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Prof. dr. Cynthia Van Hulle KU Leuven
Prof. dr. Martine Van Wouwe Universiteit Antwerpen





This work was performed in the framework of the AG Insurance Chair in
Health Insurance at KU Leuven. I thank Heidi Delobelle, Benoit Halbart,
Marc Higny, Jean-Michel Kupper and Annick Maenhoudt for the financial
support, and also for their feedback during our past meetings. Moreover, I
am grateful to the Research Foundation Flanders FWO for sponsoring two
international travels (grants number: K183719N and K1D8119N).





Acknowledgments

This thesis is dedicated to a number of people for their contribution and
support. Before starting the acknowledgments, I apologize to all those I
forgot to mention.

A major contributor is my thesis supervisor Prof. dr. Jan Dhaene. It was
a great honor for me to embark with you in this journey. I have learned
a lot from you over the past four years. A measure of our collaboration
is five published papers. A measure of our adventures is five continents.
A measure of our friendship is the dozens of coffees during our long and
inspiring conversations. All this will remain unforgettable.

I thank Prof. dr. Michel Denuit, Prof. dr. Daniël Linders, Prof. dr. Julien
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Preface

What the future has in store no one ever knows before,
Nina Simone (1965)

The Law of Large Numbers (LLN) provides the groundwork for pricing and
managing insurance risks. Its basic idea is that the sample mean of an
endlessly repeated experiment with independent and identically distributed
random outcomes approaches the theoretical mean of the individual exper-
iments. Jakob Bernoulli initially formulated the weak LLN for a sequence
of experiments with two outcomes, a win or a loss. As the number of ex-
periments increases, the probability that the sample mean falls closely to
the theoretical mean increases too. A century later, Pafnuty Chebyshev
proved a more general strong LLN stating that the sample mean converges,
almost surely, towards the theoretical mean when the number of repetitions
increases.

To illustrate the role of the LLN in an insurance context, we consider a
portfolio of n independent and identically distributed insurance policies.
We denote by Xi the i-th insurance claim payment, which is equal to b with
probability p, or to 0 with probability 1 − p, i.e. the insurer pays a benefit
b with probability p. The theoretical mean of Xi is equal to p × b. Thus,
the claim payment per-policy X̄n (which is the sample mean of the claim
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payments at portfolio level, or average loss) can be approximated by p× b,
for large n. Formally, the weak LLN states that:

lim
n→∞

P
[
|X̄n − p× b| ≥ ε

]
= 0,

for some small ε > 0, whereas the strong LLN states that:

P
[

lim
n→∞

X̄n = p× b
]

= 1.

This means that the pure premium (i.e. excluding safety loadings, adminis-
tration costs, etc.) for each policy can be set equal to p× b. The insurance
company is exposed to the random variations of X̄n around the mean p× b.
Provided the random payments of the n policies are independent and identi-
cally distributed, the LLN ensures that the risk associated to these variations
can be diversified by increasing the size of the portfolio.

Suppose that p × b = 0.05. The figure below displays the claim payments
per-policy X̄n as a function of the portfolio size n. For a low number of
policies, the variations of X̄n around p× b have a higher amplitude. As the
size of the portfolio grows, the claim payment per-policy converges towards
the theoretical mean 0.05.

The task is thus to determine the probability p of paying the claim, as well
as the claim amount b. The insurer can use the available information to
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estimate these quantities. Again, a greater amount of available information
reduces the estimation error. Nevertheless, this task becomes challenging
in a realistic setting, where the probability p and/or the claim amount b
change over time, and hence, their future values are random at the time
the premium is set. In such cases, the diversifiable risk due to the random
variation of X̄n is not the only risk born by insurers.

For instance, suppose that, using the information available at time 0, an
estimate p(0) is obtained for the probability p and an estimate b(0) is obtained
for the claim amount b, such that p(0)× b(0) = 0.01. The above figure shows
that, as the number of policies increases, the claim amount per-policy X̄n

converges towards its theoretical mean, but the estimate p(0) × b(0) = 0.01
of the theoretical mean is different from its actual realization 0.05. It turns
out then that increasing the size of the portfolio is not sufficient. Indeed, in
a setting where future realizations of the quantities p and b are random, the
insurer is also exposed to a residual risk which remains after increasing the
size of the portfolio, i.e. systematic risk.

In an attempt to reduce this risk, the actuarial stream of research on de-
signing sophisticated forecasting models for p and b has flourished over the
past decades. However, even the most sophisticated models may fail to con-
sider all possible future scenarios. This does not mean that forecasting is
a vain exercise, but rather that the use of models has to be combined with
other risk management tools in order to reduce the exposure of the insurer
to systematic risk.

The present thesis endeavors to study this residual risk, with a focus on
its presence in long-term insurance business. We consider separately the
systematic risk stemming from the uncertainty on the claim payment b, and
that stemming from the uncertainty on the probability p.

In the first part of this thesis, we consider systematic risk arising from the
uncertainty on the benefit, which is typically the case for health insurance
contracts. This risk exacerbates when contracts are lifelong, and when the
insurer has to estimate the evolution of health claim amounts in the future.
These constraints are imposed to Belgian private health insurers by law,
and raise a number of challenges which are addressed in Part I. This part is
based on three contributions. Namely, Denuit, Dhaene, Hanbali, Lucas and
Trufin (2017), “Updating mechanism for lifelong insurance contracts sub-
ject to medical inflation”, European Actuarial Journal; Dhaene and Hanbali
(2019) “Measuring medical inflation for health insurance portfolios in Bel-
gium”, European Actuarial Journal; Hanbali, Claassens, Denuit, Dhaene
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and Trufin (2019), “Once covered, forever covered: The actuarial challenges
of the Belgian private health insurance system”, Health Policy.

In the second part of the thesis, we focus on the the systematic risk arising
from the uncertainty on the survival probabilities. More specifically, the
systematic risk in this setting is essentially a longevity risk, where the insurer
is exposed to the risk that the survival index of the portfolio exceeds its
estimated value. Thus, Part II investigates a risk management technique
based on risk-sharing between the insurer and policyholders. The content
of Part II is adapted from the work performed in Hanbali, Denuit, Dhaene
and Trufin (2019), “A dynamic equivalence principle for systematic longevity
risk management”, Insurance: Mathematics and Economics.

In the third part of the thesis, we focus on the offsetting relationship be-
tween longevity risk and mortality risk. The former is present in insurance
contracts paying survival benefits, whereas the latter is present in insurance
contracts paying death benefits. Part III is based on our working paper
Hanbali and Villegas (2019), “Pricing insurance contracts with offsetting re-
lationship”. We study the situations where offsetting contracts are priced
either separately or jointly, and evaluate the competitiveness argument sup-
porting joint pricing.
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CHAPTER 1

Private health insurance in Belgium

1.1 Introduction

Belgian mandatory health insurance is included in the social security system
and provides only a partial cover of prescription drugs and medical services.
Supplementary health insurance gives access to a more comprehensive spec-
trum of covered medical services, especially for hospitalization claims, which
can be very expensive mostly due to the supplementary fees charged by
medical practitioners in case of single room hospitalizations (Lecluyse et al.,
2009). The yearly premiums of health insurance contracts sold by private
companies take into account the different characteristics of the insured risk
profile. Major factors at play in the pricing process are the health status and
the age of the insured at contract inception; see Pitacco (2014). In case the
contract is renewed on a yearly basis, as this is the case in many countries,
the expected annual medical costs underlying the calculation of the yearly
risk premiums will increase over time and may even become unaffordable at
higher ages; see Figure 5.4.1. This is generally also the case for policyholders
with chronic diseases or with disabilities.

Health expenditure in Belgium represents 10.4% of GDP (Health Prospect-
ING, 2018). In 2015, Belgian out-of-pocket expenditures was one of the
highest among the major European countries, with 17.7% of the total health

9
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Figure 1.1.1: Typical shape of the expected annual medical costs in function of age
obtained from the Belgian Mutualité Chrétienne. These costs are increasing with respect
to the age, except for some local phenomena such as the accident and childbearing hump.

.

expenditures. Together, in-patient, out-patient and dental care medical ser-
vices represent about 46% of the out-of-pocket contributions (Health Prospect-
ING, 2018). On the other hand, voluntary private insurance in 2015 rep-
resented 4.9% of the total health expenditure in Belgium (OECD, 2018).
Hospitalization insurance, which is provided either by private health insur-
ance companies or as an additional insurance by mutual insurers, allows to
reduce the bill after a stay in a hospital. Based on the official figures of the
National Bank of Belgium (NBB), 9.4 million health insurance contracts
were in force in 2015 (Mutualité Chrétienne, 2018). The total premiums of
private health insurance amounted to 1.7 billion euros, with 28.08% coming
from individual private contracts. The union of insurers Assuralia reports
that 80% of the Belgian population has a hospitalization insurance, sub-
scribed either individually, or through employers (Assuralia, 2018).

The purpose of the Belgian Law of 20 July 2007 is to ensure the accessibility
of individual supplementary health coverage.1 Two important features have

1Loi du 20 juillet 2007 modifiant, en ce qui concerne les contracts privés d’assurance
maladie, la loi du 25 juin 1992 sur le contrat d’assurance terrestre, Moniteur Belge
du 10/08/2007 (FR); Wet van 20 juli 2007 tot wijziging, wat de private ziektev-
erzekeringsovereenkomsten betreft, van de wet van 25 juni 1992 op de landverzeker-
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been included in order to protect policyholders from discrimination and ex-
clusion, essentially when these operate on the basis of age (article 138bis).
More specifically, these contracts must be lifelong (with the exception of dis-
ability covers which extend to the end of the professional activity), with a
technical actuarial basis. The legislator allows an adjustment of the premi-
ums using the Consumer Price Index (CPI). In case the main characteristics
of the insured risk change over time in a way that threatens the solvency of
the insurer, it is allowed to adapt the premiums with the agreement of the
relevant authority (i.e. the National Bank of Belgium).

Once covered, forever covered. This maxim which emerges from the Belgian
Law has two technical consequences for insurers. First, from an actuarial
perspective, the lifelong commitment combined with leveled premiums (over
all ages, or over some age ranges) implies that these contracts have to be
treated similarly to life insurance products. This means that the insurer has
to build reserves using the surpluses accumulated in the early years of the
contract to cover the increasing costs for higher ages. Second, on top of the
modeling of future survival probabilities which follows from the analogy with
life insurance products, the insurer has to perform a sound forecast of the
future evolution of health claims. However, these evolutions are practically
difficult (not to say impossible) to forecast, meaning that insurers have to
cope with a risk which is specific to the private health insurance sector, that
is, medical inflation risk.

Medical inflation, or the unpredictable systematic changes in medical claim
payments over the years, is driven by several inter-related causes; see e.g.
André-Dumont and Devoet (2012). A primary cause comes from the reim-
bursement structure of health expenditures in the Belgian context. Private
health insurance is meant to cover part of the expenses which are not cov-
ered by Social Security. Therefore, in case the intervention threshold of the
mandatory insurance decreases, e.g. due to some political decisions, claim
expenses will inevitably increase for private health insurers. It is to be noted
however that for many Belgian insurers, the extent of the covers is expressed
as a multiple of this intervention threshold. Medical inflation is also caused
by the interplay between demographic and socio-economic factors. On the
one hand, there is a decrease of the contributions to Social Security and
an increase of the volume of health benefits for elderly due to population
aging. On the other hand, medical progress might lead to the discovery of

ingsovereenkomst, Belgish Staatsblad 10/08/2007 (NL). This Law has been replaced by:
Loi du 4 avril 2014 relative aux assurances, Moniteur Belge du 30/04/2014 (FR); Wet van
4 april 2014 betreffende de verzekeringen, Belgish Staatsblad, 30/04/2014 (NL).
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new diseases which have to be covered, or to the discovery of new cures for
known diseases which are often expensive. All these consequences of medi-
cal progress have an impact on life expectancy, taking us back again to the
population aging issue; see Lichtenberg (2017) and references therein.

Therefore, Belgian insurers have to anticipate a lifelong risk which can hardly
be quantified mathematically. The solution proposed by the legislator is to
transfer medical inflation risk back to policyholders by allowing an adjust-
ment of the contract elements on a yearly basis. Note that our main focus
here is on the adjustment of level premiums, but the discussion remains rel-
evant to other components of the contract such as deductibles, and to some
extent to the case where premiums are leveled by thresholds. This solution
appeared to be a compromise between insurers and consumers’ representa-
tives, provided the adjustments are standardized across the sector. In fact,
proposing an updating mechanism applicable at the sector level requires two
distinct tasks. The first task is to construct medical inflation indices which
capture the cost evolutions of the four main medical services covered in Bel-
gian private health insurance (hospitalization with stay in a private room,
hospitalization with stay in shared room, dental care and ambulatory care).
The second task is to define a sound updating mechanism which accounts
for the lifelong nature of these contracts. Achieving these two tasks is not
straightforward, and the challenges underlying each of them is the topic of
Part I of this thesis.

1.2 Research questions and structure

1.2.1 Construction of medical inflation indices

The medical inflation discuss here is specific to the private health insurance
sector, and its related indices differ from the CPI. Constructing them using
a basket-based approach would suffer from technical limitations. One of
these limitations is the fact that quantifying some of the drivers of medical
inflation in the insurance sector may not be feasible. Additionally, for the
drivers that can be quantified, determining their weights in the basket can be
challenging. Another limitation is that medical indices constructed in such
a manner would not be age-dependent, whereas medical inflation is likely
to be age-dependent. In order to overcome these drawbacks, Devolder et al.
(2008) suggest an actuarial approach based on the claim costs experienced
in the sector, which has been adopted for Belgian private health insurance;
see Figure 1.2.2 which displays the evolution of medical inflation indices over
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time from the method of Devolder et al. (2008), for the five age categories
defined in the Belgian Law (0–19, 20–34, 35–49, 50–64 and 65+). Although
this method has shown its merits, the evolution of the health insurance
market raises some shortcomings in both the calculation of the indices and
their application.

Figure 1.2.2: Official medical inflation indices for each medical service by age category
from 2015 to 2018, obtained from https://statbel.fgov.be/.

.

Concerning the calculation of the market-wide medical inflation indices for
each type of covered medical service, the current Belgian approach allocates
the full data of any health insurance product to a single category, namely
the type of cover which has the highest weight in the claims over the past
year. This implies that the market-wide index for each type of cover might
be ‘polluted’ by claims not corresponding to that cover.

Concerning the index that can be used to adjust the premiums of a product,
the current Belgian approach requires using the market index that corre-
sponds to the most expensive cover in that product. This means that the
choice of the index for a particular product does not take into account the
proportion of costs related to the different medical services covered in that
product.

In this context, the first research question, addressed in Chapter 2, is how to

https://statbel.fgov.be/
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improve the current Belgian methodology for constructing medical inflation
indices.

1.2.2 Updating mechanism for lifelong health insurance cov-
ers

The amending Law of 17 June 2009 states that insurers are allowed to adjust
the premium using the medical indices or the CPI, whichever is higher. A
first mechanism for premium adjustments was provided in the subsequent
Royal Decree of 1 February 2010 that implements the Law in practice.2 One
month before the publication of this Royal Decree, the legislator solicited
an advice from a committee made up of representatives of both insurers
and consumers.3 However, the concerns of the committee were not fully
taken into account and the content of the Royal Decree could not meet the
demands of neither of the parties. In 2011, the Council of State canceled
the Royal Decree of 1 February 2010 in response to an action by Assuralia,
an institution which represents insurance companies.4 The main reason of
this cancellation was that the legislator has omitted the reserves from the
updating mechanism without providing any justification.

The legislator introduced the Royal Decree of 18 March 2016 which is similar
to its predecessor in a number of points, but the reserves have been included
in the adjustments.5 The main difference between the new Royal Decree of
18 March 2016, which is the one currently implemented in practice, and its

2Arrêté Royal déterminant les indices spécifiques visés à l’article 138bis-4 de la loi du
25 juin 1992 sur le contract d’assurance terrestre, Moniteur Belge du 08/02/2010 (FR);
Koninklijk besluit tot vaststelling van de specifieke indexcijfers bedoeld in artikel 138bis-
4 van de wet van 25 juni 1992 op de landverzekeringsovereenkomst, Belgish Staatsblad
08/02/2010 (NL).

3Avis de la Commission du 7/01/2010 sur le projet d’Arrêté Royal déterminant les in-
dices spécifiques visés à l’article 138bis-4, de la loi du 25 juin 1992 sur le contrat d’assurance
terrestre, Commission des assurances DOC C/2009/11 (FR); Over het ontwerp van konin-
klijk besluit tot vaststelling van de specifieke indexcijfers bedoeld in artikel 138bis-4 van de
wet van 25 juni 1992 op de landverzekeringsovereenkomst, Commissie voor Verzekeringen,
DOC C/2009/11 (NL).

4Arrêt du Conseil d’état numéro 217.085 du 29 décembre 2011, numéro de rôle A.
196.306/VII-38.279.

5Arrêté Royal portant modification de l’Arrêté Royal du 1 février 2010 déterminant
les indices spécifiques visés à l’article 138bis-4 de la loi du 25 juin 1992 sur le contract
d’assurance terrestre, Moniteur Belge du 25/03/2016 (FR); Koninklijk besluit tot wi-
jziging van het koninklijk besluit van 1 februari 2010 tot vaststelling van de specifieke
indexcijfers bedoeld in artikel 138bis-4 van de wet van 25 juni 1992 op de landverzeker-
ingsovereenkomst, Belgish Staatsblad 25/03/2016 (NL).
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predecessor is the introduction of an updating factor α. This updating factor
α allows insurers to transfer back to policyholders the impact of medical in-
flation on both remaining premiums and accumulated reserve. Based on the
approximation of Vercruysse et al. (2013), which builds upon some specific
assumptions, the updating factor α is set equal to 1.5. Roughly speaking,
if the official medical index is equal to f%, the insurer is allowed to adjust
the remaining premiums with an index up to 1.5× f%.

The ‘1.5 rule’ relies on a set of assumptions, and hence, questioning its
validity in a general setting is legitimate. The validity of the rule does not
necessarily mean that it should provide a good approximation for the actual
required factor α. In practice, this will very likely not be the case. As
a matter of fact, the Royal Decree of 18 March 2016 states that the ‘1.5’
approximation is an upper bound for premium adjustments. Therefore,
what matters most, at least from the point of view of the insurer, is that the
‘1.5 rule’ should provide a conservative estimate of the required updating
factor. Thus, the second research question of Part I, investigated in Chapter
3, is whether the ‘1.5 rule’ allows for the necessary adjustments for lifelong
health insurance contracts.

In order to answer this question, a necessary step is to define an actuarially
fair updating mechanism which serves as a benchmark. We will consider in
Chapter 3 three different approaches. The first approach is the individual
updating mechanism, where each contract is treated individually. The sec-
ond approach is the updating mechanism based on pooling the risk of new
entrants: policyholders starting their contracts in the same year will share
the medical inflation risk, and thus, will have the same premium adjustments
(without necessarily having the same level premium). The third approach
generalizes the setting to an updating mechanism based on pooling the risk
at the level of an existing portfolio, i.e. the updating factor is the same for
all policyholders in the portfolio, regardless of their age and the seniority of
their contracts.

Therefore, the assessment of the ‘1.5’ approximation across the three meth-
ods will also allow us to investigate a third question, namely, what is the
effect of introducing intergenerational solidarity in the updating mechanism?

Behind this question lies an important issue which requires some expla-
nation. In 2005, consumers’ representatives association Test-Achat/Test-
Aankoop filed a complaint against the leading Belgian provider of private
health insurance DKV before the Court of Trade. Test-Achat/Test-Aankoop
was claiming that DKV applied unfair premium adjustments which were in-
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creasing with respect to age.6 Note that a similar conflict occurred in 2010,
shortly after the publication of the first Royal Decree.7 DKV was ordered
in 2005 to repay the extra-payments because the Court has ruled that the
increases were discriminatory. The insurer appealed against this decision in
2006, and ultimately, the Court held in favor of the insurer.8

The distinction between the medical index f and the updating factor α is
crucial in order to understand the challenge. Concerning the medical index,
the legislator does not promote age-independent adjustments by defining
different indices for each age category. Therefore, as long as the medical
index f is different for each age category, the updating mechanism will be
age-dependent. However, the medical index is not necessarily increasing
with respect to the age; see Figure 1.2.2. Moreover, age-independent indices
are published by the Belgian Statistical Office, and their application seems
to be supported by both parties.9

Throughout Chapter 3, we will rule out the potential age-discrimination that
may arise from the medical index by assuming that f is age-independent. It
turns out that the analysis carried out in Chapter 3 allows to identify some
important issues in the current Belgian system for adjusting premiums in
private health insurance contract. This will be the focus of Chapter 4, which
concludes the first part of this thesis. This chapter is devoted to a discussion
on the challenges related to the initial and main purpose of the Law of 20
July 2007, i.e. advocating a system protecting policyholders against age
discrimination in health insurance by ensuring affordable covers to all ages.
We argue in this chapter that the problem of age-discrimination is strongly
related to that of the transferability of the reserves, where the latter problem
arises from the analogy between Belgian health insurance contracts and life
insurance contracts.

6ASBL Test-Achats contre SA DKV Belgium, 7 mars 2005, Tribunal de Commerce de
Bruxelles.

7https://www.lecho.be/entreprises/services-financiers-assurances/dkv-cond

amnee-a-rembourser-des-primes/10073871.html.
8Arrêt de la Cour (quatrième chambre), affaire C-577/11, 7 mars 2013, Recueil de la

jurisprudence.
9Avis de la Commission du 09/09/2015 sur le projet d’Arrêté Royal portant modifica-

tion de l’Arrêté Royal du 1 février 2010 déterminant les indices spécifiques visés à l’article
138bis-4, de la loi du 25 juin 1992 sur le contrat d’assurance terrestre, Commission des
assurances DOC C/2015/3 (FR); Over het ontwerp van koninklijk besluit tot wijziging van
het koninklijk besluit van 1 februari 2010 tot vaststelling van de specifieke indexcijfers be-
doeld in artikel 138bis-4 van de wet van 25 juni 1992 op de landverzekeringsovereenkomst,
Commissie voor Verzekeringen, DOC C/2015/3 (NL).

https://www.lecho.be/entreprises/services-financiers-assurances/dkv-condamnee-a-rembourser-des-primes/10073871.html
https://www.lecho.be/entreprises/services-financiers-assurances/dkv-condamnee-a-rembourser-des-primes/10073871.html


CHAPTER 2

Construction of medical inflation indices

2.1 Introduction

The aim of this chapter is to evaluate the current method for the construc-
tion of medical inflation indices for private health insurance contracts in
Belgium, and to propose an improved method. Constructing these indices is
the first step towards a sustainable framework for premium adjustments. We
compare the accuracy of the medical indices currently applied in Belgium
for private health insurance contracts with product-specific experience-based
indices. The latter enable to better capture product-specific systematic de-
viations due to medical inflation, but their application might raise some
practical problems. Therefore, we propose an alternative way to construct
medical inflation indices. Several numerical examples are used to compare
the performance of the newly proposed indices as well as the current Bel-
gian approach with the experience-based indices. These numerical examples
show that the newly proposed indices provide good approximations for the
product-specific experience-based indices without having their practical lim-
itations.

This chapter is based on the work performed in Dhaene and Hanbali (2019),
and is structured as follows. Section 2.2 contains the main notations. In
Section 2.3, we discuss the current Belgian method for constructing medical
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inflation indices. We highlight some of its limitations and we further moti-
vate the need of an alternative construction. In Section 2.4, we introduce
indices capturing the experienced medical inflation for each type of cover in
each product. As it is discussed in the same section, applying these indices
might not be desirable from the viewpoint of the regulator, nor from that
of insurance companies. However, these product-specific experience-based
indices will be helpful to compare the Belgian indices and the proposed in-
dices. In Section 2.5, we introduce alternative medical inflation indices and
compare their accuracy with respect to the current Belgian ones. Finally,
we conclude the chapter in Section 2.6 and discuss some possible topics for
future research.

2.2 Notations and assumptions

The methodology proposed in Devolder et al. (2008) for the construction
of medical indices is the one currently applied in practice. Based on this
methodology, the Belgian government provides market-wide medical indices,
which are published every year for 5 different age categories (0-19, 20-34,
35-49, 50-64 and 65+) and 4 different types of covered medical services
(hospitalization with stay in a private room, hospitalization with stay in
a shared room, dental case costs and ambulatory care costs). However,
this method may fail to provide appropriate adjustments, especially because
products may cover more than one medical service.

We will consider in this chapter a general setting with J products and K
types of covers. We will assume that the set of products as well as the
set of covered medical services is time-independent over the two consecutive
periods (t− 2, t− 1) and (t− 1, t), over which we determine the medical in-
dices. Newly launched products or newly introduced covers require a special
treatment, which will not be considered here. We will also assume that each
medical service is covered by at least one product, and that the types of
covers included in a product do not change over the observation period.

An insurance company in the private health insurance market may sell dif-
ferent products, implying that J is larger than or equal to the number of
insurance companies in the market. Insurance products may cover one or
more medical services. For instance, in order to reduce the level of the pre-
mium, a product may only cover shared room hospital stays. A product
covering stays in a private room will always include a cover for stays in a
shared room, as private rooms may not be available at hospitalization. Note
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however, that insurers should treat the corresponding invoiced amount as if
the policyholder has stayed in a private.

The medical indices that we will investigate can be determined for differ-
ent age-categories. In the following derivations, we consider a single age
category, as the methodology is identical for each category.

For any product j = 1, 2, . . . , J and any type of cover k = 1, 2, . . . ,K, we
introduce the following notations:

• C(k)
j (t) : total claims resulting from cover k of product j in year (t −

1, t).

• Cj(t) =
∑K

k=1C
(k)
j (t) : total claims of product j in year (t− 1, t).

• lj(t) : total number of insureds of product j in year (t− 1, t).

Similarly, we introduce the corresponding quantities C
(k)
j (t − 1), Cj(t − 1)

and lj(t − 1), which are all related to year (t − 2, t − 1). In practice, the
method used to determine lj(t − 1) and lj(t) should account for exits and
entries during the year, and should be fixed in order to ensure coherence in
the data collected from the different insurance companies.

We also use the notation I(k) for the set of products in the market which
include cover k, i.e.

I(k) = {j ∈ {1, 2, ..., J} | medical service k is covered by product j} ,

for any k ∈ {1, 2, · · · ,K}, where the letter I is chosen to remind that cover
k is ‘included’ in a product belonging to this set. For any product j in I(k),

we will assume that C
(k)
j (t − 1) > 0 and C

(k)
j (t) > 0. Furthermore, when

j /∈ I(k), we set C
(k)
j (t − 1) = C

(k)
j (t) = 0. Our previous assumption that

each medical service is covered by at least one product ensures that all sets
I(k) are non-empty. Finally, we will assume that lj(t− 1) > 0 and lj(t) > 0.

