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Abstract

We propose a new approach to analyse the effect of diversification on a portfolio of
risks. By means of mixing techniques, we provide an explicit formula for the probability
density function of the portfolio. These techniques allow to compute analytically risk
measures as VaR or TVaR, and consequently the associated diversification benefit.
The explicit formulas constitute ideal tools to analyse the properties of risk measures
and diversification benefit. We use standard models, which are popular in the reinsu-
rance industry, Archimedean survival copulas and heavy tailed marginals. We explore
numerically their behavior and compare them to the aggregation of independent ran-
dom variables, as well as of linearly dependent ones. Moreover, the numerical conver-
gence of Monte Carlo simulations of various quantities is tested against the analytical
result. The speed of convergence appears to depend on the fatness of the tail; the
higher the tail index, the faster the convergence.
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1 Introduction

Risk and capital considerations are becoming central to the risk management of (re)insurance. In
particular, the advent of Solvency 2 in the European Union is bringing along many new require-
ments that push the industry in this direction. For instance, Solvency 2 directive requires from
(re)insurance companies to assess the capital needed to ensure their solvency. It is defined as
the VaR of the own funds (the aggretated asset and liability risks) subject to a confidence level of
99.5% over a one year period.

Understanding the diversification benefit is essential to the business model of reinsurance com-
panies. Diversification is at the heart of efficient risk management, capital optimization and com-
petitive pricing. Internal models are considered as the best solution to monitor the risk within the
(re)insurer’s portfolio and to compute the Solvency Capital Requirements (SCR), provided that
the models are approved by the regulators. However, the authorities demand a validation of the
whole modeling process and in particular of the techniques used. This implies thorough mathe-
matical and best practice justifications of the choice of each distribution, assumption, parameter
estimation, risk aggregation technique. Most models are based on Monte Carlo (MC) simulations
of a large number of dependent risks. The convergence of such models is hard to prove mathe-
matically and their stability, as a function of the number of simulations, is difficult to assess. The
analytical approach is a way to measure the performance of the MC method, and potentially to
replace it in some cases. Here, we propose this approach to improve our understanding and test
the validity of model results.

Using standard models of the literature, we provide explicit expressions for the probability density
function of aggregated dependent risks, allowing to compute analytically risk measures as VaR
or TVaR, and consequently the diversification benefit. This can be considered as a step towards
the development of methods for model validation. To achieve this, we use mixing techniques (see
[10, 9]) over risk parameter values. It is a standard tool in credibility theory, but less explored
for actuarial dependent risks modeling. Whereas it has been used in ruin theory (see [2]), we
introduce it for risk measures and diversification benefit. Here, we concentrate on the numerical
analysis in order to test the performance of the MC method and to measure the impact of the
dependence (versus independence), as well as of the model choice (light versus heavy tails).
Special efforts have been put in presenting in a consistent and clear way the mixing techniques
approach. Following a similar path, we can extend the study to more general models for any tail
index independently of the dependence parameter. It is the subject of a forthcoming paper.

The paper is organized as follows. We describe in Section 2 the framework of constructing
Archimedean copulas using the mixing techniques. In Sections 3 and 4, we present the main
analytical and numerical results for two combinations of dependence structure and marginal distri-
butions (Pareto-Clayton and Weibull-Gumbel). In Section 5, we discuss the diversification benefit
as a function of the aggregation factor and the risk measures. General conclusions follow in the
last section 6.




2 From the mixing techniques to Archimedean copulas

A general method for constructing multivariate Archimedean copulas has been introduced by
Oakes in the bivariate case (see [10]) and extended in the multivariate case by Marshall and Olkin
(see [9]). The idea behind this method is to use the mixing technique over a latent variable as
a tool for dependence modeling. Introducing a latent variable to transform dependent variables
into conditionally independent ones, allows to express the dependence between the variables as
an Archimedean survival copula with parameter the latent variable, and to obtain the marginal
distributions depending on this parameter. Namely, we have

THEOREM 2.1. OAKES-MARSHALL-OLKIN'
Let © be a positive random variable (rv) with cumulative distribution function (cdf) Fg and X,
k =1, be random variables (rv) such that

n
P(X) > X1, Xn > X 1©=6) = [ H(xp)? (1)
k=1

H being a positive function. The dependence model specified by (1) is a variant of the structure

dependence generated by an Archimedean survival copula with generator ¢ = L', where Lo
denotes the Laplace transform of Fg:

PIXy> X1, X > Xp] = (Z Y(Fi(xi) )) (2)

where the marginal distributions F). of X, k=1,...,n, are defined by

Fi(x):=1-F(x) = Lo(-In H(x)) (3)

By means of this mixing technique, we can provide an explicit formula for the probability density
function (pdf) of aggregated risks X;, i =1,---, n, of a dependence model. Finding the appropriate
choice of the function H and the mixing parameter © to fit the marginals and the dependence
model is the key step to derive via the Oakes-Marshall-Olkin theorem an explicit formula for the
pdf.

With the explicit pdf fs, of the aggregate risk S, := Z?ZlXi, denoted by f,, when no possible
confusion, we can derive the formulas for the risk measures and the diversification benefit. Recall
that the diversification performance of a portfolio S, is measured on the gain of capital when
considering a portfolio instead of a sum of standalone risks. The capital is defined by the deviation
to the expectation, and the diversification benefit ([3]) at a threshold k¥ (0 < x < 1), by

Px(Sn) —E(Sn) - px(Sn) —E(Sn)

D, (S,)=1- — -
(o (X)) —E(X)) Y px(Xi) —E(Sp)

(4)

"Note that we choose to denote this result as "the Oakes-Marshall-Olkin Theorem". It has been introduced and
developed by Oakes for the bivariate case (see [10]) and generalized for any n by Marshall & Olkin (see [9]).
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where py denotes a risk measure at threshold k. This indicator helps determining the optimal port-
folio of the company since diversification reduces the risk and thus enhances the performance. By
making sure that the diversification benefit is maximal, the company obtains the best performance
for the lowest risk. However, it is important to note that D, (S;) is not a universal measure and
depends on the number of risks undertaken and the chosen risk measure.

