Bayesian Modelling of Outstanding Liabilities in Non-Life Insurance

August 9, 2011

Abstract

This dissertation focuses on the stochastic modelling of outstanding liabilities in non-life insurance, using Bayesian Statistics. Credible intervals and various statistical estimates can then be derived, whereas this is not the case with the numerical methods commonly used in the industry, such as the Chain Ladder, which only give point estimates. We ignore the claim numbers and concentrate only on claim amounts. The modelling requires intensive use of Bayesian methodology and Monte Carlo Markov chain (MCMC) techniques through the WinBUGS package. We also show that the results obtained are quite different from those with the Chain Ladder method, however there is no obvious way to define which method is better as more data would be necessary.

Contents

Abstract I
1 Introduction 1
2 Theoretical Background 3
2.1 Bayesian Statistics 3
2.2 MCMC \& WinBUGS 5
3 Models for Outstanding Claim Amounts 7
3.1 Data: Automatic Facultative business in General Liability (excluding Asbestos \& Environmental) 7
3.2 Model 1: Lognormal Model 8
3.2.1 Presentation of the model 8
3.2.2 Derivation of the posterior distributions 10
3.2.3 Running the model using WinBUGS 12
3.2.4 Prior Sensitivity 17
3.3 Model 2: Exponential Model 18
3.3.1 Presentation of the model 18
3.3.2 Running the model using WinBUGS 19
4 Model Selection and Posterior Predictive Checking 22
4.1 Model comparison (DIC) 22
4.2 Posterior Predictive Checking \& Posterior Predictive P-Value 24
5 Prediction and Comparison with Chain Ladder 26
5.1 Predictive distribution for future or missing observations using MCMC methods 26
5.2 Results obtained with the Chain Ladder Method 28
5.3 Comparison 29
6 Conclusion 33
7 Appendix 34
7.1 Validation of methodology through some theoretical considerations 34
7.2 Estimated values of the parameters in Model 1 35
7.3 Estimated Values of the parameters in Model 2 36
7.4 Initial Values for the Brooks-Gelman-Rubin diagnostic 37
7.5 Code for the Lognormal model (Model 1) in WinBUGS 38
7.6 Code for the Exponential model (Model 2) in WinBUGS 41

1 Introduction

In General Insurance, claim reserving is of paramount importance and is still a subject of active research. In certain areas of insurance, such as motor insurance and property insurance, claims are reported quite quickly to the insurer and are settled directly. However, in certain cases, and for certain types of insurance products, the claims occurred may not be reported quickly, and one may even ignore their existence for a long period of time. For example, in Employer Liability Insurance, some workers can be exposed now to some health-threatening substances that are not yet known to be dangerous, as it was the case for asbestosis until recently. However, health problems implied by those substances would be considered to be caused by work conditions and the insurer would have to pay for them. In weather related insurance, the total sum of the damages may be tricky to be evaluated and some time may be needed. Even in a car accident, the liability of the policyholders involved could be hard to determine and a trial could be needed to seal the issue, requiring some delay between the occurrence of the claim and its settlement. Thus, insurance companies have to develop methods to assess the loss they will suffer in the future due to policies originated in previous years. This would enable them to set up reserves now to be able to meet their future liabilities.

For example, a company would like to know an estimate of the amount it will still have to pay in the next 5 years due to policies originating in a specific past year, or the amount it will have to pay in the coming year for all the policies originating in the past. The year in which the policy was in force is known as the origin year, or accident year, and the year in which a claim is settled is called the development year. For example, consider a car accident taking place in 2005. For some reason, the claim is settled in 2008 by the insurance company. The accident year is then 2005, and the development year is 2008, which will be called year 4 (2005 is development year 1, so 2008 is development year 4).

Using a matrix representation with l accident years and l development years, we will call $y_{i j}$ the amount "paid" in development year j for all policies in force in accident year i (i.e. paid $j-1$ years after their originating year). If $i+j>l+1$, then $y_{i j}$ will have to be estimated, which is the core of this dissertation. In the following table, the empty cells repesent these unknown quantities that we want to estimate.

Accident / Development Year	1	2	3	4
1	y_{11}	y_{12}	y_{13}	y_{14}
2	y_{21}	y_{22}	y_{23}	
3	y_{31}	y_{32}		
4	y_{41}			

Several methods are used in practice to estimate $y_{i j}$ for i, j such that $i+j>l+1$: the chain ladder, the average cost per claim, and the Bornhuetter-Ferguson ones are the most common [4, 5]. Given the data that we will study, only the claim amounts will be known and we will therefore concentrate on the Chain Ladder method. However, all these recipes are not statistically based. Consequently, no confidence intervals, standard deviations or other statistical tools are available with these methods which only give point estimates. To remedy these problems, we will build statistical models to represent the claim amounts, and estimate the unknown parameters from the data by using Bayesian statistics and Markov chain Monte Carlo (MCMC) algorithms. Several models have already been proposed (see [9, 6] for example), some using Bayesian Statistics (see [19, 20]).

Section 2 will briefly review the concepts of Bayesian Statistics and MCMC methods. It sets the theoretical background needed for the remainder of this dissertation. In Section 3, two different stochastic models of the claim amounts will be presented, with a brief discussion of their respective characteristics. Then, Section 4 will help us select the model that fits the data better, and the goodness of fit of the best one will be checked. Finally, Section 5 explains how to predict future values, and compares the results obtained with those derived using the Chain Ladder method.

2 Theoretical Background

2.1 Bayesian Statistics

In statistics, the use of Bayesian Inference has become more and more common over the last 20 years, as shown by the creation of The International Society for Bayesian Analysis (ISBA) in 1992 "to promote the development and application of Bayesian analysis useful in the solution of theoretical and applied problems in science, industry and government" [13]. Until then, Classical Statistics was the standard approach, but several limitations have been pointed out and one of the most important ones comes from its definition: in classical statistics, the only definition of the probability of an event is its long run frequency in a sequence of independent trials [1]. Thus, the probability that Mr X voted Conservative in the last elections is meaningless. However, one would like to be able to define such a "subjective probability", which is possible with the use of Bayesian Statistics.

Bayesian Statistics is getting used extensively in Actuarial Science as well, and we therefore want to remind the reader of the basics, which will be used throughout this dissertation.

In Bayesian Statistics, unknown quantities are treated as random variables. Suppose that the distribution of a continuous random variable Y (for example the random loss variable) depends on a parameter θ. We consider θ as a realisation of a random variable Θ, which has a statistical distribution called the prior distribution. Its probability density function will be denoted by $\pi(\theta)$. The conditional density function of Y given θ is denoted $f_{Y}(y \mid \theta)$.

Based on the observed data $Y=y$, the distribution of Θ is updated, and we get the distribution of $\Theta \mid y$, called the posterior distribution. We then calculate an estimate of the random loss by taking the mean of the posterior distribution so as to minimize the quadratic loss function [5].

From a mathematical point of view, we have (see [12] for more details):

$$
f_{\Theta Y}(\theta, y)=f_{Y \mid \Theta}(y \mid \theta) \pi(\theta)
$$

where $f_{\Theta Y}(\theta, y)$ is the joint density function of Θ and Y. By integrating on Θ we get
the marginal distribution of Y :

$$
f_{Y}(y)=\int_{\theta} f_{Y \mid \Theta}(y \mid \theta) \pi(\theta) d \theta
$$

Moreover,

$$
f_{\Theta Y}(\theta, y)=\pi(\theta \mid y) f_{Y}(y)
$$

so we finally get

$$
\begin{equation*}
\pi(\theta \mid y)=\frac{\pi(\theta) f_{Y}(y \mid \theta)}{\int f\left(y \mid \theta^{\prime}\right) \pi\left(\theta^{\prime}\right) d \theta^{\prime}} . \tag{1}
\end{equation*}
$$

The denominator being an integral over the range of θ^{\prime}, it depends only on y and we can then write:

$$
\pi(\theta \mid y) \propto \pi(\theta) f_{Y}(y \mid \theta)
$$

The denominator is in fact a normalizing constant, so that $\pi(\theta \mid y)$ is well defined as a distribution. Notice that if the posterior distribution belongs to the same family as the prior distribution, then the latter is called a conjugate prior distribution.

If no information is known a priori on θ, one would like to have a prior distribution that represents lack of knowledge. Such a prior distribution is known as vague or non-informative, however, no prior really reflects complete ignorance. Jeffreys' prior is aimed at providing us with non-informative priors (see [1] for more details), even though any prior sufficiently constant over a large range of values could be considered as well.