The setting allows for two possible interpretations of the total claims. The

first interpretation is to consider all the C
(k)
j as gross claims, which are

defined as total invoiced amounts minus payments from Social Security1.

The second interpretation consists in considering all C
(k)
j as net claims,

which correspond to the amounts effectively paid by insurers, i.e. the gross
claims minus claims not covered by the insurer. Gross and net claims will

1Interested readers can find more information at https://www.socialsecurity.be/

https://www.socialsecurity.be/


20

differ e.g. in case the insurer covers only a proportion of the gross claims, or
in case of a maximum claim payment per hospitalization day. In the current

Belgian system, each C
(k)
j (t) is a gross claim payment.

In what follows, we will suppose that we have arrived at time t, and that
we want to measure the increase of medical costs from year (t− 2, t− 1) to
year (t− 1, t), for each type of cover and each product, as well as for all
types of covers in the whole market. These observed increases can then be
used as the market indices at time t to update premiums for the coming
year (t, t+ 1). We refer to the following Chapter 3 for more details on how
to adjust premiums using the medical index.

2.3 The official Belgian medical inflation indices

This section considers a simplified version of the current Belgian system
for level premiums of lifelong private insurance contracts. Recall that in
this system, one distinguishes 4 types of covered medical services: private
room stays (or private room inpatient), shared room stays (or shared room
inpatient), dental care and ambulatory care (or outpatient), meaning that
K = 4. A health insurance product may cover more than one medical
service. In case a product covers more than one type of cover, current
Belgian law requires to classify that product into a single category. The
appointed category of a product corresponds to the type of cover with the
highest weight in the overall claims of that product, where this categorization
is done at product level. Therefore, product j is classified as a ‘type of cover

k’ - product in year (t− 1, t) if C
(k)
j (t) is such that:

C
(k)
j (t) = max

{
C

(1)
j (t), . . . , C

(K)
j (t)

}
.

For k = 1, 2, . . . ,K, the set of ‘type of cover k’ - products in year (t− 1, t) is
denoted by M (k)(t), where the letter M is chosen to remind that the claim
is a maximum, i.e.

M (k)(t) =
{
j ∈ I(k) | j is a type of cover k - product in year (t− 1, t)

}
.

The set of ‘type of cover k’ - products in year (t− 2, t− 1), which is denoted
by M (k)(t− 1), is defined in a similar way.

Every year the medical index is determined for each type of cover k, based
on aggregated data from the market. Determining the index for a given
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product is thus a two step procedure. The first step is to determine the
medical inflation index at market level. The second step is to choose the
appropriate index for the product under interest.

For the first step, we introduce the time-t index for ‘type of cover k’ at the

market level, which is denoted by i
(k)
m (t), where the subscript ‘m’ refers to

the market. This index follows from the equation:∑
j∈M(k)(t−1)

Cj(t− 1)∑
j∈M(k)(t−1)

lj(t− 1)
×
(

1 + i(k)
m (t)

)
=

∑
j∈M(k)(t)

Cj(t)∑
j∈M(k)(t)

lj(t)
. (2.3.1)

Notice that the index is well-defined, provided neitherM (k)(t−1) norM (k)(t)
is empty. The right hand side of definition (2.3.1) corresponds to the total
amount of gross claims for ‘type of cover k’ - products in the market, divided
by the total number of insurance contracts of ‘type of cover k’ - products,
in the year (t− 1, t). On the left hand side, the same average appears for

the previous year (t− 2, t− 1). The index i
(k)
m (t) can be interpreted as an

estimate for the observed medical inflation of type of cover k in the market,
from year (t− 2, t− 1) to (t− 1, t).

For the second step, Belgian law stipulates that in the coming year (t, t+ 1),
the premiums for product j can be updated taking into account the index
ij(t), which is defined by:

ij(t) = i(k)
m (t), if j ∈M (k)(t). (2.3.2)

This means that the premiums for ‘type of cover k’ - product j can be

updated taking into account the ‘type of cover k’ - index i
(k)
m (t). Notice that

the index ij(t) is not defined in case M (k)(t− 1) is empty.

From (2.3.1), we observe that the total claim payments of ‘type of cover k’ -

product j are entirely used to calculate the market index i
(k)
m for category k.

Moreover, premiums of this product can be indexed by the category k index

i
(k)
m (t) in year (t, t + 1). In case each product only covers a single type of

cover, the Belgian updating mechanism is definitely appropriate. In practice
however, many products cover more than a single type of cover, which leads
to situations where the current system provides inappropriate indices. The
issues are at the level of the construction of the indices as well as at the level
of their application.

To illustrate the problem, suppose that a certain product covers multiple
medical services. In general, medical costs evolve differently in each cate-
gory. Hence, taking into account costs for, say, private room covers when
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calculating the market index for shared room covers is likely to lead to wrong
figures for the index of shared room covers. Moreover, dental care in a prod-
uct which combines several types of covers is not necessarily the cover with
the highest claims payments. Therefore, the market index for dental care
covers is in practice based only on the claim payments of ‘pure’ dental care
products, ignoring dental care data coming from products with several types
of covers.

For the choice of the medical index to be applied for a particular product,
suppose that a certain product is only covering stays in private or shared
rooms, and that the proportions of claims related to these types of covers
are 49% and 51%, respectively. The premiums of this product can then
be indexed using the market index for shared rooms, which may not be
appropriate for this portfolio. On the other hand, in case the claim payments
related to the insurance product reveal proportions 51% / 49%, the medical
index that can be applied is the private room medical index, which again
might not correspond to the medical inflation observed in this portfolio.

In the following example, we illustrate the calculation of medical inflation
indices according to the current Belgian approach.

Example 1. Consider a market with 4 lifelong health insurance products
(J = 4) and two types of covers (K = 2). The claim amounts and number
of policyholders observed in the previous two periods are given in Table 2.1.

Product 1 Product 2 Product 3 Product 4

t C
(1)
1 (t) C

(2)
1 (t) l1(t) C

(1)
2 (t) C

(2)
2 (t) l2(t) C

(1)
3 (t) C

(2)
3 (t) l3(t) C

(1)
4 (t) C

(2)
4 (t) l4(t)

0 400 600 10 900 600 15 1800 0 30 0 2400 60
1 880 1260 20 1800 1000 25 3600 0 50 0 4000 100

Table 2.1: Claims and number of insureds for the market in Example 1.

In a first step, each product available in the market is classified as either a
‘type of cover 1’ or ‘type of cover 2’- product, based on the type of cover
of the product that leads to the largest proportion of claim payments. In
this example we find for both observation years that products 2 and 3 are
‘type of cover 1’ - products, while products 1 and 4 are ‘type of cover 2’ -
products.
Next, medical inflation indices of the market for both types of covers are
determined according to (2.3.1):

(900 + 600) + 1800

15 + 30
×
(

1 + i(1)
m (1)

)
=

(1800 + 1000) + 3600

25 + 50
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and

(400 + 600) + 2400

10 + 60
×
(

1 + i(2)
m (1)

)
=

(880 + 1260) + 4000

20 + 100
.

This leads to

i(1)
m (1) = 16.4% and i(2)

m (2) = 5.3%.

Therefore, we find that i2(1) = i3(1) = 16.4% , while i1(1) = i4(1) = 5.3%.
This means that in the coming year (1, 2), premiums of products 2 and 3

are updated using the index i
(1)
m (1), whereas premiums of products 1 and 4

are updated using the index i
(2)
m (1). 5

2.4 Product-specific experience-based medical in-
flation indices

Before introducing an alternative way of calculating market-based indices
for all types of covers offered in the market, we first introduce product-
specific experience-based indices for each medical service covered by the
product under consideration. These indices are constructed such that they
capture the experienced health claim increases which are specific to the
product and to the type of cover. We introduce these indices to study in the
subsequent section the accuracy of the newly proposed indices with respect
to the current Belgian ones.

The product-specific experience-based index for product j and type of cover

k observed in year (t− 1, t) is denoted by e
(k)
j (t). It is defined by

C
(k)
j (t− 1)

lj(t− 1)

(
1 + e

(k)
j (t)

)
=
C

(k)
j (t)

lj(t)
, for j ∈ I(k). (2.4.1)

The factor
(

1 + e
(k)
j (t)

)
in (2.4.1) connects the ‘type of cover k’ - claim cost

per insured of product j, over two consecutive years. Furthermore, in case

j /∈ I(k), we set e
(k)
j (t) equal to 0, by convention.

The overall product-specific index for product j in year (t− 1, t) is denoted
by ej(t). It follows from:

Cj(t− 1)

lj(t− 1)
(1 + ej(t)) =

Cj(t)

lj(t)
. (2.4.2)
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Here, the factor (1 + ej(t)) connects claim costs per insured for product j,
over two consecutive years.

It is straightforward to prove the following relation between the ‘type of

cover k’ indices e
(k)
j (t) and the overall index ej(t) of the product:

1 + ej(t) =

K∑
k=1

(
1 + e

(k)
j (t)

)
× w(k)

j (t) (2.4.3)

with weights w
(k)
j (t) given by

w
(k)
j (t) =

C
(k)
j (t− 1)

Cj(t− 1)
(2.4.4)

The product-specific index ej(t) can be defined for gross as well as for net
claim amounts. The index has the advantage of enabling the insurer to ac-
count for product-specific systematic risk due to medical inflation. However,
it could also capture diversifiable risk, which is supposed to be borne by the
insurer, and hence should not trigger the indexing mechanism. Another dis-
advantage of applying this index for updating premiums is that it reflects the
(gross or net) claim increases that were experienced by the insurer, which
could constitute competitive sensitive information. Finally, using product-
specific indices ej(t)’s could suffer from a lack of transparency towards pol-
icyholders, and would not lead to uniform premium increases across the
market.

2.5 A new class of medical inflation indices

In this section, we propose a new method to construct market medical infla-
tion indices for the different types of covers, as well as for product-specific
indices. In the construction of the index for type of cover k, we take into
account all products offering that cover. In the application of the index for
product j, we take into account all types of covers included in that prod-
uct. Thus, compared to the current Belgian indices, the proposed method
provides market indices which are more representative of the experienced
market medical inflation for each type of cover, and allows for an indexing
at the product-level which captures more accurately the medical inflation
for that product.
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In a first step, we define f
(k)
m (t) , the time-t medical index of the market for

type of cover k, as follows:∑
j∈I(k)

C
(k)
j (t− 1)∑

j∈I(k)
lj(t− 1)

×
(

1 + f (k)
m (t)

)
=

∑
j∈I(k)

C
(k)
j (t)∑

j∈I(k)
lj(t)

. (2.5.1)

Our previous assumptions ensure that f
(k)
m (t) is well-defined for each type

of cover k. The right hand side of this equation is the total market claims
paid for ‘type of cover k’ in year (t− 1, t), divided by the total number
of insurance contracts offering that cover. On the left hand side, the same

average appears for the previous year (t− 2, t− 1). The factor
(

1 + f
(k)
m (t)

)
connects both average claim amounts.

In a second step, we propose that product j is appointed a product-specific
index, based on the relative importance of the different medical services
covered by that product. Inspired by formula (2.4.3) and using the weights
defined in (2.4.4), we suggest the following calculation:

1 + fj(t) =

K∑
k=1

(
1 + f (k)

m (t)
)
× w(k)

j (t). (2.5.2)

As opposed to the market indices i
(k)
m (t) defined in (2.3.1), the market indices

f
(k)
m (t) defined above are not biased by the claim amounts of other categories

that do not contribute to the claim increases of category k. Moreover, the
product-specific index fj(t) takes into account the weight of each type of
cover in the total claims of the product. Therefore, it is to be expected
that the newly proposed method will give rise to a more accurate indexing
mechanism than the one currently used in Belgium.

Comparing formulas (2.4.3) for the experience-based indices and (2.5.2) for

the proposed indices, we see the calculation of the indices e
(k)
j (t) is performed

at product level, whereas the f
(k)
m (t) are determined at market level. Hence,

ej(t) is derived from product-specific evolution of the claims related to the
covered type of medical service, whereas for fj(t) market averages are used
for it. As the market portfolio is a larger pool than the portfolio of an
individual product, the index fj(t) will be superior to the index ej(t) in
terms of capturing the medical inflation due to systematic risk.

Concerning the claim amounts C
(k)
j in formulas (2.4.4), (2.5.1) and (2.5.2),

both the ‘gross claims’ and the ‘net claims’ interpretation are possible. In
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case the medical indices f
(k)
m (t), fj(t) and the weights w

(k)
j (t) are based on

gross claims, the market indices f
(k)
m (t) capture the increase of gross claims

in the market, while the weights w
(k)
j (t) might not correctly capture the

relative weights of the different types of covers in the product under consid-
eration, leading to a wrong figure for the medical inflation fj(t). On the other
hand, using the net claims to define the medical indices and the weights,

is an appropriate approach for the weights w
(k)
j (t), but might give a wrong

picture of the medical inflation indices f
(k)
m (t) for the different types of cov-

ered medical services in the market. One possible rule of thumb consists in

determining the market indices f
(k)
m (t) using formulas (2.5.1), with the C

(k)
j

defined as gross claims, while the weights w
(k)
j (t) are determined according

to (2.4.4) with the C
(k)
j interpreted as net claims.

Hereafter, we will numerically illustrate the validity of our approach. In
the examples that we will consider, we always assume that all products
have an unlimited cover, i.e. that gross claims and net claims are identi-
cal. Throughout the remaining numerical illustrations, we use the product-
specific experience-based indices (2.4.3) as benchmark. In the next example,
we revisit the market considered in Example 1 and compare its indices ij(1),
ej(1) and fj(1).

Example 2. Consider the market with 4 products and 2 types of covers
observed at time 1, as described in Table 2.1 of Example 1. The experience-
based indices for each product follow directly from (2.4.2), such that:

400 + 600

10
× (1 + e1(1)) =

880 + 1260

20
,

900 + 600

15
× (1 + e2(1)) =

1800 + 1000

25
,

1800

30
× (1 + e3(1)) =

3600

50
,

2400

60
× (1 + e4(1)) =

4000

100
,

and we find e1(1) = 7%, e2(1) = 12%, e3(1) = 20% and e4(1) = 0%. For
the proposed index fj(1) of product j, the calculation is carried out in two
steps. The first step is to determine market medical indices for each type

of cover, i.e. the indices f
(k)
m (1) defined in (2.5.1). For type of cover 1, we
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have:
400 + 900 + 1800

10 + 15 + 30

(
1 + f (1)

m (1)
) 880 + 1800 + 3600

20 + 25 + 50
,

which leads to f
(1)
m (1) ≈ 17.28%. For type of cover 2, we have:

600 + 600 + 2400

10 + 15 + 60

(
1 + f (2)

m (1)
) 1260 + 1000 + 4000

20 + 25 + 100
,

which leads to f
(2)
m (1) ≈ 1.93%. We clearly see that medical inflation is much

higher for type of cover 1 compared to that of type of cover 2. The second
step is to determine the indices for each product j using the weighted sum in

(2.5.2). The couple of weights
(
w

(1)
j (1), w

(2)
j

)
for each product j = 1, 2, 3 and

4 is given by (0.4, 0.6), (0.6, 0.4), (1, 0) and (0, 1), respectively. Therefore,
we find:

1 + f1(1) ≈ (1 + 17.28%)× 0.4 + (1 + 1.93%)× 0.6,

1 + f2(1) ≈ (1 + 17.28%)× 0.6 + (1 + 1.93%)× 0.4,

1 + f3(1) ≈ (1 + 17.28%)× 1 + (1 + 1.93%)× 0,

1 + f4(1) ≈ (1 + 17.28%)× 0 + (1 + 1.93%)× 1.

The indices ij(1), ej(1) and fj(1) are reported for all products in Table 2.2.

Product 1 Product 2 Product 3 Product 4

Belgian indices ij(1) 5.3% 16.4% 16.4% 5.3%
Proposed indices fj(1) 8.1% 11.1% 17.3% 1.9%

Experience-based indices ej(1) 7.0% 12.0% 20.0% 0.0%

Table 2.2: Comparison of the different medical indices for the market of Example 1.

In this market, the proposed indices fj(1) provide a good approximation for
the experience-based indices ej(1), whereas the Belgian indices ij(1) perform
worse. This phenomenon is in particular observed for product 4 with a single
cover, which did not experience any medical inflation. For this product, the
current Belgian system suggests to update the premiums based on a medical
inflation of i4(1) = 5.3%, whereas our approach leads to f4(1) = 1.9%, which
is much closer to the experience-based inflation e4(1) = 0. 5

In the following example, we consider another market to illustrate the per-
formance of the different medical inflation indices.
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Example 3. Consider a market with 4 products (J = 4) and 2 types of
covers (K = 2) with data displayed in Table 2.3.

Product 1 Product 2 Product 3 Product 4

t C
(1)
1 (t) C

(2)
1 (t) l1(t) C

(1)
2 (t) C

(2)
2 (t) l2(t) C

(1)
3 (t) C

(2)
3 (t) l3(t) C

(1)
4 (t) C

(2)
4 (t) l4(t)

0 400 600 10 900 600 15 1800 0 30 0 2000 50
1 880 1500 20 1650 1250 25 3300 0 50 0 5000 100

Table 2.3: Observed claims for the market of Example 3.

In this example, we find that all experience-based type-of-cover-specific in-
dices are equal, in the whole market:

e
(1)
j (1) = 10% and e

(2)
j (1) = 25%, for j = 1, 2.

Hence, the claim amounts per-policy for types of covers 1 and 2 increase
by 10% and 25%, respectively, for all products. The values of the indices
ij(1), ej(1) and fj(1) are summarized in Table 2.4. We observe again that
the newly proposed index fj(1) outperforms the Belgian index ij(1), when
compared to the experience-based index ej(1). 5

Product 1 Product 2 Product 3 Product 4

Belgian indices ij(1) 23.0% 12.7% 12.7% 23.0%
Proposed indices fj(1) 18.7% 15.4% 8.9% 25.3%

Experience-based indices ej(1) 19.0% 16.0% 10.0% 25.0%

Table 2.4: Comparison of the medical indices for the market in Example 3.

In the (theoretical) special case of a market with a single product, i.e. J =
1, the current Belgian index, the experience based index and the newly
proposed index are identical:

i1(t) = e1(t) = f1(t).

The proof of these equalities follows in a straightforward way from (2.3.1),
(2.4.3) and (2.5.2). In the following theorem, we move to the more realistic
case of a multiple product market. We consider conditions under which the
product-specific index ej(t) and our newly proposed index fj(t) are equal.

Theorem 2.1. Consider a market at time t and suppose that in the period
(t− 1, t), the observed average claims for any given type of cover are equal
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for all products which include that cover, i.e.

C
(k)
j (t)

lj(t)
= c(k)(t), for any k ∈ {1, 2, . . . ,K} and j ∈ I(k). (2.5.3)

Furthermore, suppose that the corresponding observation also holds for the
period (t− 2, t− 1):

C
(k)
j (t− 1)

lj(t− 1)
= c(k)(t− 1), for any k ∈ {1, 2, . . . ,K} and j ∈ I(k). (2.5.4)

Then for any product j in the market, the indices ej(t) and fj(t) are equal:

ej(t) = fj(t), for any j = 1, 2, . . . , J . (2.5.5)

Proof. Taking into account (2.5.3) and (2.5.4), we immediately find from
(2.4.1) that

1 + e
(k)
j (t) =

c(k)(t)

c(k)(t− 1)
, for any k ∈ {1, 2, . . . ,K} and j ∈ I(k). (2.5.6)

Hence, for any product j which includes type of cover k, the index e
(k)
j (t)

is independent of j. From (2.5.1), (2.5.3), (2.5.4) and (2.5.6) it follows then
that

e
(k)
j (t) = f (k)

m (t), for any k in {1, 2, . . . ,K} and j ∈ I(k).

Observing that w
(k)
j (t) = 0 in case j /∈ I(k) and comparing definitions (2.4.3)

and (2.5.2) of the indices fj(t) and ej(t), the equalities derived above lead
to (2.5.5).

Although conditions (2.5.3) and (2.5.4) imply the equality of the indices
fj(t) and ej(t) for any product j, in general these conditions do not imply
that the indices ij(t) and ej(t) are equal too. This phenomenon is illustrated
in the following example.

Example 4. At time 1, we consider a market with 2 products and 2 types
of covers, with claim amounts in the previous two periods given in Table 2.5.
Product 1 only includes type of cover 1, whereas product 2 offers both types
of covers. Therefore, we have I(1) = {1, 2} and I(2) = {2}. Furthermore,
from Table 2.5, we find that M (1)(t) = {1, 2} for t = 0 and 1, whereas
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M (2)(0) and M (2)(1) are empty sets. One can easily verify that in this
market, conditions (2.5.3) and (2.5.4) of Theorem 2.1 are fulfilled.
The indices for this market are reported in Table 2.6. Clearly, the Belgian
indices fail to properly capture the experienced medical inflation in this case.
In particular, the Belgian indices i1(1) and i2(1) are equal, while the other
indices lead to different values for both products. 5

Product 1 Product 2

t C
(1)
1 (t) C

(2)
1 (t) l1(t) C

(1)
2 (t) C

(2)
2 (t) l2(t)

0 100 0 10 200 150 20
1 120 0 10 240 200 20

Table 2.5: Observed claims for the market of Example 4.

Product 1 Product 2

Belgian indices ij(1) 24.4% 24.4%
Proposed indices fj(1) 20.0% 25.7%

Experience-based indices ej(1) 20.0% 25.7%

Table 2.6: Comparison of the medical indices for the market in Example 4.

The example above illustrates the fact that the conditions of Theorem 2.1
are not sufficient to ensure that the Belgian indices ij(t) of the different
products are equal to the corresponding product-specific indices ej(t). This
has to be considered as a weakness of the current Belgian medical inflation
indices. Our newly introduced indices fj(t) do not exhibit this weakness.

Finally, consider a product j for which some of the experience-based indices

e
(k)
j (t) are very different from the newly introduced indices f

(k)
m (t). For such a

product also the global experience-based index ej(t) might be very different
from the newly introduced index fj(t), indicating that product j is very
different from the average product in the market. In this case, the product
might still need an approach different from the one mentioned above. Note
that the Belgian Law allows for a personalized updating upon approval from
the regulating authority.
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2.6 Concluding remarks

Portfolios of lifelong health insurance contracts are subject to systematic
medical inflation risk. In order to cope with this unpredictable risk, the Bel-
gian regulation allows private insurers to update level premiums of lifelong
health insurance contracts, using specific medical inflation indices, which
are based on aggregated market data. The construction of these indices
remains a challenge. Although such medical inflation indices are so far a
Belgian originality, as pointed out in Devolder et al. (2008), their construc-
tion remains relevant to other countries, provided there is a sufficient number
of contracts with lifelong cover and the need for premium adjustments. One
example of countries where lifelong health insurance products can be found
is Germany; see Schneider (2002). Another example is the Indian health
insurance market where some contracts also provide a lifelong health cover.
Besides their application for premium adjustments, these indices can also
be useful in other applications such as the study of the drivers of medical
inflation in a governmental context.

In this chapter, we described the new methodology proposed in Dhaene
and Hanbali (2019) for constructing medical inflation indices when different
products with multiple types of covers are sold in the market. We com-
pare the accuracy of the newly proposed indices with the current Belgian
approach on the basis of some numerical examples, where company-specific
experience-based indices are taken as benchmark. Although the latter in-
dices allow for a tailor-made updating for each product sold in the market,
their application might be not desirable due to several reasons which were
discussed above. The newly proposed medical indices can be considered as
improved versions of the current indices prescribed by the Belgian regula-
tor, as they better reflect the experienced medical inflation of any particular
health insurance portfolio. It is worth noting that the proposed method
as well as the experience-based method may lead to noisy medical inflation
indices across the different insurance companies. One approach which can
be investigated in the future is to implement smoothing mechanisms that
help to reduce this variability.

A relevant issue when determining market-wide medical inflation indices,
which is not considered in this chapter, is how to take into account waiting
periods in the calculation of the medical indices. These waiting periods are
typical for newly underwritten contracts. The problem could arise e.g. in
case the market experiences a substantial growth in contracts. Not carefully
taking into account the waiting period may lead to medical inflation indices
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which are not appropriate. One simple solution consists of not taking into
account policies which are still in the waiting period when calculating the
medical indices.

We conclude this chapter with a discussion on some practical issues related
to measuring medical inflation which may define topics for future research.

The experience-based index e
(k)
j (t) introduced in (2.4.3) can be expressed as

a function of an experience-based medical frequency index and an experience-

based medical severity index. Let us introduce the notation d
(k)
j (t) for the

number of insureds of product j in year (t− 1, t) with a ‘type of cover -

k’ claim in that year. The medical frequency index n
(k)
j for product j and

category k is defined by

d
(k)
j (t− 1)

lj(t− 1)

(
1 + n

(k)
j (t)

)
=
d

(k)
j (t)

lj(t)
, (2.6.1)

while the corresponding medical severity index y
(k)
j follows from

C
(k)
j (t− 1)

d
(k)
j (t− 1)

(
1 + y

(k)
j (t)

)
=
C

(k)
j (t)

d
(k)
j (t)

. (2.6.2)

Obviously, the medical frequency index measures the ‘frequency inflation’
in two consecutive years, whereas the medical severity index measures the
‘severity inflation’. From (2.4.2), (2.6.1) and (2.6.2), we find the following

relation between the experience-based indices e
(k)
j (t), n

(k)
j (t) and y

(k)
j (t) of

product j and category k:(
1 + e

(k)
j (t)

)
=
(

1 + n
(k)
j (t)

)(
1 + y

(k)
j (t)

)
. (2.6.3)

This decomposition of the medical inflation in frequency and severity com-
ponents can be useful to analyze the drivers of medical inflation. However,
such an analysis that could build on earlier work of e.g. Bachler et al. (2006)
is out of the scope of this thesis.



CHAPTER 3

Updating mechanisms for lifelong insurance covers

3.1 Introduction

In this chapter, we present the work performed in Denuit et al. (2017),
which investigates practical ways for indexing of level premiums in lifelong
medical insurance contracts. We assume that medical inflation indices are
available, and can be used to adjust premiums for a given contract. It is
shown that ex-post indexing can be achieved by considering only premiums,
without explicit reference to reserves. This appears to be relevant in practice
as reserving mechanisms may not be transparent to policyholders. More-
over, some insurers do not compute contract-specific reserves, managing the
whole portfolio in a collective way. Three different updating mechanisms
are introduced. The first one is the individual updating where the adjust-
ment accounts for medical inflation risk contract-per-contract. The second
is based on solidarity among new entrants, regardless of the age of poli-
cyholders. The third updating mechanism consists in pooling contracts at
portfolio level, for all entry years and all ages.