We will consider two examples of dependent models, presented in Marshall & Olkin ([9]) (and,
since, considered in various papers, as e.g. in [2]), that are useful in the reinsurance context. The
first model is with Pareto marginals and a Clayton structure of dependence, which is standard in
reinsurance context as it captures the dependence in the tail. The second one considers Weibull
marginals and a Gumbel copula; it is an interesting alternative since it combines tail dependence
with thin tail distributions.

Throughout the paper, we will assume the same threshold x for any quantity defined w.r.t. this
threshold, hence we will omit it in the notation of those quantities.

3 Pareto marginals with Clayton survival copula

In this example, we consider a dependent model X = (Xj,..., X;;) with marginals F; (i = 1,...,n)
(a, B)-Pareto distributed with a > 1, > 0, i.e. such that

E(x)::l—Fi(x):(1+%)_, Vx>0, i=1,..n. (5)

If B =1, we simplify the notation writing a-Pareto.
Recall that the quantile g; of order k of a (a, B)-Pareto cdf is given by

g1 =VaR() = B((1-1)"¥-1) 6)

The dependence structure of the model is chosen as a Clayton survival copula with parameter
0 > 0, defined on [0,1]" by

" " -1/0
Co (u1,-++, un) = @p" (Z (Pe(ui)) = (Z u;®—(n- 1))
i=1 i=1

with its generator ¢ given by
po=t"0-1, re[o;1]. (7)

3.1 Analytical results

Computing directly the pdf of the aggregate risk S, = ?:1 X; associated to our dependent model
may be a difficult task, hence the choice of using the mixing technique to work with conditional
independence. We obtain the following result.




PROPOSITION 3.1. Consider the dependent model X = (X1,..., Xy) with marginals F; (i =1,...,n)
(a, B)-Pareto distributed (see (5)), « > 1,8 > 0, and Clayton survival copula with parameter 6 =

n
1/a > 0 (see(7)). Then the pdf f,, of the aggregate risk S, = Z X; is the one of a compound
i=1
Gamma distribution (or beta distribution of the second kind with parameters (n,a) ) given, for
s>0, by
'Ba Sn—l

Jn$)= Bla,n) (B+s)""

(8)

B denoting the beta function.

The choice 6 = 1/a is a constraint of this model. However, it can be generalized to separate the
dependence from the tail index. This is the subject of a forthcoming paper.

Proof. The proof relies mainly on the application of the Oakes-Marshall-Olkin Theorem, which
makes the computations of f;, easier.

As given in [9], choosing H(x) = e * for x > 0, and the latent rv ® a Gamma I'(a;8) random

variable (rv) with shape parameter a > 0 and rate parameter 8 > 0 (or scale parameter 1/f) with
a

pdf fo(x) = 'B—x“_le_ﬁxll(xzo), allows to check that the model defined by (2) and (3), which

I'(a)
corresponds to our model, satisfies (1) by the Oakes-Marshall-Olkin Theorem.

For more clarity and to be self contained, let us briefly check this statement.

t -
The Laplace transform of ® being Lg(f) = (1 + —) , the marginal distribution defined in (3) satis-

p

X —-a
fies Lo(—In H(x)) = (1 + E) with this choice of H. It corresponds on (0,00) to the survival cdf

of a (a, B)-Pareto defined in (5). Hence obtain back the marginal distributions of our model.

Now, since the generator of the Archimedean survival copula defined in (2), is given by
P =Le ' =p(t7V*-1),

we obtain the structure of dependence assumed in our model (as the Archimedean generator
is invariant to multiplication of the argument by a positive constant), namely (7) when taking the
parameter 0 =1/a.

Since conditioning X by © transforms the dependent risks into independent conditional ones, we
write the pdf f, of S;, as

fn(S):fO fs.10(5) fo (0)dO.

With the choice of H and ©, our model satisfies (1), hence the conditional rv’'s X; | @ =6, i =
1,---,n, arei.i.d. exponentially distributed with parameter 8. We deduce that their conditional sum
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n
S, = Z X; | © =0 is I'(n,0)-distributed. So we obtain immediately that the pdf of S,, is the one of
i=1
a compound Gamma distribution and is given by

fn(s)

f Qn —s6 ﬂ 906 1 —ﬁ@de r(a+n) ﬁasn_l

r( ) I'(a) F@Cn) (f+5)°""

hence the result (8). O

Having an explicit formula (8) for the pdf f;, of the aggregate risk S,, we can deduce its cdf Fs,
integrating f,, and any risk measure based on Fs, , as e.g. the two standard risk measures VaR
and TVaR.

The Value-at-Risk of n at threshold k, denoted ¢y, or gy, is obtained via its definition of quantile
of order x of Fs,, namely

qn=VaR(Sp) = FS: (x) 9)

FS“n denoting the inverse of Fs,. Note that using the relation between a beta distribution of second
kind and a beta distribution, it may also be expressed in terms of the quantile of the beta distribution
with the same parameters, B(n, a),

VaRy«(B(n,a))
1-VaR (B(n,a))

qn =
The TVaR of S;, at threshold «, defined by

(Fs,, being continuous), can be computed explicitly in terms of g, as done in the proposition below.

For completeness, let us compute the TVaR at threshold « for a («, B)-Pareto cdf, assuming a > 1
(for the existence of the TVaR) and 8 > 0. We obtain

p* L aatp
A-K@-1  (q1+p)"

TVaRy :=TVaR«(X) = where g is given in (6),

. _ 1 3
ie. TVaRl—ﬁ((l_lla)(l_K)l/a 1). (10)

THEOREM 3.1. Considering the dependent Pareto-Clayton model X given in Proposition 3.1, the
TVaR of the aggregate risk Sy, = ?:1 X; at threshold x, 0 < x < 1, is given by

TVaRn:LB((1+@)_I'a—1 n+1) (11)
(1-x)B(a,n) ' '




where B(x; a, b) denotes the incomplete Beta function defined by
X
B(x;a,b) = f u 1 -wbtdu.
0
If the shape parameter a of the Pareto margin is such that « € N\{0, 1}, then TV aR,, simplifies to

_ nﬁ _a—2 n+a-1 Jq_ n+a—-1-j ._( @)_1
TVaRn——(l_K)(a_l) (1 ;0( j )pn(l pn) , where py:= 1+[3 )
(12)
. np
ie. TVaR,= ————P[Y >a-2],
(1I-x)(a—1)

where Y follows a Binomial distribution 8(n+ a —1, py).

Formulas 11 and (12) also hold for n =1, resulting in (10).

