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Abstract

In this master thesis, we study two Stackelberg games between a reinsurance company

and an insurance company. In both games, each party maximizes its expected utility of

terminal wealth. However, the reinsurer is the leader and the insurer is the follower, i.e.,

the reinsurer knows for each of its actions the rational response of the insurer, which can be

seen as an advantage. In academic literature, such games are mainly modeled on the whole

level of aggregated claims and the reinsurance strategy is adjusted dynamically. However,

in practice the reinsurance strategy is adjusted at discrete time points and is related to

a specific product or product line. Therefore, our first Stackelberg game is an example

from the existing literature. In the second Stackelberg game, we consider an innovative

reinsurance-insurance problem in a more realistic scenario, where the reinsurance is part of

the design of a single life insurance product with a capital guarantee and the reinsurance

is only traded at the product settlement date without further adjustments during the

investment period. Moreover, we model the situation when the reinsurance is not written

directly on the insurer’s portfolio but on a benchmark portfolio, which is highly correlated

to it. We derive solutions to the optimization problem in semi-closed form by combining

and generalizing non-standard portfolio optimization techniques. In the numerical studies,

we find that in the Stackelberg equilibrium the reinsurer chooses the maximal reinsurance

premium at which the insurer is buying the full amount of reinsurance. We also examine

the sensitivity of the Stackelberg equilibrium with respect to changes in the market and

product parameters.



Zusammenfassung

In dieser Masterarbeit untersuchen wir zwei Stackelberg-Spiele zwischen einem Rückver-

sicherungsunternehmen und einem Versicherungsunternehmen. In beiden Spielen maxi-

miert jede Partei ihren erwarteten Nutzen des Endvermögens. Allerdings ist der Rückver-

sicherer das marktführende Unternehmen und der Versicherer das marktfolgende Unter-

nehmen, d.h. der Rückversicherer kennt für jede seiner Aktionen die rationale Reaktion

des Versicherers, was als Vorteil angesehen werden kann. In der wissenschaftlichen Lite-

ratur werden solche Spiele auf dem Gesamtschaden des Versicherungsunternehmens mo-

delliert und die Rückversicherungsstrategie wird dynamisch angepasst. In der Praxis wird

die Rückversicherungsstrategie jedoch zu diskreten Zeitpunkten angepasst und ist auf ein

bestimmtes Produkt oder eine Produktlinie bezogen. Daher ist unser erstes Stackelberg-

Spiel ein Beispiel aus der bestehenden Literatur. Im zweiten Stackelberg-Spiel betrachten

wir ein innovatives Rückversicherungsproblem in einem realistischeren Szenario, bei dem

die Rückversicherung Teil der Gestaltung eines einzelnen Lebensversicherungsprodukts

mit Kapitalgarantie ist und nur zum Zeitpunkt der Produktabwicklung ohne weitere An-

passungen während der Investitionsperiode gehandelt wird. Des Weiteren modellieren wir

die Situation, wenn die Rückversicherung nicht direkt auf das Portfolio des Versicherers

gezeichnet wird, sondern auf ein Benchmark Portfolio, das stark mit diesem korreliert

ist. Wir erhalten Lösungen für das Optimierungsproblem in halb-geschlossener Form,

indem wir nicht-standardisierte Portfolio-Optimierungstechniken kombinieren und verall-

gemeinern. In den numerischen Studien finden wir, dass im Stackelberg-Gleichgewicht

der Rückversicherer die maximale Rückversicherungsprämie wählt, zu der der Versiche-

rer vollständig rückversichert. Wir untersuchen auch die Sensitivität des Stackelberg-

Gleichgewichts in Bezug auf Änderungen der Markt- und Produktparameter.
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Chapter 1

Introduction

Motivation

In the primary insurance business, an insurance company and a client agree on an insur-

ance contract. The insurance contract contains the premium, which the client pays to the

insurer, and the risk of the claim, which is transferred from the client to the insurer. In

contrast, a reinsurance contract is created between a reinsurance company and an insur-

ance company. Similar to the primary insurance business, the insurer pays a premium to

the reinsurer and transfers a part of its risk to the reinsurer. The insurer uses reinsurance

to reduce its actuarial risk, which comes from the uncertainty of the risk occurrence and

the amount of the claim, and its financial risk, which comes from the investment in the

financial market (cf. Bai et al. [2019]). In the reinsurance contract, the insurer chooses

the amount of the risk that should be transferred to the reinsurer. This is called the

reinsurance strategy of the insurer. In comparison, the reinsurer selects the premium,

which is payed from the insurer to the reinsurer. This premium is called the reinsurance

premium strategy. Often the reinsurer calculates its premium as the expected loss plus a

safety loading. In this case, selecting the reinsurer’s strategy is equivalent to selecting a

safety loading. (cf. Albrecher et al. [2017])

The aim of the reinsurer and the insurer is to maximize the expected utility of their termi-

nal surplus or terminal wealth. In practice, both parties need to agree in the reinsurance

contract. If the reinsurer takes into account only its utility when creating a reinsurance

contract, the reinsurance premium might be too high for the insurer to accept the contract

and, therefore, the insurer may not be willing to buy as much reinsurance as the reinsurer

expects. On the other hand, if the reinsurance premium is too low, the insurer chooses

to buy reinsurance for more claims, but the net profit of this deal may be suboptimal for

the reinsurer due to the low price. Hence, the utility of the reinsurer would be lower than

1



2 CHAPTER 1. INTRODUCTION

expected. Accordingly, when considering the optimization problems of the reinsurer and

the insurer separately, the optimal choice of one party might not necessarily be optimal

for the other party and, therefore, the other party would not agree in the reinsurance

contract (cf. Bai et al. [2019]). Due to that, it is important to consider the relationship

between the reinsurer and the insurer when solving their investment-reinsurance opti-

mization problems. Thus, we consider a game between a reinsurer and an insurer.

The insurance market consists of several thousands primary insurance companies and

about 200 reinsurance companies (cf. Albrecher et al. [2017]). Hence, the reinsurance

company has rather a monopoly position in the reinsurance contract (cf. Chen and Shen

[2018]). In addition, the reinsurance company is often larger than the primary insurance

company and acts international, whereas the insurer often acts on a national level (cf.

Albrecher et al. [2017]). Therefore, the reinsurer has the ability to assess how the insurer

will react, which results in a hierarchical information structure. Due to these asymmetries,

the reinsurer ”dominates” the insurer and the reinsurance contract can be considered as

a hierarchical game between both parties. This is exactly the concept of Stackelberg

games: Stackelberg games have a hierarchical structure, where the leader (the reinsurer)

”dominates” the follower (the insurer). This means that the leader moves first and selects

its strategy knowing the future optimal response of the follower, whereas the follower

moves afterwards and chooses its strategy depending on the choice of the leader (cf.

Osborne and Rubinstein [1994]).

In reality, an insurance company buys reinsurance on a single insurance product or busi-

ness line. For example, the primary insurer ERGO offers the life insurance product

”ERGO Rente Garantie”. In this life insurance product, the insurer obtains a contribu-

tion payment from a representative client and in return, the representative client receives

a guarantee of 80% up to 100% of its initial contribution at the end of the insurance con-

tract. In return, the insurer invests the representative client’s contribution in bonds and

funds, and buys reinsurance from Munich Re (cf. Escobar-Anel et al. [2021]). Therefore,

it is realistic to consider a Stackelberg game between a reinsurer and an insurer, where

the insurer offers an insurance product to a representative client and buys reinsurance

from the reinsurer.

Overview of literature on insurance-reinsurance Stackelberg games

Chen and Shen [2018] solve a dynamic reinsurance optimization problem of the reinsurer

and the insurer in the framework of a Stackelberg game. The reinsurer aims to find

its optimal reinsurance premium strategy while the insurer’s goal is to find its optimal

proportional reinsurance strategy. The reinsurance strategy and the reinsurance premium
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strategy are adjusted dynamically. Since the authors assume that all coefficients are

stochastic, the so-called stochastic Hamilton-Jacobi-Bellman approach is introduced to

solve the optimization problem. Bai et al. [2019] extend the model of Chen and Shen

[2018] in the special case of deterministic, constant model coefficients (i.e., coefficients

of the claim process, insurance premium, financial market and utility function). The

researchers add a second insurance company that competes with the other insurance

company, consider reinsurance-investment optimization problems and include time delay.

The optimization problems are solved by the Hamilton-Jacobi-Bellman approach. Both

papers (Chen and Shen [2018] and Bai et al. [2019]) work with a proportional reinsurance

on the whole level of the aggregated claims. In Chapter 3, we give a more detailed overview

of literature on insurance-reinsurance Stackelberg games.

Overview of literature on portfolio optimization

Escobar-Anel et al. [2021] focus on a product-based problem and consider an insurer that

buys reinsurance to protect itself against the portfolio loss in a life insurance product with

a capital guarantee. As in Chen and Shen [2018] and Bai et al. [2019], the reinsurance

strategy is adjusted dynamically. In this paper, the researchers focus on the insurer’s

optimization problem without the interaction with the reinsurer, i.e., the researches did

not consider a Stackelberg game between a reinsurer and the insurer. The reinsurance

is modeled by a put option, where the underlying is given by a benchmark portfolio and

the strike price by the capital guarantee. The benchmark portfolio is not equal to the

insurer’s portfolio but is highly correlated to it. For the insurer, the researchers consider a

reinsurance-investment optimization problem with a Value-at-Risk and a no-short-selling

constraints. In Chapter 4, we give a more detailed overview to Escobar-Anel et al. [2021].

Scope

To the best of our knowledge, the current literature on Stackelberg games in the context

of insurance and reinsurance focuses on insurance companies, which buy reinsurance on

the whole level of their aggregated claims and adjust their reinsurance strategy dynami-

cally. As an example, we provide in this thesis a detailed overview of a special case of a

Stackelberg game and its solution presented in Bai et al. [2019].

As mentioned before, in reality reinsurance is bought for potential losses within single

insurance products or business lines, not on the whole company level.

In general, a reinsurance contract cannot be adjusted dynamically. At the beginning, the

reinsurance company and the insurance company agree in a reinsurance contract, which
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can be adjusted at regular intervals, e.g., annually. Hence, it is more realistic to consider

a situation, where the insurer buys reinsurance at the beginning without the possibility

of dynamic adjustments.

To ensure the capital guarantee of the life insurance product, the insurer buys a reinsur-

ance from the reinsurer. The reinsurance is modeled by a put option, where the strike price

is given by the capital guarantee. The put option is a protection against the downside

risk of the insurer’s (product specific) investment portfolio. We assume that the under-

lying of the put option is not equal to the insurer’s portfolio, since the insurer follows

its individual investment strategy that the reinsurer might consider too risky or does not

even know. Therefore, the reinsurer offers reinsurance on a standard portfolio, where the

risks can be better assessed and hedged. For example, the asset manager of the insurer

might overweight specific economy sectors, e.g. the technological stocks. However, the

reinsurer agrees to provide protection only for a well-diversified portfolio replicating the

performance of the whole economy, e.g. the DAX performance. (cf. Escobar-Anel et al.

[2021])

Hence, the second Stackelberg game in the master thesis is modeled by a more realistic

scenario than in the first Stackelberg game. According to the previous aspects, we assume

that the insurer buys a reinsurance as a part of a single life insurance product with a

capital guarantee. The reinsurance contract is modeled by a put option. We allow that

the insurer can only buy reinsurance at the beginning of the reinsurance contract without

future adjustments. The strike price of the put option is given by the capital guarantee

and the underlying by a benchmark portfolio, which is not equal to the insurer’s portfolio

but has a high correlation with it. Therefore, the reinsurer can hedge its short position

in the put option by investing in the benchmark portfolio. In addition, the reinsurer can

invest in the same risky assets as the insurer.

Innovation

From a practical point of view, we extend the literature on Stackelberg games between a

reinsurer and an insurer by setting up and solving a more realistic game, where reinsurance

• is written on potential losses of an insurance product related to a specific predeter-

mined portfolio rather than the whole aggregated loss of an insurer, and

• is purchased at the beginning of the investment period and not dynamically traded

at future points.

From a theoretical point of view, we extend the existing literature by solving novel opti-
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mization problems that are subproblems in the above described Stackelberg game.

We use the idea of backward induction to solve the Stackelberg game in two steps. First,

we solve the optimization problem of the insurer for any possible strategy of the reinsurer.