This study provides two main insights. On the one hand, it allows to assess
the ‘1.5 rule’ introduced by the Belgian legislator with the Royal Decree of
18 March 2016. This approximation is compared with the proposed actu-
arially fair updating mechanisms. On the other hand, the comparison of

33
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the three updating schemes allows to determine the effect of introducing in-
tergenerational solidarity between policyholders with different ages. Recall
that one of the main purposes of the Belgian Law of 20 July 2007 is to allow
access to private health insurance covers for elderly, and to protect against
sudden premium increases.

The approach of this chapter is related to other updating mechanisms for
lifelong health insurance contracts. For instance, a one-step version of the
formula in the individual case used here has been derived in Schneider (2002)
in the particular case of no reserve update; see also Vercruysse et al. (2013).
Here, this formula is extended to a multi-period setting, allowing for pre-
mium and/or reserve revisions. The case where the reserve is also updated
is studied in Section 5.4 of Pitacco (2014). Dhaene et al. (2017) derived
updating mechanisms for lifelong health insurance contracts in case the re-
serves are transferable. To the best of our knowledge, the present work is the
first to provide a comprehensive study with sensitivity analysis of updating
mechanisms for lifelong health insurance covers, and a comparison between
individual and aggregate methods.

The remainder of this chapter is organized as follows. In Section 3.2, we
describe the actuarial model for health insurance contracts considered in
this paper. Section 3.3 presents the individual updating mechanism, where
we first start with the one-step adjustments of premium and/or reserves and
then generalize to periodic revisions during the coverage. In Section 3.4, we
replace the individual revision formula with a collective one, considering all
policyholders who entered the portfolio during a given year (i.e. a cohort
of new contracts). In Section 3.5, the indexing is performed for the whole
portfolio, accounting for new businesses and exists. Section 3.6 consists
in a case study where we simultaneously illustrate and compare the three
updating mechanisms, and we assess the simple rule introduced in Belgium
after the Royal Decree of 18 March 2016. The final Section 3.7 concludes
the paper, revisiting some assumptions.

3.2 Actuarial model

The origin of time is chosen at policy issue. Time k stands for the seniority
of the policy (i.e. the time elapsed since policy issue). The policyholder’s
(integer) age at policy issue is denoted by x. We denote the ultimate integer
age by ω, assumed to be finite. This means that survival until integer age
ω has a positive probability, whereas survival until integer age ω + 1 has
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probability zero.

The contracts under interest stipulate that no surrender value is paid out
in case of policy cancellation, which is the case of Belgian private health
insurance contracts. A discussion on the transferability of the reserves under
the current Belgian legislation is provided in the following Chapter 4. The
expected annual health cost at age x+j, which is denoted by bx+j , is random

due to medical inflation. Let b
(0)
x+j be an estimate at time 0 for the expected

medical expenses in year (0, 1) for a person aged x + j at time 0. At time
0, determining level premiums for these contracts requires an estimate of

future costs. Starting from the current expected cost b
(0)
x+j for individuals

aged x + j, the estimates of future costs are assumed to be equal to b
(0)
x+j ,

increased by the assumed inflation rate. Suppose that the insurer assumes
a constant yearly medical inflation f ≥ 0 over the coming years. Hence,

b
(0)
x+j (1 + f)j is an estimate at time 0 of the expected medical expenses in

year (j, j + 1) for a person aged x + j in the beginning of that year. The
results that we present hereafter can easily be generalized to the case of
non-constant but deterministic estimates for future inflation in the coming
years.

The tariff π
(0)
x,0 is determined from a technical basis, i.e. from assumptions

about mortality, surrenders, interest and medical inflation. We focus on the
medical inflation risk only by assuming that the realizations of the technical
basis follow the assumptions. This means that the assumptions about mor-
tality, surrenders and interest rates are not subject to revision. In addition,
we assume that adverse selection has been ruled out by the insurer using an
appropriate underwriting policy. Technical aspects on adverse selection in
the health insurance market and its impact on the updating mechanism are
out of our scope; see Newhouse (1996) and Handel (2013) for a discussion.

The level yearly premium π
(0)
x,0 for a health insurance contract underwritten

at current time 0 on an insured aged x is determined by means of the
equivalence principle. Let v(0, j) be the discounting factor over the period

(0, j). The expected present value (or actuarial value) B
(0)
x of the benefits

paid by the insurer is then given by:

B(0)
x =

ω−x∑
j=0

b
(0)
x+j (1 + f)j jEx. (3.2.1)

The actuarial discounting factor jEx accounts for mortality, lapses and in-
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terest, over the period (0, j), i.e.

jEx = v(0, j)jpx,

where jpx is the sojourn, or non-exit, probability, i.e. probability that a pol-
icyholder aged x at policy issue does not leave the portfolio due to death or
lapse for instance. Furthermore, let äx be the actuarial value of an annuity-
due paying a unit amount per year, as long as the policy is in force, i.e.

äx =
ω−x∑
j=0

jEx. (3.2.2)

We then have

π
(0)
x,0 =

B
(0)
x

äx
. (3.2.3)

The (unpredictable) increase of medical costs in the future generates a sys-
tematic risk for health insurance providers. In this setting, it is assumed
that medical inflation is not guaranteed when setting the level premiums at
policy issue. Instead, premiums and eventually also reserve (also known as
mathematical reserve or policy value) are regularly updated, accounting for
observed medical inflation over the previous years. The premium-updating
mechanism is based on a medical inflation index which may be different
from the assumed medical inflation f used to determine the level premium.
In the following sections, we present an actuarially sound methodology for
revising the level of the premium as inflation emerges over time.

Note that at time 0, the superscript “(0)” indicates that the corresponding
quantity is estimated at policy issue. Analogously, a superscript “(k)”, for
k = 0, 1, 2, . . . , will be used throughout this chapter to indicate that the
quantity under consideration is based on information about medical costs

available at time k. Hereafter, π
(k)
x,j denotes the revised level premium to be

paid at time k for a contract that was underwritten at time j ≤ k at age x.
Moreover, the observed medical inflation index in year k is denoted by f (k).
Based on the discussion provided in Chapter 2, the medical inflation index
f (k) may correspond to one of the indices ij(k) (Belgian approach), fj(k)
(proposed approach) or ej(k) (product-specific experience-based approach)
for year k and product j. In this chapter, the subscript j identifying the
contract becomes redundant, and is thus omitted. Moreover, the time index
for the evolution of the contract is used as a superscript.
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3.3 Individual updating mechanism

3.3.1 Adapting the premium and/or the reserve at time 1

Suppose that we have arrived at time 1 and that the policy that was un-
derwritten at age x at time 0 is still in force. This means that at time 1, a
positive prospective reserve

V
(0)
x+1 = (1 + f)B

(0)
x+1 − π

(0)
x,0 äx+1, (3.3.1)

is required for the policyholder now aged x + 1, where B
(0)
x+1 and äx+1 are

defined similarly to (3.2.1) and (3.2.2), respectively. Taking into account

that the premium π
(0)
x,0 was determined via the equivalence principle (3.2.3),

the prospective expression (3.3.1) for V
(0)
x+1 at time 1 can be transformed into

a retrospective expression, or the available reserve of the policyholder. In
particular, we have:

V
(0)
x+1 =

(
π

(0)
x,0 − b

(0)
x

)
(1Ex)−1 . (3.3.2)

Suppose that the inflation for medical expenses observed during the first
year is given by f (1), which is assumed to be age-independent; see Section
3.7 on how to relax this assumption. This means that at time 1, due to
the observed medical inflation in the past year, the expected annual medical

expenses b
(0)
x+1+j have to be updated to

b
(1)
x+1+j =

(
1 + f (1)

)
b
(0)
x+1+j , (3.3.3)

for j = 0, 1, 2, . . .. The assumption of uniformity of medical inflation over all
ages implies that at time 1, the actuarial value of future benefits estimated
at that time becomes:

B
(1)
x+1 = (1 + f (1))B

(0)
x+1, (3.3.4)

instead of (1 + f)B
(0)
x+1 which was estimated at time 0. Suppose that the

insurer pays out to the policyholder the updated value of the benefit B
(1)
x+1.

In the context of health insurance contracts, this implies that the insurer
covers the necessary amount to the policyholder. Therefore, due to the
change of the benefit estimate, the required (prospective) reserve becomes

B
(1)
x+1 − π

(0)
x,0 äx+1,
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which coincides with the available (retrospective) provision V
(0)
x+1 in (3.3.1)

only if the observed inflation f (1) in the first year is equal to the assumed

inflation f at time 0. In case f (1) > f , the available provision V
(0)
x+1 is

insufficient to cover future liabilities. In order to restore the actuarial equiv-

alence, the premium π
(0)
x,0 and/or the available provision V

(0)
x+1 will have to

be updated to levels π
(1)
x,0 and V

(1)
x+1, respectively. Any of the infinite pairs(

V
(1)
x+1, π

(1)
x,0

)
satisfying the equality

V
(1)
x+1 = B

(1)
x+1 − π

(1)
x,0 äx+1 (3.3.5)

will perform the task of resetting the actuarial equivalence. Notice that
(3.3.5) is the prospective reserve at time 1, based on updated benefits and
premiums. Subtracting (3.3.5) from (3.3.1), we find that the new premium

level π
(1)
x,0 at time 1 is given by

π
(1)
x,0 = π

(0)
x,0 +

(
f (1) − f

)
π

(0)
x+1,0 −

V
(1)
x+1 − V

(0)
x+1

äx+1
, (3.3.6)

where

π
(0)
x+1,0 =

B
(0)
x+1

äx+1
(3.3.7)

is the level premium at time 0 for a contract underwritten at age x+ 1.

Remark 3.1. Consider the special case where f = 0 and the insurer updates
the premium according to the observed medical inflation f (1), i.e.

π
(1)
x,0 =

(
1 + f (1)

)
π

(0)
x,0.

This case corresponds to what has initially been prescribed in the Royal De-
cree of 1 February 2010. Under these assumptions, we find from (3.3.1),
(3.3.4) and (3.3.5) that:

V
(1)
x+1 =

(
1 + f (1)

)
V

(0)
x+1.

This means that in case no inflation is taken into account to determine the

initial premium level π
(0)
x,0, indexing the premium according to the observed

medical inflation f (1) requires the same proportional update of the available
reserve. Thus, the Royal Decree of 1 February 2010 allowed insurers to
adjust the premiums to the impact of medical inflation on future premiums
only, but not on the already built up reserves.
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It appears that an infinite number of updating mechanisms can be imple-
mented to restore the actuarial equivalence at individual level. Nevertheless,
we can identify some special cases. The first case is when the insurer takes

all medical inflation risk, i.e. π
(1)
x,0 = π

(0)
x,0. This means that the reserve is up-

dated by adding the amount
(
f (1) − f

)
B

(0)
x+1. The second case is when the

deviation of observed inflation f (1) from assumed inflation f is completely

financed by the policyholder, i.e. V
(0)
x+1 = V

(1)
x+1. In the sequel, we will focus

on the second case only.

Let us assume that the level of the available provision is left unchanged, i.e.

V
(0)
x+1 = V

(1)
x+1. (3.3.8)

From (3.3.6) it follows then that the new premium level at time 1 is given
by:

π
(1)
x,0 = π

(0)
x,0 +

(
f (1) − f

)
π

(0)
x+1,0, (3.3.9)

which is similar to the formula obtained in Schneider (2002) in the par-
ticular case of f = 0. Formula (3.3.9) shows that the premium increase

π
(1)
x,0 − π

(0)
x,0 at time 1 can be interpreted as the level premium correspond-

ing to a new insurance contract underwritten at time 1 offering benefits

with actuarial value equal to the benefit increase
(
f (1) − f

)
B

(0)
x+1. This can

be intuitively explained as follows: due to the increase in future medical

costs from (1 + f)B
(0)
x+1 to (1 + f (1))B

(0)
x+1, the policyholder now aged x+ 1

must virtually buy at time 1 a supplementary insurance policy, covering the

benefit increase
(
f (1) − f

)
B

(0)
x+1, whose price

(
f (1) − f

)
π

(0)
x+1,0 adds to π

(0)
x,0.

The premium formula (3.3.9) can be rewritten in the following form:

π
(1)
x,0 =

(
1 +

π
(0)
x+1,0

π
(0)
x,0

(
f (1) − f

))
π

(0)
x,0,

and hence, the actual indexing for the original premium is
π
(0)
x+1,0

π
(0)
x,0

(
f (1) − f

)
.

In case no inflation assumption is made at policy issue, i.e. f = 0, the
proportional increase of the premium will be different (and usually higher)
than the observed medical inflation f (1) over the first year. Also notice that
in case the inflation assumption in the first year was too conservative, i.e.
f (1) < f , the premium level may be reduced at time 1.
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3.3.2 Adapting the premium level at time k

Suppose that we have arrived at time k = 2, 3, . . . and that the policy that
was underwritten on the policyholder aged x at time 0 is still in force. The
observed medical inflation up to time k − 1 has been taken into account by
restoring the actuarial equivalence and updating the premium levels at times
1, 2, . . . , k − 1. Suppose that the deviations of observed inflation from as-
sumed inflation f are completely financed by the policyholder, which means

that the available provisions are not updated. Let V
(k−1)
x+k−1 and π

(k−1)
x,0 be the

available provision and the premium level determined at time k − 1. They
were set such that the actuarial equivalence at time k − 1 was restored:

V
(k−1)
x+k−1 = B

(k−1)
x+k−1 − π

(k−1)
x,0 äx+k−1. (3.3.10)

In this formula, B
(k−1)
x+k−1 is the actuarial value at time k− 1 of future health

benefits related to a policyholder aged x+ k − 1 at that time, i.e.

B
(k−1)
x+k−1 =

ω−x−k+1∑
j=0

b
(k−1)
x+k−1+j (1 + f)j jEx+k−1,

where b
(k−1)
x+k−1+j is the expected health benefit in year (k − 1, k) for a person

aged x + k − 1 + j in the beginning of that year, based on the information
available at time k − 1, such that:

b
(k−1)
x+k−1+j = b

(0)
x+k−1+j

k−1∏
l=1

(1 + f (l)).

The available provision at time k for this policy is then given by:

V
(k−1)
x+k =

(
V

(k−1)
x+k−1 + π

(k−1)
x,0 − b(k−1)

x+k−1

)
(1Ex+k−1)−1 . (3.3.11)

Taking into account the restored actuarial equivalence (3.3.10) at time k−1,

the available reserve V
(k−1)
x+k at time k can be expressed in the following

prospective form:

V
(k−1)
x+k = (1 + f)B

(k−1)
x+k − π

(k−1)
x,0 äx+k, (3.3.12)

with

B
(k−1)
x+k =

ω−x−k∑
j=0

b
(k−1)
x+k+j (1 + f)j jEx+k.
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Due to the observed medical inflation during the year k, the actuarial value

of future health benefits (1 + f)B
(k−1)
x+k based on an evaluation at time k−1

has to be updated to B
(k)
x+k which is given by:

B
(k)
x+k = (1 + f (k))B

(k−1)
x+k ,

under the age-uniform medical inflation. At time k, the premium level π
(k−1)
x,0

and/or the available provision V
(k−1)
x+k have to be replaced by π

(k)
x,0 and V

(k)
x+k,

respectively, in order to restore the actuarial equivalence as follows:

V
(k)
x+k = B

(k)
x+k − π

(k)
x,0 äx+k. (3.3.13)

From (3.3.12) and (3.3.13), we find that for any pair
(
V

(k)
x+k, π

(k)
x,0

)
which re-

stores the actuarial equivalence, the updated premium π
(k)
x,0 can be expressed

as:

π
(k)
x,0 = π

(k−1)
x,0 +

(
f (k) − f

)
π

(k−1)
x+k,k−1 −

V
(k)
x+k − V

(k−1)
x+k

äx+k
, (3.3.14)

where π
(k−1)
x+k,k−1 is given by:

π
(k−1)
x+k,k−1 =

B
(k−1)
x+k

äx+k
, (3.3.15)

which is the initial level premium for a lifelong health insurance contract
underwritten at time k − 1 on a person aged x+ k at that time.

Assuming that the observed inflation f (k) is solely financed by the policy-

holder, i.e. V
(k)
x+k = V

(k−1)
x+k , the premium updating formula (3.3.14) reduces

to:
π

(k)
x,0 = π

(k−1)
x,0 +

(
f (k) − f

)
π

(k−1)
x+k,k−1, (3.3.16)

of which the interpretation is similar to that of (3.3.9). The updated pre-

mium π
(k)
x,0 can also be written as:

π
(k)
x,0 =

(
1 + α

(k)
x,0

(
f (k) − f

))
π

(k−1)
x,0 , (3.3.17)

where

α
(k)
x,0 =

π
(k−1)
x+k,k−1

π
(k−1)
x,0

. (3.3.18)
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The proportional premium increase depends on the age x at policy issue as
well as on the number k of years that the contract has been in force so far.
The proportional increase of the premium will usually be larger for policies
that are longer in force.

3.4 Aggregate updating mechanism for a group of
new entrants

The exact premium indexing mechanism (3.3.17) that we considered so far
is based on yearly restoring the actuarial equivalence at an individual level.
In this section, we will present an aggregate premium indexing mechanism,
where the yearly restoring of the actuarial equivalence is performed at ag-
gregate level for all insureds entering the portfolio at the same time. This
approach can be useful since some insurers treat the reserves in a collective
way.

Let us consider a portfolio of new entrants at times 0. For each age x, let

us denote by l
(k)
x,0 the number of policyholders who entered the portfolio at

age x at time 0 and who are still in the portfolio at time k = 0, 1, 2, . . .. Of

course, we have that l
(k)
x,0 = 0 for x+ k > ω.

3.4.1 Adapting the premium level at time 1

Suppose that at time 1, the equivalence between available provision and re-
quired provision is restored on an aggregate level, i.e. we replace the individ-

ual equivalence relation V
(0)
x+1 = V

(1)
x+1 by the following aggregate equivalence

relation:
ω−1∑
x=x0

l
(1)
x,0 V

(0)
x+1 =

ω−1∑
x=x0

l
(1)
x,0 V

(1)
x+1, (3.4.1)

where x0 is the youngest age in the portfolio. Taking into account (3.3.1)
and (3.3.5), we find that (3.4.1) can be rewritten as

ω−1∑
x=x0

l
(1)
x,0 π

(1)
x,0 äx+1 =

ω−1∑
x=x0

l
(1)
x,0 π

(0)
x,0 äx+1 +

(
f (1) − f

) ω−1∑
x=x0

l
(1)
x,0 B

(0)
x+1. (3.4.2)

An infinite number of premiums π
(1)
x0,0

, π
(1)
x0+1,0, . . . , π

(1)
ω−1,0 can satisfy this

aggregate equivalence condition. In order to specify the new tariff, we as-
sume now that at time 1, the premium of each new entrants at time 0 is
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adapted by the same factor α
(1)
ne,0, namely

π
(1)
x,0 =

(
1 + α

(1)
ne,0(f (1) − f)

)
π

(0)
x,0, x = x0, x0 + 1, . . . , ω − 1. (3.4.3)

Inserting these expressions for the π
(1)
x,0’s in relation (3.4.2) leads to:

α
(1)
ne,0 =

∑ω−1
x=x0

l
(1)
x,0 B

(0)
x+1∑ω−1

x=x0
l
(1)
x,0 π

(0)
x,0 äx+1

,

which can be transformed using (3.2.3) into:

α
(1)
ne,0 =

∑ω−1
x=x0

l
(1)
x,0 π

(0)
x+1,0 äx+1∑ω−1

x=x0
l
(1)
x,0 π

(0)
x,0 äx+1

.

The updating factor α
(1)
ne,0 is applied at time 1 to the deviation f (1) − f in

order to adjust the premiums of all policies that were underwritten at time 0,
regardless of the age of the new entrants. Typically, the numerator exceeds

the denominator, so that α
(1)
ne,0 > 1, and for f (1) ≥ f , all premiums π

(1)
x,0 are

increased by the factor α
(1)
ne,0(f (1) − f), which is larger than the difference

between experienced and assumed inflations.

3.4.2 Adapting the premium level at time k

Let us suppose that we have arrived at time k and that at any times
1, 2, . . . , k − 1, we have reset premiums on an aggregate level according to
a similar procedure as the one performed at time 1. The time-k aggregate
equivalence relation between available and required provisions can now be
expressed as follows:

ω−k∑
x=x0

l
(k)
x,0 V

(k−1)
x+k =

ω−k∑
x=x0

l
(k)
x,0 V

(k)
x+k. (3.4.4)

This means that the available provision at time k, aggregated over all policies
that were underwritten at time 0 which are still in force at time k, is set
equal to the required aggregate provision for this same set of policies. From
(3.3.12) and (3.3.13), the equivalence relation (3.4.4) can be restated as
follows:

ω−k∑
x=x0

l
(k)
x,0 π

(k)
x,0 äx+k =

ω−k∑
x=x0

l
(k)
x,0 π

(k−1)
x,0 äx+k +

(
f (k) − f

) ω−k∑
x=x0

l
(k)
x,0 B

(k−1)
x+k .

(3.4.5)
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Let us now again assume a uniform updating mechanism for all policies

under consideration, i.e. the premiums π
(k)
x,0 are determined via

π
(k)
x,0 =

(
1 + α

(k)
ne,0

(
f (k) − f

))
π

(k−1)
x,0 .

Inserting these expressions in (3.4.5) leads to

α
(k)
ne,0 =

∑ω−k
x=x0

l
(k)
x,0 B

(k−1)
x+k∑ω−k

x=x0
l
(k)
x,0 π

(k−1)
x,0 äx+k

,

or, taking into account (3.3.15), we find that:

α
(k)
ne,0 =

∑ω−k
x=x0

l
(k)
x,0 π

(k−1)
x+k,k−1 äx+k∑ω−k

x=x0
l
(k)
x,0 π

(k−1)
x,0 äx+k

(3.4.6)

for the updating factor α
(k)
ne,0 that is applied to premiums of all policies that

were underwritten at time 0 and are still in force at time k.

3.5 Aggregate updating mechanism for an existing
portfolio

In this section, we consider an aggregate premium indexing mechanism at
portfolio level. Each year, the actuarial equivalence is restored by imposing
an equality between available and required reserves for the whole existing
portfolio at that moment. The related proportional increase of the premi-
ums is chosen to be equal for all members of the portfolio at that moment.

Hereafter, we will denote by l
(k)
x,j the number of policyholders observed in

the portfolio at time k, who entered that portfolio at age x at time j ≤ k.
At time k, these policyholders have reached age x + k − j. Obviously, we

have l
(k)
x,j = 0 for x > ω − k + j.

3.5.1 Adapting the premium level at time 1

Suppose that we have arrived at time 1. According to the aggregate premium

indexing mechanism at portfolio level, the premiums π
(1)
x,j are chosen such
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that the available and the required aggregate provisions are equal:∑
j≤0

ω−1+j∑
x=x0

l
(1)
x,j

(
(1 + f)B

(0)
x+1−j − π

(0)
x,j äx+1−j

)

=
∑
j≤0

ω−1+j∑
x=x0

l
(1)
x,j

(
(1 + f (1))B

(0)
x+1−j − π

(1)
x,j äx+1−j

)
. (3.5.1)

We impose a uniform updating mechanism for all insureds in the portfolio

at time 1. This means that the premiums π
(1)
x,j satisfy

π
(1)
x,j =

(
1 + α

(1)
ptf (f

(1) − f)
)
π

(0)
x,j (3.5.2)

for an aggregate factor α
(1)
ptf . Inserting (3.5.2) in equation (3.5.1) leads to

the following expression for the updating factor α
(1)
ptf :

α
(1)
ptf =

∑
j≤0

∑ω−1+j
x=x0

l
(1)
x,j B

(0)
x+1−j∑

j≤0

∑ω−1+j
x=x0

l
(1)
x,j π

(0)
x,j äx+1−j

.

Taking into account that B
(0)
x+1−j = π

(0)
x+1−j,0 äx+1−j , we can rewrite the

previous expression in terms of the premium structure at time 0:

α
(1)
ptf =

∑
j≤0

∑ω−1+j
x=x0

l
(1)
x,j π

(0)
x+1−j,0 äx+1−j∑

j≤0

∑ω−1+j
x=x0

l
(1)
x,j π

(0)
x,j äx+1−j

. (3.5.3)

3.5.2 Adapting the premium level at time k

Suppose that we have arrived at time k and that we have restored the
actuarial equivalence at times 1, 2, . . . , k− 1 on an aggregate portfolio level,
applying a procedure similar to the one applied at time 1. This has lead to

the aggregate updating factors α
(1)
ptf , α

(2)
ptf , . . . , α

(k−1)
ptf . Now, having arrived at

time k, the updated premiums π
(k)
x,j are chosen such that the available and

the required aggregate provisions for the whole portfolio are again equal at
time k: ∑

j≤k−1

ω−k+j∑
x=x0

l
(k)
x,j

(
(1 + f) B

(k−1)
x+k−j − π

(k−1)
x,j äx+k−j

)

=
∑
j≤k−1

ω−k+j∑
x=x0

l
(k)
x,j

(
(1 + f (k)) B

(k−1)
x+k−j − π

(k)
x,j äx+k−j

)
.
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Assuming a uniform updating factor α
(k)
ptf for the premiums, i.e.

π
(k)
x,j =

(
1 + α

(k)
ptf (f

(k) − f)
)
π

(k−1)
x,j , (3.5.4)

for all j and k, the equivalence relation above leads to

α
(k)
ptf =

∑
j≤k−1

∑ω−k+j
x=x0

l
(k)
x,j B

(k−1)
x+k−j∑

j≤k−1

∑ω−k+j
x=x0

l
(k)
x,j π

(k−1)
x,j äx+k−j

,

or equivalently, taking into account that B
(k−1)
x+k−j = π

(k−1)
x+k−j,k−1 äx+k−j , we

find:

α
(k)
ptf =

∑
j≤k−1

∑ω−k+j
x=x0

l
(k)
x,j π

(k−1)
x+k−j,k−1 äx+k−j∑

j≤k−1

∑ω−k+j
x=x0

l
(k)
x,j π

(k−1)
x,j äx+k−j

. (3.5.5)

3.6 Case study: Assessing the Belgian ‘1.5 rule’

3.6.1 Indexing rule imposed by the Belgian law

The actuarially fair updating mechanisms derived in Sections 3.3, 3.4 and
3.5 provide the following indexing rule for the remaining premiums at time
k of a policyholder underwriting the contract at aged x:

π
(k)
x,0 =

(
1 + α(k)

(
f (k) − f

))
π

(k−1)
x,0 . (3.6.1)

In case the adjustment is performed at the individual level, we have that

α(k) = α
(k)
x,0, where α

(k)
x,0 is given in (3.3.18). This updating factor depends

on the age of the policyholder and the seniority of the contract. In case the
adjustment is uniform across all ages of new entrants at time 0, we have that

α(k) = α
(k)
ne,0, which is given in (3.4.6). Then, the updating factor depends on

the age distribution of new entrants and on the seniority of the contracts. In
case the adjustment is uniform across all contracts in force at the time this

adjustment is performed, we have that α(k) = α
(k)
ptf , which is given in (3.5.5).