Note that another equivalent way to express the TVaR of S;, is in terms of the hypergeometric

function » Fy (defined by »F(a, b;c;2) = ¥ (‘”(’;)(f)k 2 where (@) = He) namely
p* 1 p
TVaR;, = X _1><2F1 a+na—-1l,a,——|. (13)
(a-1D(A-x)Bla,n) g5 qn
Proof of Theorem 3.1
Using the definition of TVaR and Proposition 3.1, we obtain
1 o0 B * —a-n
TVaR,=—— sfh(®)ds = ———— s"(1+5) ds. (14)
1-xJg, (1-x)B(a,n) %ﬂ

The change of variables u = (1+ s)~! in (14) gives (11). Now let us assume that a € N\{0, 1}. We

prove (12) by induction on a.

For @ = 2, computing (11) provides

TVaR, = LB (pn; 1,n+ 1)
(1-x)B(2,n)

which corresponds to (12) when replacing a by 2.

Assume now that (12) is satisfied for any 2 < a < k (and for any n = 1). Let us prove that it holds

for a = k+ 1. It comes back to prove the induction on the following expression of the incomplete

beta function:

i ,Bn(n+1)xl—(1—pn)"+1 _np

11— n+l
1-«x n+l T (1=A=pa)™),

(k—-1!n! Lo(k-Dinl _i
B(pnik,n+1) = ———L T Bpilnt k)= Y — e pl 1 p ke
Puslons D= PP b9 j;(n+k—j)!j!p”( Pn)

; . _ 1 1 n+k
But,S|nceB(pn,1,n+k)——n+k(1 (1-pp) )

(k=Din! = (k=D!n!
(n+k)! 20 (n+k-jj!

B(ppik,n+1) = pha—py)" . (15)
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It is immediate to check that (15) is satisfied for k = 2. Then, assuming that (15) holds for k €
N\{0, 1} (and any n = 1), we check that it remains true for k + 1. An integration by part gives

. _ 1 ko _ n+1 k .
B(ppk+1,n+1) = —n+1p”(1 Pn) +—n+lB(pn,k,n+2).

Under the inductive assumption, we can apply (15) to express B(pn; k, n+ 2); replacing it in the
previous equation provides that B(p,; k + 1, n + 1) satisfies (15). Hence the result. O

In the bivariate case (n = 2), the analytical expression (13) can be simplified as follows.

COROLLARY 3.1. Consider the dependent model X = (X1, X») with marginals Fy, F, («, B)-Pareto
distributed, a > 1, f > 0, and Clayton survival copula with parameter @ = 1/a > 0. Then the TVaR
of the aggregate risk S, = X1 + X, at threshold x, 0 < x < 1, is given by
e a(l+a) g2 +2(1 + @) go + 25
X .
1-x)(a—1) (g2 + P+

TVaR, = (16)

Proof. Using the definition of TVaR and Proposition 3.1 with n =2, gives

al+a)B% > s
TVaR, = pore (17)
l1=x Ja (B+35)
from which the result follows, via the change of variables u = s/f. O

Now we can deduce the main result, namely an explicit formula of the diversification benefit asso-
ciated to our model, defined in (4), and denoted by D,, when choosing TVaR as risk measure, and
D, for VaR.

COROLLARY 3.2. Consider the dependent Pareto-Clayton model X = (Xj,i = 1) given in Propo-
sition 3.1. Then the diversification benefit of the aggregate risk S, = ;?:IXl- at threshold «,
0 <k <1, and associated to the risk measure p, can be expressed as:

(i) For p=VaR:
1 1
«_q_lan—nEX)) npdn~ a1

Df=1-1-°% 2~ —1-
" n(q: — E(X)) (1-x)Ya_ _a

a—1

q1 being defined in (6) and qy, in (9).
(i) For p=TVaR:
-1
(a-1) qn .
b g ((1 +%) Sa-1,n+ 1) -1

D,=1- 19
a(Q-x)"Ve-1) =)

which simplifies, for n =2, to

el a(+a) gi+2p(1+a) ga+2°
20-1) * (@i p)Te -

a(Q-x)"Ve-1)

1

Dy, =1-
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Proof. (i) It is immediate knowing the fact that for a (a, )-Pareto distributed variable E(X) =
B

a-1"

(i) Combining (10) with (11) in the definition of D,, gives (19).

For the case n = 2, (20) can be directly deduced from (19). An alternative, with simpler
computation, is to deduce (20) from Corollary 3.1 and the definition (4) of the diversification
benefit.

O

3.2 Numerical application and discussion

The main benefit of explicit formulas is to provide exact answers for the risk measures and the
diversification benefit, which are often estimated through Monte Carlo (MC) simulations, which
convergence is not well known. With explicit formulas, it is thus easy to check the quality of the
estimations using MC. Here we study the cases n = 2,10, 100 as illustrations and for a limited set
of parameters. For the (a, f)-Pareto marginals, we fix f=1.

With the results (11) (and (12) when «a is integer and # 0,1), we check the convergence of the
simulated TVaR, varying the parameter a of the tail index and the aggregation factor n. For the
parameters, we are limited here to one free, as the Clayton survival copula parameter 8 relates
directly to the tail index a with & =1/6.

First, we explore a case with very heavy tail, @ = 1.1, which corresponds to tails seen for earth-
guake distributions, and a relatively strong dependence (6 = 0.91). Then we look at the case
a = 2 with moderate heavy tail, followed by that of a moderate tail @ = 3, which also means here a
moderate dependence 0 = 1/3. We run 10 sets of simulations (changing the seed of the random
generator) for each of these parameters varying the number of simulations per run from 10°000 to
10 million. We report here the average value over the 10 sets of simulations. It is worth noticing
that the standard deviation of those sets decreases, as expected, with the number of simulations.
For the TVaR computed for n = 2, the standard deviation of the 10 sets varies from 32% to 4%
for « = 3 and from 57°968% to 247% for & = 1.1 going from 100’000 to 10 millions simulations
(except for n = 100, where we stop at 1 million due to computer limitations). As expected, the
convergence is much slower in the case of a fatter tail. Moreover, for extremely fat tail (a close to
one), it does not converge even for 10 millions simulations. A similar behavior can be observed for
n = 10. Beside the gain in precision, the analytical formula can be numerically evaluated 40 times
faster, resp. 580 times faster (for &« =2 and n = 10, resp. n =100 for 1 million simulation) than the
estimation given by Monte Carlo simulations.