Afterwards, we find the optimal strategy of the reinsurer by solving the optimization

problem of the reinsurer, knowing the optimal response of the insurer. In addition to the

reinsurer’s standard investment in the financial market, it has a fixed short position in a

put option. Hence, we solve the optimization problem of the reinsurer by using an idea

introduced in Korn and Trautmann [1999]. When solving the optimization problem of the

insurer we are dealing with two peculiarities: a fixed-term investment (i.e., the insurer

buys reinsurance only at the beginning of the contract) and a portfolio constraint (i.e., the

insurer follows an individual investment strategy and is not willing to follow a standard

reinsurable strategy). Therefore, we use a combination of the methods introduced in

Desmettre and Seifried [2016] and Cvitanić and Karatzas [1992].

Thesis structure

Chapter 1 introduces the mathematical and stochastic preliminaries as well as the diffusion

approximation of a claim process. It also summarizes the papers, which we use in Chapter

4 for finding the Stackelberg equilibrium. Chapter 2 gives a brief general introduction

to Stackelberg games and describes the solution approach called backward induction. In

Chapter 3, we solve a Stackelberg game between a reinsurer and an insurer, which is a

special case of Bai et al. [2019]. We use the Hamilton-Jacobi-Bellman method to solve the

problem and afterwards verify that the solution is indeed a solution to the Stackelberg

game. In Chapter 4, we consider another Stackelberg game between a reinsurer and an

insurer which is based on the framework and idea of Escobar-Anel et al. [2021]. First, we

solve the optimization problem of the reinsurer and insurer theoretically. Afterwards, we

analyze the solution to the Stackelberg game numerically and investigate its sensitivity

with respect to the risk aversion of the reinsurer as well as the insurer, and with respect

to model parameters influencing the fair price of the put option. Chapter 5 concludes the

master thesis.
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1.1 Mathematical Preliminaries

In this section, we state some basic mathematical preliminaries for the master thesis.

Definition 1.1. The inner product of the Hilbert space Rn is defined by

〈x, y〉 := x�y

and the norm by

‖x‖ :=
√
〈x, x〉

for x, y ∈ Rn.

Theorem 1.2 (Inverse of 2× 2-matrix, p. 207 in Karpfinger and Stachel [2020]). Let A

be a real-valued 2× 2-matrix given by

A =

(
a b

c d

)

with a, b, c, d ∈ R. Then the inverse is given by

A−1 =
1

ad− bc

(
d −b

−c a

)
.

Definition 1.3 (Gradient, p. 8 in Ulbrich and Ulbrich [2012]). Let f : Rn → R be a

continuous differentiable function. The gradient of f with respect to x ∈ Rn is defined by

∇xf(x) :=

⎛
⎜⎜⎝
fx1(x)

...

fxn(x)

⎞
⎟⎟⎠ ∈ Rn.

We denote by fxi
(x) (= ∂

∂xi
f(x)) the derivative of f with respect to the ith component of

x.

Theorem 1.4 (Characterizing a maximum, Theorem 16.6 in Forster [1976]). Let f :

[a, b] → R be a twice continuous differentiable function. If it holds for x ∈ [a, b]

(a) f ′(x) = 0, and

(b) f ′′(x) < 0,
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then f has a maximum at point x. We call (a) the first-order optimality condition (FOOC)

and (b) the second-order optimality condition. If f ′′(x) > 0 instead of condition (b), then

f has a minimum at point x.

Definition 1.5 (Convex set, Definition 6.1 in Ulbrich and Ulbrich [2012]). X ⊂ Rn is

called a convex set if for all x, y ∈ X and λ ∈ [0, 1]

λx+ (1− λ)y ∈ X.

Definition 1.6 (Concave function, Definition 6.2 in Ulbrich and Ulbrich [2012]). Let

f : Rn → R be a function. Then f is called

• convex if for all x, y ∈ Rn and λ ∈ [0, 1] it holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

• strictly convex if for all x, y ∈ Rn with x 
= y and λ ∈ (0, 1) it holds

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

• concave if −f is convex, i.e., for all x, y ∈ Rn and λ ∈ [0, 1] it holds

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y).

• strictly concave if −f is strictly convex, i.e., for all x, y ∈ Rn with x 
= y and

λ ∈ (0, 1) it holds

f(λx+ (1− λ)y) > λf(x) + (1− λ)f(y).

Theorem 1.7 (Convex functions, Theorem 6.3 in Ulbrich and Ulbrich [2012]). Let

f : Rn → R be a continuously differentiable function. The function f is convex if and

only if for all x, y ∈ Rn it holds

∇xf(x)
�(y − x) ≤ f(y)− f(x),

where ∇xf is the gradient of f with respect to x.

Remark. Since f is concave if −f is convex, we have that f is concave if and only if for

all x, y ∈ Rn it holds

∇xf(x)
�(y − x) ≥ f(y)− f(x).
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Definition 1.8 (Polynomially bounded, p. 7 in Desmettre and Seifried [2016]). A func-

tion h : (0,∞) → R is called polynomially bounded at 0 and∞ if there exists c, k ∈ (0,∞)

such that for all y ∈ (0,∞)

|h(y)| ≤ c

(
y +

1

y

)k

.

Definition 1.9 (Utility functions, Definition 5.1 in Korn [2014]). Let U : (0,∞) → R be

a strictly concave, continuous differentiable and satisfies the Inada conditions, i.e.,

U ′(0) := lim
x↓0

U ′(x) = +∞,

U ′(∞) := lim
x→∞

U ′(x) = 0.

U is called a utility function.

Example 1.10 (Utility function). The most common utility functions are:

• Logarithmic utility function: U(x) = ln(x) for x ∈ (0,∞). (cf. Example 5.2 in Korn

[2014])

• Power utility function: U(x) = 1
b
xb for x ∈ (0,∞) and b ∈ (−∞, 1)\{0}. (cf.

Example 5.2 in Korn [2014])

• Exponential utility function: U(x) = − 1
β
e−βx for x ∈ (0,∞) and β > 0. (cf. p. 919

in Chen and Shen [2018])

In the master thesis, we will use the exponential and power utility function.

Theorem 1.11 (Weierstrass, Corollary 2.32 in Aliprantis and Border [2006]). Let a, b ∈ R

with a < b and f : [a, b] → R a continuous function. Then there exist points z, z ∈ [a, b]

such that for all z ∈ [a, b]

f(z) ≤ f(z) ≤ f(z).

Theorem 1.12 (Berge’s Maximum Theorem, Theorem 16.31 in Aliprantis and Border

[2006]). Let X, Y ⊆ R be an interval and c : X → R, f : X × Y → R continuous

functions. Define the value function m : Y → R by

m(y) = max
x∈[0,c(y)]

f(x, y).



1.2. STOCHASTIC PRELIMINARIES 9

Assume that the maximum is unique (e.g. if f is strictly concave with respect to y). Then

the function defined by

M(y) = arg max
x∈[0,c(y)]

f(x, y)

is continuous.

1.2 Stochastic Preliminaries

Let T > 0 and (Ω,F ,Q) be a probability space with a filtration F := (Ft)t∈[0,T ], i.e.,

Ft ⊂ F are σ-algebras and Fs ⊂ Ft for 0 ≤ s ≤ t ≤ T (cf. Definition 9.9 in Klenke

[2013]).

Definition 1.13 (Distribution, Definition 1.103 and 13.21 in Klenke [2013]). (a) LetX

be a real-valued random variable. The distribution function of X is given by

F : R → [0, 1], x �→ Q(X ≤ x).

(b) Let X and Y be two real-valued random variables with distribution functions FX

and FY , respectively. X and Y are called identically distributed (Notation: X
d
= Y )

if FX = FY holds.

(c) We say that the real-valued random variables X and Y are i.i.d. if X and Y are

independent and identically distributed.

(d) Let (Xn)n∈N and X be real-valued random variables with distribution functions Fn

and F , respectively. We say that (Xn)n∈N converges in distribution to X (Notation:

Xn
n→ X as n → ∞) if it holds for all continuity points x of F

Fn(x) → F (x).

Theorem 1.14 (Central Limit Theorem, Theorem 15.37 in Klenke [2013]). Let (Xn)n∈N
be i.i.d. real-valued random variables with μ := E[X1] and σ2 := Var(X1) > 0. Then for

Sn :=
∑n

k=1 Xk

Sn − nμ

σ
√
n

d→ Z,

where Z ∼ N (0, 1), i.e., the distribution function of Z is given by

FZ(x) =

∫ x

−∞
e−

t2

2 dt
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for x ∈ R.

Definition 1.15 (Poisson process, Definition 5.33 in Klenke [2013]). Let N = (N(t))t∈[0,T ]

be a N0-valued stochastic process. N is called a Poisson process with intensity λ > 0 if

(a) N(0) = 0 Q-a.s.,

(b) N has independent increments, i.e., for all 0 = t0 < . . . < tn the family (N(ti) −
N(ti−1)i=1,...,n is independent,

(c) N has stationary and Poisson distributed increments, i.e.,

N(t)−N(s)
d
= N(t− s) ∼ Poi(λ(t− s)),

where X ∼ Poi(λ) means

Q(X = k) = e−λλ
k

k!
for all k ∈ N0.

Definition 1.16 (Adapted process, Definition 9.10 in Klenke [2013]). LetX = (X(t))t∈[0,T ]

be a stochastic process. X is called (F -)adapted if X(t) is Ft-measurable for all t ∈ [0, T ].

Definition 1.17 (Progressively measurable, Definition 2.39 in Korn [2014]). Let X =

(X(t))t∈[0,T ] be a Rn-valued stochastic process on (Ω,F ,Q). X is called progressively

measurable if for any t ∈ [0, T ] the map

X : [0, t]× Ω → Rn, (s, ω) �→ X(s, ω)

is B([0, t])⊗Ft × B(Rn)-measurable.

Theorem 1.18 (Theorem 2.41 in Korn [2014]). If a stochastic process X = (X(t))t∈[0,T ]

is adapted and continuous, then X is progressively measurable.

Definition 1.19 (Martingale, Definition 2.12 in Korn [2014]). Let X = (X(t))t∈[0,T ] be

a stochastic process on (Ω,F ,Q). X is called a (F -)martingale if

(a) X is Q-adapted,

(b) E[|X(t)|] < ∞ for all t ∈ [0, T ], and

(c) for all s, t ∈ [0, T ] with s ≤ t

E[X(t)|Fs] = X(s) Q-a.s.
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Definition 1.20 (Brownian motion, Definition 2.6 in Korn [2014]). LetW = (W (t))t∈[0,T ]

be real-valued stochastic process on (Ω,F ,Q). W is called a (one-dimensional) Brownian

motion on (Ω,F ,Q) if

(a) W (0) = 0 Q-a.s.,

(b) the increments of W are stationary, i.e., for s ≥ t

W (t)−W (s) ∼ N (0, t− s),

(c) the increments of W are independent, i.e., for r ≤ u ≤ s < t

W (t)−W (s) is independent of W (u)−W (r).

The Rd-valued stochastic process W = (W1(t), . . . ,Wd(t))
�
t∈[0,T ] is called a d-dimensional

Brownian motion if the components Wi are independent (one-dimensional) Brownian

motions.

Definition 1.21 (Itô-process, Definition 2.49 in Korn [2014]). Let X = (X(t))t∈[0,T ] be

an adapted stochastic process. X is called an Itô-process if it holds for all t ∈ [0, T ]

dX(t) =μ(t)dt+ σ(t)dW (t)

where X(0) is F0-measurable and μ = (μ(t))t∈[0,T ], σ = (σ1(t), . . . , σd(t))t∈[0,T ] are pro-

gressively measurable with

∫ t

0

|μ(s)|ds < ∞,

∫ t

0

|σi(s)|2ds < ∞ Q-a.s.

for all t ∈ [0, T ] and i = 1, . . . , d.

Definition 1.22 (Quadratic covariance, Definition 2.51 in Korn [2014]). Let

X = (X(t))t∈[0,T ], Y = (Y (t))t∈[0,T ] be two Itô-processes with

dX(t) = μX(t)dt+ σX(t)dW (t),

dY (t) = μY (t)dt+ σY (t)dW (t).

The stochastic process 〈X, Y 〉 = (〈X, Y 〉t)t∈[0,T ] is called quadratic covariance of X and

Y if

〈X, Y 〉t =
d∑

i=1

σXi(t)σY i(t)dt.
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〈X〉 := 〈X,X〉 is called the quadratic variance of X.

Theorem 1.23 (Itô’s formula, Theorem 2.55 Korn [2014]). Let X = (X(t))t∈[0,T ] be a

Itô-process and f : [0, T ] × R → R a continuous differentiable function with respect to t

and a twice continuous differentiable function with respect to x. Then

df(t,X(t)) =ft(t,X(t))dt+ fx(t,X(t))dX(t) +
1

2
fxx(t,X(t))d〈X〉t.

Theorem 1.24 (Product rule, Corollary 2.56 in Korn [2014]). Let

X = (X(t))t∈[0,T ], Y = (Y (t))t∈[0,T ] be two Itô-processes. Then

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + d〈X, Y 〉t.