Another important point, that will be quite useful throughout this dissertation, is the predictive distribution. Indeed, one of our main concern will be to predict the values taken by another quantity of interest, whose distribution depends on θ as well. This quantity will be called z in this subsection. Once we know $\pi(\theta \mid y)$, we want to obtain the distribution of $f(z \mid y)$. We write it as "a mixture distribution over the possible values of θ " [1]:

$$
f(z \mid y)=\int f(z \mid y, \theta) \pi(\theta \mid y) d \theta=\int f(z \mid \theta) \pi(\theta \mid y) d \theta
$$

since z and y are conditionally independent given the parameter vector θ.
However, the formal expressions given above are not always analytically tractable and some numerical methods may be needed to evaluate the results.

2.2 MCMC \& WinBUGS

MCMC (Markov chain Monte Carlo) methods will enable us to explore posterior distributions by simulation, and are therefore particularly useful for multi-dimensional problems, or problems for which we do not use conjugate prior distributions. These methods have helped Bayesian Statistics develop a lot in recent years. WinBUGS is a software enabling us to perform such an analysis, as we will see throughout this dissertation.

Before explaining the algorithm, let us review quickly the basics of a Markov chain, with details available in [3]. It is a stochastic process $\left\{\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(n)}\right\}$ such that $\pi\left(\theta^{(t+1)} \mid \theta^{(t)}, \ldots, \theta^{(1)}\right)=\pi\left(\theta^{(t+1)} \mid \theta^{(t)}\right)$ and $\pi\left(\theta^{(t+1)} \mid \theta^{(t)}\right)$ is independent of time t. Moreover, for the distribution of $\theta^{(t)}$ to converge to its equilibrium distribution, which is independent of $\theta^{(0)}$, the Markov chain must be irreducible, aperiodic and positiverecurrent.

To sample from $\pi(\theta \mid y)$ we must construct a Markov chain whose stationary distribution is the posterior distribution $\pi(\theta \mid y)$. The following algorithm, called the Metropolis-Hastings algorithm, will help us in doing so:

- Set an initial value $\theta^{(0)}$
- Propose a new state θ^{\prime} from a distribution $q\left(\theta^{\prime} \mid \theta^{(0)}\right)$, known as a proposal distribution
- The proposed state is accepted with probability $p=\min \left(1, \frac{\pi\left(\theta^{\prime} \mid y\right) q\left(\theta \mid \theta^{\prime}\right)}{\pi(\theta \mid y) q\left(\theta^{\prime} \mid \theta\right)}\right)$. Set $\theta^{(1)}=\theta^{\prime}$ with probability p, otherwise set $\theta^{(1)}=\theta^{(0)}$
- Reiterate the procedure for a number of iterations so that the stationary distribution is reached.

According to Equation (1), we can simplify: $p=\min \left(1, \frac{\pi\left(\theta^{\prime}\right) f_{Y}\left(y \mid \theta^{\prime}\right) q\left(\theta \mid \theta^{\prime}\right)}{\pi(\theta) f_{Y}(y \mid \theta) q\left(\theta^{\prime} \mid \theta\right)}\right.$. Notice that the normalizing constant $f_{Y}(y)$ does not appear in p, which makes this algorithm particularly suited for Bayesian Statistics. WinBUGS, in addition to the MetropolisHastings algorithm, also uses the Gibbs sampler, which can be viewed as a particular case of Metropolis-Hastings ([1], [26]).

An obvious "problem" with this algorithm is convergence: it does not automatically indicate when the stationary distribution is reached up to a certain percentage
error. However, several diagnostics are used. For more information, see [10] for the Gelman-Rubin diagnostic and [14] for the Geweke convergence diagnostic.

Consequently, we will follow the method presented in [3] when using WinBUGS:

- Select an initial value $\theta^{(0)}$
- Generate n values until the stationary distribution is reached
- Monitor the convergence of the algorithm through different diagnostics
- Discard the first d observations (burn-in period).

Once the first d iterations have been discarded, we can assess the accuracy of posterior estimates by calculating their Monte Carlo error, which is an estimate of the difference between the estimated posterior mean and its true value. As a rule of thumb, a Monte Carlo Markov chain should be run until the Monte Carlo error for each parameter is less than 5% its standard deviation (see [25] and [26]). This condition will be achieved for all the simulations we will be doing.

It is also worth noticing that this algorithm does not provide us with an independent sample. As a consequence, the chain might mix poorly and we could obsverve considerable autocorrelation. Thinning, or subsampling, is a way to avoid this: by using only one value every r iterations the autocorrelation will be reduced (see [25] for more information).

3 Models for Outstanding Claim Amounts

The main variable $Y_{i, j}$, representing the stochastic amount of outstanding claim for accident year i and development year j, will be modelled in two different ways: first by using a Lognormal model, then an Exponential one. The data we worked with come from [9]. The main quantities of interest are the total sum of the outstanding liabilities, the sum to be paid at the end of each calendar year, denoted T_{i}, and the sum to be paid for each accident year, given that past years' amounts are considered as already paid.

3.1 Data: Automatic Facultative business in General Liability (excluding Asbestos \& Environmental)

The following values for $Y_{i j}$ have been found in [9] ; they originally come from the Reinsurance Association of America.

Table 1: Values for 10 accident and development years in $\$ 1,000$. Source: "Historical Loss Development Study", 1991 Edition, published by the Reinsurance Association of America (RAA), p. 96.

Development Year \rightarrow										
Accident Year \downarrow	1	2	3	4	5	6	7	8	9	10
1	5012	3257	2638	898	1734	2642	1828	599	54	172
2	106	4179	1111	5270	3116	1817	-103	673	535	
3	3410	5582	4881	2268	2594	3479	649	603		
4	5655	5900	4211	5500	2159	2658	984			
5	1092	8473	6271	6333	3786	225				
6	1513	4932	5257	1233	2917					
7	557	3463	6926	1368						
8	1351	5596	6165							
9	3133	2262								
10	2063									

The empty cells represent unknown values. All the amounts are in $\$ 1000$ and the accident years go from $1981(i=1)$ to $1990(i=10)$. Notice that $y_{27}=-103$ is negative. Several explanations can be considered for such a value: "Typically, these negative values will be the result of salvage recoveries, payments from third parties,
total or partial cancellation of outstanding claims, due to initial overestimation of the loss or to possible favorable jury decision in favor of the insurer, rejection by the insurer, or just plain errors" [8]. We will not use this value and consider it as an unknown quantity to be estimated instead. With the lognormal model presented above it is in fact impossible to deal with negative values, which consequently have to be removed or modified. In WinBUGS, this quantity will be entered as " $N A$ " instead of -103. If we want to keep this negative value, then other models have to be used, such as a lognormal with three parameters (see [8]). This goes beyond the scope of this dissertation.

3.2 Model 1: Lognormal Model

3.2.1 Presentation of the model

The first model considered will be a Lognormal model, similar to the models presented in [7] and [9]. We consider the amounts of outstanding claims to follow a Lognormal distribution conditionally on the parameters $\mu_{i j}$ and σ^{2} :

$$
\begin{gathered}
Y_{i j} \mid \mu_{i j}, \sigma^{2} \sim L N\left(\mu_{i j}, \sigma^{2}\right) \\
\mu_{i j}=m+\alpha_{i}+\beta_{j} \\
m, \alpha_{i}, \beta_{j} \sim N\left(0,10^{4}\right) \text { independent } \\
\sigma^{2} \sim \operatorname{Inv}-\operatorname{Gamma}\left(10^{-3}, 10^{-3}\right)
\end{gathered}
$$

for $i=1, \ldots, l$ and $j=1, \ldots, l$. Here the parameters α_{i} and β_{j} denote the effect of year of origin and year of settlement respectively. We will study and interpret their trends in a later section. $\mu_{i j}$ is the mean of the logarithm of the data. It is expressed as the sum of m (overall mean), α_{i} and β_{j}, to reflect differences in the expected claim amounts for each accident year i and development year j. The parameter σ^{2} is modelled using an Inverse Gamma prior distribution as it has to be non-negative. The small values used for the parameters in the Inv-Gamma distribution, and the large variance of the Normal distribution are intended to provide non-informative prior distributions: these priors are all vague, reflecting our uncertainty and ignorance of the true values taken by $m, \underline{\alpha}, \underline{\beta}$ and σ^{2}. The large prior variances indicate this uncertainty.

Figure 1: Directed Acyclic Graph representing the structure of the Lognormal Model

The lognormal model is well suited for modelling claim amounts as these ones must be positive (in most cases), and it has fat tails: it is skewed to the right. As mentioned earlier, we will then replace -103 by a " $N A$ " in WinBUGS: it is considered as an unknown value that has to be estimated.

This model can be represented easily in a directed acyclic graph, using the Doodle menu in WinBUGS (see Figure 1).

