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Introduction

The future is uncertain and full of risk. Risk is the chance that an

undesirable event will occur, but risk is also opportunity. That’s

where we come in.

Be An Actuary.

This simple and recent sentence tries to explain what actuaries do. Actuaries

traditionally deal with the measurement and management of risk and

uncertainty, and nowadays they are more and more involved in this.

For example, actuaries can be responsible for the calculation of capital

requirements to reduce the risk of insolvency. In this actuarial thesis we

thus want to compute the capital requirements for market and non-life

premium risk of an insurance company. We point out that the calculation of

capital requirements has become more important since the introduction of

Solvency II (Directive 2009/138/EC).

We now provide a general description of the structure and main contents

of this thesis.

In the first chapter we will describe the risk reserve equation that we

will use in this thesis and the related assumptions. The funds accumulated

in the risk reserve will depend on the underwriting and financial results.

As a consequence, we will illustrate the annual net cash flows produced by

the insurance company and the asset portfolio that we will use, which is

composed of stock and zero-coupon bond investments. Subsequently, we will

describe some important risk measures, such as the minimum Risk-Based

Capital, and some important performance measures, such as the expected

6



spot Return on Equity. Since we will deal with investments, we will illustrate

the interest rate immunization strategy, through the Fisher-Weil theorem and

Redington theorem. Finally, we will describe the copula functions, that we

will use to model some dependence structures.

In the second chapter we will describe Solvency II and the so called

three-pillar structure. We will focus on the illustration of the Solvency

Capital Requirement and its calculation according to the standard formula.

In particular, we will describe the non-life underwriting risk and market

risk, that we will consider in this thesis. Finally, we will illustrate other

topics, such as the risk management system and the Own Risk and Solvency

Assessment.

In the third chapter we will describe the investment models that we will

use in this thesis, which are based on continuous-time stochastic processes.

The stock model will be a geometric Brownian motion and the zero-coupon

bond model will be based on a one-factor short rate model, i.e. Vasicek model

or Cox-Ingersoll-Ross model. Finally, we will illustrate Itô’s lemma, we will

explain the differences between the risk-neutral world and the real world and

we will introduce the market price of risk.

In the fourth chapter we will describe the aggregate claim model that we

will use in this thesis, i.e. the collective risk model. Hence, we will describe

the distribution of the number of claims, the distribution of the single claim

amount and the resulting distribution of the aggregate claim amount. Finally,

we will give some comments on the descriptive statistics of the distributions.

In the fifth chapter we will introduce a case study on a single-line

insurance company. Firstly, we will produce the distributions of the stock and

zero-coupon bond investments, so that we will obtain the distribution of the

annual rate of return. For this reason, we will apply a portfolio optimization

strategy. Subsequently, we will produce the distribution of the aggregate

claim amount. We thus will calculate the capital requirements for market

risk, for non-life premium risk, and for market and non-life premium risk.

Finally, we will describe some sensitivity analysis and we will investigate the

interest rate exposure of the insurance company.

In the sixth and last chapter we will extend the previous case study to
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the case of a multi-line insurance company. In doing so, we will keep the

distribution of the annual rate of return that we have previously obtained.

We will describe the dependence structure of the lines of business by using

Gaussian copulas or Gumbel copulas. Moreover, we will produce the

distribution of the aggregate claim amount of each line of business, so that

we will obtain the distribution of the total aggregate claim amount. Once

again, we will calculate the capital requirements for market risk, for non-life

premium risk, and for market and non-life premium risk. Finally, we will

describe some sensitivity analysis.
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Chapter 1

Insurance risk management

In this thesis we deal with different instruments to properly manage the risk

of insurance companies, such as risk and performance measures. Moreover,

we consider some financial indicators, i.e. internal rate of return, duration

and convexity, and we use copula functions, because of the peculiarity of our

model.

1.1 Risk reserve

The risk reserve represents the funds accumulated by the insurance company

time by time.1 In this thesis we neglect the reserve risk, dropping the claims

reserving run-off, and reinsurance. Moreover, we assume that taxes and

dividends are absent. As a result, we only consider the non-life underwriting

and market risk, assuming that the stochastic risk reserve at the end of time

t is given by:

Ũt = (1 + ̃t) · Ũt−1 +
(

πt − X̃t − Et

)

+ ̃t · Lt−1

where ̃t is the stochastic annual rate of return of the investments of the

insurance company, πt is the gross premium amount, X̃t is the stochastic

aggregate claim amount, Et is the expense amount and Lt−1 is the claims

1See Daykin, Pentikäinen and Pesonen [6] for further details.
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reserve (also called loss reserve) at the end of the previous year. The gross

premium amount, stochastic aggregate claim amount and expense amount

are not capitalized, since they are accounted as realized at the end of the year.

The gross premium amount is given by:

πt = Pt + ϕ · Pt + c · πt (1.1)

where Pt is the risk premium amount, ϕ is the safety loading coefficient and

c is the expense loading coefficient.

We now assume that the expense amount is equal to the expense loadings,

because empirically it is not highly volatile:

Et = c · πt (1.2)

We can observe that the ratio of claims reserve and gross premium amount is

empirically highly influenced by the line of business. Hence, we assume that

the claims reserve is equal to a constant percentage δ of the gross premium

amount:

Lt = δ · πt (1.3)

As a result, the risk reserve is found to be:

Ũt = (1 + ̃t) · Ũt−1 +
[

(1 + ϕ) · Pt − X̃t

]

+ ̃t · δ · πt−1 (1.4)

In conclusion, since the insurance portfolio is dynamic, we assume that the

risk premium amount increases every year:

Pt = Pt−1 · (1 + i) · (1 + g) = P0 · (1 + i)t · (1 + g)t

and the gross premium amount as well:

πt = πt−1 · (1 + i) · (1 + g) = π0 · (1 + i)t · (1 + g)t (1.5)

where i is the claims inflation rate and g is the real growth rate. We might

observe that empirically these rates differ for different lines of business.
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1.1.1 Annual net cash flows

The stochastic annual net cash flows originated by the insurance business at

the end of time t are given by:

F̃t = πt − Et −
(

C̃CY
t + C̃PY

t

)

(1.6)

where C̃CY
t is the amount paid for the claims occurred in the current year

and settled in the same year and C̃PY
t is the amount paid for the claims

occurred in the previous years and settled in the current year.

Since the claims reserving run-off is neglected, the claims reserve can be

written as follows:

Lt = LCY
t + LPY

t = X̃t − C̃CY
t + Lt−1 − C̃PY

t

where LCY
t is the claims reserve for the claims occurred in the current year

and LPY
t is the claims reserve for the claims occurred in the previous years.

Hence, using equations (1.3) and (1.5):

C̃CY
t + C̃PY

t = X̃t − Lt + Lt−1 = X̃t − δ · πt ·
(

1− 1

(1 + i) · (1 + g)

)

then, using equation (1.2), the stochastic annual net cash flows originated by

the insurance business are found to be:

F̃t = πt ·
[

(1− c) + δ ·
(

1− 1

(1 + i) · (1 + g)

)]

− X̃t (1.7)

In conclusion, the claims reserve is found to be:

Lt = Lt−1 + δ · πt ·
(

1− 1

(1 + i) · (1 + g)

)

1.1.2 Asset portfolio

In this thesis we deal with three investments in stocks and five investments

in zero-coupon bonds with time to maturity i = 1, 2, 3, 5, 10, even though

there are a lot of other investments in the market. Furthermore, we assume
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that the asset allocation is kept constant over time.

The stochastic asset value of the portfolio at the end of time t is

obtained from the combination of the stochastic values of the stock and

bond portfolios:

Ãt = ÃS
t + ÃB

t

The stochastic value of the stock portfolio is given by:

ÃS
t = α ·

(

Ãt−1 ·
3
∑

h=1

βh ·
S̃h(t)

S̃h(t− 1)
+ F̃t

)

= α ·
(

Ãt−1 ·
S̃t

S̃t−1

+ F̃t

)

(1.8)

so that the stochastic value of a single stock investment is found to be:

ÃSh

t = α · βh ·
(

Ãt−1 ·
S̃h(t)

S̃h(t− 1)
+ F̃t

)

with h = 1, 2, 3 (1.9)

and the stochastic value of the bond portfolio is given by:

ÃB
t = (1− α) ·

(

Ãt−1 ·
∑

i∈{1,2,3,5,10}

γi ·
B̃(t, t− 1 + i)

B̃(t− 1, t− 1 + i)
+ F̃t

)

= (1− α) ·
(

Ãt−1 ·
B̃t

B̃t−1

+ F̃t

)

(1.10)

so that the stochastic value of a single bond investment is found to be:

ÃBi

t = (1− α) · γi ·
(

Ãt−1 ·
B̃(t, t− 1 + i)

B̃(t− 1, t− 1 + i)
+ F̃t

)

with i = 1, 2, 3, 5, 10

(1.11)

where α and 1 − α are the percentages invested in the stock and bond

portfolios respectively. Moreover, βh is the percentage invested in the h-th

stock, so that S̃t is the stochastic average stock price, and γi is the percentage

invested in the bond with time to maturity i, so that B̃t is the stochastic

average bond price.
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As a result, the stochastic asset value of the portfolio at the end of time

t is found to be:

Ãt = α ·
(

Ãt−1 ·
S̃t

S̃t−1

+ F̃t

)

+ (1− α) ·
(

Ãt−1 ·
B̃t

B̃t−1

+ F̃t

)

Furtermore, the initial asset value of the portfolio is given by:

A0 = U0 + L0

In conclusion, the stochastic annual rate of return of the investments of the

insurance company, used in equation (1.4), is given by:

j̃t =

(

Ãt − F̃t

)

− Ãt−1

Ãt−1

= α · S̃t

S̃t−1

+ (1− α) · B̃t

B̃t−1

− 1 (1.12)

1.2 Risk reserve ratio

The risk reserve is an absolute amount, that depends more on the dimension

of the insurance company than on the goodness of its result. Actually we

could have a very high risk reserve, which is very low compared with the

dimension of the insurance company. Hence, we usually prefer to deal with

relative amounts.2

The risk reserve ratio at the end of time t is given by:

ũt =
Ũt

πt
(1.13)

Using equations (1.4) and (1.5), the risk reserve ratio is found to be:

ũt =
(1 + ̃t)

(1 + i) · (1 + g)
· ũt−1 +

Pt

πt
·
[

(1 + ϕ)− X̃t

Pt

]

+
̃t · δ

(1 + i) · (1 + g)

2See Savelli [28] for further details.
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Using equation (1.1), we have:

Pt

πt
=

1− c

1 + ϕ
(1.14)

then:

ũt =
(1 + ̃t)

(1 + i) · (1 + g)
· ũt−1 +

1− c

1 + ϕ
·
[

(1 + ϕ)− X̃t

Pt

]

+
̃t · δ

(1 + i) · (1 + g)

(1.15)

1.3 Risk measures

Risk measures are statistical measures used to assess risks. They are usually

combined with performance measures, in order to select an appropriate

management strategy. The most traditional approach is to compare the

variance and the mean, minimizing the first and maximizing the last one.3

Nevertheless, the variance does not detect the downside risk only, hence other

risk measures are typically preferred.

In this section we deal with some risk measures applied to the risk reserve

distribution.4

1.3.1 Capital-at-Risk

The Capital-at-Risk is the risk measure that represents the maximum loss

for an insurance company over a time horizon within a given confidence level.

Let (0, t) be the time horizon and let 1− ε be the confidence level. Then,

the Capital-at-Risk (see Figure 1.1) is given by:

CaR(0, t) = U0 − Uε(t) (1.16)

where U0 is the initial risk reserve and Uε(t) is the ε-th order quantile of

the current risk reserve. If the Capital-at-Risk is higher than the initial risk

3See Markowitz [23] for further details.
4For this section see Daykin, Pentikäinen and Pesonen [6], and Savelli [29].
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reserve, the insurance company should increase the initial risk reserve, adding

fresh capital.

0

Uε

U0

ε

−→←−
CaR

U

f(U)

Figure 1.1: Capital-at-Risk assuming that the initial risk reserve exists

We usually prefer to express the Capital-at-Risk as a percentage of

the initial gross premium amount, because it is easier to interpretate and

compare. Using equation (1.5), it is found to be:

uCaR(0, t) =
CaR(0, t)

π0
= u0 − uε(t) ·

πt
π0

= u0 − uε(t) · (1 + i)t · (1 + g)t

(1.17)

where uε(t) is the ε-th order quantile of the current risk reserve ratio, that

is given by:

uε(t) =
Uε(t)

πt

Alternatively, we can express the Capital-at-Risk as a percentage of the initial

risk reserve. Using equation (1.5), it is found to be:

uCaR(0, t) =
CaR(0, t)

U0

= 1− uε(t) ·
πt
U0

= 1− uε(t)

u0
· (1 + i)t · (1 + g)t

In this case the insurance company should increase the initial risk reserve if

the ratio of Capital-at-Risk and initial risk reserve is higher than one hundred

15



per cent.

Actually we can assume that the initial risk reserve does not exist, hence

the Capital-at-Risk (see Figure 1.2) is given by:

CaR(0, t) = −Uε(t) (1.18)

In this case the insurance company should constitute a risk reserve if the

Capital-at-Risk is higher than zero.

0

Uε

ε

−→←−
CaR

U

f(U)

Figure 1.2: Capital-at-Risk assuming that the initial risk reserve does not exist

As a result, the ratio of Capital-at-Risk and initial gross premium amount

is found to be:

uCaR(0, t) =
CaR(0, t)

π0
= − uε(t) ·

πt
π0

= − uε(t) · (1 + i)t · (1 + g)t (1.19)

Obviously we cannot express the Capital-at-Risk as a percentage of the initial

risk reserve, because the latter is assumed to be inexistent.

1.3.2 Minimum Risk-Based Capital

The minimum Risk-Based Capital is a risk measure that differs from the

Capital-at-Risk, because it also takes into account the expected return

produced by the investment of the resources.
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Let (0, t) be the time horizon and let 1− ε be the confidence level. Then,

the minimum Risk-Based Capital has to fulfill the following equation:

RBC(0, t) ·
t
∏

k=1

1 + E(̃k) =

[

U0 ·
t
∏

k=1

1 + E(̃k)

]

− Uε(t)

then:

RBC(0, t) = U0 −
Uε(t)

∏t
k=1 1 + E(̃k)

(1.20)

As a result, the ratio of minimum Risk-Based Capital and initial gross

premium amount is found to be:

uRBC(0, t) =
RBC(0, t)

π0
= u0 − uε(t) ·

(1 + i)t · (1 + g)t
∏t

k=1 1 + E(̃k)
(1.21)

Furthermore, the ratio of minimum Risk-Based Capital and initial risk

reserve is found to be:

uRBC(0, t) =
RBC(0, t)

U0

= 1− uε(t)

u0
· (1 + i)t · (1 + g)t
∏t

k=1 1 + E(̃k)

Actually we can assume that the initial risk reserve does not exist, hence

the minimum Risk-Based Capital is given by:

RBC(0, t) = − Uε(t)
∏t

k=1 1 + E(̃k)

As a result, the ratio of minimum Risk-Based Capital and initial gross

premium amount is found to be:

uRBC(0, t) =
RBC(0, t)

π0
= − uε(t) ·

(1 + i)t · (1 + g)t
∏t

k=1 1 + E(̃k)

We can make the same comments as in the case of the Capital-at-Risk to

express if the minimum Risk-Based Capital is insufficient.
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1.3.3 Value-at-Risk

The Value-at-Risk is the risk measure that represents the value of a given

random variable in case of maximum loss over a time horizon within a

given confidence level. This risk measure has become very popular and

it is fundamental in the calculation of capital requirements according to

Solvency II, in which the time horizon is one year and the confidence level is

99.5%.

Let (0, t) be the time horizon and let 1− ε be the confidence level. Then,

the Value-at-Risk (see Figure 1.3) is given by:

V aR(0, t) = −Uε(t)

0

Uε

ε

−→←−
V aR

U

f(U)

Figure 1.3: Value-at-Risk

As a result, the ratio of Value-at-Risk and initial gross premium amount

is found to be:

uV aR(0, t) =
V aR(0, t)

π0
= − uε(t) · (1 + i)t · (1 + g)t

Hence, when the initial risk reserve is equal to zero, the results above are

the same as those of the Capital-at-Risk, as shown in equations (1.18) and

(1.19). On the contrary, when the initial risk reserve exists, the results are
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different from equations (1.16) and (1.17).

Furthermore, the ratio of Value-at-Risk and initial risk reserve is found

to be:

uV aR(0, t) =
V aR(0, t)

U0

= −uε(t)
u0

· (1 + i)t · (1 + g)t

1.3.4 Tail Value-at-Risk

The Tail Value-at-Risk (also called tail conditional expectation or conditional

tail expectation) is the risk measure that represents the expected value of a

given random variable over a time horizon, conditional on the loss exceeding

the Value-at-Risk over the same time horizon within a given confidence level.

This risk measure has become very popular and it is fundamental in the

calculation of capital requirements according to the Swiss Solvency Test, in

which the time horizon is one year and the confidence level is 99%.

Let (0, t) be the time horizon and let 1− ε be the confidence level. Then,

the Tail Value-at-Risk (see Figure 1.4) is given by:

TV aR(0, t) = −E
[

Ũt

∣

∣ Ũt < Uε(t)
]

0

Uε

E
[

Ũ
∣ ∣

Ũ
<

U
ε

]

ε

TV aR
−→←−

U

f(U)

Figure 1.4: Tail Value-at-Risk

Also in this case we can express the Tail Value-at-Risk as a percentage of

the initial gross premium amount and initial risk reserve.
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1.3.5 Ruin probabilities

The Capital-at-Risk and the minimum Risk-Based Capital, as well as the

Value-at-Risk and the Tail Value-at-Risk, deal with the cumulative result

at time t. As a result, capital requirements do not increase when the risk

reserve is negative before time t and it becomes positive at time t. The finite

time ruin probability could be useful to make up for this drawback.

Ruin probabilities are used to assess the likelihood of being or not in the

state of ruin after some years.

The probability of being in the state of ruin at time t is given by:

ϕ(U ; t) = Pr
(

Ũt < 0
∣

∣U0 = U
)

It does not consider the occurrence or not of the state of ruin before time t.

Let (0, t) be the time horizon. Then, the finite time ruin probability is

given by:

ψ(U ; t) = Pr
(

Ũk < 0 for at least one k = 1, 2, ..., t
∣

∣U0 = U
)

As a result, the survival probability at time t is found to be:

Φ(U ; t) = 1− ψ(U ; t) = Pr
(

Ũk ≥ 0 for each k = 1, 2, ..., t
∣

∣U0 = U
)

The finite time ruin probability considers the occurrence of the state of ruin

happening at least once between time 1 and time t. On the contrary, the

survival probability considers the non-occurrence of the state of ruin all over

the period.

Let (0, t) be the time horizon. Then, the one-year ruin probability at

time t is given by:

ψ(U ; t− 1, t) = Pr
(

Ũt < 0 and Ũk ≥ 0 for k = 1, 2, ..., t− 1
∣

∣U0 = U
)

It considers the state of ruin at time t, previously not being in the state of

ruin.
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The one-year ruin probability is also given by:

ψ(U ; t− 1, t) = 1− 1− ψ(U ; t)

1− ψ(U ; t− 1)

Actually we can assume a ruin barrier different from zero. According to

Solvency 0 or Solvency I, it could be equal to the Required Solvency Margin

or Guarantee Fund. According to Solvency II, it can be equal to the Solvency

Capital Requirement or Minimum Capital Requirement.

1.4 Performance measures

Performance measures are indicators used to assess the performance.

In this section we focus on the expected spot or forward Return on Equity

and we assume that dividends are absent.5

1.4.1 Expected spot Return on Equity

The expected spot Return on Equity is the performance measure that

represents the expected profitability of the stockholders’ equity over a time

horizon starting from the present time.

Let (0, t) be the time horizon. Then, using equations (1.5) and (1.13),

the expected spot Return on Equity is given by:

RoE(0, t) = E

(

Ũt − U0

U0

)

=
E
(

Ũt

)

U0

− 1 =
πt · E(ũt)
π0 · u0

− 1

=
π0 · (1 + g)t · (1 + i)t · E(ũt)

π0 · u0
− 1

= (1 + g)t · (1 + i)t · E(ũt)
u0

− 1

(1.22)

In case we assume that the initial risk reserve does not exist, we are not able

5For this section see Savelli [29].
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to compute the expected spot Return on Equity, hence we can just take into

account the expected value of the risk reserve.

1.4.2 Expected forward Return on Equity

The expected forward Return on Equity is the performance measure that

represents the expected profitability of the future stockholders’ equity over

a time horizon starting from a future time.

Let (t − 1, t) be the time horizon. Then, using equations (1.4), (1.5),

(1.13) and (1.14), the expected forward Return on Equity is given by:

RoE(t− 1, t) = E

(

Ũt − Ũt−1

Ũt−1

)

= E

(

Ũt

Ũt−1

)

− 1

= E(̃t) +
Pt + ϕ · Pt − E

(

X̃t

)

πt
· (1 + g) · (1 + i)

E(ũt−1)
+
δ · E(̃t)
E(ũt−1)

= E(̃t) + ϕ · 1− c

1 + ϕ
· (1 + g) · (1 + i)

E(ũt−1)
+
δ · E(̃t)
E(ũt−1)

In case we assume that the initial risk reserve does not exist, in order to be

consistent with the expected spot Return on Equity, we can just take into

account the expected value of the difference between the risk reserve of two

consecutive years.

The expected forward Return on Equity is also given by:

RoE(t− 1, t) =
1 +RoE(0, t)

1 +RoE(0, t− 1)
− 1

On the contrary, if we assume that dividends are present, shareholders

can pay them in order to decrease equity and keep the expected forward

Return on Equity constant, in case it decreases over time. As a result, the

Solvency Ratio decreases as well.

22



1.5 Interest rate immunization

The interest rate immunization is a strategy that ensures that changes in

interest rates do not affect the value of a portfolio, i.e. the asset value

remains equal or higher than the liability value. In this section we deal with

the classical interest rate immunization, that is based on the assumption of

a flat term structure and a parallel shift in interest rates. Actually there are

also other interest rate movements, such as the twist or butterfly.

1.5.1 Duration and convexity

Let F1, F2, ..., Fm be the cash flows at time t1, t2, ..., tm, then the value of

an investment, such as a bond, is given by:

V =
m
∑

k=1

Fk · (1 +R)−tk

where R is the interest rate and tm (frequently denoted with T ) is the

maturity date of the investment.6

The duration is a measure of the time to wait before receiving the present

value of the fixed cash payments of an investment. In other words, it is the

weighted average of the times when payments are made. More in detail, the

duration is given by:

D =

∑m
k=1 tk · Fk · (1 +R)−tk

∑m
k=1 Fk · (1 +R)−tk

At the same time the duration measures the price sensitivity to the interest

rate, i.e. the percentage change in the investment value for a small parallel

shift in interest rates ∆R, so that:

∆V

V
≈ −∆R · D

(1 +R)
(1.23)

6For this subsection see Hull [16], and Schultz [33].
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Furthermore, the modified duration is found to be:

D∗ =
D

(1 +R)

The convexity is given by:

C =
1

(1 +R)2
·
∑m

k=1(t
2
k + tk) · Fk · (1 +R)−tk

∑m
k=1 Fk · (1 +R)−tk

Relation (1.23) only applies to small changes in the interest rate. Hence, we

can improve it using convexity, so that:

∆V

V
≈ −∆R · D

1 +R
+

1

2
· (∆R)2 · C (1.24)

We point out that the duration of a zero-coupon bond is equal to the time to

maturity and convexity increases with the square of its time to maturity. On

the other side, the duration of a fixed-coupon bond is lower than the time to

maturity, even though it is usually not so distant, because coupons are small

compared with the par value.

1.5.2 Fisher-Weil theorem

The Fisher-Weil theorem deals with an immunization strategy of an asset

portfolio. This is an improvement of the obvious one of buying a bond which

matures at the horizon of the portfolio, referred to as the maturity matching.

The portfolio is said to be immunized against a parallel shift in interest

rates for a holding period H if the duration of the portfolio is equal to the

length of the holding period, namely:

D = H

It follows that the value of the portfolio at the end of the holding period, if

the shift has occurred, is at least as large as it would have been otherwise.7

7See De Felice and Moriconi [7], and Fisher and Weil [14].
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1.5.3 Redington theorem

The Redington theorem deals with an immunization strategy of an asset and

liability portfolio.

The portfolio is said to be immunized against a small parallel shift in

interest rates for the holding period if the asset value equals the liability

value, the asset duration equals the liability duration and the asset convexity

is higher or equal to the liability convexity, namely:

VA = VL

and:

DA = DL

and:

CA ≥ CL

It follows that the asset value at the end of the holding period, if the shift

has occurred, is at least as large as the liability value, so that the value of

the portfolio is non-negative.8

We point out that the Fisher-Weil theorem can be seen as a particular

case of the Redington theorem. Furthermore, they both have the purpose to

find a local minimum in the interest rate of the function that describes the

value of the portfolio.

1.6 Copula functions

A n-dimensional copula C : [0, 1]n → [0, 1] is a multivariate cumulative

distribution function of uniformly distributed marginals and it satisfies the

following properties:9

1. C(u1, ..., un) is non-decreasing in each component ui.

8See De Felice and Moriconi [7], and Redington [27].
9For this section see Embrechts, Lindskog and McNeil [10], and Nelsen [24].
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2. C(u1, ..., un) = 0 if at least one component ui is equal to zero.

3. C(u1, ..., un) = ui if all the components are equal to one, except ui.

4. The C-volume of each hyperrectangle inside the domain of the copula

is non-negative, i.e. C is n-non-decreasing.

Sklar’s theorem states that every n-dimensional multivariate cumulative

distribution function F can be expressed in terms of its marginals F1, ..., Fn

and a n-dimensional copula C, such that:

F (x1, ..., xn) = C
[

F1(x1), ..., Fn(xn)
]

Furthermore, if the marginals F1, ..., Fn are continuous, then the copula C is

unique and we have:10

C(u1, ..., un) = F
[

F−11 (u1), ..., F
−1
n (un)

]

We now list the steps to generate pseudo-random samples from general

classes of multivariate distributions, using copulas.

1. Generate a sample (U1, ..., Un) from the copula.

2. Obtain the required sample (X1, ..., Xn) by the inverse of the marginals:

(X1, ..., Xn) =
[

F−11 (U1), ..., F
−1
n (Un)

]

We point out that we do not need to know the multivariate probability

distribution, because copulas contain all the information on the dependence

structure between the marginals.

In conclusion, through the relationship between the probability density

function and cumulative distribution function and through the Sklar’s

theorem, the multivariate probability density function related to the copula

10See Sklar [34].
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is found to be:

c(u1, ..., un) =
f [F−11 (u1), ..., F

−1
n (un)]

∏n
i=1 fi[F

−1
i (ui)]

The most popular families of copulas are the elliptical copulas and the

Archimedean copulas.

1.6.1 Measures of dependence

Copulas represent the most general way of modeling the dependence between

random variables and they are able to describe a wide range of dependence

structures, including but not limited to linear dependence. The principal

measures of dependence are the Pearson correlation coefficient, the Kendall’s

and Spearman’s rank correlation coefficients and the coefficients of tail

dependence.

The Pearson correlation coefficient between the random variables X̃ and

Ỹ is given by:

Corr
(

X̃, Ỹ
)

=
Cov

(

X̃, Ỹ
)

σX̃ · σỸ
The Pearson correlation coefficient is the linear correlation coefficient and

it is the canonical measure for spherical and elliptical distributions. We

point out that we need finite variance for its calculation, hence heavy-tailed

distributions present computational difficulties. The Pearson correlation

coefficient is invariant under positive linear transformations, but not under

general strictly increasing transformations. Moreover, the uncorrelation, i.e.

a Pearson correlation coefficient equal to zero, implies full independence in

the case of Normal random variables only.

The Kendall’s rank correlation coefficient between the random variables

X̃ and Ỹ is given by:

τ
(

X̃, Ỹ
)

= P
[(

X̃1 − X̃2

)

·
(

Ỹ1 − Ỹ2
)

> 0
]

− P
[(

X̃1 − X̃2

)

·
(

Ỹ1 − Ỹ2
)

< 0
]

with
(

X̃1, Ỹ1
)

independent of
(

X̃2, Ỹ2
)

and identically distributed with respect to
(

X̃, Ỹ
)
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Moreover, if X̃ and Ỹ have continuous marginals, i.e. the bivariate copula

C is unique, then we have:

τ
(

X̃, Ỹ
)

= 4 ·
∫ 1

0

∫ 1

0

C(u, v) · dC(u, v)− 1

For a given sample of n observations from a bivariate random vector, an

estimate of the Kendall’s rank correlation coefficient is found to be:

τ̂
(

X̃, Ỹ
)

=
2

n · (n− 1)
·
n−1
∑

i=1

n
∑

j=i+1

sign (xi − xj) · sign (yi − yj)

The Spearman’s rank correlation coefficient between the random variables

X̃ and Ỹ is given by:

ρs
(

X̃, Ỹ
)

= Corr
[

FX̃(x), FỸ (y)
]

where FX̃ and FỸ are the marginal cumulative distribution functions. Once

again, if X̃ and Ỹ have continuous marginals, i.e. the bivariate copula C is

unique, then we have:

ρs
(

X̃, Ỹ
)

= 12 ·
∫ 1

0

∫ 1

0

[

C(u, v)− u · v
]

· du · dv

For a given sample of n observations from a bivariate random vector, an

estimate of the Spearman’s rank correlation coefficient is found to be:

ρ̂s
(

X̃, Ỹ
)

= 1− 6 ·∑n
i=1

[

rank (xi)− rank (yi)
]2

n · (n2 − 1)

In conclusion, the upper and lower coefficients of tail dependence between

the random variables X̃ and Ỹ are given by:

λU = lim
u→1−

P
[

FX̃(x) > u
∣

∣FỸ (y) > u
]

and:

λL = lim
u→0+

P
[

FX̃(x) ≤ u
∣

∣FỸ (y) ≤ u
]
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1.6.2 Elliptical copulas

Elliptical copulas are based on multivariate elliptical distributions, which

have some properties in common with the multivariate Normal distribution.

There is no simple analytical formula for the elliptical copulas, hence they

can be approximated using numerical integration. Some popular elliptical

copulas are the Gaussian and Student’s t copulas. Unlike the first one, the

Student’s t copula can also be used to model the extreme dependence, i.e.

the dependence on the distribution tails.

Gaussian copula

For a given correlation matrix P , the Gaussian copula is given by:

CGaussian
P (u1, ..., un) = φP

[

φ−1(u1), ..., φ
−1(un)

]

where φP is the joint Normal cumulative distribution function and φ is the

univariate Normal cumulative distribution function.

The multivariate probability density function related to the Gaussian

copula is found to be:

cGaussian
P (u1, ..., un) =

∣

∣P
∣

∣

−1/2 · exp
[

−1

2
· ζT · (P−1 − I) · ζ

]

where:

ζT =
(

φ−1(u1) · · ·φ−1(un)
)

Moreover, for the bivariate case, the Kendall’s rank correlation coefficient is

found to be:

τ =
2

π
· arcsin ρ (1.25)

where ρ is the correlation coefficient between the two distributions.

In conclusion, unless the correlation matrix exhibits perfect positive or

negative dependence, the upper and lower coefficients of tail dependence are

found to be:

λU = 0
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and:

λL = 0

Figure 1.5 shows the bivariate probability density function related to the

Gaussian copula.

