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Abstract

This dissertation focuses on the stochastic modelling of outstanding liabil-

ities in non-life insurance, using Bayesian Statistics. Credible intervals and

various statistical estimates can then be derived, whereas this is not the case

with the numerical methods commonly used in the industry, such as the Chain

Ladder, which only give point estimates. We ignore the claim numbers and

concentrate only on claim amounts. The modelling requires intensive use of

Bayesian methodology and Monte Carlo Markov chain (MCMC) techniques

through the WinBUGS package. We also show that the results obtained are

quite different from those with the Chain Ladder method, however there is no

obvious way to define which method is better as more data would be necessary.
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1 Introduction

In General Insurance, claim reserving is of paramount importance and is still a subject
of active research. In certain areas of insurance, such as motor insurance and property
insurance, claims are reported quite quickly to the insurer and are settled directly.
However, in certain cases, and for certain types of insurance products, the claims
occurred may not be reported quickly, and one may even ignore their existence for
a long period of time. For example, in Employer Liability Insurance, some workers
can be exposed now to some health-threatening substances that are not yet known
to be dangerous, as it was the case for asbestosis until recently. However, health
problems implied by those substances would be considered to be caused by work
conditions and the insurer would have to pay for them. In weather related insurance,
the total sum of the damages may be tricky to be evaluated and some time may be
needed. Even in a car accident, the liability of the policyholders involved could be
hard to determine and a trial could be needed to seal the issue, requiring some delay
between the occurrence of the claim and its settlement. Thus, insurance companies
have to develop methods to assess the loss they will suffer in the future due to policies
originated in previous years. This would enable them to set up reserves now to be
able to meet their future liabilities.

For example, a company would like to know an estimate of the amount it will still
have to pay in the next 5 years due to policies originating in a specific past year,
or the amount it will have to pay in the coming year for all the policies originating
in the past. The year in which the policy was in force is known as the origin year,
or accident year, and the year in which a claim is settled is called the development
year. For example, consider a car accident taking place in 2005. For some reason, the
claim is settled in 2008 by the insurance company. The accident year is then 2005,
and the development year is 2008, which will be called year 4 (2005 is development
year 1, so 2008 is development year 4 ).

Using a matrix representation with l accident years and l development years,
we will call yij the amount “paid” in development year j for all policies in force in
accident year i (i.e. paid j-1 years after their originating year). If i+j > l+1, then
yij will have to be estimated, which is the core of this dissertation. In the following
table, the empty cells repesent these unknown quantities that we want to estimate.
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Accident / Development Year 1 2 3 4

1 y11 y12 y13 y14

2 y21 y22 y23

3 y31 y32

4 y41

Several methods are used in practice to estimate yij for i, j such that i+j>l+1 : the
chain ladder, the average cost per claim, and the Bornhuetter-Ferguson ones are the
most common [4, 5]. Given the data that we will study, only the claim amounts will
be known and we will therefore concentrate on the Chain Ladder method. However,
all these recipes are not statistically based. Consequently, no confidence intervals,
standard deviations or other statistical tools are available with these methods which
only give point estimates. To remedy these problems, we will build statistical mod-
els to represent the claim amounts, and estimate the unknown parameters from the
data by using Bayesian statistics and Markov chain Monte Carlo (MCMC) algo-
rithms. Several models have already been proposed (see [9, 6] for example), some
using Bayesian Statistics (see [19, 20]).

Section 2 will briefly review the concepts of Bayesian Statistics and MCMC meth-
ods. It sets the theoretical background needed for the remainder of this dissertation.
In Section 3, two different stochastic models of the claim amounts will be presented,
with a brief discussion of their respective characteristics. Then, Section 4 will help us
select the model that fits the data better, and the goodness of fit of the best one will
be checked. Finally, Section 5 explains how to predict future values, and compares
the results obtained with those derived using the Chain Ladder method.
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2 Theoretical Background

2.1 Bayesian Statistics

In statistics, the use of Bayesian Inference has become more and more common over
the last 20 years, as shown by the creation of The International Society for Bayesian
Analysis (ISBA) in 1992 “to promote the development and application of Bayesian
analysis useful in the solution of theoretical and applied problems in science, industry
and government” [13]. Until then, Classical Statistics was the standard approach, but
several limitations have been pointed out and one of the most important ones comes
from its definition: in classical statistics, the only definition of the probability of
an event is its long run frequency in a sequence of independent trials [1]. Thus,
the probability that Mr X voted Conservative in the last elections is meaningless.
However, one would like to be able to define such a “subjective probability”, which is
possible with the use of Bayesian Statistics.

Bayesian Statistics is getting used extensively in Actuarial Science as well, and
we therefore want to remind the reader of the basics, which will be used throughout
this dissertation.

In Bayesian Statistics, unknown quantities are treated as random variables. Sup-
pose that the distribution of a continuous random variable Y (for example the random
loss variable) depends on a parameter θ. We consider θ as a realisation of a random
variable Θ, which has a statistical distribution called the prior distribution. Its prob-
ability density function will be denoted by π(θ). The conditional density function of
Y given θ is denoted fY (y|θ).

Based on the observed data Y = y, the distribution of Θ is updated, and we
get the distribution of Θ|y, called the posterior distribution. We then calculate an
estimate of the random loss by taking the mean of the posterior distribution so as to
minimize the quadratic loss function [5].

From a mathematical point of view, we have (see [12] for more details):

fΘY (θ, y) = fY |Θ(y|θ)π(θ)

where fΘY (θ, y) is the joint density function of Θ and Y . By integrating on Θ we get
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the marginal distribution of Y :

fY (y) =

ˆ
θ

fY |Θ(y|θ)π(θ)dθ

Moreover,
fΘY (θ, y) = π(θ|y)fY (y)

so we finally get

π(θ|y) =
π(θ)fY (y|θ)´
f(y|θ�)π(θ�)dθ�

. (1)

The denominator being an integral over the range of θ�, it depends only on y and we
can then write:

π(θ|y) ∝ π(θ)fY (y|θ).

The denominator is in fact a normalizing constant, so that π(θ|y) is well defined as a
distribution. Notice that if the posterior distribution belongs to the same family as
the prior distribution, then the latter is called a conjugate prior distribution.

If no information is known a priori on θ, one would like to have a prior distribution
that represents lack of knowledge. Such a prior distribution is known as vague or
non-informative, however, no prior really reflects complete ignorance. Jeffreys’ prior
is aimed at providing us with non-informative priors (see [1] for more details), even
though any prior sufficiently constant over a large range of values could be considered
as well.