For now, our aim will be to estimate the values of $\underline{\alpha}, \underline{\beta}, \mathrm{m}$ and σ^{2} using the available data. As described in Section 2.1, those parameters are considered as being random variables in Bayesian Statistics. We give them prior distributions as described previously, and will aim to obtain their posterior distributions.

Our analysis is similar to a two-way analysis of variance (ANOVA) with $\underline{\alpha}$ representing the effect of the year of origin, and $\underline{\beta}$, representing the effect of the year of settlement. A restriction is consequently imposed on these effects, for example $\alpha_{1}=\beta_{1}=0$ (corner constraint) where α_{1} and β_{1} are chosen as references for comparison, or $\sum_{i} \alpha_{i}=\sum_{j} \beta_{j}=0$ (sum-to-zero constraint) where the respective means of α and β are chosen as references (details in [24]). We will use the sum-to-zero constraint for the remainder of this dissertation.

Under this model and these restrictions, we have to estimate the parameters m, $\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{8}, \alpha_{9}, \alpha_{10}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}, \beta_{7}, \beta_{8}, \beta_{9}, \beta_{10}, \sigma^{2}, Y_{27}$, and $Y_{i j}$ for all i, j such that $i+j>l+1=11$. It is worth noticing that α_{1} and β_{1} do not
need to be estimated, due to the constraint we have set up: $\alpha_{1}=-\sum_{i=2}^{10} \alpha_{i}$ and the corresponding equation holds for β_{1}.

The next Section shows how to analytically obtain the posterior distributions in this case. The derivation is presented as an example and implies heavy algebraic manipulations. In practice, we will use MCMC methodology (implemented in WinBUGS) to find estimates of the values of our parameters.

3.2.2 Derivation of the posterior distributions

We introduce a new random variable to simplify the following calculations: let $Z_{i j}=$ $\log \left(Y_{i j}\right)$ be the logarithm of the claim amounts. Then, $Z_{i j} \sim N\left(\mu_{i j}, \sigma^{2}\right)$: it has a normal distribution. We consider the parameters $\underline{\alpha}, \underline{\beta}, \sigma^{2}$ and m, and we split the logarithms of the claim amounts in two categories: known amounts denoted by $z^{o b s}$, and unknown (or missing) amounts denoted by $z^{\text {miss }}$. The aim of this section is to analytically derive the posterior distributions of these quantities (this is in fact what WinBUGS does, in a numerical way). The following algebraic derivations are adapted from [20]. For clarity of the mathematical expressions, we will consider that Y_{27} is known ; the modification to be made in case it is not known is explained at the end of this Section.

Using Bayes Theorem and denoting by f the prior, conditional and marginal densities, we get:

$$
\begin{gathered}
f\left(m, \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{m i s} \mid z^{o b s}\right) \propto f\left(z^{o b s} \mid m, \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{m i s}\right) f\left(m, \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{m i s}\right) \\
f\left(m, \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{m i s} \mid z^{o b s}\right) \propto f\left(z^{o b s} \mid m, \underline{\alpha}, \underline{\beta}, \sigma^{2}\right) f(m) f(\underline{\alpha}) f(\underline{\beta}) f\left(\sigma^{2}\right) f\left(z^{m i s} \mid m, \underline{\alpha}, \underline{\beta}, \sigma^{2}\right)
\end{gathered}
$$

by assuming prior independence. We can sample the missing values directly from the conditional predictive distribution $f\left(z^{m i s} \mid m, \underline{\alpha}, \underline{\beta}, \sigma^{2}\right)$.

The conditional distributions of all the parameters can now be obtained (by Bayes Theorem):

$$
\begin{align*}
& f\left(m \mid \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{o b s}\right) \propto f\left(z^{o b s} \mid \underline{\alpha}, \underline{\beta}, \sigma^{2}\right) f(m) \tag{2}\\
& f\left(\underline{\alpha} \mid m, \underline{\beta}, \sigma^{2}, z^{o b s}\right) \propto f\left(z^{o b s} \mid m, \underline{\beta}, \sigma^{2}\right) f(\underline{\alpha}) \\
& f\left(\underline{\beta} \mid m, \underline{\alpha}, \sigma^{2}, z^{o b s}\right) \propto f\left(z^{o b s} \mid m, \underline{\alpha}, \sigma^{2}\right) f(\underline{\beta}) \\
& f\left(\sigma^{2} \mid m, \underline{\alpha}, \underline{\beta}, z^{o b s}\right) \propto f\left(z^{o b s} \mid m, \underline{\alpha}, \underline{\beta}\right) f\left(\sigma^{2}\right)
\end{align*}
$$

Here we derive as an example an analytical expression for $f\left(m \mid \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{o b s}\right)$:
First,

$$
\begin{equation*}
f\left(z^{o b s} \mid m, \underline{\alpha}, \underline{\beta}, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-\frac{U}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\sum_{i=1}^{l} \sum_{j=1}^{l-i+1}\left(z_{i j}-m-\alpha_{i}-\beta_{j}\right)^{2}\right)\right\} \tag{3}
\end{equation*}
$$

with $l=10$ in our case, and U is the number of known values (i.e. the number of cells in the upper-triangle), worth $\frac{l(l+1)}{2}$ if all the values in the upper triangle are known.

Considering the fact that m has a normal prior distribution, and by equations (2) and (3), we get (the bounds are omitted in the sums, but it must be clear that they remain unchanged from equation (3)):

$$
\begin{gathered}
f\left(m \mid \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{o b s}\right) \propto \exp \left\{-\frac{m^{2}}{2 \sigma_{m}^{2}}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{l} \sum_{j=1}^{l-i+1}\left[m-\left(z_{i j}-\alpha_{i}-\beta_{j}\right)\right]^{2}\right\} \\
f\left(m \mid \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{o b s}\right) \propto \exp \left\{-\frac{1}{2}\left(\frac{m^{2}}{\sigma_{m}^{2}}+\frac{1}{\sigma^{2}} \sum \sum\left(m-s_{i j}\right)^{2}\right)\right\}
\end{gathered}
$$

by denoting $s_{i j}=z_{i j}-\alpha_{i}-\beta_{j}$. Keeping only the terms involving m and rearranging, we get successively:

$$
\begin{aligned}
f\left(m \mid \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{o b s}\right) & \propto \exp \left(-\frac{1}{2}\left(\frac{m^{2}}{\sigma_{m}^{2}}+\frac{m^{2}}{\sigma^{2}} U-2 \frac{m}{\sigma^{2}} \sum \sum s_{i j}\right)\right) \\
f\left(m \mid \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{o b s}\right) & \propto \exp \left(-\frac{1}{2}\left(\frac{1}{\sigma_{m}^{2}}+\frac{U}{\sigma^{2}}\right)\left(m^{2}-2 m \frac{\sum \sum s_{i j}}{\frac{\sigma^{2}}{\sigma_{m}^{2}}+U}\right)\right) \\
f\left(m \mid \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{o b s}\right) & \propto \exp \left(-\frac{1}{2 \sigma_{*}^{2}}\left(m-m_{*}\right)^{2}\right)
\end{aligned}
$$

where $\sigma_{*}^{2}=\frac{\sigma^{2}}{\frac{\sigma^{2}}{\sigma_{m}^{2}}+U}$ and $m_{*}=\frac{\sum \sum s_{i j}}{\frac{\sigma^{2}}{\sigma_{m}^{2}}+U}$.
Consequently,

$$
m \mid \underline{\alpha}, \underline{\beta}, \sigma^{2}, z^{o b s} \sim N\left(m_{*}, \sigma_{*}^{2}\right)
$$

By considering that y_{27} is an unknown value, equation (3) would be replaced by:

$$
f\left(z^{o b s} \mid m, \underline{\alpha}, \underline{\beta}, \sigma^{2}\right)=
$$

$$
\left(2 \pi \sigma^{2}\right)^{-\frac{U}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(\left(\sum \sum_{j=1}^{l-i+1}\left(z_{i j}-m-\alpha_{i}-\beta_{j}\right)^{2}-\left(z_{27}-m-\alpha_{2}-\beta_{7}\right)^{2}\right)\right\}\right.
$$

and the subsequent calculations are modified consequently, with $U=\frac{l(l+1)}{2}-1$.

3.2.3 Running the model using WinBUGS

Convergence issues

As raised in Section 2.2, one needs to check the convergence of the MCMC algorithm. The first and easiest way to have a rough idea about whether convergence occured is to visually inspect at the trace of several parameters. Figure 2 shows the trace of α_{10}, which does not show any particular pattern and seems to mix well.