For comparability reasons, we present in Figure 1 the normalized TVaR, TVaR;/n, for the various
n’s. On the figure, we see that:
* The normalized TVAR of S,,, TVaR,/n, decreases as n increases

« The TVaR decreases as «a increases

9 SCOR Paper n°38 - Explicit diversification benefit
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Figure 1:

Convergence of the TVaR of S, at 99.5% for @ = 1.1, 2, 3 from left to right, for an
aggregation factor n =2, 10, 100 from up to down. The purple plots are for the analytical values
and the light green ones are the average values obtained from the MC simulations. The y-scale

gives the normalized TVaR (T VaR,/n) and is the same for each column.
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+ The rate of convergence of TVaR,/n increases with n

* The heavier the tail, the slower the convergence

« In the case of very heavy tail and strong dependence (@ = 1.1 and 6 = 0.91), we do not see
any satisfactory convergence, even with 10 million simulations, and for any 7. At 10 million
simulations, the value of TVaR is still 24% lower than the theoretical value.

* When a = 2,3, the convergence is good from 1 million, 100’000 simulations onwards, re-
spectively.

In Table 1, we note that the convergence of the TVaR of S;, for the Pareto parameter a = 2 is
good, with a relative error going from 0.38% to 0.05% when n goes from 2 to 100, and for 1 million
simulations. Similar relative errors are obtained for &« = 3. At 10 million simulations, for ¢ = 1.1
and n = 10, the TVaR is still underestimated by 25%, which is unacceptable for an evaluation of
the solvency capital. It seems clear that MC will not give satisfactory answers with reasonable
number of simulations. The way out is to resort to explicit formula as derived in this paper to
obtain credible values for the capital. However, increasing the number of aggregation improves the
convergence. Measuring the changes with 1 million simulations, we see that from n = 2, we have
an underestimation of 50% that decreases to 27% for n =10 and n = 100.

Let us now analyze the diversification benefit D, (S,,) associated with TV aR, denoted by D,,. We
use the results (20) and (19) to compute it explicitly and then check the convergence of the MC.
The same parameter set and the same simulations are used to produce the numbers displayed in
Figure 2. As expected, the convergence of the diversification benefit follows a similar pattern as for
the TVaR. Indeed, we see in Figure 2 that:

» The diversification benefit D;, of S;, increases with n
e D,, increases with a

» The rate of convergence of D, increases with n

» The heavier the tail, the slower the convergence

« In the case of very heavy tail and strong dependence (@ = 1.1 and 8 = 0.91), we do not see
any satisfactory convergence, even with 10 million simulations, and for any n

* When a = 2,3, the convergence is good from 1 million, 100’000 simulations onwards, re-
spectively.

For a = 1.1, the convergence is poor. In this case, we see an overestimation of the diversification
benefit that is above 600% for all aggregation factors including n = 100 (see Table 1). This signifi-
cant overestimation may seem high, however, the impact is not material since we are talking here
of very small diversification benefit of the order of a few percents (3.6% for n = 10, for instance).
We see in Figure 2 that the diversification benefit does not converge in all cases. Obviously, 10
millions simulations are not sufficient toensure a good convergence. The reason is that MC sam-
ples the space evenly, whereas, in this case, we would need much more points in the tails to see a
good convergence.

11 SCOR Paper n°38 - Explicit diversification benefit




Figure 2: Convergence of the diversification benefit of S;, (associated with TVaR at 99.5%) for
a =1.1,2,3 (from left to right), for an aggregation factor n = 2,10,100 (from up to down). The
purple lines are for the analytical values and the light green ones are the average values obtained
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from the MC simulations. The y-scale is the same for all the graphs, for fair comparison.
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Table 1: Relative errors (when comparing results obtained by
MC and analytical ones) of the TVaR;, and the diversification
benefit D,, for S,;, at 99.5% and for various «, as a function of
the aggregation factor n computed with 1 million simulations.

n=2 n=10 n=100
a=1.1

TVaR, -33.3% -27.3% -26.9%
D, 1786% 742% 653%

a=2
TVaR, 0.38% 0.14% 0.05%
D, -2.61% -0.44% -0.14%

a=3
TVaR, 0.30% 0.14% -0.10%
D, -1.30% -0.25% 0.15%

In Table 1, we present the results of a convergence study as a function of the aggregation factor.
The number of simulations is fixed at 1 million and we vary the aggregation factor n. We see a
decreasing estimation error by MC when increasing the aggregation factor, with small errors for
a = 3 and 2 and substantial errors for very fat tails and strong dependence. In the latter, we
also see a systematic underestimation of the TVaR and an overestimation of the diversification
benefit, whatever the aggregation factor. Such a fact is not surprising for very fat tails (a close to
one), but in practice, we do not encounter such a’s for portfolio of (re)insurances. With the thinner
tails and lower dependence, MC has a tendency to overestimate the TVaR and underestimate the
diversification benefit except for n = 100. Note that the error decrease is large between 2 and 10
but much smaller afterwards.

4 Weibull marginals with Gumbel survival copula

We focus now our attention to another type of distribution associated with a different copula: Weibull
marginals with Gumbel dependence. Gumbel dependence is also an Archimedean survival copula
presenting asymmetric dependence with strong tail dependence although less asymmetric than the
Clayton survival copula. The Weibull distribution is also used in insurance particularly for survival
analysis or large claim occurrences, but the tail is usually less heavy than with certain Pareto
distributions.
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Consider a dependent model X = (Xi,--+, X;;) with marginals F; (i = 1,...,n), (¢, 7)-Weibull dis-
tributed (with ¢ > 0,7 > 0), i.e. such that, for all x =0,

Fi(x):=1-F;(x)=e " . (21)
When ¢ =1, it is called T-Weibull.

