth invested at the beginning needs to earn a specific
interest rate, similar as in Section 2.3. We use again g to denote the guaranteed rate of
return, where g < r. Then the optimization problem (3.12) can be modified as follows:

max
ṼT

E

 n∑
i=1

βi

(
vi
v
ṼT
)1−γi

1− γi

 subject to E[MT ṼT ] = v and ṼT ≥ vegT . (3.19)
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The first order conditions of this problem are

n∑
i=1
βi

(
vi
v

)1−γi
Ṽ −γiT − ν1MT − ν2 = 0,

ν2(ṼT − vegT ) = 0.

or, equivalently,

ṼT =

VT s.t. ∑n
i=1 βi

(
vi
v

)1−γi
V −γiT − ν1MT = 0, if VT ≥ vegT

vegT , if VT < vegT
.

We can solve this problem numerically in the same way as problem (3.12). First we
determine ν1, then we can compute VT for a given value of MT . After that, we obtain
ṼT = max{VT , vegT}. We can basically use the same algorithm to compute ν1 as for the
previous problem (3.12), we just need to add a small modification to make sure that the
guarantee is always met. This can be done by simply executing one additional step before
the higher and lower bounds for ν1 are redefined (the complete R code can be found in
Appendix B again):

1. Initialize r, µ, σ, λ = µ−r
σ
, g, T , tol, N , n, βi, γi, vi .

2. Use bisection method to obtain ν1 s.t. the budget constraint is fulfilled: Choose νh1
and νl1 (higher and lower bounds for ν1).

3. While
∣∣∣ 1
N

∑N
j=1M

j
T Ṽ

j
T − v

∣∣∣> tol:

3.1. Create N realizations of a standard normally distributed random variable Xj ∼
N (0, 1), j = 1, . . . , N .

3.2. Compute N realizations of the state price density at T :
M j

T = exp
(
−rT − 1

2λ
2T − λ

√
TXj

)
.

3.3. Set ν1 = 1
2

(
νh1 + νl1

)
.

3.4. Use bisection method to obtain V j
T for each j = 1, . . . , N . Choose V j,h

T and V j,l
T

(higher and lower bounds for V j
T ).

3.5. While maxj
∣∣∣∑n

i=1 βi(viv )1−γi(V j
T )−γi − νM j

T

∣∣∣> tol:

3.5.1. V j
T = 1

2

(
V j,l
T + V j,h

T

)
for all j = 1, . . . , N .

3.5.2. For each j with ∑n
i=1 βi

(
vi
v

)1−γi (
V j
T

)−γi − νM j
T > 0 set V j,l

T = V j
T .
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3.5.3. For each j with ∑n
i=1 βi

(
vi
v

)1−γi (
V j
T

)−γi − νM j
T < 0 set V j,h

T = V j
T .

3.6. For each j with V j
T < vegT set Ṽ j

T = vegT , for all remaining j set Ṽ j
T = V j

T .

3.7. If
(

1
N

∑N
j=1M

j
T Ṽ

j
T − v > 0

)
, then νl1 = ν1.

3.8. If
(

1
N

∑N
j=1M

j
T Ṽ

j
T − v < 0

)
, then νh1 = ν1.

For creating the realizations of a standard normally distributed random variable we use
again a stratified sample as in Section 3.3.1. Having determined ν1, we can again create
a set of realizations of MT . Then we can create a corresponding set of realizations of ṼT
and estimate the certainty equivalent return for each investor as in (3.15).

Now we can compare the terminal payoff with guarantee to the payoff without guarantee
determined in Section 3.3.1. We consider the following example:

• There are four investors having the same initial wealth v1 = v2 = v3 = v4 = 1,

• their risk aversion parameters are given by γ1 = 1/2, γ2 = 2, γ3 = 8, γ4 = 10, and

• the weights βi are all equal.

Furthermore, we assume that for all the numerical analyses in this section the level of the
interest rate guarantee is given by g = 0.5%. In Figure 3.3 the terminal Pareto efficient
payoffs with and without guarantee can be seen. We clearly observe that the position in
risky assets needs to be reduced in order to meet the prescribed guarantee. Therefore, the
quite risk averse investors 3 and 4 should benefit from this restriction. In Table 3.3 we
can see that this is, in fact, the case.

γ1 = 1/2 γ2 = 2 γ3 = 8 γ4 = 10
without guarantee 0.0526 0.0442 0.0188 0.0120
with guarantee 0.0252 0.0237 0.0194 0.0184

Table 3.3.: Comparison between certainty equivalent returns for terminal payoffs with and
without interest rate guarantee, where γ1 = 1/2, γ2 = 2, γ3 = 8, γ4 = 10,
g = 0.5%, vi = 1, βi = 1/4.

We observe that investors 1 and 2, the ones with the lower risk aversion, suffer a huge loss
in utility because of the newly introduced guarantee. On the other hand, the guarantee
compensates the more risk averse investors 3 and 4 who would, without the guarantee, be
forced to invest in a more risky way than they would usually choose. These results coincide
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Figure 3.3.: Comparison between Pareto efficient terminal payoffs with and without inter-
est rate guarantee, where γ1 = 1/2, γ2 = 2, γ3 = 8, γ4 = 10, g = 0.5%, vi = 1,
βi = 1/4.

with the results in Jensen and Sørensen (2001) who already performed similar analyses
for a pool using an investment strategy corresponding to a joint risk aversion parameter γ̄
as described in Section 3.2. The advantage of our analysis is, however, that the terminal
payoff is Pareto efficient. It is not surprising, though, that the effects of the newly intro-
duced guarantee remain the same, no matter if the terminal payoff is Pareto efficient or not.

We will now show that, in the presence of a guarantee, the payoff obtained by adding
the individual optima and the terminal wealth corresponding to γ̄ = √γ1γ2 are also not
Pareto efficient. We will use the exact same example as in Section 3.3.1: There are n = 2
investors having the same initial wealth v1 = v2 = 1, and their risk aversion parameters
are γ1 = 1/2, γ2 = 10. We can proceed in the exact same way as in Section 3.3.1 to find
a value for β1 such that both investors obtain a higher utility from the Pareto efficient
payoff than from the the other two approaches.
We will start with the first best payoff which is given by the sum of the individual terminal
wealths with guarantee. The certainty equivalent return can be computed in a similar way
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as for the case without guarantee. We know that investor i receives

V
(i)
T = vi

v

n∑
j=1

Ṽ
(j,∗)
T = vi

v

n∑
j=1

max
{
xjV

(j,∗)
T , vje

gT
}

with xj being determined numerically from (2.33) for all j = 1, . . . , n. Hence, the certainty
equivalent wealth can be determined as

CEi

vi
v

n∑
j=1

V
(j,∗)
T

 = vi
v
E


 n∑
j=1

max
{
xjV

(j,∗)
T , vje

gT
}1−γi


1

1−γi

.