The updating factor depends on the age distributions and the number of
new entrants at any time prior the updating.

The Belgian Royal Decree dated March 18, 2016 provides the following up-
dating mechanism:

π
(k)
x,0 ≤

(
1 + α

(k)
BE f (k)

)
π

(k−1)
x,0 , (3.6.2)
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where
α

(k)
BEf

(k) = min
{

1.5f (k̄), f (k̄) + 2%
}
,

and f (k̄) is the latest released non-negative medical index. Thus, Belgian
private insurers can adjust the premium with the medical inflation index
f (k) observed during the year k, scaled with an updating factor 1.5. The
premium increase resulting from this indexation cannot exceed f (k) + 2%.
For instance, if the observed medical inflation is equal to 5%, the insurer
has to limit the increase to 7%, instead of 1.5 × 5% = 7.5%. In order to
compensate for the limit f (k) + 2%, insurers are allowed to use the latest
non-negative medical inflation index if the index for year k is negative.

The updating rule proposed by the Belgian legislator differs from the ac-
tuarially fair updating rule described above. One of the differences is that
the Belgian updating mechanism takes into account the medical index f (k),
and not the deviation between the assumed and realized medical indices, i.e.
f (k)− f . This implies that if the insurer has already included medical infla-
tion in the tariff, the Belgian updating rule still allows for an adjustment.
For instance, if the insurer assumes f = 2% and observes f (k) = 2%, future
premiums can be updated by 3% according to the Belgian rule. Clearly,
the updating mechanisms described in this chapter do not allow for an ad-
justment in case f (k) = f . Another difference is that unlike the proposed
updating rules, the Belgian system does not allow for premium decreases,
even in the case of negative observed medical inflation.

In this section, we focus on a third difference between the proposed and the
Belgian updating mechanisms. In particular, we analyze the approximation
α(k) ≈ 1.5 for all k = 1, 2, ..., and we do not consider other restrictions
which apply only to very special cases. Since the Belgian Law provides with
the ‘1.5 rule’ an upper bound for premium adjustments, we mainly adopt
the insurer’s point of view and examine whether this rule may threaten its
solvency.

We assume in this numerical analysis that the time-0 estimate of level pre-
miums does not include medical inflation, i.e. we always take f = 0. Hence-
forth, premiums calculated according to (3.6.2) are called the ‘1.5 rule pre-

miums’ and denoted by π
(k)
x,0 (150%). We compare these premiums with the

actuarially fair premiums, which follow from (3.3.17):

π
(k)
x,0 =

(
1 + α(k) f (k)

)
π

(k−1)
x,0 , (3.6.3)

for some specification of α(k), i.e. contract-per-contract, new entrants or ex-
isting portfolio. We sometimes denote the actuarially fair premiums (3.6.3)
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by π
(k)
x,0 (exact), in order to distinguish them from the premiums derived from

the ‘1.5 rule’.

3.6.2 Technical basis

General assumptions

The assumed discount factors follow from a constant yearly interest rate
i = 1%. Mortality is assumed to obey the first Heligman-Pollard law, in the
sense that the ‘independent mortality rates’ for ages x = 25, 26, . . . , 109 are
given by:

qx
1− qx

= A(y+B)C +De−E(lnx−lnF )2 +GHx, (3.6.4)

with A = 0.00054, B = 0.017, C = 0.101, D = 0.00013, E = 10.72, F =
18.67, G = 1.464 × 10−5 and H = 1.11. Furthermore, we fix the ultimate
age to ω = 110. For a justification of this mortality law, we refer to Pitacco
(1999) and Vercruysse et al. (2013).

The corresponding ‘dependent mortality rates’ padx in the two-decrement
model satisfy the relation:

padx = qx

(
1− pawx

2− qx

)
,

which holds under the assumption of a uniform distribution of decrements
in any year for each of the two single decrement models involved, see Section
8.10.2 in Dickson et al. (2013). The ‘dependent lapse rates’ pawx are assumed
to be given by:

pawx = 0.1− 0.002(x− 20),

at age x = 25, 26, . . . , 70 and 0 otherwise. The sojourn probability px at age
x follows from:

px = 1− pawx − padx .

The severity of medical claims is based on age-specific annual claim amounts
including an accident-childbearing hump and a concave behavior near the
end of the lifetime. The data have been normalized to fit the annual ex-
pected hospitalization costs provided by the Belgian Mutualité Chrétienne;
see Figure 1.1.1. The minimum age to underwrite the contract is assumed
to be 25.

As mentioned above, no medical inflation is taken into account when setting

level premiums, i.e. f = 0. In Figure 3.6.1, the resulting insurer’s tariff π
(0)
x,0,
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for x = 25, 26, ..., 109, is depicted. We observe that the accident-childbearing
hump and the concave behavior for higher ages visible on Figure 1.1.1 are
impacting the tariff structure, causing the break right before age 40.

Figure 3.6.1: Tariff at policy issue: π
(0)
x,0 for x ∈ {25, 26, ..., 109}.

Assumptions for aggregate portfolios

In the calculation of the updating factor α
(k)
ne,0, which is uniform across new

entrants, some further assumptions are required on the composition of the
portfolio. We consider two different portfolio compositions, see Figure 3.6.2.
Portfolio 1 has a concentration of young new entrants at time 0, which
is likely to be the case given the non-transferability of the reserves in the
Belgian context. In Portfolio 2, new entrants are uniformly distributed over
the ages 20 to 50, followed by a decreasing number of new entrants up to
age 55. The distributions of ages in these two portfolios are displayed in
Figure 3.6.2. The number of new entrants in each portfolio at time 0 does
not impact the updating factor.

Additional assumptions are used in the calculation of the updating factor

α
(k)
ptf at the level of an existing portfolio. We consider two sets of portfo-
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Figure 3.6.2: Relative numbers of new entrants l
(0)
x,0 as a function of age x.

lios, and we assume that they have all existed for 20 years, i.e. since time
−20. Within each set of portfolios, we suppose constant proportions of new
entrants over time, and in any year these proportions are as described in
Figure 3.6.2. Past observed inflation, i.e. the inflation in the years before
time 0, is taken equal to 2%. In each set of portfolios, we consider three
scenarios for the absolute number of new entrants in any year. In the first
scenario, we assume a stable number of 10 000 new entrants per year. In the
second scenario, we assume a linearly increasing number of new entrants
over time, from 10 000 at time −20 to 100 000 at time 65. In the third sce-
nario, we assume a linearly decreasing number of new entrants over time,
from 100 000 at time −20 to 10 000 at time 65.

In what follows, we analyze the ‘1.5 rule’ under different assumptions, and
conduct sensitivity analysis for further insights. All numerical computations
are performed using R software (R Core Team, 2018).

3.6.3 Assessing the ‘1.5 rule’ in the base case scenario

In the remainder of this section, we investigate the evolution over time of the
updating factor α(k), as well as the corresponding successive premiums to be
paid by policyholders aged 25, 35 and 50 at policy issue. For the evolution
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over time, we assume that observed medical inflation is f (k) = 2% for all
k = 1, 2, . . ..

We start by looking at the evolution of the updating factor. In order to
provide a clearer comparison between the three methods (i.e. contract-per-
contract, new entrants and existing portfolios), we report their results for
the base case scenario in two figures. Figure 3.6.3 displays the evolution

over the time index k of the individual updating factors α
(k)
x,0 for ages x =

25, 35 and 50, as well as the aggregate updating factors for new entrants
for Portfolio 1 and Portfolio 2. Figure 3.6.4 displays the evolution over k of

the updating factors α
(k)
ptf determined at the level of the existing portfolios,

for each assumption on the distribution over time of new entrants and their
numbers.

Figure 3.6.3: Individual indexing factor α
(k)
25,0, α

(k)
35,0 and α

(k)
50,0, as well as aggregate

indexing factors α
(k)
ne,0 for two portfolios.

We observe from Figure 3.6.3 that the updating factors α
(k)
x,0 and α

(k)
ne,0 as a

function of k have similar patterns. In particular, these factors are initially
close to 1, and then increase until they reach a maximum value, after which

the factors start to decrease. For the updating factor α
(k)
ptf , Figure 3.6.4

suggests a slightly different behavior. This comes from the influence of
the number of new entrants in each year. For instance, when this number
is stable, we observe that the updating factor becomes constant after some
years. Another reason explaining these stable patterns comes from the time-

independent sojourn probabilities. One observation on the behavior of α
(k)
ptf
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Figure 3.6.4: Aggregate indexing factors α
(k)
ptf at portfolio level for two portfolios and

three assumptions on the number of new entrants.

is that an increasing absolute number of entrants leads to lower indexing
factors than a decreasing absolute number. This behavior is meaningful,
since in the former case, medical inflation is risk is spread over a greater
number of policyholders every year.

In general, the 1.5 approximation appears to be very conservative during
periods where the available reserves are relatively small. We observe on
Figure 3.6.3 for young new entrants (i.e. aged 25 at policy issue) as well as
for portfolios with high concentrations of young new entrants (i.e. Portfolio
1) that the updating factor becomes slightly larger than 1.5 during some
years. However, these intermediate periods are more than compensated in
the initial period, where the exact updating factors are substantially lower
than 1.5.

These two figures provide also insights on the effect of age on the updating

factor. We observe on Figure 3.6.3 that α
(k)
25,0 is initially smaller than both
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α
(k)
35,0 and α

(k)
50,0, but later, and for most of the time, becomes greater. This

implies that for two policyholders starting their contracts at the same time,
the younger policyholder is likely to experience higher adjustments. This
has a direct consequence on the value of the updating factor at the level
of new entrants. Indeed, we clearly observe that aggregating the reserves
for new entrants leads to higher values of the updating factor when the
concentration of young new entrants is high. In other words, elderly new
entrants are likely to pay for the adjustments of young new entrants. We
conclude in this particular numerical illustration that younger entrants are
better off with the aggregate method than older ones, unless the percentage
of elderly new entrants is sufficiently high.

Figure 3.6.3 and Figure 3.6.4 provide information on the updating factors,
but not necessarily on the actual adjustments of the premiums. In order to
investigate how the adjusted premiums evolve over time, we shift the focus
toward a set of three figures.

Figure 3.6.5: π(k)
x,0 (exact) and π

(k)
x,0 (150%) for x = 25, 35 and 50 as a function of k.

First, Figure 3.6.5 displays π
(k)
x,0 (exact) for x = 25, 35 and 50 obtained from
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α
(k)
x,0, with a comparison with their corresponding π

(k)
x,0 (150%) from the 1.5

rule. Clearly, the ‘1.5 rule premiums’ are uniformly larger than their corre-
sponding exact premiums, confirming that the 1.5 approximation is a con-
servative rule in these three cases.

Figure 3.6.6: Updated premiums π
(k)
x,0 (individual) and π

(k)
x,0 (aggregate) for different ages

and groups of new entrants.

Second, Figure 3.6.6 displays the individual updated premium curve as well
as the corresponding aggregate updated premium curves from each portfolio
of new entrants, for ages x = 25, 35 and 50. The main observations is that
for new entrants aged 25, we find that

π
(k)
25,0 (individual) ≈ π(k)

25,0 (portfolio 1) > π
(k)
25,0 (portfolio 2) ,

whereas for new entrants aged 50, we find that

π
(k)
50,0 (individual) < π

(k)
50,0 (portfolio 2) < π

(k)
50,0 (portfolio 1) .

This confirms that for young entrants (x = 25), the aggregate indexing
method is to be preferred, in particular when there is a substantial number
of older new entrants. On the other hand, for older policyholders (x = 50),
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the individual indexing mechanism always leads to lower premiums. The
implication of these findings on the Belgian regulation will be discussed in
the following Chapter 4 of this thesis.

Figure 3.6.7: Updated premiums π
(k)
x,0 (individual) and π

(k)
x,0 (aggregate) for different ages

and existing portfolios.

Third, Figure 3.6.7 displays the exact adjusted premiums obtained from
the aggregate method for the existing portfolios, compared to the exact
adjusted premiums from the individual indexing factors. For policyholders
aged 25 and 35 at policy issue, any of the aggregate indexing methods leads
to lower premiums than the individual indexing method. For policyholders
aged 50 at policy issue, the lowest premiums are obtained when the number
of new entrants is increasing with an age distribution of Portfolio 2, while
the highest premiums occur when the number of new entrants is decreasing
following the age distribution of Portfolio 1.

3.6.4 Sensitivity analysis

In this subsection, we perform a sensitivity analysis by varying the constant
interest rate and observed future medical index level. We pursue the analysis
with the individual mechanism for a policyholder aged 25 at policy issue.

Let us first consider the sensitivity of the updating mechanism with respect
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to the interest rate. Recall that in the base case scenario, we assume a
constant interest rate equal to i = 1%. Now, we consider two additional
scenarios, namely i = 0.5% and i = 5%. In Figure 3.6.8 we depict the

behavior of the exact indexing factor α
(k)
25,0 for the three interest rate sce-

narios considered. Overall, the indexing factor increases with i. The 1.5
rule (3.6.2) seems to be more conservative in a context of low interest rates.

Figure 3.6.9 displays the ratio
π
(k)
25,0(150%)

π
(k)
25,0(exact)

for the three different interest rate

assumptions. The ratio is always greater than 1, meaning that the 1.5 rule
is conservative in all considered cases.

Figure 3.6.8: Indexing factor α
(k)
25,0 for different technical interest rates.

Let us now examine the effect of different assumptions of future medical
inflation on the updating mechanism. Returning to the base case for the
interest rate, i.e. i = 1%, we vary the observed medical inflation according to
the following scenarios: either f (k) = 0.5% for all k = 1, 2, . . ., or f (k) = 3%
for all k = 1, 2, . . ..

Figure 3.6.10 shows the evolution of the indexing factors α
(k)
25,0 for the two

different medical inflation scenarios considered. We compare in Figure 3.6.11
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Figure 3.6.9: Ratio
π
(k)
25,0(150%)

π
(k)
25,0(exact)

for three different technical interest rate assumptions.
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the corresponding premiums π
(k)
25,0 (exact) and π

(k)
25,0 (150%). We observe that

the ‘1.5 rule’ is more conservative for higher medical inflation levels. Indeed,
we can see in Figure 3.6.10 that for an observed inflation of 0.5%, the 1.5
approximation is under-estimating the exact update after the first 25 years
of the coverage.

Figure 3.6.10: Updating factor α
(k)
25,0 as a function of k, for different inflation scenarios.

3.7 Concluding remarks

In this chapter, we investigate how to derive updating mechanisms for life-
long health insurance contracts at three levels, namely, at the level of the
individual contract, at the level of new entrants, at the level an existing port-
folio. Besides the influence of the technical basis, we find that the required
proportional increase of the premium depends on the difference between
observed and assumed medical inflation in the previous year, and also on
whether the adjustments are performed at an individual or aggregate level.
Adjustments at the individual level imply that the required proportional in-
creases depend on the age at policy issue and on the time since policy issue,
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Figure 3.6.11: Premiums π
(k)
25,0 (exact) and π

(k)
25,0 (150%) as a function of k, for the two

different medical inflation scenarios.

whereas adjustments at the aggregate level lead to required proportional
increases which depend on the age-distribution in the portfolio.

Our assessment of the ‘1.5 rule’ adopted in the Belgian system suggests that
this approximation can be conservative for insurers, but not always. More-
over, the dependency phenomena that we observe for the ‘exact’ updating
mechanism might not be easy to explain to consumers. Thus, there are un-
derstandable reasons to adopt such mechanism. Nevertheless, since future
economic scenarios cannot be modeled in an accurate way, Belgian private
health insurance providers may face situations in the long-term, when the
approximation α(k) ≈ 1.5 is not sufficient. For instance, this could be the
case if observed medical inflation is persistently low. In this regard, applying
an indexing mechanism that causes less opposition from consumers but is
at the same time less sound is highly questionable, in particular in case of
lifelong contracts.

One important remark is that the updating mechanism described in this
chapter does not completely eliminate the risk of the insurer. Indeed, since
the adjustments are implemented ex-post, the insurer remains exposed to
the systematic risk before these adjustments. Nevertheless, compared to the
case without adjustment, here medical inflation risk is transformed from a
long-term to a short-term risk, which allows for a significant enhancement
of the insurer’s solvency situation. The impact of contract adjustments over
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time on the solvency of the insurer will be discussed in Chapter 5.

Throughout this chapter, we made the assumption that in any year k =
1, 2, . . . , observed medical inflation is uniform over all ages, i.e.

b
(k)
x+j = (1 + f (k)) b

(k−1)
x+j , j = 1, 2, . . . ,

for some age-independent inflation index f (k). This assumption was useful
in order to isolate the effect of age coming from the updating factor. Notice
however that the results presented here can in a straightforward way be
adapted to the case of age-specific medical inflation by replacing the inflation
factor f (k) in the formula above by an age-dependent factor, such that:

b
(k)
x+j = (1 + f

(k)
x+j) b

(k−1)
x+j , j = 1, 2, . . .

Once the age-specific inflation factors f
(k)
x+j have been set, we can determine

the global inflation factors f
(k)
x+k from

B
(k)
x+k = (1 + f

(k)
x+k) B

(k−1)
x+k .

In this setting, the general premium updating rule (3.6.1) has to be replaced
by

π
(k)
x,0 =

(
1 +

(
f

(k)
x+k − f

)
α(k)

)
π

(k−1)
x,0 ,

which is similar to the general updating rule under the assumption of age-
independent medical inflation.



CHAPTER 4

Further thoughts on the Belgian updating mechanism

4.1 Introduction

In Belgium, the introduction of a medical inflation index and an updating
mechanism for lifelong private health insurance is a compromise between
insurers and policyholders. On the one hand, insurers can cope with the
unpredictable future evolution of health claims due to medical inflation by
transferring this risk back to policyholders. On the other hand, policyhold-
ers are guaranteed a lifelong cover and protected from sudden and sharp
increases that could have happened before the introduction of the Law of
20 July 2007. It should however be noted that this latter protection affects
increases only to some extent. As mentioned in the introductory Chapter
1, insurers are also allowed to adjust their premiums upon approval of the
regulating authority. For instance, the Belgian DKV increased in 2017 its
level premiums by 9%, on top of the medical index.1 Thus, whether the cur-
rent Belgian system really protects policyholders against sudden and sharp
increases is subject to debate, and is out of the scope of the present chapter.

Throughout this first part of the thesis, we have discussed different chal-
lenges arising under this new constraint imposed by the Belgian Law. Medi-
cal inflation is at the core of these challenges. The risk that its unpredictable

1http://www.standaard.be/cnt/dmf20170816 03019772.
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nature poses was taken into account by the legislator at two levels. First, by
introducing medical inflation indices, whose construction was the topic of
Chapter 2. Second, by proposing an updating mechanism allowing insurers
to adjust premiums over time. Chapter 3 was devoted to the analysis of
the updating mechanism provided by the legislator in the Royal Decree of
18 March 2016. In the present chapter, we conclude this first part with a
discussion on some remaining issues in the current Belgian system, based on
the work of Hanbali et al. (2019a).

The main difference between the Royal Decree of 18 March 2018 and its
first version of 1 February 2010 is that now, insurers are allowed to adjust
future premiums taking into account the impact of medical inflation on
both premiums and reserves. Nevertheless, for the current version, several
concerns expressed about the first Royal Decree by the representatives of
both parties in the appointed insurance committee remain valid2. Some of
these are related to the principle of pricing freedom and the data collection
methodology. However, there are two other issues in the current Belgian
system which we deem to be of major importance in the debate about the
coherence between the initial goal of the Law and the practical constraints
of the actuarial techniques.

The first issue is discussed in the following Section 4.2, and comes from the
technical analogy between Belgian health insurance contracts and life insur-
ance contracts. In particular, this analogy raises new challenges related to
the transferability of the reserves. The second issue, which is the topic of
Section 4.3, is related to the initial and main purpose of the Law of 20 July
2007 advocating a system protecting policyholders against age discrimina-
tion in health insurance by ensuring affordable covers to all ages. Moreover,
we argue that these two issues are interrelated, which implies that reconcil-
ing the initial goal of the Belgian Law and its actuarial implications is not
straightforward under the current system.

The present chapter does not provide a quantitative analysis of the Belgian
system for premium adjustments. Moreover, we do not discuss possible
conflicts between the Laws governing the Belgian system for private health

2Avis de la Commission du 09/09/2015 sur le projet d’Arrêté Royal portant modifica-
tion de l’Arrêté Royal du 1 février 2010 déterminant les indices spécifiques visés à l’article
138bis-4, de la loi du 25 juin 1992 sur le contrat d’assurance terrestre, Commission des
assurances DOC C/2015/3 (FR); Over het ontwerp van koninklijk besluit tot wijziging van
het koninklijk besluit van 1 februari 2010 tot vaststelling van de specifieke indexcijfers be-
doeld in artikel 138bis-4 van de wet van 25 juni 1992 op de landverzekeringsovereenkomst,
Commissie voor Verzekeringen, DOC C/2015/3 (NL).
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insurance and European Union regulation. For such discussion, we refer to
e.g. Calcoen and van de Ven (2017). Instead, our purpose is to highlight
some aspects of the current Belgian system for private health insurance
contracts which deserve a careful attention.

4.2 Transferability of the reserves

One of the concerns expressed by consumers’ representatives is that a sys-
tematic adjustment of premiums might lead to business practices diverging
from the objectives of the lifelong nature. This issue is particularly sensible
given that the reserves of private health insurance contracts are currently not
considered as surrender values. Consumers’ representatives provided in the
report of the committee of 2010 the example of contracts sold to young pol-
icyholders against attractive premiums, but these premiums would increase
too much over time.3 Moreover, policyholders at higher ages for whom the
premium becomes too expensive would lose their accumulated reserves in
case they lapse. Therefore, in order to provide a better protection for poli-
cyholders, consumers’ representatives propose to treat the reserve as a cash
surrender value, further pushing the analogy with life insurance contracts.
In this sense, the current legislation for lifelong health insurance contracts
which does not impose the transferability of the reserves differs from that
of life insurance business where the insurer is required to be transparent on
the evolution of the surrender value over time.4

On the other hand, representatives of insurers claim that their reserving
techniques are based on a collective solidarity principle, and thus, the re-
serves are assigned to groups of policyholders rather than to individuals.
In fact, a substantial issue which arises from collectivizing the reserves is
adverse selection. Young, and likely to be healthier, policyholders who leave
the insurer’s portfolio for another company would increase the risk of that
insurer. The latter which would then be exposed to a higher insolvency risk

3Avis de la Commission du 7/01/2010 sur le projet d’Arrêté Royal déterminant les in-
dices spécifiques visés à l’article 138bis-4, de la loi du 25 juin 1992 sur le contrat d’assurance
terrestre, Commission des assurances DOC C/2009/11 (FR); Over het ontwerp van konin-
klijk besluit tot vaststelling van de specifieke indexcijfers bedoeld in artikel 138bis-4 van de
wet van 25 juni 1992 op de landverzekeringsovereenkomst, Commissie voor Verzekeringen,
DOC C/2009/11 (NL).

4Article 16 de l’Arrêté Royal relatif à l’activité d’assurance sur la vie, Moniteur Belge
du 14/11/2003 (FR); Artikel 16 van de koninklijk besluit betreffende de levensverzeker-
ingsactiviteit, Belgish Staatsblad, 14/11/2003 (NL).
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will therefore be forced to claim from the relevant authority an adjustment
of the premiums. However, even if this adjustment is granted, increasing
premiums may draw other young policyholders away from the portfolio.

These considerations on the reserves lead to the following question: to whom
should they belong? In the current situation, the reserves belong to the
insurer, and policyholders who do not cancel their contract benefit from
the collective scheme at the expense of those who do. This situation is
in contrast with that in place in Germany since 2007 through the GKV-
Wettbewerbsstärkungsgesetz act, which imposes the transferability of the
reserves for private insurers; see e.g. Richter (2009). However, both view-
points can be argued. The main drawback of the non-transferability is that
policyholders become in some sense binded to their initial insurer. Neverthe-
less, this non-transferability has the advantage that insurers might include
in their tariff information about the expected surrender rates, which even-
tually results in a discount for policyholders. Note however that estimating
surrender rates can be challenging due to the potential influence of future
economic factors. On the other hand, a drawback of the transferability is
that only healthy policyholders can benefit from it, since it may be difficult
for unhealthy policyholders to find another cover. Thus, policy cancella-
tion may have a negative impact on the principle of pooling at portfolio
level. In order to cope with this problem, a possible solution is to let the
reserve depend on the health status such that policyholders in poor health
can be allocated a higher surrender value, e.g. by linking the allocation of
the reserves to the experience of the insurer via a credibility system.

4.3 Age discrimination

The problem of age discrimination in premium adjustments has surfaced
first in 2005, when Test-Achat/Test-Aankoop pointed out the age-dependent
adjustments applied by the Belgian health insurance provider DKV. At the
end of this case, the Court held in favor of the insurer, stating that the
adjustments were not discriminatory.

In order to understand the challenge of age discrimination, we go back again
to the distinction between the medical index (i.e. f) and the updating factor
(i.e. α). As this has been said earlier, age-dependent premium adjustments
are partly due to the use of age-specific medical inflation indices. However,
Figure 1.2.2 suggests that these indices are not increasing with respect to
the age, and age-independent indices can be applied too. Note also that
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based on Section 3.7 of Chapter 3, using age-specific indices may lead to
more complex implementation of the updating mechanism. Concerning the
updating factor α, the analysis carried out in Subsection 3.6.3 of Chapter
3 shows that its expression depends on how the reserves are treated. The
factor α is necessarily age-dependent in case the reserves are treated in an
individual way. Nevertheless, some insurers claim that they are treating
the reserves in a collective way, implying that the updating factor α can
be set equal for all ages. Additionally, the legislator introduced a constant
updating factor through the ‘1.5 rule’. Thus, why setting age-independent
medical indices and updating factor does not close the debate?