Another important point, that will be quite useful throughout this dissertation,
is the predictive distribution. Indeed, one of our main concern will be to predict the
values taken by another quantity of interest, whose distribution depends on θ as well.
This quantity will be called z in this subsection. Once we know π(θ|y), we want
to obtain the distribution of f(z|y). We write it as “a mixture distribution over the
possible values of θ” [1]:

f(z|y) =

ˆ
f(z|y, θ)π(θ|y)dθ =

ˆ
f(z|θ)π(θ|y)dθ

since z and y are conditionally independent given the parameter vector θ.
However, the formal expressions given above are not always analytically tractable

and some numerical methods may be needed to evaluate the results.
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2.2 MCMC & WinBUGS

MCMC (Markov chain Monte Carlo) methods will enable us to explore posterior dis-
tributions by simulation, and are therefore particularly useful for multi-dimensional
problems, or problems for which we do not use conjugate prior distributions. These
methods have helped Bayesian Statistics develop a lot in recent years. WinBUGS is
a software enabling us to perform such an analysis, as we will see throughout this
dissertation.

Before explaining the algorithm, let us review quickly the basics of a Markov
chain, with details available in [3]. It is a stochastic process {θ(1), θ(2), ..., θ(n)} such
that π(θ(t+1)|θ(t), ..., θ(1)) = π(θ(t+1)|θ(t)) and π(θ(t+1)|θ(t)) is independent of time t.

Moreover, for the distribution of θ(t) to converge to its equilibrium distribution, which
is independent of θ(0), the Markov chain must be irreducible, aperiodic and positive-
recurrent.

To sample from π(θ|y) we must construct a Markov chain whose stationary dis-
tribution is the posterior distribution π(θ|y). The following algorithm, called the
Metropolis-Hastings algorithm, will help us in doing so:

• Set an initial value θ(0)

• Propose a new state θ� from a distribution q(θ�|θ(0)), known as a proposal dis-
tribution

• The proposed state is accepted with probability p = min(1, π(θ�|y)q(θ|θ�)
π(θ|y)q(θ�|θ) ). Set

θ(1) = θ� with probability p, otherwise set θ(1) = θ(0)

• Reiterate the procedure for a number of iterations so that the stationary dis-
tribution is reached.

According to Equation (1), we can simplify: p = min(1, π(θ�)fY (y|θ�)q(θ|θ�)
π(θ)fY (y|θ)q(θ�|θ) ). Notice that

the normalizing constant fY (y) does not appear in p, which makes this algorithm
particularly suited for Bayesian Statistics. WinBUGS, in addition to the Metropolis-
Hastings algorithm, also uses the Gibbs sampler, which can be viewed as a particular
case of Metropolis-Hastings ([1], [26]).

An obvious “problem” with this algorithm is convergence: it does not automati-
cally indicate when the stationary distribution is reached up to a certain percentage
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error. However, several diagnostics are used. For more information, see [10] for the
Gelman-Rubin diagnostic and [14] for the Geweke convergence diagnostic.

Consequently, we will follow the method presented in [3] when using WinBUGS:

• Select an initial value θ(0)

• Generate n values until the stationary distribution is reached

• Monitor the convergence of the algorithm through different diagnostics

• Discard the first d observations (burn-in period).

Once the first d iterations have been discarded, we can assess the accuracy of posterior
estimates by calculating their Monte Carlo error, which is an estimate of the difference
between the estimated posterior mean and its true value. As a rule of thumb, a Monte
Carlo Markov chain should be run until the Monte Carlo error for each parameter
is less than 5% its standard deviation (see [25] and [26]). This condition will be
achieved for all the simulations we will be doing.

It is also worth noticing that this algorithm does not provide us with an indepen-
dent sample. As a consequence, the chain might mix poorly and we could obsverve
considerable autocorrelation. Thinning, or subsampling, is a way to avoid this: by
using only one value every r iterations the autocorrelation will be reduced (see [25]
for more information).
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3 Models for Outstanding Claim Amounts

The main variable Y i,j, representing the stochastic amount of outstanding claim for
accident year i and development year j, will be modelled in two different ways: first
by using a Lognormal model, then an Exponential one. The data we worked with
come from [9]. The main quantities of interest are the total sum of the outstanding
liabilities, the sum to be paid at the end of each calendar year, denoted T i, and the
sum to be paid for each accident year, given that past years’ amounts are considered
as already paid.

3.1 Data: Automatic Facultative business in General Liability
(excluding Asbestos & Environmental)

The following values for Y ij have been found in [9] ; they originally come from the
Reinsurance Association of America.

Table 1: Values for 10 accident and development years in $1,000. Source: “Historical Loss

Development Study”, 1991 Edition, published by the Reinsurance Association of America

(RAA), p.96.

Development Year →
Accident Year ↓ 1 2 3 4 5 6 7 8 9 10

1 5012 3257 2638 898 1734 2642 1828 599 54 172

2 106 4179 1111 5270 3116 1817 -103 673 535

3 3410 5582 4881 2268 2594 3479 649 603

4 5655 5900 4211 5500 2159 2658 984

5 1092 8473 6271 6333 3786 225

6 1513 4932 5257 1233 2917

7 557 3463 6926 1368

8 1351 5596 6165

9 3133 2262

10 2063

The empty cells represent unknown values. All the amounts are in $1000 and
the accident years go from 1981 (i=1 ) to 1990 (i=10 ). Notice that y27 = −103 is
negative. Several explanations can be considered for such a value: “Typically, these
negative values will be the result of salvage recoveries, payments from third parties,
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total or partial cancellation of outstanding claims, due to initial overestimation of
the loss or to possible favorable jury decision in favor of the insurer, rejection by
the insurer, or just plain errors” [8]. We will not use this value and consider it as
an unknown quantity to be estimated instead. With the lognormal model presented
above it is in fact impossible to deal with negative values, which consequently have to
be removed or modified. In WinBUGS, this quantity will be entered as “NA” instead
of -103. If we want to keep this negative value, then other models have to be used,
such as a lognormal with three parameters (see [8]). This goes beyond the scope of
this dissertation.

3.2 Model 1: Lognormal Model

3.2.1 Presentation of the model

The first model considered will be a Lognormal model, similar to the models presented
in [7] and [9]. We consider the amounts of outstanding claims to follow a Lognormal

distribution conditionally on the parameters µij and σ2:

Yij|µij, σ2 ∼ LN(µij, σ2)

µij = m + αi + βj

m, αi, βj ∼ N(0, 104) independent

σ2 ∼ Inv −Gamma(10−3, 10−3)

for i=1, ..., l and j=1, ..., l. Here the parameters αi and βj denote the effect of
year of origin and year of settlement respectively. We will study and interpret their
trends in a later section. µij is the mean of the logarithm of the data. It is expressed
as the sum of m (overall mean), αi and βj, to reflect differences in the expected
claim amounts for each accident year i and development year j. The parameter σ2 is
modelled using an Inverse Gamma prior distribution as it has to be non-negative. The
small values used for the parameters in the Inv-Gamma distribution, and the large
variance of the Normal distribution are intended to provide non-informative prior
distributions: these priors are all vague, reflecting our uncertainty and ignorance
of the true values taken by m, α, β and σ2. The large prior variances indicate this
uncertainty.
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Figure 1: Directed Acyclic Graph representing the structure of the Lognormal Model

The lognormal model is well suited for modelling claim amounts as these ones
must be positive (in most cases), and it has fat tails: it is skewed to the right. As
mentioned earlier, we will then replace -103 by a “NA” in WinBUGS: it is considered
as an unknown value that has to be estimated.