Figure 1.5: Probability density function of a Gaussian copula with parameter 0.5

Student’s t copula

For a given correlation matrix P and a number of ν degrees of freedom, the

Student’s t copula is given by:

C t
ν,P (u1, ..., un) = tν,P

[

t−1ν (u1), ..., t
−1
ν (un)

]

where tν,P is the joint Student’s t cumulative distribution function and tν is

the univariate Student’s t cumulative distribution function.

The multivariate probability density function related to the Student’s t

copula is found to be:

ctν,P (u1, ..., un) =
∣

∣P
∣

∣

−1/2 · Γ
(

ν+n
2

)

Γ
(

ν
2

) ·
[

Γ
(

ν
2

)

Γ
(

ν+1
2

)

]n

·

(

1 + 1
ν
· ζT · P−1 · ζ

)−(ν+n)/2

∏n
i=1

(

1 + 1
ν
· ζ2i
)−(ν+1)/2
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where:

ζT =
(

t−1ν (u1) · · · t−1ν (un)
)

and:

ζi = t−1ν (ui)

Moreover, for the bivariate case, the Kendall’s rank correlation coefficient is

found to be:

τ =
2

π
· arcsin ρ

where ρ is the correlation coefficient between the two distributions.

In conclusion, the upper and lower coefficients of tail dependence are

found to be:

λU = 2 · tν+1

(

−
√

(ν + 1) · (1− ρ)

1 + ρ

)

and:

λL = 2 · tν+1

(

−
√

(ν + 1) · (1− ρ)

1 + ρ

)

Figure 1.6 shows the bivariate probability density function related to the

Student’s t copula.

Figure 1.6: Probability density function of a Student’s t copula with parameters
0.5 and 3
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1.6.3 Archimedean copulas

The generator function ψ : [0, 1] → [0,∞) is a continuous, strictly decreasing

and convex function, such that ψ(1) = 0. Its pseudo-inverse is given by:

ψ[−1](t) =







ψ−1(t) if 0 ≤ t ≤ ψ(0)

0 if ψ(0) ≤ t ≤ ∞

A copula is said to be Archimedean if it can be written as follows:11

C(u1, ..., un) = ψ[−1]
[

ψ(u1) + ...+ ψ(un)
]

and:

(−1)k · ∂
kψ−1(t)

∂tk
≥ 0 for k ∈ N

Archimedean copulas are able to describe a lot of dependence structures.

Moreover, there are simple analytical formulas for them. Some popular

Archimedean copulas are the Gumbel and Clayton copulas.

Gumbel copula

For a given parameter θ ≥ 1, the bivariate Gumbel copula is given by:

CGumbel
θ (u, v) = exp

[

−
(

(− ln u)θ + (− ln v)θ
)1/θ
]

Moreover, for the bivariate case, the Kendall’s rank correlation coefficient is

found to be:

τ = 1− 1

θ
(1.26)

In conclusion, the upper and lower coefficients of tail dependence are found

to be:

λU = 2− 21/θ

and:

λL = 0

11See Kimberling [21].
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Figure 1.7 shows the bivariate probability density function related to the

Gumbel copula.

Figure 1.7: Probability density function of a Gumbel copula with parameter 1.5

Clayton copula

For a given parameter θ ≥ −1, the bivariate Clayton copula is given by:

CClayton
θ (u, v) = max

[

(

u−θ + v−θ − 1
)−1/θ

, 0
]

If θ > 0, the bivariate Clayton copula is found to be:

CClayton
θ (u, v) =

(

u−θ + v−θ − 1
)−1/θ

Moreover, for the bivariate case, the Kendall’s rank correlation coefficient is

found to be:

τ =
θ

2 + θ

In conclusion, the upper and lower coefficients of tail dependence are found

to be:

λU = 0
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and:

λL = 2−1/θ

Figure 1.8 shows the bivariate probability density function related to the

Clayton copula.

Figure 1.8: Probability density function of a Clayton copula with parameter 1.5
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Chapter 2

Solvency II

Solvency II (Directive 2009/138/EC) is an EU directive which codifies and

harmonises the EU insurance regulation and it was implemented in Italy in

2015 by D. Lgs. 74/2015. Primarily this concerns the amount of capital that

EU insurance companies must hold to reduce the risk of insolvency.1

The process of regulatory harmonisation distinguishes some levels. We

now list the main ones.

1. Solvency II (Directive 2009/138/EC).

2. Delegated Regulation (Commission Delegated Regulation (EU)

2015/35).

2.5. Technical standards, proposed by EIOPA, that involve:

– regulatory technical standard;

– implementing technical standard.

3. Guidelines, issued by EIOPA, that were implemented in Italy by IVASS

Regulations.

4. Rigorous enforcement of community legislation by the Commission.

1Different parts of this chapter are taken from Solvency II [13], and from the Delegated
Regulation [12].
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Solvency II has a three-pillar structure. We now list the main items

involved in each pillar.

1. Quantitative requirements.

1.1. Economic balance sheet.

1.2. Eligible own funds.

1.3. Solvency Capital Requirement (SCR).

1.4. Minimum Capital Requirement (MCR).

2. Qualitative requirements.

2.1. Supervisory review process, that involves:

– capital add-on.

2.2. System of governance.

2.3. Risk management system, that involves:

– Own Risk and Solvency Assessment (ORSA).

2.4. Control functions, that involve:

– risk management function;

– compliance function;

– internal audit function;

– actuarial function.

3. Reporting and disclosures requirements.

3.1. Solvency and financial condition report (SFCR).

3.2. Regular supervisory report (RSR).

3.3. Quantitative reporting templates (QRTs).
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2.1 Technical provisions

Solvency II defines a market consistent valuation of technical provisions and

it makes a distinction for hedgeable and non-hedgeable technical provisions.2

The value of technical provisions shall correspond to the current

amount insurance and reinsurance undertakings would have to

pay if they were to transfer their insurance and reinsurance

obligations immediately to another insurance or reinsurance

undertaking.

The value of technical provisions shall be equal to the sum of

a best estimate and a risk margin. The best estimate shall

correspond to the probability-weighted average of future cash-

flows, taking account of the time value of money (expected

present value of future cash-flows), using the relevant risk-free

interest rate term structure.

Where future cash flows associated with insurance or reinsurance

obligations can be replicated reliably using financial instruments

for which a reliable market value is observable, the value of

technical provisions associated with those future cash flows shall

be determined on the basis of the market value of those financial

instruments. In this case separate calculations of the best

estimate and the risk margin shall not be required.

We point out that the majority of technical provisions are non-hedgeable.

Moreover, the hedgeable technical provisions are those related to unit-linked

or index-linked contracts without guarantees.

The best estimate is calculated gross of recoverables and it takes account

of all the cash flows of the insurance and reinsurance obligations over their

lifetime. Moreover, the basic risk-free interest rates are derived on the basis

of interest rate swap rates, adjusted to take account of credit risk. When it is

2The following part is taken from is taken from Art. 76 and 77 of Solvency II [13].
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not possible, they are derived on the basis of government bonds. Solvency II

allows the application of a volatility adjustment or a matching adjustment

to the basic risk-free interest rates. The first one does not require any

prior approval by the supervisory authority, differently from the last one. In

conclusion, the risk margin is calculated by determining the cost of providing

an amount of eligible own funds equal to the Solvency Capital Requirement

necessary to support the insurance and reinsurance obligations over their

lifetime. The risk margin is computed on the whole portfolio and the so-

called Cost-of-Capital rate is the same for each insurance company. We

point out that Solvency II allows some simplifications for the calculation of

the risk margin.

2.2 Solvency Capital Requirement

Solvency II demands some requirements for the calculation of the Solvency

Capital Requirement (see Figure 2.1).3

The Solvency Capital Requirement shall be calculated on the

presumption that the undertaking will pursue its business as a

going concern.

The Solvency Capital Requirement shall be calibrated so as

to ensure that all quantifiable risks to which an insurance or

reinsurance undertaking is exposed are taken into account. It

shall cover existing business, as well as the new business expected

to be written over the following 12 months. With respect to

existing business, it shall cover only unexpected losses.

It shall correspond to the Value-at-Risk of the basic own funds of

an insurance or reinsurance undertaking subject to a confidence

level of 99.5% over a one-year period.

The Solvency Capital Requirement shall cover at least the following risks:

3The following part is taken from Art. 101 of Solvency II [13].
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1. Non-life underwriting risk.

2. Life underwriting risk.

3. Health underwriting risk.

4. Market risk.

5. Credit risk.

6. Operational risk.

0

SCR
−→←−

E
(

X̃
)

X1−ε

ε

X

f(X)

Figure 2.1: Solvency Capital Requirement

2.3 Standard formula

The Solvency Capital Requirement calculated on the basis of the standard

formula shall be equal to the following:

SCR = BasicSCR + SCRop − Adj

where BasicSCR is the Basic Solvency Capital Requirement, SCRop is the

capital requirement for the operational risk and Adj is the adjustment for

the loss-absorbing capacity of technical provisions and deferred taxes.
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The Basic Solvency Capital Requirement shall consist of at least the

following risk modules:

1. Non-life underwriting risk, that involves:

− non-life premium and reserve risk;

− non-life catastrophe risk;

− non-life lapse risk.

2. Life underwriting risk, that involves:

− mortality risk;

− longevity risk;

− disability risk;

− life expense risk;

− revision risk;

− lapse risk;

− life catastrophe risk.

3. Health underwriting risk.

4. Market risk, that involves:

− interest rate risk;

− equity risk;

− property risk;

− spread risk;

− currency risk;

− market risk concentrations.

5. Counterparty default risk.
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We point out that the value of a risk module or sub-module of the Basic

Solvency Capital Requirement cannot be negative.

The Basic Solvency Capital Requirement shall be equal to the following:

BasicSCR =

√

∑

i,j

Corr(i,j) · SCRi · SCRj + SCRintangibles

where Corr(i,j) is the correlation parameter for the Basic Solvency Capital

Requirement for modules i and j (see Table 2.1), SCRi and SCRj are the

capital requirements for modules i and j respectively and SCRintangibles is the

capital requirement for intangible asset risk.

Table 2.1: Correlation matrix for the Basic Solvency Capital Requirement

i
∖

j Market Default Life Health Non-life

Market 1 0.25 0.25 0.25 0.25

Default 0.25 1 0.25 0.25 0.5

Life 0.25 0.25 1 0.25 0

Health 0.25 0.25 0.25 1 0

Non-life 0.25 0.5 0 0 1

We point out that the capital requirements that are aggregated in the

standard formula are not standard deviations, but quantiles of probability

distributions. For multivariate Normal distributions (or more in general for

elliptical distributions), the aggregation with correlation matrices produces a

correct aggregate of quantiles. On the other hand, only for a restricted class

of distributions, the aggregation with linear correlation coefficients produces

the correct result. Nevertheless, the shape of the marginal distributions could

be significantly different from the Normal distribution (e.g. if distributions

are skewed) and, moreover, the dependence between the distributions could

be non-linear (e.g. if tail dependencies are present).

The Solvency Capital Requirement is calculated separately for each risk

module or sub-module through a factor based approach or a scenario based

approach. In the first case, the capital requirements are determined by using

single risk exposures and risk factors, calibrated by considering the tail of the
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distribution and by taking into account both volatility and trend effects. In

the second case, the capital requirements shall be equal to the loss in basic

own funds caused by a stressed scenario.

The Delegated Regulation demands some requirements for the scenario

based approach.4

Where the calculation of a module or sub-module of the Basic

Solvency Capital Requirement is based on the impact of a

scenario on the basic own funds of insurance and reinsurance

undertakings, all of the following assumptions shall be made in

that calculation:

(a) the scenario does not change the amount of the risk margin

included in technical provisions;

(b) the scenario does not change the value of deferred tax assets

and liabilities;

(c) the scenario does not change the value of future discretionary

benefits included in technical provisions;

(d) no management actions are taken by the undertaking during

the scenario.

2.3.1 Non-life underwriting risk

The non-life underwriting risk module shall consist of all of the following

sub-modules:

1. Non-life premium and reserve risk sub-module.

2. Non-life catastrophe risk sub-module.

3. Non-life lapse risk sub-module.

4The following part is taken from Art. 83 of the Delegated Regulation [12].

42



The capital requirement for non-life underwriting risk shall be equal to the

following:

SCRnon-life =

√

∑

i,j

CorrNL(i,j) · SCRi · SCRj

where CorrNL(i,j) is the correlation parameter for non-life underwriting risk

for sub-modules i and j (see Table 2.2) and SCRi and SCRj are the capital

requirements for risk sub-modules i and j respectively.

Table 2.2: Correlation matrix for non-life underwriting risk

i
∖

j
Non-life premium

and reserve
Non-life catastrophe Non-life lapse

Non-life premium
and reserve

1 0.25 0

Non-life catastrophe 0.25 1 0

Non-life lapse 0 0 1

Non-life premium and reserve risk

Solvency II defines the non-life premium and reserve risk sub-module.5

The risk of loss, or of adverse change in the value of insurance

liabilities, resulting from fluctuations in the timing, frequency and

severity of insured events, and in the timing and amount of claim

settlements.

The capital requirement for non-life premium and reserve risk shall be equal

to the following:

SCRnl prem res = 3 · σnl · Vnl (2.1)

where σnl and Vnl are the standard deviation, in relative terms, and the

volume measure for non-life premium and reserve risk.

The standard deviation for non-life premium and reserve risk shall be

5The following part is taken from Art. 105 of Solvency II [13].
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equal to the following:

σnl =
1

Vnl
·
√

∑

s,t

CorrS(s,t) · σs · Vs · σt · Vt

where CorrS(s,t) is the correlation parameter for non-life premium and

reserve risk for segments s and t (see Table 2.4) and σs and σt are the

standard deviations for non-life premium and reserve risk of segments s and

t respectively. They shall be equal to the following:

σs =

√

σ2
(prem,s) · V 2

(prem,s) + σ(prem,s) · V(prem,s) · σ(res,s) · V(res,s) + σ2
(res,s) · V 2

(res,s)

V(prem,s) + V(res,s)

where σ(prem,s) and σ(res,s) are the standard deviations for non-life premium

risk and reserve risk of segment s (see Table 2.3) and V(prem,s) and V(res,s) are

the volume measures for non-life premium risk and reserve risk of segment s.6

We point out that Table 2.3 contains standard deviations, estimated

through the market wide approach. Furthermore, Tables 2.3 and 2.4 take

into account the proportional and non proportional direct reinsurance. The

proportional direct reinsurance is treated as direct insurance, because the

relative volatility of a particular segment is the same as in the case of

the insurance company. Furthermore, the standard deviation for non-life

premium risk of a segment shall be equal to the product of the standard

deviation for non-life gross premium risk of the segment and the adjustment

factor for non-proportional excess of loss and stop loss reinsurance. For

segments 1, 4 and 5 the adjustment factor for non-proportional reinsurance

shall be equal to 80%. For all the other segments the adjustment factor for

non-proportional reinsurance shall be equal to 100%.

The volume measure for non-life premium and reserve risk shall be equal

to the following:

Vnl =
∑

s

Vs

6The standard deviations for non-life premium and reserve risk were amended in 2019.
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Table 2.3: Segmentation of non-life insurance and reinsurance obligations and
standard deviations for non-life premium and reserve risk

Segment s σ(prem,s) σ(res,s)

1 Motor vehicle liability insurance and proportional reinsurance 10% 9%

2 Other motor insurance and proportional reinsurance 8% 8%

3 Marine, aviation and transport insurance and proportional reinsurance 15% 11%

4 Fire and other damage to property insurance and proportional reinsurance 8% 10%

5 General liability insurance and proportional reinsurance 14% 11%

6 Credit and suretyship insurance and proportional reinsurance 19% 17.2%

7 Legal expenses insurance and proportional reinsurance 8.3% 5.5%

8 Assistance and its proportional reinsurance 6.4% 22%

9 Miscellaneous financial loss insurance and proportional reinsurance 13% 20%

10 Non-proportional casualty reinsurance 17% 20%

11 Non-proportional marine, aviation and transport reinsurance 17% 20%

12 Non-proportional property reinsurance 17% 20%

Table 2.4: Correlation matrix for non-life premium and reserve risk

s
∖

t 1 2 3 4 5 6 7 8 9 10 11 12

1 1 0.5 0.5 0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.25 0.25

2 0.5 1 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.25 0.25 0.25

3 0.5 0.25 1 0.25 0.25 0.25 0.25 0.5 0.5 0.25 0.5 0.25

4 0.25 0.25 0.25 1 0.25 0.25 0.25 0.5 0.5 0.25 0.5 0.5

5 0.5 0.25 0.25 0.25 1 0.5 0.5 0.25 0.5 0.5 0.25 0.25

6 0.25 0.25 0.25 0.25 0.5 1 0.5 0.25 0.5 0.5 0.25 0.25

7 0.5 0.5 0.25 0.25 0.5 0.5 1 0.25 0.5 0.5 0.25 0.25

8 0.25 0.5 0.5 0.5 0.25 0.25 0.25 1 0.5 0.25 0.25 0.5

9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.25 0.5 0.25

10 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.25 0.25 1 0.25 0.25

11 0.25 0.25 0.5 0.5 0.25 0.25 0.25 0.25 0.5 0.25 1 0.25

12 0.25 0.25 0.25 0.5 0.25 0.25 0.25 0.5 0.25 0.25 0.25 1
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where Vs is the volume measure of a particular segment s, adjusted for the

geographical diversification. It shall be equal to the following:

Vs =
(

V(prem,s) + V(res,s)
)

·
(

0.75 + 0.25 ·DIVs
)

where V(prem,s) and V(res,s) are the volume measures for non-life premium

risk and reserve risk of segment s and DIVs is the factor for geographical

diversification of segment s.

The volume measure for non-life premium risk of segment s shall be equal

to the following:

V(prem,s) = max
(

Ps, P(last,s)

)

+ FP(existing,s) + FP(future,s)

where Ps is an estimate of the premiums to be earned by the insurance

or reinsurance undertaking in the segment s during the following 12 months,

P(last,s) are the premiums earned by the insurance or reinsurance undertaking

in the segment s during the last 12 months, FP(existing,s) is the expected

present value of premiums to be earned by the insurance or reinsurance

undertaking in the segment s after the following 12 months for existing

contracts and FP(future,s) refers to contracts where the initial recognition date

falls in the following 12 months. For all such contracts whose initial term is

one year or less, it is the expected present value of premiums to be earned

by the insurance or reinsurance undertaking in the segment s, but excluding

the premiums to be earned during the 12 months after the initial recognition

date. For all such contracts whose initial term is more than one year, it is

the amount equal to 30% of the expected present value of premiums to be

earned by the insurance or reinsurance undertaking in the segment s after

the following 12 months.7

The volume measure for reserve risk of segment s shall be equal to the

following:

V(res,s) = PCOs

7The definition of the last item was amended in 2019.
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where PCOs is the best estimate (without risk margin) of the provisions

for claims outstanding for the segment s, after deduction of the amounts

recoverable from reinsurance contracts and special purpose vehicles.

The factor for geographical diversification of segment s shall be equal to

the following:

DIVs =

∑

j

(

V(prem,j,s) + V(res,j,s)
)2

(

∑

j V(prem,j,s) + V(res,j,s)

)2

where V(prem,j,s) and V(res,j,s) are the volume measures for non-life premium

risk and reserve risk of segment s and region j. We point out that the

geographical diversification is neglected for credit and suretyship, non-

proportional reinsurance and if the insurers use an undertaking-specific

parameter for the standard deviation for non-life premium risk or reserve

risk.

The main drawbacks of the non-life premium and reserve risk sub-module

of the standard formula are:

1. The multiplier 3 comes from the assumption of Lognormal distribution

for non-life premium and reserve risk, with standard deviation equal to

14.47% in relative terms. Nevertheless, the lognormality assumption

could be erroneous as well as the multiplier, i.e. the standard deviation

could be different form 14.47%. The lower the standard deviation is, the

lower the skewness of the Lognormal distribution is and the lower the

multiplier should be. Therefore, the multiplier 3 penalizes the insurance

companies with extremely low relative volatility, i.e. large companies,

and facilitates those with extremely high relative volatility, i.e. small

companies.

2. The safety loadings are neglected. The higher the safety loadings are,

the lower the risk is and the lower the capital requirement should be.

On the other hand, if the safety loadings are negative (e.g. because of

marketing reasons), the capital requirement should increase. We point

out that the expected profits, for the existing business only, are already

included in the own funds, because the Solvency II premium reserve
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does not include any profit. Hence, the own funds are higher and make

up for the Solvency Capital Requirement for non-life premium and

reserve risk, that is generally overestimated in the standard formula.

3. The risk margin is neglected. The capital requirement should decrease

by the portion of risk margin released during the year.

4. The size factor is neglected, then the standard deviations in the non-life

premium and reserve risk sub-module are the same for each insurance

company. This measure, that exists to keep competition, penalizes the

insurance companies with extremely low relative volatility, i.e. large

companies, and facilitates those with extremely high relative volatility,

i.e. small companies.

5. The adjustment factor for non-proportional excess of loss and stop loss

reinsurance does not depend on the characteristics of the reinsurance

treaty, nor on the insurance company relative volatility.

6. The cost of proportional reinsurance is neglected. The higher the

reinsurance cost is, the higher the capital requirement should be.

An insurance company could make up for some of these drawbacks, asking the

supervisory authority for the undertaking-specific parameters or an internal

model. We point out that the underestimation of capital requirements is

prevented by the Own Risk and Solvency Assessment.

2.3.2 Market risk

The market risk module shall consist of all of the following sub-modules:

1. Interest rate risk sub-module.

2. Equity risk sub-module.

3. Property risk sub-module.

4. Spread risk sub-module.
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5. Currency risk sub-module.

6. Market risk concentrations sub-module.

The capital requirement for market risk shall be equal to the following:

SCRmarket =

√

∑

i,j

CorrM(i,j) · SCRi · SCRj

where CorrM(i,j) is the correlation parameter for market risk for sub-modules

i and j (see Table 2.5) and SCRi and SCRj are the capital requirements for

risk sub-modules i and j respectively.

Table 2.5: Correlation matrix for market risk

i
∖

j Interest rate Equity Property Spread Currency Concentration

Interest rate 1 A A A 0.25 0

Equity A 1 0.75 0.75 0.25 0

Property A 0.75 1 0.5 0.25 0

Spread A 0.75 0.5 1 0.25 0

Currency 0.25 0.25 0.25 0.25 1 0

Concentration 0 0 0 0 0 1

We point out that the parameter A in Table 2.5 shall be equal to 0 where

the capital requirement for interest rate risk depends on the risk of an increase

in the term structure of interest rates. In all other cases, the parameter A

shall be equal to 0.5.

We stress that the market risk module may affect both assets and

liabilities. Hence, the effect on the asset side can be partially compensated

by the effect on the liability side, and vice versa. Let us take the example

of an increase in the term structure of interest rates. The bond investments

are found to decrease as well as the technical provisions, because of a higher

discounting effect, so that the own funds can increase or decrease, depending

on which of the two drops more. Moreover, we point out that, according to

the standard formula, the government bonds are not exposed to spread risk

and market risk concentrations.
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Interest rate risk

Solvency II defines the interest rate risk sub-module.8

The sensitivity of the values of assets, liabilities and financial

instruments to changes in the term structure of interest rates, or

in the volatility of interest rates.

The capital requirement for interest rate risk shall be equal to the larger of

the following:9

− the sum, over all currencies, of the capital requirements for the risk of

an increase in the term structure of interest rates;

− the sum, over all currencies, of the capital requirements for the risk of

a decrease in the term structure of interest rates.

The capital requirement for the risk of an increase or decrease in the term

structure of interest rates for a given currency shall be equal to the loss in the

basic own funds that would result from an instantaneous increase or decrease

in basic risk-free interest rates for that currency at different maturities in

accordance with Table 2.6.

For maturities not specified in Table 2.6, the value of the increase and

decrease shall be linearly interpolated. For maturities shorter than 1 year,

the increase and decrease shall be 70% and 75% respectively. For maturities

longer than 90 years, the increase and decrease shall be 20%. Furthermore,

the increase in basic risk-free interest rates at any maturity shall be at least

one percentage point. For negative basic risk-free interest rates the decrease

shall be nil.

We point out that nowadays the short-term basic risk-free interest rates

are negative.

8The following part is taken from Art. 105 of Solvency II [13].
9The scenario shall be coherent with the scenario of the largest net Basic Solvency

Capital Requirement, related to the adjustment for the loss-absorbing capacity of technical
provisions, described in Art. 206 of the Delegated Regulation [12].
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Table 2.6: Increase and decrease in the term structure of interest rates

Maturity (years) Increase Decrease

1 70% 75%

2 70% 65%

3 64% 56%

4 59% 50%

5 55% 46%

6 52% 42%

7 49% 39%

8 47% 36%

9 44% 33%

10 42% 31%

11 39% 30%

12 37% 29%

13 35% 28%

14 34% 28%

15 33% 27%

16 31% 28%

17 30% 28%

18 29% 28%

19 27% 29%

20 26% 29%

90 20% 20%

Equity risk

Solvency II defines the equity risk sub-module.10

The sensitivity of the values of assets, liabilities and financial

instruments to changes in the level or in the volatility of market

prices of equities.

The equity risk sub-module shall consist of all of the following sub-modules:

1. Sub-module for type 1 equities.

10The following part is taken from Art. 105 of Solvency II [13].
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2. Sub-module for type 2 equities.

Type 1 equities shall comprise equities listed in regulated markets in the

countries which are members of the European Economic Area (EEA) or the

Organisation for Economic Cooperation and Development (OECD). On the

other hand, type 2 equities shall comprise equities listed in stock exchanges in

countries which are not members of the EEA or the OECD, equities which

are not listed, commodities and other alternative investments. They shall

also comprise all assets other than those covered in the interest rate risk

sub-module, the property risk sub-module or the spread risk sub-module,

including the assets and indirect exposures where a look-through approach

is not possible.

The capital requirement for the equity risk shall be equal to the following:

SCRequity =
√

SCR2
type1 + 2 · 0.75 · SCRtype1 · SCRtype2 + SCR2

type2

where SCRtype1 and SCRtype2 are the capital requirements for sub-modules

for type 1 and type 2 equities respectively. We point out that the correlation

parameter is assumed to be 0.75.

The capital requirement for type 1 equities shall be equal to the loss

in the basic own funds that would result from the following instantaneous

decreases:

− an instantaneous decrease equal to 22% in the value of type 1 equity

investments in related undertakings, where these investments are of a

strategic nature;

− an instantaneous decrease equal to 22% in the value of type 1 equity

investments that are treated as long-term equity investments;

− an instantaneous decrease equal to the sum of 39% and the symmetric

adjustment in the value of other type 1 equities.

The capital requirement for type 2 equities shall be equal to the loss in the

basic own funds that would result from the following instantaneous decreases:
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− an instantaneous decrease equal to 22% in the value of type 2 equity

investments in related undertakings, where these investments are of a

strategic nature;

− an instantaneous decrease equal to 22% in the value of type 2 equity

investments that are treated as long-term equity investments;

− an instantaneous decrease equal to the sum of 49% and the symmetric

adjustment in the value of other type 2 equities.

The capital requirement for qualifying infrastructure equities and qualifying

infrastructure corporate equities is based on favourable measures about the

instantaneous decrease. Furthermore, in some cases, equities can be subject

to the duration-based equity risk.11

The Delegated Regulation describes the equity investments of a strategic

nature.12

Equity investments of a strategic nature shall mean equity

investments for which the participating insurance or reinsurance

undertaking demonstrates the following:

(a) that the value of the equity investment is likely to be

materially less volatile for the following 12 months than the

value of other equities over the same period as a result of

both the nature of the investment and the influence exercised

by the participating undertaking in the related undertaking;

(b) that the nature of the investment is strategic, taking into

account all relevant factors, including:

(i) the existence of a clear decisive strategy to continue

holding the participation for long period;

11The criteria for the calculation of the capital requirements for type 1 equities, type 2
equities and qualifying infrastructure equities were amended in 2019.

12The following part is taken from Art. 171 of the Delegated Regulation [12].

53



(ii) the consistency of the strategy referred to in point (a)

with the main policies guiding or limiting the actions of

the undertaking;

(iii) the participating undertaking’s ability to continue

holding the participation in the related undertaking;

(iv) the existence of a durable link;

(v) where the insurance or reinsurance participating

company is part of a group, the consistency of such

strategy with the main policies guiding or limiting the

actions of the group.

The Delegated Regulation describes the long-term equity investments.13

Equity investments may be treated as long-term equity

investments if the insurance or reinsurance undertaking

demonstrates, to the satisfaction of the supervisory authority,

that all of the following conditions are met:

(a) the sub-set of equity investments as well as the holding

period of each equity investment within the sub-set are

clearly identified;

(b) the sub-set of equity investment is included within a

portfolio of assets which is assigned to cover the best

estimate of a portfolio of insurance or reinsurance obligations

corresponding to one or several clearly identified businesses,

and the undertaking maintains that assignment over the

lifetime of the obligations;

(c) the portfolio of insurance or reinsurance obligations, and

the assigned portfolio of assets referred to in point (b) are

identified, managed and organised separately from the other

activities of the undertaking, and the assigned portfolio of

13The following part is taken from Art. 171a (introduced in 2019) of the Delegated
Regulation [12].
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assets cannot be used to cover losses arising from other

activities of the undertaking;

(d) the technical provisions within the portfolio of insurance or

reinsurance obligations referred to in point (b) only represent

a part of the total technical provisions of the insurance or

reinsurance undertaking;

(e) the average holding period of equity investments in the sub-

set exceeds 5 years, or where the average holding period

of the sub-set is lower than 5 years, the insurance or

reinsurance undertaking does not sell any equity investments

within the sub-set until the average holding period exceeds

5 years;

(f) the sub-set of equity investments consists only of equities

that are listed in the EEA or of unlisted equities of

companies that have their head offices in countries that are

members of the EEA;

(g) the solvency and liquidity position of the insurance or

reinsurance undertaking, as well as its strategies, processes

and reporting procedures with respect to asset-liability

management, are such as to ensure, on an ongoing basis

and under stressed conditions, that it is able to avoid forced

sales of each equity investments within the sub-set for at

least 10 years;

(h) the risk management, asset-liability management and

investment policies of the insurance or reinsurance

undertaking reflects the undertaking’s intention to hold the

sub-set of equity investments for a period that is compatible

with the requirement of point (e) and its ability to meet the

requirement of point (g).

We point out that the treatment of equity investments as long-term equity

investments shall not be reverted back to an approach that does not
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include long-term equity investments. Furthermore, where an insurance or

reinsurance undertaking that treats a sub-set of equity investments as long-

term equity investments is no longer able to comply with the conditions, it

shall immediately inform the supervisory authority.

The symmetric adjustment is an anti-procyclicality measure, since the

stress parameters (i.e. 39% and 49%) are reduced when the market drops, in

order to avoid that insurance companies sell equities and make the market

drop further. The symmetric adjustment shall be equal to the following:

SA =
1

2
·
(

CI − AI

AI
− 8%

)

where CI is the current level of the equity index and AI is the weighted

average of the daily levels of the equity index over the last 36 months, where

the weights for all daily levels shall be equal. We point out that the symmetric

adjustment shall not be lower than −10% or higher than 10%.

In conclusion, a transitional measure for standard equity risk shall only

be applied to type 1 equities that were purchased on or before January 1,

2016 and which are not subject to the duration-based equity risk.

2.4 Internal models

Solvency II describes the internal models.14

The Solvency Capital Requirement shall be calculated, either in

accordance with the standard formula [...] or using an internal

model [...].

Member States shall ensure that insurance or reinsurance

undertakings may calculate the Solvency Capital Requirement

using a full or partial internal model as approved by the

supervisory authorities.