Figure 2: Trace of α_{10}

Then, several diagnostics are performed to have a more precise view on convergence. The Brooks-Gelman-Rubin diagnostic available from the bgr diag option in WinBUGS is one of them. We need to generate several chains in parallel, each one starting with different initial values. The diagnostic is performed by comparing the ratio of the between-and-within chain variability (R), and for convergence we should have $R \approx 1$ (see [10] and [16] for more details). R can be estimated by $\widehat{R}=\frac{\hat{V}}{W S S}$ where \hat{V} is the pooled posterior variance estimate and WSS is the mean of the variances within each sample (see [3]). Figure 3 plots the Brooks-Gelman-Rubin diagnostic on α_{10} for three chains of 8,000 iterations. The pooled posterior variance \hat{V} is plotted in green, the average within-sample variance WSS is plotted in blue, and their ratio R is in red. $R \approx 1$ after roughly 4,000 iterations, which indicates that the chain has converged. Consequently, we will consider a burn-in period of 5,000 iterations when running the chains. The initial values used for the three chains are available in Table 14 in the Appendix. Convergence occurred for all parameters.

Figure 3: Gelman-Rubin diagnostic

Other tests are available, for example the $C O D A$ package in the statistical software R includes the Geweke (see [14]), the Raftery-Lewis (see [17]) and the HeidelbergerWelch (more details in [18]) diagnostics as well.

The Geweke diagnostic performed on our data, using the CODA package in R, confirmed the conclusions of the preceding test. This diagnostic splits the sample into two parts, the initial 10% and the last 50%, and applies a Z test to check whether the means of the output are equal. A value $|Z|>2$ indicates non-convergence. The maximum absolute value observed for all parameters was 1.7614 (for β_{5} in Chain 2), which is between -2 and 2 and therefore indicates convergence. The Geweke diagnostic confirms the results we had with the Brooks-Gelman-Rubin diagnostic ; convergence occurs for all parameters.

However, the algorithm used does not provide an independent sample, and the chain may, as a consequence, mix poorly. The autocorrelation function of α_{10} is displayed on Figure 4, which strongly confirms that we have a correlated sample. One way to attenuate the correlation within the sample is to thin the chain. This consists of taking only one value every r iterations, instead of every iteration. We have consequently run the same model with a burn-in period of $d=5,000$ iterations, a thinning of $r=20$ and 8,000 points. In Figure 4, we can see the thinning has heavily reduced the correlation.

Figure 4: Comparison of autocorrelations before and after thinning

Parameter estimates

We now want to obtain estimates of $\underline{\alpha}, \underline{\beta}, m$ and σ^{2}. After discarding the first 5,000 iterations as a burn-in period and running an additional 20,000 iterations, with a thinning of 20, we obtain estimates for the different parameters. We can compare the different values of α_{i} with their overall mean in order to see their effect. For example, a negative value of α_{i} will indicate that the total claim amount to be paid for accident year i is less than the overall mean for this block of business. The estimates of $\underline{\alpha}$ and $\underline{\beta}$, denoting respectively the effect of an accident year and a development year, are available in Table 2, as well as the estimates for m and σ^{2}.

Figure 5a shows the effect of the year of accident. There is no clear pattern, a decrease in α could represent a decline in the activity of the company such as a decreasing number of policyholders, or simply a year where the amount of claims (in value) has decreased, without implying anything else on the health of the company. However, one can notice the increasing pattern of the posterior variance of the estimates. This is due to the fact that we have less data to estimate α_{i} as i increases: remember we only know the values of the upper-triangle, so for accident year 10 only one claim amount is known whereas 10 claim amounts are known for accident year 1. This increasing trend of the variance reflects the uncertainty we have about future

Table 2: Estimated Values of the parameters in Model 1

	Mean	Standard Error	Monte Carlo Error	2.5 th percentile	97.5 th percentile
α_{1}	-0.1717	0.327	0.0023	-0.814	0.477
α_{2}	-0.2805	0.341	0.0029	-0.948	0.390
α_{3}	0.154	0.333	0.0026	-0.497	0.819
α_{4}	0.3724	0.350	0.0028	-0.323	1.06
α_{5}	-0.0117	0.368	0.0028	-0.740	0.711
α_{6}	-0.0842	0.398	0.0031	-0.871	0.696
α_{7}	-0.3755	0.434	0.0037	-1.242	0.477
α_{8}	0.1311	0.499	0.0043	-0.851	1.107
α_{9}	-0.0087	0.597	0.0063	-1.196	1.157
α_{10}	0.2749	0.842	0.0114	-1.382	1.920
β_{1}	0.2106	0.328	0.0023	-0.428	0.855
β_{2}	1.3130	0.325	0.0026	0.677	1.953
β_{3}	1.2160	0.334	0.0027	0.558	1.878
β_{4}	0.7470	0.349	0.0028	0.056	1.432
β_{5}	0.7527	0.368	0.0030	0.012	1.467
β_{6}	0.2151	0.398	0.0032	-0.565	0.999
β_{7}	-0.3001	0.498	0.0045	-1.282	0.685
β_{8}	-0.6040	0.498	0.0047	-1.581	0.386
β_{9}	-1.7580	0.609	0.0062	-2.946	-0.556
β_{10}	-1.7810	0.837	0.0115	-3.424	-0.123
m	7.1370	0.207		0.0024	
			0.726		
σ^{2}	0.7978	0.200			7.540
			0.495		

payments for recent accident years. Indeed, for past accident years only a few number of claim amounts in subsequent development years are still unknown.

(a) Effect of Year of Accident on claim amounts $\left(\alpha_{i}\right)$. Source: own calculations

(b) Effect of Development Year on claim amounts $\left(\beta_{j}\right)$. Source: own calculations

Figure 5: Effect of Accident and Devolpment Years on claim amounts for Model 1. Source: own calculations

The effect of development year is shown in Figure 5b. Excluding the payments settled directly at the end of the current accident year, we observe a decreasing trend for β_{j} : we expect less payments to be made for a given accident year as time increases. Once again, an increasing variance is observed, reflecting the greater uncertainty we have about the future. Figure 6 shows a plot of the standard deviation of α against the accident year, and the standard deviation of β against the development year. They are roughly the same, except that:

- the variance of α_{2} is higher than expected: this is due $Y[2,7]$ being unknown
- the variance of β_{7} is also higher than expected (for the same reason).

Figure 6: Posterior standard deviations of α_{i} and β_{j} against Year. Source: own calculations

3.2.4 Prior Sensitivity

An important criticism about the use of Bayesian Statistics is its subjectivity. Indeed, the posterior distribution may be influenced by the choice of the prior distribution.

Table 3: Comparison of the posterior means of several T_{i} for Model 1 with different priors (in \$1,000).

	T_{1}	T_{3}	T_{5}	T_{7}	T_{8}	T_{9}	Total Sum
Model 1	39345	21114	9756	3612	1451	1018	129081
Model 1 with							
Uniform Priors	40141	21427	10025	3699	1427	1006	131406

We have consequently assigned different priors to the parameters α, β, m and σ^{-2} : m, and each α_{i} and β_{j} are assigned a $\operatorname{Uniform}(-5000,5000)$ distribution, and σ^{-2} is assigned a $\operatorname{Uniform}(0,10000)$ prior distribution (as it has to be positive). All those prior distributions are flat and cover a large range of values.

To help us with comparisons, we introduce now the amount to be paid for each calendar year for this block of business, taking into account all the accident years. Let T_{i} be the estimator of the amount to be paid in each calendar year. The estimated value will be denoted by T_{i} as well. For example, T_{1} is the estimated sum to be paid next year, considering all accident years: $T_{1}=\sum_{k=2}^{10} Y_{k, 12-k}=Y_{2,10}+Y_{3,9}+Y_{4,8}+$ $Y_{5,7}+Y_{6,6}+Y_{7,5}+Y_{8,4}+Y_{9,3}+Y_{10,2}$. This is a "diagonal" sum. These quantities will be helpful for the remainder of this dissertation.

Table 12 in the Appendix shows there is little difference between the parameters obtained with the two different sets of priors. Table 3 confirms this analysis, by showing that for each calendar year the posterior means of the claim amounts calculated using the two different sets of priors are very similar (see Section 5.1 for the derivation these results). As a consequence, Model 1 is robust: the choice of prior distributions has little effect on the final results.

3.3 Model 2: Exponential Model

3.3.1 Presentation of the model

Now we consider an exponential model, similar to the one found in [9]. It is defined as follows:

$$
\begin{gathered}
Y_{i j} \mid \lambda_{i j} \sim \operatorname{Exp}\left(\lambda_{i j}\right) \\
\lambda_{i j}=\exp \left\{-\left(\phi+\gamma_{i}+\delta_{j}\right)\right\} \\
\phi, \gamma_{i}, \delta_{j} \sim N\left(0,10^{4}\right)
\end{gathered}
$$

where the sum-to-zero constraint is imposed on the γ_{i} and δ_{j} parameters, to give a two-way ANOVA-type analysis. $\underline{\gamma}$ represents the effect of the accident year and $\underline{\delta}$ the effect of the development year.

