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1. Introduction 

The new risk based solvency regulations require 
(re)insurance companies to model their liabilities to 
compute the risk-based capital (RBC) needed. This concept 
relies heavily on the portfolio model that is at the heart 
of this computation. Particularly, it depends on both the 
distribution functions (dfs) and the dependence functions 
that are applied. Besides the debate among regulators on the 
type of risk measures that should be applied for estimating 
the RBC, there are few studies that systematically explore the 
impact of those assumptions on the results of the model. 

The aim of this paper is precisely to explore various models 
and show how they influence an important concept for the 
(re)insurance industry: the diversification gain. Considering 
a simple portfolio composed of two risks, namely X and Y, 
we define the diversification gain according to Bürgi et al. 
(2009). This definition requires the choice of a risk measure 
for computing the risk based capital of a single risk and of the 
portfolio, see SCOR (2008). In our analysis we deal with two 
well known measures of risk, i.e. the value at risk (VaR) and 
the expected shortfall (ES), in agreement with Embrechts 
et al. (2005). To be consistent with the frameworks of both 
Solvency II and of the Swiss Solvency Test, we consider those 
risk measures at the 99.5% and 99% threshold respectively. 

The study is performed assuming identical marginal dfs for 
X and Y, in order to focus on dependence and tail 
assumptions. Two typical distributions have been chosen: 
the lognormal df, which is very popular for modelling 
insurance risks, and the Fréchet df, to explore extreme value 
distributions (see Embrechts et al. (1997)). 

For computing the joint df, we use copulas to model 
dependencies (we refer to Nelsen (2006), Nešlehová (2008) 
and Frees and Valdez (1998), among others). In particular, 
two families of copulas are taken into account: Archimedean 
and elliptical. Within the former family the Gaussian and 
the Student’s t copula are considered, while from the latter 
family, besides the Gumbel copula, we choose also a flipped 
Clayton copula. The aim of this choice is to check the 
behavior of the portfolio in cases characterized by strong 
upper tail dependencies. 

Email addresses:  davide.canestraro@gmail.com,  
mdacorogna@scor.com. 

In the first stage of the work, Monte Carlo methods are used 
to obtain estimations of expected value, VaR, ES and RBC. 
With those values we can estimate the diversification gain 
obtained by combining both risks. To ensure consistent 
comparison, different copulas are parameterized using the 
same value for the Kendall’s tau rank correlation coefficient. 
This allows us to impute differences due to the structure of 
the dependence with the strength remains constant. 

In the second stage, we consider the required capital, in 
terms of RBC, according to different allocation principles 
related to the choice of the risk measure (see Albrecht (2004) 
and Artzner et al. (1999)). The Euler principle and the haircut 
allocation principle are compared. We analyze both the 
change of the dependence strength, indicated by the value 
of Kendall’s tau, and the change in the joint distribution, 
described by the choice of a specific copula.

The rest of this paper is organised as follows. Section 2 
provides the definitions of risk measures. An overview on 
copulas and a description of the main families is given in 
Section 3. Section 4 introduce rank correlations and tail 
dependence coefficients. In Section 5, we focus on the 
evaluation of the RBC and of the diversification gain. The 
impact of dependence on capital allocation is discussed in 
Section 6. Section 7 gives an outlook on future research and 
we conclude in Section 8. 



3

SCOR Papers

2. Risk measures 

3. Copulas 
Copulas were originally introduced as mathematical 
functions and then recognized to be a useful tool to model 
dependence. The concept of copula can be traced back at 
least to the work of Wassily Hoeffding and Maurice Fréchet, 
thought the term itself was coined by Sklar. The term derive 
from the latin word “copula”, contraction of *co-apula, 
meaning connection, bond, tie (co means together and 
apere means to join). An interesting review of the develop 
of copula theory and its applications is found in Genest et 
al. (2009). A must-reads literature on copulas is given in 
Embrechts (2009). 

Definition 3.1 (bivariate copula) A right-continuous function 
C : [0,1]2 → [0,1] is a copula if and only if: 
(i) C (u,0) = C (0, v) = 0 for all u, v ∈ [0,1]; 
(ii) C (u,1) = u and C (1, v) = v for all u, v ∈ [0,1]; 
(iii) C is quasi-monotone, i.e., for any 0 ≤ u1 ≤ u2 ≤ 1 
and any 0 ≤ v1 ≤ v2 ≤ 1, 

C (u2, v2) – C (u1, v2) – C (u2, v1) + C (u1, v1) ≥ 0.  (3.1) 

In other words, a bivariate copula is a cumulative 
distribution function (cdf) on [0,1]2 whose margins are 
standard uniform. 

Definition 2.1 (VaR) For a rv X with E (|X|) < ∞ and df FX, 
the VaR at confidence level α ∈ (0, 1) is defined as: 

VaRα(X) = inf {x ∈ R : P (X > x) ≤ 1 – α} = inf {x ∈ R : FX (x) ≥ α}.  
 (2.1) 

VaR is not a coherent measure of risk, according to the 
characterization given in Artzner et al. (1999). In their work, 
the authors proposed four axioms, derived using economic 
reasoning, that a measure of risk should satisfy to be defined 
coherent. 

Definition 2.2 (coherence) A risk measure ϱ: ℳ → R on a 
convex cone ℳ, is called coherent if it satisfy the following 
four axioms: 

•  Translation invariance. For all X ∈ ℳ and every x ∈ R 
we have ϱ(X + x) = ϱ(X) + x. 

•  Subadditivity. For all X, Y ∈ ℳ we have 
ϱ(X + Y) ≤ ϱ(X) + ϱ(Y). 

•  Positive homogeneity. For all X ∈ ℳ and every λ > 0 
we have ϱ(λX) = λϱ(X). 

•  Monotonicity. For X, Y ∈ ℳ s.t. X ≤ Y a.s. we have 
ϱ(X) ≤ ϱ(Y). 

In the same article is shown that VaR does not satisfy 
subadditivity, hence VaR is not coherent. 

About risk measures, we remind that VaR is currently at the 
base of the Solvency II European project as the methodology 
for evaluating the risk, while the level selected for the 
calculation is α  =  99.5%. 

A measure of risk which is coherent according to Definition 
2.2 is the expected shortfall (ES), also known as tail VaR 
(TVaR), worst conditional expectation (WCE) or conditional 
VaR (CVaR)1. 

Definition 2.3 (ES) For a rv X with E (|X|) < ∞ and df FX, the 
expected shortfall at confidence level α ∈ (0,1) is defined as: 

ESα(X ) =
1

1−α

1

α
qu(FX )du,

ESα(X ) =
1

1−α

1

α
VaRu(X )du.