Here we can use (3.16) to obtain

E


 n∑
j=1

Ṽ
(j,∗)
T

1−γi
 = E


 n∑
j=1

max
{
xjvjcj exp (m(γj)σWT ) , vjegT

}1−γi


=
∫ ∞
−∞

 n∑
j=1

max
{
xjvjcj exp

(
m(γj)σ

√
Tz
)
, vje

gT
}1−γi

1√
2π

exp
(
−z

2

2

)
dz,

where cj is given in (3.17). Of course, this integral needs to be determined numerically
again, the corresponding R code is given in Appendix B.
Using the bisection method in a similar way as for the case without guarantee, we obtain
one possible value for the first weight as β1 = 0.55. The payoffs are given in Figure 3.4.
The wealth curves have multiple intersections as in the case without guarantee. From this
plot it is not clear at all which payoff should be preferred. To answer this question, we
need to take a look at the certainty equivalent returns. They are provided in Table 3.4.

γ1 = 1/2 γ2 = 10
Pareto efficient 0.0268 0.0166

Sum of individual payoffs with guarantee 0.0263 0.0160

Table 3.4.: Comparison between certainty equivalent returns obtained from Pareto efficient
terminal payoff and the sum of the individual terminal wealths with guarantee,
where γ1 = 1/2, γ2 = 10, g = 0.5%, vi = 1, β1 = 0.55.

We can see that the Pareto efficient strategy provides higher returns than the linearly
shared sum of the individual payoffs with guarantee to both investors. So we can draw
the same conclusion as in the case without guarantee: The first best payoff is, in general,
not Pareto optimal under our linear sharing rule.
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Figure 3.4.: Comparison between Pareto efficient terminal payoff and the sum of the indi-
vidual terminal wealths with guarantee, where γ1 = 1/2, γ2 = 10, g = 0.5%,
vi = 1, β1 = 0.55.

Let us now move on to the joint risk aversion parameter γ̄. One possible value for β1 would
be 0.525. The corresponding payoff is given in Figure 3.5. To measure the well-being of
the two investors we need to take a look at the certainty equivalent return since it is,
again, not clear from the plot which payoff preferable is. The results are provided in Table
3.5.

γ1 = 1/2 γ2 = 10
Pareto efficient 0.0265 0.0170

γ̄ 0.0263 0.0168

Table 3.5.: Comparison between certainty equivalent returns obtained from Pareto efficient
terminal payoff and the payoff obtained from investing according to the joint
risk aversion parameter γ̄ = √γ1γ2 with guarantee, where γ1 = 1/2, γ2 = 10,
g = 0.5%, vi = 1, β1 = 0.525.

Once again the Pareto efficient strategy manages to yield a higher certainty equivalent
return to both investors in the pool in this specific case. So the presence of a guarantee
does not change the fact that the investment policy corresponding to γ̄ is, generally, not
Pareto optimal.
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Figure 3.5.: Comparison between Pareto efficient terminal payoff and payoff obtained from
investing according to the joint risk aversion parameter γ̄ = √γ1γ2 with guar-
antee, where γ1 = 1/2, γ2 = 10, g = 0.5%, vi = 1, β1 = 0.525.

It is, however, important to keep in mind that it might not always be possible to find
a vector of weights (β1, . . . , βn) such that the Pareto efficient strategy provides higher re-
turns to all the members of the collective since the definition of Pareto efficiency clearly
does not imply that. Furthermore, the weights presented so far are, in some cases, not re-
ally fair to the members of the collective. In section 3.3.1, for example, we used β1 = 0.99,
so we were taking the less risk averse investor much stronger into account than the more
risk averse, although both made the same initial contribution. So we definitely have to ask
ourselves the question how the weights should be chosen for any general case. Providing
an answer to this question is the purpose of the next section.

3.3.3. One Choice of the Weights

In this section we will use a slightly different method to compare the certainty equivalents
of the different investors. If the individual risk aversion parameters are, without loss
of generality, chosen to be increasing, that is, γ1 < γ2 < · · · < γn, it is possible to
(approximately) plot the corresponding certainty equivalent returns ŷi as a function of
the risk aversion parameters γi (for the values between γi and γi+1 we will use linear
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interpolation). We can then have a look at the behavior of this function and try to derive
a proper choice for the weights βi.
In order to investigate the effects of the initial wealth vi and the risk aversion parameters
γi on the investment strategy, we will start with βi = 1/n. Once we have determined the
effects of vi and γi on the certainty equivalent return, we can move on to different choices
of the weights βi. Since the Pareto efficient terminal payoff behaves similarly with and
without guarantee, we will, for simplicity, focus only on the case without guarantee in this
section. We will use the following example:

• There are n = 10 participants in the pool.

• The corresponding risk aversion parameters γi are spread equally in the interval
[1/2, 10], that is,

γi = 1/2 + 9.5(i− 1)
n− 1 , i = 1, . . . , n.

We will consider three different cases of initial wealth:

(a) The initial wealth increases linearly in the risk aversion:

vi = 1 + 9(i− 1)
n− 1 for all i = 1, . . . , n.

(b) The initial wealth is the same for all the members:

vi = 10 for all i = 1, . . . , n.

(c) The initial wealth decreases linearly in the risk aversion:

vi = 10− 9(i− 1)
n− 1 for all i = 1, . . . , n.

In Figure 3.6 we plot the individual certainty equivalent returns yi for four payoffs against
the risk aversion parameters γi. Here we consider the cases already analyzed before, the
Pareto efficient payoff, the first best terminal wealth for the collective (with linear sharing
rule), the constant mix strategy with γ̄ = (∏n

i=1 γi)1/n and the individual unrestricted
payoff. In other words, the certainty equivalent returns ŷi from (3.15), y′i from (3.18), ȳi
from (3.6) and y∗i from (2.25) are plotted against γi. We make the following observations:
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(a) vi = 1 + 9(i−1)
n−1 for i = 1, . . . , n. (b) vi = 10 for i = 1, . . . , n.

(c) vi = 10− 9(i−1)
n−1 for i = 1, . . . , n.

Figure 3.6.: Comparison of the certainty equivalent returns with βi = 1/n for three differ-
ent cases of the initial wealth.

• In all the cases the Pareto efficient strategy yields negative returns to at
least some of the investors. This effect can be seen in all the figures. Especially
in Figures (a) and (b) these negative returns are drastically low. The reason for this
is that the Pareto efficient strategy here only favors the least risk averse investors.

• The Pareto efficient strategy clearly does not seem to be the best option
for the collective. In Figures (a) and (b) clearly both the first best payoff and
the constant mix strategy seem to be preferable over the Pareto efficient payoff
since we would like to avoid drastically low rates of return for such large groups of
the collective. The curves obtained from the first best approach and the constant
mix strategy are much closer to the unrestricted individual curve than the Pareto
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efficient in these two cases. In Figure (c) it is not that clear which approach the
most preferable one is. However, at least the constant mix strategy seems to still be
a better choice than the Pareto efficient strategy.

• The rather risk tolerant investors have a stronger impact on the Pareto
efficient strategy than the more risk averse individuals. This becomes clear
in Figures (a) and, particularly, (b). In the latter one all the investors have the same
initial wealth. However, the Pareto efficient payoff basically only takes into account
the least risk averse investor in the pool.