The expected value of $Y_{i j}$ conditional on $\lambda_{i j}$ is $\frac{1}{\lambda_{i j}}=\exp \left(\phi+\gamma_{i}+\delta_{j}\right)$ and its variance is $\exp \left\{\left(\phi+\gamma_{i}+\delta_{j}\right)^{2}\right\}$.

The structure of this model can be easily represented using the Doodle menu in WinBUGS (see Figure 7).

Figure 7: Directed acyclic graph representing the structure of the Exponential Model

3.3.2 Running the model using WinBUGS

Using 20,000 iterations after discarding the first 5,000 iterations, we get estimates for $\phi, \gamma_{i}, \delta_{j}$ and credible intervals (see Table 13 in Appendix). We monitored convergence with the same diagnostics as for Model 1 ; convergence occured for all parameters.

(a) Effect of Accident Year on claim amounts $\left(\gamma_{i}\right)$. Source: own calculations

(b) Effect of Development Year on claim amounts $\left(\delta_{j}\right)$. Source: own calculations

Figure 8: Effects of Accident and Development Years on claim amounts for model 2. Source: own calculations

The same patterns as in Model 1 are observed when we plot γ and δ, as shown in Figure 8: apart from the payments settled at the end of the current accident year, we observe a decreasing trend for δ_{i}. We indeed expect less payments to be made for a given accident year as time increases.

Moreover, the variance is once again increasing with time, and the same particularity is observed for years 2 and 7 (see Figure 9).

Figure 9: Standard deviations of γ and δ against Year. Source: own calculations

4 Model Selection and Posterior Predictive Checking

4.1 Model comparison (DIC)

In Section 3 we have generated values for the outstanding claims under two different models: a lognormal (Model 1) and an exponential (Model 2). We now want to compare them so that we can decide which one fits the data better.

First, Figure 10 shows a plot of the posterior mean and standard deviation of the predicted claim amounts for each calendar year for models 1 and 2 (the derivation of these predicted claims is treated in Section 5.1). The means of both models exhibit a similar pattern, with the mean of Model 2 being systematically higher. The variance of Model 2 is also higher, and the presence of the unknown value in accident year 2 is of great effect compared to Model 1, which is undesirable. Figure 11 shows the posterior distribution of T_{1} for both models ; we can observe that the exponential model has a larger variance.

Figure 10: Comparison of the mean and variance of the claim amounts for each calendar year for Models 1 and 2

(a) Lognormal model

(b) Exponential model

Figure 11: Posterior distribution for the first calendar year T_{1}, using the lognormal and exponential models

However, this does not allow us to discriminate properly between the two models. The Deviance Information Criterion (DIC) will help us do so: a lower value of the DIC indicates a better fit of the model . More information is available in [15]. The DIC is given by the expression:

$$
D I C(m)=2 \overline{D\left(\theta_{m}, m\right)}-D\left(\bar{\theta}_{m}, m\right)
$$

where $D\left(\theta_{m}, m\right)$ is the deviance measure, $\overline{D\left(\theta_{m}, m\right)}$ is its posterior mean, and $\bar{\theta}_{m}$ is the posterior mean of the parameters included in the model considered, m.

By denoting by p_{D} the effective number of parameters, we can write

$$
D I C(m)=p_{D}+\overline{D\left(\theta_{m}, m\right)}
$$

since $p_{D}=\overline{D\left(\theta_{m}, m\right)}-D\left(\bar{\theta}_{m}, m\right)$ (see [28]). Thus, the selection of the model will be influenced by $\overline{D\left(\theta_{m}, m\right)}$, which decreases as the number of parameters increases, and a penalty term p_{D}, which favours models with small numbers of parameters.

Applying this to our two models within WinBUGS, we observe that Model 1 has a DIC lower than Model 2: the difference between the two equals 5.241. According

	Dbar	Dhat	$p D$	DIC
Model 1	960.837	940.017	20.821	981.658
Model 2	969.000	951.101	17.899	986.899

Table 4: Comparison of the DIC for Model 1 and Model 2
to [15], there is enough evidence to consider Model 1 as better.

4.2 Posterior Predictive Checking \& Posterior Predictive PValue

Having selected Model 1 over Model 2, we now investigate the suitability of this model. The posterior predictive density, denoted as $\pi\left(y^{\prime} \mid y\right)$ in Section 2.1 can help us doing so, as we can easily generate new values z from this distribution using WinBUGS as we will see later in Section 5.1.

Consider the sum of the known values of each row in Table 1, i.e. only for the upper triangle, and call it $D_{i}(y, \theta)$. Thus, $D_{i}(y, \theta)=\sum_{j=1}^{l+1-i} y_{i j}$. We also consider the same sum but with data predicted from Model 1 (again, see Section 5.1 for the derivation), denoted by $D_{i}\left(y^{\prime}, \theta\right)$. Those sums are calculated at each step of the process. If our model correctly fits the data, these sums should not be very different

Define now a measure of discrepancy between the two sums as:

$$
\text { Posterior p-value } i_{i}=P\left(D_{i}\left(y^{\prime}, \theta\right)>D_{i}(y, \theta) \mid y\right)
$$

(see [21] for more details). This probability will be approximated using the following approach. At each step k, consider:

$$
a_{i}^{(k)}= \begin{cases}1 & \text { if } D_{i}^{(k)}\left(y^{\prime}, \theta\right)>D_{i}^{(k)}(y, \theta) \\ 0 & \text { if } D_{i}^{(k)}\left(y^{\prime}, \theta\right)<D_{i}^{(k)}(y, \theta)\end{cases}
$$

Then, we have Posterior p-value $i_{i} \approx \frac{1}{n-d+1} \sum_{k=d}^{n} a_{i}^{(k)}$. The implementation in WinBUGS is available in Section 7.5 of the Appendix. Values near 0.5 indicate that the distributions of y^{\prime} and y are close, whereas values close to 0 or 1 indicate real discrepancies (see [22, 23]).

Table 5 shows that all the Posterior p-values are close to 0.5 , which indicates a good fit of the model, even though it seems to slightly overestimate the true values:

Table 5: Posterior p-value for each accident year

Accident Year	1	2	3	4	5	6	7	8	9	10
Posterior p-value	0.665	0.602	0.713	0.726	0.426	0.637	0.477	0.568	0.620	0.496

most of the posterior p-values are above 0.5 . More tests are available, see for example [3] for more details.

We could have considered another test statistic, such that the overall sum of the upper-triangle. By using the same method, we get a Posterior p-value of 0.5923 , which shows adequate goodness of fit as well.

5 Prediction and Comparison with Chain Ladder

5.1 Predictive distribution for future or missing observations using MCMC methods

We want to obtain estimates for future amounts to be paid, as well as for the missing value y_{27} we have in accident year 2 , development year 7 .

Let $y^{m i s}$ be a future data value to be predicted and $\underline{\theta}=\left(m, \alpha, \beta, \sigma^{2}\right)$. Using the conditional independence between $y^{m i s}$ and $y^{o b s}$ given $\underline{\theta}$, we can write (see[11]):

$$
f\left(y^{m i s} \mid y^{o b s}\right)=\int f\left(y^{m i s}, \underline{\theta} \mid y^{o b s}\right) d \underline{\theta}=\int f\left(y^{m i s} \mid \underline{\theta}\right) \pi\left(\underline{\theta} \mid y^{o b s}\right) d \underline{\theta}=E_{\underline{\theta} \mid y^{o b s}}\left\{f\left(y^{m i s} \mid \underline{\theta}\right)\right\}
$$

giving the MCMC estimate

$$
f\left(y^{m i s} \mid y^{o b s}\right) \approx \frac{1}{n-d+1} \sum_{k=d}^{n} f\left(y^{m i s} \mid \underline{\theta}^{(k)}\right)
$$

where $f\left(y^{m i s} \mid \underline{\theta}\right)$ is the sampling density of $y^{m i s}, n$ is the total number of iterations ($n=25,000$ here), d is the number of discarded iterations (5,000 here) and $\underline{\theta}^{(k)}$ represents the model parameters calculated at iteration k. This equation implies that we can generate values from the predictive distribution $f\left(y^{m i s} \mid y^{o b s}\right)$ by first generating values from $f\left(y^{m i s} \mid \underline{\theta}\right)$, which is a known distribution (see Section 3.2.2), and then taking the expectation. This procedure is easily set up in WinBUGS. Table 6 shows the estimates of the outstanding claim amounts to be paid for each accident and development year.