Definition 1.25 (Equivalent measures, Definition 2.1 in Zagst [2002]). Let Q and Q̃ be

two probability measures on (Ω,F).

(a) Q̃ is called absolute continuous with respect to Q (Notation: Q̃ � Q) if

Q(A) = 0 ⇒ Q̃(A) = 0 ∀ A ∈ F .

(b) Q and Q̃ are called equivalent measures (Notation: Q̃ ∼ Q) if

Q � Q̃ and Q̃ � Q.

Theorem 1.26 (Radon-Nikodym, Theorem 2.2 in Zagst [2002]). Let Q and Q̃ be two

probability measures on (Ω,F). Then Q̃ � Q if and only if there exists an integrable

function f ≥ 0 Q-a.s. such that for all A ∈ F

Q̃(A) =

∫
A

fdQ.

f is called the Radon-Nikodym derivative of Q̃ with respect to Q (Notation: f = dQ̃
dQ
).

Theorem 1.27 (Bayes Formula, Theorem 2.7 in Zagst [2002]). Let Q and Q̃ be two

probability measures on (Ω,F) and f = dQ̃
dQ

be a Radon-Nikodym derivative of Q̃ with

respect to Q. Furthermore, let X be an integrable random variable on the probability

space (Ω,F , Q̃) and G ⊂ F a sub-σ-algebra. Then it holds

EQ[X · f |G] = EQ̃[X|G] · EQ[f |G]

which is called the generalized version of Bayes formula.
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Theorem 1.28 (Novikov’s condition, Lemma 2.40 in Zagst [2002]). Let

W = (W1(t), . . . ,Wd(t))
�
t∈[0,T ] be a d-dimensional Brownian motion on (Ω,F ,Q) and

γ = (γ(t))t∈[0,T ] a d-dimensional progressively measurable stochastic process on (Ω,F ,Q).

Define for t ∈ [0, T ]

Z(t) := exp

(
− 1

2

∫ t

0

‖γ(s)‖2ds−
∫ t

0

γ(s)�dW (s)

)
.

If

E

[
exp

(
1

2

∫ t

0

‖γ(s)‖2ds
)]

< ∞

holds, then (Z(t))t∈[0,T ] is a continuous martingale.

Theorem 1.29 (Girsanov’s Theorem, Theorem 2.41 in Zagst [2002]). Let

W = (W1(t), . . . ,Wd(t))
�
t∈[0,T ] be a d-dimensional Brownian motion on (Ω,F ,Q) and

γ = (γ(t))t∈[0,T ] a d-dimensional progressively measurable stochastic process such that

the process (Z(t))t∈[0,T ] defined by

Z(t) := exp

(
− 1

2

∫ t

0

‖γ(s)‖2ds−
∫ t

0

γ(s)�dW (s)

)

is a martingale. Define

W̃ (t) := W (t) +

∫ t

0

γ(s)ds.

Then W̃ = (W̃1(t), . . . , W̃d(t))t∈[0,T ] is a d-dimensional Brownian motion under the equiv-

alent probability measure Q̃ with Radon-Nikodym derivative dQ̃
dQ

= Z.

Definition 1.30 (Strong solution of SDE, Definition 2.44 in Zagst [2002]). Let (Ω,F ,Q)

be a probability space with a filtration F = (Ft)t≥0. Furthermore, let W = (W (t))t≥0

be a d-dimensional Brownian motion. We say that the n-dimensional stochastic process

Y = (Y (t))t≥0 is a strong solution to the stochastic differential equation (SDE)

dY (t) =μ(Y (t), t)dt+ σ(Y (t), t)dW (t)

Y (0) =y ∈ Rn

if Y fulfills

Y (t) = y +

∫ t

0

μ(Y (s), s)ds+

∫ t

0

σ(Y (s), s)dW (s)
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where μ : Rn × [0,∞) → Rn and σ : Rn × [0,∞) → Rn×d are progressively measurable

stochastic processes satisfying

∫ t

0

|μ(Y (s), s)|ds < ∞ and

∫ t

0

σij(Y (s), s)2ds < ∞ Q-a.s.

for all t ≥ 0 and i = 1, . . . , n, j = 1, . . . , d.

Theorem 1.31 (Existence and Uniqueness, Theorem 2.45 in Zagst [2002]). Let the SDE

be given by

dY (t) =μ(Y (t), t)dt+ σ(Y (t), t)dW (t)

Y (0) =y ∈ Rn

where μ : Rn × [0,∞) → Rn and σ : Rn × [0,∞) → Rn×d are continuous functions such

that for all t ≥ 0, x, y ∈ Rn and some constant L > 0 it holds

(a) Lipschitz condition:

‖μ(x, t)− μ(y, t)‖2 + ‖σ(x, t)− σ(y, t)‖2 ≤ L‖x− y‖2.

(b) Growth condition:

‖μ(y, t)‖2 + ‖σ(y, t)‖2 ≤ L2(1+‖y‖2).

Then there exists a unique strong solution Y of the SDE and C > 0 (depending on L and

T > 0) such that

E[‖Y (t)‖2] ≤ C(1+‖y‖2)eCt

for all t ∈ [0, T ] and

E[ sup
t∈[0,T ]

‖Y (t)‖2] < ∞.

Definition 1.32 (Characteristic operator, Definition 2.46 in Zagst [2002]). Let Y be a

unique strong solution to the SDE

dY (t) =μ(Y (t), t)dt+ σ(Y (t), t)dW (t)

Y (0) =y ∈ Rn

under the conditions (a) and (b) from Theorem 1.31. The operator D is called the
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characteristic operator for Y if

DΦ(y, t) := Φt(y, t) +
n∑

i=1

μi(y, t)Φyi(y, t) +
1

2

n∑
i=1

n∑
j=1

aij(y, t)Φyiyj(y, t)

where Φ : Rn× [0,∞) → R is twice continuous differentiable with respect to y, continuous

differentiable with respect to t and

aij(y, t) :=
d∑

k=1

σik(y, t)σjk(y, t).

1.3 Approximation of the Claim Process

1.3.1 Classical Risk Process

In this section, we will introduce the classical risk process, based on the book Grandell

[1991].

Definition 1.33 (Claim Process). The claim process C = (C(t))t∈[0,T ] is defined by

C(t) :=

N(t)∑
k=1

Xk, (1.1)

where

(i) N = (N(t))t∈[0,T ] is a Poisson process with intensity λ > 0, and

(ii) (Xk)k∈N is a sequence of independent identically distributed (i.i.d.) random variables

with common distribution function F with F (0) = 0, mean E[X1] = μ and variance

V ar(Xk) = σ2 for k ∈ N.

The process N and the sequence (Xk)k∈N are independent.

Definition 1.34 (Classical Risk Process, Definition 1). The classical risk process

R = (R(t))t∈[0,T ] is defined by

R(t) := pt− C(t) = pt−
N(t)∑
k=1

Xk

where p is a positive real constant. We will choose p := (1 + θ)λμ where θ > 0 is a safety

loading of the insurer.
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Remark. Interpretation:

• N(t) is the number of claims until time t.

• Xk denotes the k-th claim.

• C(t) is the amount of claims until time t.

• p is the premium paid from the client to the insurance company.

1.3.2 Diffusion Approximation

In this section, we consider an approximation of the risk process by a Brownian motion.

This approximation is called the diffusion approximation and was introduced in Grandell

[1977] and Grandell [1991]. The idea is to consider a sequence of risk processes that

converge in distribution to a Brownian motion with a drift. In the following, we give a

heuristic solution to the approximation of the risk process.

First, we define for n ∈ N

Nn(t) :=
N(nt)− λnt√

n
,

where N is a Poisson process with intensity λ > 0. It holds

lim
t→∞

V ar(N(t))

t
= lim

t→∞
λt

t
= λ

and

N(nt)

n
→ λt, (1.2)

as n → ∞. For the sequence (Nn)n∈N it holds

Nn(t)
d→
√
λW1(t), (1.3)

as n → ∞, where W1 is a one-dimensional Brownian motion. Next, we define for m ∈ N

C̄(m) :=
m∑
k=1

Xk. (1.4)
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Then, E[C̄(m)] = mE[X1] = mμ and V ar(C̄(m)) = mV ar(X1) = mσ2, since Xk are i.i.d..

From the Central Limit Theorem (CLT) it follows

C̄(m)−mμ√
mσ2

d→ W2(1), (1.5)

as m → ∞, where W2 is a one-dimensional Brownian motion independent of W1. Now,

we define for n ∈ N

Cn(t) :=
C(nt)− μλnt√

n
,

where (C(t))t∈[0,T ] is a claim process (cf. Definition 1.33). It follows from the Central

Limit Theorem (CLT)

Cn(t) =
C(nt)− μλnt√

n
(1.6)

(1.1),(1.4)
=

C̄(N(nt))− μλnt√
n

= σ

√
N(nt)

n

C̄(N(nt))− μN(nt)

σ
√
N(nt)

+ μ
N(nt)− λnt√

n

d−→
(1.2),(1.3),(1.5)

σ
√
λtW2(1) + μ

√
λW1(t)

d
= σ

√
λW2(t) + μ

√
λW1(t)

d
=
√

λ(σ2 + μ2)W3(t), (1.7)

as n → ∞, since
√
tW2(1)

d
= W2(t) and W1, W2 are independent. W3 is a one-dimensional

Brownian motion. Hence, for large n we have the approximation

C(nt) ≈ μλnt+
√
λ(σ2 + μ2)W3(nt). (1.8)

Lastly, we define

Rn(t) :=
pnnt− C(nt)√

n
,

where pn := (1 + θn)λμ and θn := θ√
n
with θ > 0. Then:

Rn(t) =
pnnt− C(nt)√

n

=
pnnt− μλnt√

n
− C(nt)− μλnt√

n
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def. of pn
=

(1 + θn)μλnt− μλnt√
n

− C(nt)− μλnt√
n

=
θnμλnt√

n
− C(nt)− μλnt√

n

= θμλt− C(nt)− μλnt√
n

d−→
(1.7)

θμλt−
√
λ(σ2 + μ2)W3(t)

d
= θμλt+

√
λ(μ2 + σ2)W3(t).

For large n we have the approximation

Rn(t) ≈θμλt+
√
λ(μ2 + σ2)W3(t)

=pt− μλt+
√
λ(μ2 + σ2)W3(t)

d≈
(1.8)

pt− C(t)

=R(t),

where p := (1 + θ)λμ. Hence, we can approximate the risk process R, which corresponds

for n large enough to Rn, by a Brownian motion with drift, i.e.,

dR(t) = pdt− λμdt+
√
λ(μ2 + σ2)dW3(t).

Using the above SDE for the risk process and the relation C(t) = pt−R(t), we obtain for

the claim process

dC(t) = λμdt−
√
λ(μ2 + σ2)dW3(t).

1.4 Summary of Relevant Papers

In Chapter 4 we solve a Stackelberg game between a reinsurer and an insurer. To prove

the solution of the optimization problem of the insurer, we use Cvitanić and Karatzas

[1992] and Desmettre and Seifried [2016]. For the optimization problem of the reinsurer

we use Korn and Trautmann [1999]. Therefore, we summarize in this section the relevant

parts for the master thesis of these papers. Since we apply the papers in Chapter 4, we

assume for simplicity that the financial market in this section is given as in Chapter 4.

Hence, the financial market consists of one risk-free asset S0 (also called bond) and two
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risky assets S1, S2 (also called stocks). The prices are given by

dS0(t) =S0(t)rdt, S0(0) = 1

dS1(t) =S1(t)(μ1dt+ σ1dW1(t)), S1(0) = s1 > 0

dS2(t) =S2(t)(μ2dt+ σ2(ρdW1(t) +
√

1− ρ2dW2(t))), S2(0) = s2 > 0 (1.9)

where ρ ∈ [−1, 1], r, μ1, μ2, σ1, σ2 > 0 such that μ1 > r, μ2 > r and W (t) :=

(W1(t),W2(t))
� is a 2-dimensional Brownian motion. We denote

� :=

(
1

1

)
, μ :=

(
μ1

μ2

)
and σ :=

(
σ1 0

σ2ρ σ2

√
1− ρ2

)
.

We write σ = (σij)i,j=1,2. r is called the interest rate, μ is the yield rate and σ is the

volatility matrix. The market price of risk is defined by

γ := σ−1(μ− r�) (1.10)

and the discount factor (also called pricing kernel) by

Z̃(t) := exp
(
−
(
r +

1

2
‖γ‖2

)
t− γ�W (t)

)
.

1.4.1 Korn and Trautmann [1999]

Korn and Trautmann [1999] consider an expected utility maximization problem of port-

folios containing options and/or stocks. They use the martingale approach and (option)

replicating strategies to solve an expected utility maximization problem of portfolios which

contains options. In the following, we will summarize the important parts of the paper.