• People with a lower initial wealth are taken into account stronger in the
investment strategy than more wealthy people. This effect becomes clear if
we compare all the Figures to each other. Usually, the less risk averse people have
more influence on the investment strategy (see Figures (a) and (b)). If, however, the
more risk averse people have less wealth than the rather risk tolerant investors, the
investment strategy takes these risk averse people also into account, as can be seen
in Figure (c).

Clearly we would like to manipulate the Pareto efficient payoff in such a way that there
are no negative certainty equivalent returns anymore. In all the cases considered here,
βi did not depend on i and could therefore be ignored in the optimization problem. If
we want the investment strategy to be more suitable for all the investors in the pool, we
need to choose the weights βi accordingly. From the above observations it is clear that
the higher the initial wealth vi and the risk aversion γi are, the higher βi should be. A
possible approach would therefore be the following:

βi = vγii∑n
j=1 v

γj
j

. (3.20)

Now we can compute the certainty equivalent returns for all the different examples from
before again and perform similar analyses with these new weights. The results are given
in Figure 3.7. Here we observe the following:

• The newly chosen weights improve the situation significantly. In particu-
lar, the Pareto efficient strategy does not yield negative returns anymore.
This can be observed in all the figures. Especially for Figures (a) and (b) the situ-
ation improves drastically. In Figure (c) there are no negative returns anymore as
well. All in all, the Pareto efficient returns are now much closer to the individual
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(a) vi = 1 + 9(i−1)
n−1 for i = 1, . . . , n. (b) vi = 10 for i = 1, . . . , n.

(c) vi = 10− 9(i−1)
n−1 for i = 1, . . . , n.

Figure 3.7.: Comparison of the certainty equivalent returns with βi given in (3.20) for three
cases of initial wealth.

optimal returns. The “price” of this is, of course, that the risk tolerant investors
receive much lower rates of return than before.

• With the new weights the Pareto efficient strategy takes wealthier people
slightly stronger into account than less wealthy individuals. This is of
course due to the fact that βi is increasing in vi. This behavior seems fair since
people making higher payments should be considered stronger than investors only
paying very small contributions. An important observation here is also that this
effect is not too strong. The most wealthy investor does not completely dominate
the investment decision, all the individuals are still taken into account. We can
clearly observe that the more wealthy people are taken stronger into consideration
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but investors with lower initial wealth are not completely ignored and, in particular,
no such drastic losses as in Figure 3.6 are suffered by anyone here.
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4. Summary

The individual optimization problem considered here has already been studied thoroughly
in the literature. For the unrestricted case, it is well known that the optimal terminal
payoff is given by the inverse marginal utility function and that the corresponding self-
financing investment strategy is constant over time. Under portfolio insurance, the optimal
terminal payoff is the maximum of the guaranteed amount and a fraction of the individ-
ual optimal terminal wealth obtained from the optimization problem without restrictions.
The corresponding self-financing investment strategy is no longer constant but varies over
time. We also observed the well-known result that the guarantee leads to a loss in utility
for every investor where the loss is decreasing in the risk aversion parameter γ. This result
is quite natural as more risk averse people tend to invest most of their capital in risk-free
assets, even if there is no guarantee imposed. For relatively risk tolerant investors, on the
other hand, the guarantee can be a rather strong restriction that forces the investor to
invest in a much less risky way than would be optimal for her.

Having considered the individual optimization problem, we have presented various ap-
proaches to solve the problems of how to invest the total initial wealth of the investors
and how to share the total terminal wealth obtained from this strategy. In the first best
approach the terminal wealth is obtained from adding the individual unrestricted termi-
nal payoffs for each investor. We can then use a non-linear sharing rule to return to each
participant her unrestricted optimal payoff. However, since this sharing rule is non-linear
and state dependent, it is usually not used. Therefore, we have decided to only focus on
a specific linear sharing rule that is easy to communicate.
Further natural approaches would then be to use the first best payoff in combination with
this linear sharing rule or to invest the total initial wealth in the same way as an investor
with some risk aversion parameter would do. Usually, this risk aversion parameter lies
between the smallest and the largest risk aversion parameters of all the investors in the
pool. The latter of these procedures leads to a Pareto efficient payoff if we restrict the
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analysis to constant mix strategies, at least for the case without guarantees.
We have seen, however, that none of these two approaches is generally Pareto optimal if
we allow for any investment strategy to be used. For such Pareto optimal payoffs we need
to maximize the weighted sum of the individual utility functions.
Since we would like to use a Pareto efficient payoff whenever possible, we have to answer
the question how the weights should be chosen here. In the numerical analyses performed
we have seen that a bad choice of them might result in drastic losses for large groups of
the collective. We have therefore derived a choice of the weights which avoids these drastic
losses and yields returns that are, in total, closer to the individual optima.
It is also important to note that for a pool of investors the situation with the guarantee
is not as clear anymore as in the case with a single investor. For the Pareto efficient pay-
off with linear sharing rule the more risk averse individuals in the pool benefit from the
guarantee while the less risk averse suffer an additional loss compared to the case without
guarantee. These results coincide with the results presented in Jensen and Sørensen (2001)
who conducted a similar analysis for the payoff obtained by a joint risk aversion parameter.
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A. Methods of Monte Carlo Simulation

A.1. Inverse Transformation Method

Let

F−1
X (u) = inf{x : FX(x) ≥ u}

be the quantile function of a random variable X. Further assume that U is uniformly
distributed on [0, 1]. Then the distribution function of the random variable F−1

X (U) is
given by FX . The proof of this well-known result can be found for example in Ross (2014)
or Kroese et al. (2013).
From this observation we can derive the inverse transform algorithm:

1. Simulate U ∼ U [0, 1].

2. Return X = F−1
X (U).

A.2. Stratified Sampling

Stratified sampling is a method used to increase the precision of estimators by making
sure that the samples used for the estimation are spread sufficiently across the state space.
In this section we will briefly review the main idea of stratified sampling in the context of
Monte Carlo estimation. For further details regarding this topic we refer to Kroese et al.
(2013) or Lohr (2009).
Assume that X is a random variable, f(·) is a function and we would like to estimate
` = E[f(X)]. We further assume that the distribution of X is known and that we can
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divide the range of X into disjoint sets A1, . . . , AK (also called strata). Note that, under
these assumptions, we have

` = E[f(X)] =
K∑
i=1

E[f(X) | X ∈ Ai]P (X ∈ Ai) .

Let us introduce the following notation:

• Let pi = P (X ∈ Ai) for all i = 1, . . . , K.

• Further let {X i
j}j=1,...,Ni be a sequence of independent and identically distributed

random variables drawn from the conditional distribution of X given that X ∈ Ai
with Ni being a positive integer for i = 1, . . . , K.

Then ` can be estimated by

̂̀=
K∑
i=1

pi
1
Ni

Ni∑
j=1

f
(
X i
j

)
. (A.1)

The question remains how the strata can be chosen. For our simulation algorithms we will
always use the (rather simple) proportional allocation. To be more precise, denoting by
N the total number of realizations, we assume that

Ni = piN .