This model can be represented easily in a directed acyclic graph, using the Doodle
menu in WinBUGS (see Figure 1).

For now, our aim will be to estimate the values of α, β, m and σ2 using the
available data. As described in Section 2.1, those parameters are considered as being
random variables in Bayesian Statistics. We give them prior distributions as described
previously, and will aim to obtain their posterior distributions.

Our analysis is similar to a two-way analysis of variance (ANOVA) with α rep-
resenting the effect of the year of origin, and β, representing the effect of the year
of settlement. A restriction is consequently imposed on these effects, for example
α1 = β1 = 0 (corner constraint) where α1 and β1 are chosen as references for com-
parison, or

�
i αi =

�
j βj = 0 (sum-to-zero constraint) where the respective means

of α and β are chosen as references (details in [24]). We will use the sum-to-zero
constraint for the remainder of this dissertation.

Under this model and these restrictions, we have to estimate the parameters m,
α2, α3, α4, α5, α6, α7, α8, α9, α10, β2, β3, β4, β5, β6, β7, β8, β9, β10, σ2, Y 27, and Y ij for
all i, j such that i + j > l + 1 = 11. It is worth noticing that α1 and β1 do not
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need to be estimated, due to the constraint we have set up: α1 = −
�10

i=2 αi and the
corresponding equation holds for β1.

The next Section shows how to analytically obtain the posterior distributions in
this case. The derivation is presented as an example and implies heavy algebraic
manipulations. In practice, we will use MCMC methodology (implemented in Win-
BUGS) to find estimates of the values of our parameters.

3.2.2 Derivation of the posterior distributions

We introduce a new random variable to simplify the following calculations: let Zij =

log(Yij) be the logarithm of the claim amounts. Then, Zij ∼ N(µij, σ2): it has a
normal distribution. We consider the parameters α, β, σ2 and m, and we split the
logarithms of the claim amounts in two categories: known amounts denoted by zobs,
and unknown (or missing) amounts denoted by zmiss. The aim of this section is
to analytically derive the posterior distributions of these quantities (this is in fact
what WinBUGS does, in a numerical way). The following algebraic derivations are
adapted from [20]. For clarity of the mathematical expressions, we will consider that
Y 27 is known ; the modification to be made in case it is not known is explained at
the end of this Section.

Using Bayes Theorem and denoting by f the prior, conditional and marginal den-
sities, we get:

f(m, α, β, σ2, zmis|zobs) ∝ f(zobs|m, α, β, σ2, zmis)f(m, α, β, σ2, zmis)

f(m, α, β, σ2, zmis|zobs) ∝ f(zobs|m, α, β, σ2)f(m)f(α)f(β)f(σ2)f(zmis|m, α, β, σ2)

by assuming prior independence. We can sample the missing values directly from
the conditional predictive distribution f(zmis|m, α, β, σ2).

The conditional distributions of all the parameters can now be obtained (by Bayes
Theorem):

f(m|α, β, σ2, zobs) ∝ f(zobs|α, β, σ2)f(m) (2)

f(α|m, β, σ2, zobs) ∝ f(zobs|m, β, σ2)f(α)

f(β|m, α, σ2, zobs) ∝ f(zobs|m, α, σ2)f(β)

f(σ2|m, α, β, zobs) ∝ f(zobs|m, α, β)f(σ2)
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Here we derive as an example an analytical expression for f(m|α, β, σ2, zobs):
First,

f(zobs|m, α, β, σ2) = (2πσ2)−
U
2 exp{− 1

2σ2
(

l�

i=1

l−i+1�

j=1

(zij −m− αi − βj)
2)} (3)

with l = 10 in our case, and U is the number of known values (i.e. the number
of cells in the upper-triangle), worth l(l+1)

2 if all the values in the upper triangle are
known.

Considering the fact that m has a normal prior distribution, and by equations (2)
and (3), we get (the bounds are omitted in the sums, but it must be clear that they
remain unchanged from equation (3)):

f(m|α, β, σ2, zobs) ∝ exp{− m2

2σ2
m

− 1

2σ2

l�

i=1

l−i+1�

j=1

[m− (zij − αi − βj)]
2}

f(m|α, β, σ2, zobs) ∝ exp{−1

2
(
m2

σ2
m

+
1

σ2

� �
(m− sij)

2)}

by denoting sij = zij−αi−βj. Keeping only the terms involving m and rearranging,
we get successively:

f(m|α, β, σ2, zobs) ∝ exp(−1

2
(
m2

σ2
m

+
m2

σ2
U − 2

m

σ2

� �
sij))

f(m|α, β, σ2, zobs) ∝ exp(−1

2
(

1

σ2
m

+
U

σ2
)(m2 − 2m

� �
sij

σ2

σ2
m

+ U
))

f(m|α, β, σ2, zobs) ∝ exp(− 1

2σ2
∗
(m−m∗)

2)

where σ2
∗ = σ2

σ2

σ2
m

+U
and m∗ =

P P
sij

σ2

σ2
m

+U
.

Consequently,
m|α, β, σ2, zobs ∼ N(m∗, σ

2
∗)

By considering that y27 is an unknown value, equation (3) would be replaced by:

f(zobs|m, α, β, σ2) =
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(2πσ2)−
U
2 exp{− 1

2σ2
((

� l−i+1�

j=1

(zij −m− αi − βj)
2 − (z27 −m− α2 − β7)

2)}

and the subsequent calculations are modified consequently, with U = l(l+1)
2 − 1.

3.2.3 Running the model using WinBUGS

Convergence issues

As raised in Section 2.2, one needs to check the convergence of the MCMC algorithm.
The first and easiest way to have a rough idea about whether convergence occured
is to visually inspect at the trace of several parameters. Figure 2 shows the trace of
α10, which does not show any particular pattern and seems to mix well.

Figure 2: Trace of α10

Then, several diagnostics are performed to have a more precise view on conver-
gence. The Brooks-Gelman-Rubin diagnostic available from the bgr diag option in
WinBUGS is one of them. We need to generate several chains in parallel, each one
starting with different initial values. The diagnostic is performed by comparing the
ratio of the between-and-within chain variability (R), and for convergence we should
have R ≈ 1 (see [10] and [16] for more details). R can be estimated by �R = V̂

WSS where
V̂ is the pooled posterior variance estimate and WSS is the mean of the variances
within each sample (see [3]). Figure 3 plots the Brooks-Gelman-Rubin diagnostic on
α10 for three chains of 8,000 iterations. The pooled posterior variance V̂ is plotted
in green, the average within-sample variance WSS is plotted in blue, and their ratio
R is in red. R ≈ 1 after roughly 4,000 iterations, which indicates that the chain has
converged. Consequently, we will consider a burn-in period of 5,000 iterations when
running the chains. The initial values used for the three chains are available in Table
14 in the Appendix. Convergence occurred for all parameters.
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Figure 3: Gelman-Rubin diagnostic

Other tests are available, for example the CODA package in the statistical software
R includes the Geweke (see [14]), the Raftery-Lewis (see [17]) and the Heidelberger-
Welch (more details in [18]) diagnostics as well.