Let the wealth process of the investor be given by

dV v0,ϕ(t) =ϕ0(t)dS0(t) + ϕ1(t)dS1(t) + ϕ2(t)dS2(t), (1.11)

V v0,ϕ(0) =v0 > 0,

where ϕ = (ϕ0, ϕ1, ϕ2)
� is a trading strategy. The set of all admissible trading strategies

for the wealth process (1.11) is given by

Λ := {ϕ self-financing| V v0,ϕ(t) ≥ 0 Q-a.s. ∀t ∈ [0, T ]}. (1.12)

A contingent claim B is a non-negative, FT -measurable random variable with E[Bn] < ∞
for some n > 1.
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Definition 1.35 (Replicating strategy, Definition 2.2 in Korn and Trautmann [1999]). A

trading strategy ϕ ∈ Λ is called a replicating strategy for the contingent claim B if

V v0,ϕ(T ) = B Q-a.s. (1.13)

If the price of the contingent claim has a special form, then the replicating strategy can

be given explicitly:

Theorem 1.36 (Replicating strategy, Theorem 2.6 in Korn and Trautmann [1999]). Sup-

pose that the price of a contingent claim at time t is given by f(t, S1(t), S2(t)), where f is

a continuous differentiable function with respect to t and a twice continuously differential

function with respect to S1 and S2. Then the replicating strategy ψ = (ψ0, ψ1, ψ2)
� is

given by

ψ0(t) =
f(t, S1(t), S2(t))−

∑2
i=1 ψi(t)Si(t)

S0(t)

ψi(t) =
d

dSi

f(t, S1(t), S2(t)), i = 1, 2.

The price process f(t, S1(t), S2(t)) satisfies

df(t, S1(t), S2(t)) =

[
rf(t, S1(t), S2(t)) +

2∑
i=1

ψi(t)Si(t)(μi − r)

]
dt

+
2∑

i=1

ψi(t)Si(t)
2∑

j=1

σijdWj(t). (1.14)

Portfolio Optimization Problem

We consider a portfolio optimization problem:

sup
ϕ∈Λ′

E[U(V v0,ϕ(T ))], (PS)

where U is a utility function and Λ′ is the set of all admissible trading strategies ϕ ∈ Λ

such that

E[U(V v0,ϕ(T ))−] < ∞1.

This condition makes sure that the expectation in (PS) exists. We denote by I the inverse

function of U ′.
1x− := max{−x, 0}
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Theorem 1.37 (Theorem 3.1 in Korn and Trautmann [1999]). Assume that it holds for

all y ∈ (0,∞)

E[Z̃(T )I(yZ̃(T ))] < ∞.

Then there exists an optimal trading strategy ϕ∗ ∈ Λ′, which solves the portfolio opti-

mization problem (PS) and the optimal terminal wealth is given by

V v0,ϕ∗
(T ) = I(y∗Z̃(T )),

where y∗ is the Lagrange multiplier which solves the budget constraint

E[Z̃(T )I(yZ̃(T ))] = v0.

The optimal wealth process is given by

V v0,ϕ∗
(t) = Z̃(t)−1E[Z̃(T )V v0,ϕ∗

(T )|Ft]

for all t ∈ [0, T ].

Theorem 1.38 (Remark 3.2 in Korn and Trautmann [1999]). Let ϕ∗ ∈ Λ′ be the optimal

trading strategy to the portfolio optimization problem (PS). Assume that the optimal

wealth process is given by

V v0,ϕ∗
(t) = g(t,W1(t),W2(t))

where g : [0, T )×R2 → [0,∞) is a function, which is continuous differentiable with respect

to t and twice continuous differentiable with respect to W1 and W2 with g(0, 0, 0) = v0.

Then the optimal trading strategy ϕ∗ is given by

ϕ∗
i (t) =

1

Si(t)
((σ�)−1∇xg(t,W1(t),W2(t)))i, i = 1, 2 (1.15)

ϕ∗
0(t) =

V v0,ϕ∗
(t)−∑2

i=1 ϕ
∗
i (t)Si(t)

S0(t)

where ∇xg is the gradient of g with respect to the last two components, i.e., W1 and W2.

Remark. The formula (1.15) differs from the formula in Remark 3.2 in Korn and Traut-

mann [1999] and in Theorem 5.12 in Korn [2014], i.e., we have (σ�)−1 whereas they have

σ−1. The following two points justify the difference:

1. If we consider a power utility function, i.e., U(x) = 1
b
xb for b ∈ (−∞, 1)\{0}, then
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we know that the optimal portfolio process is given by

π∗ =
1

1− b
(σσ�)−1(μ− r�). (1.16)

The optimal terminal wealth of the investor is given by

V ∗(T ) =I(y∗Z̃(T ))

=

((
v0

E
[
Z̃(T )

b
b−1

])b−1

Z̃(T )

) 1
b−1

=
v0

E
[
Z̃(T )

b
b−1

] Z̃(T ) 1
b−1 , (1.17)

where I is the inverse function of U ′, i.e., I(y) = y
1

b−1 , and y∗ is the Lagrange

multiplier, which solves the budget constraint

E[Z̃(T )I(y∗Z̃(T ))] = v0 ⇔ y∗ =
(

v0

E
[
Z̃(T )

b
b−1

])b−1

.

Hence, the optimal wealth process of the investor is given by

V ∗(t) =Z̃(t)−1E[Z̃(T )V ∗(T )|Ft]

(a)
=Z̃(t)−1E

[
Z̃(T )

v0

E
[
Z̃(T )

b
b−1

] Z̃(T ) 1
b−1

∣∣∣∣Ft

]

=Z̃(t)−1 v0

E
[
Z̃(T )

b
b−1

]E[Z̃(T ) b
b−1

∣∣∣Ft

]
(b)
=v0 ·����Z̃(t)−1

�������������������������

exp

((
r

b

b− 1
+

1

2
‖γ‖2

[
b

b− 1
− b2

(b− 1)2

])
T

)

× exp

(
−
(
r

b

b− 1
+

1

2
‖γ‖2

[
b

b− 1
− b2

(b− 1)2

])
(��T − t)

)
Z̃(T )

���
1

b
b−1

(c)
=v0 · exp

((
r

b

b− 1
+

1

2
‖γ‖2

[
b

b− 1
− b2

(b− 1)2

])
t

)

× exp

(
−
(
r +

1

2
‖γ‖2

)
1

b− 1
t− 1

b− 1
γ�W (t)

)

=v0 · exp
((

r − 1

2
‖γ‖2

[
b2

(b− 1)2
− 1

])
t− 1

b− 1
γ�W (t)

)
= : g(t,W1(t),W2(t)),

where (a) follows from (1.17), (b) from Lemma A.1 with λ = 0 and k = b
b−1

, and

(c) from the definition of Z̃. Hence, the gradient of g with respect to the last two
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components is given by

∇xg(t,W1(t),W2(t)) = − 1

b− 1
g(t,W1(t),W2(t))γ = − 1

b− 1
V ∗(t)γ. (1.18)

If we use the relation of the portfolio processes and trading strategies, i.e. (cf.

Definition 2.63 in Korn [2014])

π∗
i (t) =

Si(t)

V ∗(t)
ϕ∗
i (t),

and Equation (1.15) with σ−1 instead of (σ�)−1 like Korn and Trautmann [1999],

then it follows for the portfolio process

π∗(t) =
1

V ∗(t)
σ−1∇xg(t,W1(t),W2(t))

(∗)
=

1

1− b
σ−1γ

=
1

1− b
σ−1σ−1(μ− r�)


= (1.16)

where (∗) follows from (1.18).

2. Consider the proof of Theorem 5.12 on page 264 in Korn [2014]. If we compare the

dW -term, then

∇xg(t,W1(t),W2(t))
�dW (t)

!
=V ∗(t)π(t)�σ(t)dW (t)

⇔
∇xg(t,W1(t),W2(t))

� =V ∗(t)π(t)�σ(t)

⇔
1

V ∗(t)
∇xg(t,W1(t),W2(t))

�σ(t)−1 =π(t)�

⇔
1

V ∗(t)
(∇xg(t,W1(t),W2(t))

�σ(t)−1)� =π(t)

⇔
1

V v0,π,c(t)
(σ(t)−1)�∇xf(t,W1(t),W2(t)) =π(t)

⇔
1

V ∗(t)
(σ(t)�)−1∇xg(t,W1(t),W2(t)) =π(t).
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Option Optimization Problem with Constraints in Stocks

Now, we consider a wealth process of the investor, where the investor can trade in options

on the stocks and in the stocks. We assume that there exists two options on the stocks

in our market. The price process of the first option is given by f1(t, S1(t), S2(t)) and of

the second option by f2(t, S1(t), S2(t)). This means, the investor has a trading strategy

ξ(t) = (ξ0(t), ξ1(t), ξ2(t))
� in the options and a trading strategy ζ(t) = (ζ1(t), ζ2(t)))

� in

the stocks, i.e., the wealth process of the investor is given by

dV v0,(ξ,ζ)(t) =ξ0(t)dS0(t) + ξ1(t)df1(t, S1(t), S2(t)) + ξ2(t)df2(t, S1(t), S2(t)) (1.19)

+ ζ1(t)dS1(t) + ζ2(t)dS2(t),

V v0,(ξ,ζ)(0) =v0 > 0.

The aim of the investor is to maximize the expected utility of the terminal wealth (1.19)

for a given trading strategy ζ in the stocks

sup
ξ∈Λ′

E[U(V v0,(ξ,ζ)(T ))]. (PO)

Theorem 1.39 (Theorem 5.1 in Korn and Trautmann [1999]). Assume that the option

prices f1 and f2 satisfy the requirements of Theorem 1.36 and for every t ∈ [0, T ) the

matrix ψ(t) = (ψij(t))i,j=1,2 given by

ψij(t) :=
d

dsj
fi(t, S1(t), S2(t))

is regular. Then for a given trading strategy ζ in the stocks, there exists an optimal trading

strategy ξ∗ in the options for the optimization problem (PO). The optimal terminal wealth

(1.19) is given by

V v0,(ξ∗,ζ)(T ) = I(y∗Z̃(T )),

where y∗ is the Lagrange multiplier, which solves the budget constraint

E[Z̃(T )I(yZ̃(T ))] = v0.

The optimal trading strategy ξ∗ is given by

ξ̄∗(t) = (ψ(t)�)−1(ϕ̄∗(t)− ζ(t)),

ξ∗0(t) =
V v0,(ξ∗,ζ)(T )−∑2

i=1(ξ
∗
i (t)fi(t, S1(t), S2(t)) + ζi(t)Si(t))

S0(t)
,
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where ϕ∗ is the optimal trading strategy to the portfolio optimization problem (PS) and

ξ̄∗, ϕ̄∗ denotes the last two components of ξ∗, ϕ∗.

Remark. In Chapter 4, we need a similar proposition to Theorem 1.39. The difference

will be that we want to determine the optimal trading strategy in the stocks given the

trading strategy in the options, not vice versa. This is possible by Remark 5.2 in Korn

and Trautmann [1999].

1.4.2 Desmettre and Seifried [2016]

In Desmettre and Seifried [2016], the authors consider an investor who invests dynamically

in the financial market and can buy an additional fixed-term security only at time 0. The

aim of the investor is to maximize its expected utility of terminal wealth plus the payoff

from the fixed-term security. They use the so-called generalized martingale approach. In

the following, we summarize the most relevant parts for the thesis from the paper.

The financial market is given by (1.9). The investor invests in the financial market, i.e., it

has a relative portfolio process π(t) = (π1(t), π2(t))
�, t ∈ [0, T ]. Additional to the financial

market, there exists a fixed-term security that has a stochastic payoff P (T ) under Q at

time T . At time 0, the fixed-term security can be traded at a price of P (0). Hence, the

investor decides at time 0 how much it is willing to invest in the fixed-term security, i.e.,

it has a fixed-term investment ξ. This means, the investor pays ξP (0) at the beginning

and receives therefore ξP (T ) at the end of the investment horizon.

Hence, we define the wealth process of the investor by

dV v0(ξ),π(t) =(1− π1(t)− π2(t))V
v0(ξ),π(t)

dS0(t)

S0(t)
+ π1(t)V

v0(ξ),π(t)
dS1(t)

S1(t)
(1.20)

+ π2(t)V
v0(ξ),π(t)

dS2(t)

S2(t)

V v0(ξ),π(0) =v0 − ξP (0) =: v0(ξ)

where v0 > 0 is the initial wealth of the investor. At time T , the investor receives the sum

V v0(ξ),π(T ) + ξP (T ).