14The following part is taken from Subsection 3 (Art. 112-127) of Solvency II [13].
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Insurance and reinsurance undertakings may use partial internal

models for the calculation of one or more of the following:

(a) one or more risk modules, or sub-modules, of the Basic

Solvency Capital Requirement [...];

(b) the capital requirement for operational risk [...];

(c) the adjustment [...].

In addition, partial modelling may be applied to the whole

business of insurance and reinsurance undertakings, or only to

one or more major business units.

After having received approval [...], insurance and reinsurance

undertakings shall not revert to calculating the whole or any

part of the Solvency Capital Requirement in accordance with the

standard formula, [...] except in duly justified circumstances and

subject to the approval of the supervisory authorities.

Where it is inappropriate to calculate the Solvency Capital Re-

quirement in accordance with the standard formula, [...] because

the risk profile of the insurance or reinsurance undertaking con-

cerned deviates significantly from the assumptions underlying the

standard formula calculation, the supervisory authorities may, by

means of a decision stating the reasons, require the undertaking

concerned to use an internal model to calculate the Solvency Cap-

ital Requirement, or the relevant risk modules thereof.

The requirements for an internal model shall consist of the following:

− Use test.

Insurance and reinsurance undertakings shall demonstrate

that the internal model is widely used in and plays an

important role in their system of governance.

− Statistical quality standards.
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The methods used to calculate the probability distribution

forecast shall be based on adequate, applicable and relevant

actuarial and statistical techniques and shall be consistent

with the methods used to calculate technical provisions.

− Calibration standards.

Insurance and reinsurance undertakings may use a different

time period or risk measure [...] for internal modelling

purposes as long as the outputs of the internal model can be

used by those undertakings to calculate the Solvency Capital

Requirement in a manner that provides policy holders and

beneficiaries with a level of protection equivalent [...].

− Profit and loss attribution.

They shall demonstrate how the categorisation of risk chosen

in the internal model explains the causes and sources of

profits and losses. The categorisation of risk and attribution

of profits and losses shall reflect the risk profile of the

insurance and reinsurance undertakings.

− Validation standards.

The model validation process shall include an effective

statistical process for validating the internal model which

enables the insurance and reinsurance undertakings to

demonstrate to their supervisory authorities that the

resulting capital requirements are appropriate.

− Documentation standards.

The documentation shall provide a detailed outline of the

theory, assumptions, and mathematical and empirical bases

underlying the internal model.

58



We point out that a full internal model shall consider all the risk modules

and sub-modules, differently form a partial internal model. The choice to

adopt a full or partial internal model is not as simple as it seems, because it

depends on several reasons, such as commercial reasons.

2.5 Supervisory review process

Solvency II describes the supervisory review process.15

Member States shall ensure that the supervisory authorities

review and evaluate the strategies, processes and reporting

procedures which are established by the insurance and

reinsurance undertakings to comply with the laws, regulations

and administrative provisions adopted pursuant to this Directive.

The supervisory authorities shall in particular review and

evaluate compliance with the following:

(a) the system of governance, including the own-risk and

solvency assessment [...];

(b) the technical provisions [...];

(c) the capital requirements [...];

(d) the investment rules [...];

(e) the quality and quantity of own funds [...];

(f) where the insurance or reinsurance undertaking uses a full

or partial internal model, on-going compliance with the

requirements for full and partial internal models [...].

The supervisory authorities shall approve internal models (see section 2.4)

and evaluate compliance with their requirements. We point out that the

supervisory review process is important to ensure that insurance companies

comply with the law. In the case that insurance companies do not comply

with the law, the supervisory authorities may set a capital add-on.

15The following part is taken from Art. 36 of Solvency II [13].
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2.5.1 Capital add-on

Solvency II describes the capital add-on.16

Following the supervisory review process supervisory authorities

may in exceptional circumstances set a capital add-on for an

insurance or reinsurance undertaking by a decision stating the

reasons. That possibility shall exist only in the following cases:

(a) the supervisory authority concludes that the risk profile

of the insurance or reinsurance undertaking deviates

significantly from the assumptions underlying the Solvency

Capital Requirement, as calculated using the standard

formula [...];

(b) the supervisory authority concludes that the risk profile

of the insurance or reinsurance undertaking deviates

significantly from the assumptions underlying the Solvency

Capital Requirement, as calculated using an internal model

or partial internal model [...], because certain quantifiable

risks are captured insufficiently and the adaptation of the

model to better reflect the given risk profile has failed within

an appropriate timeframe;

(c) the supervisory authority concludes that the system of

governance of an insurance or reinsurance undertaking

deviates significantly from the standards [...], that those

deviations prevent it from being able to properly identify,

measure, monitor, manage and report the risks that it is

or could be exposed to and that the application of other

measures is in itself unlikely to improve the deficiencies

sufficiently within an appropriate time frame;

[...]

16The following part is taken from Art. 37 of Solvency II [13].
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We point out that the supervisory review process and the capital add-on

prevent insurance companies not to be careful.

2.6 System of governance

Solvency II describes the system of governance.17

Member States shall require all insurance and reinsurance

undertakings to have in place an effective system of governance

which provides for sound and prudent management of the

business.

We point out that the system of governance is important to ensure that

insurance companies work well.

2.7 Risk management system

Solvency II describes the risk management system.18

Insurance and reinsurance undertakings shall have in place

an effective risk-management system comprising strategies,

processes and reporting procedures necessary to identify,

measure, monitor, manage and report, on a continuous basis the

risks, at an individual and at an aggregated level, to which they

are or could be exposed, and their interdependencies.

That risk-management system shall be effective and well

integrated into the organisational structure and in the decision-

making processes of the insurance or reinsurance undertaking

with proper consideration of the persons who effectively run the

undertaking or have other key functions.

17The following part is taken from Art. 41 of Solvency II [13].
18The following part is taken from Art. 44 of Solvency II [13].
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The risk-management system shall cover the risks to be included

in the calculation of the Solvency Capital Requirement [...] as well

as the risks which are not or not fully included in the calculation

thereof.

For insurance and reinsurance undertakings using a partial or full

internal model [...] the risk-management function shall cover the

following additional tasks:

(a) to design and implement the internal model;

(b) to test and validate the internal model;

(c) to document the internal model and any subsequent changes

made to it;

(d) to analyse the performance of the internal model and to

produce summary reports thereof;

(e) to inform the administrative, management or supervisory

body about the performance of the internal model,

suggesting areas needing improvement, and up-dating that

body on the status of efforts to improve previously identified

weaknesses.

We point out that insurance company work with risks. Hence, the risk

management system is important to ensure that insurance companies work

well.

2.7.1 Own Risk and Solvency Assessment

Solvency II describes the Own Risk and Solvency Assessment.19

As part of its risk-management system every insurance

undertaking and reinsurance undertaking shall conduct its own

risk and solvency assessment.

19The following part is taken from Art. 45 of Solvency II [13].
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That assessment shall include at least the following:

(a) the overall solvency needs taking into account the specific

risk profile, approved risk tolerance limits and the business

strategy of the undertaking;

(b) the compliance, on a continuous basis, with the capital

requirements [...] and with the requirements regarding

technical provisions [...];

(c) the significance with which the risk profile of the undertaking

concerned deviates from the assumptions underlying the

Solvency Capital Requirement [...], calculated with the

standard formula [...] or with its partial or full internal

model [...].

The own-risk and solvency assessment shall be an integral part

of the business strategy and shall be taken into account on an

ongoing basis in the strategic decisions of the undertaking.

Insurance and reinsurance undertakings shall perform the

assessment [...] regularly and without any delay following any

significant change in their risk profile.

The insurance and reinsurance undertakings shall inform the

supervisory authorities of the results of each own-risk and

solvency assessment [...].

We point out that the Solvency Capital Requirement shall be calculated over

a one-year period, hence the view according to Solvency II is short-term.

In this situation, the risk is not properly managed, since problems could

emerge in the future. Nevertheless, the Own Risk and Solvency Assessment

encourages insurance companies to have a medium-term view as well.

Forward Looking Assessment of Own Risks

Solvency II requires the undertaking to perform a regular Forward Looking

Assessment of the undertaking’s Own Risks (FLAOR) as part of the risk
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management system. The main purpose of the Forward Looking Assessment

of the undertaking’s Own Risks is to ensure that the undertaking engages in

the process of assessing all the risks inherent to its business and determines

the corresponding capital needs. To achieve this, an undertaking needs

adequate and robust processes to assess, monitor and measure its risks

and overall solvency needs, and also to ensure that the output from the

assessment forms an important part of the decision making processes of the

undertaking.20

The EIOPA Guidelines on Forward Looking Assessment of Own Risks

demand some provisions.21

In accordance with Article 45 of Solvency II, national competent

authorities should ensure that the undertaking’s assessment of

the overall solvency needs is forward-looking, including a medium

term or long term perspective as appropriate.

The analysis of the undertaking’s ability to continue as a going concern and

the financial resources needed to do so over a time horizon of more than

one year is an important part of the Forward Looking Assessment of the

undertaking’s Own Risks.

Unless an undertaking is in a winding-up situation, it has to consider how

it can ensure that it can continue as a going concern. In order to do this

successfully, not only does it have to assess its current risks, but also the risks

it will or could face in the long term. That means that, depending on the

complexity of the undertaking’s business, it may be appropriate to perform

long term projections of the business, which are in any case a key part of

any undertaking’s financial planning. This might include business plans and

projections of the economic balance sheet as well as variation analysis to

reconcile these two items. These projections are required to feed into the

Forward Looking Assessment of the undertaking’s Own Risks in order to

enable the undertaking to form an opinion on its overall solvency needs and

own funds in a forward looking perspective.

20Different parts of this paragraph are taken from the EIOPA Explanatory Text [8].
21The following part is taken from Guideline 13 of the EIOPA Guidelines [9].
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An undertaking also identifies and takes into account external factors

that could have an adverse impact on its overall solvency needs or on its

own funds. Such external factors could include changes in the economic

conditions, the legal framework, the fiscal environment, the insurance market,

technical developments that have an impact on underwriting risk, or any

other probable relevant event. The undertaking will need to consider as part

of its capital management plans and capital projections how it might respond

to unexpected changes in external factors.
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Chapter 3

Investment models

The inversion of the production cycle is a peculiar and important feature

of insurance companies and it means that policyholders pay premiums in

advance and contractual benefits are paid later, only when an accident occurs.

This characteristic implies that insurance companies have a lot of resources,

other than their own equity, to be invested, in order to make profits.

Using equation (1.12), we are able to obtain the distribution of the annual

rate of return time by time, once we have described over time the distributions

of the average stock and bond prices.

In this chapter we deal with models based on differential equations.

The random variables are not indicated with the tilde, in order to avoid

the complexity of the mathematical notation. Moreover, we assume that

the market is frictionless, meaning that all securities are perfectly divisible

and that no short-sale restrictions, transaction costs, or taxes are present.

The security trading is continuous and there are no riskless arbitrage

opportunities.

3.1 Continuous-time stochastic processes

A stochastic process is a process that describes the evolution in time of

a random phenomenon. From a mathematical point of view, a stochastic

process is a collection of random variables defined on a common probability
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space, taking values in a common state space and indexed by some set, that

usually represents time. In a continuous-time stochastic process, the index

set of the stochastic process is continuous.1

3.1.1 Brownian motion

A stochastic process is said to be a Brownian motionW (t) (also called Wiener

process) if it satisfies the following properties:

1. W (0) = 0

2. W has increments independent of the past, namely:

∀ t > 0 then W (t+∆t)−W (t) ⊥ W (s)

with ∆t ≥ 0 and s < t

3. W has Normal increments, such that:

∀ t > 0 then W (t+∆t)−W (t) ∼ N (0,∆t)

or ∆W (t) = ǫ ·
√
∆t

with ∆t ≥ 0 and ǫ ∼ N (0, 1)

(3.1)

4. W has continuous paths, namely W (t) is continuous in t.

As a result, the auto-covariance function is found to be:

Cov
[

W (t),W (s)
]

= min(t, s)

Furthemore, the Brownian motion itself has a Normal distribution as well,

such that:

W (t) ∼ N (0, t)

1For this section see Ballotta and Fusai [2], and Hull [16].
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This result enables to simulate a Brownian motion at some point in time. In

order to simulate its path, we must iteratively use equation (3.1).

Correlated Brownian motions

In some cases we may need to construct a pair of Brownian motions W1(t)

and W2(t), such that their correlation coefficient is given by:

Corr
[

W1(t),W2(t)
]

= ρ

For this reason, we take the two Brownian motions Z1(t) and Z2(t),

independent of each other, so that W1(t) and W2(t) are found to be:

W1(t) = Z1(t)

and:

W2(t) = ρ · Z1(t) +
√

1− ρ2 · Z2(t)

then:

Corr
[

W1(t),W2(t)
]

=
Cov

[

Z1(t), ρ · Z1(t) +
√

1− ρ2 · Z2(t)
]

√

Var
[

Z1(t)
]

·
√

Var
[

Z2(t)
]

= ρ

More in general we may need to construct some different Brownian motions

W1(t), W2(t), ..., Wh(t), such that their correlation matrix is given by:

CorrW (t) =



























1 ρ21 . . . ρh1

ρ21 1 . . . ρh2

...
...

. . .
...

ρh1 ρh2 . . . 1
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The Cholesky decomposition (also called Cholesky factorization) shows that

the correlation matrix can be decomposed as follows:2

CorrW (t) =



























L11 0 . . . 0

L21 L22 . . . 0

...
...

. . .
...

Lh1 Lh2 . . . Lhh





















































L11 L21 . . . Lh1

0 L22 . . . Lh2

...
...

. . .
...

0 0 . . . Lhh



























where:

Ljj =

√

√

√

√ρjj −
j−1
∑

k=1

L2
jk

and:

Lij =
1

Ljj

·
(

ρij −
j−1
∑

k=1

Lik · Ljk

)

for i > j

Hence, we take the h Brownian motions Z1(t), Z2(t), ..., Zh(t), independent

of each other, so that W1(t), W2(t), ..., Wh(t) are found to be:



























W1(t)

W2(t)

...

Wh(t)



























=



























L11 0 . . . 0

L21 L22 . . . 0

...
...

. . .
...

Lh1 Lh2 . . . Lhh





















































Z1(t)

Z2(t)

...

Zh(t)



























3.1.2 Geometric Brownian motion

The geometric Brownian motion Y (t) (also called generalized Wiener process

or exponential Brownian motion) is a stochastic process that satisfies the

2See Parker [25].
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following stochastic differential equation, based on the standard Brownian

motion W (t):

dY (t) = µ · Y (t) · dt+ σ · Y (t) · dW (t)

where µ and σ > 0 are the constant drift and diffusion coefficients of the

process respectively, i.e. the expected rate of return in a short period of time

(annualized) and the volatility. The geometric Brownian motion is made of a

predictable or expected part and an unpredictable or unexpected part, which

reflects random changes. Moreover, the process remains always positive if it

starts from a positive value.

The discrete-time version of the geometric Brownian motion, given by the

Euler method, is found to be:

∆Y (t) = µ · Y (t) ·∆t+ σ · Y (t) ·∆W (t) (3.2)

Using equation (3.1), it is found to be:

∆Y (t) = µ · Y (t) ·∆t+ σ · Y (t) · ǫ ·
√
∆t

The smaller the time increment ∆t, the better the discretization.

Furthermore, the stochastic differential equation, satisfied by a geometric

Brownian motion, admits an explicit solution. It can be shown that it is

given by:3

Y (t) = Y (0) · exp
[(

µ− 1

2
· σ2

)

· t+ σ ·W (t)

]

(3.3)

Hence, since the standard Brownian motion has a Normal distribution, the

variable Y is found to have a Lognormal distribution, such that:

E
[

Y (t) |Y (0)
]

= Y (0) · exp(µ · t) (3.4)

and:

Var
[

Y (t) |Y (0)
]

= Y (0)2 · exp(2 · µ · t) ·
[

exp(σ2 · t)− 1
]

(3.5)

3See Ballotta and Fusai [2].
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3.1.3 Itô process

The Itô process Y (t) is a geometric Brownian motion in which the drift and

diffusion coefficients are functions of the value of the underlying variable and

time, so that it satisfies the following stochastic differential equation:

dY (t) = µ(Y, t) · dt+ σ(Y, t) · dW (t)

where µ(Y, t) and σ(Y, t) > 0 are the non-constant drift and diffusion

coefficients of the process respectively. As above, the Itô process is made

of a predictable or expected part and an unpredictable or unexpected part.

The discrete-time version of the Itô process, given by the Euler method,

is found to be:

∆Y (t) = µ(Y, t) ·∆t+ σ(Y, t) ·∆W (t) (3.6)

Using equation (3.1), it is found to be:

∆Y (t) = µ(Y, t) ·∆t+ σ(Y, t) · ǫ ·
√
∆t

This equation assumes that the drift and diffusion coefficients remain

constant in the time interval between t and ∆t. Moreover, the smaller the

time increment ∆t, the better the discretization.

3.2 Itô’s lemma

A derivative contract is a financial instrument whose value depends on (or

derives from) the values of other, more basic, stochastic underlying variables.

The derivative price is a function of the underlying variables and time.4

The stochastic process for the price of the variable Y follows an Itô process

that satisfies the following stochastic differential equation:

dY (t) = µ(Y, t) · dt+ σ(Y, t) · dW (t)

4For this section see Hull [16], and Itô [18].
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Let G be a function of Y and t. Then, Itô’s lemma shows that the price of G

(dropping the time index t) follows an Itô process that satisfies the following

stochastic differential equation:

dG =

[

∂G

∂t
+ µ(Y, t) · ∂G

∂Y
+

1

2
· σ2(Y, t) · ∂

2G

∂Y 2

]

· dt+ σ(Y, t) · ∂G
∂Y

· dW (t)

It can be expressed in the following form:

dG = µG(Y, t) ·G · dt+ σG(Y, t) ·G · dW (t)

then:

µG(Y, t) =
1

G
·
[

∂G

∂t
+ µ(Y, t) · ∂G

∂Y
+

1

2
· σ2(Y, t) · ∂

2G

∂Y 2

]

and:

σG(Y, t) =
1

G
· σ(Y, t) · ∂G

∂Y

We point out that both the variable Y and the function G are based on the

same standard Brownian motion.

3.3 Market price of risk

The stochastic process for the price of the variable Y follows an Itô process

that satisfies the following stochastic differential equation:5

dY (t) = µ(Y, t) · dt+ σ(Y, t) · dW (t)

We assume the prices of a pair of derivatives to be a function of Y and t.

Itô’s lemma shows that the dynamics of the derivative prices are given by:

dG1(t)

G1(t)
= µG1(Y, t) · dt+ σG1(Y, t) · dW (t) (3.7)

5For this section see Etheridge [11], and Giordano and Siciliano [15].
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and:
dG2(t)

G2(t)
= µG2(Y, t) · dt+ σG2(Y, t) · dW (t) (3.8)

We shall construct an instantaneously riskless portfolio, therefore we buy

σG2(Y, t)·G2(t) of the first derivative and we sell σG1(Y, t)·G1(t) of the second

derivative. As a result, the value of the portfolio at time t is given by:

Π(t) =
[

σG2(Y, t) ·G2(t)
]

·G1(t)−
[

σG1(Y, t) ·G1(t)
]

·G2(t) (3.9)

and the change in the value of the portfolio in time dt is given by:

dΠ(t) =
[

σG2(Y, t) ·G2(t)
]

· dG1(t)−
[

σG1(Y, t) ·G1(t)
]

· dG2(t)

Using equations (3.7) and (3.8), it is found to be:

dΠ(t) =
[

µG1(Y, t) · σG2(Y, t) ·G1(t) ·G2(t)
]

· dt

−
[

µG2(Y, t) · σG1(Y, t) ·G1(t) ·G2(t)
]

· dt
(3.10)

Since the portfolio is instantaneously riskless, in order to avoid arbitrage

opportunities, it must earn the risk-free short rate r(t), so that:

dΠ(t) = r(t) · Π(t) · dt

Using equations (3.9) and (3.10), we obtain:

µG1(Y, t)− r(t)

σG1(Y, t)
=
µG2(Y, t)− r(t)

σG2(Y, t)

Each side of the equation depends on the parameters of a single process.

Hence, we drop numeric indices by equations (3.7) and (3.8), in order to

obtain a generic dynamic of the derivative price. It is given by:

dG(t)

G(t)
= µG(Y, t) · dt+ σG(Y, t) · dW (t)
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The market price of risk of Y is given by:

λ(Y, t) =
µG(Y, t)− r(t)

σG(Y, t)
(3.11)

then:

µG(Y, t) = r(t) + λ(Y, t) · σG(Y, t) (3.12)

The market price of risk (also called Sharpe Ratio, in the context of portfolio

performance measurement) gives the extra increase in expected rate of return

per an additional unit of risk. It depends on Y and t, but it does not depend

on the nature of the derivative.

3.3.1 Risk-neutral world and real world

A risk-neutral world is a world where investors are risk-neutral. The real

world is not a risk-neutral world, hence the higher the risks investors take,

the higher the expected returns they require.

A risk-neutral measure (also called Q-measure) is a probability measure,

which assumes a risk-neutral world. As a result, investors do not increase the

expected return they require from an investment to compensate for increased

risk and the expected return on all assets (and therefore the discount rate to

use for all expected payoffs) is the risk-free rate. On the contrary, the real

measure (also called P-measure) is a probability measure, which assumes the

real world. As a result, the expected return on all assets is probably different

from the risk-free rate.

We will deal with risk-neutral and real-world processes. The risk-neutral

processes are characterized by a risk-neutral measure and a zero market price

of risk. The real-world processes are characterized by a real measure and a

non-zero market price of risk.
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Real-world process

The real-world process for the price of the variable Y satisfies the following

stochastic differential equation:

dY (t) = µ(Y, t) · dt+ σ(Y, t) · dW (t) (3.13)

where W (t) is a P-Brownian motion.

The real-world dynamic of the derivative price is given by:

dG(t)

G(t)
= µG(Y, t) · dt+ σG(Y, t) · dW (t) (3.14)

According to the Girsanov’s theorem, as we move from the real world to the

risk-neutral world, the expected rate of return changes, but the volatility

remains the same.

Risk-neutral process

The risk-neutral process for the price of the variable Y , that is equivalent to

equation (3.13), is found to be:

dY (t) =
[

µ(Y, t)− λ(Y, t) · σ(Y, t)
]

· dt+ σ(Y, t) · dŴ (t) (3.15)

where Ŵ (t) is a Q-Brownian motion, that is given by:

dŴ (t) = dW (t) + λ(Y, t) · dt (3.16)

The risk-neutral dynamic of the derivative price, that is equivalent to

equation (3.14), is found to be:

dG(t)

G(t)
=
[

µG(Y, t)− λ(Y, t) · σG(Y, t)
]

· dt+ σG(Y, t) · dŴ (t)

Using equation (3.12), it is found to be:

dG(t)

G(t)
= r(t) · dt+ σG(Y, t) · dŴ (t) (3.17)
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The market price of risk of Y is used to move from the real-world process for

the price of a single variable to the risk-neutral process, as well as from the

real-world dynamic of the derivative price to the risk-neutral dynamic.

3.4 Stock price model

A stock price model is a mathematical model that describes the stochastic

behaviour of the stock price at time t. In this section we deal with a

non-dividend-paying stock price model described by the geometric Brownian

motion.

Real-world process

The real-world process for the h-th stock price follows a geometric Brownian

motion that satisfies the following stochastic differential equation:

dSh(t) = µh · Sh(t) · dt+ σh · Sh(t) · dWh(t) (3.18)

where the drift and diffusion coefficients above are the expected rate of return

on the h-th stock in a short period of time (annualized) and the volatility of

the h-th stock price respectively.

Using equation (3.2), the discrete-time version of the real-world process

for the h-th stock price is found to be:

∆Sh(t) = µh · Sh(t) ·∆t+ σh · Sh(t) ·∆Wh(t) (3.19)

Furthermore, using equation (3.3), the solution of the stochastic differential

equation above is found to be:

Sh(t) = Sh(0) · exp
[(

µh −
1

2
· σ2

h

)

· t+ σh ·Wh(t)

]

(3.20)

As shown in equations (3.4) and (3.5), the h-th stock price is found to have
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a Lognormal distribution, such that:

E
[

Sh(t) |Sh(0)
]

= Sh(0) · exp(µh · t) (3.21)

and:

Var
[

Sh(t) |Sh(0)
]

= Sh(0)
2 · exp(2 · µh · t) ·

[

exp(σ2
h · t)− 1

]

In conclusion, the market price of risk of the h-th stock price is found to

be:

λ(Sh, t) =
µh − r(t)

σh

then:

µh = r(t) + λ(Sh, t) · σh (3.22)

Investors require a positive extra return over the risk-free rate for investing

in stocks, hence the market price of risk is positive. In the stock model, we

do not assume any form or value for the market price of risk.

Risk-neutral process

The risk-neutral process for the h-th stock price, that is equivalent to

equation (3.18), is found to be:

dSh(t) =
[

µh − λ(Sh, t) · σh
]

· Sh(t) · dt+ σh · Sh(t) · dŴh(t)

where Ŵh(t) is the h-th Q-Brownian motion, that is given by:

dŴh(t) = dWh(t) + λ(Sh, t) · dt

Using equation (3.22), it is found to be:

dSh(t) = r(t) · Sh(t) · dt+ σh · Sh(t) · dŴh(t)

Also in the risk-neutral case, we could find the discrete-time version of the

process and the solution of the stochastic differential equation above.
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3.5 One-factor short rate models

A one-factor short rate model is a mathematical model that describes a

single stochastic factor, i.e. the short-term interest rate at time t (also called

instantaneous short rate, since it applies to an infinitesimally short period of

time at time t). Once it is specified, we are able to compute the zero-coupon

bond price and determine the initial zero curve and its future evolution.6

A zero-coupon bond is a long-term debt contract, where the face value

(also called par value) is repaid at maturity date and coupon interest

payments are absent. Consider a zero-coupon bond that provides a terminal

payoff equal to 1 at maturity date T > t. Its price at time t is given by:

B(t, T ) = e−R(t,T )·(T−t)

As a result, the zero-coupon interest rate (continuously compounded) at time

t for a term of T − t is given by:

R(t, T ) = − lnB(t, T )

T − t
(3.23)

This equation enables the zero curve at any time.

Real-world process

In a one-factor short rate model, the real-world process for the short rate

usually follows an Itô process that satisfies the following stochastic differential

equation:

dr(t) = µ(r, t) · dt+ σ(r, t) · dZ(t) (3.24)

Using equation (3.6), the discrete-time version of the real-world process for

the short rate is found to be:

∆r(t) = µ(r, t) ·∆t+ σ(r, t) ·∆Z(t)

6For this section see Hull [17], Kwok [22], and Svoboda [35].
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We assume the zero-coupon bond price to be a function of r and t. Itô’s

lemma shows that the real-world dynamic of the bond price (dropping the

time index t and the maturity date T ) is given by:

dB =

[

∂B

∂t
+ µ(r, t) · ∂B

∂r
+

1

2
· σ2(r, t) · ∂

2B

∂r2

]

· dt+ σ(r, t) · ∂B
∂r

· dZ(t)

It can be expressed in the following form:

dB = µB(r, t) · B · dt+ σB(r, t) · B · dZ(t) (3.25)

then:

µB(r, t) =
1

B
·
[

∂B

∂t
+ µ(r, t) · ∂B

∂r
+

1

2
· σ2(r, t) · ∂

2B

∂r2

]

(3.26)

and:

σB(r, t) =
1

B
· σ(r, t) · ∂B

∂r
(3.27)

where the drift and diffusion coefficients above are the expected rate of return

on the bond in a short period of time (annualized) and the (negative) bond’s

risk exposure respectively.

In conclusion, using equation (3.11), the market price of risk of the short

rate is found to be:

λ(r, t) =
µB(r, t)− r(t)

σB(r, t)

then:

µB(r, t) = r(t) + λ(r, t) · σB(r, t) (3.28)

Investors require a positive extra return over the risk-free rate for investing

in bonds, hence the market price of risk is negative, because the bond’s risk

exposure is negative as well.

Risk-neutral process

Using equation (3.15), the risk-neutral process for the short rate, that is

equivalent to equation (3.24), is found to satisfy the following stochastic

79



differential equation:

dr(t) =
[

µ(r, t)− λ(r, t) · σ(r, t)
]

· dt+ σ(r, t) · dẐ(t) (3.29)

As previously shown in equation (3.16), the Q-Brownian motion is found to

be:

dẐ(t) = dZ(t) + λ(r, t) · dt

Furthermore, using equation (3.17), the risk-neutral dynamic of the bond

price, that is equivalent to equation (3.25), is found to be:

dB = r(t) · B · dt+ σB(r, t) · B · dẐ(t)

Also in the risk-neutral case, we could find the discrete-time version of the

process.

3.5.1 Vasicek model

The Vasicek model was introduced in 1977 by Oldřich Alfons Vaš́ıček and

it is one of the earliest stochastic models of the term structure of interest

rates.7

Real-world process

According to the Vasicek model, the real-world process for the short rate

satisfies the following stochastic differential equation:

dr(t) = κ · (θ − r(t)) · dt+ v · dZ(t) (3.30)

where κ > 0 is the speed of mean-reversion, θ is the long-run mean interest

rate level and v > 0 is the interest rate risk exposure. The short rate tends

to revert to θ, because κ steadies its fluctuations. As a result, it is stationary.

Using equation (3.6), the discrete-time version of the real-world process

7See Vasicek [36].
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for the short rate is found to be:

∆r(t) = κ · (θ − r(t)) ·∆t+ v ·∆Z(t) (3.31)

Furthermore, the stochastic differential equation of the Vasicek model admits

an explicit solution. It can be shown that it is given by:8

r(t) = e−κ·t · r(0) + θ ·
(

1− e−κ·t
)

+ v ·
∫ t

0

e−κ·(t−s) · dZ(s) (3.32)

Hence, since the standard Brownian motion has Normal distribution, the

short rate is found to have a Normal distribution as well, such that:

E
[

r(t) | r(0)
]

= e−κ·t · r(0) + θ ·
(

1− e−κ·t
)

(3.33)

and:

Var
[

r(t) | r(0)
]

=
v2

2 · κ ·
(

1− e−2·κ·t
)

The real-world dynamic of the bond price is given by equation (3.25).

Using equation (3.26), the expected rate of return on the bond is found to

be:

µB(r, t) =
1

B
·
[

∂B

∂t
+ κ · (θ − r(t)) · ∂B

∂r
+

1

2
· v2 · ∂

2B

∂r2

]

(3.34)

Using equation (3.27), the bond’s risk exposure is found to be:

σB(r, t) =
1

B
· v · ∂B

∂r

We assume the market price of risk to be the (negative) constant λ. As a

result, using equation (3.28), the expected rate of return on the bond is also

found to be:

µB(r, t) = r(t) + λ · v · 1

B
· ∂B
∂r

(3.35)

Hence, combining equations (3.34) and (3.35), the Vasicek partial differential

8See Ballotta and Fusai [2].
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equation is found to be:

∂B

∂t
+ κ · (θ − r(t)) · ∂B

∂r
+

1

2
· v2 · ∂

2B

∂r2
− λ · v · ∂B

∂r
= B · r(t)

We solve the equation above, with the following boundary conditions:

lim
t→T

B(t, T ) = 1 terminal payoff condition

lim
r(t)→+∞

B(t, T ) = 0 present value infimum condition

then the zero-coupon bond price is found to be:

B(t, T ) = a(t, T ) · e−b(t,T )·r(t) (3.36)

where:

b(t, T ) =
1− e−κ·(T−t)

κ

and:

a(t, T ) = exp

[

γ · (b(t, T )− (T − t))− v2

4 · κ · b(t, T )2
]

(3.37)

with:

γ = θ − λ · v
κ

− v2

2 · κ2

Risk-neutral process

Using equation (3.29), the risk-neutral process for the short rate, that is

equivalent to equation (3.30), is found to satisfy the following stochastic

differential equation:

dr(t) =
[

κ · (θ − r(t))− λ · v
]

· dt+ v · dẐ(t)

It can be written as follows:

dr(t) = κ · (θ∗ − r(t)) · dt+ v · dẐ(t) (3.38)
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where:

θ∗ = θ − λ · v
κ

The risk-neutral process is the same as the real-world process, except that

the long-run mean interest rate level is higher (because λ is negative).