The Geweke diagnostic performed on our data, using the CODA package in R,
confirmed the conclusions of the preceding test. This diagnostic splits the sample into
two parts, the initial 10% and the last 50%, and applies a Z test to check whether
the means of the output are equal. A value |Z| > 2 indicates non-convergence. The
maximum absolute value observed for all parameters was 1.7614 (for β5 in Chain
2), which is between -2 and 2 and therefore indicates convergence. The Geweke
diagnostic confirms the results we had with the Brooks-Gelman-Rubin diagnostic ;
convergence occurs for all parameters.

However, the algorithm used does not provide an independent sample, and the
chain may, as a consequence, mix poorly. The autocorrelation function of α10 is
displayed on Figure 4, which strongly confirms that we have a correlated sample.
One way to attenuate the correlation within the sample is to thin the chain. This
consists of taking only one value every r iterations, instead of every iteration. We
have consequently run the same model with a burn-in period of d=5,000 iterations, a
thinning of r=20 and 8,000 points. In Figure 4, we can see the thinning has heavily
reduced the correlation.
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(a) Autocorrelation of α10 before thin-
ning

(b) Autocorrelation of α10 after thin-
ning

Figure 4: Comparison of autocorrelations before and after thinning

Parameter estimates

We now want to obtain estimates of α, β, m and σ2. After discarding the first 5,000

iterations as a burn-in period and running an additional 20,000 iterations, with a
thinning of 20, we obtain estimates for the different parameters. We can compare the
different values of αi with their overall mean in order to see their effect. For example,
a negative value of αi will indicate that the total claim amount to be paid for accident
year i is less than the overall mean for this block of business. The estimates of α and
β, denoting respectively the effect of an accident year and a development year, are
available in Table 2, as well as the estimates for m and σ2.

Figure 5a shows the effect of the year of accident. There is no clear pattern,
a decrease in α could represent a decline in the activity of the company such as a
decreasing number of policyholders, or simply a year where the amount of claims (in
value) has decreased, without implying anything else on the health of the company.
However, one can notice the increasing pattern of the posterior variance of the esti-
mates. This is due to the fact that we have less data to estimate αi as i increases:
remember we only know the values of the upper-triangle, so for accident year 10 only
one claim amount is known whereas 10 claim amounts are known for accident year
1. This increasing trend of the variance reflects the uncertainty we have about future
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Table 2: Estimated Values of the parameters in Model 1

Mean Standard Error Monte Carlo Error 2.5th percentile 97.5th percentile

α1 -0.1717 0.327 0.0023 -0.814 0.477
α2 -0.2805 0.341 0.0029 -0.948 0.390
α3 0.154 0.333 0.0026 -0.497 0.819
α4 0.3724 0.350 0.0028 -0.323 1.06
α5 -0.0117 0.368 0.0028 -0.740 0.711
α6 -0.0842 0.398 0.0031 -0.871 0.696
α7 -0.3755 0.434 0.0037 -1.242 0.477
α8 0.1311 0.499 0.0043 -0.851 1.107
α9 -0.0087 0.597 0.0063 -1.196 1.157
α10 0.2749 0.842 0.0114 -1.382 1.920

β1 0.2106 0.328 0.0023 -0.428 0.855
β2 1.3130 0.325 0.0026 0.677 1.953
β3 1.2160 0.334 0.0027 0.558 1.878
β4 0.7470 0.349 0.0028 0.056 1.432
β5 0.7527 0.368 0.0030 0.012 1.467
β6 0.2151 0.398 0.0032 -0.565 0.999
β7 -0.3001 0.498 0.0045 -1.282 0.685
β8 -0.6040 0.498 0.0047 -1.581 0.386
β9 -1.7580 0.609 0.0062 -2.946 -0.556
β10 -1.7810 0.837 0.0115 -3.424 -0.123

m 7.1370 0.207 0.0024 6.726 7.540

σ2 0.7978 0.200 0.0016 0.495 1.271
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payments for recent accident years. Indeed, for past accident years only a few number
of claim amounts in subsequent development years are still unknown.

(a) Effect of Year of Accident on claim amounts
(αi). Source: own calculations

(b) Effect of Development Year on claim amounts
(βj). Source: own calculations

Figure 5: Effect of Accident and Devolpment Years on claim amounts for Model 1.
Source: own calculations
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The effect of development year is shown in Figure 5b. Excluding the payments
settled directly at the end of the current accident year, we observe a decreasing trend
for βj: we expect less payments to be made for a given accident year as time increases.
Once again, an increasing variance is observed, reflecting the greater uncertainty we
have about the future. Figure 6 shows a plot of the standard deviation of α against
the accident year, and the standard deviation of β against the development year.
They are roughly the same, except that:

• the variance of α2 is higher than expected: this is due Y [2, 7] being unknown

• the variance of β7 is also higher than expected (for the same reason).
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Figure 6: Posterior standard deviations of αi and βj against Year. Source: own
calculations

3.2.4 Prior Sensitivity

An important criticism about the use of Bayesian Statistics is its subjectivity. Indeed,
the posterior distribution may be influenced by the choice of the prior distribution.
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Table 3: Comparison of the posterior means of several T i for Model 1 with different
priors (in $1,000).

T 1 T 3 T 5 T 7 T 8 T 9 Total Sum
Model 1 39345 21114 9756 3612 1451 1018 129081

Model 1 with
Uniform Priors 40141 21427 10025 3699 1427 1006 131406

We have consequently assigned different priors to the parameters α, β, m and σ−2:
m, and each αi and βj are assigned a Uniform(−5000, 5000) distribution, and σ−2 is
assigned a Uniform(0, 10000) prior distribution (as it has to be positive). All those
prior distributions are flat and cover a large range of values.

To help us with comparisons, we introduce now the amount to be paid for each
calendar year for this block of business, taking into account all the accident years. Let
T i be the estimator of the amount to be paid in each calendar year. The estimated
value will be denoted by T i as well. For example, T 1 is the estimated sum to be paid
next year, considering all accident years: T 1 =

�10
k=2 Yk,12−k = Y2,10 + Y3,9 + Y4,8 +

Y5,7 + Y6,6 + Y7,5 + Y8,4 + Y9,3 + Y10,2. This is a “diagonal” sum. These quantities will
be helpful for the remainder of this dissertation.