Attempting to answer this question turns the discussion towards the updat-
ing factor α and highlights the overlap with the discussion on the transfer-
ability of the reserves. Chapter 3 allowed to compare the individual and
the aggregate updating rules, while assuming an age-independent medical
inflation index f . For the individual updating mechanism, each contract
is treated individually and the updating factor inevitably depends on the
age and seniority of the contract. One important finding here is that the
individual method often leads to higher adjusted premiums for young poli-
cyholders. For the aggregate updating mechanism (say, at the level of new
entrants), policyholders starting their contracts in the same year will share
medical inflation risk, and thus, will have the same premium adjustments.
This situation introduces solidarity between a group, regardless of their age.
The consequence is that the updating factor does not depend on the age,
but on the distribution of all ages among new entrants, as well as on the
seniority of their contracts.

The comparison of the evolution of the adjustments in these cases questions
the use of methods based on pooling in order to protect policyholders from
age discrimination. Indeed, it is found in Chapter 3 that in the individual
scheme, policyholders who start the contract early tend to have higher future
adjustments compared to those who start at an advanced age. In the collec-
tive scheme, this implies that young policyholders could contribute more in
the medical inflation risk than policyholders with higher ages. Thus, elderly
can benefit from the collective adjustments only in case of a high concen-
tration of old policyholders in the pool. However, since the reserves are not
transferable, it is likely that new entrants in portfolios of private insurers
will often be relatively young.
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4.4 Discussion and recommendations

To sum up, the discussion about discrimination on the basis of age seems
to be closely linked to that of the transferability of the reserves. Managing
the reserves in a collective way leads to more favorably priced contracts and
supports the uniform adjustments across different age groups. However, this
solidarity implies that elderly are likely to pay for the medical inflation risk
of young policyholders. This effect exacerbates when we take into account
that the collective reserving constrains the transferability of the reserves,
and thus, is likely to lead to a concentration of young new entrants. In the
opposite case where the reserves are managed individually, policyholders
bear only their own medical inflation risk. However, this leads to non-
uniform adjustments across ages, and opens room for the type of business
practices pointed out by consumers’ representatives. In particular, with the
individual reserving scheme, some insurers could exclude policyholders with
a high risk profile (typically elderly or individuals with chronic diseases)
from their portfolio by applying too high adjustments.

Theoretically, a potential solution to the problem stated above would con-
sist in applying a uniform tariff for all ages. This solution echoes the
risk-equalization scheme adopted in Slovenia after the 2005 reform (Albreht
et al., 2009). However, such restrictive regulation might violate the principle
of pricing freedom. Moreover, the European Court of Justice ruled against
the 2005 Slovene Law in 2013 (Calcoen and van de Ven, 2017).

Another solution would consist in taking advantage of the Belgian Twin
Peaks regulatory framework introduced in 2011. Under this framework, the
NBB is in charge of the prudential supervision of insurance companies, and
on the basis of the Belgian Law of 9 July 1975, can grant or require premium
adjustments beyond what the medical indices suggest. On the other hand,
for private health insurance companies, the Financial Services and Markets
Authority (FSMA) has, among others, the competence to monitor the prod-
ucts in order to ensure fairness towards consumers. The analogue of the
FSMA for mutual insurers selling hospitalization covers is the OCM/CDZ
(Office de Contrôle des Mutualités, in French, and Controledienst voor de
Ziekenfondsen, in Dutch). Whereas the role of the NBB is unambiguously
specified in the current Belgian Law on premium adjustments, the role of
the FSMA and the OCM/CDZ should be defined more clearly in the appli-
cation of the index. In the current situation, the FSMA and the OCM/CDZ
are in charge of collecting the data underlying the calculation of the medical
indices. The task of monitoring premium adjustments could be entrusted to
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the FSMA and the OCM/CDZ, and their role in the updating mechanism
could be crucial in order to avoid discrimination on the basis of age.



Part II

Longevity risk management
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CHAPTER 5

A dynamic equivalence principle for longevity risk
management

5.1 Introduction

The evolution of the overall mortality pattern of a population is impacted
by factors which can be either positive, due to medical advances and de-
velopments in health care, or negative, due to epidemics and other natural
disasters. In the context of long-term insurance business, the fact that these
factors are common to all individuals in the population induces positive de-
pendence between the remaining lifetimes of policyholders, implying that the
independence assumption necessary for the Law of Large Numbers (LLN) is
violated. Although increasing the number of identically distributed policies
may help to hedge against the diversifiable part of the risk, insurers remain
exposed to a systematic longevity part that requires alternative hedging
techniques.

The solutions proposed in the existing literature to cope with systematic
longevity risk can be summarized in two categories: internal or external
hedging. Internal hedging essentially consists in implementing natural hedg-
ing strategies. This solution is however not sufficient, since insurance com-
panies in practice cannot treat their business lines as financial assets; see
Chapter 6 for a discussion. External hedging, on the other hand, involves a
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third party to which systematic risk is transferred. The third party can for
instance be a reinsurer or a pension insurer who is better able to perform
the internal hedge. We refer to Blake et al. (2013) for a discussion on the
pension (re)insurance market, and to Denuit et al. (2011) for some limita-
tions related to reinsurance for life insurance, the most important one being
related to credit risk. The third party can also be an investor seeking for
diversification opportunities. This implies that the risk is transferred in the
form of a longevity-linked derivative; see Blake et al. (2013) and Blake et al.
(2017), among others, for more details on the growing life market.

In this chapter, which is based on the work performed in Hanbali et al.
(2019b), we investigate how to design a product that allows to manage
unpredictable longevity risk throughout the life of the contract. This is
achieved by transferring this risk back to policyholders via an agreed-upon
risk-sharing scheme. The contribution of the present work is threefold. First,
inspired by previous work of e.g. Milevsky et al. (2006), we analyze the
performance of the LLN when policyholders’ future lifetimes are only con-
ditionally independent. One of the (obvious) findings is that increasing the
size of the portfolio is still beneficial for the insurer. However, the risk
stemming from the uncertainty on the survival index of a portfolio cannot
be eliminated, which highlights the risk of specifying the elements of the
insurance contract in absolute terms. Second, we propose a framework in
which the information stream can be used to update the contract elements
over time. Under a pricing scheme which we label the dynamic equivalence
principle, the insurer and policyholders agree upon how the experienced loss
is shared between both parties on, say, a yearly basis. Third, we provide
indexing formulas for the updated premium plan and benefit package for
pure endowment contracts and term annuity contracts. It is shown that an
appropriate updating mechanism has to comply with two conditions. The
first condition aims at enhancing the solvency situation of the insurer. The
second condition follows from the fact that the premium of the contract has
to be lower compared to the one from the corresponding classical contract, in
order to remain sufficiently appealing for policyholders. Taking into account
these two constraints enables us to derive a viable updating mechanism.

Updating mechanisms shifting (part of) the burden of systematic risk back
to policyholders are not new in the literature. The main idea is to design
the product such that the insurer is less exposed to systematic deviations by
adapting premiums, benefits and/or the date of the first benefit payment.
Particularly well-known examples of such products are unit-linked policies
which consist in linking the benefits to the performance of a fund, and in
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this way, putting the down- as well as upside systematic investment risk on
the shoulders of the policyholders. Another example of products where the
benefits are adapted to the experienced survival is a tontine scheme or a
survival fund; see e.g. Milevsky and Salisbury (2016), Forman and Sabin
(2017) as well as the tonuity proposal of Chen et al. (2019) which combines a
tontine and an annuity. Contracts where systematic longevity risk is coped
with by regularly updating the benefit have also been considered in Dahl
(2004). Indexing may as well be related to group self-annuitization, in which
retirees pool and form a fund to provide protection against longevity; see
Piggott et al. (2005) and Valdez et al. (2006). Moreover, Denuit et al.
(2011) and Richter and Frederik (2011) advocate indexing mechanisms for
life annuities. We also refer to the participating variable investment-linked
deferred annuities (VILDAs) studied in Mauer et al. (2013). The updating
mechanism discussed in Chapter 3 is also an example where premiums are
adjusted on a regular basis. However, unlike in Chapter 3 where the medical
inflation risk transferred back to policyholders is present in the value of the
benefit, here the longevity risk is related to the payment of the benefit, and
arises from the uncertainty on the survival probabilities.

This chapter provides a setting for updating the various contract elements.
It may offer a superior protection to policyholders, since the insurer can
contribute to restore the break of the actuarial equivalence. An additional
advantage of working under the proposed framework is that it enables to
design a risk-sharing scheme which enhances the insurer’s solvency. Fur-
thermore, the proposed setting allows us to derive conditions on the yearly
share and on the longevity risk loadings such that contracts priced with the
dynamic equivalence principle lead to lower premiums than their classical
counterparts. Note that Mauer et al. (2013) find, under a lifecycle portfo-
lio choice model with CRRA utility function, that policyholders would be
keen to purchase participating contracts provided the loading of this con-
tract is below a certain threshold; see also Weale and van de Ven (2016). In
the same spirit, Boon et al. (2018) compare the CRRA-based preferences of
policyholders between annuity contracts and GSA plans and include the per-
spective of equity holders. The results presented here differ and generalize
those mentioned above at different levels. The proposed setting goes beyond
the no-transfer/full-transfer binarism and provides a scheme where system-
atic risk is shared among the two parties. Additionally, the conditions under
which each party has an advantage in engaging in the dynamic contract are
given in closed-form expression. Moreover, the constraint imposed from the
viewpoint of the policyholder is that the risk-sharing scheme should lead to
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a contract where, taking into account the potential future payments, the
premium has to be lower than that of the corresponding classical contract
priced in a classical way. This implies that the results hold for any utility
function describing the choice of a profit-seeking decision maker, and thus,
no assumption is required on its functional form. Also, the loading con-
sidered here is not restricted to a given choice of the loading function, and
includes, e.g. the quantile-based loading considered in Mauer et al. (2013) as
a particular case. Last but not least, our work reconciles both the solvency
constraint of the insurer and the price constraint of policyholders, leading
to a viable risk-sharing scheme.

The remainder of the chapter is organized as follows. Section 5.2 addresses
the systematic longevity risk and the consequences of replacing the inde-
pendent remaining lifetimes assumption by a conditional independence as-
sumption. In Section 5.3, we introduce the dynamic equivalence principle
as a possible solution to reduce the insurer’s exposure to systematic risk.
We apply the approach to a portfolio of pure endowments and a portfolio
of term annuities in Section 5.4 and Section 5.5, and show how to design
a viable contract which is appealing to both the insurer and policyholders.
Finally, Section 5.6 concludes the paper.

We end this introduction by noting that although the angle taken here is
from the longevity aspect of the risk, all results can readily be generalized
to include other elements of the technical basis such as interest rates and
lapse rates.

5.2 Systematic longevity risk

Consider a portfolio of lx policyholders all aged x at time 0 whose remaining
lifetimes are denoted by T1, . . . , Tlx . At time 0, the survival-or-not upon time
t of policyholder i is represented by the following survival indicator:

Ii(0, t) =

{
1 if Ti > t
0 otherwise

, (5.2.1)

and the corresponding survival index of the portfolio is defined as follows:

I(0, t) =
1

lx

lx∑
i=1

Ii(0, t). (5.2.2)

Throughout the paper, as in most models for projecting mortality and sur-
vival, the conditional remaining lifetimes of the policyholders, given a par-
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ticular mortality scenario Θ = θ, are assumed to be mutually independent.
Unconditionally however, all remaining lifetimes depend on the change of
survival over time and hence, are mutually dependent. We introduce the no-
tations tpx(θ) and tqx(θ) for the conditional survival and death probabilities,
respectively:

tpx(θ) = P [Ii(0, t) = 1 | Θ = θ] = 1− tqx(θ). (5.2.3)

The unconditional survival probability, which is denoted by tpx, is given by:

tpx = P [Ii(0, t) = 1] = E [tpx(Θ)] , (5.2.4)

and a similar expression holds for the corresponding death probability. This
set up allows for an ‘urn of urns’ interpretation. The survival-or-not of the
different policyholders until time t is a two-stage process. First, the mortality
scenario Θ = θ unfolds. Next, the outcome of Ii(0, t) for each insured i is
drawn from the conditional distribution of Ii(0, t), given Θ = θ.

In this setting, we find that the joint survival probability for insureds i and
j, for i 6= j, equals

P [Ii(0, t) = 1, Ij(0, t) = 1] = E
[
(tpx(Θ))2

]
. (5.2.5)

Furthermore, from (5.2.4) and (5.2.5), we find that the covariance between
the variables Ii(0, t) and Ij(0, t), for i 6= j, is given by:

Cov[Ii(0, t), Ij(0, t)] = Var [tpx(Θ)] , (5.2.6)

which implies a non-negative dependence between the survival indicators.
This expression shows that the degree of our ignorance about the future
survival probability drives the dependence between the survival indicators:
the more tpx(Θ) is uncertain, in the sense that it has a larger variance, the
more the survival indicators are correlated. In case tpx(Θ) is deterministic,
meaning that the survival probability is known with certainty, the covariance
between Ii(0, t) and Ij(0, t) is zero and the survival indicators are indepen-
dent (since zero correlation is equivalent to independence in the Bernoulli
case). This latter case is in line with the standard actuarial assumption of
independence.

Furthermore, for i 6= j, we have that:

P[Ij(0, t) = 1 | Ii(0, t) = 1] =
E[Ii(0, t)× Ij(0, t)]

E[Ii(0, t)]

= P[Ij(0, t) = 1] +
Cov[Ii(0, t), Ij(0, t)]

E[Ii(0, t)]
.
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Taking into account (5.2.6), we find that the t-year conditional survival
probability of policyholder j, given that policyholder i is alive at that time,
can be expressed as

P[Ij(0, t) = 1 | Ii(0, t) = 1] = P[Ij(0, t) = 1] +
Var [tpx(Θ)]

E [tpx(Θ)]
≥ P[Ij(0, t) = 1].

(5.2.7)
From this expression, we see that the knowledge that policyholder i survives
increases the probability that policyholder j survives. Additionally, the more
uncertain tpx(Θ), the more the conditional survival probability of j exceeds
the unconditional one.

The dependence between remaining lifetimes implies that the strong LLN
is not applicable. In other words, increasing the portfolio size will not fully
diversify the longevity risk. The classical strong LLN has to be replaced by
the conditional strong LLN which states that

lim
lx→∞

1

lx

lx∑
i=1

Ii(0, t) = E [I1(0, t)|Θ] = tpx(Θ), (5.2.8)

almost surely; see e.g. Majrek et al. (2005). The limiting survivor pro-
portion, or equivalently the average benefit, is a random variable which is
related to the systematic part of the portfolio’s risk per pure endowment
policy.

Using the law of total variance, we find that Var[I(0, t)] can be split into
two parts:

Var [I(0, t)] =
1

lx
E [tpx(Θ) tqx(Θ)] + Var [tpx(Θ)] . (5.2.9)

The diversifiable part of the insurance risk is captured by the first term in
(5.2.9), which depends on the size of the portfolio. The second term is re-
lated to the uncertainty on the survival probabilities, and hence, captures
the systematic part. This two-components representation implies that the
variance of the average benefit payment is a decreasing function of the num-
ber of insureds. The cases where lx goes to infinity and to 1 lead to the
following lower and upper bounds:

Var [tpx(Θ)] ≤ Var [I(0, t)] ≤ Var [Ii(0, t)] . (5.2.10)

implying that it is beneficial to increase the size of the portfolio.
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The benefit of diversification can also be illustrated using the tail value-at-
risk, which we denote for the random variable X and the level ε ∈ (0, 1) by
TVaRε [X], such that:

TVaRε[X] =
1

1− ε

∫ 1

ε
VaRq[X] dq,

where VaRq[X] is the value-at-risk at the level q ∈ (0, 1).

The inequality

1

lx + 1
TVaRε

[
lx+1∑
i=1

Ii(0, t)

]
≤ 1

lx
TVaRε

[
lx∑
i=1

Ii(0, t)

]

holds for all probability levels ε, and for any possible conditional dependence
between the Ii(0, t)’s; see e.g. Denuit et al. (2005) and Feng and Shimizu
(2016). Thus, the relative contribution of each endowment policy to the
solvency capital (determined as the TVaR minus the best estimate) decreases
as the size of the portfolio increases.

The main conclusion of this section is that in case of conditional indepen-
dence, only part of the insurance risk can be diversified by pooling. Tak-
ing into account this observation, it seems that specifying the elements of
the insurance contract in absolute terms at policy issue can be extremely
dangerous, because of the substantial systematic longevity risk captured in
Var [tpx(Θ)].

5.3 Dynamic equivalence principle

5.3.1 The actuarial equivalence principle at contract initia-
tion

The main idea behind the proposed risk-sharing scheme is similar to that of
Chapter 3. At the end of each period, the retrospective reserve is compared
to the required liabilities (determined prospectively, taking into account new
information on the insured risks). In contrast with the setting of Chapter 3
where the risk is fully transferred, here the experienced loss (i.e. the differ-
ence between the retrospective and prospective reserves) is shared between
the policyholder and the insurer, according to an agreed-upon risk-sharing
scheme which is determined at policy issue. We focus in this section on de-
riving rules for a risk-sharing scheme for insurance contracts with survival
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benefits, but the approach consisting in sharing the experienced loss is ap-
plicable to other types of insurance contracts, including those with a death
benefit.

We consider an insurance contract sold to lx policyholders aged x at time
0. The policy stipulates that upon survival at times k + 1, k = 0, 1, 2, . . . ,

the beneficiary will receive the amount b
(0)
k+1 ≥ 0, while upon survival at

time k, the policyholder will pay the premium π
(0)
k ≥ 0. Given the informa-

tion available at time 0, hence, the superscript “(0)”, we denote by C(0)
0 the

contract elements agreed-upon at time 0 :

C(0)
0 =

{
b
(0)
0 , π

(0)
0

}
,

where b
(0)
0 = (b

(0)
1 , b

(0)
2 , ...) and π

(0)
0 =

(
π

(0)
0 , π

(0)
1 , ...

)
are the benefit package

and the premium plan, respectively. The benefit package can be considered
as a guaranteed benefit, or as an estimate of future random benefit as in
the setting presented in Chapter 3. In this latter case, we can reconcile the
updating mechanisms incorporating information on survival probabilities or
on medical inflation. The present value at time 0 of future benefit payments

per-policy is denoted by the random variable B
(0)
0 :

B
(0)
0 =

∞∑
j=0

b
(0)
j+1v

j+1
j+1px(Θ),

and the present value of future premiums is given by the random variable

Π
(0)
0 :

Π
(0)
0 =

∞∑
j=0

π
(0)
j vj jpx(Θ),

where v is the constant yearly discounting factor. The loss random variable
at time 0 is denoted by L0 and is defined as the present value of future
benefits minus future premiums, i.e.:

L0 = B
(0)
0 −Π

(0)
0 . (5.3.1)

Recall that the j-year survival of policyholder i is characterized by the con-
ditional probability jpx(Θ). Based on the knowledge available at time 0 and
by using the notation F0, the actuary attaches the following values to these
probabilities:

E [jpx(Θ)|F0] = jp
(0)
x , (5.3.2)



A dynamic equivalence principle for longevity risk management 77

for j = 1, 2, .... Similarly to the notations of Chapter 3, we will also use the
superscript “(k)” to indicate quantities that are based on information and
expert opinion available at time k, k = 1, 2, ..., and we replace the notation
E [.|Fk] by Ek [.]. Note that besides the probabilities introduced above, at
time 0, the actuary also has to determine other factors of the technical basis.

The expected present value of the benefit and premium cash flow streams
are then given by the following expected present values:

E0

[
B

(0)
0

]
=

∞∑
j=0

b
(0)
j+1v

j+1
j+1p

(0)
x ,

and

E0

[
Π

(0)
0

]
=

∞∑
j=0

π
(0)
j vj jp

(0)
x ,

respectively. We assume that premiums and benefits of the contract are
set such that they fulfill the actuarial equivalence principle, i.e. such that
the expected value of the loss in (5.3.1), conditionally on the information
available at time 0, is equal to 0 at that time:

E0 [L0] = 0 ⇐⇒ E0

[
B

(0)
0

]
= E0

[
Π

(0)
0

]
. (5.3.3)

The valuation approach based on the actuarial equivalence principle (5.3.3)
is the one commonly used in practice for classical life insurance, where the

benefit and premium cash flow streams b
(0)
0 and π

(0)
0 are fixed at policy issue

and remain, in principle, unchanged during the life of the contract. This
means that the risk of having chosen a wrong technical basis is fully taken
by the insurer. In order to cope with this risk, the insurer commonly charges
a (implicit) loading which is used to cover the diversifiable as well as the
undiversifiable parts of the risk. In this section, we discard this loading, but
we will include it in Section 5.4.

5.3.2 The dynamic equivalence principle

Suppose that we have arrived at time 1 and that the policy is still in force.
Assuming that the technical interest rate is guaranteed, the available provi-
sion (or reserve) at that time is given by:

V
(0)

1 =
π

(0)
0

vI(0, 1)
,
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where I(0, 1) is the observed survival index over the first year which is as-
sumed to be strictly greater than 0. This assumption means that there is at
least one survivor at time 1. In case I(0, 1) = 0 then all contracts are termi-
nated at time 1 and no updating is needed anymore. Note that throughout
the paper and for any k = 1, 2, ..., the reserves are calculated before benefit
and premium payment.

Having arrived at time 1, the realization I(0, 1) provides the insurer with
additional information. Moreover, assuming that the insured i is still alive,
we know that Ii(0, 1) = 1. Based on this and on other information available
at time 1, we obtain the following updated survival probabilities:

E1 [ jpx+1(Θ)] = jp
(1)
x+1, j = 1, 2, . . . (5.3.4)

From (5.3.4), it follows that the required reserve based on the new informa-
tion is given by:

E1

[
B

(0)
1 −Π

(0)
1

]
=

∞∑
j=0

b
(0)
j+1v

j
jp

(1)
x+1 −

∞∑
j=0

π
(0)
j+1v

j
jp

(1)
x+1.

In general, the actuarial equivalence will be broken because the realization
of the retrospective reserve deviates from its assumption and the estimate of
the technical basis has changed. In order to restore it, the following capital
is required:

E1

[
B

(0)
1 −Π

(0)
1

]
− V (0)

1 ,

which represents the deviation between the required and the retrospective
reserve at time 1. We suppose now that this required amount is shared
among the insurer and the policyholder. For α1 ∈ [0, 1], let 1 − α1 be the
share of the loss covered by the insurer whereas the contribution of the pol-

icyholder is given by α1

(
E1

[
B

(0)
1 −Π

(0)
1

]
− V (0)

1

)
. On the one hand, the

retrospective reserve after having been increased by the insurer’s participa-
tion is given by:

V
(1)

1 = V
(0)

1 + (1− α1)
(
E1

[
B

(0)
1 −Π

(0)
1

]
− V (0)

1

)
.

On the other hand, from time 1 on, the remaining premium plan π
(0)
1 is

replaced by π
(1)
1 :

π
(1)
1 =

(
π

(1)
1 , π

(1)
2 , ...

)
, (5.3.5)
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and the remaining benefit package b
(0)
1 is replaced by b

(1)
1 :

b
(1)
1 =

(
b
(1)
1 , b

(1)
2 , ...

)
. (5.3.6)

We denote the expected actuarial present value at time 1 of the updated
remaining premiums and benefits as:

E1

[
Π

(1)
1

]
=
∞∑
j=0

π
(1)
j+1v

j
jp

(1)
x+1, (5.3.7)

and

E1

[
B

(1)
1

]
=

∞∑
j=0

b
(1)
j+1v

j
jp

(1)
x+1, (5.3.8)

respectively. The updated premium plan and benefit package are deter-
mined such that the actuarial equivalence is restored at time 1, i.e. when
the following equation is satisfied:

E1

[
Π

(1)
1 −B

(1)
1

]
= E1

[
Π

(0)
1 −B

(0)
1

]
+ α1

(
E1

[
B

(0)
1 −Π

(0)
1

]
− V (0)

1

)
.

Taking into account the contributions of both the insurer and the policy-
holders, one finds that:

V
(1)

1 = E1

[
B

(1)
1 −Π

(1)
1

]
,

which means that the actuarial equivalence has been restored at time 1.

A similar reasoning can be applied at time 2 where the available reserve
based on the updating up to time 1 is given by:

V
(1)

2 =
V

(1)
1 + π

(1)
1 − b

(1)
1

vI(1, 2)
,

with I(1, 2) being the survival index of the portfolio from time 1 to time
2, and assumed to be strictly positive. Using the new information available
at time 2, the estimates of future survival probabilities at that time are

updated to jp
(2)
x+2, for j = 1, 2, ..., such that the value of the required reserve

is as follows:

E2

[
B

(1)
2 −Π

(1)
2

]
=
∞∑
j=0

b
(1)
j+2v

j
jp

(2)
x+2 −

∞∑
j=0

π
(1)
j+2v

j
jp

(2)
x+2.
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The amount E2

[
B

(1)
2 −Π

(1)
2

]
−V (1)

2 is needed to restore the actuarial equiv-

alence. For α2 ∈ [0, 1], the share of the insurer is given by 1 − α2, such
that:

V
(2)

2 = V
(1)

2 + (1− α2)
(
E2

[
B

(1)
2 −Π

(1)
2

]
− V (1)

2

)
.

The contribution of the policyholder is α2

(
E2

[
B

(1)
2 −Π

(1)
2

]
− V (1)

2

)
. The

updated premium plan π
(2)
2 and benefit package b

(2)
2 are determined from the

following updated actuarial equivalence:

E2

[
Π

(2)
2 −B

(2)
2

]
= E2

[
Π

(1)
2 −B

(1)
2

]
+ α2

(
E2

[
B

(1)
2 −Π

(1)
2

]
− V (1)

2

)
.

Insurance regulation requires that having arrived at time k, the actuarial
equivalence has to be restored. In case of a classical life insurance contract,
where benefits and premiums are fixed at policy issue, the insurer is fully
responsible for restoring the actuarial equivalence, i.e. αk = 0. In our present
setting, the cost of restoring the actuarial equivalence is covered by both
the insurer and policyholders. The available provision as well as all future
benefits and premiums are updated according to a pre-specified risk-sharing
scheme which is characterized by the coefficients α1, α2, .... This flexible
approach to manage longevity risk for newly underwritten contracts can be
seen as a series of successive (yearly) applications of the fundamental static
equivalence principle. We say here that such a contract is managed by a
dynamic equivalence principle, which is defined hereafter for any time k.

Definition 5.1 (Dynamic equivalence principle). At any time k, the k − 1
values of the remaining contract features

C(k−1)
k =

{
b
(k−1)
k , π

(k−1)
k

}
,

are replaced by

C(k)
k =

{
b
(k)
k , π

(k)
k

}
,

taking into account the information stream over time, such that the actuarial
equivalence is restored at that time, i.e.

Ek
[
Π

(k)
k −B

(k)
k

]
= Ek

[
Π

(k−1)
k −B(k−1)

k

]
+αk

(
Ek
[
B

(k−1)
k −Π

(k−1)
k

]
− V (k−1)

k

)
,

(5.3.9)
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where αk ∈ [0, 1] is the share of the loss born by the policyholder at time k.