It is proven in Kroese et al. (2013) that from using proportional sampling one always
obtains an estimator having a smaller or equal variance than the standard Monte Carlo
estimator.
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B. R Codes

In this section the R codes used for the numerical analyses performed in the thesis are
provided. Since all the codes used for the plots and computations of certainty equivalent
returns in Chapter 3 solve either optimization problem (3.12) or (3.19), we omit the codes
for Table 3.3 and Figures 3.3, 3.6 and 3.7. Clearly, it is possible to change the parameters
in the codes provided below in any way we would like to in order to obtain the results
given in these figures.

Listing B.1: R code used for comparing the individual terminal payoff, the investment
strategy and the certainty equivalent return with and without guarantee (see
Figures 2.1, 2.2 and 2.3).

######################## Parameters
r<−0 .015
mu<−0 .06
sigma<−0 .11
lambda<−(mu−r ) / sigma
mat<−1
gamma<−4
v<−1
g<−0 .005

######################## Plot Payof f ########################
######################## Unre s t r i c t ed
M_T<−seq ( 0 . 0 1 , 3 , 0 . 0 1 )
V_T <− v∗exp ( ( r+1/2∗ lambda^2)∗(1−1/gamma) ∗mat − 1/2∗ lambda^2∗(1−1/gamma)^2∗
mat) ∗M_T^(−1/gamma)
par (mar=c ( 4 . 5 , 5 . 5 , 2 , 2 ) )
p l o t (M_T,V_T, type=" l " , x lab=" " , ylab=" " , lwd=4,yaxt="n " , xaxt="n " )
ax i s (1 , cex . ax i s=2)
ax i s (2 , cex . ax i s=2)
mtext ( exp r e s s i on (V[T] ) , s i d e =2, l i n e =3, cex=2.5)
mtext ( exp r e s s i on (M[T] ) , s i d e =1, l i n e =3.5 , cex =2.5)
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######################## With guarantee
t o l<−10^(−12)
sigma_MT<−lambda∗ s q r t (mat)
x_h<−1
x_l<−0
x<−( x_l + x_h) /2

d_1 <− gamma∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma)−1)∗ sigma_MT
d_2 <− d_1+(1−1/gamma) ∗ sigma_MT

whi le ( abs ( x∗pnorm(−d_2) + exp ( ( g−r ) ∗mat) ∗pnorm(d_1+sigma_MT) − 1) > t o l ) {
i f ( x∗pnorm(−d_2) + exp ( ( g−r ) ∗mat) ∗pnorm(d_1+sigma_MT) > 1) {

x_h <− x
} e l s e {

x_l <− x
}
x<−( x_l + x_h) /2
d_1 <− gamma∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma)−1)∗ sigma_MT
d_2 <− d_1+(1−1/gamma) ∗ sigma_MT

}

V_T_g <− pmax(v∗exp ( g∗mat ) , x∗V_T)
l i n e s (M_T,V_T_g , l t y =2, lwd=4, c o l =2)
legend ( " t op r i gh t " , c ( " without ␣ guarantee " , " with␣ guarantee " ) ,
l t y=c (1 , 2 ) , bty="n" , lwd=c (4 , 4 ) , c o l=c (1 , 2 ) , cex =1.8)

######################## Plot s t r a t e gy ############################
######################## Unre s t r i c t ed
m<−10^3
t<−seq (1 /m,mat , 1 /m)
pi <− (mu−r ) / (gamma∗ sigma ^2)
Pi<−rep ( pi , l ength ( t ) )
p l o t ( t , Pi , x lab=" " , ylab=" " , type=" l " , lwd=3,yaxt="n " , xaxt="n " ,
yl im=range ( c ( 0 , 1 . 5 ) ) )
par (mar=c ( 4 . 5 , 5 . 5 , 2 , 2 ) )
ax i s (1 , cex . ax i s=2)
ax i s (2 , cex . ax i s=2)
mtext ( exp r e s s i on ( p i [ t ] ) , s i d e =2, l i n e =3, cex=2.5)
mtext ( exp r e s s i on ( t ) , s i d e =1, l i n e =3.5 , cex=2.5)

######################## With guarantee
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W<−cumsum( sq r t (1 /m) ∗rnorm (m) )
#p lo t ( t ,W, type=" l " )

V_t <− v∗exp ( r ∗ t + lambda^2∗ t ∗ (1 /gamma−1/ (2 ∗gamma^2)) + lambda/gamma∗W)
D_1 <− (gamma∗ ( ( g−r ) ∗mat−l og ( x ) ) + (1 / (2 ∗gamma)−1)∗ lambda^2∗mat −
lambda∗W)/ ( lambda∗ s q r t (mat−t ) )

D_2 <− D_1+lambda∗ s q r t (mat−t ) ∗(1−1/gamma)

de l t a_f <− x∗ lambda/gamma∗V_t − v∗exp ( g∗mat) ∗exp(−r ∗ (mat−t ) ) ∗
dnorm(D_1+lambda∗ s q r t (mat−t ) ) / sq r t (mat−t ) − x∗ lambda/gamma∗V_t ∗pnorm(D_2) +
x∗V_t ∗dnorm(D_2) / sq r t (mat−t )

V_t_t i l d e <− x∗V_t + v∗exp ( g∗mat) ∗exp(−r ∗ (mat−t ) ) ∗pnorm(D_1+lambda∗
s q r t (mat−t ) ) − x∗V_t ∗pnorm(D_2)

p i_t i l d e<−de l t a_f / ( sigma∗V_t_t i l d e )

l i n e s ( t , p i_t i l d e , l t y =2, c o l =2, lwd=3)
legend ( " t o p l e f t " , c ( " without ␣ guarantee " , " with␣ guarantee " ) , l t y=c (1 , 2 ) ,
bty="n " , lwd=c (3 , 3 ) , c o l=c (1 , 2 ) , cex =1.8)

######################## Plot CE return ########################
n<−100
gamma<−seq (1 / 2 ,10 , l ength . out=n)

######################## Unre s t r i c t ed
y<−r+1/2∗ (mu−r )^2/ (gamma∗ sigma ^2)

######################## With guarantee
y_g<−rep (0 , n)
f o r ( i in 1 : n ) {

x_h<−1
x_l<−0
x<−( x_l + x_h) /2

d_1 <− gamma[ i ] ∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma[ i ])−1)∗ sigma_MT
d_2 <− d_1+(1−1/gamma[ i ] ) ∗ sigma_MT

whi le ( abs ( x∗pnorm(−d_2) + exp ( ( g−r ) ∗mat) ∗pnorm(d_1+sigma_MT)−1)> t o l ) {
i f ( x∗pnorm(−d_2) + exp ( ( g−r ) ∗mat) ∗pnorm(d_1+sigma_MT) > 1) {

x_h <− x
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} e l s e {
x_l <− x