We can also get estimates of the reserves needed for each calendar year (denoted by T_{i}, see Section 3.2.4) in respect to this block of business and we observe, as expected, that the amounts are decreasing (see Figure 12), since there are less remaining years over time where the company will have to pay, with respect to that block of business. For T_{1}, there are indeed 8 remaining years, whereas for T_{9} there is none.

Notice that the distributions of T_{i} and their total sum $\left(\sum T_{i}\right)$ are positively skewed so high payments could be predicted under this model, which happens in practice (see Figures 13 and 12). The variance is decreasing over time as there is less uncertainty over time (since there are less payments to be made).

Table 6: Estimation of the outstanding claim amounts (in $\$ 1,000$). Source: own calculations.

Accident Year \downarrow	1	2	3	4	5	6	7	8	9	10
1										
2							1309			397
3									503	617
4								1841	632	779
5							1730	1278	442	529
6						2564	1644	1194	423	501
7					3280	2055	1254	923	317	384
8				5632	5589	3403	2159	1598	557	668
9			8288	5226	5264	3166	2006	1485	511	599
10		15110	13900	8778	8805	5334	3413	2433	852	1018

Figure 12: Estimated amounts to be paid per calendar year (in $\$ 1,000$). Source: own calculations.

Table 7: Estimated amounts to be paid per accident year (in $\$ 1,000$). Source: own calculations.

Accident year	1	2	3	4	5	6	7	8	9	10
Claim amounts	known	397	1119	3252	3979	6326	8212	19606	26545	59640

Figure 13: Distribution function of the total sum ($\sum T_{i}$)

Figure 14: Estimated amounts to be paid per Accident Year

We also looked at the expected amounts to be paid per accident year (see Table 7). They are increasing: for the second accident year only the amount in development year 10 is taken into account, whereas for the last accident year only the payment for the first development year is not taken into account. As expected, the variance is increasing due to the bigger number of values to be estimated (see Figure 14).

5.2 Results obtained with the Chain Ladder Method

We now want to implement the ladder method (see [4,5] for more detailed explanations):

- Consider the data in their cumulative form

Table 8: Estimation of the outstanding claim amounts with the Chain Ladder method (in $\$ 1,000$). Source: own calculations.

Accident Year \downarrow	Devolpment Year \rightarrow									
	1	2	3	4	5	6	7	8	9	10
1										
2										154
3									397	220
4								900	474	262
5							1098	907	477	264
6						1797	740	612	322	178
7					2114	1636	674	557	293	162
8				3552	2861	2214	912	753	396	219
9			3364	2373	1911	1479	609	503	265	147
10		4125	3358	2721	2192	1696	698	577	304	168

- Calculate λ_{j}, a pooled estimate of the development factor for claims from development year j to $j+1$ (independent of the accident year i), with $\lambda_{j}=$ $\frac{\sum_{i=1}^{l-j+1} y_{i, j}}{\sum_{i=1}^{l-j+1} y_{i, j-1}}$ (see [7] for more details)
- Estimate the remaining (unknown) values in the lower-triangle by using λ_{j} : for all i in $(l+2-j, l), y_{i, j}=\lambda_{j} y_{i, j-1}$

We keep the negative value we had initially and perform the Chain Ladder method to get estimates of the reserves we need to set up. The use of statistical package R enables us to get the following values for λ, and the estimates of the claim amounts shown in Table 8:
$\lambda=(2.99936,1.62352,1.27089,1.17168,1.11339,1.04194,1.03326,1.01694,1.00922)$.

The estimated amounts to be paid per calendar year and accident year can be calculated, as we did with the lognormal model. However, the Chain Ladder method only gives point estimates.

5.3 Comparison

Table 9 shows the posterior means of T_{i} (considering y_{27} as unknown) and the results obtained with the Chain Ladder method (keeping $y_{27}=-106$). First, note that a company would probably not take the posterior mean to set up reserves. In fact, it would rather set up a reserve that covers its outstanding liabilities with a given
probability, such as a 99.5% probability for example. In this case, a 97.5% probability of meeting the outstanding liability would lead to a reserve of $\$ 380$ million, to be compared to $\$ 52$ million obtained with the Chain Ladder.

The results differ quite a lot between the two methods (see Table 9), as also mentioned in [9]. The main advantage of Model 1 is its ability to give percentage points, as well as several statistical estimates.

Table 9: Expected claim amounts for each calendar year, calculated with the Chain Ladder method and Model 1 (in \$1000). Source: own calculations

	Chain Ladder	Lognormal model (M1)	
Assumption:	Unchanged Data	y_{27} unknown	
T_{1}	17501	Mean	97.5 percentile
T_{2}	13069	39345	126726
T_{3}	8871	30941	106517
T_{4}	5725	21114	73307
T_{5}	3529	16004	61835
T_{6}	1760	9756	39564
T_{7}	1061	5839	25604
T_{8}	451	3612	16887
T_{9}	168	1451	7393
		1018	6493
Total Sum $=\sum T_{i}$	52135	129076	379607

The results exposed above have been obtained by taking the negative value into account for the chain ladder method, but considering it as unknown for the lognormal model. To make more sensible comparisons between the two methods, we now consider a set of assumptions and calculate estimates of the claim amounts with both methods for each assumption. Several assumptions can be made: y_{27} can be left unchanged, it can be replaced by a random positive value, or it can be considered as an unknown value. Moreover, the value of y_{21} seems dubious, as it is very small compared to the other accident years. We could consequently consider it as an unknown value, or change it arbitrarily to a bigger value. Following the suggestions found in [9], we consider the following set of assumptions:

1. $y_{27}=1$, and the other claim amounts stay unchanged for this accident year
2. $y_{27}=401$ and $y_{28}=169$ (which corresponds to setting the value of the cu-
mulative payment made in accident year 2 and development year 7 equal to 16000)
3. y_{27} is unknown
4. y_{27} and y_{21} are unknown

Table 10 summarizes the results following the set of assumptions. It clearly shows that the lognormal model is much more volatile than the chain ladder method. Considering the different assumptions, the average of the totals for the chain ladder is $\$ 52$ million, with a standard deviation of $\$ 541,000$ whereas for the lognormal model the total is $\$ 156$ million and the standard deviation $\$ 93$ million, much bigger than for the chain ladder. The lognormal model does not seem to be robust concerning outliers as compared to the chain ladder.

Table 10: Expected claim amounts per calendar year (in $\$ 1,000$).

Assumption:	Unchanged Data	1	2	3	4
T_{1}	17501	17534	17418	17705	17328
T_{2}	13069	13090	12930	13178	12943
T_{3}	8871	8890	8803	8997	8832
T_{4}	5726	5753	5709	5925	5792
T_{5}	3529	3548	3415	3624	3521
T_{6}	1759	1781	1727	1907	1852
T_{7}	1061	1061	904	1004	972
T_{8}	451	450	449	454	435
T_{9}	168	168	168	169	159
Total	52135	52275	51523	52963	51834

(a) Chain Ladder method

Assumption:	Unchanged Data	1	2	3	4
T_{1}	-	88417	38689	39343	25902
T_{2}	-	68315	30055	30941	19614
T_{3}	-	49221	20505	21112	13093
T_{4}	-	35971	15306	16004	9424
T_{5}	-	20941	8810	9756	5632
T_{6}	-	8325	4718	5839	3225
T_{7}	-	10889	2709	3612	1870
T_{8}	-	5005	1455	1451	720
T_{9}	-	3861	974	1018	504
Total	-	290945	123221	129076	79984

(b) Lognormal Model

6 Conclusion

In this dissertation, we have shown how one can use Bayesian Statistics and MCMC techniques to model the outstanding liabilities of an insurance company. We have considered two stochastic models, an exponential and a lognormal, and have been able to select the one fitting the data better through the use of the Deviance Information Criterion. The effect of accident year and development year have been highlighted. We have then focused our attention on estimating the claim amounts for each accident and calendar year.

One of the main advantages of this method is that we now have estimates for the mean and variance of the outstanding claim amounts, as well as percentile points. It can prove very useful if one wants to find the VaR or any other risk measure for a block of business. Nevertheless, it is much more volatile than the Chain Ladder in case of missing values.

We have also shown that the results obtained are quite different from the ones obtained with the Chain Ladder method, which confirms what had been already observed in [9]. The expected total claim amount is indeed $\$ 52$ millions with the Chain Ladder, as compared to $\$ 129$ million in our model (more than twice as much). However, the comparison between the two methods is not straightforward here, due to a lack of future data: we are not able to assess which method predicts the outstanding liabilities better.