  (2.2)

where qu (FX) is the quantile function of FX. 

To better understand the link between VaR and ES we can 
write the latter simply as: 

ESα(X ) =
1

1−α

1

α
qu(FX )du,

ESα(X ) =
1

1−α

1

α
VaRu(X )du.  (2.3)

Hence the expected shortfall, contrary to VaR, takes (the 
shape of) the tail into account. ES is always greater or equal 
to VaR for a chosen confidence level α, i.e. ESα(X) ≥ VaRα(X). 

It is possible to argue that for continuous distribution a more 
intuitive expression can be derived which shows that ES 
can be interpreted as the expected value given that VaR is 
exceeded. 

Proposition 2.4 For a rv X with E (|X|) < ∞ and continuous 
df FX, the expected shortfall at confidence level α ∈ (0,1) results 
to be: 

ESα(X) = E [X | X ≥ VaRα(X)]. (2.4) 

We will use the notation ϱα(X) to indicate the value of a 
generic risk measure, at confidence level α, for the risk X. 
Remarks A.2 and B.2 in the appendix provide analytical 
expressions for both VaR and ES in case X is lognormal or 
Fréchet distributed, respectively. 

(1) In the literature some authors give different definitions for ES, TVaR, 
WCE and CVaR, most of which lead to the same result when applied to 
continuous (loss) distribution; we refer to Acerbi and Tasche (2002) for 
more on this topic. The nomenclature we adopt is in agreement with 
Embrechts et al. (2005). 
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In this paper we deal with bivariate rvs. However, for most of 
the concepts used, the extension in higher dimension (d > 2) 
is straight forward. 

The usefulness of copulas for describing dependencies is 
revealed by the fundamental theorem of Sklar. 

Theorem 3.2 (Sklar) Let H be a bivariate cdf with margins F 
and G. Then there always exist at least one copula C such that 
for all x, y ∈ [-∞, ∞]: 

H (x, y) = C (F (X),G(Y)). (3.2) 

Furthermore, C is unique on RanF × RanG where RanF 
and RanG denote the ranges of the marginal df F and G. 
Conversely, if C is a copula and F, G are univariate dfs, then 
the function H defined as above is a joint distribution function 
with margins F,G. Proof. See Sklar (1959). 

Hence, in the light of Sklar’s result, copulas allow to separate 
the dependence structure from the behavior of the univariate 
margins. Theorem 3.3 shows another attractive feature of 
the copula representation inviting to interpret a copula, 
associated with a random vector, as being its dependence 
structure. 

Theorem 3.3 (invariance) Let (X, Y) be a random vector 
with continuous margins and copula C. If T1, T2 are strictly 
increasing functions, then (T1(X), T2(Y)) also has copula C. 
Proof. See Embrechts et al. (2003), p. 6. 

One of the basic copulas is the independence copula Π, 
given by Π(u, v) = uv. Two others fundamental dependence 
concepts play an important role in copula theory. 

Definition 3.4 (countermonotonicity) X, Y are 
countermonotonic if and only if exist a rv Z and functions fX 
increasing and fY decreasing (or viceversa) such that 
(X, Y) =

d
   (fX (Z), fY (Z)). 

Definition 3.5 (comonotonicity) X, Y are comonotonic if 
and only if exist a rv Z and increasing functions fX, fY such 
that (X, Y) =

d
   (fX (Z), fY (Z)). 

Theorem 3.6 (Fréchet-Hoeffding bounds) 
Let C be a bivariate copula, then 

W (u, v) ≤ C (u, v) ≤ ℳ (u, v),          u, v ∈ [0, 1],  (3.3) 

where W (u, v) = max(u + v - 1,0) and ℳ (u, v) = min(u, v). 
Proof. See Embrechts et al. (2005), p. 189. 

W (u, v) and ℳ (u, v) are labeled the countermonotonicity 
and the comonotonicity copula, respectively. 

Definition 3.7 (comprehensive) A family of copulas that 
includes ℳ, Π and W is called comprehensive. 

Definition 3.8 (copula density) If rvs X, Y have continuous 
marginal df F and G with probability density function (pdf) fX 

and gY, respectively, then the joint pdf of H can be written as: 

hH (x, y) = fX (x)gY (y)c(F (x),G (y)),       (x, y) ∈ R2, (3.4) 

where the copula density c is given by: 

 (3.5)

The second mixed derivative of a copula C, i.e. its density, 
can be interpreted as a local dependence measure. Getting 
back to equation 3.4, we linger on the split of the pdf 
between the pdf corresponding to independence and the 
actual dependence structure, i.e.: 

hH (x, y) = fX (x) gY (y) c (F (x), G (y)). 

 

Consistently, if we consider the independence copula Π we 
got c = 1 and thus the joint pdf factors into the product of the 
marginals fX and gY solely, as requested by the definition of 
independent rvs. 

We observe here that copulas do not always have 
joint densities; examples of copulas that are not 
absolutely continuous are the comonotonicity and the 
countermonotonicity copulas. We have substantially two 
types of copulas according to the way we can obtain them: 

•   Implicit copulas. We can extract an implicit copula from 
any distribution with continuous marginal dfs; examples of 
this type are the elliptical copulas, i. e. the copulas derived 
from elliptically contoured (or elliptical) distributions.

•   Explicit copulas. There are many copulas which we can 
write down in a simple closed form; the Archimedean 
family is an example of this type. 

Among elliptical copulas, in this paper we deal with the 
Gauss copula and the (Student’s) t copula, extracted from the 
multivariate normal distribution and from the multivariate t 
distribution, respectively. 
•  Gauss. 

 (3.6)

where Φ is the cdf of a standard univariate normal 
distribution and Φρ denotes the cdf of a bivariate normal 
with standard margins and correlation coefficient ρ. 
•  Student’s t. 

 (3.7)

where tν is the cdf of a standard univariate t distribution 
with ν degrees of freedom and tν,ρ denotes the cdf of a 
bivariate Student’s t with standard tν margins and dispersion 
coefficient ρ. 



5

SCOR Papers

The Student’s t copula allows for joint heavy tails and an 
increased probability of joint extreme events compared 
with the Gauss copula. Moreover, with respect to the latter, 
the t copula introduces an additional parameter, namely 
the degrees of freedom ν. Since the Student’s distribution 
tends to the Gaussian when ν → ∞, increasing the value of ν 
decreases the tendency to exhibit extreme co-movements. 

For explaining how bivariate Archimedean copula are 
constructed, we need to introduce the pseudo-inverse 
function. 