Also in the risk-neutral case, we could find the discrete-time version of

the process and the solution of the stochastic differential equation above.

3.5.2 Cox-Ingersoll-Ross model

The Cox-Ingersoll-Ross model was introduced in 1985 by John C. Cox,

Jonathan E. Ingersoll and Stephen A. Ross as an extension of the Vasicek

model.9

Real-world process

According to the Cox-Ingersoll-Ross model, the real-world process for the

short rate satisfies the following stochastic differential equation:

dr(t) = κ · (θ − r(t)) · dt+ v ·
√

r(t) · dZ(t) (3.39)

The drift coefficient is the same as that of Vasicek, but the interest rate

risk exposure is proportional to
√

r(t). As a result, the diffusion coefficient

increases as the short rate increases. Moreover, the short rate can never be

negative and, in addition, when 2 · κ · θ ≥ v2 it can never be zero. As above,

the short rate is stationary.

Using equation (3.6), the discrete-time version of the real-world process

for the short rate is found to be:

∆r(t) = κ · (θ − r(t)) ·∆t+ v ·
√

r(t) ·∆Z(t) (3.40)

Furthermore, the stochastic differential equation of the Cox-Ingersoll-Ross

model does not admit an explicit solution. However, it can be shown that

9See Cox, Ingersoll and Ross [5].
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the short rate has a Non-Central Chi-Square distribution, such that:10

E
[

r(t) | r(0)
]

= e−κ·t · r(0) + θ ·
(

1− e−κ·t
)

(3.41)

and:

Var
[

r(t) | r(0)
]

= r(0) · v
2

κ
·
(

e−κ·t − e−2·κ·t
)

+ θ · v2

2 · κ ·
(

1− e−κ·t
)2

The real-world dynamic of the bond price is given by equation (3.25).

Using equation (3.26), the expected rate of return on the bond is found to

be:

µB(r, t) =
1

B
·
[

∂B

∂t
+ κ · (θ − r(t)) · ∂B

∂r
+

1

2
· v2 · r(t) · ∂

2B

∂r2

]

(3.42)

Using equation (3.27), the bond’s risk exposure is found to be:

σB(r, t) =
1

B
· v ·

√

r(t) · ∂B
∂r

We assume the market price of risk to be η ·
√

r(t)
/

v and η to be a (negative)

constant. As a result, using equation (3.28), the expected rate of return on

the bond is also found to be:

µB(r, t) = r(t) + η · r(t) · 1

B
· ∂B
∂r

(3.43)

Hence, combining equations (3.42) and (3.43), the Cox-Ingersoll-Ross partial

differential equation is found to be:

∂B

∂t
+ κ · (θ − r(t)) · ∂B

∂r
+

1

2
· v2 · r(t) · ∂

2B

∂r2
− η · r(t) · ∂B

∂r
= B · r(t)

10See Ballotta and Fusai [2].

84



We solve the equation above, with the following boundary conditions:

lim
t→T

B(t, T ) = 1 terminal payoff condition

lim
r(t)→+∞

B(t, T ) = 0 present value infimum condition

then the zero-coupon bond price is found to be:

B(t, T ) = a(t, T ) · e−b(t,T )·r(t) (3.44)

where:

b(t, T ) =
2 ·
(

eγ ·(T−t) − 1
)

(γ + κ+ η) ·
(

eγ ·(T−t) − 1
)

+ 2 · γ
with:

γ =
√

(κ+ η)2 + 2 · v2

and:

a(t, T ) =

[

2 · γ · e(γ+κ+η)·(T−t)/2

(γ + κ+ η) ·
(

eγ ·(T−t) − 1
)

+ 2 · γ

]2·κ·θ/v2

Risk-neutral process

Using equation (3.29), the risk-neutral process for the short rate, that is

equivalent to equation (3.39), is found to satisfy the following stochastic

differential equation:

dr(t) =
[

κ · (θ − r(t))− η · r(t)
]

· dt+ v ·
√

r(t) · dẐ(t)

It can be written as follows:

dr(t) = κ∗ · (θ∗ − r(t)) · dt+ v ·
√

r(t) · dẐ(t) (3.45)

where:

κ∗ = κ+ η
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and:

θ∗ =
κ · θ
κ∗

The risk-neutral process is the same as the real-world process, except that

the speed of mean-reversion is lower (because η is negative) and the long-run

mean interest rate level is higher.

Also in the risk-neutral case, we could find the discrete-time version of

the process.

3.5.3 Comparison

The Vasicek model has some disadvantages. First of all, its parameters do

not change over time, therefore there is no term structure of interest rate

exposure. Moreover, it is a one-factor model, hence only parallel shifts in

the yield curve are possible. Some years ago, it was believed that interest

rates could not become negative. As a result, the possibility that the model

could produce negative short rates was considered an important drawback.

Nowadays, it could be an advantage.

The Cox-Ingersoll-Ross model is a bit more sophisticated than the Vasicek

model, indeed there is term structure of interest rate exposure, since it is

proportional to the root square of the short rate level. Actually also the

Cox-Ingersoll-Ross model has some disadvantages. It is a one-factor model,

hence only parallel shifts in the yield curve are possible. Moreover, it can

never produce negative short rates.
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Chapter 4

Aggregate claim model

The inversion of the production cycle also implies that insurance companies

have to measure and manage the future aggregate claim amount, in order to

control losses and determine insurance premiums.

In this chapter we deal with the collective risk model, in order to describe

over time the distribution of the aggregate claim amount.

4.1 Collective risk model

The collective risk model is used to determine the aggregate claim amount.

It is very popular in non-life insurance, because each risk can produce claims

of different dimensions. We consider the entire portfolio or a sub-portfolio of

homogeneous risks and we separately analyze the number of claims and the

single claim amount, that is assumed to be independent of the contract that

generated it.1

The stochastic aggregate claim amount at the end of time t is given by:

X̃t =
K̃t
∑

i=1

Z̃i,t (4.1)

1For this section see Savelli [29], Savelli and Clemente [30], and Zappa and
Facchinetti [38].
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where K̃t is the stochastic number of claims and Z̃i,t is the stochastic amount

for the i-th claim. We assume that:

1. The random variables Z̃i,t are independent.

2. The random variables Z̃i,t are identically distributed.

3. The random variables Z̃i,t and K̃t are independent.

The first and second assumption are satisfied, in particular, for limited time

periods. The third assumption is usually satisfied, but it could be refuted

in some situation. In case of storm, for example, the number of claims and

single claim amount increase significantly at the same time.

4.1.1 Number of claims

We now define different distributions associated with the number of claims,

such as the Poisson and Negative Binomial. We point out that the aggregate

claim amount is found to be zero, in case that the number of claims is zero

as well. Moreover, since the insurance portfolio is dynamic, we assume that

the expected number of claims increases every year:

nt = nt−1 · (1 + g) = n0 · (1 + g)t with n0 > 0 (4.2)

The expected number of claims increases every year in the same way as the

insurance portfolio. As a result, the claims frequency of the portfolio remains

the same over time. This assumption could be refuted in some situation,

such as in case of consistent modification of the portfolio. Moreover, we

point out that not only does the initial expected number of claims depend

on the dimension of the insurance portfolio, but also on the individual claims

frequency of the people insured.
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Poisson distribution

The Poisson distribution with parameter nt (see Figure 4.1) is defined by the

following probability mass function:

Pr
(

K̃t = k
)

=
nk
t

k!
· e−nt with k = 0, 1, ... and nt > 0

0 3 6 9 12 15

0.05

0.1

0.15

0.2

k

P
r(
k
)

Figure 4.1: Poisson distribution with parameter 4

The moment generating function of the Poisson distribution is given by:

MK̃t
(s) = exp(nt · (es − 1))

and the cumulant generating function is given by:

ΨK̃t
(s) = ln

[

exp(nt · (es − 1))
]

= nt · (es − 1) (4.3)

As a result, the mean of the Poisson distribution is found to be:

E
(

K̃t

)

= nt

the variance is found to be:

Var
(

K̃t

)

= nt
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the skewness is found to be:

Sk
(

K̃t

)

=
1√
nt

and the coefficient of variation is found to be:

CV
(

K̃t

)

=
1√
nt

We point out that, as nt increases, the expected value and variance increase

proportionally, then the standard deviation increases less than proportionally.

Moreover, the skewness is always positive and approaches zero, because of

the central limit theorem:

lim
nt→∞

Sk
(

K̃t

)

= 0

and the coefficient of variation approaches zero, because of the dimension

diversification effect (also called pooling of the risk):

lim
nt→∞

CV
(

K̃t

)

= 0

Mixed Poisson distribution

The Mixed Poisson distribution is found to be a Poisson with stochastic

parameter ñt > 0, such that:

ñt = nt · q̃

where q̃ is the stochastic structure variable. In order to describe the number

of claims, considering the short-term fluctuations only, we assume that:

1. It is defined for q > 0.

2. It has mean equal to E(q̃) = 1.
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The moment generating function of the Mixed Poisson distribution is given

by:

MK̃t
(s) = E

[

MK̃t
(s | q̃ = q)

]

= E
[

exp(nt · (es − 1) · q̃)
]

=Mq̃

[

nt · (es − 1)
]

and the cumulant generating function is given by:

ΨK̃t
(s) = Ψq̃

[

nt · (es − 1)
]

(4.4)

Let σq̃ and γq̃ the standard deviation and skewness of the structure variable.

Then, the mean of the Mixed Poisson distribution is found to be:

E
(

K̃t

)

= nt

the variance is found to be:

Var
(

K̃t

)

= nt + n2
t · σ2

q̃

the skewness is found to be:

Sk
(

K̃t

)

=
nt + 3 · n2

t · σ2
q̃ + n3

t · γq̃ · σ3
q̃

(

nt + n2
t · σ2

q̃

)3/2

and the coefficient of variation is found to be:

CV
(

K̃t

)

=

√

1

nt

+ σ2
q̃

We point out that the expected value is the same as that of the Poisson

distribution and the variance is bigger, because depends on σ2
q̃ . Moreover,

the skewness is positive or negative depending on γq̃ and approaches γq̃ as nt

increases:

lim
nt→∞

Sk
(

K̃t

)

= γq̃

91



and the coefficient of variation approaches σq̃ (also called non-diversifiable

systematic risk):

lim
nt→∞

CV
(

K̃t

)

= σq̃

The calibration of the non-diversifiable systematic risk is crucial for large

insurance companies, because the diversifiable risk is close to be null.

Negative Binomial distribution

The Negative Binomial distribution is found to be a Mixed Poisson with

structure variable q̃ distributed as a Gamma. In order to describe the number

of claims, considering the short-term fluctuations only, we assume that the

structure variable is distributed as a Gamma with equal parameters (h, h),

that is defined by the following probability density function:

fq̃(q) =
hh · qh−1
Γ(h)

· e−h·q with q > 0 and h > 0

The mean of the Gamma distribution with equal parameters is given by:

E(q̃) = 1

the variance is given by:

Var(q̃) =
1

h

the skewness is given by:

Sk(q̃) =
2√
h
= 2 · σq̃

and the coefficient of variation is given by:

CV(q̃) =
1√
h

We point out that, as h increases, the variance and coefficient of variation

of the structure variable approach zero, and the skewness, that is always

positive, approaches zero as well.
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Hence, the Negative Binomial distribution is found to have parameters

(h, pt) with pt = h/(h+nt) (see Figure 4.2) and to be defined by the following

probability mass function:

Pr
(

K̃t = k
)

=

(

k + h− 1

h− 1

)

· pht · (1− pt)
k

with k = 0, 1, ... and h > 0 and pt ∈ (0, 1)
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Figure 4.2: Negative Binomial distribution with parameters 3 and 0.4

The mean, variance, skewness and coefficient of variation of the Negative

Binomial distribution can be obtained from the Mixed Poisson distribution.

4.1.2 Single claim amount

We now define different distributions associated with the single claim amount,

i.e. the Lognormal, Gamma, Weibull, Inverse Normal and Pareto. The first

four distributions fit better the attritional claims, i.e. the most frequent and

least expensive claims. The last distribution fits better the large claims, i.e.

the least frequent and most expensive claims. A popular alternative is to use

compound or mixed distributions. Moreover, since the insurance portfolio is

dynamic, we assume that the single claim amount distribution (dropping the
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index i because of the assumption of identical distribution) is scaled for the

claims inflation every year:

Z̃t = Z̃t−1 · (1 + i) = Z̃0 · (1 + i)t

Hence, the j-th raw moment is found to be:

αj,Z̃t
= αj,Z̃0

· (1 + i)j ·t (4.5)

As a result, we start by describing the initial single claim distribution and,

by changing the parameters, we scale it to obtain the subsequent ones. It

follows that the relative indicators, such as the skewness and coefficient of

variation, remain the same over time.

Lognormal distribution

The logarithm of a Lognormal distribution is found to be a Normal. As a

result, the Lognormal distribution with parameters (µ, σ) (see Figure 4.3) is

defined by the following probability density function:

fZ̃(z) =
1

z ·
√
2 · π · σ

· exp
[

−1

2
·
(

ln(z)− µ

σ

)2
]

with z > 0 and −∞ < µ < +∞ and σ > 0

The j-th raw moment of the Lognormal distribution is given by:

αj,Z̃ = exp

(

j2 · σ2

2
+ µ · j

)

As a result, the mean of the Lognormal distribution is found to be:

E
(

Z̃
)

= exp

(

σ2

2
+ µ

)
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Figure 4.3: Lognormal distribution with parameters 2 and 0.5

the variance is found to be:

Var
(

Z̃
)

= exp(σ2 + 2 · µ) · (exp σ2 − 1)

the skewness is found to be:

Sk
(

Z̃
)

= (exp σ2 + 2) ·
√

exp σ2 − 1 = CV
(

Z̃
)

·
[

3 + CV
(

Z̃
)2
]

and the coefficient of variation is found to be:

CV
(

Z̃
)

=
√

exp σ2 − 1

We point out that the skewness, that is always positive, increases as the

coefficient of variation increases.

Gamma distribution

The Gamma distribution with parameters (α, β) (see Figure 4.4) is defined

by the following probability density function:

fZ̃(z) =
βα · zα−1
Γ(α)

· e−β ·z with z > 0 and α > 0 and β > 0
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Figure 4.4: Gamma distribution with parameters 4 and 0.4

The mean of the Gamma distribution is given by:

E
(

Z̃
)

=
α

β

the variance is given by:

Var
(

Z̃
)

=
α

β2

the skewness is given by:

Sk
(

Z̃
)

=
2√
α

and the coefficient of variation is given by:

CV
(

Z̃
)

=
1√
α

Weibull distribution

The Weibull distribution with parameters (λ, k) (see Figure 4.5) is defined

by the following probability density function:

fZ̃(z) =
k · zk−1
λk

· exp
(

− z
λ

)k

with z > 0 and λ > 0 and k > 0
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Figure 4.5: Weibull distribution with parameters 5 and 1

The mean of the Weibull distribution is given by:

E
(

Z̃
)

= λ · Γ
(

1 +
1

k

)

the variance is given by:

Var
(

Z̃
)

= λ2 ·
[

Γ

(

1 +
2

k

)

− Γ2

(

1 +
1

k

)

]

the skewness is given by:

Sk
(

Z̃
)

=

Γ

(

1 +
3

k

)

− 3 · Γ
(

1 +
2

k

)

· Γ
(

1 +
1

k

)

+ 2 · Γ3

(

1 +
1

k

)

[

Γ

(

1 +
2

k

)

− Γ2

(

1 +
1

k

)

]3/2

and the coefficient of variation is given by:

CV
(

Z̃
)

=

√

Γ

(

1 +
2

k

)

− Γ2

(

1 +
1

k

)

Γ

(

1 +
1

k

)
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Inverse Normal distribution

The Inverse Normal distribution with parameters (µ, λ) (see Figure 4.6) is

defined by the following probability density function:

fZ̃(z) =

√

λ

2 · π · z3 · exp
[

−λ · (z − µ)2

2 · µ2 · z

]

with z > 0 and µ > 0 and λ > 0

0 10 20 30

0.05

0.1

0.15

0.2

z

f
(z
)

Figure 4.6: Inverse Normal distribution with parameters 10 and 40

The mean of the Inverse Normal distribution is given by:

E
(

Z̃
)

= µ

the variance is given by:

Var
(

Z̃
)

=
µ3

λ

the skewness is given by:

Sk
(

Z̃
)

= 3 ·
√

µ

λ
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and the coefficient of variation is given by:

CV
(

Z̃
)

=

√

µ

λ

Pareto distribution

The Pareto (type II) distribution with parameters (α, λ) (see Figure 4.7) is

defined by the following probability density function:

fZ̃(z) =
α

λ
·
(

1 +
z

λ

)−(α+1)

with z > 0 and α > 0 and λ > 0

0 10 20 30

0.05

0.1

0.15

0.2

z

f
(z
)

Figure 4.7: Pareto distribution with parameters 10 and 90

The mean of the Pareto distribution is given by:

E
(

Z̃
)

=
λ

α− 1
with α > 1

the variance is given by:

Var
(

Z̃
)

=
λ2 · α

(α− 1)2 · (α− 2)
with α > 2
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the skewness is given by:

Sk
(

Z̃
)

=
2 · (1 + α)

α− 3
·
√

α− 2

α
with α > 3

and the coefficient of variation is given by:

CV
(

Z̃
)

=

√

α

α− 2
with α > 2

4.1.3 Aggregate claim amount

Using the definitions and assumptions above, we are able to determine the

aggregate claim amount distribution. The cumulant generating function of

the aggregate claim amount distribution is found to be:2

ΨX̃t
(s) = ΨK̃t

[

ΨZ̃t
(s)
]

Simple compound Poisson process

The simple compound Poisson process is a compound process that produces

the aggregate claim amount distribution, assuming that the distribution of

the number of claims is a simple Poisson. Hence, using equation (4.3), the

cumulant generating function of the aggregate claim amount distribution is

found to be:

ΨX̃t
(s) = ΨK̃t

[

ΨZ̃t
(s)
]

= nt · (eΨZ̃t
(s) − 1) = nt · (MZ̃t

(s)− 1)

Let mt and cZ̃ be the mean at time t and time-independent coefficient of

variation of the single claim amount distribution. Then, using equations (4.2)

and (4.5), the mean of the aggregate claim amount distribution is found to

be:

E
(

X̃t

)

= nt ·mt = E
(

X̃0

)

· (1 + g)t · (1 + i)t

2See Savelli and Clemente [30].
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the variance is found to be:

Var
(

X̃t

)

= nt · α2,Z̃t
= Var

(

X̃0

)

· (1 + g)t · (1 + i)2·t

the skewness is found to be:

Sk
(

X̃t

)

=
nt · α3,Z̃t

(nt · α2,Z̃t
)3/2

= Sk
(

X̃0

)

· 1
√

(1 + g)t

and the coefficient of variation is found to be:

CV
(

X̃t

)

=

√

1

nt

· r2,Z̃t
= CV

(

X̃0

)

· 1
√

(1 + g)t

where:

r2,Z̃t
=
α2,Z̃t

m2
t

= 1 + c2
Z̃

We point out that, when g is positive and increases, the expected value and

variance increase as a function of the power t, then the standard deviation

increases as a function of the power t/2. When i is positive and increases,

the expected value increases as a function of the power t and the variance

increases as a function of the power 2·t, then the standard deviation increases

as a function of the power t. Moreover, we point out that the skewness is

always positive and, when g is positive, it approaches zero over time, because

of the central limit theorem:

lim
t→∞

Sk
(

X̃t

)

= 0 with g > 0

and the coefficient of variation approaches zero over time, because of the

dimension diversification effect:

lim
t→∞

CV
(

X̃t

)

= 0 with g > 0
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Moreover, because of the central limit theorem, the skewness approaches zero

as n0 or g increase, i.e. the dimension of the insurance company increases:

lim
n0→∞

Sk
(

X̃t

)

= lim
g→∞

Sk
(

X̃t

)

= 0

and, because of the dimension diversification effect, the coefficient of variation

approaches zero:

lim
n0→∞

CV
(

X̃t

)

= lim
g→∞

CV
(

X̃t

)

= 0

In conclusion, a variation of i does not affect the skewness and coefficient of

variation, because they are relative indicators.

Mixed compound Poisson process

The mixed compound Poisson process is a compound process that produces

the aggregate claim amount distribution, assuming that the distribution of

the number of claims is a Mixed Poisson. Hence, using equation (4.4), the

cumulant generating function of the aggregate claim amount distribution is

found to be:

ΨX̃t
(s) = ΨK̃t

[

ΨZ̃t
(s)
]

= Ψq̃

[

nt · (eΨZ̃t
(s) − 1)

]

= Ψq̃

[

nt · (MZ̃t
(s)− 1)

]

Hence, the mean of the aggregate claim amount distribution is found to be:

E
(

X̃t

)

= nt ·mt = E
(

X̃0

)

· (1 + g)t · (1 + i)t

the variance is found to be:

Var
(

X̃t

)

= nt · α2,Z̃t
+ n2

t ·m2
t · σ2

q̃ (4.6)

the skewness is found to be:

Sk
(

X̃t

)

=
nt · α3,Z̃t

+ 3 · n2
t ·mt · α2,Z̃t

· σ2
q̃ + n3

t ·m3
t · γq̃ · σ3

q̃
(

nt · α2,Z̃t
+ n2

t ·m2
t · σ2

q̃

)3/2
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and the coefficient of variation is found to be:

CV
(

X̃t

)

=

√

1

nt

· r2,Z̃t
+ σ2

q̃

We point out that the expected value is the same as that of the simple

compound Poisson process and the variance is bigger, because it depends

on σ2
q̃ . Moreover, we point out that the skewness is positive or negative

depending on γq̃. In conclusion, because of equation (4.2), when g is positive

the skewness approaches γq̃ over time:

lim
t→∞

Sk
(

X̃t

)

= γq̃ with g > 0

and the coefficient of variation approaches σq̃ over time:

lim
t→∞

CV
(

X̃t

)

= σq̃ with g > 0

Moreover, the skewness approaches γq̃ as n0 or g increase, i.e. the dimension

of the insurance company increases:

lim
n0→∞

Sk
(

X̃t

)

= lim
g→∞

Sk
(

X̃t

)

= γq̃

and the coefficient of variation approaches σq̃:

lim
n0→∞

CV
(

X̃t

)

= lim
g→∞

CV
(

X̃t

)

= σq̃

As in the simple compound Poisson process, a variation of i does not affect

the skewness and coefficient of variation.
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Chapter 5

Capital requirements for a

single-line insurance company

In this chapter we calculate the capital requirements for market and non-life

premium risk of a single-line insurance company.1 We lay down the following

assumptions:

− the insurance company is single-line, since it only works in the Motor

Third-Party Liability (MTPL) line of business;

− the non-life premium risk, interest rate risk and equity risk are the only

sources of risk;

− the insurance contracts are not multi-annual and the geographical

diversification is absent;

− the security trading is continuous, all securities are perfectly divisible,

no short-sale restrictions, transaction costs, or taxes are present and

there are no riskless arbitrage opportunities;

− the market zero curve is used instead of the EIOPA basic risk-free

interest rates and no volatility or matching adjustment is considered;

− the bond investments are government bonds without credit risk;

1The case study in this chapter is inspired by Ballotta and Savelli [3].
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− the stock investments are non-dividend-paying stocks without strategic

nature, because of the absence of a clear decisive strategy to continue

holding them for long period;

− the stock investments can be considered as type 1 equities;

− the symmetric adjustment is equal to zero;

− the interest rate risk only affects the bond investments and the equity

risk only affects the stock investments.

Furthermore, we assume the relevant parameters shown in Table 5.1. The

initial risk reserve ratio is roughly 1.5 times the Required Solvency Margin

for non-life insurance, required by Solvency 0 and Solvency I.

Table 5.1: Relevant parameters

u0 π0 F0 i g

25% 100,000,000 0 3% 2%

The other relevant parameters, for reasons of simplicity, are estimated by

the Italian market data, provided by the National Association of Insurance

Companies (ANIA) and Institute for the Supervision of Insurance (IVASS).2

Table 5.2 shows the combined ratio net of run-off of the MTPL line of

business, Table 5.3 shows the expense ratio, and Table 5.4 shows the ratio of

claims reserve and written premium amount.

Table 5.2: Combined ratio net of run-off of the MTPL line of business

2014 2015 2016 2017 2018

92.8% 97.9% 102.0% 102.5% 101.3%

The safety loading coefficient, as a multiplier of the gross premium

amount, is estimated by the complement of 100% of the average of the last

five observations of the combined ratio net of run-off:

ϕπ = 0.70%

2See ANIA [1], and IVASS [20].
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Table 5.3: Expense ratio of the MTPL line of business

2014 2015 2016 2017 2018

21.0% 21.5% 21.4% 21.2% 21.1%

Table 5.4: Ratio of claims reserve and written premium amount of the MTPL line
of business

2014 2015 2016 2017 2018

153.5% 158.1% 161.1% 157.5% 150.3%

The expense loading coefficient is estimated by the average of the last five

observations of the expense ratio:

c = 21.24%

The gross premium amount can be written as follows:

πt = Pt + ϕπ · πt + c · πt

then:
πt
Pt

=
1

1− ϕπ − c
= 128.11%

Hence, the safety loading coefficient, as a multiplier of the risk premium

amount, is found to be:

ϕ = ϕπ ·
πt
Pt

= 0.90%

The ratio of claims reserve and gross premium amount is estimated by the

average of the last five observations of the ratio of claims reserve and written

premium amount:

δ = 156.10%

As a result, the initial claims reserve is found to be:

L0 = 156, 100, 000
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and the initial asset value of the portfolio is found to be:

A0 = U0 + L0 = 181, 100, 000

We now assume to allocate 15% to the stock portfolio and 85% to the bond

portfolio. The composition of the stock portfolio is determined through

an optimization procedure. Table 5.5 shows the composition of the bond

portfolio.

Table 5.5: Composition of the bond portfolio

γ1 γ2 γ3 γ5 γ10

40% 25% 15% 10% 10%

Therefore, the initial value of the stock portfolio is found to be:

AS
0 = 15% · A0 = 27, 165, 000

and the initial value of the bond portfolio is found to be:

AB
0 = 85% · A0 = 153, 935, 000

In conclusion, Table 5.6 shows the initial value of each bond investment.

Table 5.6: Initial values of the bond investments

AB1

0 AB2

0 AB3

0 AB5

0 AB10

0

61,574,000 38,483,750 23,090,250 15,393,500 15,393,500

5.1 Annual rate of return

In this section we describe the distributions of the three stocks and five

zero-coupon bonds over time. Therefore, once we have fixed the percentage

invested in each category, we obtain the distribution of the annual rate of

return over time.
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In order to provide correlated prices of stocks and zero-coupon bonds, we

make use of the Monte Carlo simulation to generate the P-Brownian motions

of each stock price and of the short rate (since zero-coupon bond prices

depend on it), and we take advantage of the Cholesky decomposition to inject

correlation. Table 5.7 shows the correlation matrix and Figure 5.1 shows the

simulated standard Brownian motions on weekly basis over a period of three

years. We point out that the standard Brownian motions of the three stock

prices are positively, but not highly correlated between themselves, while the

standard Brownian motion of the short rate is negatively correlated with

the others. Indeed, when the short rate decreases (increases), stock prices

increase (decrease), because investments are cheaper.

Table 5.7: Matrix of correlations between the P-Brownian motion of the short
rate Z(t) and the P-Brownian motions of the stock prices Wh(t)

Z(t) W1(t) W2(t) W3(t)

Z(t) 1 −0.2 −0.2 −0.2

W1(t) −0.2 1 0.25 0.25

W2(t) −0.2 0.25 1 0.25

W3(t) −0.2 0.25 0.25 1

5.1.1 Stock price distributions

We can now describe the distributions of the three stocks over time, using the

model presented in section 3.4 and making use of the Monte Carlo simulation.

We base our analysis on the P-Brownian motions W1(t), W2(t) and W3(t)

above. Table 5.8 shows the real-world drift and diffusion coefficients. We

point out that the stock 1 has a small expected return and a small risk, the

stock 2 has a medium expected return and a medium risk, and the stock 3

has a big expected return and a big risk. Therefore, each stock investment is

efficient from a risk-return perspective and the choice to invest in the stock

1, 2 or 3 depends on the risk-return preferences of the insurance company.

We are able to simulate the stock price over time through the explicit

solution of the stochastic differential equation, shown in equation (3.20).
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(a) Short rate (b) Stock 1

(c) Stock 2 (d) Stock 3

Figure 5.1: Samples of 100,000 possible trajectories of the correlated P-Brownian
motions on weekly basis over a period of three years
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Table 5.8: Real-world drift and diffusion coefficients of the stock price models

Sh(t) µh σh

h = 1 4% 10%

h = 2 6% 15%

h = 3 8% 20%

However, in order to be consistent with the Cox-Ingersoll-Ross model, used

in next few pages, we prefer to use the Euler method, shown in equation

(3.19). Figure 5.2 shows the simulated stock prices on weekly basis over a

period of three years, assuming initial prices equal to 100. Figure 5.3 shows

the resulting distributions of the stock prices after one, two and three years,

and Table 5.9 shows some elements of descriptive statistics. We point out

that, because of our assumptions, the mean and standard deviation increase

as the riskiness of the stock raises. The bigger the expected value of the stock

price, the bigger its volatility. Similarly, the mean and standard deviation

increase over time, because of a higher level of uncertainty. The skewness is

always positive, i.e. the tail on the right side of the distribution is heavier

than the tail on the left side, resulting in a higher likelihood of great profits

rather than great losses. The distribution becomes more skewed over time

and also as the riskiness of the stock increases. On the contrary, the first

quartile, i.e. the minimum value that cannot be exceeded in a quarter of all

cases, decreases as the riskiness of the stock increases. In conclusion, we can

observe that stock price models described by geometric Brownian motions

produce stocks with Lognormal distributions.