Moreover, the model developed here does not use any information from the claim numbers. If these are available, a different model can be used to take into account their variation as well. The same remark can be made concerning the premiums received.

Finally, the presence of negative values in the upper-triangle can be handled in different ways, we refer the interested reader to [8] and [27] for more information.

7 Appendix

7.1 Validation of methodology through some theoretical considerations

In this Section, we give a theoretical validation of the methodology used in Section 5.1 where we calculated estimates for the outstanding claim amounts to be paid for each accident year.

Let $E\left(Y_{i .} \mid \theta\right)$ be the expected value of the claim amounts to be paid for accident year i (i.e. we take into consideration only the values located in the lower triangle), for $2 \leq i \leq l$.

We have:

$$
\begin{gathered}
E\left(Y_{i .} \mid \underline{\theta}\right)=E\left(\sum_{j=l+2-i}^{l} Y_{i j} \mid \underline{\theta}\right)=\sum_{j=l+2-i}^{l} E\left(Y_{i j} \mid \underline{\theta}\right)=\sum_{j=l+2-i}^{l} \exp \left(m+\alpha_{i}+\beta_{j}+\frac{\sigma^{2}}{2}\right) \\
E\left(Y_{i .} \mid \underline{\theta}\right)=\exp \left(m+\alpha_{i}+\frac{\sigma^{2}}{2}\right) \sum_{j=l+2-i}^{l} \exp \left(\beta_{j}\right) .
\end{gathered}
$$

Using WinBUGS, we monitor the random variable $\exp \left(m+\alpha_{i}+\frac{\sigma^{2}}{2}\right) \sum_{j=l+2-i}^{l} \exp \left(\beta_{j}\right)$ and get its posterior mean. Table 11 shows:

- the expected claim amounts for each accident year, $E\left(Y_{i} \mid \underline{\theta}\right)$, coming from theoretical considerations,
- the calculated claim amounts for each accident year, coming from numerical calculations only (WinBUGS).

These results are very close and confirm the validity of our methodology. This method can also be used to easily obtain the values of the amounts to be paid per accident year.

Table 11: "Expected" and calculated claim amounts for each accident year (in $\$ 1,000$). Source: own calculations

Accident Year	1	2	3	4	5	6	7	8	9	10
Calculated claim amounts	known	397	1119	3252	3979	6326	8212	19606	26545	59640
"Expected" claim amounts	known	396	1120	3260	3982	6347	8105	19680	26650	59680

7.2 Estimated values of the parameters in Model 1

Table 12: Comparison of the estimated values of the parameters in Model 1 for two different sets of priors. Source: own calculations

Mean			Monte Carlo Error	
	Model 1 initial	Model 1 with Uniform priors	Model 1 initial	Model 1 with Uniform priors
α_{1}	-0.1717	-0.1668	0.0023	0.0025
α_{2}	-0.2805	-0.2825	0.0029	0.0029
α_{3}	0.154	0.1483	0.0026	0.0028
α_{4}	0.3724	0.3728	0.0028	0.0027
α_{5}	-0.0117	-0.0125	0.0028	0.0030
α_{6}	-0.0842	-0.0861	0.0031	0.0032
α_{7}	-0.3755	-0.3745	0.0037	0.0034
α_{8}	0.1311	0.1343	0.0043	0.0048
α_{9}	-0.0087	-0.0068	0.0063	0.0068
α_{10}	0.2749	0.2737	0.0114	0.0118
β_{1}	0.2106	0.2152	0.0023	0.0025
β_{2}	1.3130	1.3160	0.0026	0.0030
β_{3}	1.2160	1.2230	0.0027	0.0027
β_{4}	0.7470	0.7540	0.0028	0.0026
β_{5}	0.7527	0.7473	0.0030	0.0030
β_{6}	0.2151	0.2262	0.0032	0.0031
β_{7}	-0.3001	-0.2937	0.0045	0.0045
β_{8}	-0.6040	-0.5933	0.0047	0.0044
β_{9}	-1.7580	-1.7700	0.0062	0.0064
β_{10}	-1.7810	-1.8250	0.0115	0.0115
m	7.1370	7.1340	0.0024	0.0025
σ^{2}	0.7978	0.8015	0.0016	0.0016

7.3 Estimated Values of the parameters in Model 2

Table 13: Estimated values of the parameters in Model 2. Source: own calculations

	Mean	Monte Carlo Error
γ_{1}	-0.1169	0.0049
γ_{2}	-0.0647	0.0069
γ_{3}	0.0362	0.0054
γ_{4}	0.2487	0.0065
γ_{5}	0.1377	0.0065
γ_{6}	-0.1745	0.0068
γ_{7}	-0.3514	0.0073
γ_{8}	0.0399	0.0083
γ_{9}	0.0137	0.0106
γ_{10}	0.2313	0.0175
δ_{1}	0.4157	0.0054
δ_{2}	1.134	0.0052
δ_{3}	1.159	0.0063
δ_{4}	0.6881	0.0060
δ_{5}	0.5359	0.0058
δ_{6}	0.2969	0.0071
δ_{7}	-0.2499	0.0072
δ_{8}	-0.7938	0.0089
δ_{9}	-1.474	0.0097
δ_{10}	-1.712	0.0178
ϕ	7.516	0.0104

7.4 Initial Values for the Brooks-Gelman-Rubin diagnostic

Table 14: Initial values for the Brooks-Gelman-Rubin diagnostic

Chain 1

α	$N A$	0	0	0	0	0	0	0	0
β	$N A$	0	0	0	0	0	0	0	0
m	1								
τ	1								

Chain 2

α	$N A$	-1	-1	-1	-1	-1	-1	-1	-1
β	$N A$	1	1	1	1	1	1	1	1
m	5								
τ	5								

Chain 3

α	$N A$	1	1	1	1	1	1	1	1
β	$N A$	1	1	1	1	1	1	1	1
m	5								
τ	5								

7.5 Code for the Lognormal model (Model 1) in WinBUGS

```
model {
#############################################################################
#Model's likelihood
for (i in 1:n) {
for (j in 1:n){
y[i,j] ~ dlnorm(mu[i,j], tau)
y.prime[i,j] ~ dlnorm(mu[i,j], tau) #Useful for goodness of fit
mu[i,j] <- m + alpha[i] + beta[j]
    } }
############################################################################
#CONSTRAINTS
#CR Constraints
#alpha[1] <- 0
#beta[1] <- 0
#STZ constraint
alpha[1] <- -sum(alpha[2:n])
beta[1] <- -sum(beta[2:n])
#############################################################################
#Priors
m ~ dnorm(0,0.01)
for (i in 2:n) {
alpha[i] ~ dnorm(0, 0.01)
beta[i] ~ dnorm(0,0.01) }
tau ~ dgamma(0.001, 0.001)
sigmasq <- 1/tau
###############################################################################
#sum T to be paid per year (sum diagonal)
for ( i in (n+1):(2*n-1) ) {
for ( a in 1:(i-n) ) {
    Y.T[i-n,a] <- 0
}
for ( a in (i-n+1):n ) {
Y.T[i-n,a] <- y[a, i+1-a]
}
T[i-n] <- sum( Y.T[i-n,1:n])
}
TotalSum <- sum(T[])
#############################################################################
#P-VALUE ETC
```

```
SumLine.prime[1] <- sum( y.prime[1,1:n ] )
SumLine[1] <- sum( y[1, 1:n ] )
PPPValue[1] <- step( (SumLine.prime[1] - SumLine[1]) )
#y[2,7] negative so we do not take this value into account
SumLine.prime[2] <- sum( y.prime[2,1:6 ] )+sum( y.prime[2,8:9] )
SumLine[2] <- sum( y[2,1:6 ] )+sum( y[2,8:9] )
PPPValue[2] <- step( (SumLine.prime[2] - SumLine[2]) )
for ( i in 3:n ) {
SumLine.prime[i] <- sum( y.prime[i,1: (n+1-i) ] )
SumLine[i] <- sum( y[i, 1:(n+1-i) ] )
PPPValue[i] <- step( (SumLine.prime[i] - SumLine[i]) ) }
PPPValueTotal <- sum(PPPValue[])/10
```

\#
\#ACCIDENT YEAR
AccidentYear[1] <- 0
for (i in 2:n)\{
AccidentYear[i] <- sum(y[i,(n+2-i):n])
\}
\#We can check if the sum is equal to TotalSum (and this is the case!)
\#Total <- sum(AccidentYear[])
\}
\#
\#DATA
list(n=10)