Recall that the quantile g; of order x (0 < x < 1) of a (¢, T)-Weibull cdf is given by

_ 1/7
In(1 K)) . 22)

q1=VaR(x) = (— p

The dependence structure of the model is chosen as the Gumbel suvival copula, with parameter
0 =1, and generator ¢ defined by

®o () = (~In(1)°. (23)

4.1 Analytical results

THEOREM 4.1. Consider the dependent model X = (Xi,..., Xy;) with marginals F; (i = 1,...,n)
(c, T)-Weibull-distributed with ¢ > 0 and T = 1/2, and Gumbel survival copula with parameter 6 =

n
1/t. Then the pdf f,, of the aggregate risk S, = Z X; at threshold x, 0 <k <1, n=1, is given,
i=1
for s >0, by

¢ T D) oS B (12— 2ms2ev) 24
2vr T o

where 1 F (a, b; x) is the Kummer confluent hypergeometric function defined on R, with real pa-
k
rameters a, b, by 1F1(a, b;2) =332, %% where (a) = r(%z)k) (see e.g. [5], p. 958).

In particular, for n = 2, (24) simplifies to

fn(S) =

fols) = (%+6) e VS s>0. (25)

o

The proof of this theorem is based on mixing techniques and on the following technical lemma,
which helps obtaining analytical formulas.

LEMMA 4.1. Forn=1, we have

c(-D"T(n-3)
§2TMe VS E (1—-n,2—2n;2cVs).
N 1Fi( Vs)

where 0, denotes the partial derivative w.r.t. s.

ay (e‘c‘/}) =




Proof. We proceed by induction.

For n = 1, Lemma 4.1 is well satisfied since 0; (e‘c‘/g) = —gs_”z e_c‘/g, Ira/2) = y/n, and
1F1(0,0;2) = 1, for all real z. Suppose now that Lemma 4.1 is true for n = 1 and let us check
it for n+ 1. Under the induction assumption, we have

B c(-1)"T'(n-
= NG

1
a;’“(e—cﬁ) 2 0 (s%_” e VSR (1—n,2—2n;20\/§))

Let us compute A, (s) := 0 (s%‘” e VSR (1- n,2—2n;2c\/§)), using the following properties
of hypergeometric functions (see e.g. [9]):

(i) 0:(F1(a,b;2) = %1F1 (a+1,b+1;2)
1 2
(i) 1Fi(a,2a;2) = e*'*oFy (a+ = Z—)

1 1 22\ T@-3) 1 22
(i) 1F1(a,2a—-1;2)=-e¢ 49Fila— - —=|+z——oFi|la+—-,—
4 216 T(a+3) 2

1
(iv) oF) (@2) = e 2V? (a— E,2a— 1;4\/2)

where oFi (a; x) is the confluent hypergeometric function defined by ¢ F; (a; z) = 7?:0 ﬁ%’f with

_ T(a+k)
@k =T -
We have
1
Ap(s) = 53_”e_c‘/§[ch1(2—n,3—2n;20\/§)—(c+(2n—1)s_1/2)1F1(1—n,2—2n;20\/§)]
1 1 c?s
= —(1-2nms " 12,F (——n;—)
2( ) 0F13 n

1
5 (=2m st e V3 Fy (—n,—21;2¢v/5)

using (i) in the first equality, then both (ii) and (iii) in the second one, and (iv) in the last one. We
can conclude that Lemma 4.1 is satisfied for n+ 1. O

For the proof of Theorem 4.1, we will also need the following relation for n =0 and a, b € R (see
e.g. [1]), we have

Inpla) = fo X"V gmax=blx gy — (—1)"0! (Io p(@) (26)
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oo b T
with  Ip p(a) :f x Ve T dx = Ee_z‘/%
0

when differentiating I, ,(a) with respect to the parameter a.

Proof of Theorem 4.1. As given in [9], it is enough to choose H(x) = e ™ (x > 0) and © a Lévy-
distributed(0, ¢?/2) positive rv with ¢ > 0, and pdf fo(x) =

Oakes-Marshall-Olkin theorem.

C c
e‘ﬁ, for x = 0, then to apply the
nx3

Computing the Laplace transform of ® via the change of variables u =071, gives
o0
Lg(1) :f e_etf(:)(e) do = Io,t(62/4) = e_c‘/;.
0

So, with this choice of H, the marginal distribution defined in (3) satisfies Lg(—In H(x)) = e‘cﬁ.
It corresponds on (0, 00) to the survival cdf of a Weibull (¢, 1/2) defined in (21). Hence we obtain
the marginal distributions of our model.

Now, since the generator of the Archimedean survival copula defined in (2), is given by

1
d(t)=Lo(t) ' = g(—ln(t))2

we deduce the structure of dependence assumed in our model, namely (23) when taking the
parameter 0 = 2.

For the 2nd part of the proof, we can write, as in the proof of Proposition 3.1,

*© cs ® n-1)-1/2 -s6-
fn(S) :fo fSn|® (s) f@ (0) do = W\[O 0 e 0 0. (27)
Therefore, using (26) provides
"1 1 1(.-1/2 Vs ! Vs
n— n— —C n —C
fa(s) = 2\/_1,()(1) V7! ( e ) F()(1)6( )
Applying Lemma 4.1 allows to conclude. U

Let us compute the expressions of the TVaR and the diversification benefit.

PROPOSITION 4.1. Consider the dependent Weibull-Gumbel model X = (X;,i = 1) given in The-
orem 4.1. Then the TVaR of the aggregate risk S;; = Z?zl X; at threshold x, 0 < x < 1, can be
expressed, forn =1, as:

2ne cVin e Pqn g 2 Tk-3)
TVaR,=——|1+c¢cq,/*+ + > 1Py (2= k,4-2K;2¢v/qy)
T -w)e? 2 aym & K n

(28)
with g, = Fé; (x), Fs, being defined in (24).




In particular we have, forn =1,

2 1 2
TVaRl:—2 1—ln(1—1<)+5(ln(1—1<)) (29)
c
and, forn =2, ,
Lo VB e g @
TVaRy=—|1+ +—+ —]. 30
aR, (l—K)Cz( cq, o (30)

Proof. By definition of the TVaR, we can write, using the expression (27) for f,,

® n-3iz < [ 0
0" e"mf s"e Y dsdo.
n

o0

TVaRy = —— [ sfu9ds = ¢ f
" -xdg, T C 2ym-T(n) Jo

But we have, by the change of variable t = s0,

© 1 nle 0 1 (6q )k
—s0 . _ n
f s"e ™ ds = g T(n+1,0Ga) = s DM

o0
I' (s; x) denoting the incomplete Gamma function defined by f t*"le~!dt that can be expressed
as a discrete sum (see [5]). *

So we deduce that

TVaR,

2(1— ’K)\/_ (f (1+9qn)9 5/23 49 and6+ Z k! Ik' 202/4(qn))

k
cn qx
= 2(1 _K) \/]_[ ( lqn(c /4) +anO qn(C /4) + Z k! Ik 202/4(qn))

using the definition (26) in the first equation, and the change of variable 8 = u~! to compute the
integral, in the second one.