Table 12 in the Appendix shows there is little difference between the parameters
obtained with the two different sets of priors. Table 3 confirms this analysis, by
showing that for each calendar year the posterior means of the claim amounts cal-
culated using the two different sets of priors are very similar (see Section 5.1 for the
derivation these results). As a consequence, Model 1 is robust: the choice of prior
distributions has little effect on the final results.

3.3 Model 2: Exponential Model

3.3.1 Presentation of the model

Now we consider an exponential model, similar to the one found in [9]. It is defined
as follows:

Y ij|λij ∼ Exp(λij)

λij = exp{−(φ + γi + δj)}

φ, γi, δj ∼ N(0, 104)
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where the sum-to-zero constraint is imposed on the γi and δj parameters, to give
a two-way ANOVA-type analysis. γ represents the effect of the accident year and δ

the effect of the development year.
The expected value of Y ij conditional on λij is 1

λij
= exp(φ + γi + δj) and its

variance is exp{(φ + γi + δj)2}.
The structure of this model can be easily represented using the Doodle menu in

WinBUGS (see Figure 7).

Figure 7: Directed acyclic graph representing the structure of the Exponential Model

3.3.2 Running the model using WinBUGS

Using 20,000 iterations after discarding the first 5,000 iterations, we get estimates for
φ, γi, δj and credible intervals (see Table 13 in Appendix). We monitored convergence
with the same diagnostics as for Model 1 ; convergence occured for all parameters.
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(a) Effect of Accident Year on claim
amounts (γi). Source: own calculations

(b) Effect of Development Year on claim
amounts (δj). Source: own calculations

Figure 8: Effects of Accident and Development Years on claim amounts for model 2.
Source: own calculations

The same patterns as in Model 1 are observed when we plot γ and δ, as shown
in Figure 8: apart from the payments settled at the end of the current accident year,
we observe a decreasing trend for δi. We indeed expect less payments to be made for
a given accident year as time increases.

Moreover, the variance is once again increasing with time, and the same particu-
larity is observed for years 2 and 7 (see Figure 9).
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Figure 9: Standard deviations of γ and δ against Year. Source: own calculations
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4 Model Selection and Posterior Predictive Check-

ing

4.1 Model comparison (DIC)

In Section 3 we have generated values for the outstanding claims under two different
models: a lognormal (Model 1) and an exponential (Model 2). We now want to
compare them so that we can decide which one fits the data better.

First, Figure 10 shows a plot of the posterior mean and standard deviation of the
predicted claim amounts for each calendar year for models 1 and 2 (the derivation of
these predicted claims is treated in Section 5.1). The means of both models exhibit a
similar pattern, with the mean of Model 2 being systematically higher. The variance
of Model 2 is also higher, and the presence of the unknown value in accident year
2 is of great effect compared to Model 1, which is undesirable. Figure 11 shows the
posterior distribution of T1 for both models ; we can observe that the exponential
model has a larger variance.
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Figure 10: Comparison of the mean and variance of the claim amounts for each
calendar year for Models 1 and 2
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(a) Lognormal model

(b) Exponential model

Figure 11: Posterior distribution for the first calendar year T 1, using the lognormal
and exponential models

However, this does not allow us to discriminate properly between the two models.
The Deviance Information Criterion (DIC) will help us do so: a lower value of the
DIC indicates a better fit of the model . More information is available in [15]. The
DIC is given by the expression:

DIC(m) = 2D(θm, m)−D(θm, m)

where D(θm, m) is the deviance measure, D(θm, m) is its posterior mean, and θm

is the posterior mean of the parameters included in the model considered, m.
By denoting by pD the effective number of parameters, we can write

DIC(m) = pD + D(θm, m)

since pD = D(θm, m)−D(θm, m) (see [28]). Thus, the selection of the model will
be influenced by D(θm, m), which decreases as the number of parameters increases,
and a penalty term pD, which favours models with small numbers of parameters.

Applying this to our two models within WinBUGS, we observe that Model 1 has
a DIC lower than Model 2: the difference between the two equals 5.241. According
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Dbar Dhat pD DIC

Model 1 960.837 940.017 20.821 981.658

Model 2 969.000 951.101 17.899 986.899

Table 4: Comparison of the DIC for Model 1 and Model 2

to [15], there is enough evidence to consider Model 1 as better.

4.2 Posterior Predictive Checking & Posterior Predictive P-
Value

Having selected Model 1 over Model 2, we now investigate the suitability of this
model. The posterior predictive density, denoted as π(y�|y) in Section 2.1 can help
us doing so, as we can easily generate new values z from this distribution using
WinBUGS as we will see later in Section 5.1.

Consider the sum of the known values of each row in Table 1, i.e. only for the
upper triangle, and call it Di(y, θ). Thus, Di(y, θ) =

�l+1−i
j=1 yij. We also consider

the same sum but with data predicted from Model 1 (again, see Section 5.1 for the
derivation), denoted by Di(y�, θ). Those sums are calculated at each step of the
process. If our model correctly fits the data, these sums should not be very different
.

Define now a measure of discrepancy between the two sums as:

Posterior p-valuei = P (Di(y�, θ) > Di(y, θ)|y)

(see [21] for more details). This probability will be approximated using the fol-
lowing approach. At each step k, consider:

a(k)
i =





1 ifD(k)

i (y�, θ) > D(k)
i (y, θ)

0 ifD(k)
i (y�, θ) < D(k)

i (y, θ)

Then, we have Posterior p-valuei ≈ 1
n−d+1

�n
k=d a(k)

i . The implementation in Win-
BUGS is available in Section 7.5 of the Appendix. Values near 0.5 indicate that the
distributions of y’ and y are close, whereas values close to 0 or 1 indicate real dis-
crepancies (see [22, 23]).

Table 5 shows that all the Posterior p-values are close to 0.5, which indicates a
good fit of the model, even though it seems to slightly overestimate the true values:
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Table 5: Posterior p-value for each accident year

Accident Year 1 2 3 4 5 6 7 8 9 10

Posterior p-value 0.665 0.602 0.713 0.726 0.426 0.637 0.477 0.568 0.620 0.496

most of the posterior p-values are above 0.5. More tests are available, see for example
[3] for more details.

We could have considered another test statistic, such that the overall sum of the
upper-triangle. By using the same method, we get a Posterior p-value of 0.5923,
which shows adequate goodness of fit as well.
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5 Prediction and Comparison with Chain Ladder

5.1 Predictive distribution for future or missing observations
using MCMC methods

We want to obtain estimates for future amounts to be paid, as well as for the missing
value y27 we have in accident year 2, development year 7.