}
x<−( x_l + x_h) /2
d_1 <− gamma[ i ] ∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma[ i ])−1)∗
sigma_MT
d_2 <− d_1+(1−1/gamma[ i ] ) ∗ sigma_MT

}
y_g [ i ]<−1/ (mat∗(1−gamma[ i ] ) ) ∗ l og ( exp ( g∗mat∗(1−gamma[ i ] ) ) ∗pnorm(d_1) +
x^(1−gamma[ i ] ) ∗exp((1−gamma[ i ] ) ∗ ( r+1/2∗ lambda^2/gamma[ i ] ) ∗mat) ∗
(1−pnorm(d_2 ) ) )

}

par (mar=c ( 4 . 5 , 5 . 5 , 2 , 2 ) )
p l o t (gamma, y , type=" l " , x lab=" " , ylab=" " , lwd=4,yaxt="n " , xaxt="n " )
ax i s (1 , cex . ax i s=2)
ax i s (2 , cex . ax i s=2)
mtext ( exp r e s s i on (y ) , s i d e =2, l i n e =3, cex=2.5)
mtext ( exp r e s s i on (gamma) , s i d e =1, l i n e =3.5 , cex =2.5)

l i n e s (gamma, y_g , l t y =2, lwd=4, c o l =2)
legend ( " t op r i gh t " , c ( " without ␣ guarantee " , " with␣ guarantee " ) , l t y=c (1 , 2 ) ,
bty="n " , lwd=c (4 , 4 ) , c o l=c (1 , 2 ) , cex =1.8)

Listing B.2: R code used for comparing the Pareto optimal terminal payoff and certainty
equivalent return with the first best payoff (see Figure 3.1 and Table 3.1) and
the payoff resulting from a constant mix strategy (see Figure 3.2 and Table
3.2).

######################## Parameters
r<−0 .015
mu<−0 .06
sigma<−0 .11
lambda<−(mu−r ) / sigma
mat<−1
n<−2
N<−10^6
C<−250

gamma<−c (1 / 2 ,10)
v<−rep (1 , n)
b<−0 .99
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beta<−c (b,1−b)

V<−sum(v )

######################## Pareto e f f i c i e n t ########################
######################## Compute Lagrangian mu l t i p l i e r
t o l_1<−10^(−12)
t o l_2<−10^(−12)
t o l_3<−10^(−20)
t o l_4<−10^(−20)

U<−rep (0 ,N)
K<−N/100
f o r ( j in 1 :K) {
U[ ( ( j−1)∗N/K+1):( j ∗N/K) ]<−r un i f (N/K, ( j−1)/K, j /K)

}
X<−qnorm(U)

M_T<−exp(−r ∗mat−1/2∗ lambda^2∗mat−lambda∗ s q r t (mat) ∗X)

V_T<−rep (1 ,N)
zeta_h<−V∗10
zeta_l<−0

whi l e ( abs (mean(M_T∗V_T)−V) > t o l_1) {

U<−rep (0 ,N)
K<−N/100
f o r ( j in 1 :K) {
U[ ( ( j−1)∗N/K+1):( j ∗N/K) ]<−r un i f (N/K, ( j−1)/K, j /K)

}
X<−qnorm(U)
M_T<−exp(−r ∗mat−1/2∗ lambda^2∗mat−lambda∗ s q r t (mat) ∗X)

zeta<−( ze ta_l+zeta_h) /2
p r in t ( ze ta )

V_h <− rep (C∗V,N)
V_l <− rep (0 ,N)
V_T<−(V_l + V_h) /2

A<−matrix (0 ,N, n)
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f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

whi l e (max( abs ( rowSums(A) − zeta ∗M_T)) > t o l_2) {

V_T<−(V_h + V_l ) /2

A<−matrix (0 ,N, n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

V_l [ rowSums(A) − zeta ∗M_T > 0 ] <− V_T[ rowSums(A) − zeta ∗M_T > 0 ]

V_h [ rowSums(A) − zeta ∗M_T < 0 ] <− V_T[ rowSums(A) − zeta ∗M_T < 0 ]

i f (max(V_h−V_l ) < t o l_3) {
break

}
#pr in t (max(V_h−V_l ) )

}

i f (mean(M_T∗V_T)−V > 0) {
zeta_l<−zeta

} e l s e {
zeta_h<−zeta

}

i f ( ze ta_h−zeta_l < t o l_4) {
break

}
}

p r in t ( ze ta )

######################## Compute s e t o f r e a l i z a t i o n s
U<−rep (0 ,N)
K<−N/100
f o r ( j in 1 :K) {
U[ ( ( j−1)∗N/K+1):( j ∗N/K) ]<−r un i f (N/K, ( j−1)/K, j /K)

}
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X<−qnorm(U)

M_T<−exp(−r ∗mat−1/2∗ lambda^2∗mat−lambda∗ s q r t (mat) ∗X)

V_h <− rep (C∗V,N)
V_l <− rep (0 ,N)
V_T<−(V_l + V_h) /2

A<−matrix (0 ,N, n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

whi l e (max( abs ( rowSums(A) − zeta ∗M_T)) > t o l_1) {

V_T<−(V_h + V_l ) /2

A<−matrix (0 ,N, n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

V_l [ rowSums(A) − zeta ∗M_T > 0 ] <− V_T[ rowSums(A) − zeta ∗M_T > 0 ]

V_h [ rowSums(A) − zeta ∗M_T < 0 ] <− V_T[ rowSums(A) − zeta ∗M_T < 0 ]

i f (max(V_h−V_l ) < t o l_3) {
break

}
}

p r in t (mean(M_T∗V_T))
p r in t (max( abs ( rowSums(A) − zeta ∗M_T) ) )

######################## Compute CE
EU<−rep (0 , l ength (gamma) )
CE<−EU
y<−EU
fo r ( i in 1 : l ength (gamma) ) {
EU[ i ] <− 1/(1−gamma[ i ] ) ∗mean ( ( v [ i ] /V ∗ V_T)^(1−gamma[ i ] ) )
CE[ i ] <− (mean ( ( ( v [ i ] /V) ∗V_T)^(1−gamma[ i ] ) ) ) ^ ( 1 /(1−gamma[ i ] ) )
y [ i ] <− 1/mat ∗ l og (CE[ i ] /v [ i ] )
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}

######################## Plot payo f f
t o l<−10^(−12)
t o l_2<−10^(−20)

M_T<−seq ( 0 . 0 0 1 , 3 , 0 . 0 1 )
V_T<−rep (1 , l ength (M_T))
C<−10^8

V_h <− rep (C∗V, length (M_T))
V_l <− rep (0 , l ength (M_T))
A<−matrix (0 , l ength (M_T) , n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

whi l e (max( abs ( rowSums(A) − zeta ∗M_T)) > t o l ) {

V_T<−(V_h + V_l ) /2

A<−matrix (0 , l ength (M_T) , n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

V_l [ rowSums(A) − zeta ∗M_T > 0 ] <− V_T[ rowSums(A) − zeta ∗M_T > 0 ]