$y[, 1]$	$y[, 2]$	$y[, 3]$	$y[, 4]$	$y[, 5]$	$y[, 6]$	$y[, 7]$	$y[, 8]$	$y[, 9]$	$y[, 10]$
5012	3257	2638	898	1734	2642	1828	599	54	172
106	4179	1111	5270	3116	1817	NA	673	535	NA
3410	5582	4881	2268	2594	3479	649	603	NA	NA
5655	5900	4211	5500	2159	2658	984	NA	NA	NA
1092	8473	6271	6333	3786	225	NA	NA	NA	NA
1513	4932	5257	1233	2917	NA	NA	NA	NA	NA
557	3463	6926	1368	NA	NA	NA	NA	NA	NA
1351	5596	6165	NA						
3133	2262	NA							
2063	NA								

END
\#
\#INITS
list(alpha=c(NA, 0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1),
beta=c(NA,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5), m=5, tau=1)
list(alpha=c(NA,2,2,2,2,2,2,2,2,2), beta $=c(N A, 0,0,0,0,0,0,0,0,0), m=10$, tau=10)

7.6 Code for the Exponential model (Model 2) in WinBUGS

```
model {
############################################################################
#Model's likelihood
for (i in 1:n) {
for (j in 1:n){
y[i,j] ~ dexp(lambda[i,j])
    y.prime[i,j] ~ dexp(lambda[i,j])
    lambda[i,j] <- exp(-(phi + gamma[i] + delta[j]))
    }
}
############################################################################
#CONSTRAINTS
#CR Constraints
            #gamma[1] <- 0
            #delta[1] <- 0
#STZ constraint
                    gamma[1] <- -sum(gamma[2:n])
                delta[1] <- -sum(delta[2:n])
############################################################################
#Priors
phi ~ dnorm(0,0.01)
    for (i in 2:10) {
        gamma[i] ~ dnorm(0, 0.01)
        delta[i] ~ dnorm(0,0.01) }
############################################################################
#sum T to be paid per year (sum diagonal)
    for ( i in (n+1):(2*n-1) ) {
    for ( a in 1:(i-n) ) {
        Y.T[i-n,a] <- 0 }
            for ( a in (i-n+1):n ) {
            Y.T[i-n,a] <- y[a, i+1-a] }
T[i-n] <- sum( Y.T[i-n,1:n]) }
    TotalSum <- sum(T[])
############################################################################
#P-VALUE ETC
SumLine.prime[1] <- sum( y.prime[1,1:n ] )
    SumLine[1] <- sum( y[1, 1:n ] )
    PPPValue[1] <- step( (SumLine.prime[1] - SumLine[1]) )
```

\#y $[2,7]$ negative so we do not take this value into account
SumLine.prime[2] <- sum(y.prime[2,1:6])+sum(y.prime[2,8:9])
SumLine[2] <- sum(y[2,1:6])+sum (y[2,8:9])
PPPValue[2] <- step((SumLine.prime[2] - SumLine[2]))
for (i in 3:n) \{ SumLine.prime[i] <- sum(y.prime[i,1:(n+1-i)])
SumLine[i] <- sum(y[i, 1:(n+1-i)])
PPPValue[i] <- step((SumLine.prime[i] - SumLine[i])) \}
\# \#ACCIDENT YEAR
AccidentYear[1] <- 0
for (i in 2:n)\{
AccidentYear[i] <- sum(y[i,(n+2-i):n]) \}
\#We can check if the sum is equal to TotalSum (and this is the case!) \#Total <- sum(AccidentYear [])
\}
\#
\#Data
list(n=10)

$y[, 1]$	$y[, 2]$	$y[, 3]$	$y[, 4]$	$y[, 5]$	$y[, 6]$	$y[, 7]$	$y[, 8]$	$y[, 9]$	$y[, 10]$
5012	3257	2638	898	1734	2642	1828	599	54	172
106	4179	1111	5270	3116	1817	NA	673	535	NA
3410	5582	4881	2268	2594	3479	649	603	NA	NA
5655	5900	4211	5500	2159	2658	984	NA	NA	NA
1092	8473	6271	6333	3786	225	NA	NA	NA	NA
1513	4932	5257	1233	2917	NA	NA	NA	NA	NA
557	3463	6926	1368	NA	NA	NA	NA	NA	NA
1351	5596	6165	NA						
3133	2262	NA							
2063	NA								

END
\#
\#Inits
list(gamma=c(NA,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1), delta=c(NA,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5), phi=1)

References

[1] Personal lecture notes taken during MSc course, 2009/10.
[2] Scollnik, D.P.M (2002), "Actuarial Modeling with MCMC and BUGS", North American Actuarial Journal 5, No. 2., 96-124
[3] Ntzoufras, I. (2009). Bayesian Modeling Using WinBUGS. New York: John Wiley \& Sons, Inc.
[4] Boland, P. J. (2007). Statistical and probabilistic methods in Actuarial Science. London: Chapman \& Hall/CRC.
[5] Personal lecture notes taken during MSc course, 2009/10.
[6] Verrall, R. J. (1991), "On the estimation of reserves from loglinear models", Insurance: Mathematics and Economics 10 (1), 75-80.
[7] Verrall, R. J. (1990), "Bayes and Empirical Bayes Estimation for the Chain Ladder Model", ASTlN Bulletin 20, 217-243.
[8] de Alba, E. and Ramírez Corzo, M.A. (2005), "Bayesian Claims Reserving When There Are Negative Values in the Runoff Triangle", 40 th. Actuarial Research Conference ITAM, Mexico August 11-13, 2005.
[9] Mack, T. (1994), "Which stochastic model is underlying the chain ladder method?", Insurance: mathematics and economics 15, 133-138.
[10] Rubin, D.B. (1992), 'Inference from Iterative Simulation Using Multiple Sequences Andrew Gelman", Statistical Science 7 (4), 457-472.
[11] Personal lecture notes taken during MSc course, 2009/10.
[12] Tse, Y.-K. (2009). Nonlife Actuarial Models: Theory, Methods and Evaluation, International Series on Actuarial Science, Cambridge, Cambridge University Press.
[13] International Society for Bayesian Analysis (ISBA), http://www.bayesian.org/
[14] Geweke, J. (1992), "Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments". In J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith, eds., Bayesian Statistics 4, Oxford: Oxford University Press.
[15] Spiegelhalter, D.J., Best, N.G., Carlin, B. R. and van der Linde, A. (2002), "Bayesian measures of model complexity and fit", Proceedings of the Royal Society of London Series B - Biological Sciences 64 (4), 583-639
[16] Brooks S. P., and Gelman, A., (1998), "General Methods for Monitoring Convergence of Iterative Simulations", Journal of Computational and Graphical Statistics 7 (4), 434-455
[17] Raftery, A. and Lewis, S. (1992), "How many iterations in the Gibbs sampler?". In J. Bernardo, J. Berger, A. Dawid, and A. Smith, eds., Bayesian Statistics 4, 763-774. Oxford: Claredon Press.
[18] Heidelberger, P. and Welch, P. (1992), "Simulation run length control in the presence of an initial transient", Operation Research 31, 1109-1144
[19] Scollnik, D. (2002), "Implementation of four models for outstanding liabilities in WinBUGS: A discussion of a paper by Ntzoufras and Dellaportas", North American Actuarial Journal 6, 128-136
[20] Ntzoufras, I. and Dellaportas, P. (2002), "Bayesian modelling of outstanding liabilities incorporating claim count uncertainty (with discussion)", North American Actuarial Journal 6, 113-128
[21] Meng, X.-L. (1994), "Posterior predictive p-values", Annals of Statistics 22, 11421160
[22] Gelman, A., Meng, X.-L. and Stern, H. (1996), "Posterior predictive assessment of model fitness via realized discrepancies", Statistica Sinica 6, 733-807
[23] Gelman, A. and Meng, X.-L. (1996), "Model checking and model improvement". In W. Gilks, S. Richardson, and D. Spiegelhalter, eds., Markov Chain Monte Carlo in Practice, 189-201. London: Chapman \& Hall.
[24] Kremer, E. (1982), "IBNR-Claims and the Two-Way Model of ANOVA", Scand. Act. J. 1, 47-55.
[25] Geyer, C. J. (1991), "Practical Markov Chain Monte Carlo", Statistical Science 7 (4), 473-483.
[26] Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (1996). Markov Chain Monte Carlo in Practice. London: Chapman and Hall.
[27] Kunkler, M. (2006), "Modelling negatives in stochastic reserving models", Insurance: Mathematics and Economics 38 (3), 540-555.
[28] Spiegelhalter, D., Thomas, A., Best, N., Lunn, D. (2003). WinBUGS User Manual, Version 1.4. http://www.mrc-bsu.cam.ac.uk/bugs.