To avoid that the investor is insolvent at time 0, the absolute position in the fixed-term

security ξ must fulfill

v0 − ξP (0) ≥ 0 ⇔ ξ ≤ v0
P (0)

=: ξmax.
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The optimization problem of the investor is given by

sup
(ξ,π)∈Λ

E[U(V v0(ξ),π(T ) + ξP (T ))], (P )

where U is the utility function of the investor and Λ denotes the set of all admissible

strategies, i.e.

Λ := {(ξ, π)| ξ ∈ [0, ξmax], π is self-financing, V v0(ξ),π(t) ≥ 0 Q-a.s. ∀t ∈ [0, T ]

and E[U(V v0(0),π(T ) + ξP (T ))] < ∞ ∀ξ > 0}.

The procedure of solving the optimization problem (P ) is the following:

1. For a fixed ξ ∈ [0, ξmax] find the optimal π∗ by the generalized martingale method.

2. Find ξ∗.

First, let ξ ∈ [0, ξmax] be fixed. Define the random utility function Û : (0,∞) → R by

Û(x) := U(x+ ξP (T )).

This function is random and FT -measurable, since P is a random variable and FT -

measurable. This case is called spanned in Desmettre and Seifried [2016]. They also

consider the general case (i.e., not necessarily the spanned case, which means that Û is

not necessarily FT -measurable), but we will only consider the spanned case.

Since U is a utility function, it is concave and differentiable. Therefore, Û is concave and

differentiable. The inverse of Û ′ is denoted by Î and is given by Î : (0,∞) → [0,∞) with

Î(y) = max{I(y)− ξP (T ), 0},

where I is the inverse function of U ′. The function Î is bijective on the interval (0, U ′(ξP (T ))].

Theorem 1.40 (Optimal solution to (P ), Corollary 3.4 in Desmettre and Seifried [2016]).

Assume it holds for any y ∈ (0,∞)

E[Z̃(T )I(yZ̃(T ))] < ∞ and E[U(I(yZ̃(T )))] < ∞.

Then there exists a solution (ξ∗, π∗) to the optimization problem (P ). The optimal ter-

minal wealth of the investor is given by

V v0(ξ∗),π∗
(T ) = max{Î(y∗(ξ∗)Z̃(T )), 0},
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where y∗(ξ) is the Lagrange multiplier that is to be found via the budget constraint

E[Z̃(T )Î(y∗(ξ)Z̃(T ))] = v0 − ξP (0).

Therefore, the optimal total terminal wealth is given by

V v0(ξ∗),π∗
(T ) + ξ∗P (T ) = max{I(y∗(ξ∗)Z̃(T )), ξ∗P (T )}.

The optimal absolute position in the fixed-term security is given by

ξ∗ = arg max
ξ∈[0,ξmax]

ν(ξ),

where the function ν is defined by

ν(ξ) := E[U(max{I(y∗(ξ)Z̃(T )), ξP (T )})].

In the next theorem, we give an explicit formula for the optimal portfolio process π∗.

Theorem 1.41 (Optimal portfolio process, Theorem 4.1 and 4.3 in Desmettre and Seifried

[2016]). Assume that the conditions of Theorem 1.40 are fulfilled. Furthermore, suppose

that Î and dÎ(y)
dy

are polynomially bounded at 0 and ∞. Then the optimal portfolio process

π∗ of the optimization problem (P ) given ξ ∈ [0, ξmax] is given by

π∗(t)V v0(ξ),π∗
(t) = −(σ�)−1γZ̃(t)−1E

[
Z̃(T )y∗(ξ)Z̃(T )

dÎ

dy
(y∗(ξ)Z̃(T ))|Ft

]
(1.21)

Q-a.s. for all t ∈ [0, T ], where y∗(ξ) is the Lagrange multiplier from Theorem (1.40) and

γ the market price of risk given by (1.10).

In the special case, when U is given by a power utility function (i.e., U(x) = 1
b
xb for

b ∈ (−∞, 1)\{0}), then the optimal portfolio process π∗ has the form

π∗(t)V v0(ξ),π∗
(t) = πM(V v0(ξ),π∗

(t) + ξZ̃(t)−1E[Z̃(T )P (T )1{V v0(ξ),π
∗
(T )>0}|Ft]), (1.22)

where πM is the Merton portfolio process given by

πM =
1

1− b
(σσ�)−1(μ− r�).

Proof. We will only prove that the formula of the special case (1.22) follows from the

formula of the general case (1.21). The proof is based on the proof of Theorem 4.3 in

Desmettre and Seifried [2016], which is stated in Appendix B.

In the special case of a power utility function, the utility function U is for x ∈ (0,∞)
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defined by

U(x) :=
1

b
xb,

where b ∈ (−∞, 1)\{0}. Therefore, we have

U ′(x) = xb−1 and I(y) = y
1

b−1

for x, y ∈ (0,∞), where I is the inverse of U ′. The random utility function Û is for

x ∈ (0,∞) defined by

Û(x) := U(x+ ξP (T )) =
1

b
(x+ ξP (T ))b.

Hence, we get

Û ′(x) = U ′(x+ ξP (T )) = (x+ ξP (T ))b−1

and

Î(y) = max{I(y)− ξP (T ), 0}
= max{y 1

b−1 − ξP (T ), 0}
= (y

1
b−1 − ξP (T ))1{y<(ξP (T ))b−1} (1.23)

for x, y ∈ (0,∞), where Î is the inverse of Û ′. It follows for y ∈ (0,∞)

dÎ(y)

dy
=

dI(y)

dy
1{y<(ξP (T ))b−1}

=
1

b− 1
y

1
b−1

−11{y<(ξP (T ))b−1}. (1.24)

Hence, we have for all y ∈ (0,∞)

y
dÎ(y)

dy

(1.24)
=

1

b− 1
y

1
b−11{y<(ξP (T ))b−1}

(1.23)
= − 1

1− b
(Î(y) + ξP (T )1{y<(ξP (T ))b−1}). (1.25)

It follows

π∗(t)V v0(ξ),π∗
(t)

(a)
= − (σ�)−1γZ̃(t)−1E

[
Z̃(T )y∗(ξ)Z̃(T )

dÎ

dy
(y∗(ξ)Z̃(T ))|Ft

]
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(b)
= − (σ�)−1γZ̃(t)−1E

[
Z̃(T )

(
− 1

1− b

)
(Î(y∗(ξ)Z̃(T ))

+ Z̃(T )ξP (T )1{y∗(ξ)Z̃(T )<(ξP (T ))b−1})|Ft

]
(c)
=

1

1− b
(σσ�)−1(μ− r�)(Z̃(t)−1E[Z̃(T )V ∗(T )|Ft]

+ ξZ̃(t)−1E[Z̃(T )P (T )1{V v0(ξ),π
∗
(T )>0}|Ft])

(d)
=πM(V v0(ξ),π∗

(t) + ξZ̃(t)−1E[Z̃(T )P (T )1{V v0(ξ),π
∗
(T )>0}|Ft]),

where

• (a) follows from (1.21),

• (b) from (1.25) with y = y∗(ξ)Z̃(T ),

• (c) from Î(y∗(ξ)Z̃(T )) = V v0(ξ),π∗
(T ) and γ = σ−1(μ− r�), and

• (d) from V v0(ξ),π∗
(t) = Z̃(t)−1E[Z̃(T )V v0(ξ),π∗

(T )|Ft] and πM = 1
1−b

(σσ�)−1(μ− r�).

1.4.3 Cvitanić and Karatzas [1992]

Cvitanić and Karatzas [1992] consider an investor who maximizes its utility of terminal

wealth given that the portfolio process is constrained by a closed convex subset of R2. The

authors construct a family of unconstrained optimization problems and find the uncon-

strained optimization problem that models the required constraint in the original market.

With this, they set up a corresponding duality problem to the constrained optimization

problem.

We consider an investor with wealth process

dV v0,π(t) =(1− π1(t)− π2(t))V
v0,π(t)

dS0(t)

S0(t)
+ π1(t)V

v0,π(t)
dS1(t)

S1(t)
(1.26)

+ π2(t)V
v0,π(t)

dS2(t)

S2(t)

=V v0,π(t)(r + π(t)�(μ− r�))dt+ V v0,π(t)π(t)�σdW (t),

V v0,π(0) =v0 > 0.

The set K is a closed, convex subset of R2, which constrains the portfolio process π. The
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investor solves the following problem

sup
π∈Λ

E[U(V v0,π(T ))], (P )

where U is a utility function and Λ denotes the set of all admissible controls given by

Λ := {π self-financing| π(t) ∈ K Q-a.s. ∀t ∈ [0, T ], V v0,π(t) ≥ 0 ∀t ∈ [0, T ]

and E[U(V v0,π(T ))−] < ∞}.

The optimization problem (P ) is called the constrained optimization problem, since the

portfolio process has the constraint K.

The support function of K is defined by δ : R2 → R ∪ {+∞} with

δ(x) := sup
y∈K

(−x�y).

The barrier cone K̃ is given by

K̃ := {x ∈ R2|δ(x) < ∞}.

It is assumed that the function δ is continuous on K̃ and is bounded from below.

In the following, we introduce the auxiliary market. For this, we define the set of R2-

valued dual processes by

D :=

{
λ = (λ(t))t∈[0,T ] progressively measurbale

∣∣∣∣ E
[ ∫ T

0

‖λ(t)‖2dt
]
< ∞,

E

[ ∫ T

0

δ(λ(t))dt

]
< ∞

}
.

If λ ∈ D, then λ(t) ∈ K̃ Q-a.s. for all t ∈ [0, T ]. For λ ∈ D we introduce the auxiliary

market by

dSλ
0 (t) =Sλ

0 (t)(r + δ(λ(t)))dt

dSλ
1 (t) =Sλ

1 (t)((μ1 + λ1(t) + δ(λ(t)))dt+ σ1dW1(t))

dSλ
2 (t) =Sλ

2 (t)((μ2 + λ2(t) + δ(λ(t)))dt+ σ2(ρdW1(t) +
√
1− ρ2dW2(t))).

We define

γλ(t) := γ + σ−1λ(t),
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Z̃λ(t) := exp

(
−
∫ t

0

(r + δ(λ(s)))ds−
∫ t

0

‖γλ(s)‖2ds−
∫ t

0

γλ(s)
�dW (s)

)
.

The wealth process of the investor in the auxiliary market is given by

dV v0,π
λ (t) =(1− π1(t)− π2(t))V

v0,π
λ (t)

dSλ
0 (t)

Sλ
0 (t)

+ π1(t)V
v0,π
λ (t)

dSλ
1 (t)

Sλ
1 (t)

(1.27)

+ π2(t)V
v0,π
λ (t)

dSλ
2 (t)

Sλ
2 (t)

=V v0,π
λ (t)(r + π(t)�(μ− r�))dt+ V v0,π

λ (t)π(t)�σdW (t)

+ V v0,π
λ (t)[δ(λ(t)) + π(t)�λ(t)]dt︸ ︷︷ ︸

additional term

V v0,π
λ (0) =v0 > 0.

The optimization problem in the auxiliary market is given by

sup
π∈Λλ

E[U(V v0,π
λ (T ))], (Pλ)

where Λλ is the set of all admissible strategies defined by

Λλ := {π self-financing|V v0,π
λ (t) ≥ 0 ∀t ∈ [0, T ] and E[U(V v0,π

λ (T ))−] < ∞}.

The optimization problem (Pλ) is called an unconstrained optimization problem. We

define

D′ := {λ ∈ D|E[Z̃λ(T )I(yZ̃λ(T ))] < ∞ ∀y ∈ (0,∞)},

where I is the inverse function of U ′. By the martingale method, for any λ ∈ D′ there

exists the optimal portfolio process π∗
λ ∈ Λλ to the unconstrained optimization problem

(Pλ). Furthermore, the optimal terminal wealth is given by

V
v0,π∗

λ
λ (T ) = I(y∗λZ̃λ(T )),

where y∗λ is the Lagrange multiplier that satisfies the budget constraint

E[Z̃λ(T )I(yZ̃λ(T ))] = v0.

Theorem 1.42 (Proposition 8.3). Assume that there exists λ∗ ∈ D′ such that the optimal

portfolio process π∗
λ∗ ∈ Λλ to the unconstrained optimization problem (Pλ∗) fulfills

π∗
λ∗(t) ∈ K Q-a.s. ∀t ∈ [0, T ],
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δ(λ∗(t)) + π∗
λ∗(t)�λ∗(t) = 0.

Then π∗
λ∗ ∈ Λ and π∗

λ∗ is the optimal portfolio process to the constrained optimization

problem (P ).

Remark. We say that λ∗ is optimal.