Figure 5.4 shows the resulting distributions of the annual stock

capitalization factors for the first, second and third year, shown in equation

(1.8), and Table 5.10 shows some elements of descriptive statistics. We point

out that we can make the same comments as in the case of the simulated

distributions of the stock prices. However, in this case the distributions are

quite stable over time. Indeed, when a variable is described by a geometric

Brownian motion, its distribution changes over time, but the distribution of

the capitalization factor remains constant for a fixed time increment, such as

one year.
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(a) Stock 1 (b) Stock 2

(c) Stock 3

Figure 5.2: Samples of 100,000 possible trajectories of the stock prices on weekly
basis over a period of three years
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(a) Stock 1 (b) Stock 2 (c) Stock 3

Figure 5.3: Simulated distributions of the stock prices after one, two and three
years

Table 5.9: Descriptive statistics of the simulated stock prices after one, two and
three years

Sh(1) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

h = 1 104.04 10.38 0.2753 64.50 96.84 103.58 110.71 163.03

h = 2 106.19 15.96 0.4489 56.14 94.86 105.02 116.15 198.26

h = 3 108.38 21.83 0.5890 43.37 92.78 106.25 121.64 242.21

Sh(2) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

h = 1 108.31 15.38 0.4210 57.71 97.50 107.26 117.96 194.14

h = 2 112.70 24.17 0.6574 36.17 95.40 110.15 127.12 274.81

h = 3 117.33 33.86 0.8664 29.46 93.02 112.89 136.67 403.24

Sh(3) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

h = 1 112.67 19.63 0.5165 53.55 98.73 111.09 124.75 230.11

h = 2 119.57 31.56 0.8209 32.51 97.18 115.53 137.54 379.65

h = 3 126.96 45.17 1.0845 28.17 94.70 119.90 151.14 541.61
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(a) Stock 1 (b) Stock 2 (c) Stock 3

Figure 5.4: Simulated distributions of the annual stock capitalization factors for
the first, second and third year

Table 5.10: Descriptive statistics of the simulated annual stock capitalization
factors for the first, second and third year

Sh(1)

Sh(0)
Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

h = 1 1.0404 0.1038 0.2753 0.6450 0.9684 1.0358 1.1071 1.6303

h = 2 1.0619 0.1596 0.4489 0.5614 0.9486 1.0502 1.1615 1.9826

h = 3 1.0838 0.2183 0.5890 0.4337 0.9278 1.0625 1.2164 2.4221

Sh(2)

Sh(1)
Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

h = 1 1.0411 0.1047 0.2943 0.6454 0.9685 1.0359 1.1085 1.6289

h = 2 1.0612 0.1598 0.4434 0.5448 0.9479 1.0501 1.1609 2.1111

h = 3 1.0824 0.2184 0.5944 0.4302 0.9265 1.0616 1.2153 2.2938

Sh(3)

Sh(2)
Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

h = 1 1.0403 0.1045 0.3045 0.6688 0.9677 1.0352 1.1075 1.6323

h = 2 1.0610 0.1599 0.4563 0.5147 0.9484 1.0492 1.1603 1.9338

h = 3 1.0822 0.2183 0.5992 0.4113 0.9268 1.0611 1.2139 2.6456

113



5.1.2 Zero-coupon bond price distributions

We can now describe the distributions of the five zero-coupon bonds over

time, using the one-factor short rate models presented in section 3.5 and

making use of the Monte Carlo simulation. We base our analysis on the

P-Brownian motion Z(t) above.

Vasicek model

We now estimate the real-world parameters of the Vasicek model, using linear

regression.3 Daily data on 1-month Treasury rates in the United States

between July 31, 2001, and September 11, 2019, is used as a proxy of short

rates. Let r(t) be the 1-month rate at time t and ∆t be the daily time

interval. Then, regressing ∆r(t) on r(t), we obtain:

∆r(t) = 0.0000114− 0.00117 · r(t) + 0.000640 · ǫ

with ǫ ∼ N (0, 1)

There are about 250 observations per year, so that ∆t = 1/250. Therefore,

we can write:

∆r(t) = 0.292 · (0.0097− r(t)) ·∆t+ 0.0101 · ǫ ·
√
∆t

Since we use historical data, we do not deal with a risk-neutral world, but

with the real world. Using equations (3.1) and (3.31), the discrete-time

version of the real-world Vasicek model is found to be:

∆r(t) = 0.292 · (0.0097− r(t)) ·∆t+ 0.0101 ·∆Z(t)

As a result, the real-world parameters are found to be:

κ = 0.292

3See Hull [16].

114



and:

θ = 0.0097 = 0.97%

and:

v = 0.0101 = 1.01%

The market price of risk is obtained by minimizing the sum of squared

errors between the initial zero-coupon interest rates given by the Vasicek

model and those in the United States market on September 11, 2019, (see

Table 5.11) namely:

λ = argmin
λ

∑

{t=0.5,1,2,3,5,7,10,20,30}

[

RV (0, t)−RM(0, t)
]2

where, using equations (3.23) and (3.36), we have:

RV (0, t) =
− ln a(0, t) + b(0, t) · r(0)

t

where RV (0, t) and RM(0, t) are the spot interest rate with maturity t

according to the Vasicek model and according to the market. As shown

in equation (3.37), we remember that a(0, t) is a function of λ.

Table 5.11: Best interest rates given by the Vasicek model and market interest
rates (continuously compounded)

Maturity (years) Model rate Market rate

0.5 2.00% 1.88%

1 1.98% 1.79%

2 1.96% 1.68%

3 1.94% 1.62%

5 1.90% 1.60%

7 1.88% 1.68%

10 1.85% 1.75%

20 1.81% 2.02%

30 1.79% 2.22%
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As a result, the market price of risk is found to be:

λ = −0.246 (5.1)

Alternatively, daily data on 3-month Treasury rates can be used as a proxy

of short rates. In this case we obtain similar real-world parameters, except

for a lower speed of mean-reversion and for a lower market price of risk.

Using equation (3.38), the risk-neutral parameters are found to be:

κ = 0.292 (5.2)

and:

θ∗ = 0.97%− −0.246 · 1.01%
0.292

= 1.82% (5.3)

and:

v = 1.01% (5.4)

We are able to simulate the short rate over time through the explicit

solution of the Vasicek stochastic differential equation, shown in equation

(3.32). However, in order to be consistent with the Cox-Ingersoll-Ross model,

used in next few pages, we prefer to use the Euler method, shown in equation

(3.31). Figure 5.5 shows the simulated short rate on weekly basis over a

period of three years and the long-run mean interest rate level, assuming the

initial rate equal to 2.01% (1-month Treasury rate in the United States on

September 11, 2019). Figure 5.6 shows the resulting distribution of the short

rate after one, two and three years, and Table 5.12 shows some elements

of descriptive statistics. We point out that, because of our assumptions,

the mean decreases over time, since the long-run mean interest rate level is

smaller than the initial short rate. The standard deviation increases over

time, because of a higher level of uncertainty. Moreover, the skewness is

always close to zero. In conclusion, we can observe that the Vasicek model

produces a short rate with Normal distribution.

Using equation (3.36), we can obtain the simulated zero-coupon bond

prices over time, through the simulated short rate. Figure 5.7 shows the

simulated zero-coupon bond prices on weekly basis over a period of three
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Figure 5.5: Samples of 100,000 possible trajectories of the Vasicek short rate on
weekly basis over a period of three years and, superimposed in red,
the long-run mean interest rate level

Figure 5.6: Simulated distribution of the Vasicek short rate after one, two and
three years

Table 5.12: Descriptive statistics of the simulated Vasicek short rate after one,
two and three years

r(t) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 1.74% 0.88% −0.0003 −2.28% 1.15% 1.74% 2.33% 5.74%

t = 2 1.54% 1.10% −0.0008 −2.94% 0.80% 1.55% 2.28% 6.98%

t = 3 1.40% 1.20% 0.0067 −3.89% 0.59% 1.40% 2.21% 6.51%
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years and the long-run mean bond price levels, assuming terminal payoffs

equal to 1. Figure 5.8 shows the resulting distributions of the zero-coupon

bond prices after one, two and three years, and Table 5.13 shows some

elements of descriptive statistics. We point out that, as we could expect, the

mean decreases as the time to maturity increases, because the discounting

effect is bigger. The standard deviation increases as the time to maturity

raises, since a higher time to maturity implies a bigger level of uncertainty,

and the skewness, that is always positive, increases as well. Moreover,

according to the Vasicek model, the short rate can be negative, and thus

zero-coupon bond prices can be higher than one. However, the bonds with

the highest time to maturity have maxima lower than one. This is because

the short rate is not expected to remain negative so long that also the long

interest rates become negative. Indeed, the long-run mean interest rate level

is positive and the negative short rate is not expected to become too large in

absolute value. This situation is more likely to be refuted over time, because

the standard deviation increases, implying a bigger level of uncertainty, that

can produce situations rather remote from expectations. In conclusion, the

mean increases over time, because the short rate decreases over time. This is

because the long-run mean interest rate level is smaller than the initial short

rate. The standard deviation and skewness increase over time.

Figure 5.9 shows the resulting distributions of the annual zero-coupon

bond capitalization factors for the first, second and third year, shown

in equation (1.10), and Table 5.14 shows some elements of descriptive

statistics. We point out that, for the first year, the 1 year zero-coupon bond

capitalization factor is not stochastic. Indeed, the initial zero-coupon bond

prices are deterministic, because the initial short rate is given and, after one

year, the 1 year zero-coupon bond price is equal to one for sure. Moreover,

the mean and standard deviation increase as the time to maturity raises. The

bigger the expected value of the return on the bond investment, the bigger

its volatility. The skewness, that is always positive, increases as the time to

maturity raises. In conclusion, the mean decreases over time, because the

short rate decreases as well. The standard deviation increases over time,

because of a higher level of uncertainty, and the skewness increases as well.
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(a) 1 year bond (b) 2 years bond

(c) 3 years bond (d) 5 years bond

(e) 10 years bond

Figure 5.7: Samples of 100,000 possible trajectories of the zero-coupon bond prices
on weekly basis given by the Vasicek model over a period of three years
and, superimposed in red, the long-run mean bond price levels
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(a) 1 year bond (b) 2 years bond (c) 3 years bond

(d) 5 years bond (e) 10 years bond

Figure 5.8: Simulated distributions of the zero-coupon bond prices given by the
Vasicek model after one, two and three years
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Table 5.13: Descriptive statistics of the simulated zero-coupon bond prices given
by the Vasicek model after one, two and three years

B(1, 1+ i) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 0.9827 0.0075 0.0235 0.9492 0.9776 0.9827 0.9877 1.0175

i = 2 0.9656 0.0129 0.0408 0.9087 0.9569 0.9655 0.9742 1.0262

i = 3 0.9487 0.0167 0.0537 0.8757 0.9375 0.9486 0.9598 1.0280

i = 5 0.9159 0.0212 0.0706 0.8243 0.9015 0.9157 0.9300 1.0178

i = 10 0.8387 0.0239 0.0869 0.7364 0.8224 0.8383 0.8545 0.9550

B(2, 2+ i) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 0.9844 0.0094 0.0293 0.9390 0.9781 0.9843 0.9907 1.0233

i = 2 0.9685 0.0161 0.0506 0.8918 0.9576 0.9683 0.9793 1.0364

i = 3 0.9526 0.0209 0.0665 0.8542 0.9384 0.9522 0.9665 1.0415

i = 5 0.9208 0.0265 0.0872 0.7977 0.9028 0.9203 0.9385 1.0354

i = 10 0.8442 0.0300 0.1072 0.7074 0.8238 0.8435 0.8641 0.9754

B(3, 3+ i) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 0.9856 0.0103 0.0245 0.9428 0.9786 0.9856 0.9925 1.0318

i = 2 0.9706 0.0177 0.0477 0.8982 0.9586 0.9705 0.9824 1.0515

i = 3 0.9553 0.0230 0.0651 0.8623 0.9397 0.9551 0.9706 1.0616

i = 5 0.9243 0.0292 0.0877 0.8077 0.9044 0.9239 0.9437 1.0617

i = 10 0.8482 0.0331 0.1097 0.7183 0.8256 0.8476 0.8701 1.0061
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(a) 1 year bond (b) 2 years bond (c) 3 years bond

(d) 5 years bond (e) 10 years bond

Figure 5.9: Simulated distributions of the annual zero-coupon bond capitalization
factors given by the Vasicek model for the first, second and third year
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Table 5.14: Descriptive statistics of the simulated annual zero-coupon bond
capitalization factors given by the Vasicek model for the first, second
and third year

B(1, 0+i)

B(0, 0+i)
Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 1.0200 - - - - - - -

i = 2 1.0220 0.0078 0.0235 0.9871 1.0167 1.0219 1.0272 1.0582

i = 3 1.0234 0.0136 0.0408 0.9632 1.0142 1.0233 1.0325 1.0876

i = 5 1.0253 0.0213 0.0634 0.9328 1.0109 1.0251 1.0394 1.1272

i = 10 1.0271 0.0287 0.0853 0.9042 1.0076 1.0267 1.0461 1.1667

B(2, 1+i)

B(1, 1+i)
Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 1.0177 0.0078 0.0229 0.9828 1.0125 1.0176 1.0229 1.0536

i = 2 1.0196 0.0110 0.0289 0.9743 1.0121 1.0195 1.0269 1.0692

i = 3 1.0210 0.0157 0.0439 0.9552 1.0103 1.0209 1.0315 1.0921

i = 5 1.0228 0.0226 0.0657 0.9265 1.0074 1.0227 1.0379 1.1227

i = 10 1.0246 0.0297 0.0873 0.8995 1.0044 1.0243 1.0443 1.1565

B(3, 2+i)

B(2, 2+i)
Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 1.0160 0.0097 0.0277 0.9772 1.0094 1.0160 1.0224 1.0650

i = 2 1.0178 0.0124 0.0361 0.9668 1.0094 1.0177 1.0261 1.0725

i = 3 1.0192 0.0167 0.0536 0.9443 1.0079 1.0190 1.0303 1.0914

i = 5 1.0210 0.0233 0.0760 0.9154 1.0052 1.0207 1.0365 1.1209

i = 10 1.0227 0.0302 0.0971 0.8882 1.0022 1.0221 1.0427 1.1567
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Cox-Ingersoll-Ross model

We now estimate the real-world parameters of the Cox-Ingersoll-Ross model,

by starting from the parameters of the Vasicek model. We assume that the

risk-neutral speed of mean-reversion and long-run mean interest rate level

of the Cox-Ingersoll-Ross model are the same as those used in the Vasicek

model. Using equations (5.2) and (5.3), they are found to be:

κ∗ = 0.292

and:

θ∗ = 1.82%

Furthermore, we assume that the initial risk-neutral interest rate exposure

of the Cox-Ingersoll-Ross model is the same as that of the Vasicek model.

Using equation (5.4), we obtain:

v ·
√

r(0) = 1.01%

then:

v =
1.01%√
2.01%

= 7.12%

Using equation (3.45), the real-world interest rate exposure is found to be

the same as the risk-neutral interest rate exposure.

In order to compute the other real-world parameters, we assume that the

initial market price of risk of the Cox-Ingersoll-Ross model is the same as

that of the Vasicek model. Using equation (5.1), we obtain:

η ·
√

r(0)

v
= −0.246

then:

η =
−0.246 · 7.12%√

2.01%
= −0.124

As a result, using equation (3.45), the real-world speed of mean-reversion
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and long-run mean interest rate level are found to be:

κ = 0.292 + 0.124 = 0.416

and:

θ =
1.82% · 0.292

0.416
= 1.28%

Table 5.15 shows the initial zero-coupon interest rates given by the Cox-

Ingersoll-Ross model. We point out that the initial zero curve given by

the Cox-Ingersoll-Ross model lies above the initial zero curve given by the

Vasicek model, therefore the initial zero-coupon bond prices given by the

Cox-Ingersoll-Ross model are smaller.

Table 5.15: Interest rates given by the Cox-Ingersoll-Ross model (continuously
compounded)

Maturity (years) Model rate

0.5 2.00%

1 1.98%

2 1.96%

3 1.94%

5 1.90%

7 1.88%

10 1.85%

20 1.81%

30 1.80%

Using equation (3.40), we are able to simulate the short rate over time.

Figure 5.10 shows the simulated short rate on weekly basis over a period of

three years and the long-run mean interest rate level, assuming the initial

rate equal to 2.01% as seen in the Vasicek model. Figure 5.11 shows the

resulting distribution of the short rate after one, two and three years, and

Table 5.16 shows some elements of descriptive statistics. We point out that

we can make the same comments about the mean and standard deviation

as in the case of the Vasicek model but, on the contrary, the skewness is

always positive and increases over time. Moreover, the mean is bigger than
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in the Vasicek model and the standard deviation is smaller. In conclusion,

we can observe that the Cox-Ingersoll-Ross model produces a short rate with

Lognormal distribution.

Using equation (3.44), we can obtain the simulated zero-coupon bond

prices over time, through the simulated short rate. Figure 5.12 shows the

simulated zero-coupon bond prices on weekly basis over a period of three

years and the long-run mean bond price levels, assuming terminal payoffs

equal to 1. Figure 5.13 shows the resulting distributions of the zero-coupon

bond prices after one, two and three years, and Table 5.17 shows some

elements of descriptive statistics. We point out that we can make the same

comments about the mean and standard deviation as in the case of the

Vasicek model but, on the contrary, the skewness, that is always negative,

decreases in absolute value as the time to maturity increases and it increases

in absolute value over time. Moreover, according to the Cox-Ingersoll-Ross

model, the short rate cannot be negative, and thus zero-coupon bond prices

are always lower than one. In conclusion, the mean is smaller than in the

Vasicek model, and the standard deviation is smaller as well, therefore the

zero curve lies above the zero curve given by the Vasicek model.

Figure 5.14 shows the resulting distributions of the annual zero-coupon

bond capitalization factors for the first, second and third year, and Table 5.18

shows some elements of descriptive statistics. We point out that we can

make the same comments as in the case of the Vasicek model, except for the

skewness, that decreases in absolute value as the time to maturity increases

and it increases in absolute value over time. Moreover, the skewness is

negative for the first year, because the initial zero-coupon bond prices are

deterministic, but it becomes positive over time. The mean is smaller than

in the Vasicek model and the standard deviation is smaller as well, except

for low times of maturity in the long period. In conclusion, the minimum

is lower than in the Vasicek model, except for low times of maturity in the

medium-long period, and it implies that the downside risk is higher.
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Figure 5.10: Samples of 100,000 possible trajectories of the Cox-Ingersoll-Ross
short rate on weekly basis over a period of three years and,
superimposed in red, the long-run mean interest rate level

Figure 5.11: Simulated distribution of the Cox-Ingersoll-Ross short rate after one,
two and three years

Table 5.16: Descriptive statistics of the simulated Cox-Ingersoll-Ross short rate
after one, two and three years

r(t) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 1.76% 0.80% 0.7412 0.01% 1.17% 1.66% 2.23% 7.23%

t = 2 1.59% 0.92% 1.0137 0% 0.91% 1.44% 2.10% 9.74%

t = 3 1.49% 0.95% 1.1812 0% 0.78% 1.30% 1.99% 8.73%
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(a) 1 year bond (b) 2 years bond

(c) 3 years bond (d) 5 years bond

(e) 10 years bond

Figure 5.12: Samples of 100,000 possible trajectories of the zero-coupon bond
prices on weekly basis given by the Cox-Ingersoll-Ross model over a
period of three years and, superimposed in red, the long-run mean
bond price levels
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(a) 1 year bond (b) 2 years bond (c) 3 years bond

(d) 5 years bond (e) 10 years bond

Figure 5.13: Simulated distributions of the zero-coupon bond prices given by the
Cox-Ingersoll-Ross model after one, two and three years
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Table 5.17: Descriptive statistics of the simulated zero-coupon bond prices given
by the Cox-Ingersoll-Ross model after one, two and three years

B(1, 1+ i) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 0.9826 0.0068 −0.7181 0.9370 0.9785 0.9834 0.9875 0.9975

i = 2 0.9653 0.0116 −0.7011 0.8886 0.9584 0.9667 0.9738 0.9911

i = 3 0.9484 0.0150 −0.6886 0.8504 0.9394 0.9502 0.9593 0.9818

i = 5 0.9154 0.0189 −0.6727 0.7936 0.9039 0.9176 0.9292 0.9578

i = 10 0.8378 0.0211 −0.6580 0.7040 0.8250 0.8402 0.8532 0.8853

B(2, 2+ i) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 0.9840 0.0078 −0.9842 0.9168 0.9796 0.9852 0.9898 0.9976

i = 2 0.9678 0.0134 −0.9627 0.8555 0.9602 0.9699 0.9777 0.9912

i = 3 0.9516 0.0173 −0.9470 0.8090 0.9418 0.9543 0.9644 0.9820

i = 5 0.9194 0.0218 −0.9270 0.7434 0.9070 0.9227 0.9356 0.9580

i = 10 0.8423 0.0243 −0.9088 0.6501 0.8284 0.8460 0.8604 0.8855

B(3, 3+ i) Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 0.9848 0.0081 −1.1491 0.9249 0.9805 0.9864 0.9908 0.9976

i = 2 0.9693 0.0138 −1.1256 0.8687 0.9618 0.9719 0.9796 0.9912

i = 3 0.9535 0.0178 −1.1086 0.8254 0.9438 0.9569 0.9668 0.9820

i = 5 0.9219 0.0225 −1.0869 0.7632 0.9095 0.9261 0.9386 0.9580

i = 10 0.8451 0.0250 −1.0671 0.6712 0.8313 0.8497 0.8638 0.8855
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(a) 1 year bond (b) 2 years bond (c) 3 years bond

(d) 5 years bond (e) 10 years bond

Figure 5.14: Simulated distributions of the annual zero-coupon bond capitaliza-
tion factors given by the Cox-Ingersoll-Ross model for the first, sec-
ond and third year
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Table 5.18: Descriptive statistics of the simulated annual zero-coupon bond
capitalization factors given by the Cox-Ingersoll-Ross model for the
first, second and third year

B(1, 0+i)

B(0, 0+i)
Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 1.0200 - - - - - - -

i = 2 1.0218 0.0071 −0.7181 0.9744 1.0176 1.0227 1.0270 1.0374

i = 3 1.0232 0.0123 −0.7011 0.9418 1.0157 1.0246 1.0321 1.0505

i = 5 1.0249 0.0191 −0.6794 0.9013 1.0133 1.0271 1.0387 1.0675

i = 10 1.0265 0.0254 −0.6594 0.8651 1.0110 1.0293 1.0449 1.0836

B(2, 1+i)

B(1, 1+i)
Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 1.0178 0.0071 0.7647 1.0025 1.0127 1.0169 1.0220 1.0673

i = 2 1.0194 0.0102 0.5085 0.9711 1.0124 1.0185 1.0255 1.0933

i = 3 1.0205 0.0143 0.2047 0.9288 1.0113 1.0200 1.0293 1.1130

i = 5 1.0220 0.0201 −0.0277 0.8771 1.0095 1.0220 1.0346 1.1387

i = 10 1.0234 0.0258 −0.1423 0.8313 1.0076 1.0240 1.0397 1.1631

B(3, 2+i)

B(2, 2+i)
Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

i = 1 1.0164 0.0081 1.0438 1.0024 1.0103 1.0150 1.0209 1.0907

i = 2 1.0178 0.0109 0.8314 0.9714 1.0101 1.0163 1.0239 1.0968

i = 3 1.0188 0.0146 0.5254 0.9405 1.0093 1.0175 1.0272 1.1215

i = 5 1.0202 0.0201 0.2474 0.9020 1.0078 1.0193 1.0320 1.1541

i = 10 1.0214 0.0254 0.0936 0.8669 1.0060 1.0210 1.0366 1.1851
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5.2 Aggregate claim amount

In this section we describe the distribution of the aggregate claim amount

over time, using the collective risk model presented in section 4.1 and making

use of the Monte Carlo simulation. We assume that the number of claims

has a Negative Binomial distribution and the single claim amount has a

Lognormal distribution. Once again, for reasons of simplicity, the parameters

are estimated by the Italian market data, provided by ANIA and IVASS.4

Table 5.19 shows the loss ratio on accrual basis of the MTPL line of business.

Table 5.19: Loss ratio on accrual basis of the MTPL line of business

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

87.7% 83.5% 76.8% 68.4% 68.5% 71.8% 76.3% 80.5% 81.3% 80.2%

Through empirical evidence, the initial mean of the single claim amount

distribution is found to be:

m0 = 4, 000

We want the initial expected number of claims to fulfill the assumption about

the initial gross premium amount, namely:

π0 = n0 ·m0 ·
1 + ϕ

1− c

then:

n0 =
π0
m0

· 1− c

1 + ϕ
= 19, 514.37

Through empirical evidence, the initial coefficient of variation of the single

claim amount distribution is found to be:

cZ̃ = 7

The standard deviation of the structure variable is estimated by the product

of the standard deviation of the loss ratio on accrual basis and the ratio of

4See ANIA [1], and IVASS [20].
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gross and risk premium amount:

σq̃ = σ

(

X̃t

πt

)

· πt
Pt

= 0.0820

This result holds because the Italian market data can be seen as the portfolio

of a huge insurance company, and thus the standard deviation of the pure

loss ratio (i.e. the coefficient of variation of the aggregate claim amount)

approaches the standard deviation of the structure variable. Consequently,

the skewness of the structure variable is found to be:

γq̃ = 2 · σq̃ = 0.1640

Therefore, the initial parameters of the Negative Binomial distribution are

found to be:

h =
1

σ2
q̃

= 148.72

and:

p0 =
h

h+ n0

= 0.76%

The parameters of the initial Lognormal distribution are estimated by the

method of moments:

σ =

√

ln
(

1 + c2
Z̃

)

= 1.98

and:

µ0 = ln(m0)−
σ2

2
= 6.34

Using equation (4.1), we are able to simulate the aggregate claim amount over

time. Figure 5.15 shows the simulated distribution of the aggregate claim

amount after one, two and three years, and Table 5.20 shows some elements

of descriptive statistics. We point out that, because of the dynamic portfolio

assumption, the mean and standard deviation increase over time, and the

skewness decreases over time, approaching the skewness of the structure

variable.
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Figure 5.15: Simulated distribution of the aggregate claim amount after one, two
and three years (100,000 simulations)

Table 5.20: Descriptive statistics of the simulated aggregate claim amount after
one, two and three years (amounts in millions)

Xt Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 82.07 7.86 0.3787 54.57 76.67 81.72 87.09 186.18

t = 2 86.12 8.26 0.4146 52.27 80.44 85.75 91.36 248.14

t = 3 90.50 8.61 0.3101 58.40 84.61 90.12 96.01 155.37
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5.3 Market risk

In this section we isolate the effect of the market risk and so we neglect the

non-life premium risk. In this regard, we drop the underwriting result by the

risk reserve, but we still consider the interest on its investment. Moreover,

we assume that the aggregate claim amount is deterministic and equal to its

mean, so that the underwriting result is equal to the safety loadings. As a

result, starting from equation (1.4), the risk reserve is found to be:

Ũt = (1 + ̃t) · Ũt−1 + ̃t · δ · πt−1 + ̃t ·
t−1
∑

k=1

ϕ · Pk

and, starting from equation (1.15), the risk reserve ratio is found to be:

ũt =
(1 + ̃t)

(1 + i) · (1 + g)
· ũt−1 +

̃t · δ
(1 + i) · (1 + g)

+
t−1
∑

k=1

1− c

1 + ϕ
· ̃t · ϕ
(1 + i)k · (1 + g)k

Furthermore, starting from equation (1.7), the annual net cash flows are

found to be:

Ft = πt ·
[

(1− c) + δ ·
(

1− 1

(1 + i) · (1 + g)

)]

− Pt

The annual net cash flows are now deterministic, hence Table 5.21 shows the

resulting value after one, two and three years.

Table 5.21: Value of the annual net cash flows after one, two and three years

F1 F2 F3

8,636,725 9,073,743 9,532,874

5.3.1 Portfolio optimization

We are now able to obtain the distribution of the annual rate of return over

time, using equation (1.12), and considering the zero-coupon bond prices

given by the Vasicek model first and then the Cox-Ingersoll-Ross model. For
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this reason, we need to select the percentage invested in each category of the

stock portfolio. This choice is made by a procedure of optimization in terms

of risk-return profile. We iteratively change each stock investment of 2% so

that, for each combination, we determine the distribution of the annual rate of

return, and thus the distribution of the risk reserve and risk reserve ratio over

time. Figure 5.16 shows, for each portfolio, the pairs of expected spot Return

on Equity, shown in equation (1.22), and minimum Risk-Based Capital as a

percentage of the initial gross premium amount, shown in equation (1.21),

over a period of one, two and three years. For capital requirement purposes,

we deal with the theoretical annual rate of return that is obtained using

equations (3.21) and (3.33) or (3.41), depending on the short rate model

considered (Vasicek model or Cox-Ingersoll-Ross model).

(a) Vasicek model used (b) Cox-Ingersoll-Ross model used

Figure 5.16: Combinations of expected spot Return on Equity and ratio of
minimum Risk-Based Capital and initial gross premium amount over
a period of one, two and three years

Figure 5.17 shows the efficient frontier, i.e. the optimal portfolios that

offer the highest expected return for a defined level of risk or the lowest risk
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for a given level of expected return, over a period of one, two and three years.

We point out that each portfolio is efficient from a risk-return perspective and

the portfolio choice depends on the risk-return preferences. In this thesis we

take into account an extremely prudent insurance company, so we consider

the portfolio that minimizes the risk, even though it is the least profitable.

(a) Vasicek model used (b) Cox-Ingersoll-Ross model used

Figure 5.17: Efficient frontier over a period of one, two and three years

Table 5.22 shows the composition of the stock portfolio with the smallest

risk, the minimum Risk-Based Capital as a percentage of the initial gross

premium amount and the expected spot Return on Equity over a period

of one, two and three years. The least risky optimal portfolio is mostly

composed by the low-risk stock and, for the rest, by the medium and high-risk

stocks. In Table 5.22b, we have less investments in the low and/or high-risk

stocks, and more investments in the medium-risk stock than in Table 5.22a.

In Table 5.22b, moreover, the minimum Risk-Based Capital is lower (higher)

and the Return on Equity is lower (higher) than in Table 5.22a, since the

different stock composition allows to minimize the risk, obtaining a smaller
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(bigger) return. It is not the case over a one-year period, when the skewness

of the zero-coupon bond capitalization factors is negative and the downside

risk is higher, so that the minimization of the risk corresponds to a bigger

minimum Risk-Based Capital and a smaller Return on Equity. Hence, except

over a one-year period, the Vasicek model does not imply a better risk-return

profile than the Cox-Ingersoll-Ross model, and vice versa.

Table 5.22: Composition of the stock portfolio, ratio of minimum Risk-Based
Capital and initial gross premium amount, and expected spot Return
on Equity of the optimal portfolio with the smallest risk over a period
of one, two and three years

(a) Vasicek model used

β1 β2 β3 umarket
RBC

(0, t) RoEmarket (0, t)

t = 1 62% 24% 14% 3.67% 19.31%

t = 2 64% 24% 12% 2.27% 38.23%

t = 3 66% 22% 12% 0.64% 57.11%

(b) Cox-Ingersoll-Ross model used

β1 β2 β3 umarket
RBC

(0, t) RoEmarket (0, t)

t = 1 60% 28% 12% 3.81% 19.20%

t = 2 60% 26% 14% 2.34% 38.24%

t = 3 68% 22% 10% 0.59% 56.45%

The preceding result holds because the three stocks are low correlated,

so that we have a risk diversification effect. Therefore, if the stocks were

perfectly correlated, in order to minimize the risk, we would only invest

in the low-risk stock. Moreover, we stress that the portfolio composition

depends on the time horizon. For example, the composition that reduces

the minimum Risk-Based Capital over a one-year period, does not reduce it

over a period of two and three years. Hence, the portfolio choice depends

on whether the view is short or medium-term. A short-term view is usually

preferred, because it is easier to see the results of the activity. However, in

this situation the risk is not properly managed, since problems could emerge

in the future. Let us take the example of the stock options. Top managers

are tempted to maximize the profit of the company without taking account
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of future risks. Hence, companies could get in troubles and eventually fail, as

it happened during the financial crisis of 2007/2008. Solvency II has a short-

term view, because capital requirements shall be calculated over a one-year

period. Nevertheless, because of the Own Risk and Solvency Assessment

and Forward Looking Assessment of Own Risks (see section 2.7.1), insurance

companies are encouraged to have a medium-term view as well.

In this thesis we take into account an exemplary insurance company, so

we consider the portfolio that minimizes the risk over a period of three years.

Table 5.23 shows the minimum Risk-Based Capital as a percentage of the

initial gross premium amount and the expected spot Return on Equity over a

period of one, two and three years, with the stock composition of the chosen

optimal portfolio. Obviously, over a period of one and two years, the chosen

optimal portfolio has a bigger minimum Risk-Based Capital than before.