Let ymis be a future data value to be predicted and θ = (m, α, β, σ2). Using the
conditional independence between ymis and yobs given θ, we can write (see[11]):

f(ymis|yobs) =

ˆ
f(ymis, θ|yobs)dθ =

ˆ
f(ymis|θ)π(θ|yobs)dθ = Eθ|yobs{f(ymis|θ)}

giving the MCMC estimate

f(ymis|yobs) ≈ 1

n− d + 1

n�

k=d

f(ymis|θ(k))

where f(ymis|θ) is the sampling density of ymis, n is the total number of itera-
tions (n=25,000 here), d is the number of discarded iterations (5,000 here) and θ(k)

represents the model parameters calculated at iteration k. This equation implies that
we can generate values from the predictive distribution f(ymis|yobs) by first gener-
ating values fromf(ymis|θ), which is a known distribution (see Section 3.2.2), and
then taking the expectation. This procedure is easily set up in WinBUGS. Table 6
shows the estimates of the outstanding claim amounts to be paid for each accident
and development year.

We can also get estimates of the reserves needed for each calendar year (denoted by
T i, see Section 3.2.4) in respect to this block of business and we observe, as expected,
that the amounts are decreasing (see Figure 12), since there are less remaining years
over time where the company will have to pay, with respect to that block of business.
For T 1, there are indeed 8 remaining years, whereas for T 9 there is none.

Notice that the distributions of Ti and their total sum (
�

Ti) are positively skewed
so high payments could be predicted under this model, which happens in practice (see
Figures 13 and 12). The variance is decreasing over time as there is less uncertainty
over time (since there are less payments to be made).
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Table 6: Estimation of the outstanding claim amounts (in $1,000). Source: own
calculations.

Accident Year ↓ 1 2 3 4 5 6 7 8 9 10
1
2 1309 397
3 503 617
4 1841 632 779
5 1730 1278 442 529
6 2564 1644 1194 423 501
7 3280 2055 1254 923 317 384
8 5632 5589 3403 2159 1598 557 668
9 8288 5226 5264 3166 2006 1485 511 599
10 15110 13900 8778 8805 5334 3413 2433 852 1018

Figure 12: Estimated amounts to be paid per calendar year (in $1,000 ). Source: own
calculations.

Table 7: Estimated amounts to be paid per accident year (in $1,000 ). Source: own
calculations.

Accident year 1 2 3 4 5 6 7 8 9 10

Claim amounts known 397 1119 3252 3979 6326 8212 19606 26545 59640
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Figure 13: Distribution function of the total sum (
�

Ti)

Figure 14: Estimated amounts to be paid per Accident Year

We also looked at the expected amounts to be paid per accident year (see Table
7). They are increasing: for the second accident year only the amount in development
year 10 is taken into account, whereas for the last accident year only the payment
for the first development year is not taken into account. As expected, the variance is
increasing due to the bigger number of values to be estimated (see Figure 14).

5.2 Results obtained with the Chain Ladder Method

We now want to implement the ladder method (see [4, 5] for more detailed explana-
tions):

• Consider the data in their cumulative form
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Table 8: Estimation of the outstanding claim amounts with the Chain Ladder method
(in $1,000). Source: own calculations.

Devolpment Year →
Accident Year ↓ 1 2 3 4 5 6 7 8 9 10

1
2 154
3 397 220
4 900 474 262
5 1098 907 477 264
6 1797 740 612 322 178
7 2114 1636 674 557 293 162
8 3552 2861 2214 912 753 396 219
9 3364 2373 1911 1479 609 503 265 147
10 4125 3358 2721 2192 1696 698 577 304 168

• Calculate λj, a pooled estimate of the development factor for claims from
development year j to j+1 (independent of the accident year i), with λj =

Pl−j+1
i=1 yi,jPl−j+1

i=1 yi,j−1
(see [7] for more details)

• Estimate the remaining (unknown) values in the lower-triangle by using λj: for
all i in (l+2-j, l), yi,j = λjyi,j−1

We keep the negative value we had initially and perform the Chain Ladder method
to get estimates of the reserves we need to set up. The use of statistical package R

enables us to get the following values for λ, and the estimates of the claim amounts
shown in Table 8:

λ = (2.99936, 1.62352, 1.27089, 1.17168, 1.11339, 1.04194, 1.03326, 1.01694, 1.00922).

The estimated amounts to be paid per calendar year and accident year can be
calculated, as we did with the lognormal model. However, the Chain Ladder method
only gives point estimates.

5.3 Comparison

Table 9 shows the posterior means of T i (considering y27 as unknown) and the results
obtained with the Chain Ladder method (keeping y27 = −106) . First, note that
a company would probably not take the posterior mean to set up reserves. In fact,
it would rather set up a reserve that covers its outstanding liabilities with a given
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probability, such as a 99.5% probability for example. In this case, a 97.5% probability
of meeting the outstanding liability would lead to a reserve of $380 million, to be
compared to $52 million obtained with the Chain Ladder.

The results differ quite a lot between the two methods (see Table 9), as also
mentioned in [9]. The main advantage of Model 1 is its ability to give percentage
points, as well as several statistical estimates.

Table 9: Expected claim amounts for each calendar year, calculated with the Chain Ladder

method and Model 1 (in $1000). Source: own calculations

Chain Ladder Lognormal model (M1)
Assumption: Unchanged Data y27 unknown

Mean 97.5 percentile
T 1 17501 39345 126726
T 2 13069 30941 106517
T 3 8871 21114 73307
T 4 5725 16004 61835
T 5 3529 9756 39564
T 6 1760 5839 25604
T 7 1061 3612 16887
T 8 451 1451 7393
T 9 168 1018 6493

Total Sum =
�

Ti 52135 129076 379607

The results exposed above have been obtained by taking the negative value into
account for the chain ladder method, but considering it as unknown for the lognor-
mal model. To make more sensible comparisons between the two methods, we now
consider a set of assumptions and calculate estimates of the claim amounts with both
methods for each assumption. Several assumptions can be made: y27 can be left
unchanged, it can be replaced by a random positive value, or it can be considered as
an unknown value. Moreover, the value of y21 seems dubious, as it is very small com-
pared to the other accident years. We could consequently consider it as an unknown
value, or change it arbitrarily to a bigger value. Following the suggestions found in
[9], we consider the following set of assumptions:

1. y27 = 1, and the other claim amounts stay unchanged for this accident year

2. y27 = 401 and y28 = 169 (which corresponds to setting the value of the cu-
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mulative payment made in accident year 2 and development year 7 equal to
16000 )

3. y27 is unknown

4. y27 and y21 are unknown

Table 10 summarizes the results following the set of assumptions. It clearly shows that
the lognormal model is much more volatile than the chain ladder method. Considering
the different assumptions, the average of the totals for the chain ladder is $52 million,
with a standard deviation of $541,000 whereas for the lognormal model the total is
$156 million and the standard deviation $93 million, much bigger than for the chain
ladder. The lognormal model does not seem to be robust concerning outliers as
compared to the chain ladder.
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Table 10: Expected claim amounts per calendar year (in $1,000).