The retrospective reserve at time k before updating, i.e. V
(k−1)
k , is given by:

V
(k−1)
k =

V
(k−1)
k−1 + π

(k−1)
k−1 − b

(k−1)
k−1

vI(k − 1, k)
,

where V
(k−1)
k−1 is the retrospective reserve at time k − 1 after having been

increased by the insurer’s participation in the deviation risk:

V
(k−1)
k−1 = V

(k−2)
k−1 + (1− αk−1)

(
Ek−1

[
B

(k−2)
k−1 −Π

(k−2)
k−1

]
− V (k−2)

k−1

)
,

and where I(k − 1, k) represents the (strictly positive) survival index from
time k− 1 to time k in the portfolio which is composed of policyholders aged
x + k − 1 at time k − 1. Taking into account the contribution of both the
insurer and the policyholders, one finds that:

V
(k)
k = Ek

[
B

(k)
k −Π

(k)
k

]
,

which means that the actuarial equivalence has been restored at time k.

5.4 Pure endowment with single premium

5.4.1 The updating mechanism

In this section, we focus on a portfolio of t-year pure endowments sold to lx
policyholders aged x at time 0. The contract pays a benefit of b

(0)
t at time

t upon survival of the policyholder at that time. The single pure premium

for this contract is denoted by π
(0)
0 . We assume that the policy is flexible,

in the sense that it allows the contract elements to be updated over time.

Based on the estimate tp
(0)
x at time 0 of the t-year survival probability, we

use the actuarial equivalence principle (5.3.2) to determine the value of the

pure premium π
(0)
0 at contract inception:

π
(0)
0 = b

(0)
t vt tp

(0)
x . (5.4.1)

We include a premium loading in this section and we denote it by ϕ, which

is assumed to be positive. This results in the loaded single premium P
(0)
0 :

P
(0)
0 = π

(0)
0 + ϕ.
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This setting includes a wide range of possible pricing principles; see Kaas
et al. (2008) for some examples. The loading ϕ can also be determined
by applying shocks on the estimated survival probabilities, in the spirit of
the Solvency II regulation. Because the loaded premium is the sum of the

actuarial value of the benefit b
(0)
t and a loading, we can interpret P

(0)
0 as

the pure premium for a contract paying the benefit b
(0)
t + ϕ

vt tp
(0)
x

at ma-

turity. Thus, the contract can be described by the benefit package b
(0)
0 =

(0, ..., 0, b
(0)
t + ϕ

vt tp
(0)
x

, 0, ...) and the pure premium plan P
(0)
0 =

(
P

(0)
0 , 0, 0, ...

)
.

Under this setting, the insurer estimates at time 0 both the pure premium
and the loading. As the future unfolds and new information becomes avail-
able, the estimate of the premium may require an adjustment and the esti-
mate of the loading may turn out to be insufficient to cope with the deviation
risk for the remaining years. In the sequel, the time-0 estimates of the pure
premium as well as the loading will both be updated over time. Note that
another simpler setting which is not considered here and requires only mi-
nor modifications in the subsequent results is to update the pure premium
only, without taking into account the loading in the dynamic equivalence
principle.

At time 1, the value of the retrospective reserve per policy still in force is:

V
(0)

1 =
P

(0)
0

vI(0, 1)
. (5.4.2)

The new information available at time 1 leads to a new estimate t−1p
(1)
x+1

of the (t− 1)-year survival probability of the policyholder now aged x + 1.

From time 1 on, the benefit package b
(0)
1 = (0, ..., 0, b

(0)
t + ϕ

vt tp
(0)
x

, 0, ...) and

the premium plan P
(0)
1 = (0, 0, 0, ...) at that time are replaced by b

(1)
1 =

(0, ..., 0, b
(1)
t + ϕ

vt tp
(0)
x

, 0, ...) and P
(1)
1 =

(
P

(1)
1 , 0, 0, ...

)
, respectively, where

we assume that only a single extra-premium P
(1)
1 is paid at time 1. This

means that the benefit is updated from b
(0)
t to b

(1)
t , and/or an additional

amount P
(1)
1 is paid by the policyholders.

Let us now apply the dynamic equivalence principle (5.3.9) to obtain the
values of the updated benefit and the additional premium. The present
values of future premiums using the information available at time 1 before
and after the updating are given by:

E1

[
Π

(0)
1

]
= 0, (5.4.3)
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and

E1

[
Π

(1)
1

]
= P

(1)
1 , (5.4.4)

respectively. Moreover, the present values of future benefits using the infor-
mation available at time 1 before and after the updating are given by:

E1

[
B

(0)
1

]
=

(
b
(0)
t +

ϕ

vt tp
(0)
x

)
vt−1

t−1p
(1)
x+1, (5.4.5)

and

E1

[
B

(1)
1

]
=

(
b
(1)
t +

ϕ

vt tp
(0)
x

)
vt−1

t−1p
(1)
x+1, (5.4.6)

respectively. Plugging Expressions (5.4.3)–(5.4.6) as well as (5.4.2) in Equa-

tion (5.3.9) and multiplying both sides by
(
−vt−1

t−1p
(1)
x+1

)−1
leads to:

b
(1)
t −

P
(1)
1

vt−1
t−1p

(1)
x+1

= b
(0)
t − α1

((
b
(0)
t +

ϕ

vt tp
(0)
x

)
− P

(0)
0

vtI(0, 1) t−1p
(1)
x+1

)
.

(5.4.7)

Furthermore, by noting that P
(0)
0 =

(
b
(0)
t + ϕ

vt tp
(0)
x

)
vt tp

(0)
x , we find that

b
(1)
t and P

(1)
1 satisfy the following equation:

b
(1)
t −

P
(1)
1

vt−1
t−1p

(1)
x+1

= b
(0)
t − α1

(
b
(0)
t +

ϕ

vt tp
(0)
x

)(
1− tp

(0)
x

I(0, 1) t−1p
(1)
x+1

)
.

(5.4.8)

Using (5.4.8), we find that the retrospective reserve at time 2 is given by:

V
(1)

2 =

(
b
(1)
t +

ϕ

vt tp
(0)
x

)
vt−2 t−1p

(1)
x+1

I(1, 2)
.

If we apply the dynamic equivalence principle (5.3.9), we find that the time-

2 updated value of the benefit b
(2)
t and the additional premium P

(2)
2 satisfy

the equation:

b
(2)
t −

P
(2)
2

vt−2
t−2p

(2)
x+2

= b
(1)
t − α2

(
b
(1)
t +

ϕ

vt tp
(0)
x

)(
1− t−1p

(1)
x+1

I(1, 2) t−2p
(2)
x+2

)
.
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In general, the retrospective reserve V
(k−1)
k at time k, for k = 2, ..., t, is given

by:

V
(k−1)
k =

(
b
(k−1)
t +

ϕ

vt tp
(0)
x

)
vt−k

t−k+1p
(k−1)
x+k−1

I(k − 1, k)
,

such that b
(k)
t and P

(k)
k satisfy:

b
(k)
t −

P
(k)
k

vt−k t−kp
(k)
x+k

= b
(k−1)
t −αk

(
b
(k−1)
t +

ϕ

vt tp
(0)
x

)(
1− t−k+1p

(k−1)
x+k−1

I(k − 1, k) t−kp
(k)
x+k

)
.

(5.4.9)

The values of the couple (b
(k)
t , P

(k)
k ) depend on the realization of the sur-

vival index, the new estimate of the mortality table and the participation
of the insurer to cover the systematic deviation through the choice of the
parameters α1, ..., αk. Thus, there is no unique couple which can be deter-
mined from (5.4.9). Hereafter, we consider two particular cases; updating
the premium plan only, and updating the benefit package only.

Case 1 (Updating the premium plan only). In case the benefit is not subject
to revision, we find that the reserve at time k is as follows:

V
(k−1)
k =

(
b
(0)
t + ϕ

vt tp
(0)
x

)
vt−k+1

t−k+1p
(k−1)
x+k−1

vI(k − 1, k)
=

P
(0)
0

vk tp
(0)
x

t−k+1p
(k−1)
x+k−1

I(k − 1, k)
.

Let us now derive a general expression for the additional premium. Starting

with the time-1 additional amount P
(1)
1 , we find from (5.4.8):

P
(1)
1 = α1

((
b
(0)
t +

ϕ

vt tp
(0)
x

)
vt−1

t−1p
(1)
x+1 −

P
(0)
0

vI(0, 1)

)

= α1
P

(0)
0

v tp
(0)
x

(
t−1p

(1)
x+1 −

tp
(0)
x

I(0, 1)

)
.

The premium P
(1)
1 corresponds to the value at time 1 of the loaded sin-

gle premium using the time-0 information. This is then corrected from the

deviation

(
t−1p

(1)
x+1 − tp

(0)
x

I(0,1)

)
and scaled by the contribution α1 of the pol-

icyholders. Thus, the contribution of the policyholders takes into account
changes of both the past realizations and the new estimates. At time 2, the
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additional amount P
(2)
2 is given by:

P
(2)
2 = α2

((
b
(0)
t +

ϕ

vt tp
(0)
x

)
vt−2

t−2p
(2)
x+2 − V

(1)
2

)

= α2
P

(0)
0

v2
tp

(0)
x

(
t−2p

(2)
x+2 −

t−1p
(1)
x+1

I(1, 2)

)
,

and has a similar interpretation as the time-1 additional amount.

In general, we find that the additional amounts P
(k)
k required from the poli-

cyholders at the successive times k = 2, 3, ..., t are given by:

P
(k)
k = αk

P
(0)
0

vk tp
(0)
x

(
t−kp

(k)
x+k −

t−k+1p
(k−1)
x+k−1

I(k − 1, k)

)
. (5.4.10)

The numerical value of P
(k)
k can be negative, implying that the insurer pays

back the policyholder for being too conservative. Also, by considering that k
takes values 1, 2, ..., t, we implicitly assume that policyholders could pay an

additional positive amount P
(t)
t at contract expiration. This assumption may

not be realistic in practice. However, in such a case, this can be compensated
by a benefit reduction.

Let us notice that in case we use the multiplicative form P
(0)
0 = π

(0)
0 (1 + ϕ)

instead of the additive form P
(0)
0 = π

(0)
0 + ϕ, the updating formula (5.4.10)

implies that

P
(k)
k = π

(k)
k (1 + ϕ) ,

where π
(k)
k is the time-k pure additional amount which satisfies (5.4.10),

such that:

π
(k)
k = αk

π
(0)
0

vk tp
(0)
x

(
t−kp

(k)
x+k −

t−k+1p
(k−1)
x+k−1

I(k − 1, k)

)
.

This means that the loading ϕ is constant over time and is applied to the
future pure additional amounts, even when they are negative. However, we
can still write the future required amounts in the additive form

P
(k)
k = π

(k)
k + ϕ(k),

where ϕ(k) = ϕ

π
(k)
k

is a time-varying loading.
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Case 2 (Updating the benefit package only). Let us now assume that poli-
cyholders do not pay additional premiums. Instead, the benefit at time t can
be revised throughout the contract to account for deviations. In this case, it
follows directly from (5.4.9) that the time-k updated value of the benefit has
the following expression:

b
(k)
t = b

(k−1)
t − αk

(
b
(k−1)
t +

ϕ

vt tp
(0)
x

)(
1−

p
(k−1)
x+k−1

I(k − 1, k)

t−kp
(k−1)
x+k

t−kp
(k)
x+k

)
.

(5.4.11)
Note that we also find the following expression for the reserve at time k:

V
(k−1)
k =

(
b
(k−1)
t +

ϕ

vt tp
(0)
x

)
vt−k

t−k+1p
(k−1)
x+k−1

I(k − 1, k)
.

Cases 1 and 2 are two particular risk-sharing schemes which have the same
goal of restoring the actuarial equivalence. In the remainder of this section,

we focus on Case 1 and set b
(t)
t = b

(0)
t = bt. Moreover, we simplify the setting

by assuming that αk = α for all k = 1, 2, ..., t, meaning that the insurer
transfers back to the policyholders the same share of the shortfall every
year. We answer two specific questions. The first question is raised by the
insurer who wants to determine under what condition a contract managed
by the dynamic equivalence principle provides more safety than a classical
one, where safety is measured by the probability of loss. Second, from the
point of view of policyholders, we search for conditions under which buying
a contract priced under the dynamic equivalence principle will be cheaper
than its classical counterpart. Here, a classical pure endowment contract is
a contract without updating (i.e. α = 0) whose single premium is denoted
by PΨ:

PΨ = π
(0)
0 + Ψ, (5.4.12)

with Ψ > 0. Note that despite not being formally imposed here, it is rea-
sonable to expect that ϕ ≤ Ψ. Moreover, the contracts should have the
same loading when the insurer covers all the shortfall, i.e. ϕ = Ψ for α = 0,
whereas there should be no loading when the policyholders are covering the
shortfall, i.e. ϕ = 0 for α = 1.

5.4.2 Impact on the insurer’s solvency

The analysis in this subsection is carried out from the point of view of the
insurer who has the choice between selling a pure endowment under the
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classical setting or under the risk-sharing scheme described in Case 1. The
time-0 shortfall risk per-policy for a portfolio of pure endowments priced in
the classical static setting is denoted by RΨ, whereas its counterpart priced
in the dynamic setting is denoted by Rα,ϕ. For the classical contract, we
have:

RΨ = I(0, t)btv
t − PΨ, (5.4.13)

which can also be written as:

RΨ =

(
I(0, t)

tp
(0)
x

− 1

)
π

(0)
0 −Ψ. (5.4.14)

On the other hand, we find in the dynamic case:

Rα,ϕ = I(0, t)btv
t − P (0)

0 −
t∑

k=1

vkI(0, k)P
(k)
k ,

From (5.4.10), we see that Rα,ϕ can also be written as:

Rα,ϕ = I(0, t)b
(0)
t vt − P (0)

0 − α P
(0)
0

tp
(0)
x

t∑
k=1

I(0, k)

(
t−kp

(k)
x+k −

t−k+1p
(k−1)
x+k−1

I(k − 1, k)

)
,

or, in its simplified form:

Rα,ϕ =

(
I(0, t)

tp
(0)
x

− 1

)(
π

(0)
0 − αP

(0)
0

)
− ϕ, (5.4.15)

where we use

t∑
k=1

I(0, k)

(
t−kp

(k)
x+k −

t−k+1p
(k−1)
x+k−1

I(k − 1, k)

)
= I(0, t)− tp

(0)
x .

The insurer will have a loss in case the shortfall is positive, i.e. in case the
payments to the policyholders are higher than expected. In the following
theorem, we provide a condition on Ψ, ϕ and α such that the probability of
a loss for a contract priced under the dynamic equivalence principle is lower
compared to its classical counterpart.

Theorem 5.1. A pure endowment contract with single premium and loading
ϕ priced under the dynamic equivalence principle has a lower loss probability
than its counterpart with loading Ψ and priced using a classical premium
principle, if the yearly share α ∈ [0, 1] satisfies the following condition:

π
(0)
0

π
(0)
0 + ϕ

(
1− ϕ

Ψ

)
≤ α. (5.4.16)
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Proof. The loss probability of the insurer under the dynamic equivalence
principle is given by:

P [Rα,ϕ > 0] = P

[(
I(0, t)

tp
(0)
x

− 1

)(
π

(0)
0 − αP

(0)
0

)
≥ ϕ

]
, (5.4.17)

whereas its counterpart under the classical setting is given by:

P [RΨ > 0] = P

[(
I(0, t)

tp
(0)
x

− 1

)
π

(0)
0 ≥ Ψ

]
. (5.4.18)

First, suppose that
π
(0)
0

π
(0)
0 +ϕ

(
1− ϕ

Ψ

)
≤ α holds with α <

π
(0)
0

π
(0)
0 +ϕ

. The latter

inequality implies that

π
(0)
0 − αP

(0)
0 > 0,

and hence, the former inequality can be written as follows:

ϕ

π
(0)
0 − αP

(0)
0

≥ Ψ

π
(0)
0

. (5.4.19)

Therefore, we find from (5.4.19) that:

P

[(
I(0, t)

tp
(0)
x

− 1

)
>

ϕ

π
(0)
0 − αP

(0)
0

]
≤ P

[(
I(0, t)

tp
(0)
x

− 1

)
>

Ψ

π
(0)
0

]
,

or, equivalently, P [Rα,ϕ > 0] ≤ P [RΨ > 0].

Suppose now that
π
(0)
0

π
(0)
0 +ϕ

≤ α, which is equivalent to π
(0)
0 −αP

(0)
0 ≤ 0. Since

the upper bound of the support of I(0, 1) is 1, we find for α ∈ [0, 1] that:

Rα,ϕ ≤ − (1− α)P
(0)
0 ≤ 0,

and therefore, we have that P [Rα,ϕ > 0] = 0 ≤ P [RΨ > 0].

Theorem 5.1 shows that in case the insurer wants to reduce the loss proba-
bility, the proportion α of the risk that is borne by the policyholders has to
be set according to (5.4.16). This observation raises the question of whether
policyholders would be interested in buying such contracts. We investigate
this question in the following subsection.
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5.4.3 Policyholders’ perspective

The goal of this subsection is to derive an additional constraint on the load-
ings and on the risk-sharing scheme. In particular, we take into account the
constraint that contracts priced under the dynamic equivalence principle
should have lower premiums compared to their classical counterparts.

Let us first derive the actuarial value of the premiums per-policy for each
contract. Obviously, for the classical contract we simply have PΨ. For the

dynamic contract, policyholders pay the single premium P
(0)
0 at time 0 and

potentially some additional amounts P
(k)
k . The time-0 random present value

of all payments per-policy is given by

Π = P
(0)
0 +

t∑
k=1

I(0, k)P
(k)
k vk = P

(0)
0 + α

P
(0)
0

tp
(0)
x

(
I(0, t)− tp

(0)
x

)
. (5.4.20)

We find immediately that E0 [Π] = P
(0)
0 , which implies that policyholders

are not expected to pay additional premiums.

We now state the theorem showing that under a condition on Ψ, ϕ and α,
it remains favorable to buy a contract under the dynamic setting, although
policyholders may have to pay additional amounts in the future. The rea-
soning here is based on the fact that if the dynamic contract leads to lower
premiums (including the future potential payments), then it would be pre-
ferred by profit-seeking policyholders regardless of their risk preference.

Theorem 5.2. A pure endowment contract with single premium and loading
ϕ priced under the dynamic equivalence principle is more favorably priced
than its counterpart with loading Ψ and priced using a classical premium
principle if the yearly share α ∈ [0, 1] satisfies the following condition:

α ≤ tp
(0)
x

1− tp
(0)
x

Ψ− ϕ
π

(0)
0 + ϕ

. (5.4.21)

Proof. For a fixed benefit bt, if Π ≤ PΨ, then the dynamic contract is more
favorably priced than the classical one. Since PΨ is a constant, this inequal-
ity is always fulfilled if and only if the upper bound of the support of Π,
that is

P
(0)
0 + α

P
(0)
0

tp
(0)
x

(1− tp
(0)
x ),

is smaller than PΨ, which completes the proof.
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Remark 5.1. The result in Theorem 5.2 provides a general upper bound on
the share α from the viewpoint of the policyholders. However, it is worth
noting that this upper bound is rather conservative, since it corresponds to
the worst case scenario for the number of survivors. Thus, it is possible to
obtain alternative upper bounds for α which are greater than the upper bound
in (5.4.21) under some specific settings. For instance, this can be achieved
in an expected utility framework, which requires additional assumptions on
the utility function of policyholders and on the distribution of the survival
index I(0, t).

5.4.4 Viable risk-sharing scheme for pure endowments

It appears from Theorems 5.1 and 5.2 that an appropriate updating mech-
anism has to comply with two conditions. The first one aims at improving
the solvency situation of the insurer whereas the second one follows from
the fact that the contract has to remain appealing to policyholders. It is
however important that both conditions do not conflict. In the following,
we introduce a definition for a viable risk-sharing scheme.

Definition 5.2 (Viable risk-sharing scheme for pure endowments). Con-
sider a pure endowment contract priced under a dynamic equivalence prin-
ciple (characterized by a loading ϕ and a yearly share α) and a classical pure
endowment (with loading Ψ). Moreover, assume that

btv
t ≤ PΨ (5.4.22)

holds in case:
Ψ− ϕ ≤ btvt

(
1− tp

(0)
x

)
. (5.4.23)

Then, compared to the classical contract, the proposed updating mechanism
improves the solvency situation of the insurer and is more favorably priced
for policyholders if the following condition holds:

π
(0)
0

Ψ

Ψ− ϕ
π

(0)
0 + ϕ

≤ α ≤ min

{
tp

(0)
x

1− tp
(0)
x

Ψ− ϕ
π

(0)
0 + ϕ

, 1

}
. (5.4.24)

The above definition provides a condition on the contract such that both the
insurer and the policyholders are better off with the updating mechanism.
We can extract from (5.4.24) some limiting cases. On the one hand, setting
ϕ = Ψ leads to α = 0, which means that if the dynamic contract is as
expensive as the classical one, then there must be no additional premiums.
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On the other hand, setting ϕ = 0 leads to α = 1, which means that if
the dynamic contract does not include any loading, then the policyholder
should bear all the deviation risk. Moreover, imposing α ∈ [0, 1] implies
that the initial price of the dynamic contract has to be cheaper than that of
the classical one, i.e. ϕ ≤ Ψ. In this sense, the viable risk-sharing scheme is
consistent with intuition.

Inequality (5.4.22) ensures the existence of a range of α on which both parties
agree in case (5.4.23) is fulfilled. Inequality (5.4.23) compares the difference
between worst-estimate premium (i.e. when the t-year survival probability
is set to 1) and the best-estimate premium (i.e. when the t-year survival

probability is given by tp
(0)
x ) with the difference between the loadings Ψ and

ϕ. Thus, these inequalities mean that if the difference between the prices
of the classical and dynamic contracts is lower than the difference between
the worst- and best-estimate premiums, then the loaded premium for the
classical contract has to be at least equal to the worst-estimate premium.

5.4.5 Analysis of the viable risk-sharing scheme

We study the pairs (α,ϕ) leading to a viable risk-sharing scheme by con-
sidering three specific cases. The analysis is performed by determining the
possible values of that pair for three different values of the ratio:

γ =
Ψ

π
(0)
0

.

For illustrative purpose only, assume that the time-0 estimate of the t-year

survival probability tp
(0)
x is given by 0.981. This number has been estimated

from a Lee-Carter model, using data for both Belgian males and females
which covers the period 1974 − 2015 and ages 35 − 99. It corresponds to
the 30-year survival probability of a life aged 35. The estimation procedure
follows the methodology described in Pitacco et al. (2009).

Figure 5.4.1 displays an example where γ is such that inequality (5.4.22) is
not satisfied. It is then straightforward to show that for ϕ ≥ 0, inequality
(5.4.23) will always be satisfied. In this case, the lower bound from (5.4.24)
is greater than the upper bound. As a consequence, we cannot find any
α on which the insurer and policyholders would both agree. The reason is
that the classical contract is too cheap. Thus, against a too cheap contract,
policyholders would chose the dynamic one only if α is sufficiently low, and
in particular, lower than the minimum required by the insurer to enhance
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Figure 5.4.1: Bounds of α from inequality (5.4.24) as a function of ϕ, where γ is such
that inequality (5.4.23) is satisfied, while (5.4.22) is not.

its solvency situation. This translates into a conflict between the constraints
of the two parties.

In the left panel of Figure 5.4.2, the ratio γ is such that (5.4.22) becomes
an equality. Again, we have that for ϕ ≥ 0, inequality (5.4.23) is always
fulfilled. Moreover, since (5.4.22) is an equality, we have that:

γ = γ? =
1− tp

(0)
x

tp
(0)
x

,

and in this example we have γ? ≈ 1.94%. Additionally, combining the fact
that (5.4.23) is fulfilled with γ = γ?, we find that this case implies an equality
between the upper and lower bounds from (5.4.24). This means that for each
value of ϕ, there exists a unique value of α on which the two parties agree.
In particular, any pair (α,ϕ) on that line of the graph will have the same
loss probability for the insurer, and the same price for policyholders, taking
into account their potential future payments. We can also conclude that

a loading Ψ = γ?π
(0)
0 is the optimal loading for a classical contract in the

sense of (5.4.24). The right panel of Figure 5.4.2 displays the ratio γ? as a

function of the initial estimate tp
(0)
x . Clearly, higher values of this estimate
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Figure 5.4.2: Left: Bounds of α from inequality (5.4.24) as a function of ϕ where γ
is such that (5.4.22) becomes an equality. Right: Ratio γ? as a function of the initial
estimate of the t-year survival probability.
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Figure 5.4.3: Bounds of α from inequality (5.4.24) as a function of ϕ, where γ is such
that inequality (5.4.22) is satisfied. The shaded area provides the possible (α,ϕ) leading
to a viable risk-sharing scheme.

imply lower values of γ?. This would typically be the case for (relatively)
short-term contracts or for young policyholders. Therefore, for high value of

tp
(0)
x , the threshold level of the loading Ψ (relatively to the pure premium)

such that a viable risk-sharing scheme can be determined will be very low.

In Figure 5.4.3, inequality (5.4.23) does not hold before the point ϕ ≈
35.4%Ψ, but it does hold after that point. Moreover, the ratio γ is cho-
sen such that (5.4.22) is satisfied in both cases, although this condition is
not necessary for the existence of α before ϕ ≈ 35.5%Ψ. This implies that
for each value of ϕ, we can find a range of α on which both parties agree.
Thus, the possible pairs (α,ϕ) leading to a viable risk-sharing scheme con-
stitute a surface, which depends on the value of γ. In particular, we observe
that if the loading of the classical contract is too high, then even for high
values of ϕ (i.e. before ϕ ≈ 35.4%Ψ), policyholders would still prefer to bear
a significant part of the deviation risk. Note that the point ϕ ≈ 35.4%Ψ is
such that (5.4.23) becomes an equality, and thus, the ratio 35.4% from this
example is determined from:

1− γ?

γ
.
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5.5 Term annuity with single premium

5.5.1 The updating mechanism

Consider on a portfolio of t-year term annuity contracts sold to lx policy-
holders aged x at time 0. The contract pays a yearly benefit of b(0) at times
1, 2, ..., t, as long as the policyholder is alive. The single pure premium for

this contract is denoted by π
(0)
0 . Similarly to the procedure of Section 5.4,

we derive here updating rules for a term annuity with single premium, as
well as conditions on the loadings and the yearly shares of the loss which is
transferred back to policyholders.