Definition 3.9 (pseudo-inverse) Let φ : [0,1] → [0,∞] be a 
continuous and strictly decreasing function with φ(1) = 0 
and φ(0) ≤ ∞. The pseudo-inverse of φ with domain [0,∞] is 
defined as: 

 (3.8)

Theorem 3.10 (Archimedean copula) Let φ : [0,1] → [0,∞] 
be a continuous and strictly decreasing function with  
φ(1) = 0, φ (0) ≤ ∞ and let φ[-1](t) be its pseudo-inverse. 
Then the function: 

C (u, v) = φ[-1](φ(u) + φ(v)), (3.9) 

is a copula if and only if φ is convex. 

Proof. See Nelsen (2006), pp. 111, 112. 

The function φ is called the generator of the copula, because 
it characterizes the specific copula within the Archimedean 
family. 

Definition 3.11 (Archimedean generator) 
A continuous, strictly decreasing, convex function  
φ : [0,1] → [0,∞] s.t. φ(1) = 0 is called an Archimedean 
generator. It is called a strict generator if φ(0) = ∞. 

In Bürgi et al. (2009) the authors stress as Archimedean 
copulas are commutative, that is C (u, v) = C (v, u) 
for all u, v ∈ [0, 1], and associative, that is 
C (C (u, v), z) = C (u,C (v, z)) for all u, v, z ∈ [0,1]. 

If we choose as generator φ(t) = - ln(t) we obtain the 
independence copula. 

Among Archimedean copulas, in this paper we deal with the 
Clayton and the Gumbel copula.

•  Clayton.   (3.10)

 

•  Gumbel.       (3.11)

 

The Clayton copula, unlike the above mentioned elliptical 
copulas, allows for asymmetries. We have seen that the t 
copula allows for joint extreme events but not for 
asymmetries. The Clayton copula provide more flexibility, 
exhibiting greater dependence in the lower tail than in the 
upper tail. We refer to Section 4 for more on the shape of 
copulas and for the concept of tail dependence, in particular. 
However, we notice here something additionally about the 
Clayton copula. 

In the literature  is defined as in equation 3.10 so to have 
the asymmetry described above (see e.g. Nelsen (2006), 
p. 116). However in insurance, as confirmed in Bürgi et al. 
(2009), the dependence ought to be modelled for the upper 
tail, because the fewest number of large amount claims are 
more relevant for the company with respect to the largest 
number of small amount claims. To this aim, from next 
Section we will work with a flipped Clayton copula, obtained 
by the transformation (u, v) → (1 – u, 1 – v). We will refer to 
this copula as the Clayton-M, indicating it with . 
More flipped copulas are given in Venter (2002), pp. 90-91.

The Clayton copula is a comprehensive copula, in fact: 
if θ → 0,  approaches the independence copula, Π; 

if θ → ∞,  approaches the comonotonicity copula, ℳ; 

if θ → - 1,  approaches the countermonotonicity copula, 
W . The same is valid for .

The Gumbel copula, originally proposed in Gumbel (1960), 
interpolates between independence and perfect dependence 
having θ to represent the strength of the dependence. In 
particular, if θ = 1 we obtain the independence copula, while 
the limit as θ → ∞ is the comonotonicity copula. 

A more comprehensive list of Archimedean copulas can be 
found in Nelsen (2006), pp. 116-119, where 22 families are 
listed. Chapter 4.3 of Denuit et al. (2005) gathers explicit 
formulas of copula densities for several families of bivariate 
copula (both elliptical and Archimedean).
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We introduce two rank correlations that are both scalar 
measures of concordance according to the definition 
proposed in Scarsini (1984), pp. 205-206 2 . Differently 
from the correlation coefficient ρ, named after the British 
statistician Karl Pearson, rank correlations are based on the 
copula of (X, Y) only and not on the margins. This feature 
represents a relevant advantage when it comes to measure 
the strength of the dependence, as shown in Section 5. 

The first measure of concordance we propose was originally 
discussed by G. T. Fechner around 1900 and rediscovered by 
the British statistician Sir Maurice Kendall in Kendall (1938). 
For a complete historical review we refer to Kruskal (1958). 

Definition 4.1 (Kendall’s tau) For the random pair (X, Y) 
the Kendall’s tau is defined as: 

ρτ(X, Y) = P{(X – X̃ )(Y – Ỹ ) > 0} – P{(X – X̃ )(Y – Ỹ ) < 0}, (4.1) 

where (X̃ ,Ỹ ) is an independent copy of (X, Y). 

As can be seen from its definition, Kendall’s tau for (X, Y) is 
simply the probability of concordance minus the probability 
of discordance. For continuous marginal distributions, 
Kendall’s tau depends only on the unique copula of the risks 
as the following proposition says. 

Proposition 4.2 Let (X, Y) be a vector of continuous rvs with 
copula C. Then Kendall’s tau for (X, Y) is given by 

  (4.2) 

that is equivalent to say: 

ρτ(X, Y) = 4E (C (U,V)) – 1, (4.3) 

where U, V are standard uniform. 

The second measure of concordance we introduce is named 
after the English psychologist Charles Spearman who 
proposed it in Spearman (1904). 

Definition 4.3 (Spearman’s rho) For rvs X and Y with 
marginal dfs F and G the Spearman’s rho is defined as: 

ρS (X, Y) = ρ(F (X),G(Y)). (4.4) 

Hence Spearman’s rho is simply the linear correlation of the 
probability-transformed rvs, which for continuous rvs is the 
linear correlation of their copula. 

Thus, in the case of continuous marginal distributions, 
Spearman’s rho depends only on the unique copula of the 
risks as the following proposition says. 

(2) A formal proof can be found in Nelsen (2006), p. 169.

Proposition 4.4 Let (X, Y) be a vector of continuous rvs with 
copula C. Then Spearman’s rho for (X, Y) is given by:  (4.5)

 

that is equivalent to say: 

ρS (X, Y) = 12E(UV) – 3, (4.6) 

where, if X ∼ F and Y ∼ G, U = F (X) and V = G(Y). 

The fact that both ρτ and ρS are copula-based measures 
implies that they inherit the property of invariance under 
strictly increasing transformations, one of the main 
advantage of rank correlations. We collect some facts 
and useful considerations about rank correlations in 
theorem 4.5. 

Theorem 4.5 (rank correlations) Let X and Y be rvs with 
continuous distributions F and G, joint distribution H and 
copula C . The following are true: 

•  ρτ(X, Y) = ρτ(Y, X), ρS (X, Y) = ρS (Y, X). 

•  If X and Y are independent then ρτ(X, Y) = ρS (X, Y) = 0. 

•  –1 ≤ ρτ(X, Y), ρS (X, Y) ≤ 1. 