Assumption: Unchanged Data 1 2 3 4
T 1 17501 17534 17418 17705 17328
T 2 13069 13090 12930 13178 12943
T 3 8871 8890 8803 8997 8832
T 4 5726 5753 5709 5925 5792
T 5 3529 3548 3415 3624 3521
T 6 1759 1781 1727 1907 1852
T 7 1061 1061 904 1004 972
T 8 451 450 449 454 435
T 9 168 168 168 169 159

Total 52135 52275 51523 52963 51834
(a) Chain Ladder method

Assumption: Unchanged Data 1 2 3 4
T 1 - 88417 38689 39343 25902
T 2 - 68315 30055 30941 19614
T 3 - 49221 20505 21112 13093
T 4 - 35971 15306 16004 9424
T 5 - 20941 8810 9756 5632
T 6 - 8325 4718 5839 3225
T 7 - 10889 2709 3612 1870
T 8 - 5005 1455 1451 720
T 9 - 3861 974 1018 504

Total - 290945 123221 129076 79984
(b) Lognormal Model
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6 Conclusion

In this dissertation, we have shown how one can use Bayesian Statistics and MCMC
techniques to model the outstanding liabilities of an insurance company. We have
considered two stochastic models, an exponential and a lognormal, and have been able
to select the one fitting the data better through the use of the Deviance Information
Criterion. The effect of accident year and development year have been highlighted.
We have then focused our attention on estimating the claim amounts for each accident
and calendar year.

One of the main advantages of this method is that we now have estimates for the
mean and variance of the outstanding claim amounts, as well as percentile points. It
can prove very useful if one wants to find the VaR or any other risk measure for a
block of business. Nevertheless, it is much more volatile than the Chain Ladder in
case of missing values.

We have also shown that the results obtained are quite different from the ones
obtained with the Chain Ladder method, which confirms what had been already
observed in [9]. The expected total claim amount is indeed $52 millions with the
Chain Ladder, as compared to $129 million in our model (more than twice as much).
However, the comparison between the two methods is not straightforward here, due to
a lack of future data: we are not able to assess which method predicts the outstanding
liabilities better.

Moreover, the model developed here does not use any information from the claim
numbers. If these are available, a different model can be used to take into account
their variation as well. The same remark can be made concerning the premiums
received.

Finally, the presence of negative values in the upper-triangle can be handled in
different ways, we refer the interested reader to [8] and [27] for more information.
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7 Appendix

7.1 Validation of methodology through some theoretical con-
siderations

In this Section, we give a theoretical validation of the methodology used in Section
5.1 where we calculated estimates for the outstanding claim amounts to be paid for
each accident year.

Let E(Y i.|θ) be the expected value of the claim amounts to be paid for accident
year i (i.e. we take into consideration only the values located in the lower triangle),
for 2 ≤ i ≤ l.

We have:

E(Y i.|θ) = E(
l�

j=l+2−i

Yij|θ) =
l�

j=l+2−i

E(Yij|θ) =
l�

j=l+2−i

exp(m + αi + βj +
σ2

2
)

E(Y i.|θ) = exp(m + αi +
σ2

2
)

l�

j=l+2−i

exp(βj).

Using WinBUGS, we monitor the random variable exp(m+αi+
σ2

2 )
�l

j=l+2−i exp(βj)

and get its posterior mean. Table 11 shows:

• the expected claim amounts for each accident year, E(Yi.|θ), coming from the-
oretical considerations,

• the calculated claim amounts for each accident year, coming from numerical
calculations only (WinBUGS).

These results are very close and confirm the validity of our methodology. This method
can also be used to easily obtain the values of the amounts to be paid per accident
year.

Table 11: ”Expected” and calculated claim amounts for each accident year (in $1,000).
Source: own calculations

Accident Year 1 2 3 4 5 6 7 8 9 10

Calculated claim amounts known 397 1119 3252 3979 6326 8212 19606 26545 59640

“Expected” claim amounts known 396 1120 3260 3982 6347 8105 19680 26650 59680
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7.2 Estimated values of the parameters in Model 1

Table 12: Comparison of the estimated values of the parameters in Model 1 for two different

sets of priors. Source: own calculations

Mean Monte Carlo Error

Model 1 initial Model 1 with Model 1 initial Model 1 with
Uniform priors Uniform priors

α1 -0.1717 -0.1668 0.0023 0.0025
α2 -0.2805 -0.2825 0.0029 0.0029
α3 0.154 0.1483 0.0026 0.0028
α4 0.3724 0.3728 0.0028 0.0027
α5 -0.0117 -0.0125 0.0028 0.0030
α6 -0.0842 -0.0861 0.0031 0.0032
α7 -0.3755 -0.3745 0.0037 0.0034
α8 0.1311 0.1343 0.0043 0.0048
α9 -0.0087 -0.0068 0.0063 0.0068
α10 0.2749 0.2737 0.0114 0.0118

β1 0.2106 0.2152 0.0023 0.0025
β2 1.3130 1.3160 0.0026 0.0030
β3 1.2160 1.2230 0.0027 0.0027
β4 0.7470 0.7540 0.0028 0.0026
β5 0.7527 0.7473 0.0030 0.0030
β6 0.2151 0.2262 0.0032 0.0031
β7 -0.3001 -0.2937 0.0045 0.0045
β8 -0.6040 -0.5933 0.0047 0.0044
β9 -1.7580 -1.7700 0.0062 0.0064
β10 -1.7810 -1.8250 0.0115 0.0115

m 7.1370 7.1340 0.0024 0.0025

σ2 0.7978 0.8015 0.0016 0.0016
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7.3 Estimated Values of the parameters in Model 2

Table 13: Estimated values of the parameters in Model 2. Source: own calculations

Mean Monte Carlo Error

γ1 -0.1169 0.0049
γ2 -0.0647 0.0069
γ3 0.0362 0.0054
γ4 0.2487 0.0065
γ5 0.1377 0.0065
γ6 -0.1745 0.0068
γ7 -0.3514 0.0073
γ8 0.0399 0.0083
γ9 0.0137 0.0106
γ10 0.2313 0.0175

δ1 0.4157 0.0054
δ2 1.134 0.0052
δ3 1.159 0.0063
δ4 0.6881 0.0060
δ5 0.5359 0.0058
δ6 0.2969 0.0071
δ7 -0.2499 0.0072
δ8 -0.7938 0.0089
δ9 -1.474 0.0097
δ10 -1.712 0.0178

φ 7.516 0.0104
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7.4 Initial Values for the Brooks-Gelman-Rubin diagnostic

Table 14: Initial values for the Brooks-Gelman-Rubin diagnostic

Chain 1
α NA 0 0 0 0 0 0 0 0
β NA 0 0 0 0 0 0 0 0
m 1
τ 1

Chain 2
α NA -1 -1 -1 -1 -1 -1 -1 -1
β NA 1 1 1 1 1 1 1 1
m 5

τ 5

Chain 3
α NA 1 1 1 1 1 1 1 1
β NA 1 1 1 1 1 1 1 1
m 5

τ 5
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7.5 Code for the Lognormal model (Model 1) in WinBUGS

model {

############################################################################

#Model’s likelihood

for (i in 1:n) {

for (j in 1:n){

y[i,j] ~ dlnorm(mu[i,j], tau)

y.prime[i,j] ~ dlnorm(mu[i,j], tau) #Useful for goodness of fit

mu[i,j] <- m + alpha[i] + beta[j]