V_h [ rowSums(A) − zeta ∗M_T < 0 ] <− V_T[ rowSums(A) − zeta ∗M_T < 0 ]

i f (max(V_h−V_l ) < t o l_2) {
break

}
#pr in t (max(V_h−V_l ) )

}

par (mar=c ( 4 . 5 , 5 . 5 , 2 , 2 ) )
p l o t (M_T,V_T, type=" l " , yl im=range ( c (0 ,2 ∗V) ) , xlab=" " , ylab=" " , lwd=4,yaxt="n " ,
xaxt="n " )
ax i s (1 , cex . ax i s=2)
ax i s (2 , cex . ax i s=2)
mtext ( exp r e s s i on (V[T] ) , s i d e =2, l i n e =3, cex=2.5)
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mtext ( exp r e s s i on (M[T] ) , s i d e =1, l i n e =3.5 , cex =2.5)

######################## Fi r s t bes t ########################
######################## Plot payo f f
V_ag <− v [ 1 ] ∗exp ( ( r+1/2∗ lambda^2)∗(1−1/gamma [ 1 ] ) ∗mat − 1/2∗ lambda^2∗
(1−1/gamma[ 1 ] ) ^ 2 ∗mat) ∗M_T^(−1/gamma [ 1 ] ) + v [ 2 ] ∗exp ( ( r+1/2∗ lambda^2)∗
(1−1/gamma [ 2 ] ) ∗mat − 1/2∗ lambda^2∗(1−1/gamma[ 2 ] ) ^ 2 ∗mat) ∗M_T^(−1/gamma [ 2 ] )

V_1<−v [ 1 ] ∗exp ( ( r+1/2∗ lambda^2)∗(1−1/gamma [ 1 ] ) ∗mat − 1/2∗ lambda^2∗
(1−1/gamma[ 1 ] ) ^ 2 ∗mat) ∗M_T^(−1/gamma [ 1 ] )
V_2<−v [ 2 ] ∗exp ( ( r+1/2∗ lambda^2)∗(1−1/gamma [ 2 ] ) ∗mat − 1/2∗ lambda^2∗
(1−1/gamma[ 2 ] ) ^ 2 ∗mat) ∗M_T^(−1/gamma [ 2 ] )

l i n e s (M_T,V_ag , l t y =2, lwd=4, c o l =2)
legend ( " bot tomle f t " , c ( " Pareto ␣ e f f c i e n t ␣ payo f f " ,
"Sum␣ o f ␣ un r e s t r i c t e d ␣ optimal ␣ payo f f s " ) , l t y=c (1 , 2 ) , bty="n" , lwd=c (4 , 4 ) ,
c o l=c (1 , 2 ) , cex =1.8)

######################## Compute CE
CE_1<−rep (0 , l ength (gamma) )
y_1<−CE_1
m<−c ( (mu−r ) / (gamma∗ sigma ^2))

c <− exp((1−m) ∗ ( r+1/2∗m∗ sigma ^2)∗mat + m∗ (mu−1/2∗ sigma ^2)∗mat)

f o r ( j in 1 : l ength (gamma) ) {

h<−f unc t i on (x ) {
z<−(sum(v∗c∗exp (m∗ sigma∗ s q r t (mat) ∗x)))^(1−gamma[ j ] ) ∗
1/ sq r t (2 ∗ pi ) ∗exp(−x^2/ 2)
re turn ( z )

}

h<−Vecto r i z e (h , " x " )
E<− i n t e g r a l (h,− In f , In f , r e l t o l=1e−30)
CE_1 [ j ] <− v [ j ] /sum(v ) ∗ E^(1/(1−gamma[ j ] ) )
y_1 [ j ]<−1/mat∗ l og (CE_1 [ j ] /v [ j ] )

}

p r i n t ( y )
p r i n t ( y_1)
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######################## Constant mix s t r a t e gy ########################
######################## Plot payo f f
J_bar <− rep (0 , l ength (gamma) )
CE_bar <− J_bar
y_bar <− J_bar

gamma_bar<−prod (gamma)^(1 / l ength (gamma) )
W_T <− V∗exp ( ( r+1/2∗ lambda^2)∗(1−1/gamma_bar ) ∗mat−1/2∗
lambda^2∗(1−1/gamma_bar )^2∗mat) ∗M_T^(−1/gamma_bar )

l i n e s (M_T,W_T, l t y =2, lwd=4, c o l =2)
legend ( " bot tomle f t " , c ( " Pareto ␣ e f f i c i e n t " , e xp r e s s i on (
bar (gamma) == sq r t (gamma [ 1 ] %.% gamma [ 2 ] ) ) ) ,
l t y=c (1 , 2 ) , bty="n" , lwd=c (4 , 4 ) , c o l=c (1 , 2 ) , cex =1.8)

######################## Compute CE
f o r ( j in 1 : l ength (gamma) ) {

J_bar [ j ] <− ( v [ j ] ∗exp ( r ∗mat + 1/ (2 ∗gamma[ j ] ) ∗
(1−((gamma_bar−gamma[ j ] ) /gamma_bar )^2) ∗
lambda^2∗mat))^(1−gamma[ j ] ) / (1−gamma[ j ] )

CE_bar [ j ] <− ((1−gamma[ j ] ) ∗ J_bar [ j ] ) ^ ( 1 /(1−gamma[ j ] ) )
y_bar [ j ] <− 1/mat ∗ l og (CE_bar [ j ] / ( v [ j ] ) )

}

p r i n t ( y )
p r i n t ( y_bar )

Listing B.3: R code used for comparing the Pareto efficient payoff with guarantee to the
payoff given by the sum of the individual terminal wealths with guarantee
(see Figure 3.4 and Table 3.4) and to the payoff obtained from a joint risk
aversion parameter with guarantee (see Figure 3.5 and Table 3.5).

######################## Parameters
r<−0 .015
mu<−0 .06
sigma<−0 .11
lambda<−(mu−r ) / sigma
mat<−1
n<−2
N<−10^6
C<−250
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gamma<−c (1 / 2 ,10)
v<−rep (1 , n)
b<−0 .525
beta<−c (b,1−b)

V<−sum(v )

g<−0 .005

######################## Pareto e f f i c i e n t ########################
######################## Compute Lagrangian mu l t i p l i e r
t o l_1<−10^(−12)
t o l_2<−10^(−12)
t o l_3<−10^(−20)
t o l_4<−10^(−20)

U<−rep (0 ,N)
K<−N/100
f o r ( j in 1 :K) {
U[ ( ( j−1)∗N/K+1):( j ∗N/K) ]<−r un i f (N/K, ( j−1)/K, j /K)

}
X<−qnorm(U)

M_T<−exp(−r ∗mat−1/2∗ lambda^2∗mat−lambda∗ s q r t (mat) ∗X)

V_T<−rep (1 ,N)
zeta_h<−V∗5
zeta_l<−0

whi l e ( abs (mean(M_T∗V_T)−V) > t o l_1) {

U<−rep (0 ,N)
K<−N/100
f o r ( j in 1 :K) {
U[ ( ( j−1)∗N/K+1):( j ∗N/K) ]<−r un i f (N/K, ( j−1)/K, j /K)