However, the situation is not so different from above. In Table 5.23b, the

risk-return profile of the chosen optimal portfolio is worse over a period of one

and two years than in Table 5.23a. This is because the distributions of the

zero-coupon bond capitalization factors usually have a higher downside risk if

the Cox-Ingersoll-Ross model is used. However, over a period of three years,

the composition of the stock portfolio implies a better diversification effect in

the case of the Cox-Ingersoll-Ross model rather than in the Vasicek model.

Furthermore, Figure 5.18 shows the resulting distribution of the annual

rate of return after one, two and three years, and Table 5.24 shows some

elements of descriptive statistics. We point out that the standard deviation

raises over time and thus the mean decreases to offset the increased risk. In

Table 5.24b, the mean and standard deviation are always smaller than in

Table 5.24a. The skewness increases over time, as opposed to Table 5.24a.

In conclusion, Figure 5.19 shows the simulated risk reserve ratio over a

period of three years. Figure 5.20 shows the resulting distribution of the

risk reserve ratio after one, two and three years, and Table 5.25 shows some

elements of descriptive statistics. We point out that the mean and standard

deviation increase over time. The differences between Tables 5.25a and 5.25b

are explained by the results in Table 5.24. In particular, the mean and

standard deviation are higher in the first table than in the second.
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Table 5.23: Stock composition of the chosen optimal portfolio, ratio of minimum
Risk-Based Capital and initial gross premium amount, and expected
spot Return on Equity over a period of one, two and three years

(a) Vasicek model used

β1 β2 β3

66% 22% 12%

umarket
RBC

(0, t) RoEmarket (0, t)

t = 1 3.69% 19.17%

t = 2 2.28% 38.14%

t = 3 0.64% 57.11%

(b) Cox-Ingersoll-Ross model used

β1 β2 β3

68% 22% 10%

umarket
RBC

(0, t) RoEmarket (0, t)

t = 1 3.84% 18.97%

t = 2 2.37% 37.66%

t = 3 0.59% 56.45%

5.3.2 Capital requirements according to the model

We are now able to calculate the capital requirements over a period of one,

two or three years. In doing so, we compute the result for each investment

category and we determine the overall diversification benefit.

Table 5.26 shows the initial value of each stock investment, given by the

stock composition of the chosen optimal portfolio.

Now, we need to be coherent with equation (1.20). Hence, the minimum

Risk-Based Capital of a stock investment is found to be:

RBCSh
(0, t) = α · βh ·

[

U0 +
Lt +

∑t
k=1 ϕ · Pk

∏t
k=1 1 + E(̃k)

]

− ASh
ε (t)

∏t
k=1 1 + E(̃k)

with h = 1, 2, 3
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(a) Vasicek model used (b) Cox-Ingersoll-Ross model used

Figure 5.18: Simulated distribution of the annual rate of return (annually
compounded) after one, two and three years (100,000 simulations)

Table 5.24: Descriptive statistics of the simulated annual rate of return (annually
compounded) after one, two and three years

(a) Vasicek model used

jt Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 2.65% 1.80% 0.1766 −4.02% 1.41% 2.60% 3.82% 11.10%

t = 2 2.44% 1.93% 0.1557 −5.40% 1.11% 2.40% 3.71% 11.63%

t = 3 2.29% 1.99% 0.1538 −6.21% 0.92% 2.24% 3.59% 12.72%

(b) Cox-Ingersoll-Ross model used

jt Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 2.62% 1.74% 0.0720 −5.05% 1.44% 2.60% 3.77% 10.55%

t = 2 2.41% 1.85% 0.1904 −4.86% 1.14% 2.35% 3.62% 11.93%

t = 3 2.26% 1.87% 0.2687 −5.55% 0.97% 2.19% 3.46% 11.84%
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(a) Vasicek model used

(b) Cox-Ingersoll-Ross model used

Figure 5.19: Samples of 100,000 possible trajectories of the risk reserve ratio over
a period of three years

143



(a) Vasicek model used (b) Cox-Ingersoll-Ross model used

Figure 5.20: Simulated distribution of the risk reserve ratio after one, two and
three years

Table 5.25: Descriptive statistics of the simulated risk reserve ratio after one, two
and three years

(a) Vasicek model used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 28.36% 3.10% 0.1766 16.86% 26.23% 28.27% 30.38% 42.93%

t = 2 31.29% 4.03% 0.1935 15.90% 28.52% 31.16% 33.90% 50.10%

t = 3 33.87% 4.69% 0.1764 15.65% 30.63% 33.73% 36.95% 56.72%

(b) Cox-Ingersoll-Ross model used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 28.31% 3.00% 0.0720 15.09% 26.28% 28.28% 30.29% 41.98%

t = 2 31.18% 3.88% 0.1213 15.03% 28.56% 31.10% 33.72% 49.31%

t = 3 33.73% 4.53% 0.1373 16.07% 30.62% 33.62% 36.72% 56.71%
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Table 5.26: Initial values of the stock investments

(a) Vasicek model used

AS1

0 AS2

0 AS3

0

17,928,900 5,976,300 3,259,800

(b) Cox-Ingersoll-Ross model used

AS1

0 AS2

0 AS3

0

18,472,200 5,976,300 2,716,500

therefore, the result above as a percentage of the initial gross premium

amount is found to be:

uSh

RBC(0, t) =
RBCSh

(0, t)

π0
(5.5)

and the minimum Risk-Based Capital of a bond investment is found to be:

RBCBi
(0, t) = (1− α) · γi ·

[

U0 +
Lt +

∑t
k=1 ϕ · Pk

∏t
k=1 1 + E(̃k)

]

− ABi
ε (t)

∏t
k=1 1 + E(̃k)

with i = 1, 2, 3, 5, 10

therefore, the result above as a percentage of the initial gross premium

amount is found to be:

uBi

RBC(0, t) =
RBCBi

(0, t)

π0
(5.6)

where ASh
ε (t) and ABi

ε (t) are the ε-th order quantiles of the values of the

stock and bond investments. The claims reserve, as well as the initial risk

reserve, are not resources of the insurance company, but they belong to the

customers and shareholders, hence we have to drop them. Furthermore, we

take off the safety loadings, because they belong to the underwriting side,

and finally we discount all the amounts to time zero.

We are able to obtain the distributions of the values of the stock and bond
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investments over time, using equations (1.9) and (1.11), and considering

the annual stock capitalization factors and the annual zero-coupon bond

capitalization factors given by the Vasicek model or Cox-Ingersoll-Ross

model. Tables 5.27 and 5.28 show the minimum Risk-Based Capital of

each stock and bond investment as a percentage of the initial gross premium

amount over a period of one, two and three years. We point out that not

only do the capital requirements depend on the riskiness of the investment,

but also on the amount invested, hence the minimum Risk-Based Capital of

the stock investments is bigger in the case of the low-risk stocks. Moreover,

the minimum Risk-Based Capital of the bond investments increases as the

time to maturity raises. As we explained before, for the first year, the 1 year

zero-coupon bond factor is not stochastic, hence it is reasonable to use a risk

measure, such as the minimum Risk-Based Capital, that discounts for the

expected rate of return. Despite this, there is an expected profit, due to the

investment of the claims reserve and safety loadings. As a result, the 1 year

zero-coupon bond always produces a negative minimum Risk-Based Capital,

i.e. a reduction of capital. The other zero-coupon bonds that produce

negative capital requirements are those where the risk is small compared to

the expected profit of the investment. In conclusion, the differences between

Tables 5.27a and 5.27b are only due to the differences in the initial values of

the stock investments, while the differences between Tables 5.28a and 5.28b

are explained by the results in Tables 5.14 and 5.18.

The Degree of Diversification of the risk reserve, calculated on the basis

of the minimum Risk-Based Capital, is given by:

DoD
market

RBC (0, t) =

∑3
h=1 u

Sh

RBC(0, t) +
∑

{i=1,2,3,5,10} u
Bi

RBC(0, t)− u
market

RBC (0, t)
∑3

h=1 u
Sh

RBC(0, t) +
∑

{i=1,2,3,5,10} u
Bi

RBC(0, t)

(5.7)

Table 5.29 shows the Degree of Diversification of the risk reserve over a period

of one, two and three years. Obviously the Degree of Diversification is always

quite high, since the correlation coefficients in Table 5.7 are low or negative.

In Table 5.29b, the Degree of Diversification is higher than in Table 5.29a,

except over a period of two years, because the composition of the stock
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Table 5.27: Ratios of minimum Risk-Based Capital of the stock investments and
initial gross premium amount over a period of one, two and three
years

(a) Vasicek model used

u
Sh

RBC
(0, t) h = 1 h = 2 h = 3 Total

t = 1 3.57% 1.65% 1.14% 6.36%

t = 2 3.36% 1.60% 1.09% 6.06%

t = 3 3.18% 1.53% 1.05% 5.76%

(b) Cox-Ingersoll-Ross model used

u
Sh

RBC
(0, t) h = 1 h = 2 h = 3 Total

t = 1 3.68% 1.65% 0.95% 6.28%

t = 2 3.47% 1.60% 0.91% 5.98%

t = 3 3.29% 1.53% 0.88% 5.70%

Table 5.28: Ratios of minimum Risk-Based Capital of the bond investments and
initial gross premium amount over a period of one, two and three
years

(a) Vasicek model used

u
Bi

RBC
(0, t) i = 1 i = 2 i = 3 i = 5 i = 10 Total

t = 1 −1.04% 0.04% 0.33% 0.48% 0.73% 0.54%

t = 2 −0.36% −0.03% 0.18% 0.34% 0.57% 0.70%

t = 3 −0.72% −0.31% −0.02% 0.19% 0.42% −0.45%

(b) Cox-Ingersoll-Ross model used

u
Bi

RBC
(0, t) i = 1 i = 2 i = 3 i = 5 i = 10 Total

t = 1 −1.04% 0.15% 0.44% 0.59% 0.86% 1.01%

t = 2 −0.35% 0% 0.24% 0.41% 0.67% 0.96%

t = 3 −0.72% −0.32% −0.01% 0.22% 0.47% −0.37%

portfolio implies a better diversification in the case of the Cox-Ingersoll-Ross

model rather than in the Vasicek model.
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Table 5.29: Degree of Diversification of the risk reserve over a period of one, two
and three years

(a) Vasicek model used

DoDmarket
RBC

(0, t)

t = 1 46.52%

t = 2 66.28%

t = 3 87.89%

(b) Cox-Ingersoll-Ross model used

DoDmarket
RBC

(0, t)

t = 1 47.40%

t = 2 65.79%

t = 3 88.99%

5.3.3 Capital requirements according to the standard

formula

We can compare the results according to our model with the results according

to the Solvency II standard formula. In doing so, we compute the Solvency

Capital Requirement for the equity risk sub-module and the Solvency Capital

Requirement for the interest rate risk sub-module, i.e. the sub-module that

affects the zero-coupon bonds. We point out that the standard formula allows

to calculate the capital requirements over a one-year period only.

We remember that the stock investments can be considered as type 1

equities not having a strategic nature and a long-term holding strategy, and

that the symmetric adjustment is equal to zero. Hence, the Solvency Capital

Requirement for equity risk, calculated on a single stock investment, is found

to be:

SCRSh
= 39% · ASh

0 with h = 1, 2, 3 (5.8)

therefore, the result above as a percentage of the initial gross premium

amount is found to be:

uSh

SCR =
SCRSh

π0
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The Solvency Capital Requirement for interest rate risk, calculated on a

single bond investment, is found to be:

SCRBi
= ABi

0 − ABi

0 ·
[

1 +RM(0, i)
]i

[

1 +R+
M(0, i)

]i with i = 1, 2, 3, 5, 10 (5.9)

therefore, the result above as a percentage of the initial gross premium

amount is found to be:

uBi

SCR =
SCRBi

π0

where RM(0, i) and R+
M(0, i) are the spot interest rate with maturity i

according to the market and according to the positive interest rate shock

(see Table 5.30). Indeed, when the market interest rates increase, the bond

prices decrease and thus we have a loss.

Table 5.30: Market interest rates and increased market interest rates (annually
compounded)

Maturity (years) Market rate Increased market rate

0.5 1.89% 3.21%

1 1.80% 3.06%

2 1.69% 2.87%

3 1.63% 2.67%

5 1.61% 2.50%

7 1.69% 2.52%

10 1.76% 2.50%

20 2.03% 2.56%

30 2.23% 2.79%

Tables 5.31 and 5.32 show the Solvency Capital Requirement for equity

risk, calculated on a single stock investment, and the Solvency Capital

Requirement for interest rate risk, calculated on a single bond investment,

as percentages of the initial gross premium amount. We point out that the

differences between Tables 5.31a and 5.31b are only due to the differences

in the initial values of the stock investments. Furthermore, all the capital

requirements are bigger in the case of the standard formula rather than in
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our model. This is because the standard formula was calibrated on riskier

distributions than the distributions of our model.

Table 5.31: Ratios of Solvency Capital Requirement of the stock investments and
initial gross premium amount

(a) Vasicek model used

h = 1 h = 2 h = 3 Total

u
Sh

SCR
6.99% 2.33% 1.27% 10.59%

(b) Cox-Ingersoll-Ross model used

h = 1 h = 2 h = 3 Total

u
Sh

SCR
7.20% 2.33% 1.06% 10.59%

Table 5.32: Ratios of Solvency Capital Requirement of the bond investments and
initial gross premium amount

i = 1 i = 2 i = 3 i = 5 i = 10 Total

u
Bi

SCR
0.75% 0.88% 0.70% 0.65% 1.07% 4.06%

Furthermore, we remember that the scenario of the interest rate risk sub-

module only affects the bond investments and the scenario of the equity risk

sub-module only affects the stock investments. Hence, the Solvency Capital

Requirement for equity risk is found to be:

SCRequity =
3
∑

h=1

SCRSh
= 39% · AS

0 (5.10)

and the Solvency Capital Requirement for interest rate risk is found to be:

SCRinterest rate =
∑

{i=1,2,3,5,10}

SCRBi
(5.11)

The Solvency Capital Requirement for equity risk is the same if we consider

the initial values of the stock investments found by using the Vasicek

model or Cox-Ingersoll-Ross model. As a result, also the Solvency Capital

Requirement for market risk is the same in both the cases.
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We point out that the equity risk and interest rate risk are the only

sources of market risk we have. Hence, the Solvency Capital Requirement

for market risk is found to be:

SCRmarket =
√

SCR2
equity + SCR2

interest rate (5.12)

therefore, the result above as a percentage of the initial gross premium

amount is found to be:

u
market

SCR =
SCRmarket

π0
= 11.34%

Hence, the Degree of Diversification of the risk reserve, calculated on the

basis of the Solvency Capital Requirement, is found to be:

DoD
market

SCR =

∑3
h=1 u

Sh

SCR +
∑

{i=1,2,3,5,10} u
Bi

SCR − u
market

SCR

∑3
h=1 u

Sh

SCR +
∑

{i=1,2,3,5,10} u
Bi

SCR

= 22.57%

We point out that the overall capital requirement is bigger in the case of

the standard formula rather than in our model. Furthermore, the Degree of

Diversification is significant, because of zero correlation between the equity

and interest rate risk sub-modules, but it is quite smaller than in the case of

our model.

The interest rate curve, according to our model, was estimated by

Treasury rates in the United States, assuming that the credit risk and

currency risk were absent. The government bonds, e.g. Treasury rates

in the United States, are close to be risk-free investments. Nevertheless,

government bonds are not completely risk-free, hence we should consider

the credit risk in our model. Furthermore, Treasury rates in the United

States are quoted in US dollars. Nevertheless, the main currency of European

countries, e.g. in Italy, is the euro, hence we should also consider the currency

risk in our model. As a result, the capital requirements for market risk,

according to our model, should be bigger. Moreover, the standard formula

takes into account the EIOPA risk-free interest rate curve. Nowadays, it

is lower than what we are considering in this chapter. As a result, the
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Solvency Capital Requirement for interest rate risk and the Solvency Capital

Requirement for market risk should be smaller, because the interest rate

shock would be smaller as well. Figure 5.21 shows a sensitivity analysis on

the Solvency Capital Requirement for interest rate risk and on the Solvency

Capital Requirement for market risk. We compare the results above with

the results obtained after having applied a parallel negative shift of 150 Bps

in the interest rate curve. We point out that, after the shift, the Solvency

Capital Requirement for interest rate risk is found to be significantly smaller.

As a result, there is a non-negligible reduction in the Solvency Capital

Requirement for market risk.

Interest rate risk Market risk

4.06%

11.34%

0.50%

10.61%

Original market rates

Market rates less 150 Bps

Figure 5.21: Sensitivity analysis on the ratios of Solvency Capital Requirements
and initial gross premium amount

5.3.4 Portfolio composition sensitivity

In section 5.3.2 we observed that the capital requirements decrease, because

of the expected profit represented by the investment of the claims reserve

and safety loadings. The low-risk zero-coupon bonds are thus likely to have a

negative minimum Risk-Based Capital, e.g. for 1 year zero-coupon bonds. As

a consequence, we have a drop in the overall capital requirements calculated

according to our model. Moreover, we assumed that the bond portfolio is

mostly composed by the low-risk investments, hence the capital requirements
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drop further. On the contrary, the capital requirements calculated according

to the standard formula are not reduced by the expected profit and they can

never be negative.

We now make a sensitivity analysis to reduce the impact of those zero-

coupon bonds with negative capital requirements, keeping fixed the stock

composition found through the optimization procedure. Hence, Table 5.33

shows an alternative composition of the bond portfolio.

Table 5.33: Alternative composition of the bond portfolio

γ1 γ2 γ3 γ5 γ10

10% 10% 15% 25% 40%

Table 5.34 shows the initial value of each alternative bond investment.

Table 5.34: Initial values of the alternative bond investments

AB1

0 AB2

0 AB3

0 AB5

0 AB10

0

15,393,500 15,393,500 23,090,250 38,483,750 61,574,000

Table 5.35 shows the minimum Risk-Based Capital of each alternative

bond investment as a percentage of the initial gross premium amount over

a one-year period. We point out that, the negative minimum Risk-Based

Capital of the 1 year zero-coupon bond is now very low.

Table 5.35: Ratios of minimum Risk-Based Capital of the alternative bond
investments and initial gross premium amount over a one-year period

(a) Vasicek model used

u
Bi

RBC
(0, t) i = 1 i = 2 i = 3 i = 5 i = 10 Total

t = 1 −0.26% 0.02% 0.33% 1.20% 2.91% 4.20%

(b) Cox-Ingersoll-Ross model used

u
Bi

RBC
(0, t) i = 1 i = 2 i = 3 i = 5 i = 10 Total

t = 1 −0.26% 0.06% 0.44% 1.48% 3.46% 5.19%

Figure 5.22 shows the sensitivity analysis on the capital requirements

for interest rate risk and on the capital requirements for market risk. We
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compare the results according to the standard formula and according to our

model. We point out that, the Solvency Capital Requirement for interest rate

risk, according to the standard formula, increases significantly with respect

to the original bond composition, as well as the minimum Risk-Based Capital

according to our model. As a result, the capital requirements for market risk

increase with respect to the original bond composition. Moreover, the gap

between the standard formula and our model is reduced.

Interest rate risk Market risk

7.17%

12.79%

4.20%

6.41%

Standard formula

Model

(a) Vasicek model used

Interest rate risk Market risk

7.17%

12.79%

5.19%

7.08%

Standard formula

Model

(b) Cox-Ingersoll-Ross model used

Figure 5.22: Sensitivity analysis on the ratios of capital requirements and initial
gross premium amount
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5.4 Non-life premium risk

In this section we isolate the effect of the non-life premium risk and so we

neglect the market risk. In this regard, we drop the investment result by the

risk reserve, assuming that the annual rate of return is equal to zero. As a

result, the risk reserve is found to be:

Ũt = Ũt−1 +
[

(1 + ϕ) · Pt − X̃t

]

and the risk reserve ratio is found to be:

ũt =
1

(1 + i) · (1 + g)
· ũt−1 +

1− c

1 + ϕ
·
[

(1 + ϕ)− X̃t

Pt

]

We now consider the aggregate claim amount given by the collective risk

model. Figure 5.23 shows the simulated risk reserve ratio over a period of

three years. Figure 5.24 shows the resulting distribution of the risk reserve

ratio after one, two and three years, and Table 5.36 shows some elements

of descriptive statistics. We point out that the standard deviation increases

over time and it is bigger than in presence of the market risk only. On the

contrary, the mean decreases over time and it is smaller than in presence

of the market risk only. This is because the underwriting result is not

big enough to compensate the increase in the gross premium amount, that

depends on the claims inflation and, especially, on the real growth. This

situation represents the risk of rapid growth and it can be avoided by the

ability of the shareholders of adding fresh capital. Moreover, the skewness is

negative.

Figure 5.25 shows the resulting distribution of the annual net cash flows

after one, two and three years, according to equation (1.7), and Table 5.37

shows some elements of descriptive statistics. We point out that the mean

and standard deviation increase over time, and the skewness decreases in

absolute value. Moreover, we stress that the standard deviation and absolute

value of the skewness are the same as in the case of the distribution of the

aggregate claim amount.
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Figure 5.23: Samples of 100,000 possible trajectories of the risk reserve ratio over
a period of three years

Figure 5.24: Simulated distribution of the risk reserve ratio after one, two and
three years

Table 5.36: Descriptive statistics of the simulated risk reserve ratio after one, two
and three years

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 24.44% 7.48% −0.3787 −74.66% 19.66% 24.77% 29.58% 50.62%

t = 2 23.99% 10.36% −0.2924 −124.09% 17.30% 24.34% 31.09% 67.69%

t = 3 23.56% 12.34% −0.2124 −122.94% 15.48% 23.91% 32.00% 73.55%
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Figure 5.25: Simulated distribution of the annual net cash flows after one, two
and three years (100,000 simulations)

Table 5.37: Descriptive statistics of the simulated annual net cash flows after one,
two and three years (amounts in millions)

Ft Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 8.57 7.86 −0.3787 −95.54 3.56 8.92 13.97 36.08

t = 2 9.11 8.26 −0.4146 −152.91 3.87 9.48 14.79 42.96

t = 3 9.55 8.61 −0.3101 −55.32 4.04 9.93 15.44 41.65
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5.4.1 Capital requirements according to the model

We are now able to calculate the capital requirements over a period of one,

two or three years.

Table 5.38 shows the minimum Risk-Based Capital as a percentage of the

initial gross premium amount over a period of one, two and three years. We

point out that the minimum Risk-Based Capital increases over time and it

is much bigger than in the previous section. The aggregate claim amount

is a loss, and it ranges between zero and infinity, while the annual rate of

return is a profit, and it ranges between plus and minus infinity. In the

best case scenario, we produce a zero loss and a high profit and, in the

worst case scenario, we produce a high loss and a high negative profit. In

the previous section, we worked to find an investment strategy that might

reduce the possibility to have a big negative profit, while in this section we

do not care about any risk reduction strategy. Furthermore, the differences

between Tables 5.38a and 5.38b are only due to the different theoretical rates

used for the minimum Risk-Based Capital calculation.

Table 5.38: Ratio of minimum Risk-Based Capital and initial gross premium
amount over a period of one, two and three years

(a) Vasicek model used

t = 1 t = 2 t = 3

u
non-life

RBC
(0, t) 21.87% 30.31% 36.44%

(b) Cox-Ingersoll-Ross model used

t = 1 t = 2 t = 3

u
non-life

RBC
(0, t) 21.87% 30.32% 36.45%

5.4.2 Capital requirements according to the standard

formula

We can compare the results according to our model with the results according

to the Solvency II standard formula.
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We remember that the reserve risk is neglected, as well as reinsurance.

Furthermore, the insurance company only works in the MTPL line of

business, hence the standard deviation for non-life premium and reserve risk

is found to be:

σnl = 10%

The volume measure for non-life premium and reserve risk is found to be:

Vnl = π1 = 105, 060, 000

Using equation (2.1), the Solvency Capital Requirement for non-life premium

and reserve risk as a percentage of the initial gross premium amount is found

to be:

u
nl prem res

SCR =
SCRnl prem res

π0
= 31.52%

Once again, the capital requirement is bigger in the case of the standard

formula rather than in our model. This is because the safety loadings

and size factor are neglected, and because the assumption of Lognormal

distribution for non-life premium and reserve risk is erroneous if we consider

our distribution of the aggregate claim amount.

Furthermore, we point out that the non-life premium risk is the only

source of non-life underwriting risk we have. Hence, the Solvency Capital

Requirement for non-life underwriting risk is found to be the same, namely:

u
non-life

SCR =
SCRnon-life

π0
= 31.52%

5.5 Market and non-life premium risk

In section 5.3 we assumed that the underwriting result was equal to the safety

loadings and that it produced interests year by year. Actually, the interest is

obtained from the investment of the real value of the underwriting result. We

now finally take into account both the market risk and non-life premium risk,

either according to the integrated model or stand-alone model, so that we can

deepen the effect of the small approximation that we previously made. We
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point out that in this case the portfolio optimization would give us another

annual rate of return. Nevertheless, we are now interested in the analysis of

the combination of the results above, hence we keep the rate that we have

previously obtained.

5.5.1 Integrated model

We now deal with the integrated model, considering equations (1.4) and

(1.15).

Figure 5.26 shows the simulated risk reserve ratio over a period of three

years. Figure 5.27 shows the resulting distribution of the risk reserve ratio

after one, two and three years, and Table 5.39 shows some elements of

descriptive statistics. We point out that the market and underwriting effects

are now combined together. Hence, the mean increases over time, because the

financial result is added to the underwriting result, so that they compensate

the increase in the gross premium amount, avoiding the risk of rapid growth.

The standard deviation increases over time and it is bigger than in presence

of the market risk only or non-life premium risk only. The skewness is

negative, as in presence of the non-life premium risk only, but it is lower

in absolute value. Once again, the differences between Tables 5.39a and

5.39b are explained by the results in Table 5.24, and they are the same as in

presence of the market risk only.

The annual net cash flows are the same as in presence of the non-life

premium risk only.

5.5.2 Capital requirements according to the

integrated model

We are now able to calculate the capital requirements over a period of one,

two or three years.

Table 5.40 shows the minimum Risk-Based Capital as a percentage of

the initial gross premium amount over a period of one, two and three years.

We point out that the minimum Risk-Based Capital increases over time and

it is smaller than the sum of the minimum Risk-Based Capital in presence
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(a) Vasicek model used

(b) Cox-Ingersoll-Ross model used

Figure 5.26: Samples of 100,000 possible trajectories of the risk reserve ratio over
a period of three years
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(a) Vasicek model used (b) Cox-Ingersoll-Ross model used

Figure 5.27: Simulated distribution of the risk reserve ratio after one, two and
three years

Table 5.39: Descriptive statistics of the simulated risk reserve ratio after one, two
and three years

(a) Vasicek model used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 29.00% 8.09% −0.2829 −67.52% 23.79% 29.27% 34.50% 60.69%

t = 2 32.63% 11.22% −0.2113 −112.74% 25.34% 32.88% 40.27% 76.11%

t = 3 35.87% 13.46% −0.1494 −110.65% 27.01% 36.13% 45.01% 88.86%

(b) Cox-Ingersoll-Ross model used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 28.95% 8.05% −0.2938 −67.36% 23.77% 29.23% 34.43% 60.65%

t = 2 32.52% 11.16% −0.2192 −112.50% 25.29% 32.79% 40.14% 75.78%

t = 3 35.73% 13.40% −0.1562 −110.43% 26.91% 36.00% 44.83% 88.40%
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of the market risk only and non-life premium risk only. This is because

we have a diversification effect, since the annual rate of return is simulated

independently of the aggregate claim amount. Furthermore, in Table 5.40b,

the minimum Risk-Based Capital is smaller over a one-year period and bigger

over a period of two and three years than in Table 5.40a, even though it was

different in presence of the market risk only. Over a one-year period, the

distributions of the zero-coupon bond capitalization factors usually have a

higher downside risk if the Cox-Ingersoll-Ross model is used, but now we

have a better diversification effect, because of the presence of the aggregate

claim amount.

Table 5.40: Ratio of minimum Risk-Based Capital and initial gross premium
amount over a period of one, two and three years

(a) Vasicek model used

t = 1 t = 2 t = 3

uRBC(0, t) 18.51% 22.90% 25.66%

(b) Cox-Ingersoll-Ross model used

t = 1 t = 2 t = 3

uRBC(0, t) 18.50% 22.96% 25.79%

Now, we can calculate the Degree of Diversification of the risk reserve on

the level of the minimum Risk-Based Capital for market risk or on the level

of the minimum Risk-Based Capital of the stock or bond investments, so that

we can observe the partial diversification effect, due to the last aggregation

phase, or the total diversification effect. In the first case, it is given by:

DoDRBC(0, t) =
u
market

RBC (0, t) + u
non-life

RBC (0, t)− uRBC(0, t)

u
market

RBC (0, t) + u
non-life

RBC (0, t)
(5.13)

and, in the second case, it is given by:

DoD
total

RBC(0, t) =
u-sum

market

RBC (0, t) + u
non-life

RBC (0, t)− uRBC(0, t)

u-sum
market

RBC (0, t) + u
non-life

RBC (0, t)
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where:

u-sum
market

RBC (0, t) =
3
∑

h=1

uSh

RBC(0, t) +
∑

{i=1,2,3,5,10}

uBi

RBC(0, t)

Table 5.41 shows the partial and total Degrees of Diversification of the risk

reserve over a period of one, two and three years. The partial and total

Degrees of Diversification are not extremely high, although the annual rate

of return is simulated independently of the aggregate claim amount. This is

because the minimum Risk-Based Capital of the market risk is very small

compared with the minimum Risk-Based Capital of the non-life premium

risk and thus the diversification effect is not fully exploited. Furthermore, in

Table 5.41b, the partial and total Degrees of Diversification are higher over

a period of one and two years and lower over a period of three years than in

Table 5.41a, even though it was different in presence of the market risk only.

This is because the presence of the aggregate claim amount implies a different

diversification effect in the case of the Vasicek model or Cox-Ingersoll-Ross

model.

Table 5.41: Degree of Diversification of the risk reserve over a period of one, two
and three years

(a) Vasicek model used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 27.60% 35.68%

t = 2 29.72% 38.21%

t = 3 30.80% 38.54%

(b) Cox-Ingersoll-Ross model used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 28.04% 36.57%

t = 2 29.76% 38.36%

t = 3 30.37% 38.27%
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5.5.3 Stand-alone model

We now deal with the stand-alone model, considering the following risk

reserve:

Ũt = ŨM
t + ŨNL

t (5.14)

where:

ŨM
t = (1 + ̃t) · ŨM

t−1 + ̃t · δ · πt−1 + ̃t ·
t−1
∑

k=1

ϕ · Pk

and:

ŨNL
t = ŨNL

t−1 +
[

(1 + ϕ) · Pt − X̃t

]

Furthermore, the initial values of the risk reserves are given by:

UM
0 = U0 = 25, 000, 000

and:

UNL
0 = 0

The risk reserve ratio is found to be:

ũt = ũMt + ũNL
t (5.15)

where:

ũMt =
(1 + ̃t)

(1 + i) · (1 + g)
· ũMt−1+

̃t · δ
(1 + i) · (1 + g)

+
t−1
∑

k=1

1− c

1 + ϕ
· ̃t · ϕ
(1 + i)k · (1 + g)k

and:

ũNL
t =

1

(1 + i) · (1 + g)
· ũNL

t−1 +
1− c

1 + ϕ
·
[

(1 + ϕ)− X̃t

Pt

]

Figure 5.28 shows the simulated risk reserve ratio over a period of three

years. Figure 5.29 shows the resulting distribution of the risk reserve ratio

after one, two and three years, and Table 5.42 shows some elements of

descriptive statistics. We point out that we can make the same comments as

in the case of the integrated model. As we could expect, after one year, the
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descriptive statistics of the stand-alone model are the same as in the case of

integrated model, because the risk reserve equations are found to be the same

as well. On the other hand, after two and three years, we have some small

differences, especially in the standard deviation, that is smaller than in the

case of the integrated model, and skewness, that is bigger in absolute value

than in the case of the integrated model. Obviously the differences become

bigger over time, because we repeat the approximation several times. In

conclusion, the mean is roughly the same as in the case of the integrated

model, since we assume that the underwriting result is equal to its mean.