•  For T : R → R strictly monotone on Ran (X), both ρτ and ρS 
satisfy κ(T (X), Y) = κ(X, Y) or κ(T (X), Y) = –κ (X, Y) if 
T is increasing or decreasing, respectively. 

•  ρτ(X, Y) = ρS (X, Y) = 1 ⇔ C = ℳ ⇔ Y = T (X) a.s. with 
T increasing. 

•  ρτ(X, Y) = ρS (X, Y) = –1 ⇔ C = W ⇔ Y = T (X) a.s. with 
T decreasing. 

Proof. See Embrechts et al. (2002), p. 196, and Nešlehová 
(2008), p. 50. 

Moreover, for particular types of copula is possible to 
establish simpler relations between the copula itself and the 
rank correlations. 

Theorem 4.6 (rank correlations for Gauss copula) Consider 
the Gauss copula defined as in equation 3.6. Then the rank 
correlations are: 

 (4.7)

 (4.8)

Proof. See Embrechts et al. (2005), pp. 215, 216. 

4.  Rank Correlation and Tail Dependence 
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Some remarks on this theorem: 

•  Note that the right-hand side of equation 4.8 may be 
approximated by the value of the linear correlation itself, 
i.e. ρ. 

•  The relationship 4.7 between Kendall’s tau and the 
correlation parameter of the Gauss copula  holds more 
generally for all elliptical distribution, hence including the 
t copula . 

•  The relationship 4.8 between Spearman’s rho and the 
correlation parameter of the Gauss copula  does not 
hold for all elliptical distributions.

Concerning Archimedean family, it is possible to link 
Kendall’s tau and the generator of the specific copula. 

Theorem 4.7 (Kendall’s tau for Archimedean copulas) Let 
X and Y be continuous rvs with unique Archimedean copula C 
and generator φ. Then: 

 (4.9) 

 
(4.10) 

Proof. For 4.9 see Genest and MacKay (1986), pp. 282-283; 
for 4.10 see Joe (1997). 

Thorough this result explicit relations between Kendall’s tau 
and copulas parameter can be found, which are summarized 
in table 1. 

The last copula-based measures we introduce are called 
coefficients of tail dependence. 

Definition 4.8 (upper tail dependence) Let X and Y be rvs 
with dfs F and G, respectively. Then, the coefficient of upper 
tail dependence of X and Y is defined as: 

 (4.11) 

provided a limit λu ∈ [0,1] exists. If λu ∈ (0,1] X and Y are said 
to be asymptotically dependent in the upper tail. If λu = 0 they 
are asymptotically independent in the upper tail.

Definition 4.9 (lower tail dependence) Let X and Y be rvs 
with dfs F and G, respectively. Then, the coefficient of lower tail 
dependence of X and Y is defined as: 

 (4.12) 

provided a limit λl ∈ [0,1] exists. If λl ∈ (0,1] X and Y are said 
to be asymptotically dependent in the lower tail. If λl = 0 they 
are asymptotically independent in the lower tail. 

As for rank correlation, these definitions make most sense in 
the case that F and G are continuous dfs. 

Proposition 4.10 Let X and Y be rvs with continuous dfs 
F and G, respectively, then we get the following expressions  
for λu and λl in terms of the unique copula C: 

 (4.13)
 

 (4.14)

 

where Ĉ denotes the survival copula, defined as 
Ĉ(u, v) = u +v – 1 + C(1 – u,1 – v). 

In Table 1 we give the available analytical expressions for 
rank correlations and tail dependencies referred to the four 
copulas used in this paper. 

Table 1
Rank correlations and tail dependencies for four copula classes. 

Remark 4.11 Concerning the tail dependence, we observe 
that: 

•  While independence of X and Y implies λu = λl = 0, 
the converse is not true in general. 

•  For elliptical copulas, since C = Ĉ, we have λu = λl. 

•  For the Gauss copula, both λu and λl are equal to 0 
(provided ρ ≠ 1) meaning that, regardless of high correlation 
ρ we choose, if we go far enough into the tail, extreme events 
appear to occur independently in X and Y. 

•  For the t copula the tail dependence coefficient increase with 
ρ increasing and decrease with ν increasing; the t copula 
gives asymptotic dependence in the tail even when ρ is 
negative or zero. 

•  The Clayton copula is lower tail dependent, hence the 
Clayton-ℳ is upper tail dependent. 

•  The Gumbel copula is upper tail dependent. 



8

SCOR Papers

In this section, we investigate through Monte Carlo methods 
the role of dependence on the risk based capital. We define 
RBC as the surplus of the risk measure on the risk premium.

Definition 5.1 (RBC) 

RBCϱα (X) =ϱα(X) – E (X).  (5.1)

According to the Swiss Solvency Test (SST) guidelines, 
Swiss-based insurances have to adopt the ES at 99% as the 
risk measure. In order to meet the solvency requirements 
under the Solvency 2 guidelines, European insurances will 
have to utilize as the risk measure, say, the VaR calibrated to 
a confidence level of 99.5%. In our analysis we explore both 
cases. The main goal of this section is to provide a quantitative 
judgment about the diversification gain, as defined in Bürgi et 
al. (2009). The diversification gain represents the percentage 
of the RBC that a (re)insurance company can save in the 
management of its portfolio, on account of the positive 
aggregation of more risks. 

Definition 5.2 (Diversification Gain) The diversification gain 
for a portfolio Z, aggregating the risks X1,. .., Xd, is given by: 

 (5.2) 

We study a simple portfolio, Z, composed by two risks, X and 
Y. In a first stage both risks are assumed to have a lognormal 
distribution, namely X, Y ∼ logN (9.58,0.83). The lognormal 
df is very popular for modelling insurance risks and we select 
µ and σ such that the coefficient of variation, that is the 
ratio of the standard deviation to the mean, is equal to 1. For 
computing the joint df, we use copulas to model the structure 
of the dependence. According to the families introduced in 
Section 3, we examine two elliptical copulas, the Gauss and 
the Student’s t, together with two Archimedean copulas, 
the Clayton-M and the Gumbel. About the t copula, if not 
specified, we assume ν = 1. 

Concerning the strength of the dependence and in order 
to ensure consistent comparison, different copulas are 
parameterized using the same value for the Kendall’s tau, 
through the equations given in Table 1.

Figure 1 illustrates how different copulas implies different 
structures of dependence. A comparison with Figures 2 and 
3 shows how the strength of the dependence acts on these 
structures.