2Vm

On one hand, we have IO,qn(CZ/4) = ?e_c\/ﬁ; on the other hand, a straightforward computa-

4Vn

tion gives I1,q,,(02/4) =—3 e V(1 + ¢\/qn). Moreover, we can write, using once again (26),
c

liaca@n) = (DF0E2(Ipeiaqn) = (DX Vaok?(g; ! 2emevan)
Dk 12\/_ak 1( Qn)’

from which we deduce, applying Lemma 4.1, that

n 4k (k- )
y 6]76' g eora(@n) = G2 e VT Z T (2-k,4—2k;2¢cy/qn).
k=2 :
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Combining these results provide (28).

. . . 2e7 v 1/2 Cqu .
Applying (28) with n =1 provides TVaR; = W 1+cq," " +——|, from which (29) follows
—-K)cC
since g1 = (In(1 —x))?/c?. For n =2, (30) is a direct application of (28). O

Now we can deduce the main result, namely an explicit formula of the diversification benefit asso-
ciated to our model for n risks.

COROLLARY 4.1. Consider the dependent Weibull-Gumbel model X = (X;,i = 1) given in The-
orem 4.1. Then the diversification benefit of the aggregate risk S, = Z?lei at threshold x
(0 < x < 1), associated with the risk measure p, can be expressed as:

Gn—nEX) _ c? (g —2nc)

) Forp=VaR, D}=1- =1- :
() Forp=Va nq, — nE(X) n((In(1-%))*-2¢3)

(ii) For p=TVaR,

_ 2 3 I'k-3)
e~ CVan 1+cq,1,’2+%qn+;ﬁqilzzzzzT21F1(2—k,4—2k;20,/qn) —-c31-x)

(1-%)(1-¢c3=In(1 —«) + 3 (n(1 —x))?)
(31)
which simplifies, for n =2, to:

8 12
Dy=1- 32
? (1-%)(1-c3—In(1 —x) + 3(n(1 —x))?) %2

eVE(1+0a)? +S o+ 5 432) - S -x)

Proof.

(i) Itis immediate knowing that E(X) = cI'(1 + %) =2c when X is (¢, 7)-Weibull distributed.

(i) Combining (28), (30) respectively, with (29) in the definition of the diversification benefit (4)

gives the results.
O

4.2 Numerical application and discussion

We use the analytical expressions given in Proposition 4.1 and Theorem 4.1 to compute the TVaR
and the diversification benefit, for various values of the aggregation factor n, namely 2, 10 and
100. Contrary to the Pareto-Clayton case, these expressions were obtained by fixing most of the
parameters of the model, with the Gumbel copula parameter fixed to 6 = 2 and the “t” parameters
of the Weibull marginals to T = 1/2. The tail index is thus fixed to @ = 2. Only the scaling parameter
¢ of the Weibull marginals might be modified, but for the sake of simplicity we fix it to 1.
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Figure 3: Convergence of the normalized TVaR of S;,, TVaR,/n, at 99.5% for c =1, 7 = %

and 0 = 2, for an aggregation factor n = 2,10, 100 from left to right. The purple plots are for the
analytical values and the light green ones are the average values obtained from the MC simulations.
The y-axis is the same for the three plots.

We compare these values obtained analytically with those obtained via Monte Carlo (MC) simu-
lation, in order to check the convergence of the MC method. As for the Pareto Clayton case, we
run 10 sets of simulations (changing each time the random seed of the random generator) for our
set of parameters, varying the number of simulations per run from 10’000 to 10 millions (except
for n = 100, where we stop at 1 million due to computer limitations). We report here the aver-
age values of the 10 sets and verify that the standard deviation is decreasing with the number of
simulations, as expected.

We present in Figure 3 the normalized TVaR, TVaR,/n (as we do it for Pareto-Clayton), for the 3
cases n=2,10,100. We see in this figure that:

 TVaR;,/n decreases with n

* TVaR,/n decreases faster between n =2 to n =10 (-29%) than between n =10to n =
100 (-12%)

» The rate of convergence is good in all the cases and the deviation reaches less than 1%
already with 100’000 simulations

On the figure, the convergence is very clear. The absolute value of the relative error is less than 2%
for both risk measures and for all n’s. The convergence, reached already with 100’000 simulations,
is faster than the one obtained with the Pareto-Clayton model. This is explained by the fact that,
for 0 < 7 < 1, the Weibull marginals are moderately heavy tailed and the Gumbel survival copula
has a weaker dependence in the tail compared to the Clayton survival copula; thus the simulation
requires less points to model accurately the behavior in the tails. Increasing the number of aggre-
gation improves the convergence. Indeed, when measuring the variation with 1 million simulation
for the TVaR, we see that for n = 2 we have an underestimation of 0.65%, which decreases to
0.18% for n = 100. Beside the gain in precision, the analytical formula can be numerically evalu-
ated 65 times faster, respectively 75 times faster (for n = 10, resp. n =100 for 1 million simulation),
than the estimation given by Monte Carlo (MC) method. Moreover, MC method cannot be used for

19 SCOR Paper n°38 - Explicit diversification benefit




SCOR Paper n°38 - Explicit diversification benefit 20

60.0% 60.0% 60.0%
55.0% 55.0% 55.0%
50.0% 50.0% 50.0%
45.0% 45.0% 45.0%
40.0% 40.0% 40.0%
35.0% 35.0% 35.0%
30.0% 30.0% 30.0%
25.0% 25.0% 25.0%

20.0% 20.0% 20.0%
10'000 100'000 1'000'000  10'000'000 10'000 100'000 1'000'000  10'000'000 10'000 100'000 1'000'000
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Figure 4: Convergence of the diversification benefit D,, of S, (associated with TVaR at 99.5%) for

c=1,17= % and 0 = 2, for an aggregation factor n = 2,10,100 from left to right. The purple lines
are for the analytical values and the light green ones are the average values obtained from the MC

simulations. The y-axis is the same for the three plots, for fair comparison.

higher number of aggregation (i.e n = 10'000) due to lack of system memory, while it is of course
feasible for the analytical formula.