}
X<−qnorm(U)
M_T<−exp(−r ∗mat−1/2∗ lambda^2∗mat−lambda∗ s q r t (mat) ∗X)

zeta<−( ze ta_l+zeta_h) /2
p r in t ( ze ta )
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V_h <− rep (C∗V,N)
V_l <− rep (0 ,N)
V_T<−(V_l + V_h) /2

A<−matrix (0 ,N, n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

whi l e (max( abs ( rowSums(A) − zeta ∗M_T)) > t o l_2) {

V_T<−(V_h + V_l ) /2

A<−matrix (0 ,N, n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

V_l [ rowSums(A) − zeta ∗M_T > 0 ] <− V_T[ rowSums(A) − zeta ∗M_T > 0 ]

V_h [ rowSums(A) − zeta ∗M_T < 0 ] <− V_T[ rowSums(A) − zeta ∗M_T < 0 ]

i f (max(V_h−V_l ) < t o l_3) {
break

}
#pr in t (max(V_h−V_l ) )

}
V_T[V_T < V∗exp ( g∗mat ) ] <− V∗exp ( g∗mat)

i f (mean(M_T∗V_T)−V > 0) {
zeta_l<−zeta

} e l s e {
zeta_h<−zeta

}

i f ( ze ta_h−zeta_l < t o l_4) {
break

}
}

p r in t ( ze ta )
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######################## Compute s e t o f r e a l i z a t i o n s
U<−rep (0 ,N)
K<−N/100
f o r ( j in 1 :K) {
U[ ( ( j−1)∗N/K+1):( j ∗N/K) ]<−r un i f (N/K, ( j−1)/K, j /K)

}
X<−qnorm(U)

M_T<−exp(−r ∗mat−1/2∗ lambda^2∗mat−lambda∗ s q r t (mat) ∗X)

V_h <− rep (C∗V,N)
V_l <− rep (0 ,N)
V_T<−(V_l + V_h) /2

A<−matrix (0 ,N, n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

whi l e (max( abs ( rowSums(A) − zeta ∗M_T)) > t o l_1) {

V_T<−(V_h + V_l ) /2

A<−matrix (0 ,N, n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

V_l [ rowSums(A) − zeta ∗M_T > 0 ] <− V_T[ rowSums(A) − zeta ∗M_T > 0 ]

V_h [ rowSums(A) − zeta ∗M_T < 0 ] <− V_T[ rowSums(A) − zeta ∗M_T < 0 ]

i f (max(V_h−V_l ) < t o l_3) {
break

}
}

V_T[V_T < V∗exp ( g∗mat ) ] <− V∗exp ( g∗mat)

p r i n t (mean(M_T∗V_T))
p r in t (max( abs ( rowSums(A) − zeta ∗M_T) ) )
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######################## Compute CE
EU_g<−rep (0 , l ength (gamma) )
CE_g<−EU_g
y_g<−EU_g
f o r ( i in 1 : l ength (gamma) ) {
EU_g [ i ] <− 1/(1−gamma[ i ] ) ∗mean ( ( v [ i ] /V ∗ V_T)^(1−gamma[ i ] ) )
CE_g [ i ] <− (mean ( ( ( v [ i ] /V) ∗V_T)^(1−gamma[ i ] ) ) ) ^ ( 1 /(1−gamma[ i ] ) )
y_g [ i ] <− 1/mat ∗ l og (CE_g [ i ] /v [ i ] )

}

######################## Plot payo f f
t o l<−10^(−12)
t o l_2<−10^(−20)

M_T<−seq ( 0 . 0 0 1 , 3 , 0 . 0 1 )
V_T<−rep (1 , l ength (M_T))
C<−10^8

V_h <− rep (C∗V, length (M_T))
V_l <− rep (0 , l ength (M_T))
A<−matrix (0 , l ength (M_T) , n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

whi l e (max( abs ( rowSums(A) − zeta ∗M_T)) > t o l ) {

V_T<−(V_h + V_l ) /2

A<−matrix (0 , l ength (M_T) , n)
f o r ( i in 1 : n ) {
A[ , i ]<−beta [ i ] ∗ ( v [ i ] /V)^(1−gamma[ i ] ) ∗V_T^(−gamma[ i ] )

}

V_l [ rowSums(A) − zeta ∗M_T > 0 ] <− V_T[ rowSums(A) − zeta ∗M_T > 0 ]

V_h [ rowSums(A) − zeta ∗M_T < 0 ] <− V_T[ rowSums(A) − zeta ∗M_T < 0 ]

i f (max(V_h−V_l ) < t o l_2) {
break

}
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#pr in t (max(V_h−V_l ) )
}
V_T[V_T < V∗exp ( g∗mat ) ] <− V∗exp ( g∗mat)

par (mar=c ( 4 . 5 , 5 . 5 , 2 , 2 ) )
p l o t (M_T,V_T, type=" l " , yl im=range ( c (0 ,2 ∗V) ) , xlab=" " , ylab=" " , lwd=4,yaxt="n " ,
xaxt="n " )
ax i s (1 , cex . ax i s=2)
ax i s (2 , cex . ax i s=2)
mtext ( exp r e s s i on (V[T] ) , s i d e =2, l i n e =3, cex=2.5)
mtext ( exp r e s s i on (M[T] ) , s i d e =1, l i n e =3.5 , cex =2.5)

######################## Fi r s t bes t with guarantee #######################
######################## Plot payo f f
M_T<−seq ( 0 . 0 0 1 , 3 , 0 . 0 1 )
V_T<−matrix (0 , l ength (M_T) , n)
V_T_g<−V_T
fo r ( i in 1 : n ) {
V_T[ , i ] <− v [ i ] ∗exp ( ( r+1/2∗ lambda^2)∗(1−1/gamma[ i ] ) ∗mat − 1/2∗ lambda^2∗
(1−1/gamma[ i ] )^2 ∗mat) ∗M_T^(−1/gamma[ i ] )

}

t o l<−10^(−12)
sigma_MT<−lambda∗ s q r t (mat)
f o r ( i in 1 : n ) {

x_h<−1
x_l<−0
x<−( x_l + x_h) /2

d_1 <− gamma[ i ] ∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma[ i ])−1)∗
sigma_MT
d_2 <− d_1+(1−1/gamma[ i ] ) ∗ sigma_MT

whi le ( abs ( x∗pnorm(−d_2) + exp ( ( g−r ) ∗mat) ∗pnorm(d_1+sigma_MT) − 1) > t o l )
{

i f ( x∗pnorm(−d_2) + exp ( ( g−r ) ∗mat) ∗pnorm(d_1+sigma_MT) > 1) {
x_h <− x

} e l s e {
x_l <− x

}
x<−( x_l + x_h) /2
d_1 <− gamma[ i ] ∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma[ i ])−1)∗
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sigma_MT
d_2 <− d_1+(1−1/gamma[ i ] ) ∗ sigma_MT