Through the programming language MATLAB, we implement 
ad-hoc procedures to compute all the values necessary to 
quantify the diversification gain. We simulate a realization 
(x, y) of the bivariate random vector (X, Y), according to the 
specific copula, to its parametrization and to the marginal 
distributions. Marshall and Olkin (1988) provide an algorithm 
for the simulation of Archimedean copulas. Algorithms for 
simulating from both the Gauss and the t copula can be found 
in Embrechts et al. (2005). We repeat the simulation process 
2,000,000 times for each characterization of the bivariate 
distribution. This allow us to derive Monte Carlo estimates for 
the portfolio of the expected value, E(Z), the value at risk at 
99.5%, VaR99.5%(Z), the expected shortfall at 99%, ES99%(Z). For 
the sake of simplicity and without loss of generality, we drop 
percentiles from notation, keeping them fixed at the above 
mentioned levels. 

From these results and from Equation 5.1, we calculate the 
RBCVaR(Z) and the RBCES(Z) according to the measure of 
risk adopted. Finally, in accordance with Equation 5.2, we 
determine the DVaR(Z) and the DES(Z). 

Table 2 provides the results for three different values of 
Kendall’s tau, namely 0.05, 0.35 and 0.7. For this specific 
portfolio 10,000,000 simulations are considered. For each 
determination of the Kendall’s tau, the corresponding values 
of the copula parameters are given. The Student’s t copula 
require an additional parameter, the degrees of freedom, that 
is not implied by the rank correlation. We select three values 
for ν, namely 1, 3 and 7, to have a more complete picture 
about the t copula. 
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5. Diversification Gain 

Fig. 1. Rank scatter plots for copulas 
parameterized with ρτ = 0.35. 

Fig. 2. Rank scatter plots for ρτ = 0.05 Fig.3. Rank scatter plots for ρτ = 0.70
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Considering figures available in Table 2, a first consideration 
can be done about risk measure. For this type of df, 
characterized by a (moderately) heavy tail, the difference 
between VaR99.5%(Z) and ES99%(Z) is relatively small. 
Nonetheless, due to this difference, the RBC increase 
as we move from one risk measure, VaR, to the other, ES. 
Regarding RBC, empirical results confirm common intuition. 
The risk based capital increase as the strength of the 
dependence increase. For the Gauss copula, we have 
RBCES(Z) = 154,108 if ρτ = 0.05, RBCES(Z) = 186,729 if 
ρτ = 0.35 and RBCES(Z) = 222,409 if ρτ = 0.70. Consequently, 
the diversification gain reflects these movements. Looking 
still at the Gauss copula, we obtain DES(Z) = 34.33% if ρτ = 0.05, 
DES(Z) = 20.23% if ρτ = 0.35 and DES(Z) = 5.03% if ρτ = 0.70. A 
similar behavior is obtained in case we take VaR instead of ES. 

Focusing on the structure of the dependence, it is interesting 
to observe an order in terms of conservativeness, among the 
copulas analyzed. Both when ρτ = 0.35 and when ρτ = 0.70, we 
have that the Gauss copula provide the highest diversification 
gain, followed by the Gumbel, the t and the Clayton-M copula. 
Further analysis have taken into account more values for rank 
correlations3. 

(3) All the numerical results mentioned in the paper are available to the 
interested readers.

The trend of the diversification gain is represented, in case ES 
or VaR is used, in Figure 4 and Figure 5, respectively. Figure 4 
depicts clearly the behavior above mentioned. Excepts for very 
low levels of dependence, 
the Clayton-M copula results to be the more conservative 
in terms of the diversification gain. This means that when a 
(re)insurance company has to assume a copula to model the 
dependence among the risks of its (bivariate) portfolio, the 
CCl-ℳ would guarantee a prudential choice. For instance, when 
ρτ = 0.35, if the model is based on a Gauss copula, then the 
(re)insurance company can state a DES(Z) equal to 20.23% 
while if the real model would follow a Clayton-M copula, then 
the DES(Z) would be only 5.47%. Thus, a warning has to be 
sent with regard to the prudentiality of certain assumptions. 
Only for very low dependencies, the t copula with ν = 1 
supply the lower diversification gain among the set of copulas 
considered. Another interesting features illustrated in Figure 4, 
is the tendency of the results provided by the t copula to those 
given by the Gauss copula, as the degrees of freedom increase. 
When ν = 7 the divergence is already significantly reduced. 
Figure 5, based on VaR as risk measure, confirms all the 
remarks valid for Figure 4. 
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Fig. 4. Diversification gain as a function of both the strength and 
the structure of the dependence. The risk measure is the expected 
shortfall. X, Y are both lognormal distributed. 
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Fig. 5. Diversification gain as a function of both the strength and the 
structure of the dependence. The risk measure is the value at risk. 
X, Y are both lognormal distributed. 

Clayton-M Gumbel Student’s t Gauss

ρ
τ

 = 0.05 θ = 0.1053 θ = 1.0526
ρ = 0.0785

ρ = 0.0785
ν = 1 ν = 3 ν = 7

E(Z) 40,851 40,833 40,857 40,843 40,844 40,858

VaR
99.5%

(Z) 183,865 184,026 205,621 191,460 184,264 177,947

ES
99%

(Z) 202,591 204,287 231,094 214,912 204,157 194,966

RBC
VaR

(Z) 143,013 143,193 164,764 150,617 143,420 137,090

RBC
ES

(Z) 161,740 163,454 190,237 174,069 163,313 154,108

D
VaR

(Z) 30.14% 29.95% 19.64% 26.52% 29.95% 33.12%

D
ES

(Z) 30.83% 29.98% 18.74% 25.68% 30.26% 34.33%

ρ
τ

 = 0.35 θ = 1.0769 θ = 1.5385
ρ = 0.5225

ρ = 0.5225
ν = 1 ν = 3 ν = 7

E(Z) 40,859 40,848 40,846 40,848 40,836 40,860

VaR
99.5%

(Z) 233,680 227,299 223,841 217,209 211,411 206,581

ES
99%

(Z) 262,338 254,897 251,220 244,014 235,852 227,589

RBC
VaR

(Z) 192,821 186,451 182,995 176,361 170,576 165,722

RBC
ES

(Z) 221,479 214,048 210,374 203,167 195,016 186,729

D
VaR

(Z) 5.81% 9.15% 10.57% 13.85% 16.45% 19.07%

D
ES

(Z) 5.47% 8.64% 9.96% 13.31% 16.50% 20.23%

ρ
τ

 = 0.70 θ = 4.6667 θ = 3.3333
ρ = 0.8910

ρ = 0.8910
ν = 1 ν = 3 ν = 7

E(Z) 40,845 40,826 40,863 40,860 40,840 40,860

VaR
99.5%

(Z) 244,219 242,780 240,094 238,924 237,395 236,003

ES
99%

(Z) 273,178 271,486 268,911 267,953 265,350 263,269

RBC
VaR

(Z) 203,374 201,954 199,231 198,064 196,555 195,143

RBC
ES

(Z) 232,333 230,660 228,048 227,093 224,510 222,409

D
VaR

(Z) 0.44% 1.30% 2.84% 3.19% 3.77% 4.63%

D
ES

(Z) 0.43% 1.25% 2.62% 3.00% 3.83% 5.03%

Table 2 
Results for a portfolio composed by X, Y ∼ logN (9.58,0.83). 
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Hereafter, we will use the ES to illustrate the results, pointing 
out differences with VaR, if any. Some analysis has been 
done to check the behavior under others parametrization of 
the lognormal dfs. No particular discrepancy has emerged. 