} }

############################################################################

#CONSTRAINTS

#CR Constraints

#alpha[1] <- 0

#beta[1] <- 0

#STZ constraint

alpha[1] <- -sum(alpha[2:n])

beta[1] <- -sum(beta[2:n])

############################################################################

#Priors

m ~ dnorm(0,0.01)

for (i in 2:n) {

alpha[i] ~ dnorm(0, 0.01)

beta[i] ~ dnorm(0,0.01) }

tau ~ dgamma(0.001, 0.001)

sigmasq <- 1/tau

#############################################################################

#sum T to be paid per year (sum diagonal)

for ( i in (n+1):(2*n-1) ) {

for ( a in 1:(i-n) ) {

Y.T[i-n,a] <- 0

}

for ( a in (i-n+1):n ) {

Y.T[i-n,a] <- y[a, i+1-a]

}

T[i-n] <- sum( Y.T[i-n,1:n])

}

TotalSum <- sum(T[])

#############################################################################

#P-VALUE ETC
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SumLine.prime[1] <- sum( y.prime[1,1:n ] )

SumLine[1] <- sum( y[1, 1:n ] )

PPPValue[1] <- step( (SumLine.prime[1] - SumLine[1]) )

#y[2,7] negative so we do not take this value into account

SumLine.prime[2] <- sum( y.prime[2,1:6 ] )+sum( y.prime[2,8:9] )

SumLine[2] <- sum( y[2,1:6 ] )+sum( y[2,8:9] )

PPPValue[2] <- step( (SumLine.prime[2] - SumLine[2]) )

for ( i in 3:n ) {

SumLine.prime[i] <- sum( y.prime[i,1: (n+1-i) ] )

SumLine[i] <- sum( y[i, 1:(n+1-i) ] )

PPPValue[i] <- step( (SumLine.prime[i] - SumLine[i]) ) }

PPPValueTotal <- sum(PPPValue[])/10

##############################################################################

#ACCIDENT YEAR

AccidentYear[1] <- 0

for (i in 2:n){

AccidentYear[i] <- sum(y[i,(n+2-i):n])

}

#We can check if the sum is equal to TotalSum (and this is the case!)

#Total <- sum(AccidentYear[])

}

###############################################################################

#DATA

list(n=10)

y[,1] y[,2] y[,3] y[,4] y[,5] y[,6] y[,7] y[,8] y[,9] y[,10]

5012 3257 2638 898 1734 2642 1828 599 54 172

106 4179 1111 5270 3116 1817 NA 673 535 NA

3410 5582 4881 2268 2594 3479 649 603 NA NA

5655 5900 4211 5500 2159 2658 984 NA NA NA

1092 8473 6271 6333 3786 225 NA NA NA NA

1513 4932 5257 1233 2917 NA NA NA NA NA

557 3463 6926 1368 NA NA NA NA NA NA

1351 5596 6165 NA NA NA NA NA NA NA

3133 2262 NA NA NA NA NA NA NA NA

2063 NA NA NA NA NA NA NA NA NA

END

###############################################################################

#INITS

list(alpha=c(NA,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1),

beta=c(NA,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5), m=5, tau=1)
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list(alpha=c(NA,2,2,2,2,2,2,2,2,2),

beta=c(NA,0,0,0,0,0,0,0,0,0), m=10, tau=10)
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7.6 Code for the Exponential model (Model 2) in WinBUGS

model {

############################################################################

#Model’s likelihood

for (i in 1:n) {

for (j in 1:n){

y[i,j] ~ dexp(lambda[i,j])

y.prime[i,j] ~ dexp(lambda[i,j])

lambda[i,j] <- exp(-(phi + gamma[i] + delta[j]))

}

}

############################################################################

#CONSTRAINTS

#CR Constraints

#gamma[1] <- 0

#delta[1] <- 0

#STZ constraint

gamma[1] <- -sum(gamma[2:n])

delta[1] <- -sum(delta[2:n])

############################################################################

#Priors

phi ~ dnorm(0,0.01)

for (i in 2:10) {

gamma[i] ~ dnorm(0, 0.01)

delta[i] ~ dnorm(0,0.01) }

############################################################################

#sum T to be paid per year (sum diagonal)

for ( i in (n+1):(2*n-1) ) {

for ( a in 1:(i-n) ) {

Y.T[i-n,a] <- 0 }

for ( a in (i-n+1):n ) {

Y.T[i-n,a] <- y[a, i+1-a] }

T[i-n] <- sum( Y.T[i-n,1:n]) }

TotalSum <- sum(T[])

############################################################################

#P-VALUE ETC

SumLine.prime[1] <- sum( y.prime[1,1:n ] )

SumLine[1] <- sum( y[1, 1:n ] )

PPPValue[1] <- step( (SumLine.prime[1] - SumLine[1]) )
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#y[2,7] negative so we do not take this value into account

SumLine.prime[2] <- sum( y.prime[2,1:6 ] )+sum( y.prime[2,8:9] )

SumLine[2] <- sum( y[2,1:6 ] )+sum( y[2,8:9] )

PPPValue[2] <- step( (SumLine.prime[2] - SumLine[2]) )

for ( i in 3:n ) { SumLine.prime[i] <- sum( y.prime[i,1:(n+1-i) ] )

SumLine[i] <- sum( y[i, 1:(n+1-i) ] )

PPPValue[i] <- step( (SumLine.prime[i] - SumLine[i]) ) }

############################################################################

#ACCIDENT YEAR

AccidentYear[1] <- 0

for (i in 2:n){

AccidentYear[i] <- sum(y[i,(n+2-i):n]) }

#We can check if the sum is equal to TotalSum (and this is the case!)

#Total <- sum(AccidentYear[])

}

############################################################################

#Data

list(n=10)

y[,1] y[,2] y[,3] y[,4] y[,5] y[,6] y[,7] y[,8] y[,9] y[,10]

5012 3257 2638 898 1734 2642 1828 599 54 172

106 4179 1111 5270 3116 1817 NA 673 535 NA

3410 5582 4881 2268 2594 3479 649 603 NA NA

5655 5900 4211 5500 2159 2658 984 NA NA NA

1092 8473 6271 6333 3786 225 NA NA NA NA

1513 4932 5257 1233 2917 NA NA NA NA NA

557 3463 6926 1368 NA NA NA NA NA NA

1351 5596 6165 NA NA NA NA NA NA NA

3133 2262 NA NA NA NA NA NA NA NA

2063 NA NA NA NA NA NA NA NA NA

END

############################################################################

#Inits

list(gamma=c(NA,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1),

delta=c(NA,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5), phi=1)
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