Figure 5.30 shows the QQ-plot of the integrated and stand-alone

distributions of the risk reserve ratios after one, two and three years. We

point out that, as we could expect, the integrated and stand-alone quantiles

are found to be exactly the same after one year, because the integrated and

stand-alone distributions of the risk reserves are found to be the same as well.

On the other hand, after two and three years, the integrated and stand-alone

quantiles are roughly equal, even though there are some small differences,

especially on the distribution tails. As a result, the capital requirements of

the stand-alone model will be slightly different from the integrated model.

5.5.4 Capital requirements according to the

stand-alone model

We are now able to calculate the capital requirements over a period of one,

two or three years.

Table 5.43 shows the minimum Risk-Based Capital as a percentage of

the initial gross premium amount over a period of one, two and three years.

We point out that we can make the same comments as in the case of the

integrated model. Once again, as we could expect, the minimum Risk-Based

Capital over a one-year period is the same as in the case of the integrated

model. On the other hand, over a period of two and three years, the minimum

Risk-Based Capital is smaller than in the case of the integrated model,

because we partially neglect the risk represented by the investment of the

underwriting result, since we assume that it is equal to the safety loadings.
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(a) Vasicek model used

(b) Cox-Ingersoll-Ross model used

Figure 5.28: Samples of 100,000 possible trajectories of the risk reserve ratio over
a period of three years
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(a) Vasicek model used (b) Cox-Ingersoll-Ross model used

Figure 5.29: Simulated distribution of the risk reserve ratio after one, two and
three years

Table 5.42: Descriptive statistics of the simulated risk reserve ratio after one, two
and three years

(a) Vasicek model used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 29.00% 8.09% −0.2829 −67.52% 23.79% 29.27% 34.50% 60.69%

t = 2 32.63% 11.10% −0.2218 −112.66% 25.43% 32.89% 40.21% 74.92%

t = 3 35.87% 13.20% −0.1647 −105.47% 27.20% 36.16% 44.85% 87.61%

(b) Cox-Ingersoll-Ross model used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 28.95% 8.05% −0.2938 −67.36% 23.77% 29.23% 34.43% 60.65%

t = 2 32.52% 11.05% −0.2290 −112.43% 25.36% 32.81% 40.08% 74.65%

t = 3 35.73% 13.15% −0.1703 −105.32% 27.10% 36.02% 44.68% 87.18%

168



(a) Vasicek model used (b) Cox-Ingersoll-Ross model used

Figure 5.30: QQ-plot of the integrated and stand-alone distributions of the risk
reserve ratios after one, two and three years

Table 5.43: Ratio of minimum Risk-Based Capital and initial gross premium
amount over a period of one, two and three years

(a) Vasicek model used

t = 1 t = 2 t = 3

uRBC(0, t) 18.51% 22.64% 25.22%

(b) Cox-Ingersoll-Ross model used

t = 1 t = 2 t = 3

uRBC(0, t) 18.50% 22.74% 25.27%

Table 5.44 shows the partial and total Degrees of Diversification of the

risk reserve over a period of one, two and three years. Once again, we can

make the same comments as in the case of the integrated model. However,

in Table 5.44b, the partial Degree of Diversification is higher over a one-year

period and lower over a period of two and three years than in Table 5.44a,
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while the total Degree of Diversification is higher over a period of one and two

years and lower over a period of three years than in Table 5.44a. Furthermore,

as we could expect, the partial and total Degrees of Diversification over a

one-year period are the same as in the case of the integrated model. On the

other hand, over a period of two and three years, the partial and total Degrees

of Diversification are bigger than in the case of the integrated model, because

the minimum Risk-Based Capital is lower than in the case of the integrated

model.

Table 5.44: Degree of Diversification of the risk reserve over a period of one, two
and three years

(a) Vasicek model used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 27.60% 35.68%

t = 2 30.51% 38.90%

t = 3 31.98% 39.58%

(b) Cox-Ingersoll-Ross model used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 28.04% 36.57%

t = 2 30.43% 38.95%

t = 3 31.77% 39.52%

5.5.5 Capital requirements according to the standard

formula

We can compare the results according to our model with the results according

to the Solvency II standard formula.

The Solvency Capital Requirement for market and non-life underwriting

risk is found to be:

SCR =
√

SCR2
market + 2 · 0.25 · SCRmarket · SCRnon-life + SCR2

non-life

(5.16)
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therefore, the result above as a percentage of the initial gross premium

amount is found to be:

uSCR =
SCR

π0
= 36.07%

Hence, the Degree of Diversification of the risk reserve, calculated on the

basis of the Solvency Capital Requirement and on the level of risk modules,

is found to be:

DoDSCR =
u
market

SCR + u
non-life

SCR − uSCR

u
market

SCR + u
non-life

SCR

= 15.85%

and, the Degree of Diversification of the risk reserve, calculated on the basis

of the Solvency Capital Requirement and on the level of risk sub-modules, is

found to be:

DoD
total

SCR =

∑3
h=1 u

Sh

SCR +
∑

{i=1,2,3,5,10} u
Bi

SCR + u
non-life

SCR − uSCR

∑3
h=1 u

Sh

SCR +
∑

{i=1,2,3,5,10} u
Bi

SCR + u
non-life

SCR

= 21.88%

We point out that the overall capital requirement is bigger in the case of

the standard formula rather than in our model. Furthermore, the partial

Degree of Diversification is smaller than in the case of our model, but it

is significant, although the correlation is not equal to zero. That is also

because the Solvency Capital Requirement for market risk is small, but it is

not so small compared with the Solvency Capital Requirement for non-life

underwriting risk. In this regard, we can understand that the diversification

is less effective when the risk mostly depends on a single source. As a result,

if we wanted to further improve the Degree of Diversification, we should

have had risk modules with balanced Solvency Capital Requirements. In

conclusion, also the total Degree of Diversification is smaller than in the case

of our model.

Figure 5.31 shows a sensitivity analysis on the Solvency Capital

Requirement for market and non-life underwriting risk. We compare the

result above with the result obtained after having applied a parallel negative
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shift of 150 Bps in the interest rate curve. We point out that, after the shift,

the Solvency Capital Requirement for market and non-life underwriting risk

is found to be smaller, because the Solvency Capital Requirement for interest

rate risk is found to be significantly smaller.

Market and non-life underwriting risk

36.07% 35.68%

Original market rates

Market rates less 150 Bps

Figure 5.31: Sensitivity analysis on the ratio of Solvency Capital Requirement
and initial gross premium amount

5.6 Interest rate exposure

In this chapter we assumed that the insurance liabilities are not affected by

changes in the term structure of interest rates. We now consider that also the

claims reserve is sensitive to interest rates, so that we can study the interest

rate exposure of the portfolio.

For reasons of simplicity, the development triangles are estimated by the

Italian market data, provided by ANIA and IVASS.5 Table 5.45 shows the

settlement speed for amount of the MTPL line of business.

Our development triangle of cumulative paid amounts shall give a

Solvency II claims reserve equal to 156,100,000. In this regard, for each

accident year, we multiply the settlement speed for amount and the expected

ultimate cost at the starting time of our analysis. Furthermore, we use

5See ANIA [1], and IVASS [20].
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the Paid Chain-Ladder method to estimate the future cumulative and

incremental paid amounts. Then, we discount the incremental paid amounts,

so that we are able to calculate the best estimate of the claims reserve, and

we sum up the risk margin. In this context, we assume that the expected

ultimate costs are equal to the expected ultimate cost of the first accident

year, otherwise they are bigger or smaller by 5%. Moreover, according to the

market data provided by ANIA and IVASS, we assume that the risk margin

is equal to 4.5% of the best estimate.6 As a result, by changing the expected

ultimate cost of the first accident year, and so the cumulative paid amounts,

the claims reserve calculated so far can be found to be equal to 156,100,000.

For this analysis, we need the market interest rates with maturity from 1

to 12, but in Table 5.30 we do not have all of them. In order to obtain the

missing rates, we apply a polynomial interpolation of third order. Figure 5.32

shows the market or interpolated interest rate term structure and Table 5.46

shows the value of the interpolated interest rates for the maturities where

the market interest rates were absent.

0 5 10 15 20 25 30
0%

0.5%

1%

1.5%

2%

2.5%

3%

Maturity (years)

In
te
re
st

ra
te

Market term structure

Interpolated term structure

Figure 5.32: Market interest rates and interpolated interest rates (annually
compounded)

Table 5.47 shows the development triangle of undiscounted cumulative

6See ANIA [1], and IVASS [20].
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Table 5.46: Interpolated interest rates (annually compounded)

Maturity (years) Interpolated rate

4 1.68%

6 1.65%

8 1.66%

9 1.67%

11 1.72%

12 1.75%

paid amounts obtained through the procedure described so far, and the

development factors. We assume that the unpaid claims are settled within

one year, so that we have a one-year triangle tail. Table 5.48 shows the

resulting development triangle of undiscounted incremental paid amounts

and Table 5.49 shows the resulting lower development triangle of discounted

incremental paid amounts. As we discussed, the Solvency II claims reserve

is found to be equal to 156,100,000 of which 149,377,990 represents the best

estimate and 6,722,010 represents the risk margin. On the other side, the

Italian GAAP claims reserve is found to be equal to 156,925,978.

Starting from the development triangles of the incremental paid amounts,

we are able to calculate some financial indicators of the liabilities. Table 5.50

shows the internal rate of return, duration and convexity. Since the term

structure of interest rates is not flat, we compute the duration and convexity,

using the internal rate of return. The risk margin is exposed to interest rates,

because we assume that it is a percentage of the best estimate. Nevertheless,

we remember that the interest rate shock for Solvency Capital Requirement

purposes does not affect the risk margin. In any case, the financial indicators

of the liabilities are the same if we consider or not the risk margin, because the

latter is produced by an equal proportion of each incremental paid amount.

We point out that the time to wait before paying the present value of the

claim amounts is on average approximately equal to three years.

We now focus on the asset side of our portfolio. Zero-coupon bonds are

the only investments in our portfolio to be exposed to interest rates. We

remember that Table 5.6 shows the initial value of each bond investment.
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Table 5.50: Financial indicators of the liabilities

Internal rate of return Duration Convexity

1.69% 2.89 16.75

Using interest rates, we are able to calculate the face values (see Table 5.51).

Table 5.51: Face values of the bond investments

AB1

1 AB2

2 AB3

3 AB5

5 AB10

10

62,682,332 39,795,492 24,237,868 16,673,226 18,327,717

Hence, we can calculate some financial indicators of the assets. Table 5.52

shows the internal rate of return, duration and convexity. We point out that

the time to wait before receiving the present value of our investments is on

average approximately equal to three years.

Table 5.52: Financial indicators of the assets

Internal rate of return Duration Convexity

1.71% 2.85 17.54

In conclusion, we can calculate some financial indicators of the portfolio of

assets and liabilities. Table 5.53 shows the internal rate of return, duration

and convexity, considering or not the risk margin. We point out that the

present value of the portfolio, i.e. the difference between the present value

of the assets and the present value of the liabilities, is found to be equal to

4,557,010 when we neglect the risk margin and −2,165,000 when we consider

the risk margin. As a result, the internal rate of return is bigger in the first

case than in the second. Moreover, the duration is positive in both the cases,

i.e. there is not interest rate immunization, so that the portfolio is exposed to

a parallel positive shift in the term structure in the first case and it is exposed

to a parallel negative shift in the term structure in the second case (we see

that the present value of the portfolio is negative). The effect of an increase

(decrease) in interest rates is smaller in absolute value when we neglect the

risk margin, because the duration is smaller as well. The convexity is positive
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in the first case and negative in the second case, so that the loss is contained

and the gain is further increased.

Table 5.53: Financial indicators of the portfolio

Internal rate of return Duration Convexity

Risk margin neglected 2.93% 1.16 34.81

Risk margin considered 1.01% 5.17 −50.55

Using relation (1.24), we are now able to calculate the percentage

variation in the value of the portfolio and, consequently, the absolute

variation. Let us assume a parallel positive shift of 50 Bps in the interest

rate curve. When we neglect the risk margin, we obtain:

∆V

V
≈ −0.52% so that ∆V ≈ −23, 740.14

and when we consider the risk margin, we obtain:

∆V

V
≈ −2.62% so that ∆V ≈ 56, 741.95

The real percentage variations in the value of the portfolio are given by

−0.66% and −2.96% respectively, which are not perfectly equivalent to the

percentages above, because we summarized the term structure of interest

rates with the internal rate of return.

Let us now assume a parallel negative shift of 50 Bps in the interest rate

curve. When we neglect the risk margin, we obtain:

∆V

V
≈ 0.61% so that ∆V ≈ 27, 705.86

and when we consider the risk margin, we obtain:

∆V

V
≈ 2.49% so that ∆V ≈ −54, 006.20

The real percentage variations in the value of the portfolio are given by

0.76% and 2.87% respectively, which are once again slightly different from

the percentages above.
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Chapter 6

Capital requirements for a

multi-line insurance company

In this chapter we calculate the capital requirements for market and non-

life premium risk of a multi-line insurance company. We lay down the same

assumptions and we assume the same relevant parameters as in the case

of the single-line insurance company. On the contrary, we assume that

the insurance company is multi-line, because not only does it work in the

MTPL line of business, but also in the Motor Other Damages (MOD) and

General Third-Party Liability (GTPL) lines of business. Hence, the gross

premium amount shown in Table 5.1 is found to come from three different

sources. Furthermore, Table 6.1 shows the other relevant parameters, that

are estimated by the Italian market data for the period 2014-2018, provided

by ANIA and IVASS.1 We point out that the parameters of the MTPL line

of business are the same as in the case of the single-line insurance company,

except for the gross premium amount. The safety loading coefficient of the

MOD line of business is bigger than the safety loading coefficients of the other

lines of business. Furthermore, the ratio of claims reserve and gross premium

amount of the MOD line of business is very low, since the settlement speed is

very high, while the ratio of claims reserve and gross premium amount of the

GTPL line of business is very high, since the settlement speed is very low.

1See ANIA [1], and IVASS [20].
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This is because the MOD line of business deals with damages to property

and the GTPL line of business deals mainly with damages to people, which

have a settlement process really long.

Table 6.1: Relevant parameters of the multi-line insurance company

LoB π0 ϕ c δ

MTPL 50,000,000 0.90% 21.24% 156.10%

MOD 25,000,000 13.85% 30.30% 22.88%

GTPL 25,000,000 6.65% 32.30% 415.62%

6.1 Aggregate claim amount

In this section we describe the distribution of the aggregate claim amount

over time. In doing so, we firstly generate a sample for each line of business,

using the collective risk model and Monte Carlo simulation, and making

the same assumptions on the distributions as in the case of the single-line

insurance company.

Table 6.2 shows the parameters for each line of business, that are

estimated by the Italian market data for the period 2009-2018, provided

by ANIA and IVASS.2 We point out that the coefficient of variation of the

single claim amount and the standard deviation of the structure variable of

the GTPL line of business are the highest, because this business involves

damages to people, which are really volatile.

Table 6.2: Parameters for the collective risk model of the multi-line insurance
company

LoB m0 n0 c
Z̃

σq̃

MTPL 4,000 9,757.19 7 0.0820

MOD 2,500 6,122.09 2 0.0501

GTPL 10,000 1,586.97 12 0.1480

2See ANIA [1], and IVASS [20].
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Figure 6.1 shows the simulated distribution of the aggregate claim amount

of each line of business after one, two and three years, and Table 6.3 shows

some elements of descriptive statistics. We point out that we can make the

same comments as in the case of the single-line insurance company. The

MTPL line of business has the highest mean, because it is the main line of

business of the insurance company. On the other side, the GTPL line of

business has the highest standard deviation and skewness, even though the

number of claims is not the biggest, because the coefficient of variation of the

single claim amount and the standard deviation of the structure variable are

really high. Furthermore, the MOD line of business has the lowest standard

deviation and skewness, because it is not the main line of business, and the

coefficient of variation of the single claim amount and the standard deviation

of the structure variable are small compared to the others.

We thus use a copula function, i.e Gaussian copula or Gumbel copula,

to inject some dependence structure. Through the copula function, we

simulate different vectors of observations, that are translated in different

pseudo aggregate claim amounts. As a result, the total aggregate claim

amount is found to be:

X̃t = X̃MTPL,C
t + X̃MOD,C

t + X̃GTPL,C
t (6.1)

where X̃MTPL,C
t , X̃MOD,C

t and X̃GTPL,C
t are the pseudo aggregate claim

amounts, that are translated from the simulated vectors of observations given

by the copula function.

6.1.1 Gaussian copula

We now consider a Gaussian copula with parameters equal to the correlation

coefficients of the Delegated Regulation. Table 6.4 shows the correlation

matrix of the Gaussian copula.

Figure 6.2 shows, for each pair of lines of business, the simulated scatter

plot given by the Gaussian copula after one, two and three years. We point

out that, as we could expect, the scatter plots of the MTPL and MOD lines

of business, and the scatter plots of the MTPL and GTPL lines of business,
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Figure 6.1: Simulated distributions of the aggregate claim amounts after one, two
and three years (100,000 simulations)

Table 6.3: Descriptive statistics of the simulated aggregate claim amounts after
one, two and three years (amounts in millions)

XMTPL
t Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 41.00 4.43 0.6557 24.71 37.98 40.74 43.71 100.18

t = 2 43.08 4.60 0.6172 26.19 39.93 42.82 45.90 117.07

t = 3 45.25 4.85 0.7106 27.63 41.96 44.97 48.19 124.60

XMOD
t Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 16.08 0.92 0.1162 12.39 15.45 16.06 16.70 20.24

t = 2 16.89 0.97 0.1132 13.23 16.23 16.88 17.54 21.77

t = 3 17.75 1.02 0.1144 13.78 17.05 17.73 18.42 22.58

XGTPL
t Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 16.66 5.46 10.6987 4.72 13.50 15.85 18.75 470.28

t = 2 17.50 5.85 13.2866 5.60 14.22 16.67 19.67 519.80

t = 3 18.39 5.80 7.4075 5.78 14.94 17.55 20.70 392.09

184



Table 6.4: Correlation matrix of the Gaussian copula

MTPL MOD GTPL

MTPL 1 0.5 0.5

MOD 0.5 1 0.25

GTPL 0.5 0.25 1

show more positive dependence than the scatter plots of the MOD and GTPL

lines of business.

(a) MTPL/MOD (b) MTPL/GTPL (c) MOD/GTPL

Figure 6.2: Simulated scatter plots given by the Gaussian copula after one, two
and three years (100,000 simulations)

Figure 6.3 shows the resulting distribution of the total aggregate claim

amount after one, two and three years, and Table 6.5 shows some elements of

descriptive statistics. We point out that the mean is lower than in the case of

the single-line insurance company, but the standard deviation and skewness

are higher.
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Figure 6.3: Simulated distribution of the total aggregate claim amount given
by the Gaussian copula after one, two and three years (100,000
simulations)

Table 6.5: Descriptive statistics of the simulated total aggregate claim amount
given by the Gaussian copula after one, two and three years (amounts
in millions)

Xt Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 73.76 8.79 2.9481 44.78 68.08 72.97 78.32 380.08

t = 2 77.43 9.01 2.0912 47.22 71.54 76.56 82.17 297.68

t = 3 81.40 9.40 1.7415 52.69 75.21 80.51 86.41 303.47
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6.1.2 Gumbel copula

Archimedean copulas have the disadvantage to represent the dependence

structure with few parameters only. As a result, we now consider Gumbel

copulas with a hierarchical structure.3 In doing so, we join the MTPL and

MOD lines of business at the first step, and we add the GTPL line of business

at the second step, as shown in Figure 6.4.

MTPL MOD

C(MTPL,MOD) GTPL

C(C(MTPL,MOD),GTPL)

Figure 6.4: Hierarchical structure for the Gumbel copulas

Using equation (1.25), we start from a correlation coefficient equal to 0.5,

i.e. the parameter of the Gaussian copula used to model the dependence

between the MTPL and MOD lines of business, and we obtain a Kendall’s

rank correlation coefficient equal to 0.33. Moreover, using equation (1.26),

we start from this Kendall’s rank correlation coefficient and we obtain a

parameter for the Gumbel copula equal to 1.5.

Actually we do not know the correlation between the joined MTPL

and MOD lines of business and the GTPL line of business. The implicit

correlation coefficient between the sum of the MTPL and MOD lines of

business and the GTPL line of business is found to be:

Corr
((

X̃MTPL
t + X̃MOD

t

)

, X̃GTPL
t

)

=

=
Corr

(

X̃MTPL
t , X̃GTPL

t

)

· σX̃MTPL
t

+ Corr
(

X̃MOD
t , X̃GTPL

t

)

· σX̃MOD
t

√

Var
(

X̃MTPL
t

)

+ 2 · Corr
(

X̃MTPL
t , X̃MOD

t

)

· σX̃MTPL
t

· σX̃MOD
t

+Var
(

X̃MOD
t

)

Hence, using equation (4.6) and starting from the correlation coefficients of

3See Savelli and Clemente [31] for further details.
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the Delegated Regulation, we obtain an implicit correlation coefficient equal

to 0.4935, 0.4934 and 0.4934, and a parameter for the Gumbel copula equal

to 1.4893, 1.4893 and 1.4892 after one, two and three years.

Figure 6.5 shows, for each step of the hierarchical structure, the simulated

scatter plot given by the Gumbel copula after one, two and three years. We

point out that, as we could expect, the scatter plots of the MTPL and MOD

lines of business show a significant upper tail dependence as the scatter plots

of the joined MTPL and MOD lines of business and GTPL line of business.

(a) MTPL/MOD (b) C(MTPL,MOD)/GTPL

Figure 6.5: Simulated scatter plots given by the Gumbel copulas after one, two
and three years (100,000 simulations)

Figure 6.6 shows the resulting distribution of the total aggregate claim

amount after one, two and three years, and Table 6.6 shows some elements

of descriptive statistics. We point out that we can make the same comments

as in the case of the Gaussian copula. The total mean is more or less the

same as in the case of the Gaussian copula, the standard deviation is slightly

bigger and the skewness is bigger, because the upper tail dependence of the

Gumbel copula is higher. Hence, the maximum is bigger in the case of the

Gumbel copula rather than in the case of the Gaussian copula.
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Figure 6.6: Simulated distribution of the total aggregate claim amount given
by the Gumbel copulas after one, two and three years (100,000
simulations)

Table 6.6: Descriptive statistics of the simulated total aggregate claim amount
given by the Gumbel copulas after one, two and three years (amounts
in millions)

Xt Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 73.74 9.19 4.7043 47.64 68.05 72.58 77.97 573.34

t = 2 77.47 9.37 3.2831 51.66 71.53 76.31 81.88 402.64

t = 3 81.33 9.83 3.5019 54.42 75.13 80.13 85.96 405.33

189



6.2 Market risk

In this section we extend the analysis of the market risk of the previous

chapter to the case of the multi-line insurance company. As a result, the risk

reserve is found to be:

Ũt = (1 + ̃t) · Ũt−1 + ̃t · δ · πt−1 + ̃t ·
t−1
∑

k=1

ϕ · Pk

where:

δ =
δMTPL · πMTPL

0 + δMOD · πMOD
0 + δGTPL · πGTPL

0

π0
= 187.67%

and:

πt = πMTPL
t + πMOD

t + πGTPL
t

moreover:

ϕ =
ϕMTPL · PMTPL

0 + ϕMOD · PMOD
0 + ϕGTPL · PGTPL

0

P0

= 5.02% (6.2)

and:

Pt = PMTPL
t + PMOD

t + PGTPL
t (6.3)

The equations of the risk reserve ratio and annual net cash flows are equal

to the equations in section 5.3, even though the values of the parameters

are different. The annual net cash flows are once again deterministic, hence

Table 6.7 shows the resulting value after one, two and three years.

Table 6.7: Value of the annual net cash flows after one, two and three years

F1 F2 F3

13,201,154 13,869,133 14,570,911

As a result, the initial claims reserve is found to be:

L0 = 187, 675, 000

190



and the initial asset value of the portfolio is found to be:

A0 = U0 + L0 = 212, 675, 000

We point out that in this case the portfolio optimization would give us

another annual rate of return. Nevertheless, we are now interested in the

analysis of the difference with the results of the previous chapter, hence we

keep the asset allocation of the previous chapter and the rate that we have

previously obtained. Therefore, the initial value of the stock portfolio is

found to be:

AS
0 = 15% · A0 = 31, 901, 250

and the initial value of the bond portfolio is found to be:

AB
0 = 85% · A0 = 180, 773, 750

In conclusion, Tables 6.8 and 6.9 show the new initial value of each bond and

stock investment.

Table 6.8: Initial values of the bond investments

AB1

0 AB2

0 AB3

0 AB5

0 AB10

0

72,309,500 45,193,438 27,116,063 18,077,375 18,077,375

Table 6.9: Initial values of the stock investments

(a) Vasicek model used

AS1

0 AS2

0 AS3

0

21,054,825 7,018,275 3,828,150

(b) Cox-Ingersoll-Ross model used

AS1

0 AS2

0 AS3

0

21,692,850 7,018,275 3,190,125

Figure 6.7 shows the simulated risk reserve ratio over a period of three

years. Figure 6.8 shows the resulting distribution of the risk reserve ratio after
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one, two and three years, and Table 6.10 shows some elements of descriptive

statistics. We point out that we can make the same comments as in the case

of the single-line insurance company, because the annual rate of return is the

same. However, the claims reserve, safety loadings and expense loadings are

now bigger. As a result, the mean and standard deviation are bigger than in

the case of the single-line insurance company.

6.2.1 Capital requirements according to the model

We are now able to calculate the capital requirements over a period of one,

two or three years. Once again, we compute the result for each investment

category and we determine the overall diversification benefit.

Tables 6.11 and 6.12 show the minimum Risk-Based Capital of each stock

and bond investment as a percentage of the initial gross premium amount

over a period of one, two and three years, according to equations (5.5) and

(5.6). We point out that we we can make the same comments as in the case

of the single-line insurance company. However, the minimum Risk-Based

Capital of the stock investments and the minimum Risk-Based Capital of

the bond investments are usually higher than in the case of the single-line

insurance company. This is because the claims reserve and safety loadings

are now bigger, so that also the invested resources are now bigger and the risk

raises. Despite this, the low-risk investments produce a reduction of capital

requirements. Indeed, the increase in the risk is more than compensated by

the increase in the expected profit, due to the investment of higher claims

reserve and safety loadings.

Table 6.13 shows the overall minimum Risk-Based Capital as a percentage

of the initial gross premium amount over a period of one, two and three years.

We point out that the overall minimum Risk-Based Capital decreases over

time. It is higher over a period of one and two years and lower over a period

of three years than in the case of the single-line insurance company.

Table 6.14 shows the Degree of Diversification of the risk reserve over a

period of one, two and three years, according to equation (5.7). Once again,

we can make the same comments as in the case of the single-line insurance
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(a) Vasicek model used

(b) Cox-Ingersoll-Ross model used

Figure 6.7: Samples of 100,000 possible trajectories of the risk reserve ratio over
a period of three years
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(a) Vasicek model used (b) Cox-Ingersoll-Ross model used

Figure 6.8: Simulated distribution of the risk reserve ratio after one, two and three
years

Table 6.10: Descriptive statistics of the simulated risk reserve ratio after one, two
and three years

(a) Vasicek model used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 29.15% 3.64% 0.1766 15.65% 26.65% 29.05% 31.52% 46.27%

t = 2 32.86% 4.77% 0.1933 14.62% 29.59% 32.71% 35.95% 55.12%

t = 3 36.21% 5.59% 0.1755 14.38% 32.34% 36.04% 39.88% 63.57%

(b) Cox-Ingersoll-Ross model used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 29.10% 3.52% 0.0720 13.57% 26.71% 29.06% 31.42% 45.15%

t = 2 32.73% 4.59% 0.1208 13.63% 29.63% 32.64% 35.74% 54.20%

t = 3 36.04% 5.41% 0.1364 14.89% 32.33% 35.91% 39.60% 63.55%
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Table 6.11: Ratios of minimum Risk-Based Capital of the stock investments and
initial gross premium amount over a period of one, two and three
years

(a) Vasicek model used

u
Sh

RBC
(0, t) h = 1 h = 2 h = 3 Total

t = 1 4.18% 1.93% 1.33% 7.44%

t = 2 3.97% 1.89% 1.29% 7.15%

t = 3 3.80% 1.82% 1.25% 6.86%

(b) Cox-Ingersoll-Ross model used

u
Sh

RBC
(0, t) h = 1 h = 2 h = 3 Total

t = 1 4.30% 1.93% 1.11% 7.35%

t = 2 4.10% 1.89% 1.07% 7.06%

t = 3 3.91% 1.82% 1.04% 6.78%

Table 6.12: Ratios of minimum Risk-Based Capital of the bond investments and
initial gross premium amount over a period of one, two and three
years

(a) Vasicek model used

u
Bi

RBC
(0, t) i = 1 i = 2 i = 3 i = 5 i = 10 Total

t = 1 −1.25% 0.03% 0.37% 0.56% 0.85% 0.55%

t = 2 −0.50% −0.08% 0.19% 0.38% 0.66% 0.65%

t = 3 −0.95% −0.43% −0.06% 0.20% 0.48% −0.76%

(b) Cox-Ingersoll-Ross model used

u
Bi

RBC
(0, t) i = 1 i = 2 i = 3 i = 5 i = 10 Total

t = 1 −1.25% 0.16% 0.51% 0.69% 1.01% 1.11%

t = 2 −0.49% −0.05% 0.26% 0.47% 0.78% 0.96%

t = 3 −0.96% −0.45% −0.04% 0.24% 0.54% −0.67%

company. However, the Degree of Diversification is always higher than in

the case of the single-line insurance company. We remember that the annual

rate of return is obtained through the portfolio optimization procedure of

the single-line insurance company. As a consequence, now we could have
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Table 6.13: Ratio of minimum Risk-Based Capital and initial gross premium
amount over a period of one, two and three years

(a) Vasicek model used

t = 1 t = 2 t = 3

umarket
RBC

(0, t) 4.22% 2.48% 0.49%

(b) Cox-Ingersoll-Ross model used

t = 1 t = 2 t = 3

umarket
RBC

(0, t) 4.40% 2.60% 0.43%

probably found a better asset allocation that would have further increased

the diversification effect.

Table 6.14: Degree of Diversification of the risk reserve over a period of one, two
and three years

(a) Vasicek model used

DoDmarket
RBC

(0, t)

t = 1 47.18%

t = 2 68.22%

t = 3 92.01%

(b) Cox-Ingersoll-Ross model used

DoDmarket
RBC

(0, t)

t = 1 48.02%

t = 2 67.55%

t = 3 92.97%

6.2.2 Capital requirements according to the standard

formula

We can compare the results according to our model with the results according

to the Solvency II standard formula.

Tables 6.15 and 6.16 show the Solvency Capital Requirement for equity
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risk, calculated on a single stock investment according to equation (5.8),

and the Solvency Capital Requirement for interest rate risk, calculated on

a single bond investment according to equation (5.9), as percentages of the

initial gross premium amount. We point out that we can make the same

comments as in the case of the single-line insurance company. However, the

Solvency Capital Requirements are bigger than in the case of the single-line

insurance company, because the invested resources are now bigger.