Figure 6 highlights the influence of the dependence on the 
RBC. For each copula model, the darker column quantifies 
the RBC

VaR
(Z), and the lighter column represents the 

RBCES(Z). The lines refer to the diversification gain. As 
noticed above, the difference among the two risk measures 
used is modest within this portfolio. 
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Fig. 6. RBC and D as a function of copulas, for ρτ = 0.05 (top), 
ρτ = 0.35 (middle) and ρτ = 0.70 (bottom). X, Y are both 
log-normal distributed.

Clayton-M Gumbel Student’s t Gauss

ρτ = 0.35 θ = 1.0769 θ = 1.5385
ρ = 0.5225

ρ = 0.5225
ν = 1 ν = 3 ν = 7

E(Z) 24,973 25,049 24,956 24,909 24,872 24,672

VaR
99.5%

(Z) 307,964 298,570 297,173 293,741 290,529 288,033

ES
99%

(Z) 579,554 573,396 563,277 543,112 529,311 499,621

RBC
VaR

(Z) 282,991 273,520 272,217 268,833 265,657 263,361

RBC
ES

(Z) 554,582 548,346 538,321 518,204 504,439 474,949

D
VaR

(Z) 4.65% 6.50% 7.39% 8.96% 9.68% 9.80%

D
ES

(Z) 4.38% 6.41% 6.68% 9.21% 11.41% 14.01%

Table 3 
Results for a portfolio composed by X, Y both Fréchet distributed 
with α = 1.5 and s = 4,657.15

To explore extreme value distributions, we repeat all 
the previous analysis with a new portfolio Z. Z is now 
composed from two risks, X, Y, both Fréchet distributed with 
α = 1.5 and s = 4,657.15. The shape parameter, α, is choose 
to grant both an important tail and sufficient stability in the 
simulation process. Table 3 provides results for ρτ = 0.35. 

Focusing on DES(Z), we observe an estimated value ranging 
from 4.38%, in case we assume a Clayton-M copula, to 
14.01%, in case our model is based on a Gauss copula. The 
main difference, that has to be stressed with respect to the 
previous portfolio, is the relevance of the choice of the risk 
measure. For instance, when the copula is the Clayton-M, 
we have RBCVaR(Z) = 282,991 and RBCES(Z) = 554,582. 
A similar discrepancy is present indifferently from the 
structure of the dependence used. The divergence between 
the capital requirements, according to the risk measure 
applied, is due to the marginal distributions. The tail of 
the Fréchet df, differently from the tail of the lognormal df, 
emphasize the diversity between the two risks measures. 
As we noticed in Section 2, the ES is able, contrary to the 
VaR, to take into account the shape of the tail. 

Figure 7 illustrates the trend of the diversification gain as a 
function of the dependence. Remarks provided for Figure 4 
are valid here as well. 
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Fig. 7. Diversification gain as a function of both the strength and 
the structure of the dependence. The risk measure is the expected 
shortfall. X, Y are both Fréchet distributed. 
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Figure 8 highlights the influence of the dependence on the 
RBC. The importance of the choice of the risk measure is 
eye-catching and other analysis confirm that its preserved 
also varying the strength of the dependence. 

Some analysis has been done to check the behavior under 
others parametrization of the Fréchet dfs. No particular 
discrepancy has emerged, but the stability of the Monte 
Carlo process, for α → 1, has to be supported by an 
increasing number of simulations. 

As a further analysis, we mixed in a new portfolio Z = X + Y a 
(moderately) heavy tail df with an extreme value df. 
In particular, X is lognormal distributed with µ = 6.52 
and σ = 2.15, and Y is Fréchet distributed with α = 1.5 and 
s = 4, 657.15. 
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Fig. 8. RBC and D as a function of copulas, for ρτ = 0.35. X, Y are 
both Fréchet distributed.

The new parametrization of the lognormal df has been 
chosen such that the weight of the two risks is almost 
equivalent in terms of capital allocation (see Section 6). 
Table 4 provides results for ρτ = 0.35.

Clayton-M Gumbel Student’s t Gauss

ρτ = 0.35 θ = 1.0769 θ = 1.5385
ρ = 0.5225

ρ = 0.5225
ν = 1 ν = 3 ν = 7

E(Z) 19,254 19,286 19,162 19,224 19,323 19,414

VaR
99.5%

(Z) 315,345 310,762 308,896 303,959 301,702 301,297

ES
99%

(Z) 562,579 552,309 540,872 530,119 526,597 521,544

RBC
VaR

(Z) 296,092 291,475 289,734 284,736 282,379 281,883

RBC
ES

(Z) 543,325 533,023 521,709 510,895 507,275 502,131

D
VaR

(Z) 4.56% 6.19% 6.44% 8.69% 9.32% 9.95%

D
ES

(Z) 4.78% 7.07% 7.15% 9.86% 12.02% 14.25%

Table 4 
Results for a portfolio composed by X, Y, where X is lognormal 
distributed with µ = 6.52 and σ = 2.15, and Y is Fréchet distributed 
with α = 1.5 and s = 4,657.15. 

We observe once more the order among dependence 
structures in terms of conservativeness. Figure 9 illustrates 
the trend of the diversification gain as a function of the 
dependence. No contradiction arose with respect to the 
comments made about Figure 4. 

Figure 10 highlights the influence of the dependence on the 
RBC. The presence in the portfolio of one extreme value df is 
sufficient to emphasize the difference between the RBC

VaR
(Z) 

and the RBCES(Z). 
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Fig. 9. Diversification gain as a function of both the strength and 
the structure of the dependence. The risk measure is the expected 
shortfall. X is lognormal distributed and Y is Fréchet distributed. 
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In this section, we investigate through Monte Carlo methods 
the role of dependence on capital allocation. We refer to 
Goovaerts et al. (2003) for a broad discussion on allocation 
principles. A capital allocation principle is a method to split 
the overall risk capital of a portfolio among its components. 
To the purpose of this analysis, two allocation principles are 
described. As in previous Section, we drop the α indicating 
the percentile from the notation. 