In Figure 4, we present the results for the diversification benefit D,,, when choosing TVaR as risk
measure. Similar comments hold for D, as for TVaR,/n. The convergence is already very good
for 10’000 simulations. We also observe, as expected, that D,, increases with n, as it is the case
for the Pareto-Clayton model.

5 Diversification benefit as a function of the aggregation factor and the risk
measures

In this section, we use the analytical expression of the diversification benefit for the two models,
Pareto-Clayton (see Theorem 3.2) and Weibull-Gumbel (see Theorem 4.1) to examine and com-
pare the behavior of the diversification benefit as a function of the aggregation factor n (from n =2
to 10°000) and the risk measures, TVaR and VaR. For comparison reasons, we choose the Pareto-
Clayton case with a = 2, since it corresponds to the tail index of the Weibull-Gumbel model.

To complete the comparison, we add two cases, one with independent Pareto rv’s, to evaluate the
impact of the dependence, and one considering a Gaussian-Gaussian model (Gaussian marginals
and Gaussian correlation) to evaluate the impact of the tail thickness. Let us recall briefly the
evaluation of the diversification benefit in both cases.

Independent Pareto rv's case with asymptotic threshold (x /' 1)

To avoid computations, we are going to look only for approximations when considering extreme
quantiles (i.e. when the threshold x tends to 1), for which Feller’s result (see [4]) is available. For
sharper and not necessarily asymptotic results, computations could be done using the Normex
method (see [8]).




Feller has shown that the tail distribution of the sum of independent rv’s with regularly varying (RVy)
tail distribution is asymptotically RV,,. Applying this result when considering iid Pareto-(a, ) rv’s
provides

1-%x 1a
qn=VaR(Sp) = Fs (K) ~ ﬁ(( n ) —1) (33)

and

a _ o\l
TVaR,(S,) np o Gant P ( ¢ (1 K) —1).

1 1-K@-1 (GutPex—1"\a-1\ n

Note that we obtain the asymptotic relation TVaR,/VaR, — a/(a—1) as k — 1.

Now let us look at the diversification benefit for high threshold x. When choosing the VaR as risk
measure (g, satisfying (6)), we have

np 1 -1/ 1 1
D*(K)—l—& - 1_na (1-%) a_ﬁ_a—l 35
n - B K1 (1—1()_1/6’—1—# ( )
n(ql - m) a-1

and for the TVaR,

a 11 “1l/a_ 1 1
g he (1-x) iy
Dn(K) - 1_ 1 n a-1

=1 1/a _ 1
X a— 1(1 K) -1 a—1

(36)

from which we deduce the asymptotic limit as x — 1, which is the same for both risk measures, as
expected:
lim Di(x) = lim Dy, (1) = 1 - p- -l (37)
K— K—

which tends to 1 as n — oo.

Note that in the Gaussian case, D,, (or Dj,), converges also to 1 as n — oo with a rate of conver-
gence of n'/2, and not only for high threshold .

Multivariate Gaussian distribution

Consider the Gaussian vector (X;);=1,...,» With expectation vector (u;);=1,..,n, i = I, and (non
negative definite) covariance matrix I' = (y;)1<j, j<n Such that y;; = 0?,Yi. Then S,, = Y, Xiis

normally distributed with mean nu and variance no?+2 Z Yij- Hence, with the notation r;j =
l<i<j=n

corr(X;, X;) and ¢, @, for the standard normal probability density function, cumulative distribution

function respectively, we can write

q,,:VaRK(Sn):n,u+<1>_1(1<)\/ﬁa\/1+E Y rjsnp+olwo)=nq,

l<i<j=n

whereas, for the TVaR,

TVaR(Sp) = ﬂ+¢( ()\/_ \/1+— szSn(u+—¢(q) (1))

0') =nTVaR(X).
N<icjzn I-x
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We deduce that

D,=D _1——\/1+— rij (20).

n l=i<j=n
The diversification benefit can tend to any constant between 0 and 1, as n — oo, whenever there

exists a linear dependence between the components. For instance, if r;j =71 #0, Vi # j, the
diversification benefit reduces to

1
D,=D;=1-—+/1+(n-1)r.
n n \/ﬁ
When r =1 (full comonotonicity), D,, = D, = 0, whereas for r = 0 (independent case), we obtain
D,=D,=1- n_l/z, which is also the limit (as k¥ — 1) of the diversification benefit given in (37)
for independent a-Pareto rv’s with a = 2.

Let us compare the diversification benefit as a function of n, for both TVAR and VaR, for high
threshold x = 99.5%, considering the following cases: (i) independent a-Pareto with a = 2, (ii)
a-Pareto margins and survival Clayton (8) copula (Pareto-Clayton) with &« =2 =1/0, (iii) Gaussian
margins and Gaussian copula (Gaussian-Gaussian) with (linear) correlation r = 0.42 estimated
on the previous Pareto-Clayton model, (iv) 7-Weibull margins and Gumbel (8) copula (Weibull-
Gumbel) with 8 =2 = 1/7, and (v) Gaussian-Gaussian with correlation r = 0.39 estimated on the
Weibull-Gumbel model.

The linear correlation coefficients are estimated from the realization of the simulated model. We
choose the number of simulations for which the Kendall -7 estimate corresponds to the theoretical
one. Recall that the theoretical value of 7, as a function of the 0 parameter of the copula, is known
for both Clayton, with 7 = 725 +2, and Gumbel, with 1 — %. The convergence is reached with 100’000
simulations.

In Table 2, we present the results obtained on D,, and D), using analytical formulas for all of them,
and not simulations. Note that it completes the numerical application for the analytical diversifica-
tion benefit done in the previous sections with the TVaR only. Moreover, the functions Dj, of n are
plotted in Figure 5 for the various models.