In Chapter 10, Cvitanić and Karatzas [1992] state four conditions, which characterize the

optimal portfolio process in the constrained optimization problem (P ), i.e., they can be

used to determine the optimal portfolio process in the constrained optimization problem

(P ). The four conditions are related to a given λ ∈ D′. One of the four conditions is

given by the assumptions from Theorem (1.42). With one of the conditions, the authors

could set up a dual problem to the constrained optimization problem (P ). This is stated

in Chapter 12 of Cvitanić and Karatzas [1992]. We will not go into more detail here, as

it is not relevant for Chapter 4 in the thesis.

Cvitanić and Karatzas [1992] stated the above results for a general financial market with

one risk-free and n risky assets. The parameters of the financial market are assumed to

be stochastic processes. In Chapter 15 of Cvitanić and Karatzas [1992], they discussed

the case of deterministic coefficients as in our case.

Proposition 1.43 (Example 15.1). Assume that δ(x) = 0 for all x ∈ K̃. Then,

λ∗ = arg min
x∈K̃

‖γ + σ−1x‖2

is optimal (i.e., it fulfills the assumptions from Theorem 1.42).



Chapter 2

Theory of Stackelberg Games

2.1 What is a Stackelberg Game?

A game describes an interaction of several players. In the following, we consider only a

game between two players. A Stackelberg game is a game with a hierarchical structure.

Therefore, we call one player the leader and the other the follower of the Stackelberg game.

We assume that the leader can choose its strategy from an action set AL and the follower

from an action set AF . Each player has a gain function1 (also called a payoff function)

Gi : Q → R (i ∈ {L, F}) that models the preference of the leader/follower to a strategy

in the action set A = AL × AF . This means that not only the strategy of the leader

influences the utility of the leader but also the chosen strategy of the follower, and vice

versa. We denote aL and aF the strategies of the leader and follower, respectively. In a

Stackelberg game, both player wants to maximize their utility function. The hierarchy in

the game should be understood as follows: The leader of the Stackelberg game dominates

the follower and therefore, the leader chooses its strategy first knowing the response of the

follower and afterwards the follower selects its strategy depending on the selected strategy

of the leader. Hence, the Stackelberg game is given by

max
aL∈AL

E[GL(aL, a
∗
F )] (SG)

s.t. a∗F ∈ arg max
aF∈AF

E[GF (aL, aF )].

(Osborne and Rubinstein [1994])

We use backward induction to solve a Stackelberg game. The idea of backward induction

1In the literature, the gain function is often called utility function. In the following chapters, a function
is called a utility function if it is strictly concave, continuous differentiable and fulfills the Inada condtions

33
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is to solve the optimization problem of the follower first and then solve backward the

optimization problem of the leader. This means that the follower chooses first its strategy

a∗F for every aL ∈ AL. Hence, the follower selects a map α : AL → AF . Afterwards, the

leader selects its strategy a∗L knowing the map α of the follower, i.e., which strategy the

follower chooses for every aL ∈ AL. We call (a∗L, α(a
∗
L)) the Stackelberg equilibrium in

the Stackelberg game. (Fudenberg and Tirole [1991], pp. 68-69)

Definition 2.1 (Stackelberg equilibrium, p. 68 in Fudenberg and Tirole [1991]). Assume

that there exists a map α : AL → AF such that for any aL ∈ AL it holds

E[GF (aL, α(aL))] = max
aF∈AF

E[GF (aL, aF )]

and there exists a∗L such that

E[GL(a
∗
L, α(a

∗
L))] = max

aL∈AL

E[GL(aL, α(aL))].

Then, (a∗L, a
∗
F ) := (a∗L, α(a

∗
L)) is called the Stackelberg equilibrium to the Stackelberg

game (SG).

Example 2.2 (p. 68 in Fudenberg and Tirole [1991]). We consider a Stackelberg game

between two players who have gain functions

GL(aL, aF ) = [12− (aL + aF )]aL,

GF (aL, aF ) = [12− (aL + aF )]aF

and action sets AL = AF = R. Since the gain functions of the players are non-random,

the Stackelberg game is given by

max
aL∈AL

GL(aL, a
∗
F )

s.t. a∗F ∈ arg max
aF∈AF

GF (aL, aF ).

In the Stackelberg game, the leader chooses its strategy first and the follower selects its

strategy second given the strategy of the leader. We use the solution method of backward

induction:

1. Let aL ∈ AL be arbitrary. By the first-order optimality condition (FOOC), we have

dGF (aL, aF )

daF

∣∣∣∣
aF=a∗F

= 12− aL − 2a∗F
!
= 0

⇔
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a∗F = 6− aL
2
.

Since a∗F depends on the choice of the leader, we define the map α : AL → AF by

α(aL) := 6 − aL
2

as the strategy choice of the follower. Since GF is concave in aF ,

FOOC yields the maximum.

2. For the optimization problem of the leader, we get

max
aL∈AL

GL(aL, α(aL)) = max
aL∈AL

[12− (aL + α(aL))]aL

= max
aL∈AL

[12− (aL + 6− aL
2
)]aL

= max
aL∈AL

[6− aL
2
]aL.

Hence, by FOOC, we get

d

daL
([6− aL

2
]aL)

∣∣∣∣
aL=a∗L

= 6− a∗L
!
= 0

⇔
a∗L = 6.

q∗L is optimal, as GL is concave in aL.

3. The Stackelberg equilibrium is given by (a∗L, α(a
∗
L)) = (6, 3).

2.2 Existence of Solutions to Stochastic Dynamic Stack-

elberg Games

In this section, we discuss the existence of a solution to a stochastic dynamic Stackel-

berg game. The Stackelberg game consists of two players, the leader and the follower.

Furthermore, we have a probability space (Ω,F ,Q), a filtration F = (Ft)t∈[0,T ] and a d-

dimensional F -Brownian motion W = (W (t))t∈[0,T ] where T > 0. The state space Y aL,aF
L

of the leader is given by

dY aL,aF
L (t) =μL(t, Y

aL,aF
L (t), aL(t), aF (t))dt+ σL(t, Y

aL,aF
L (t), aL(t), aF (t))

�dW (t)

Y aL,aF
L (0) =y0L (2.1)

where y0L ∈ R and μL : [0, T ] × R × Rn × Rm → R, σL : [0, T ] × R × Rn × Rm → Rd

are functions. We call aL the control of the leader, which is n-dimensional, and aF the
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control of the follower, which is m-dimensional.

Analogous, we define the state space Y aL,aF
F of the follower by

dY aL,aF
F (t) =μF (t, Y

aL,aF
F (t), aL(t), aF (t))dt+ σF (t, Y

aL,aF
F (t), aL(t), aF (t))

�dW (t)

Y aL,aF
F (0) =y0F (2.2)

where y0F ∈ R and μF : [0, T ]×R×Rn ×Rm → R, σF : [0, T ]×R×Rn ×Rm → Rd are

functions. The set of all admissible controls of the leader and follower are given by

ΛL = {aL(·) ∈ L2
F(0, T ;R

n)},
ΛF = {aF (·) ∈ L2

F(0, T ;R
m)}.

The expected utility (payoff function) of the leader is defined by

JL(aL(·), aF (·)) = E[GL(Y
aL,aF
L (T ))],

where GL : R → R is a concave function, and the expected utility (payoff function) of the

follower by

JF (aL(·), aF (·)) = E[GF (Y
aL,aF
F (T ))],

where GF : R → R is a concave function. The Stackelberg game is given by

max
aL(·)∈ΛL

JL(aL(·), a∗F (·))

s.t. a∗F (·) ∈ arg max
aF (·)∈ΛF

JF (aL(·), aF (·)).

Since the Stackelberg game is solved by backward induction, we first show under what

conditions there exists an optimal control map α : [0, T ] × ΛL → ΛF , which solves the

optimization problem of the follower

max
aF (·)∈ΛF

J(aL(·), aF (·))

given aL(·) ∈ ΛL. We have the following assumptions for the follower: For all aL ∈ ΛL

(AF1) the maps (t, aF ) �→ μF (t, y, aL, aF ), (t, aF ) �→ σF (t, y, aL, aF ) are continuous for all

y ∈ R,

(AF2) there exists a constant L > 0 such that the maps y �→ μF (t, y, aL, aF ),

y �→ σF (t, y, aL, aF ), y �→ GF (y) are Lipschitz continuous (cf. Condition (a) in
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Theorem 1.31) and it holds

|μF (t, 0, aL, aF )| ≤ L

‖σF (t, 0, aL, aF )‖ ≤ L

|GF (0)| ≤ L

for all t ∈ [0, T ] and aF ∈ Rm, and

(AF3) for all (t, y) ∈ [0, T ]×R the set

{(μF (t, y, aL, aF ), (σ
�σ)(t, y, aL, aF ))|aF ∈ Rm}

is convex in R2.

Theorem 2.3. Assume that for any aL ∈ ΛL the assumptions (AF1)-(AF3) hold and

maxaF (·)∈ΛF
J(aL(·), aF (·)) < +∞. Then there exists an optimal control a∗F (·) ∈ ΛF to

the optimization problem of the follower.

Proof. The proof can be found in Yong and Zhou [1999], Theorem 5.3 in Chapter 2.

Now, we assume that there exists a map α : [0, T ]×ΛL → ΛF that solves the optimization

problem of the follower. Therefore, the leader has to solve the optimization problem

sup
aL(·)∈ΛL

J(aL(·), α(·, aL(·))).

Hence, we define the functions

μ̄L(t, y, aL) :=μL(t, y, aL, α(t, aL))

σ̄L(t, y, aL) :=σL(t, y, aL, α(t, aL))

where t ∈ [0, T ], y ∈ R and aL ∈ Rn. We have the following assumptions for the leader:

(AL1) the maps (t, aL) �→ μ̄L(t, y, aL), (t, aL) �→ σ̄L(t, y, aL) are continuous for all y ∈ R,

(AL2) there exists a constant L > 0 such that the maps y �→ μ̄L(t, y, aL), y �→ σ̄L(t, y, aL),

y �→ GL(y) are Lipschitz continuous (cf. Condition (a) in Theorem 1.31) and

|μ̄L(t, 0, aL)| ≤ L

‖σ̄L(t, 0, aL)‖≤ L
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|GL(0)| ≤ L

for all t ∈ [0, T ] and aL ∈ Rn,

(AL3) for all (t, y) ∈ [0, T ]×R the set

{(μ̄L(t, y, aL), (σ̄
�σ̄)(t, y, aL))|aL ∈ Rn}

is convex in R2.

Theorem 2.4. Assume that the assumptions (AL1)-(AL3) hold and

maxaL(·)∈ΛL
J(aL(·), α(·, aL(·))) < +∞. Then there exists an optimal control a∗L(·) ∈ ΛL

to the optimization problem of the leader.

Proof. The proof can be found in Yong and Zhou [1999], Theorem 5.3 in Chapter 2.

Remark. If the map (t, aL) �→ α(t, aL) is continuous, then the assumption (AL1) of the

leader is equivalent to the assumption

(AL1’) for all aF ∈ Rm and y ∈ R the maps (t, aL) �→ μL(t, y, aL, aF ), (t, aL) �→ σL(t, y, aL, aF )

are continuous.

Remark. The search of solutions to a Stackelberg game (and to a stochastic control

problem) depends on the problem. The assumptions (AF1)-(AF3) and (AL1)-(AL3) are

only sufficient conditions to prove the existence of a solution to a Stackelberg game. There

exists Stackelberg games which have a solution but not all assumptions (AF1)-(AF3) and

(AL1)-(AL3) are fulfilled. In such cases, the existence of a solution needs to be proved

by another way. For example in Chapter 3 and 4 of the master thesis, the assumptions

(AF3) and (AL3) are not fulfilled but, as we will show there, there exists a solution to

the Stackelberg games.

Example 2.5 (Assumption (AF3) is not fulfilled in Chapter 3). For (t, y) ∈ [0, T ] ×
[0,∞), we denote μF (t, y, pR, q, πI), σF (t, y, pR, q, πI) by μF (q, πI), σF (q, πI) for notation

convenience. We need to show that the set

S :={(μF (q, πI), (σ
�
F σF )(q, πI))|(q, πI) ∈ [0, 1]×R}

:=

(
θIμ− (1− q)(pR − μ) + y(rI + (μ̃− rI)πI)

σ2q2 + y2π2
I σ̃

2S1(t)
2δ

)
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is convex in R2.