From the actuarial equivalence principle (5.3.2), we find that the pure pre-

mium π
(0)
0 at contract inception is given by:

π
(0)
0 = b(0)a

(0)

x:t|, (5.5.1)

with

a
(0)

x:t| =

t∑
j=1

vj jp
(0)
x .

The loaded single premium P
(0)
0 is the sum of the pure single premium and

a positive loading ϕ, i.e.:

P
(0)
0 = π

(0)
0 + ϕ.

Notice again that P
(0)
0 can be interpreted as the pure premium for a contract

paying a yearly benefit b(0) + ϕ

a
(0)

x:t|

.

At time 1, the value of the retrospective reserve per-policy still in force is:

V
(0)

1 =
P

(0)
0

vI(0, 1)
. (5.5.2)

The new information available at time 1 leads to new estimates jp
(1)
x+1, j =

1, ..., t− 1, of the j-year survival probabilities of the policyholder now aged
x + 1. From time 1 on, the remaining yearly benefits b(0) paid at times

1, 2, ..., t are replaced by b(1), and/or an additional amount P
(1)
1 is paid by

the policyholder at time 1. Thus, the present values of future premiums
using the information available at time 1 before and after the updating are
given by:

E1

[
Π

(0)
1

]
= 0 and E1

[
Π

(1)
1

]
= P

(1)
1 , (5.5.3)
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respectively, whereas the present values of future benefits using the infor-
mation available at time 1 before and after the updating are given by:

E1

[
B

(0)
1

]
=

b(0) +
ϕ

a
(0)

x:t|

 t−1∑
j=0

vj jp
(1)
x+1, (5.5.4)

and

E1

[
B

(1)
1

]
=

b(1) +
ϕ

a
(0)

x:t|

 t−1∑
j=0

vj jp
(1)
x+1, (5.5.5)

respectively. Plugging Expressions (5.5.3)–(5.5.5) as well as (5.5.2) in Equa-

tion (5.3.9) and multiplying both sides by
(
−
∑t−1

j=0 v
j
jp

(1)
x+1

)−1
leads to:

b(1)− P
(1)
1∑t−1

j=0 v
j
jp

(1)
x+1

= b(0)−α1

b(0) +
ϕ

a
(0)

x:t|

− P
(0)
0

vI(0, 1)
∑t−1

j=0 v
j
jp

(1)
x+1

 .

(5.5.6)

Furthermore, by noting that P
(0)
0 =

(
b(0) + ϕ

a
(0)

x:t|

)
a

(0)

x:t|, we find that b(1) and

P
(1)
1 satisfy the following equation:

b(1)− P
(1)
1∑t−1

j=0 v
j
jp

(1)
x+1

= b(0)−α1

b(0) +
ϕ

a
(0)

x:t|

1−
a

(0)

x:t|

I(0, 1)
∑t−1

j=0 v
j+1

jp
(1)
x+1

 .

(5.5.7)

Using (5.5.7) and rearranging leads to the following expression of the avail-
able reserve at time 2:

V
(1)

2 =

b(1) +
ϕ

a
(0)

x:t|

∑t−1
j=0 v

j+1
jp

(1)
x+1

v2I(1, 2)
.

Applying again the dynamic equivalence principle (5.3.9) at time 2 leads
to the following equation for the updated value of the benefits b(2) and the

additional premium P
(2)
2 :

b(2)− P
(2)
2∑t−2

j=0 v
j
jp

(2)
x+2

= b(1)−α2

b(1) +
ϕ

a
(0)

x:t|

(1−
∑t−1

j=1 v
j+1

jp
(1)
x+1

I(1, 2)
∑t−2

j=0 v
j+2

jp
(2)
x+2

)
.
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At time k, for k = 2, ..., t, the retrospective reserve V
(k−1)
k is given by:

V
(k−1)
k =

b(k−1) +
ϕ

a
(0)

x:t|

∑t−k+1
j=1 vj+k−1

jp
(k−1)
x+k−1

vkI(k − 1, k)
, (5.5.8)

such that b(k) and P
(k)
k satisfy:

b(k)−
P

(k)
k∑t−k

j=0 v
j

jp
(k)
x+k

= b(k−1)−αk

b(k−1) +
ϕ

a
(0)

x:t|

(1−
∑t−k+1

j=1 vj+k−1
jp

(k−1)
x+k−1

I(k − 1, k)
∑t−k

j=0 v
j+k

jp
(k)
x+k

)
.

(5.5.9)

We focus now on the two particular cases, where the contract allows for the
adjustment of either the premium plan only, or the benefit package only.

Case 3 (Updating the premium plan only). In case the benefit is not subject
to revision, we find from (5.5.8) that the reserve at time k is as follows:

V
(k−1)
k =

P
(0)
0

vka
(0)

x:t|

∑t−k+1
j=1 vj+k−1

jp
(k−1)
x+k−1

I(k − 1, k)
.

Moreover, we find from (5.5.9) that the additional amounts P
(k)
k required

from the policyholders at the successive times k = 1, 3, ..., t are given by:

P
(k)
k = αk

P
(0)
0

vka
(0)

x:t|

t−k∑
j=0

vj+k jp
(k)
x+k −

1

I(k − 1, k)

t−k+1∑
j=1

vj+k−1
jp

(k−1)
x+k−1

 .

(5.5.10)
Notice the similarity between this expression and that of the additional amount
for pure endowments given in (5.4.10). Indeed, it is straightforward to show
that if all yearly benefits of the term annuity are equal to 0, except that
of year t, then the expression for the additional amount in case of a term
annuity reduces to the expression obtained for the pure endowment.

Case 4 (Updating the benefit package only). Let us now assume that poli-
cyholders do not pay additional premiums. Instead, the benefit at time t can
be revised throughout the contract to account for deviations. In this case, it
follows directly from (5.5.9) that the time-k updated value of the benefit has
the following expression:

b(k) = b(k−1) − αk

b(k−1) +
ϕ

a
(0)

x:t|

(1−
∑t−k+1

j=1 vj+k−1
jp

(k−1)
x+k−1

I(k − 1, k)
∑t−k

j=0 v
j+k

jp
(k)
x+k

)
,

(5.5.11)
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which is again similar to that of the pure endowment contract. Note that the
expression of the available reserve (5.5.8) at time k still holds in this case,
as it is expressed in terms of the updated benefit.

Let us now set b(k) = b, for k = 0, 1, ..., t and focus on Case 3. Moreover, we
assume that αk = α for all k = 1, 2, ..., t and determine bounds for α such
that it is advantageous for both parties to engage in an annuity contract
managed by the dynamic equivalence principle. Analogously to the pure
endowment contract, we define a classical term annuity as a contract without
updating (i.e. α = 0) whose single premium is denoted by PΨ:

PΨ = π
(0)
0 + Ψ, (5.5.12)

with Ψ > 0.

5.5.2 Impact on the insurer’s solvency

We determine in this subsection conditions on the risk-sharing scheme such
that it is safer for the insurer to sell a term annuity managed with a dynamic
equivalence principle instead of its counterpart under the classical setting.
The time-0 shortfall risk per-policy for a portfolio of term annuities priced in
the classical static setting is denoted by RΨ, whereas its counterpart priced
in the dynamic setting is denoted by Rα,ϕ. For the classical contract, we
have:

RΨ = b
t∑

k=1

vkI(0, k)− PΨ, (5.5.13)

which can also be written as:

RΨ =

∑t
k=1 v

kI(0, k)

a
(0)

x:t|

− 1

π
(0)
0 −Ψ. (5.5.14)

On the other hand, we find in the dynamic case:

Rα,ϕ =
t∑

k=1

vkI(0, k)− P (0)
0 −

t∑
k=1

vkI(0, k)P
(k)
k . (5.5.15)

First, note that the sum

t∑
k=1

I(0, k)

t−k∑
j=0

vj+k jp
(k)
x+k − I(0, k − 1)

t−k+1∑
j=1

vj+k−1
jp

(k−1)
x+k−1
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reduces to
∑t

k=1 v
kI(0, k)−

∑t
k=1 v

k
kp

(0)
x . Therefore, plugging Expression

(5.5.10) of P
(k)
k in (5.5.15) leads to following expression of Rα,ϕ:

Rα,ϕ = b

t∑
k=1

vkI(0, k)− P (0)
0 − αP

(0)
0

a
(0)

x:t|

(
t∑

k=1

vkI(0, k)−
t∑

k=1

vk kp
(0)
x

)
,

or, in its simplified form:

Rα,ϕ =

∑t
k=1 v

kI(0, k)

a
(0)

x:t|

− 1

(π(0)
0 − αP

(0)
0

)
− ϕ. (5.5.16)

The following theorem shows that the condition on Ψ, ϕ and α such that the
probability of a loss for a pure endowment contract priced under the dynamic
equivalence principle is lower compared to its classical counterpart, remains
the same for the term annuity contract.

Theorem 5.3. A term annuity contract with single premium and loading ϕ
priced under the dynamic equivalence principle has a lower loss probability
than its counterpart with loading Ψ and priced using a classical premium
principle, if the yearly share α ∈ [0, 1] satisfies (5.4.16).

Proof. The proof is similar to that of Theorem 5.1.

5.5.3 Policyholders’ perspective

In this subsection, we take the perspective of policyholders and derive con-
ditions on Ψ, ϕ and α such that contracts priced under the dynamic equiv-
alence principle have lower premiums compared to their classical counter-
parts.

The actuarial value at time 0 of the premiums per-policy for the classical
contract is simply PΨ, whereas for the dynamic contract, it is given by:

Π = P
(0)
0 +

t∑
k=1

I(0, k)P
(k)
k vk = P

(0)
0 + α

P
(0)
0

a
(0)

x:t|

(
t∑

k=1

vkI(0, k)− a(0)

x:t|

)
.

(5.5.17)
Again, we find for the term annuity managed with the dynamic equiva-

lence principle that E0 [Π] = P
(0)
0 , i.e. policyholders are not expected to pay

additional premiums.
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We now state the theorem showing that under a condition on Ψ, ϕ and
α, it remains favorable to buy a term annuity under the dynamic setting,
although policyholders may have to pay additional amounts in the future.

Theorem 5.4. A term annuity contract with single premium and loading
ϕ priced under the dynamic equivalence principle is more favorably priced
than its counterpart with loading Ψ and priced using a classical premium
principle if the yearly share α ∈ [0, 1] satisfies the following condition:

α ≤
a

(0)

x:t|∑t
k=1 v

k − a(0)

x:t|

Ψ− ϕ
π

(0)
0 + ϕ

. (5.5.18)

Proof. For a fixed benefit bt, if Π ≤ PΨ, then the dynamic contract is more
favorably priced than the classical one. Since PΨ is a constant, this inequal-
ity is always fulfilled if and only if the upper bound of the support of Π,
that is

P
(0)
0 + α

P
(0)
0

a
(0)

x:t|

(
t∑

k=1

vk − a(0)

x:t|

)
,

is smaller than PΨ, which completes the proof.

5.5.4 Viable risk-sharing scheme for term annuities

Taking into account the constraints of the insurer and policyholders derived
in Theorems 5.3 and 5.4, we can now define a viable risk-sharing scheme for
term annuity contracts.

Definition 5.3 (Viable risk-sharing scheme for term annuities). Consider a
term annuity contract priced under a dynamic equivalence principle (charac-
terized by a loading ϕ and a yearly share α) and a classical pure endowment
(with loading Ψ). Moreover, assume that

b
t∑

k=1

vk ≤ PΨ (5.5.19)

holds in case:

Ψ− ϕ ≤ b

(
t∑

k=1

vk − a(0)

x:t|

)
. (5.5.20)
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Then, compared to the classical contract, the proposed updating mechanism
improves the solvency situation of the insurer and is more favorably priced
for policyholders if the following condition holds:

π
(0)
0

Ψ

Ψ− ϕ
π

(0)
0 + ϕ

≤ α ≤ min

 a
(0)

x:t|∑t
k=1 v

k − a(0)

x:t|

Ψ− ϕ
π

(0)
0 + ϕ

, 1

 . (5.5.21)

The conditions derived in the above definition for term annuities are very
similar to those of the pure endowments, and the discussion on their limiting
cases, as well as on the interpretation of Inequalities (5.5.19) and (5.5.20)
remain valid here. In particular, Inequalities (5.5.19) and (5.5.20) mean that
if the difference between the prices of the classical and dynamic contracts is
lower than the difference between the worst- and best-estimate premiums,
then the loaded premium for the classical contract has to be at least equal
to the worst-estimate premium.

5.6 Concluding remarks

In this chapter, we have addressed systematic longevity risk in long-term
insurance business in a setting where both the assumption of independence
and the assumption of known survival probabilities are violated. Increasing
the size of the portfolio remains efficient for reducing the diversifiable part of
the risk, but the deviation risk cannot be eliminated in this way. It appears
that transferring the risk, or at least part of it, to policyholders is an efficient
solution. However, in order for a risk-sharing scheme to be viable, it should
meet both the insurer’s and the policyholders’ constraints.

Any updating mechanism may suffer from a transparency drawback when
the initial estimates are compared to the portfolio survival index. A solution
coping with this issue consists in comparing the initial predictions with their
corresponding realizations in a reference group (e.g. the general population
of the country) instead of the realizations in the portfolio. This would
enhance the transparency of the updating scheme, but in turn leaves the
insurance company with an extra basis risk, on top of the random variations
in the number of survivors. This approach can be a topic for future research.



Part III

On the interplay between
longevity and mortality
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CHAPTER 6

Pricing insurance contracts with offsetting relationship

6.1 Introduction

Exploiting the offsetting relationship between the values of annuity and life
insurance portfolios provides insurers with two main advantages. The first
one is risk reduction, as insurers active on these two businesses can benefit
from a natural hedging effect to cope with unforeseeable systematic longevity
and mortality evolutions. The existing literature has focused mostly on this
aspect, and in particular on determining the optimal product mix under
different settings which reduces the portfolio’s risk exposure according to
some meaningful risk measure. For instance, Gründl et al. (2006) use the
probability of default as a constraint to determine the optimal weights and
include the fact that the maximum number of policyholders in each business
line may be impacted by the probability of default of the insurance company.
Tsai et al. (2010) base their optimization problem on the conditional value-
at-risk and set an arbitrary Sharp ratio for the loaded premium. Wang et al.
(2010) derive a duration-based optimal mix which immunizes the combined
portfolio against parallel shifts of the force of mortality. We also refer to
Wang et al. (2013), Cox et al. (2013), Gatzert and Wesker (2014), Li and
Haberman (2015), Luciano et al. (2017) and Wong et al. (2017).

The second benefit of the offsetting relationship is competitiveness, and has
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barely been addressed in the literature. Intuitively speaking, a company
selling both annuities and life insurances would experience a loss on the
annuity portfolio (resp. life insurance portfolio) in case people live longer
(resp. shorter) than expected, but this loss would be compensated for on
the life insurance portfolio (resp. annuity portfolio). Therefore, since the
insurer is less exposed to systematic longevity and mortality deviations, the
risk loadings of both business lines may be reduced, which results in more
favorably priced contracts. Empirical research conducted by Cox and Lin
(2007) supports this intuition but there is little analytical research in this
stream.

Bayraktar and Young (2007) show that the prices of pure endowments and
term insurance contracts are lower when their offsetting relation is exploited,
but only under some specific assumptions. However, on the one hand, they
do not provide insights on each business line, and on the other hand, they do
not analyze the challenges of insurers relying on joint pricing. Moreover, the
premium loading in Bayraktar and Young (2007) is exogenous and indepen-
dent of the portfolio composition. As most papers have already shown, the
risk of insurers relying on natural hedging depends on the relative contribu-
tion of each business line to the overall risk. Thus, analyzing the premium
loadings and the benefits of joint pricing has to take into account the impact
of the different factors at play, in particular that of portfolio composition.
Another issue which has not yet been addressed is how switching from a
stand-alone pricing to a joint pricing can impact the demand in each busi-
ness line.

This chapter attempts to fill this gap by shedding light on some challenges
in pricing offsetting businesses together. We present the work in progress
of Hanbali and Villegas (2019), in which we consider a setting where the
insurer charges on top of the pure premium a loading determined from a
target risk reduction at portfolio level. Throughout the analysis, we assume
that the insurer’s risk is equal under the two competing settings. In the
numerical analysis, we work under two mortality models, namely the stan-
dard Lee-Carter model and a two-population gravity extension where future
paths of mortality in the two business lines are not perfectly dependent. As
a first step, we analyze the conditional required loaded premium given the
business composition and benefit ratio. We find that joint pricing does not
necessarily lead to lower premiums, especially on the annuity side, which is
the business line that has the lowest per-policy contribution to the overall
portfolio risk under our assumptions. Moreover, the choice of competitive-
ness requires a careful monitoring of the portfolio. Since the insurer has less
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control over the business composition than over the product structure, we
investigate how the insurer can gain more flexibility over business composi-
tion at the expense of the flexibility over product design. In a second step,
we consider an insurer active on both businesses with a stand-alone pricing
strategy and analyze how switching to a joint pricing strategy impacts the
demand in each business line and the total collected premiums. Using a
model inspired from Gründl et al. (2006), we find that the switch can result
in a decrease of the demand of term annuities, and insurers may experience a
reduction in the total collected premiums. More importantly, we argue that
the decision of the switch has to be carefully analyzed taking into account
several factors, and the reaction of policyholders to a change of tariff as well
as the contribution of each business line to the overall risk are prime ones.

The remainder of the chapter is organized as follows. Section 6.2 contains
the expressions for the stand-alone and conditional joint pricing. Moreover,
we present in the same section the model used to analyze whether it is
favorable to switch from the stand-alone to the joint pricing. Section 6.3
is devoted to the mortality models, namely, the standard Lee-Carter model
and a gravity-Lee-Carter model. The numerical analyses are conducted in
Section 6.4, where we start with the analysis of the conditional joint pricing
and then discuss the consequences of the switch. We conclude in Section 6.5
with a discussion on possible future directions. The Appendix 6.6 contains
additional figures supporting the robustness of the analysis.

6.2 Pricing models

6.2.1 Actuarial quantities

We consider an insurer with a portfolio of term annuity and term insurance
contracts. In order to clear out the paper from cumbersome notations, we
assume that there is a single age group in each business line. The random
present value at contract inception of a term annuity sold at time 0 to a
policyholder aged x at that time is denoted by VA. Similarly, for a term
insurance sold at time 0 to a policyholder aged y which is denoted by VI .
For TA and TI the respective maturities of the two contracts, we write:

VA = BA

TA∑
k=1

IA(0, k)v(0, k), (6.2.1)
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and

VI = BI

TI∑
k=1

II(0, k − 1) (1− II(k − 1, k)) v(0, k), (6.2.2)

where v(0, k) is the discount factor on the time interval (0, k), BA is the
yearly annuity benefit and BI is the insurance benefit which is paid at the
end of the year of death. We assume throughout the paper that there is no
market risk and we take a constant discounting factor v(0, k) = vk for all
k’s. This assumption is used essentially to ease the presentation and can be
relaxed for a broader setting. The random variables IA(j, k) (or equivalently
II(j, k)), for j ≤ k = 0, 1, ..., are the survival indices of the corresponding
business line from time j to time k, such that IA(j, k) (or II(j, k)) is equal
to 1 if all policyholders in that business line at time 0 who survived until
time j are still alive at time k, and it is equal to 0 if they all die.

Each of the contracts introduced above is sold against a single premium.
The premiums are determined from the actuarial equivalence principle and
include an additive loading which allows the insurer to compensate for the
uncertainty on the survival-or-not of the policyholders. The loaded premi-
ums of the contracts in (6.2.1) and (6.2.2) are given by:

PA = πA + ΨA, (6.2.3)

and

PI = πI + ΨI , (6.2.4)

respectively, where π refers to the pure premium derived from the actuarial
equivalence, i.e. the expected present value of the contract, and the Ψ’s are
the risk premiums, or premium loadings, which are here determined from
a risk measure that quantifies the risk associated to the contracts payoff.
More details about premium principles can be found in Kaas et al. (2008),
among others.

6.2.2 Stand-alone pricing

In case the insurer does not rely on natural hedging, the loadings are set
according to the specific risk of each contract. Suppose that the insurer
determines the loaded premiums such that the loss, which is measured by
some appropriate risk measure, for each contract separately is reduced by
a certain factor compared to the case where there is no loading. Thus, the
loaded premiums in case of stand-alone pricing are denoted by P sa

A for the



Pricing insurance contracts with offsetting relationship 107

term annuity and P sa
I for the term insurance, and follow from:

ϕ [VA − P sa
A ] = (1− ζ)ϕ [VA − πA] ,

and

ϕ [VI − P sa
I ] = (1− ζ)ϕ [VI − πI ] .

The factor ζ is the target risk reduction and ϕ is a risk measure assumed to
be positive homogeneous and translation invariant. Additionally, ϕ may be
subadditive, which will help to account explicitly for the offsetting relation-
ship between the two business lines. Thus, the stand-alone loaded premiums
P sa
A and P sa

I are given by:

P sa
A = πA + ζ (ϕ [VA]− πA) , (6.2.5)

and

P sa
I = πI + ζ (ϕ [VI ]− πI) . (6.2.6)

Note that the contribution to the overall risk of one business line does not
impact the premium of the product in the other business line.

6.2.3 Conditional joint pricing

We consider now the case where the insurer exploits the offsetting relation-
ship between the two business lines. We introduce the notation NA and NI

for the number of term annuities and number of term insurances, respec-
tively, underwritten at contract initiation. The proportion of term insurance
contracts is given by n = NI

NA+NI
. An important remark is that determin-

ing the loaded premiums when the contracts are priced jointly requires a
knowledge about the numbers NA and NI . However, these quantities are
unknown when the loaded premium is set, and will eventually be impacted
by the tariff. Therefore, we shall interpret the loaded premiums in this sec-
tion as the conditional required premiums associated to a given realization
of NA and NI .

Let P nh
A and P nh

I be the required loaded premiums for an insurer exploiting
the offsetting relationship between term insurances and term annuities. We
write:

P nh
A = πA + Ψptf(n), (6.2.7)

and

P nh
I = πI + Ψptf(n), (6.2.8)
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where Ψptf(n) is the required risk premium conditionally on n, which is
the same for both business lines. Note that in the notation Ψptf(n), we
emphasize on the dependence on the proportion n. In more general terms,
the portfolio risk premium depends on the contribution of each business line
to the overall risk. This contribution does not depend on the number of
underwritten policies only, but also on the characteristics of the contracts,
e.g. the benefit level and the maturity. However, capturing the contribution
of each business line is not straightforward. Instead, we investigate the effect
of each component separately.

The loaded premiums P nh
A and P nh

I can be determined analogously to the
stand-alone case. Nevertheless, in order to isolate the impact of the offsetting
relationship on the pricing only, we determine P nh

A and P nh
I such that the

overall risk in the joint pricing case and in the stand-alone case are equal:

ϕ
[
NA

(
VA − P nh

A

)
+NI

(
VI − P nh

I

)]
= NAϕ [VA − P sa

A ] +NIϕ [VI − P sa
I ] .

Therefore, the required conditional risk premium is given by:

Ψptf(n) = ϕ [(1− n) (VA − πA) + n (VI − πI)]
− (1− ζ) ((1− n)ϕ [VA − πA] + nϕ [VI − πI ]) ,

(6.2.9)
which can be plugged in (6.2.7) and (6.2.8) to obtain the corresponding
loaded premiums.

It is clear from Expression (6.2.9) that the conditional required risk premium
Ψptf(n) is a function of the proportion n. As mentioned above, other factors
are actually at play. In particular, the portfolio risk premium (and hence
the loaded premiums) is also a function of the ratio b = BI

BA
and is likely

to be impacted by the dependence structure between VA and VI , via the
term ϕ [(1− n)VA + nVI ]. We explore the impact of all these factors in the
numerical section.

6.2.4 Switching from the stand-alone to the joint pricing

Let us now present the setting used to investigate whether it is favorable for
an insurer who is active on both business lines to switch from the stand-alone
pricing to the joint pricing. Consider an insurer who prices the contracts
separately, with premiums P sa

A and demand N sa
A on the term annuity busi-

ness line, and with premiums P sa
I and demand N sa

I on the term insurance

business line. We write w =
Nsa
I

Nsa
I +Nsa

A
. After the tariff has been adjusted to
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account for the offsetting effect, the premiums P sa
A and P sa

I are adjusted to
P nh
A and P nh

I , respectively. Due to this adjustment, the number of policy-
holders is expected to change from N sa

A to Nnh
A on the term annuity side,

and from N sa
I to Nnh

I on the term insurance side. In particular, we assume
that:

Nnh
A = N sa

A

(
1− qA

P nh
A − P sa

A

P sa
A

)
, (6.2.10)

and

Nnh
I = N sa

I

(
1− qI

P nh
I − P sa

I

P sa
I

)
. (6.2.11)

This model implies that if pricing both contracts leads to lower premiums

for one of the business lines (e.g.
Pnh
A −P

sa
A

P sa
A

< 0 for annuity contracts), the

insurer can expect the demand in that business line to increase (e.g. Nnh
A >

N sa
A ). The impact of the change of tariff on the demand is scaled by a

reaction factor q which is assumed to be strictly positive. The reaction
factor implies that a 1% increase (resp. decrease) of the tariff for a product
leads to a q% decrease (resp. increase) of the number of policyholders in the
corresponding business line. This model is inspired by that of Gründl et al.
(2006) which constrains the maximum demand in their optimization problem
from the hedging perspective by a similar linear relationship involving the
ruin probability instead of the change in the price.

We assume again that the loaded premiums in the stand-alone case are
determined from the risk reduction constraints with target risk reduction
factor ζ. Thus, P sa

A and P sa
I are still given by Expressions (6.2.5) and (6.2.6),

respectively. For the joint pricing case, we assume that the insurer’s risk
before and after the switch remains unchanged. This means that Ψptf(w) is
such that:

ϕ
[
Nnh

A

(
VA − Pnh

A

)
+Nnh

I

(
VI − Pnh

I

)]
= N sa

A (ϕ [VA]− P sa
A ) +N sa

I (ϕ [VI ]− P sa
I ) ,

and rearranging leads to:

ΨPtf(w) = 1
Nnh
A +Nnh

I

(
ϕ
[
Nnh
A (VA − πA) +Nnh

I (VI − πI)
]

− (1− ζ) (N sa
A ϕ [VA − πA] +N sa

A ϕ [VI − πI ])
)
.

(6.2.12)

In contrast with the setting described in Subsection 6.2.3, the risk premium
Ψptf(w) which determines the loaded premiums P nh

A and P nh
I is the solution

of a non linear equation. This is because Nnh
A and Nnh

I are functions of
Ψptf(w). Note also the difference between Ψptf(n) from Subsection 6.2.3 and
Ψptf(w) in Expression (6.2.12) above. The former is the conditional required
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portfolio risk premium given the portfolio composition n after the products
have been launched. The latter is the unconditional required portfolio risk
premium associated to the demand proportion w before the switch, where
the number of policyholders is modeled explicitly. In both cases, the risk
under the competing settings is equal.