Table 6.15: Ratios of Solvency Capital Requirement of the stock investments and
initial gross premium amount

(a) Vasicek model used

h = 1 h = 2 h = 3 Total

u
Sh

SCR
8.21% 2.74% 1.49% 12.44%

(b) Cox-Ingersoll-Ross model used

h = 1 h = 2 h = 3 Total

u
Sh

SCR
8.46% 2.74% 1.24% 12.44%

Table 6.16: Ratios of Solvency Capital Requirement of the bond investments and
initial gross premium amount

i = 1 i = 2 i = 3 i = 5 i = 10 Total

u
Bi

SCR
0.88% 1.03% 0.82% 0.77% 1.26% 4.77%

The Solvency Capital Requirement for equity risk and the Solvency

Capital Requirement for interest rate risk are described by equations (5.10)

and (5.11). The Solvency Capital Requirement for equity risk is the same

if we consider the initial values of the stock investments found by using the

Vasicek model or Cox-Ingersoll-Ross model. As a result, also the Solvency

Capital Requirement for market risk is the same in both the cases.

We point out that the equity risk and interest rate risk are the only sources

of market risk we have. Hence, using equation (5.12), the Solvency Capital

Requirement for market risk as a percentage of the initial gross premium
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amount is found to be:

u
market

SCR =
SCRmarket

π0
= 13.32%

Hence, the Degree of Diversification of the risk reserve, calculated on the

basis of the Solvency Capital Requirement, is found to be:

DoD
market

SCR =

∑3
h=1 u

Sh

SCR +
∑

{i=1,2,3,5,10} u
Bi

SCR − u
market

SCR

∑3
h=1 u

Sh

SCR +
∑

{i=1,2,3,5,10} u
Bi

SCR

= 22.57%

We point out that we can make the same comments as in the case of the

single-line insurance company. However, the Solvency Capital Requirement is

bigger than in the case of the single-line insurance company and the Degree of

Diversification is the same as in the case of the single-line insurance company.

Figure 6.9 shows a sensitivity analysis on the Solvency Capital

Requirement for interest rate risk and on the Solvency Capital Requirement

for market risk. We compare the results above with the results obtained

after having applied a parallel negative shift of 150 Bps in the interest rate

curve. We point out that, after the shift, the Solvency Capital Requirement

for interest rate risk is found to be significantly smaller. As a result, there is a

non-negligible reduction in the Solvency Capital Requirement for market risk.

Interest rate risk Market risk

4.77%

13.32%

0.59%

12.46%

Original market rates

Market rates less 150 Bps

Figure 6.9: Sensitivity analysis on the ratios of Solvency Capital Requirements
and initial gross premium amount
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6.3 Non-life premium risk

In this section we extend the analysis of the non-life premium risk of the

previous chapter to the case of the multi-line insurance company. As a result,

the risk reserve is found to be:

Ũt = Ũt−1 +
[

(1 + ϕ) · Pt − X̃t

]

where the total aggregate claim amount, safety loading coefficient and risk

premium amount are described by equations (6.1), (6.2) and (6.3).

The equation of the risk reserve ratio is equal to the equation in

section 5.4, even though the values of the parameters are different.

We now consider the total aggregate claim amounts given by the collective

risk model. Figure 6.10 shows the simulated risk reserve ratio over a period

of three years. Figure 6.11 shows the resulting distribution of the risk reserve

ratio after one, two and three years, and Table 6.17 shows some elements of

descriptive statistics. We point out that we can make the same comments as

in the case of the single-line insurance company. However, the mean increases

over time, because the underwriting result is now big enough to compensate

the increase in the gross premium amount. The multi-line insurance company

has a different risk-return profile from the single-line insurance company,

so that the risk of rapid growth is now avoided. The mean and standard

deviation are bigger than in the case of the single-line insurance company.

Moreover, the mean in the case of the Gumbel copula is similar to the case

of the Gaussian copula and the standard deviation is bigger in the case of

the Gumbel copula rather than in the case of the Gaussian copula, because

the upper tail dependence of the Gumbel copula is higher.

Figure 6.12 shows the resulting distribution of the annual net cash flows

after one, two and three years, according to equation (1.7), and Table 6.18

shows some elements of descriptive statistics. We point out that we can

make the same comments as in the case of the single-line insurance company.

However, the mean, standard deviation and absolute value of the skewness

are higher than in the case of the single-line insurance company.
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(a) Gaussian copula used

(b) Gumbel copula used

Figure 6.10: Samples of 100,000 possible trajectories of the risk reserve ratio over
a period of three years
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(a) Gaussian copula used (b) Gumbel copula used

Figure 6.11: Simulated distribution of the risk reserve ratio after one, two and
three years

Table 6.17: Descriptive statistics of the simulated risk reserve ratio after one, two
and three years

(a) Gaussian copula used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 27.32% 8.37% −2.9481 −264.25% 22.98% 28.07% 32.73% 54.90%

t = 2 29.58% 11.41% −1.7611 −247.27% 23.34% 30.50% 37.13% 63.69%

t = 3 31.69% 13.56% −1.2773 −238.17% 23.98% 32.76% 40.70% 76.30%

(b) Gumbel copula used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 27.34% 8.75% −4.7043 −448.20% 23.31% 28.44% 32.76% 52.18%

t = 2 29.56% 11.88% −2.7949 −424.45% 23.58% 30.87% 37.23% 64.74%

t = 3 31.73% 14.09% −2.1630 −394.56% 24.30% 33.14% 40.94% 74.71%
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(a) Gaussian copula used (b) Gumbel copula used

Figure 6.12: Simulated distribution of the annual net cash flows after one, two
and three years (100,000 simulations)

Table 6.18: Descriptive statistics of the simulated annual net cash flows after one,
two and three years (amounts in millions)

(a) Gaussian copula used

Ft Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 13.20 8.79 −2.9481 −293.12 8.64 13.99 18.88 42.17

t = 2 13.93 9.01 −2.0912 −206.32 9.19 14.80 19.81 44.13

t = 3 14.58 9.40 −1.7415 −207.49 9.57 15.47 20.77 43.29

(b) Gumbel copula used

Ft Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 13.21 9.19 −4.7043 −486.38 8.99 14.38 18.91 39.32

t = 2 13.88 9.37 −3.2831 −311.28 9.48 15.05 19.82 39.70

t = 3 14.65 9.83 −3.5019 −309.35 10.02 15.85 20.85 41.56
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6.3.1 Capital requirements according to the model

We are now able to calculate the capital requirements over a period of one,

two or three years.

Table 6.19 shows the minimum Risk-Based Capital of each line of business

as a percentage of the initial gross premium amount over a period of one,

two and three years. We point out that the minimum Risk-Based Capital

of each line of business increases over time, except for the MOD line of

business. Moreover, the capital requirement of the GTPL line of business

is the biggest, i.e. the GTPL line of business is the riskiest business, and

the capital requirement of the MOD line of business is the smallest, i.e. the

MOD line of business is the less risky one.

Table 6.19: Ratios of minimum Risk-Based Capital of the lines of business and
initial gross premium amount over a period of one, two and three
years

(a) Vasicek model used

uLoB
RBC

(0, t) LoB = MTPL LoB = MOD LoB = GTPL Total

t = 1 13.17% 0.40% 20.36% 33.94%

t = 2 17.94% −0.64% 27.68% 44.98%

t = 3 21.76% −2.00% 32.78% 52.54%

(b) Cox-Ingersoll-Ross model used

uLoB
RBC

(0, t) LoB = MTPL LoB = MOD LoB = GTPL Total

t = 1 13.17% 0.40% 20.36% 33.94%

t = 2 17.94% −0.64% 27.69% 44.99%

t = 3 21.77% −2.00% 32.80% 52.56%

Table 6.20 shows the overall minimum Risk-Based Capital as a percentage

of the initial gross premium amount over a period of one, two and three years.

We point out that we can make the same comments as in the case of the

single-line insurance company. However, the minimum Risk-Based Capital is

always bigger than in the case of the single-line insurance company, because

the distribution of the total aggregate claim amount is riskier. Moreover, the

capital requirements are bigger in the case of the Gumbel copula rather than
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in the case of the Gaussian copula, because the upper tail dependence of the

Gumbel copula is higher.

Table 6.20: Ratio of minimum Risk-Based Capital and initial gross premium
amount over a period of one, two and three years

(a) Vasicek model and Gaussian copula used

t = 1 t = 2 t = 3

u
non-life

RBC
(0, t) 27.99% 34.99% 40.34%

(b) Vasicek model and Gumbel copula used

t = 1 t = 2 t = 3

u
non-life

RBC
(0, t) 31.40% 39.85% 43.98%

(c) Cox-Ingersoll-Ross model and Gaussian copula used

t = 1 t = 2 t = 3

u
non-life

RBC
(0, t) 27.99% 35.00% 40.35%

(d) Cox-Ingersoll-Ross model and Gumbel copula used

t = 1 t = 2 t = 3

u
non-life

RBC
(0, t) 31.40% 39.86% 44.00%

The Degree of Diversification of the risk reserve, calculated on the basis

of the minimum Risk-Based Capital, is given by:

DoD
non-life

RBC (0, t) =
u
MTPL

RBC (0, t) + u
MOD

RBC (0, t) + u
GTPL

RBC (0, t)− u
non-life

RBC (0, t)

u
MTPL

RBC (0, t) + u
MOD

RBC (0, t) + u
GTPL

RBC (0, t)

Table 6.21 shows the Degree of Diversification of the risk reserve over a period

of one, two and three years. The Degree of Diversification is not extremely

high, but it is significant. It is always lower in the case of the Gumbel copula

rather than in the case of the Gaussian copula, because the diversification

effect of the Gumbel copula is worse.

The differences between Tables 6.19a and 6.19b, 6.20a and 6.20c, 6.20b

and 6.20d, 6.21a and 6.21c, or 6.21b and 6.21d are only due to the different

theoretical rates used for the minimum Risk-Based Capital calculation.
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Table 6.21: Degree of Diversification of the risk reserve over a period of one, two
and three years

(a) Vasicek model and Gaussian copula used

DoD
non-life

RBC
(0, t)

t = 1 17.51%

t = 2 22.20%

t = 3 23.22%

(b) Vasicek model and Gumbel copula used

DoD
non-life

RBC
(0, t)

t = 1 7.47%

t = 2 11.40%

t = 3 16.30%

(c) Cox-Ingersoll-Ross model and Gaussian copula used

DoD
non-life

RBC
(0, t)

t = 1 17.52%

t = 2 22.21%

t = 3 23.23%

(d) Cox-Ingersoll-Ross model and Gumbel copula used

DoD
non-life

RBC
(0, t)

t = 1 7.48%

t = 2 11.41%

t = 3 16.30%
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6.3.2 Capital requirements according to the standard

formula

We can compare the results according to our model with the results according

to the Solvency II standard formula.

Now, not only does the insurance company work in the MTPL line of

business, but also in the MOD and GTPL lines of business. Table 6.22

shows the Solvency Capital Requirement for non-life premium and reserve

risk, calculated on a single line of business according to equation (2.1), as

a percentage of the initial gross premium amount. Even though the GTPL

line of business is the riskiest business, the capital requirement of the MTPL

line of business is the biggest, because the volume measure of the MTPL line

of business is the highest. On the other hand, the capital requirement of the

MOD line of business is the smallest. Furthermore, the capital requirement

of the MOD line of business is bigger in the case of the standard formula

rather than in our model, but the capital requirement of the MTPL line of

business is smaller in the case of the standard formula rather than in our

model, and the capital requirement of the GTPL line of business is much

smaller in the case of the standard formula rather than in our model. This is

because the standard formula was calibrated on different distributions than

the distributions of our model and because we have different assumptions.

Table 6.22: Ratios of Solvency Capital Requirement of the lines of business and
initial gross premium amount

LoB = MTPL LoB = MOD LoB = GTPL Total

uLoB
SCR

15.76% 6.30% 11.03% 33.09%

The standard deviation for non-life premium and reserve risk is found to

be:

σnl = 8.5%

The volume measure for non-life premium and reserve risk is found to be:

Vnl = π1 = 105, 060, 000
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Using equation (2.1), the Solvency Capital Requirement for non-life premium

and reserve risk as a percentage of the initial gross premium amount is found

to be:

u
nl prem res

SCR =
SCRnl prem res

π0
= 26.79%

We point out that the capital requirement is smaller in the case of the

standard formula rather than in our model. This is because the capital

requirement of the GTPL line of business is much smaller in the case of

the standard formula rather than in our model and because the standard

formula is based on a different aggregation procedure than the aggregation

through the copula functions. Moreover, the Solvency Capital Requirement

is smaller than in the case of the single-line insurance company, since the

standard deviation for non-life premium and reserve risk is smaller as well,

because of a diversification effect between the lines of business.

Furthermore, we point out that the non-life premium risk is the only

source of non-life underwriting risk we have. Hence, the Solvency Capital

Requirement for non-life underwriting risk is found to be the same, namely:

u
non-life

SCR =
SCRnon-life

π0
= 26.79%

In conclusion, the Degree of Diversification of the risk reserve, calculated on

the basis of the Solvency Capital Requirement, is found to be:

DoD
non-life

SCR =
u
MTPL

SCR + u
MOD

SCR + u
GTPL

SCR − u
non-life

SCR

u
MTPL

SCR + u
MOD

SCR + u
GTPL

SCR

= 19.05%

The Degree of Diversification is significant, because the correlation

coefficients of the lines of business are not so high. It is slightly bigger

than in the case of the Gaussian copula and it is significantly bigger than in

the case of the Gumbel copula.
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6.4 Market and non-life premium risk

In this section we extend the analysis of the market and non-life premium

risk of the previous chapter to the case of the multi-line insurance company,

either according to the integrated model or stand-alone model. Once again,

we keep the annual rate of return that we have previously obtained.

6.4.1 Integrated model

We now deal with the integrated model, considering equations (1.4) and

(1.15) with the parameter and amount values described in this chapter.

Figure 6.13 shows the simulated risk reserve ratio over a period of three

years. Figure 6.14 shows the resulting distribution of the risk reserve ratio

after one, two and three years, and Table 6.23 shows some elements of

descriptive statistics. We point out that we can make the same comments

as in the case of the single-line insurance company. However, the mean and

standard deviation are bigger than in the case of the single-line insurance

company. Moreover, the mean in the case of the Gumbel copula is similar to

the case of the Gaussian copula and the standard deviation is bigger in the

case of the Gumbel copula rather than in the case of the Gaussian copula,

because the upper tail dependence of the Gumbel copula is higher.

The annual net cash flows are the same as in presence of the non-life

premium risk only.

6.4.2 Capital requirements according to the

integrated model

We are now able to calculate the capital requirements over a period of one,

two or three years.

Table 6.24 shows the minimum Risk-Based Capital as a percentage of the

initial gross premium amount over a period of one, two and three years. We

point out that we can make the same comments as in the case of the single-

line insurance company. However, in Table 6.24c, the minimum Risk-Based

Capital is smaller over a period of one and two years and bigger over a period
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(a) Vasicek model and Gaussian
copula used

(b) Vasicek model and Gumbel
copula used

(c) Cox-Ingersoll-Ross model and
Gaussian copula used

(d) Cox-Ingersoll-Ross model and
Gumbel copula used

Figure 6.13: Samples of 100,000 possible trajectories of the risk reserve ratio over
a period of three years
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(a) Vasicek model and Gaussian
copula used

(b) Vasicek model and Gumbel
copula used

(c) Cox-Ingersoll-Ross model and
Gaussian copula used

(d) Cox-Ingersoll-Ross model and
Gumbel copula used

Figure 6.14: Simulated distribution of the risk reserve ratio after one, two and
three years
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Table 6.23: Descriptive statistics of the simulated risk reserve ratio after one, two
and three years

(a) Vasicek model and Gaussian copula used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 32.67% 9.12% −2.2674 −263.93% 27.65% 33.30% 38.56% 63.46%

t = 2 39.79% 12.49% −1.3734 −249.04% 32.62% 40.53% 48.04% 86.48%

t = 3 46.34% 14.97% −0.9975 −243.46% 37.56% 47.16% 56.28% 98.64%

(b) Vasicek model and Gumbel copula used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 32.69% 9.49% −3.7059 −441.50% 27.90% 33.60% 38.63% 61.55%

t = 2 39.77% 12.94% −2.2328 −420.77% 32.85% 40.87% 48.17% 84.30%

t = 3 46.37% 15.44% −1.7362 −395.29% 37.81% 47.49% 56.47% 99.58%

(c) Cox-Ingersoll-Ross model and Gaussian copula used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 32.62% 9.07% −2.3172 −264.34% 27.64% 33.26% 38.49% 63.21%

t = 2 39.67% 12.42% −1.4041 −249.46% 32.55% 40.43% 47.88% 85.76%

t = 3 46.17% 14.89% −1.0184 −244.21% 37.45% 47.02% 56.06% 96.87%

(d) Cox-Ingersoll-Ross model and Gumbel copula used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 32.64% 9.44% −3.7663 −441.42% 27.89% 33.56% 38.55% 60.22%

t = 2 39.64% 12.87% −2.2709 −420.52% 32.78% 40.76% 47.99% 82.56%

t = 3 46.21% 15.37% −1.7625 −395.10% 37.71% 47.33% 56.27% 97.58%

211



of three years than in Table 6.24a. In Table 6.24d, the minimum Risk-Based

Capital is smaller over a period of two years and bigger over a period of one

and three years than in Table 6.24b. The minimum Risk-Based Capital is

always bigger than in the case of the single-line insurance company, because

the distribution of the total aggregate claim amount is riskier. Moreover, the

capital requirements are bigger in the case of the Gumbel copula rather than

in the case of the Gaussian copula, because the upper tail dependence of the

Gumbel copula is higher.

Table 6.24: Ratio of minimum Risk-Based Capital and initial gross premium
amount over a period of one, two and three years

(a) Vasicek model and Gaussian copula used

t = 1 t = 2 t = 3

uRBC(0, t) 23.32% 25.98% 26.90%

(b) Vasicek model and Gumbel copula used

t = 1 t = 2 t = 3

uRBC(0, t) 26.59% 30.55% 30.81%

(c) Cox-Ingersoll-Ross model and Gaussian copula used

t = 1 t = 2 t = 3

uRBC(0, t) 23.32% 25.94% 27.16%

(d) Cox-Ingersoll-Ross model and Gumbel copula used

t = 1 t = 2 t = 3

uRBC(0, t) 26.63% 30.53% 30.87%

The partial Degree of Diversification of the risk reserve is calculated

according to equation (5.13) and the total Degree of Diversification of the

risk reserve is given by:

DoD
total

RBC(0, t) =
u-sum

market

RBC (0, t) + u-sum
non-life

RBC (0, t)− uRBC(0, t)

u-sum
market

RBC (0, t) + u-sum
non-life

RBC (0, t)
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where:

u-sum
market

RBC (0, t) =
3
∑

h=1

uSh

RBC(0, t) +
∑

{i=1,2,3,5,10}

uBi

RBC(0, t)

and:

u-sum
non-life

RBC (0, t) = u
MTPL

RBC (0, t) + u
MOD

RBC (0, t) + u
GTPL

RBC (0, t)

Table 6.25 shows the partial and total Degrees of Diversification of the risk

reserve over a period of one, two and three years. Once again, we can make

the same comments as in the case of the single-line insurance company.

However, in Table 6.25c (Table 6.25d), the partial and total Degrees of

Diversification are higher over a period of one and two years and lower over a

period of three years than in Table 6.25a (Table 6.25b). Almost always, the

partial Degree of Diversification is higher in the case of the Gaussian copula

rather than in the case of the single-line insurance company, but it is lower

in the case of the Gumbel copula rather than in the case of the single-line

insurance company. The total Degree of Diversification is always higher than

in the case of the single-line insurance company. Moreover, the partial and

total Degrees of Diversification are lower in the case of the Gumbel copula

rather than in the case of the Gaussian copula, because the diversification

effect of the Gumbel copula is worse.

6.4.3 Stand-alone model

We now deal with the stand-alone model, considering equations (5.14) and

(5.15) with the parameter and amount values described in this chapter.

Figure 6.15 shows the simulated risk reserve ratio over a period of three

years. Figure 6.16 shows the resulting distribution of the risk reserve ratio

after one, two and three years, and Table 6.26 shows some elements of

descriptive statistics. We point out that we can make the same comments

as in the case of the integrated model for the multi-line insurance company

and/or in the case of the single-line insurance company.

Figure 6.17 shows the QQ-plot of the integrated and stand-alone

distributions of the risk reserve ratios after one, two and three years. Once

again, we can make the same comments as in the case of the single-line

insurance company.
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Table 6.25: Degree of Diversification of the risk reserve over a period of one, two
and three years

(a) Vasicek model and Gaussian copula used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 27.60% 44.38%

t = 2 30.66% 50.77%

t = 3 34.12% 54.14%

(b) Vasicek model and Gumbel copula used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 25.36% 36.58%

t = 2 27.82% 42.11%

t = 3 30.71% 47.46%

(c) Cox-Ingersoll-Ross model and Gaussian copula used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 28.01% 45.00%

t = 2 31.01% 51.06%

t = 3 33.41% 53.72%

(d) Cox-Ingersoll-Ross model and Gumbel copula used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 25.61% 37.19%

t = 2 28.10% 42.40%

t = 3 30.52% 47.39%
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(a) Vasicek model and Gaussian
copula used

(b) Vasicek model and Gumbel
copula used

(c) Cox-Ingersoll-Ross model and
Gaussian copula used

(d) Cox-Ingersoll-Ross model and
Gumbel copula used

Figure 6.15: Samples of 100,000 possible trajectories of the risk reserve ratio over
a period of three years
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(a) Vasicek model and Gaussian
copula used

(b) Vasicek model and Gumbel
copula used

(c) Cox-Ingersoll-Ross model and
Gaussian copula used

(d) Cox-Ingersoll-Ross model and
Gumbel copula used

Figure 6.16: Simulated distribution of the risk reserve ratio after one, two and
three years
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Table 6.26: Descriptive statistics of the simulated risk reserve ratio after one, two
and three years

(a) Vasicek model and Gaussian copula used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 32.67% 9.12% −2.2674 −263.93% 27.65% 33.30% 38.56% 63.46%

t = 2 39.79% 12.37% −1.3819 −241.11% 32.70% 40.55% 47.98% 85.41%

t = 3 46.34% 14.68% −1.0039 −219.16% 37.72% 47.19% 56.10% 96.80%

(b) Vasicek model and Gumbel copula used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 32.69% 9.49% −3.7059 −441.50% 27.90% 33.60% 38.63% 61.55%

t = 2 39.77% 12.80% −2.2275 −415.71% 32.92% 40.87% 48.10% 82.92%

t = 3 46.38% 15.14% −1.7423 −382.13% 37.98% 47.52% 56.29% 97.80%

(c) Cox-Ingersoll-Ross model and Gaussian copula used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 32.62% 9.07% −2.3172 −264.34% 27.64% 33.26% 38.49% 63.21%

t = 2 39.66% 12.30% −1.4115 −241.43% 32.63% 40.44% 47.80% 84.72%

t = 3 46.17% 14.61% −1.0211 −218.34% 37.62% 47.04% 55.89% 95.27%

(d) Cox-Ingersoll-Ross model and Gumbel copula used

ut Mean St.Dev. Skew. Min. 1st Qu. Median 3rd Qu. Max.

t = 1 32.64% 9.44% −3.7663 −441.42% 27.89% 33.56% 38.55% 60.22%

t = 2 39.64% 12.74% −2.2673 −415.80% 32.85% 40.78% 47.93% 81.27%

t = 3 46.21% 15.07% −1.7659 −382.17% 37.89% 47.35% 56.08% 96.00%
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(a) Vasicek model and Gaussian
copula used

(b) Vasicek model and Gumbel
copula used

(c) Cox-Ingersoll-Ross model and
Gaussian copula used

(d) Cox-Ingersoll-Ross model and
Gumbel copula used

Figure 6.17: QQ-plot of the integrated and stand-alone distributions of the risk
reserve ratios after one, two and three years
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6.4.4 Capital requirements according to the

stand-alone model

We are now able to calculate the capital requirements over a period of one,

two or three years.

Table 6.27 shows the minimum Risk-Based Capital as a percentage of

the initial gross premium amount over a period of one, two and three years.

We point out that we can make the same comments as in the case of the

integrated model for the multi-line insurance company and/or in the case of

the single-line insurance company.

Table 6.27: Ratio of minimum Risk-Based Capital and initial gross premium
amount over a period of one, two and three years

(a) Vasicek model and Gaussian copula used

t = 1 t = 2 t = 3

uRBC(0, t) 23.32% 25.71% 26.19%

(b) Vasicek model and Gumbel copula used

t = 1 t = 2 t = 3

uRBC(0, t) 26.59% 30.05% 29.83%

(c) Cox-Ingersoll-Ross model and Gaussian copula used

t = 1 t = 2 t = 3

uRBC(0, t) 23.32% 25.63% 26.24%

(d) Cox-Ingersoll-Ross model and Gumbel copula used

t = 1 t = 2 t = 3

uRBC(0, t) 26.63% 30.05% 29.82%

Table 6.28 shows the partial and total Degrees of Diversification of the

risk reserve over a period of one, two and three years. Once again, we can

make the same comments as in the case of the integrated model for the

multi-line insurance company and/or in the case of the single-line insurance

company.
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Table 6.28: Degree of Diversification of the risk reserve over a period of one, two
and three years

(a) Vasicek model and Gaussian copula used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 27.60% 44.38%

t = 2 31.38% 51.28%

t = 3 35.85% 55.34%

(b) Vasicek model and Gumbel copula used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 25.36% 36.58%

t = 2 29.01% 43.06%

t = 3 32.91% 49.13%

(c) Cox-Ingersoll-Ross model and Gaussian copula used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 28.01% 45.00%

t = 2 31.84% 51.65%

t = 3 35.65% 55.28%

(d) Cox-Ingersoll-Ross model and Gumbel copula used

DoD
RBC

(0, t) DoD total
RBC

(0, t)

t = 1 25.61% 37.19%

t = 2 29.23% 43.31%

t = 3 32.88% 49.18%
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6.4.5 Capital requirements according to the standard

formula

We can compare the results according to our model with the results according

to the Solvency II standard formula.

Using equation (5.16), the Solvency Capital Requirement for market and

non-life underwriting risk as a percentage of the initial gross premium amount

is found to be:

uSCR =
SCR

π0
= 32.77%

Hence, the Degree of Diversification of the risk reserve, calculated on the

basis of the Solvency Capital Requirement and on the level of risk modules,

is found to be:

DoDSCR =
u
market

SCR + u
non-life

SCR − uSCR

u
market

SCR + u
non-life

SCR

= 18.31%

and, the Degree of Diversification of the risk reserve, calculated on the basis

of the Solvency Capital Requirement and on the level of risk sub-modules, is

found to be:

DoD
total

SCR =
u-sum

market

SCR + u-sum
non-life

SCR − uSCR

u-sum
market

SCR + u-sum
non-life

SCR

= 34.86%

where:

u-sum
market

SCR =
3
∑

h=1

uSh

SCR +
∑

{i=1,2,3,5,10}

uBi

SCR

and:

u-sum
non-life

SCR = u
MTPL

SCR + u
MOD

SCR + u
GTPL

SCR

We point out that we can make the same comments as in the case of the

single-line insurance company. However, the Solvency Capital Requirement

is smaller than in the case of the single-line insurance company, and the

partial and total Degrees of Diversification are bigger than in the case of the

single-line insurance company.
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Figure 6.18 shows a sensitivity analysis on the Solvency Capital

Requirement for market and non-life underwriting risk. We compare the

result above with the result obtained after having applied a parallel negative

shift of 150 Bps in the interest rate curve. We point out that, after the shift,

the Solvency Capital Requirement for market and non-life underwriting risk

is found to be smaller, because the Solvency Capital Requirement for interest

rate risk is found to be significantly smaller.

Market and non-life underwriting risk

32.77% 32.24%

Original market rates

Market rates less 150 Bps

Figure 6.18: Sensitivity analysis on the ratio of Solvency Capital Requirement
and initial gross premium amount
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Conclusion

Nowadays, risk management in insurance companies is more and more

important. We showed that not only do insurance companies face

underwriting risk, but also market risk, because the inversion of the

production cycle implies that insurance companies have a lot of resources

to be invested. Market risk is highly relevant in life insurance companies,

because a lot of life insurance contracts are alternative forms of investments.

Nevertheless, market risk is also quite relevant in non-life insurance

companies. As a matter of fact, we showed that the resources produced

by the insurance business are invested and consequently they create a risk.

Going more into detail, we pointed out that insurance companies must care

about equity and interest rate risks, that may affect both assets and liabilities.

Moreover, we showed that the interest rate immunization is relevant to ensure

that changes in interest rates do not affect the value of the portfolio.

In this thesis we described a way of modeling the distributions of the

annual rate of return and aggregate claim amount, in order to calculate the

capital requirements for market and non-life premium risk. We showed that

the capital requirements, according to our model, are usually smaller than

in the case of the standard formula. Firstly, this is because the standard

formula was calibrated on riskier distributions than the distributions of our

model and the correlation assumptions are more favourable in the case of our

model rather than in the standard formula. Moreover, we applied a portfolio

optimization strategy to minimize the capital requirements according to

our model. We thus compensated the reduction of expected return with

a reduction of capital requirements. Furthermore, the interest rate curve,

according to our model, was estimated by Treasury rates in the United
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States, assuming that the credit risk and currency risk were absent. As

a consequence, the capital requirements for market risk, according to our

model, should be bigger. In conclusion, the interest rate curve is higher than

the EIOPA risk-free interest rate curve. Hence, we showed that the capital

requirement for interest rate risk, according to the standard formula, becomes

smaller if we apply a parallel negative shift of 150 Bps in the interest rate

curve.

We also pointed out that it is useful to isolate the effect of a single source

of risk, if we want to better understand this effect. As a result, we studied

separately market risk and non-life premium risk. By doing so, we produced

an approximation with respect to the integrated model, but we showed that

it is quite small. We also showed that a riskier bond portfolio implies bigger

capital requirements.

Finally, we described a way of modeling the distribution of the aggregate

claim amount of a multi-line insurance company, in order to calculate the

capital requirements for market and non-life premium risk. We used Gaussian

copulas or Gumbel copulas to describe the dependence structure of the lines

of business. We thus showed that the capital requirements for non-life

premium risk, according to our model, are always bigger than in the case

of the single-line insurance company, because the distribution of the total

aggregate claim amount is riskier. Moreover, we showed that the capital

requirements for non-life premium risk, according to our model, are bigger in

the case of the Gumbel copula rather than in the case of the Gaussian copula,

because the upper tail dependence of the Gumbel copula is higher. On the

other hand, we showed that the capital requirement for non-life premium

risk, according to the standard formula, is smaller than in the case of the

single-line insurance company, because of a diversification effect between the

lines of business.

Further studies can regard reinsurance, the calculation of the safety

loading coefficient, or the analysis of other sources of risk. Reinsurance has a

cost, but it can reduce risks and capital requirements. As a consequence,

reinsurance can be combined with an increase in the riskiness of the

investments, that produces an increase in the expected return. Reinsurance
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can thus be used as an alternative portfolio optimization strategy. The safety

loading coefficient can be linked to the volatility of the portfolio or amount

of capital requirements. The higher the risk is, the higher the safety loading

coefficient should be. In conclusion, we remember that our model can be

accounted as a partial internal model, because we did not consider all the

sources of risk. A full internal model shall consider all the sources of risk.
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