•  Euler principle. According to the Euler principle, the 
expected shortfall contribution of risk Xi to the portfolio 
Z = X1 + . . . + Xd, is given by: 

 
(6.1) 

Thus, the RBC allocated to risk Xi is equal to: 

RBCES(Xi, Z) = ES(Xi, Z) – E(Xi).  (6.2) 

We denote with RBCES(Xi |Z) the percentage of RBC 
allocated to risk Xi, i. e.: 

  (6.3) 

For more on the Euler principle, we refer to Tasche (2008). 

•   Haircut principle. According to the haircut principle and 
in agreement with the above notation, the contribution of 
risk Xi to the portfolio Z is equal to: 

 (6.4) 

Hence, the RBC allocated to risk Xi is given by: 

RBCVaR(Xi, Z) = VaR(Xi, Z) – E(Xi).  (6.5) 

We denote with RBCVaR(Xi|Z) the percentage of RBC 
allocated to risk Xi, that corresponds to: 

  (6.6)

A description of the haircut principle is offered in Dhaene 
et al. (2009), Section 2. 

Both principles lead to a full allocation of the capital 
requirement, i. e.  RBCES(Xi|Z) = RBCES(Z) and

 RBC
VaR

(Xi|Z) = RBC
VaR

(Z). Concerning the haircut 
principle, the full allocation criterion is not satisfied if we 
substitute the right hand side of Equation 6.6 with: 

 (6.7)

This fail is a direct consequence of the non coherence of 
VaR mentioned in Section 2. We will return later on this 
alternative definition of the haircut principle. 

Among capital allocation principles, Theorem 4.4 in Tasche 
(1999) proves that only the Euler principle is suitable for 
performance measurement. This feature is very important in 
steering the portfolio towards profitability through RORAC 
(return on risk adjusted capital) optimization. The RORAC of 
a risk (portfolio) represents the ratio between the expected 
profit and the risk capital contribution necessary to run 
that risk (portfolio). Roughly speaking, Tasche’s theorem 
guarantee that if, according to the Euler principle, the 
RORAC of risk Xi is higher than the RORAC of the portfolio 
containing that risk, then an increase of the weight of risk Xi 
will improve the RORAC of the entire portfolio. 

We study a simple portfolio, Z’, composed by two risks, 
X and Y’. In agreement with Section 5, both risks are 
assumed to have a lognormal distribution, namely 
X, Y' ∼ logN (9.58,0.83). Value at risk is computed at 99.5% 
and expected shortfall at 99%. Our goal is to study the Euler 
and the haircut capital allocation principles under several 
dependence assumptions. We also investigate how these 
principles react to changes in the riskiness of the portfolio 
components. Thus, we define two other portfolios, Z’’ and 
Z’’’, where the first component is still X but the second 
component is substituted by Y’’ ∼ logN (9.58, 0.70) and by 
Y’’’ ∼ logN (9.58, 0.40), respectively. Hence, the riskiness 
of the second component is reduced, with respect to the 
original portfolio, varying its parameter σ. 

6. Capital Allocation 
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The relation between σ and the variance of a lognormal 
rv is explicated in Appendix A. Through the programming 
language MATLAB, we implement ad-hoc procedures to 
quantify the allocated capital per risk. All the results are 
obtained with Monte Carlo methods that benefits of a 
minimum number of 2,000,000 iterations. Table 5 provides 
the results for portfolios where the dependence structure 
assumed is a Clayton-M copula or a Gauss copula. About the 
strength of the dependence, which is characterized via the 
Kendall’s tau, results are given for ρτ = 0.20 and ρτ = 0.50. 

Clayton-M Gauss

Z’ Z’’ Z’’’ Z’ Z’’ Z’’’

ρτ = 0.20

RBC
VaR

(Z)

RBC
ES

(Z)

174,239 146,924 116,991 151,383 128,099 109,411

200,040 168,377 133,076 169,847 143,639 124,131

Euler

RBC
ES

(X|Z)

RBC
ES

(Y|Z)

RBC
ES

(X, Z)

RBC
ES

(Y, Z)

49.97% 63.88% 86.89% 50.21% 69.83% 93.25%

50.03% 36.12% 13.11% 49.79% 30.17% 6.75%

99,956 107,565 115,629 85,283 100,302 115,746

100,084 60,812 17,447 84,564 43,337 8,385

Haircut

RBC
VaR

(X|Z)

RBC
VaR

(Y|Z)

RBC
VaR

(X, Z)

RBC
VaR

(Y, Z)

50.00% 58.25% 75.17% 50.15% 58.26% 75.25%

50.00% 41.75% 24.83% 49.85% 41.74% 24.75%

87,122 85,584 87,939 75,919 74,627 82,332

87,117 61,340 29,052 75,464 53,472 27,078

  ρτ = 0.50

RBC
VaR

(Z) 201,787 168,429 125,686 180,858 151,972 118,774

RBC
ES

(Z) 231,055 190,749 141,822 204,212 171,353 134,091

Euler

RBC
ES

(X|Z) 50.04% 60.53% 82.07% 49.88% 63.35% 86.20%

RBC
ES

(Y|Z) 49.96% 39.47% 17.93% 50.12% 36.65% 13.80%

RBC
ES

(X, Z) 115,617 115,453 116,389 101,871 108,551 115,582

RBC
ES

(Y, Z) 115,439 75,297 25,433 102,341 62,801 18,509

Haircut

RBC
VaR

(X|Z) 50.13% 58.31% 75.15% 49.99% 58.27% 75.14%

RBC
VaR

(Y|Z) 49.87% 41.69% 24.85% 50.01% 41.73% 24.86%

RBC
VaR

(X, Z) 101,149 98,218 94,456 90,408 88,553 89,245

RBC
VaR

(Y, Z) 100,637 70,211 31,229 90,450 63,419 29,528

Table 5 
Numerical results for the capital allocation. X and Y indicate the 
first and the second component of the general portfolio, denoted 
with Z. 

Harking back to Equation 6.6, we notice that the 
denominator,  VaR(Xi), does not take into account 
the dependence among risks. Thus, as our empirical data 
emphasize, the haircut allocation principle does not react 
neither to changes in the dependence structure nor to 
changes in the strength of the dependence within the 
portfolio. For instance, both when we have a Clayton-M 
copula and ρτ = 0.20, or a Clayton-M copula and ρτ = 0.50, 
as well as when we have a Gauss copula and ρτ = 0.20, 
or a Gauss copula and ρτ = 0.50, the RBC

VaR
(Y |Z)≅24.8% 

(considering Z’’’). Naturally, the capital requirement vary 
in terms of absolute amounts, but this is a consequence of 
the varied RBCVaR(Z) only. Hence, continuing the previous 
example, the RBC

VaR
(Y, Z) fluctuate from 29,052 to 31,229, 

and from 27,078 to 29,528. The alternative formulation of 
the haircut principle, using Equation 6.7, would grant a 
sensibility to the dependence assumptions, because of the 
denominator VaR (  Xi). Unfortunately, as above noticed, 
the incoherence of VaR would not grant a full allocation of 
the capital. 