We show in Table 2 and Figure 5 that:

» The dependence has a significant impact on the evolution of the diversification benefit with 7,
as expected. In the case of dependence, the diversification benefit levels off rapidly, already
at n = 100, while for the independence case, it still increases from n =100 to n = 10000

» The evolution of the diversification benefit is similar for the two underlying structures, increas-
ing and leveling off with n, for both. For example, in the dependent case, from n =2 to 10,
it increases approximately by a factor 2 (1.9 for Pareto-Clayton and 2.0 for Weibull-Gumbel),
regardless of the risk measure used to compute the diversification benefit

+ Although both evolutions are the same from n = 2 to 100, the Pareto-Clayton model exhibits
a stronger tail dependence and a fatter tail than the Weibull-Gumbel one. This appears
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Table 2: Analytical diversification benefit of S;, D, and D;,, at 99.5% as a function of the
risk measures TVaR and VaR, respectively, and of the aggregation factor n. Tail index a = 2,
survival Clayton parameter 8 = 1/2, Weibull 7 = 1/2, Gumbel parameter 6 = 2.

n=2 n=10 n=100 n=1000 n=10000
Independent Pareto
D, =Dj 29.3% 68.4% 90.0% 96.8% 99.0%
Pareto-Clayton
D, 13.2% 25.5% 28.6% 29.0% 29.0%
Dy, 12.9% 25.2% 28.3% 28.6% 28.7%
D, /Dy, 1.021 1.014 1.012 1.012 1.012
Gaussian-Gaussian
r =0.42 (Clayton)
D,=D; 15.7% 30.9% 34.7% 35.1% 35.2%
Weibull-Gumbel
D, 23.1% 47.0% 54.1% 54.8% 54.9%
D;; 19.6% 40.4% 46.5% 47.2% 47.2%
Dn/D;'; 1.179 1.162 1.163 1.163 1.163
Gaussian-Gaussian
r =0.39 (Gumbel)
D, =D, 16.6% 32.8% 37.1% 37.5% 37.5%
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Figure 5: Plot of the diversification benefit D}, (y-axis) as a function of n (x-axis), for VaR, with
x = 99.5%. The curves from bottom to up correspond, respectively, to Pareto (a = 2)-Clayton
(6 =1/2), Gauss-Gauss (Clayton; r = 0.42), Gauss-Gauss (Gumbel; r = 0.39), Weibulll (t = 1/2)-
Gumbel (6 = 2), independent Pareto and Gauss models (a = 2).

through the difference of the diversification benefit between the two models, almost twice
bigger for the second

* We see in the table that the diversification benefit computed with the VaR is always lower
than the one computed with the TVaR. This is to be expected, since the latter risk measure
takes into account the whole distribution beyond a fixed threshold (for instance 99.5% in this
case), whereas the VaR only looks at one point of the distribution. However, the difference
is more pronounced for the Weibull-Gumbel model than the Pareto-Clayton one, with a ratio
of the order of 1.2 instead of 1.01 respectively

« The ratio D,/ Dj, stabilizes from n = 10 onwards, with 1.012 for Pareto-Clayton and 1.163
for Weibull-Gumbel. Starting at n = 100, the diversification benefit does not change anymore

» Comparing the results obtained with the Pareto-Clayton model and the corresponding Gaussian-
Gaussian one, emphasizes that the tail dependence associated with a fat tail limits the di-
versification benefit. The diversification benefit limit is 35.2% for the Gaussian case, while it
is only 29% in the Pareto-Clayton case

» The comparison leads to a different result in the Weibull-Gumbel case and the Gaussian
one. Here we see much stronger diversification benefit for the Weibull-Gumbel model than
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for the Gaussian-Gaussian one. The intuition to explain this observation being less obvious
than with the previous model, other examples varying the parameters would help to analyze
this effect. Let us just note that the linear correlation implied by 8 = 2 is quite high in this
case

+ As expected, 100 % diversification benefit is reached in the independent case only.

6 Conclusion

In this paper, we use the mixing techniques to compute explicitly the probability density function
(pdf) of n-aggregated risks for two combinations of dependence structure and marginal distribu-
tions, Pareto-Clayton and Weibull-Gumbel. From this pdf, we have derived the explicit formulas for
the TVaR, the VaR and the diversification benefit. These formulas are then used to study the con-
vergence of the TVaR and the diversification benefit as a function of the tail indices. By varying the
number of simulations from 10’000 to 10 millions, we observe that for Pareto-Clayton a minimum
of 100’000 simulations is needed to obtain a good convergence for moderately heavy tails a =2 to
a = 3. For very heavy tails, as e.g. @ = 1.1, we do not reach convergence, even with 10 millions
simulations, showing that the results obtained by MC method for this kind of distributions must be
considered carefully. The second case is more limited since the Gumbel copula parameter is fixed
to 8 =2, however we can conclude that the convergence with a Gumbel copula is faster than with a
Clayton survival copula since 100’000 simulations are considered as sufficient for moderate heavy
tail Weibull distribution.

In addition, we study the behavior of the analytical diversification benefit of S;, as a function of
the aggregation factor n. The variation is similar for the two structures. For example, it increases
approximately by a factor 2 from n = 2 to n = 100. The diversification benefit for large n converges
to a lower value for the Pareto-Clayton model than for the Gumbel-Weibull one, due to the fact
that the tails and the dependence in the tail are stronger for the first model. When comparing it to
the one obatined with an elliptical model (Gaussian copula), we observe two opposite behaviors
depending on the considered model. In the Pareto-Clayton case, the diversification benefit of the
Gaussian model converges clearly to a higher value, while we see the reverse for the Gumbel-
Weibull case. It is also interesting to note that in the independent case, Pareto with a = 2 has an
identical behavior as the Gaussian one, despite the fact that Pareto has a heavier tail. Moreover,
as expected, the diversification benefit computed with the VaR is lower than the one computed with
the TVaR, however this difference stabilizes when increasing the aggregation factor n.

Replacing Monte Carlo simulations by explicit expressions is a considerable gain in precision and
time. Indeed, the analytical formulas are estimated to be 40 to 500 times faster than MC method
with the difference increasing with increasing number of variables to aggregate. Moreover, with
the analytical formula we can estimate the TVaR even for very heavy tail distributions when MC
method fails even for 10 millions simulations. Explicit formulas let us also explore the aggregation
behavior of the risk measures and the diversification benefit. It is a precious tool for validating

25 SCOR Paper n°38 - Explicit diversification benefit




results of internal models, which are based on MC simulations. Numerical methods should be
used only when no analytical solutions are available. However, this method is limited by the fact
that we cannot separate the tail index, a, and the copula parameter, 6. The goal of further research
is to separate this relation in order to explore more realistic choices of parameters.
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