}
V_T_g [ , i ] <− pmax(v [ i ] ∗exp ( g∗mat ) , x∗V_T[ , i ] )

}

V_T_g_sum <− rowSums(V_T_g )

l i n e s (M_T,V_T_g_sum , l t y =2, lwd=4, c o l =2)
legend ( " bot tomle f t " , c ( " Pareto ␣ e f f i c i e n t " , "Sum␣ o f ␣ i nd i v i dua l ␣ payo f f s ␣with
guarantee " ) , l t y=c (1 , 2 ) , bty="n" , lwd=c (4 , 4 ) , c o l=c (1 , 2 ) , cex =1.8)

######################## Compute CE
CE_1<−rep (0 , l ength (gamma) )
y_1<−CE_1
m<−(mu−r ) / (gamma∗ sigma ^2)
g<−0 .005
sigma_MT<−lambda∗ s q r t (mat)
t o l<−10^(−14)

c <− exp((1−m) ∗ ( r+1/2∗m∗ sigma ^2)∗mat + m∗ (mu−1/2∗ sigma ^2)∗mat)
x_0<−rep (0 , n)

f o r ( i in 1 : l ength (gamma) ) {

x_h<−1
x_l<−0
x<−( x_l + x_h) /2

d_1 <− gamma[ i ] ∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma[ i ])−1)∗
sigma_MT
d_2 <− d_1+(1−1/gamma[ i ] ) ∗ sigma_MT

whi le ( abs ( x∗pnorm(−d_2) + exp ( ( g−r ) ∗mat) ∗pnorm(d_1+sigma_MT) − 1) > t o l )
{

i f ( x∗pnorm(−d_2) + exp ( ( g−r ) ∗mat) ∗pnorm(d_1+sigma_MT) > 1) {
x_h <− x

} e l s e {
x_l <− x

}
x<−( x_l + x_h) /2
d_1 <− gamma[ i ] ∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma[ i ])−1)∗
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sigma_MT
d_2 <− d_1+(1−1/gamma[ i ] ) ∗ sigma_MT

}
x_0 [ i ]<−x

}

z_c r i t <− 1/ (m∗ sigma∗ s q r t (mat ) ) ∗ l og (1 / (x_0∗c ) ∗ exp ( g∗mat ) )

f o r ( i in 1 : l ength (gamma) ) {

summand_1 <− f unc t i on ( j ) {
v [ j ] ∗exp ( g∗mat)

}

summand_2 <− f unc t i on ( j , z ) {
x_0 [ j ] ∗v [ j ] ∗c [ j ] ∗exp (m[ j ] ∗ sigma∗ s q r t (mat) ∗z )

}

integrand_1 <− f unc t i on ( z ) {
(sum( sapply ( seq (1 , n ) , summand_1)))^(1−gamma[ i ] ) ∗ 1/ sq r t (2 ∗ pi ) ∗
exp(−z^2/ 2)

}

integrand_2 <− f unc t i on ( z ) {
(summand_1(which .max( z_c r i t ) ) + summand_2(which . min ( z_c r i t ) , z ) )^
(1−gamma[ i ] ) ∗1/ sq r t (2 ∗ pi ) ∗ exp(−z^2/ 2)

}

integrand_3 <− f unc t i on ( z ) {
(sum( sapply ( seq (1 , n ) , summand_2 , z )))^(1−gamma[ i ] ) ∗ 1/ sq r t (2 ∗ pi ) ∗
exp(−z^2/ 2)

}

E_1<−i n t e g r a t e ( Vec to r i z e ( integrand_1) ,− In f , min ( z_c r i t ) )
E_2<−i n t e g r a t e ( Vec to r i z e ( integrand_2) ,min ( z_c r i t ) ,max( z_c r i t ) )
E_3<−i n t e g r a t e ( Vec to r i z e ( integrand_3) ,max( z_c r i t ) ,10^2)

CE_1 [ i ] <− v [ i ] /sum(v ) ∗ (E_1 [ 1 ] $ va lue + E_2 [ 1 ] $ va lue + E_3 [ 1 ] $ va lue )^
(1 /(1−gamma[ i ] ) )
y_1 [ i ]<−1/mat∗ l og (CE_1 [ i ] /v [ i ] )

}
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pr in t ( y_g )
p r in t ( y_1)

######################## Joint gamma ########################
######################## Plot payo f f
t o l<−10^(−12)
sigma_MT<−s q r t ( lambda^2∗mat)
W_T<−rep (0 , l ength (M_T))
gamma_bar<−prod (gamma)^(1 / l ength (gamma) )

W_T <− V∗exp ( ( r+1/2∗ lambda^2)∗(1−1/gamma_bar ) ∗mat−1/2∗ lambda^2∗
(1−1/gamma_bar )^2∗mat) ∗M_T^(−1/gamma_bar )

x_h<−1
x_l<−0
x<−( x_l + x_h) /2

d_1 <− gamma_bar∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma_bar )−1)∗
sigma_MT
d_2 <− d_1+(1−1/gamma_bar ) ∗ sigma_MT

whi le ( abs ( x∗pnorm(−d_2) + exp ( ( g−r ) ∗mat) ∗pnorm(d_1+sigma_MT) − 1) > t o l ) {
i f ( x∗pnorm(−d_2) + exp ( ( g−r ) ∗mat) ∗pnorm(d_1+sigma_MT) > 1) {

x_h <− x
} e l s e {

x_l <− x
}
x<−( x_l + x_h) /2
d_1 <− gamma_bar∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma_bar )−1)∗
sigma_MT
d_2 <− d_1+(1−1/gamma_bar ) ∗ sigma_MT

}

W_T_g <− pmax(V∗exp ( g∗mat ) , x∗W_T)

l i n e s (M_T,W_T_g , l t y =2, lwd=4, c o l =2)
legend ( " bot tomle f t " , c ( " Pareto ␣ e f f i c i e n t " , e xp r e s s i on ( bar (gamma) ) ) ,
l t y=c (1 , 2 ) , bty="n" , lwd=c (4 , 4 ) , c o l=c (1 , 2 ) , cex =1.8)

######################## Compute CE
d1_bar<−gamma_bar∗ ( ( g−r ) ∗mat−l og ( x ) ) / sigma_MT + (1/ (2 ∗gamma_bar )−1)∗
sigma_MT
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d2_bar<−d1_bar + (gamma−1)/gamma_bar ∗ sigma_MT

J <− ( x∗v∗exp ( r ∗mat + 1/ (2 ∗gamma) ∗ (1−((gamma_bar−gamma) /gamma_bar )^2) ∗
sigma_MT^2))^(1−gamma) /(1−gamma)
EU_1 <− ( v∗exp ( g∗mat))^(1−gamma) /(1−gamma) ∗pnorm(d1_bar ) +
J∗(1−pnorm(d2_bar ) )

CE_1_u<−((1−gamma) ∗EU_1)^(1 /(1−gamma) )
y_1_u <− 1/mat∗ l og (CE_1_u/v )

p r i n t ( y_g )
p r in t ( y_1_u)
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