The Euler principle, instead, is able to catch different 
dependence conditions directly in terms of the weights 
assigned to the portfolio components. For instance, 
considering again Z’’’, RBCES(Y|Z) with a Gauss copula equals 
6.75% when ρτ = 0.20 and 13.80% when ρτ = 0.50. Thus, to 
an increased strength of dependence, the Euler principle 
reacts assigning more weight to the less volatile risk. This 
behavior espouse the intuition that if risks are linked by 
a stronger dependence, we have to pay higher attention 
to the less volatile risks as well, because the probability 
that something go wrong for them too is increased by the 
stronger dependence with the more volatile risks. The same 
remark is valid considering a change in the structure of the 
dependence. In particular, if we move from the Gauss to the 
Clayton-M assumption, we are heightening tail dependence 
and increasing conservativeness, as described in Section 5. 
Hence, continuing the previous example, we register an 
increase of the weight of the less volatile risk that moves from 
6.75% to 13.11%, when ρτ = 0.20, and from 13.80% to 17.93%, 
when ρτ = 0.50. 
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An extensive analysis has been conducted for all copulas 
discussed in Table 1. The order of conservativeness above 
mentioned leads, in the Euler principle, to an equivalent 
order in terms of the importance of the weights assigned 
to less volatile risks. Hence the values of, say, RBCES(Y|Z), 
will range from the minimum weight assigned by the Gauss 
copula, followed by the Student’s t copula and from the 
Gumbel copula, to the maximum weight assigned by the 
Clayton-M copula. We repeat all the analysis about capital 
allocation for two other portfolios. 

We consider a portfolio composed by two Fréchet distributed 
rvs, both originally with α = 1.5 and s = 4,657.15, and then 
we modify the second component. Similarly, we study a 
portfolio that mixes a Fréchet distributed rv with α = 1.5 and 
s = 4,657.15 together with a lognormal distributed rv with 
µ = 6.52 and σ = 2.15, such that the weight of the two risks is 
almost equivalent in the original composition, and then we 
reduce the riskiness of the Fréchet rv increasing its shape 
parameter, α (see Appendix B). All these further analysis 
confirm the above remarks about the link between (structure 
and strength of) dependence and allocation of capital. 

7. Proposals for Future Research 

We dealt with bivariate copulas but most of the concept 
illustrated can be easily extended in higher dimension. The 
fair comparison among structures of dependence, granted 
by the link between copulas parameter and rank correlation 
coefficients, could be maintained without loss of generality in 
case of one-parameter copula families, like the Clayton-M and 
the Gumbel. In case of elliptical copulas, instead, this fairness 
would require the comparison to deal with a subset of the 
specific copula family. For instance, if d = 3, we should define 
the Gauss copula to imply the same dependence among all the 
three portfolio components. 

In Bürgi et al. (2009) the authors investigate on the 
diversification gain using a reference model based on a 
Clayton-M copula. The Monte Carlo techniques employed in 
our analysis could be used to extend their study varying the 
reference model (both in terms of copula and parameter) and 
reviewing the diversification gain. This procedure would allow 
to judge the conservativeness of assumptions on dependence 
with respect to each possible reference model. 

However, the assumptions on copulas and their parameters 
are fundamental. Hence, further developments will involve 
the estimation and calibration of copulas from real data in 
order to obtain the right dependence and therefore to be able 
to give reliable assessment of diversification. 
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We pointed out the importance of dependence in the 
assessment of the capital requirements. The appraisal 
of RBC is heavily influenced from both the strength and 
the structure of dependence that is assumed to model 
the portfolio. Through the investigation of several copula 
models we identified an order among them in terms of 
conservativeness, with regard to the stated diversification 
gain. The same order is preserved varying both parametric 
and non parametric assumptions about marginal 
distributions. The results of our analysis send a warning 
concerning the prudentiality of certain assumptions. The 
main risk is to underestimate the RBC of the portfolio due 
to an improper choice of the copula model. Regarding risk 

measures, we noted the sizeable differences in terms of RBC 
based on VaR and on ES when the distribution is fat tailed. 

Finally, we discussed capital allocation principles. We 
observed that the split of the overall risk capital of a portfolio 
among its component can whether take dependence into 
account or not. The Euler principle reacts to changes in 
dependence assumptions. In particular, we showed that as 
dependence increase in strength or it is heightening with 
respect to tail dependence, the less volatile risk gains more 
weight coherently with the increased probability of a joint 
severe event. 
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Appendix A. Lognormal distribution 

Definition A.1 (Lognormal distribution) A continuous 
rv X is said to have a lognormal distribution, written  
X ∼ logN (µ, σ2), if its density is: 

 
(A.1)

It is possible to show that the mean and the variance  
of the lognormal distribution are respectively given by 
E(X) = exp (µ + ½ σ2) and VAR(X) = E (X)2 (exp(σ2) –1).

Considering a lognormal random variable, we can state the 
following remark. 

Remark A.2 For a lognormal random variable 
X ∼ logN (µ, σ2): 

VaRα(X) = exp(µ + σΦ–1(α)),  (A.2) 

 (A.3)

where Φ is the standard normal df. 

For a confirmation of this remark, one can refer to 
Denuit et al. (2005), p. 98 4. 

Appendix B. Fréchet distribution 

Definition B.1 (Fréchet distribution) A continuous rv X is 
said to have a Fréchet distribution if its cumulative density 
function is: 

  (B.1)

where α > 0 is the shape parameter and s is the scale 
parameter. 

It is possible to show that the mean of the Fréchet 
distribution is given by where 

 is the Gamma function. 

In the case of a Fréchet distribution also is possible to derive 
explicit formulas for VaR and ES as the following remark 
shows. 

Remark B.2 For a Fréchet random variable 5 X with shape 
parameter α and scale parameter s: 

 (B.2) 

  (B.3) 

where Γ(γ) is the Gamma function and Γ(γ, x) 
is the incomplete Gamma function, i.e.  
Γ(γ, x) = 

(4) The authors distinguish between TVaR and ES and in particular  
they defined as TVaR what we defined as ES. 

(5) We indicate here with  the percentile to discern it from 
the shape parameter of the Fréchet distribution, α. 

8. Conclusion 
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