Let s1, s2 ∈ S and λ ∈ [0, 1]. We show λs1 + (1− λ)s2 ∈ S.
Since s1, s2 ∈ S, there exists (qs1 , πs1

I ), (qs2 , πs2
I ) ∈ [0, 1]×R such that

s1 =(μF (q
s1 , πs1

I ), (σ�
F σF )(q

s1 , πs1
I ))

=

(
θIμ− (1− qs1)(pR − μ) + y(rI + (μ̃− rI)π

s1
I )

σ2(qs1)2 + y2(πs1
I )2σ̃2S1(t)

2δ

)

s2 =(μF (q
s2 , πs2

I ), (σ�
F σF )(q

s2 , πs2
I ))

=

(
θIμ− (1− qs2)(pR − μ) + y(rI + (μ̃− rI)π

s2
I )

σ2(qs2)2 + y2(πs2
I )2σ̃2S1(t)

2δ

)
.

Hence,

λs1 + (1− λ)s2

=λ

(
θIμ− (1− qs1)(pR − μ) + y(rI + (μ̃− rI)π

s1
I )

σ2(qs1)2 + y2(πs1
I )2σ̃2S1(t)

2δ

)

+ (1− λ)

(
θIμ− (1− qs2)(pR − μ) + y(rI + (μ̃− rI)π

s2
I )

σ2(qs2)2 + y2(πs2
I )2σ̃2S1(t)

2δ

)

=

(
θIμ− (1− (λqs1 + (1− λ)qs2))(pR − μ) + y(rI + (μ̃− rI)(λπ

s1
I + (1− λ)πs2

I ))

σ2(λ(qs1)2 + (1− λ)(qs2)2) + y2(λ(πs1
I )2 + (1− λ)(πs2

I )2)σ̃2S1(t)
2δ

)
/∈ S,

since

(λqs1 + (1− λ)qs2))2 
= (λ(qs1)2 + (1− λ)(qs2)2),

(λπs1
I + (1− λ)πs2

I )2 
= (λ(πs1
I )2 + (1− λ)(πs2

I )2).

Therefore, S is not convex.

The proofs that (AL3) is not fulfilled in Chapter 3 and (AF3) and (AL3) are not fulfilled

in Chapter 4 are analogous.



Chapter 3

Reinsurance of a Claim Process

3.1 Motivation and Paper Overview

A primary insurance company (also called insurance company or insurer) obtains insur-

ance premiums from their clients to cover the clients’ risks. A reinsurance company (also

called reinsurer) is the insurer of insurance companies. Therefore, the reinsurer receives a

reinsurance premium from the insurer and the insurer transfers its risk to the reinsurer.

(Chen and Shen [2018])

A reinsurance contract is an agreement between a reinsurer and an insurer (Albrecher et al.

[2017]). Therefore, we will consider a game between a reinsurer and an insurer to model

the relationship between them. If we would only consider the optimal choice of one party,

the other party might not agree to the contract as the choice is not necessarily optimal

for them (Bai et al. [2019]). Hence, we consider a reinsurance-investment optimization

problem for an insurer and reinsurer modeled by a game.

Since several thousands primary insurance companies and approximately 200 reinsurance

companies exist (Albrecher et al. [2017]), the reinsurer has a monopoly position and

dominates the insurer (Chen and Shen [2018]). Therefore, we consider a Stackelberg

game between an insurer and reinsurer where the reinsurer is the leader and the insurer

is the follower of the game.

To our best knowledge, the first paper where the optimal reinsurance is derived in the

context of a Stackelberg game is Chen and Shen [2018]. The researchers consider one rein-

surer (leader) and one insurer (follower). The insurer wants to reinsure its claim process

which is modeled by the diffusion approximation (cf. Section 1.3). The reinsurer chooses

a reinsurance premium strategy and the insurer a proportional reinsurance strategy. The

aim of both parties is to maximize their expected utility of their terminal surplus. Chen

40
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and Shen [2018] started by solving the optimization problem in the general setting, i.e.,

general utility function and random coefficients. The surplus process of the reinsurer and

the insurer is debited/credited by a random interest rate which can be different for the

reinsurer and the insurer. Afterwards, they solve the special case with an exponential

utility function with random model coefficients and lastly with deterministic, constant

model coefficients (i.e., coefficients of the claim process, insurance premium, interest rate

and utility functions)

Bai et al. [2019] extend the special case of the exponential utility function with determin-

istic, constant coefficients from Chen and Shen [2018]. Instead of considering only one

insurer, they consider two insurers as the followers of the Stackelberg game. In addition

to the Stackelberg game between the insurers and reinsurer, they have a non-zero sum

game between the two insurers to model the competition in the insurance market. An-

other difference to the paper by Chen and Shen [2018] is that they do not only consider

a reinsurance problem but a reinsurance-investment problem. Therefore, the insurance

company reinsures its claims process through proportional reinsurance and invests in a

financial market. The claim process of the insurer is modeled by the diffusion approxima-

tion (cf. Section 1.3). The reinsurer can also invest in the financial market. Hence, the

reinsurer chooses a reinsurance premium strategy and an investment strategy, whereas

the insurers choose their proportional reinsurance strategies and investment strategies.

Furthermore, Bai et al. [2019] consider the surplus process with a time delay. Therefore,

the aim of the reinsurer is to maximize the expected utility of terminal surplus with a

time delay and the insurers maximize the expected utility of terminal surplus and relative

preference (given by the difference of the surplus processes of the insurers) with a time

delay.

Another paper about Stackelberg games in the context of insurance and reinsurance is

from Chen and Shen [2019]. Again, they have one insurer (follower) and one reinsurer

(leader). Compared to the papers before, the insurer wants to reinsure the claim process

that is modeled by the Cramér-Lundberg model and not by the diffusion approxima-

tion. Another difference is that the reinsurance form is not necessarily proportional, i.e.,

the insurer chooses between any proportional and non-proportional reinsurance strategy.

Hence, the reinsurer chooses a reinsurance premium strategy and the insurer a reinsurance

strategy. The aim of the reinsurer and the insurer is to maximize their mean-variance

cost functionals. Since they allow a general reinsurance form, they need to set a special

reinsurance premium strategy to solve the Stackelberg game. For this reason, they con-

sider that the reinsurance premium strategy is given by the variance premium principle

and the expected value premium principle. Therefore, the reinsurer does not choose the

reinsurance premium strategy but it chooses its safety loading of the reinsurance premium.
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In the paper by Chen et al. [2020], they consider a multi-hierarchical Stackelberg game,

i.e., they have one insurer and n reinsurers. The claim process is modeled by the

Cramér-Lundberg model and the reinsurance form is general (i.e., proportional and non-

proportional reinsurance is possible). The reinsurance premium strategy is given by the

variance premium principle. Therefore, n reinsurers choose their safety loading strategies

and the insurer as well as the first n − 1 reinsurers choose their reinsurance strategies

(i.e., the first n − 1 reinsurers act as leader and follower for another party and therefore

choose two strategies). The aim of the insurer and n reinsurers is to maximize their

mean-variance payoff functionals.

Compared to all mentioned papers that consider a Stackelberg game between a reinsurer

and an insurer, Asmussen et al. [2019] consider a Stackelberg game between two insurance

companies to model their competition for customers. Both insurance companies have a

deductible. The insurer with the lower deductible is the leader of the game. Both insurers

choose a premium for the customers. The aim of the larger company is to maximize the

difference between the reserves of the insurers, while the aim of the smaller company is

to minimize the difference between the reserves of the insurers.

In this chapter, we state a Stackelberg game and find a solution, where the Stackelberg

game is a special case of Bai et al. [2019]. As in Bai et al. [2019], the claim process

is approximated by the diffusion approximation (cf. Section 1.3). The insurer wants

to reinsure a part of its claim process and invests in a financial market, which is given

by a CEV model. Hence, the insurer chooses a proportional reinsurance strategy and

an investment strategy. In contrast, the reinsurer only chooses a reinsurance premium

strategy and does not invest in the financial market, since we are only interested in the

portfolio of the insurer. The aim of the insurer and the reinsurer is to maximize their

expected utility of their terminal surplus.

The structure of this chapter is as follows: In Section 3.2 we state the framework and

the Stackelberg game. The solution to the Stackelberg game is given in Section 3.3. The

verification of the solution from Section 3.3 is proved in Section 3.4. In Section 3.5, we

compare our result, which is a special case of Bai et al. [2019], to the framework and

solution of Chen and Shen [2018] in detail.

3.2 Stackelberg Game

The framework and the Stackelberg game are special cases of the framework and the

Stackelberg game in Bai et al. [2019].
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3.2.1 Framework

Let W = (W1(t),W2(t)) be a two-dimensional Brownian motion. The financial market

consists of a risk-free asset S0 and a risky asset S1. The dynamics of the risk-free asset

S0 are given by

dS0(t) = rIS0(t)dt, S0(0) = 1,

where rI > 0 is an interest rate, and of the risky asset S1 by

dS1(t) = S1(t)[μ̃dt+ σ̃S1(t)
δdW1(t)], S1(0) = s1 > 0,

where μ̃ > 0 with μ̃ > rI , σ̃ > 0 and δ ∈ R.

Remark. The financial market is given by a constant elasticity of variance (CEV) model

with an elasticity parameter δ. The Black-Scholes financial market is a special case of the

CEV model, i.e., if we set δ = 0.

The claim process C of the insurer is given by a diffusion-type model (cf. Chapter 1.3)

dC(t) = μdt− σdW2(t),

where μ > 0, σ > 0. The premium paid from a representative client to the insurer is

determined by the expected value premium principle, i.e.,

pI = (1 + θI)μ,

where θI > 0 is the safety loading of the insurer.

3.2.2 Formulation of the Stackelberg Game

In the following, we state formally the Stackelberg game. The reinsurer is the leader and

the insurer is the follower of the Stackelberg game. We assume that the insurer invests

in the financial market with one risk-free asset S0 and one risky asset S1. In addition,

the insurer chooses how much it is willing to reinsure from its claim process. Therefore,

the insurer selects a portfolio process πI(t), t ∈ [0, T ], and a proportional reinsurance

strategy q(t), t ∈ [0, T ], i.e., which part of the loss is covered by the reinsurer. At time t,

the insurer covers q(t) of the claims whereas the reinsurer covers 1− q(t) of the claims.

Furthermore, the reinsurer can only debit/credit its surplus process with an interest rate

rR > 0. Besides, it chooses the reinsurance premium which it receives from the insurer
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for the reinsurance. Hence, the reinsurer chooses a reinsurance premium strategy pR(t),

t ∈ [0, T ].

Optimization Problem of the Insurer (Follower)

The surplus process of the insurer Y
pR,(q,πI)
I is given by

dY
pR,(q,πI)
I (t) = (pI − (1− q(t))pR(t))dt︸ ︷︷ ︸

Net premium

− q(t)dC(t)︸ ︷︷ ︸
claims covered by the insurer

(3.1)

+ Y
pR,(q,πI)
I (t)(1− πI(t))

dS0(t)

S0(t)︸ ︷︷ ︸
Investment in risk-free asset

+Y
pR,(q,πI)
I (t)πI(t)

dS1(t)

S1(t)︸ ︷︷ ︸
Investment in risky asset

=(pI − (1− q(t))pR(t)− μq(t) + Y
pR,(q,πI)
I (t)(rI + (μ̃− rI)πI(t)))dt

+ Y
pR,(q,πI)
I (t)πI(t)σ̃S1(t)

δdW1(t) + σq(t)dW2(t),

YI(0) =y0I > 0.

The aim of the insurer is to maximize its expected utility of its terminal surplus process,

i.e.

sup
(q,πI)∈ΛI

E[UI(Y
pR,(q,πI)
I (T ))]. (3.2)

UI is the utility function of the insurer given by an exponential utility function, i.e., for a

relative risk aversion βI > 0 of the insurer

UI(x) := − 1

βI

e−βIx,

and ΛI is the set of all admissible controls of the optimization problem (3.2) given by

ΛI :=

{
(q, πI) progressively measurable

∣∣∣∣ q(t) ∈ [0, 1] Q-a.s. ∀t ∈ [0, T ],

E

[ ∫ T

0

|πI(t)|2dt
]
< ∞ and (3.1) has a unique strong solution Y

pR,(q,πI)
I ,

which is adapted, continuous and E
[
sup

t∈[0,T ]

|Y pR,(q,πI)
I (t)|2

]
< ∞

}
.

The value function of the insurer is defined by

ΦI(t, y, s) := sup
(q,πI)∈ΛI

Et,y,s[UI(Y
pR,(q,πI)
I (T ))]
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= sup
(q,πI)∈ΛI

E[UI(Y
pR,(q,πI)
I (T ))| Ft, Y

pR,(q,πI)
I (t) = y, S1(t) = s]. (3.3)

Optimization Problem of the Reinsurer (Leader)

The surplus process of the reinsurer Y pR,q
R is given by

dY pR,q
R (t) =((1− q(t))pR(t)︸ ︷︷ ︸

Premium

+ rRY
pR,q
R (t)︸ ︷︷ ︸

debit/credit

)dt− (1− q(t))dC(t)︸ ︷︷ ︸
claims covered by reinsurer

(3.4)

=((1− q(t))(pR(t)− μ) + rRY
pR,q
R (t))dt+ σ(1− q(t))dW2(t),

YR(0) =y0R > 0.