6.3 Mortality models

This section describes the mortality models which will support the numer-
ical analyses in Section 6.4. The first one is the so-call Lee-Carter model
(henceforth LC model) proposed in Lee and Carter (1992). The second one
consists in two correlated Lee-Carter models in the fashion of Carter and
Lee (1992), and we add a gravity term to ensure that projections for the two
sub-populations do not diverge, as suggested in Dowd et al. (2011). This
second model allows to account for the fact that the dependence between
the forces of mortality in the two subpopulations is not necessarily perfect.
We refer to this adapted version by gravity-Lee-Carter (henceforth gLC).

Under the LC model, the force of mortality µ(x, t) at age x and time t,
which is given by

µ(x, t) = exp (α(x) + β(x)κ(t)) , (6.3.1)

implies that future paths of mortality for all ages are driven by the same
common trend κ(t). This is however not necessarily the case in practice
due to adverse selection and age basis risk; see e.g. Gatzert and Wesker
(2014) and references therein. Moreover, as shown in e.g. Zhu and Bauer
(2014) and Li and Haberman (2015), the model used for the dependence
between policyholders buying annuities and those buying life insurances can
have a substantial impact on the performance of natural hedging. Thus,
we relax the extreme positive dependence assumption by considering the
gravity based gLC model, in which the forces of mortality for policyholders
buying annuities and policyholders buying life insurances are not perfectly
dependent. At time t, let µA(x, t) be the force of mortality for policyholders
buying term annuity contracts and aged x = x1, ..., xA. Moreover, let µI(y, t)
be the force of mortality for policyholders buying term insurance contracts
and aged y = y1, ..., yI . We write:

µA(x, t) = exp (αA(x) + βA(x)κA(t)) , for x = x1, ..., xA, (6.3.2)

and

µI(y, t) = exp (αI(y) + βI(y)κI(t)) , for y = y1, ..., yI . (6.3.3)
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Under the gLC model, each subpopulation has its specific time trend, namely,
κA(t) for the portfolio of term annuities and κI(t) for the portfolio of life
insurances. In addition, the dependence between the processes κA(t) and
κI(t) is modeled using correlated mean-reversion processes, i.e.

κA(t) = mA + κA(t− 1) +
γA
2

(κA(t− 1)− κI(t− 1)) + ξA(t),

and

κI(t) = mI + κI(t− 1) +
γI
2

(κI(t− 1)− κA(t− 1)) + ξI(t),

where the ξ’s are i.i.d. normally distributed over time, with Cov [ξA(t), ξI(t)] =
σAσIρ. Note that for the dynamics of the processes κA and κI , an alterna-
tive which is not investigated here would include jumps in order to account
for mortality shocks.

We use data of the US population for the term insurance business line, and
that of the English and Welsh population for the annuity business line, ob-
tained from the Human Mortality Database (www.mortality.org), over
the period 1933-2014. The parameters of µ(x, t) are estimated by combin-
ing data for ages 30-65 of the US population and data for ages 66-90 of the
English and Welsh population. For the gLC model, the forces of mortality
µA(x, t) and µI(y, t) are estimated using ages 60-90 and 30-65, respectively,
from the relevant country. The parameters α and β as well as the pat-
terns of the processes κ from (6.3.1), (6.3.2) and (6.3.3) are obtained using
maximum-likelihood estimation with Poisson distribution of the number of
deaths, and are subject to the standard identifiability constraints; see e.g.
Pitacco et al. (2009) for more details on estimating the Lee-Carter model.

Figure 6.3.1 displays the estimates for these parameters for µ, µA and µI .
The estimates of α, αA and αI are very close to each other. However, there
are some differences between the estimates of β(x) with those of βA(x), for
x = 60, ..., 90, and between the estimates of β(y) with those of βI(y), for
y = 30, ..., 65. This is also the case for the time trends κ, κA and κI .

Finally, the estimates of the drift and volatility parameters of the LC model
are −0.823 and 1.316, respectively. The parameters of the gravity model are
reported in Table 6.1.

6.4 Numerical analyses

The results reported in this section are obtained using Monte-Carlo simu-
lations from the distribution of the time trends determined in Section 6.3.

www.mortality.org
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Figure 6.3.1: Estimated parameters of µ, µA and µI .

Term annuity portfolio Term insurance portfolio

mA -0.403
(0.131)

mI -0.504
(0.078)

σA 1.179
(0.093)

σI 0.704
(0.055)

γA -0.161
(0.005)

γI -0.017
(0.003)

ρ 0.280
(0.107)

Table 6.1: Estimated parameters of the gravity model with standard errors in brackets.

We also apply the jump-off correction described in e.g. Pitacco et al. (2009)
and references therein, in order to avoid a jump between the last observed
mortality rates and the first simulated ones.

We consider 30-year term annuities sold to policyholders aged 60 and 35-
year term insurances sold to policyholders aged 30. The risk measure ϕ is
the conditional value-at-risk at a level ε, which is defined as follows:

CVaR [X; ε] = E
[
X|X ≥ F−1

X (ε)
]
,

where F−1
X is the inverse cumulative distribution function of X; see e.g.
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Denuit et al. (2005) and Kaas et al. (2008) for further details and properties
of CVaR. We set ε to 0.95. The interest rate is assumed to be equal to 1%.

Under this setting, we find that the risk of the individual contracts per unit of
benefit is given by ϕ[VA]−πA ≈ 0.695×BA and ϕ[VI ]−πI ≈ 0.015×BI under
the LC model, and by ϕ[VA]−πA ≈ 0.782×BA and ϕ[VI ]−πI ≈ 0.013×BI
under the gLC model. Thus, we have that ϕ[VI ] − πI > ϕ[VA] − πA for
b = BI

BA
> 46 under the LC model and for b = BI

BA
> 60 under the gLC

model. This means that for benefit ratios b greater than 46 under the LC
model or greater than 60 under the gLC model, the term insurance business
line has a greater per-policy contribution in the overall risk. In what follows,
we consider values of b which are sufficiently high (e.g. b = 100), such that
the term insurance contract has a higher per-policy risk. For low values of
b, the conclusions must be adjusted accordingly.

6.4.1 Analysis of the conditional joint pricing

We investigate the impact of the portfolio composition on the loaded pre-
mium per unit of benefit by varying n. We consider three values of the risk
reduction target ζ, namely, 0%, 50% and 100%. The results are displayed
in Figure 6.4.2, where we set b = 100. This figure shows clearly that the
required loaded premiums under natural hedging and their differences with
their stand-alone counterparts depend on n, and also on the dependence
between mortality rates of the two subpopulations. Recall that the risk
premiums depend also on the benefit ratio b, whose effect will be studied
later. Note that we performed the analysis using other values of the inter-
est rate and other functional forms for the risk measure ϕ. We report in
the appendix of this chapter results obtained from the value-at-risk at the
confidence level 0.99, and also those obtained with an interest rate of 5%.

Figure 6.4.2 reveals several challenges for insurers who price the contracts
jointly. Along the line of previous research which tackles the issue of nat-
ural hedging from the portfolio optimization perspective, we observe here
that there is also a proportion of underwritten businesses which minimizes
the required value of the loaded premium. This implies the existence of a
competitiveness region for the insurer. In particular, in order to be more
competitive compared to insurers who do not rely on joint pricing, the ac-
tual premium has to be set between the stand-alone loaded premium (i.e. the
horizontal line) and the minimum required loaded premium from the joint
pricing. This competitiveness region is clearly influenced by the mortality
model, but it is also affected by the value of the target risk reduction factor
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Figure 6.4.2: Loaded premium per unit of benefit in function of n with joint pricing
and stand-alone pricing (flat lines) for term annuities (right column) and term insurances
(left column), where b = 100.

ζ.

Figure 6.4.2 also highlights the fact that pricing both contracts jointly does
not necessarily lead to lower premiums for both business lines. For the term
insurance contracts which are displayed on the right column of the figure,
we observe that the loaded premiums are always lower when the offsetting
relationship is exploited. This implies that joint pricing may provide the
insurer with a competitive advantage on the business line which has the
highest per-policy contribution to the overall risk. However, for term annuity
contracts which are displayed on the left column, this is not always the case.
In particular, for ζ > 0 (i.e. when the stand-alone contracts are not priced at
the pure premium), there is a critical threshold in the proportion n beyond
which the conditional required loaded premiums for the annuity portfolio are
higher than the loaded premiums set in a stand-alone way. One implication
of the existence of such critical thresholds is that if the insurer is expecting
the number of underwritten term insurances to be too high compared to
that of term annuities (at least under the present assumptions), then the
joint pricing is not necessarily desirable.
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We illustrate the importance of this finding by focusing on the gLC model
with ζ = 50%. Suppose that the tariff of the insurer on the term annuity
business line is 20.625 per unit of benefit. In case the tariff for the term
insurance business line is consistent with that of the term annuity business
line, then we have that the tariff per unit of death benefit is 0.084. Compared
to insurers who do not rely on joint pricing, the joint pricer has a competitive
advantage of 1% on the term annuity side and of 5.3% on the term insurance
business line. Thus, since the competitive advantage is higher on the term
insurance portfolio, we could expect higher proportion of policyholders on
this business line, and eventually, this proportion may turn out to be beyond
the critical threshold.

Another challenge in the joint pricing is revealed from the convex shape
of the loaded premiums in Figure 6.4.2: having set the loaded premium
upfront in a competitive way (i.e. as low as possible on both business lines),
the insurer has to limit the proportion n between the two businesses in order
for that premium to be sufficient. This means that insurers relying on joint
pricing to be more competitive have the burden of portfolio monitoring.

To illustrate this challenge, consider again the previous example under the
gLC model with ζ = 50% and tariff equal to 20.625 per unit of yearly
survival benefits, and to 0.084 per unit of death benefit. From Figure
6.4.2, these loaded premiums correspond to the proportions n = 11.11%
and n = 70.77%. This insurer has a competitive advantage on both busi-
ness lines over insurers who determine the loaded premium individually for
each contract, while having the same overall risk. Nevertheless, Figure 6.4.2
shows that this insurer has to maintain the proportion n in the interval
[11.11%, 70.77%] in order for the pre-specified loaded premium to be suffi-
cient for both businesses. In case the proportion n remains in this interval,
the pre-specified loaded premiums would be higher than the required ones
and the insurer can also benefit from the offsetting effect. It is also worth
to mention that setting the tariff equal to the lower bound of the competi-
tiveness region (as this may arise from an analogy with previous studies on
optimal natural hedging strategies) is in fact the most risky choice for the
insurer, since there is only a single proportion n for which the conditional
loaded premium matches the actual one.

The question which arises now is how the above results can be used to derive
a reasonable strategy such that joint pricing becomes desirable in terms
of competitiveness and also in terms of flexibility in portfolio monitoring.
Since the insurer has (to some extent) more control over the design of the
contract than over the allocation of the businesses, one solution that partially
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enhances the joint pricing consists in setting a constraint on the ratio b
between the benefits of the two business lines such that the interval for the
ratio n is wide enough to allow for some flexibility. The reason behind is
that the ratio b controls the per-policy contribution of each business line,
and hence, this strategy can be viewed as a risk adjustment. An illustration
is provided in Figure 6.4.3 which is obtained using the gLC model. For
both values of ζ, we observe that low ratios b push the critical threshold
of the proportion n closer to 1. This effect can be exploited to meet the
characteristics of the insurer’s portfolio. For instance, suppose that the
insurer sets the tariff of the term annuity equal to 20.625 for ζ = 50%. This
implies that whereas the insurer has to maintain the ratio n in the interval
[11.11%, 70.77%] for b = 100, this interval is given by [6.20%, 50.05%] for
b = 200 and by [18.31%, 88.99%] for b = 50. Note also that the interval is
wider for low values of b.

Figure 6.4.3: Loaded premium per unit of benefit using the gLC model in function of
n for 3 different values of the ratio b.

6.4.2 Analysis of the switch

We pursue the analysis under the gLC model. We study the cases with
b = 100 and b = 200. We consider two values of the target risk reduction
factor ζ, namely, a low target reduction of 25% and a high target reduction
of 100%. For the reaction factors qA and qI , we consider four different
cases. For the first case, policyholders in both business lines have the same
reaction factor of 0.5, i.e. qA = qI = 0.5. For the second case, we assume that
policyholders buying term insurances have a reaction factor qI = 2 whereas
policyholders buying term annuities have a reaction factor qA = 0.5. For the
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third case, we consider the opposite situation with qA = 2 and qI = 0.5, and
for the fourth case, we assume equally high reaction factors with qA = qI = 2.

Figure 6.4.4: Percentage change in the demand of term insurance policies.

Concerning term insurance contracts, we observe in Figure 6.4.4 that the
demand in this business line increases in all cases after the switch. The
magnitude of the increase is lower for high target risk reduction ζ and for
high reaction factor of the corresponding business line qI . Naturally, the
demand increases more when the reaction factor of term insurance buyers is
high. We also observe that for low benefit ratio and low target risk reduction
(i.e. for b = 100 and ζ = 25%), the demand of term insurances is impacted
by the reaction factor of term annuity buyers.

The results for term annuity contracts are displayed in Figure 6.4.5. Unlike
on the term insurance business line, we observe here that the insurer might
experience a decrease of the demand for term annuities in a case of a switch.
In particular, the consequence of the critical ratio is that the demand of term
annuities can decrease for insurers with high proportion of term insurance
contracts in their portfolio. The level of the increase or decrease in the
demand is also determined by ζ and the ratio b. Moreover, the reaction factor
of the corresponding business line qA plays a role. Here, the reaction of term
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Figure 6.4.5: Percentage change in the demand of term annuity policies.

insurance buyers barely impacts the change in the demand for annuities.

Despite the decrease in the demand of annuity contracts, the insurer may
be more concerned about changes in the total collected premiums. Figure
6.4.6 displays the change in the total collected premiums before and after
the switch. Recall that the insurer’s risk remains unchanged. We observe on
Figure 6.4.6 that when the reaction factor is the same on both business lines
(i.e. qA = qI), the total collected premiums will either always increase or
always decrease, depending on the values of qA and qI . For instance, in case
of low reaction factors on both business lines, then the tariffs are lower but
policyholders do not react enough to offset the loss due to the tariff decrease.
As a consequence, the total collected premiums decreases. Similarly, for
equally high reaction factors, the tariffs are lower and policyholders react
enough to offset the loss due to the tariff decrease. As a consequence, the
total collected premiums increases.

For qA 6= qI , the effect of the switch is different. We observe that when the
reaction factor of policyholders from the risky business line is higher (i.e. for
qA = 0.5 and qI = 2), then the switch will often lead to an increase of the
total collected premiums, and the decrease corresponding to low proportions
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Figure 6.4.6: Percentage change in the total collected premiums.

w is marginally low. In the opposite situation where qA = 2 and qI = 0.5,
the total collected premiums can increase only for high proportion of term
annuities, and the decrease in case of high proportion of term insurance is
substantial.

6.5 Concluding remarks

In this chapter, we investigate some challenges related to the joint pricing of
term annuities and term insurances. We find that relying on the offsetting
relationship between these contracts in the pricing is not always desirable.
Moreover, we also find that switching from the stand-alone pricing to the
joint pricing is not recommended in some cases.

A general conclusion of this chapter is that the benefit of exploiting the
offsetting relationship between two business lines depends on several factors,
such as the composition of the portfolio, the benefit ratio, the target risk
reduction of the insurer and the dependence between the mortality patterns
in the two subpopulations. Therefore, the decision of joint pricing has to
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be carefully analyzed in practice to account for the specific features of the
contracts at hand and using different mortality models.

This work allows to answer some ambiguities related to joint pricing and
paves the path for potential future topics of research. Some directions of re-
search would consist in following the literature on optimal product mix from
the hedging perspective by including other risk management tools and in-
corporating the uncertainty on the assets and interest rate risk (e.g. Gatzert
and Wesker (2012), Gatzert and Wesker (2014) and Luciano et al. (2017)).
Moreover, the analysis conducted in this chapter can be combined with the
updating mechanism described in Chapter 5. More specifically, an insight-
ful study would consist in investigating the share of systematic longevity
and mortality risks when the dynamic equivalence principle is applied for
offsetting businesses jointly.

6.6 Appendix – Sensitivity tests

Loaded premium per unit of benefit in function of n with joint pricing and stand-alone
pricing (flat lines) for term annuities (right column) and term insurances (left column),
where b = 100, using the value-at-risk at the confidence level 0.99 and interest rate of 1%.
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Loaded premium per unit of benefit in function of n with joint pricing and stand-alone
pricing (flat lines) for term annuities (right column) and term insurances (left column),
where b = 100, using the conditional value-at-risk at the confidence level 0.95 and interest
rate of 5%.
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Conclusions

The classical approach to manage insurance risk consists in selling a suffi-
ciently large number of policies. This strategy allows the insurer to reduce
the variations of the claim payments per-policy around the corresponding
theoretical mean. Nevertheless, the insurer remains exposed to a system-
atic risk which cannot be completely eliminated by increasing the portfolio
size. The presence of this risk is essentially due to the fact that the two
components of the claim payment, i.e. the claim amount and its probability
of occurrence, may be time-varying and subject to uncertainty. Managing
this risk is all the more important in the context of long-term insurance
business, where the premium estimate at policy issue has to account for the
unpredictable changes in the underlying risk factors.

In this thesis, we have addressed systematic risk in long-term insurance
business which stems from the uncertainty on the claim amount (medical
inflation risk) and on the probability of the benefit payment (longevity and
mortality risks).

Part I was devoted to the management of medical inflation risk in Belgian
private health insurance contracts. The Belgian legislator introduced in 2007
a mechanism allowing insurers to transfer medical inflation risk back to poli-
cyholders via premium adjustments. Our contribution is threefold. First, we
focus on the medical index, which captures the evolution of claim amounts
over time. We highlight some deficiencies in its current construction. We
also propose an alternative method which accounts for the heterogeneity in
the structure of products sold in the Belgian market, while satisfying to some
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extent the transparency requirement of consumers’ representatives. Second,
we focus on the adjustment mechanism, whose goal is to include in the con-
tract elements the information on medical inflation over time. We derive
actuarially fair mechanisms to assess the adjustment rule prescribed by the
Belgian regulator in the Royal Decree of 18 March 2016. Our analysis shows
that the Belgian rule often leads to conservative premium adjustments from
the viewpoint of the insurer. We also find that this rule may be insufficient
under some scenarios of medical inflation and interest rate. Third, we dis-
cuss some remaining challenges in the Belgian system with a focus on the
transferability of the reserve and on age discrimination. We also provide rec-
ommendations to enhance the Belgian system and ensure more protection
for policyholders, taking into account the solvency constraint of insurers.

In Part II, we address the management of longevity risk in long-term insur-
ance business. We further analyze the solution consisting in transferring the
systematic risk back to policyholders. We extend the existing literature by
considering a situation where only part of the risk is transferred, and hence,
the risk-sharing mechanism is not limited to the no-transfer/full-transfer bi-
narism. We propose a dynamic equivalence principle, and derive updating
rules for the contract elements. We compare contracts managed with the
proposed risk-sharing scheme and their classical counterparts. Our setting
allows us to derive conditions for a viable risk-sharing scheme, such that
both the insurer and policyholders are better off by sharing the risk over
time.

Finally, Part III considers the interplay between longevity and mortality
risks, and we compare the case where the offsetting relationship between
these two risks is exploited in the pricing (i.e. joint pricing), with the case
where it is not exploited (i.e. stand-alone pricing). We highlight several
challenges for insurer’s relying on joint pricing. In particular, we show that
for the less risky business line, the required loaded premium in case of joint
pricing can be higher than its counterpart in case of stand-alone pricing.
We also find that the choice of competitiveness comes with the burden of
portfolio monitoring. Moreover, for the same level of risk, our analysis
suggests that switching from the stand-alone to the joint pricing may lead
to a decrease of the total collected premiums.

The literature on the management of long-term insurance risks is broad,
and this thesis focuses on some parts only. Future research in this direction
are thus numerous. As an example, a new life market is emerging which
would allow institutions bearing long-term risks to transfer them to financial
markets in the form of longevity- or mortality-linked securities (Blake et al.,
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2013). These new financial instruments can be rather appealing to investors,
since they provide diversification opportunities due to the fact that longevity
and mortality risks are likely to be independent to other traditional financial
risks. Of course, they also raise a new set of challenges. One of them
is the problem of pricing, since the market price of long-term risks is not
straightforward to determine for such emerging markets. As a consequence,
the market risk premiums of these securities (sometimes called bonds) are
set using expert judgment, and may have a strong impact on the success
of the launch. Another challenge is basis risk which comes from the fact
the mortality of the hedging instrument can be different from that of the
portfolio. Some answers have been proposed to manage this risk (see e.g.
(Coughlan et al., 2011)), but there are still other directions to explore.
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André-Dumont, J.-C. and Devoet, C. (2012), L’Assurance Maladie Privée,
Anthémis, Droit des Assurances.

Assuralia, B. (2018), ‘Les assurances hospitalisation et soins ambulatoires,
14.03.2018’.

Bachler, R., Duncan, I. and Juster, I. (2006), ‘A comparative analysis of
chronic and non-chronic insured commercial member cost trends’, North
American Actuarial Journal 10, 76–89.

Bayraktar, E. and Young, V. (2007), ‘Hedging life insurance with pure en-
dowments’, Insurance: Mathematics and Economics 40, 435–444.

Blake, D., Cairns, A., Coughlan, G., Dowd, K. and MacMinn, R. (2013),
‘The new life market’, Journal of Risk and Insurance 80, 501–557.

Blake, D., El Karoui, N., Loisel, S. and MacMinn, R. (2017), ‘Longevity risk
and capital markets: The 2015-16 update’, Insurance: Mathematics and
Economics .

Boon, L.-N., Briere, M. and Werker, B. (2018), ‘Longevity risk: To bear or
to insure?’, ht tp s: // pa pe rs .s sr n. co m/ so l3 /p ap er s. cf m? a bs
tr ac ti d= 29 26 90 2 .

128

https://papers.ssrn.com/sol3/papers.cfm?abstractid=2926902
https://papers.ssrn.com/sol3/papers.cfm?abstractid=2926902


BIBLIOGRAPHY 129

Calcoen, P. and van de Ven, W. P. (2017), ‘Volontary additional health
insurance in the European Union: Free market of regulation?’, European
Journal of Health Law 24, 591–613.

Carter, L. R. and Lee, R. D. (1992), ‘Modeling and forecasting US sex
differentials in mortality’, International Journal of Forecasting 8, 393–
411.

Chen, A., Hieber, P. and Klein, J. (2019), ‘Tonuity: A novel individual-
oriented retirement plan’, ASTIN Bulletin 49, 5–30.

Coughlan, G., Khalaf-Allah, M., Ye, Y., Kumar, S., Cairns, A., Blake, D.
and Dowd, K. (2011), ‘Longevity hedging 101: A framework for longevity
basis risk analysis and hedge effectiveness’, North American Actuarial
Journal 15, 150–176.

Cox, S. and Lin, Y. (2007), ‘Natural hedging of life and annuity mortality
risks’, North American Actuarial Journal 11, 1–15.

Cox, S., Lin, Y., Tian, R. and Zuluaga, L. (2013), ‘Mortality portfolio man-
agement’, Journal of Risk and Insurance 80, 853–890.

Dahl, M. (2004), ‘Stochastic mortality in life insurance: market reserves
and mortality-linked insurance contracts’, Insurance: Mathematics and
Economics 35, 113–136.

Denuit, M., Dhaene, J., Goovaerts, M. and Kaas, R. (2005), Actuarial The-
ory for Dependent Risks: Measures, Orders and Models, Wiley.

Denuit, M., Dhaene, J., Hanbali, H., Lucas, N. and Trufin, J. (2017), ‘Up-
dating mechanism for lifelong insurance contracts subject to medical in-
flation’, European Actuarial Journal 7, 133–163.

Denuit, M., Haberman, S. and Renshaw, A. (2011), ‘Longevity-indexed life
annuities’, North American Actuarial Journal 15, 97–111.
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C., Senn, A. and Vinck, I. (2008), ‘Construction d’un index médical pour
les contrats privées d’assurance maladie, KCE report 96B’, Health Services
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Dhaene, J., Godecharle, E., Antonio, K., Denuit, M. and Hanbali, H. (2017),
‘Lifelong health insurance covers with surrender values: updating mecha-
nisms in the presence of medical inflation’, ASTIN Bulletin 47, 803–836.



130

Dhaene, J. and Hanbali, H. (2019), ‘Measuring medical inflation for health
insurance portfolios in Belgium’, European Actuarial Journal, forthcom-
ing.

Dickson, D., Hardy, M. and Waters, H. (2013), Actuarial Mathematics for
Life Contingent Risks, Cambridge University Press.

Dowd, K., Cairns, A., Blake, D., Coughlan, G. and Khalaf-Allah, M. (2011),
‘A gravity model of mortality rates for two related populations’, North
American Actuarial Journal 15, 334–356.

Feng, R. and Shimizu, Y. (2016), ‘Applications of central limit theorems
for equity-linked insurance’, Insurance: Mathematics and Economics
69, 138–148.

Forman, J. B. and Sabin, M. J. (2017), ‘Survivor funds’, Pace Law Review
37, 204–291.

Gatzert, N. and Wesker, H. (2012), ‘The impact of natural hedging on a life
insurer’s risk situation’, Journal of Risk Finance 13, 396–423.

Gatzert, N. and Wesker, H. (2014), ‘Mortality risk and its effect on shortfall
and risk management in life insurance’, Journal of Risk and Insurance
81, 57–90.

Gründl, H., Post, T. and Schulze, N. R. (2006), ‘To hedge or not to hedge:
managing demographic risk in life insurance companies’, Journal of Risk
and Insurance 73, 19–41.

Hanbali, H., Claassens, H., Denuit, M., Dhaene, J. and Trufin, J. (2019a),
‘Once covered, forever covered: The actuarial challenges of the Belgian
private health insurance system’, Health Policy, forthcoming.

Hanbali, H., Denuit, M., Dhaene, J. and Trufin, J. (2019b), ‘A dynamic
equivalence principle for systematic longevity risk management’, Insur-
ance: Mathematics and Economics 86, 158–167.

Hanbali, H. and Villegas, A. (2019), ‘Pricing insurance contracts with off-
setting relationship’, work in progress.

Handel, B. (2013), ‘Adverse selection and inertia in health insurance mar-
kets: when nudging hurts’, American Economic Review 103, 2643–2682.

Health ProspectING, R. (2018), ‘La gestion efficiente des séjour hospitaliers,
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