The aim of the reinsurer is to maximize its expected utility of its terminal surplus process,

i.e.

sup
pR∈ΛR

E[UR(Y
pR,q
R (T ))]. (3.5)

UR is the utility function of the reinsurer given by an exponential utility function, i.e., for

a relative risk aversion βR > 0 of the reinsurer

UR(x) := − 1

βR

e−βRx,

and ΛR is the set of all admissible controls of the optimization problem (3.5) given by

ΛR :=

{
pR progressively measurable

∣∣∣∣ pR(t) ∈ [pI , p] Q-a.s. ∀t ∈ [0, T ] and

(3.4) has unique strong solution Y pR,q
R which is adapteda and continuous with

E
[
sup

t∈[0,T ]

|Y pR,q
R (t)|2

]
< ∞

}
,

where p := (1 + θmax)μ with θmax > θI is the upper bound of the safety loading of the

reinsurer. We bound the reinsurance premium pR by the insurance premium pI from

below due to the fact that if the reinsurer covers 100% of the aggregated claims (i.e.,

the insurer pays the whole reinsurance premium pR and not only a part) the reinsurance

premium pR has to be bigger or equal to the received insurance premium pI for the claims.

Otherwise, the insurer would buy as much reinsurance as possible and the reinsurer has

to cover 100% of the claims. Since the reinsurance premium is less than the insurance

premium, the insurer would make riskless profits.
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The value function of the reinsurer is defined by

ΦR(t, y) := sup
pR∈ΛR

Et,y[UR(Y
pR,q
R (T ))]

= sup
pR∈ΛR

E[UR(Y
pR,q
R (T ))| Ft, Y

pR,q
R (t) = y]. (3.6)

Stackelberg Game

Definition 3.1 (Stackelberg Game). The Stackelberg game is given by

sup
pR∈ΛR

E[UR(Y
pR,q∗
R (T ))] (3.7)

s.t. (q∗(·), π∗
I (·)) ∈ arg max

(q,πI)∈ΛI

E[UI(Y
pR,(q,πI)
I (T ))].

Definition 3.2 (Stackelberg equilibrium, cf. Definition 2.1). The solution

(p∗R(·), q∗(·|p∗R), π∗
I (·|p∗R)) of the Stackelberg game (3.7) is called the Stackelberg equilib-

rium.

3.3 Solution to the Stackelberg Game

We define

ι(t, p(t)) :=
p(t)− μ

σ2βIψI(t)
, (3.8)

ψI(t) := erI(T−t),

ψR(t) := erR(T−t),

uI(t) :=

⎧⎨
⎩− γ̃2

4δrI
(1− e−2δrI(T−t)), δ 
= 0,

−1
2
γ̃(T − t), δ = 0,

M(t) :=
βRψ

R(t) + βIψ
I(t)

2βIψI(t) + βRψR(t)
,

where γ̃ := μ̃−rI
σ̃

is the market price of risk.

Theorem 3.3 (Solution to the Stackelberg game, Theorem 1 in Bai et al. [2019]). The

value function of the reinsurer is given by

ΦR(t, yR) = − 1

βR

e−βRψR(t)yR+vR(t)
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and of the insurer by

ΦI(t, yI) = − 1

βI

e−βIψ
I(t)yI+uI(t)s−2δ+vI(t),

where vI(·) and vR(·) are defined below, depending on four cases. The optimal investment

strategy π∗
I of the insurer is given by

π∗
I (t) =

1

βIψI(t)ys2δ

[
μ̃− rI
σ̃2

− 2δuI(t)

]
,

where y = Y
p∗R,(q∗,π∗

I )

I (t) and s = S1(t). We consider four different cases for the optimal

reinsurance premium strategy p∗R and reinsurance strategy q∗, and the functions vI and

vR.

Case 1 Let ι(t, pI) ≥ 1. Then

q∗(t) = 1 and p∗R(t) = pR

for all pR ∈ [pI , p]. Furthermore, for t ∈ [0, T ]

vR(t) = 0

and

vI(t) =
βIθIμ

rI
(1− ψI(t))− β2

Iσ
2

4rI
(1− ψI(t)2)

− γ̃2(2δ + 1)σ̃2

4rI
(T − t)− (2δ + 1)σ̃2

2rI
uI(t).

Case 2 Let M(t) ≤ ι(t, pI) < 1. Then

p∗R(t) = pI and q∗(t) = ι(t, pI).

Furthermore, it is

vR(t) =
βR(pI − μ)

rR
(1− ψR(t))− βR(pI − μ)2

σ2βI(rR − rI)

(
1− ψR(t)

ψI(t)

)

− σ2β2
R

4rI
(1− ψR(t)2) +

β2
R(pI − μ)

βI(2rR − rI)

(
1− ψR(t)2

ψI(t)

)

− β2
R(pI − μ)2

4σ2β2
I (rR − rI)

(
1−
(
ψR(t)

ψI(t)

)2)
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and

vI(t) =−
(
(pI − μ)2

2σ2
+

γ̃2(2δ + 1)σ̃2

4rI

)
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t).

Case 3 Let ι(t, pI) < M(t) < ι(t, p). Then

p∗R(t) = μ+ σ2βIψ
I(t)M(t) and q∗(t) = M(t).

Furthermore, it is

vR(t) =σ2βRβI

∫ t

T

(1−M(τ))M(τ)ψR(τ)ψI(τ)dτ

− σ2β2
R

2

∫ t

T

ψR(τ)2(1−M(τ))2dτ

and

vI(t) =
βIθIμ

rI
(1− ψI(t))− σ2β2

I

∫ t

T

ψI(τ)2M(τ)dτ

+
σ2β2

I

2

∫ t

T

ψI(τ)2M(τ)2dτ − γ̃2(2δ + 1)σ̃2

4rI
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t).

Case 4 Let ι(t, p) ≤ M(t). Then

p∗R(t) = p and q∗(t) = ι(t, p).

Furthermore, it is

vR(t) =
βR(p− μ)

rR
(1− ψR(t))− βR(p− μ)2

σ2βI(rR − rI)

(
1− ψR(t)

ψI(t)

)

− σ2β2
R

4rI
(1− ψR(t)2) +

β2
R(p− μ)

βI(2rR − rI)

(
1− ψR(t)2

ψI(t)

)

− β2
R(p− μ)2

4σ2β2
I (rR − rI)

(
1−
(
ψR(t)

ψI(t)

)2)

and

vI(t) =
βI((1 + θI)μ− p)

rI
(1− ψI(t))
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−
(
(p− μ)2

2σ2
+

γ̃2(2δ + 1)σ̃2

4rI

)
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t).

Proof. The proof is based on the proof of Theorem 1 in Bai et al. [2019]. It is stated in

Appendix A.

We start with the optimization problem of the insurer. For this, we will use the

HJB-approach. Let pR(·) ∈ ΛR be arbitrary. We set x = (y, s)�. The Hamilton-Jacobi-

Bellman equation (HJB-equation) is given by

0 = sup
(q(·),πI(·))∈ΛI

DIΦI(t, x),

ΦI(T, x) =UI(y), (3.9)

where DI is the characteristic operator (cf. Definition 1.32) of the insurer defined by

DIΦI(t, x) :=ΦI
t (t, x) + (pI − pR(t)(1− q(t))− μq(t) + rIy + (μ̃− rI)πI(t)y)Φ

I
y(t, x)

+ μ̃sΦI
s(t, x) +

1

2
(σ2q(t)2 + σ̃2πI(t)

2y2s2δ)ΦI
yy(t, x)

+ σ̃2πI(t)ys
2δ+1ΦI

ys(t, x) +
1

2
σ̃2s2δ+2ΦI

ss(t, x)

=ΦI
t (t, x) + (θIμ− (pR(t)− μ)(1− q(t)) + rIy + (μ̃− rI)πI(t)y)Φ

I
y(t, x)

+ μ̃sΦI
s(t, x) +

1

2
(σ2q(t)2 + σ̃2πI(t)

2y2s2δ)ΦI
yy(t, x)

+ σ̃2πI(t)ys
2δ+1ΦI

ys(t, x) +
1

2
σ̃2s2δ+2ΦI

ss(t, x),

since

pI − (1− q(t))pR(t)− μq(t) =(1 + θI)μ− (1− q(t))pR(t)− μq(t)

=θIμ− (1− q(t))pR(t)− (1− q(t))μ

=θIμ− (1− q(t))(pR(t)− μ).

By the first-order optimality condition (FOOC), we take the first derivative of the char-

acteristic operator with respect to q(·) and πI(·) and set it equal to zero. Hence,

dDIΦI(t, x)

dq
= ΦI

y(t, y, s)(pR(t)− μ) + ΦI
yy(t, y, s)q(t)σ

2 !
= 0

dDIΦI(t, x)

dπI

= ΦI
y(t, y, s)y(μ̃− rI) + ΦI

yy(t, y, s)y
2πI(t)σ̃

2s2δ

+ΦI
ys(t, y, s)σ̃

2s2δ+1y
!
= 0.
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It follows

q∗(t, pR(t)) = −ΦI
y(t, y, s)(pR(t)− μ)

ΦI
yy(t, y, s)σ

2
,

π∗
I (t, pR(t)) = −ΦI

y(t, y, s)�y(μ̃− rI)

ΦI
yy(t, y, s)σ̃

2s2δy�2
− ΦI

ys(t, y, s)��̃σ
2s��2δ+1

�y

ΦI
yy(t, y, s)��̃σ

2��s2δ y�2

= −ΦI
y(t, y, s)(μ̃− rI)

ΦI
yy(t, y, s)σ̃

2s2δy
− ΦI

ys(t, y, s)s

ΦI
yy(t, y, s)y

.

Since we assume that q∗(t, pR(t)) ∈ [0, 1], we have

q∗(t) := q∗(t, pR(t)) = min

{
max

{
− ΦI

y(t, y, s)(pR(t)− μ)

ΦI
yy(t, y, s)σ

2
, 0

}
, 1

}

and, since π∗
I is independent of pR(·) (i.e., the optimal investment strategy of the insurer

does not depend on the reinsurance premium strategy of the reinsurer and the reinsurance

strategy of the insurer), we can write

π∗
I (t) := π∗

I (t, pR(t)) = −ΦI
y(t, y, s)(μ̃− rI)

ΦI
yy(t, y, s)σ̃

2s2δy
− ΦI

ys(t, y, s)s

ΦI
yy(t, y, s)y

.

To prove that the solutions are maxima of the characteristic operator, we need to show

that the second-order optimality condition (SOOC) holds, i.e.

d2DIΦI(t, x)

dq2
= ΦI

yy(t, y, s)σ
2 !
< 0,

d2DIΦI(t, x)

dπ2
I

= ΦI
yy(t, y, s)y

2σ̃2s2δ
!
< 0.

Since σ2, y2, σ̃2 and s2δ are non-negative, it is enough to show

ΦI
yy(t, y, s) < 0. (3.10)

For the value function we have the ansatz

ΦI(t, y, s) = − 1

βI

exp(−βIyψ
I(t) + uI(t)s−2δ + vI(t)) (3.11)

where the functions ψI , uI and vI are continuously differentiable with boundary conditions

ψI(T ) = 1 and uI(T ) = vI(T ) = 0. The boundary conditions for the functions ψI , uI and

vI follows from the boundary condition (3.9). From the fact that βI and the exponential

function are positive, it follows that ΦI(t, y, s) < 0. With the ansatz for the value function
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(3.11), we get

ΦI
t (t, y, s) = ΦI(t, y, s)[−βIyψ

I
t (t) + uI

t (t)s
−2δ + vIt (t)],

ΦI
y(t, y, s) = ΦI(t, y, s)[−βIψ

I(t)],

ΦI
s(t, y, s) = ΦI(t, y, s)[−2δuI(t)s−2δ−1],

ΦI
yy(t, y, s) = ΦI(t, y, s)β2

Iψ
I(t)2,

ΦI
ss(t, y, s) = ΦI(t, y, s)[4δ2uI(t)2s−4δ−2 + 2δ(2δ + 1)uI(t)s−2δ−2],

ΦI
ys(t, y, s) = ΦI(t, y, s)2δβIψ

I(t)uI(t)s−2δ−1.

For the optimal investment and reinsurance strategy of the insurer we get

q∗(t, pR(t)) =min

{
max

{
− ΦI

y(t, y, s)(pR(t)− μ)

ΦI
yy(t, y, s)σ

2
, 0

}
, 1

}

=min

{
max

{
��−						

ΦI(t, y, s)(��−��βI���ψI(t))(pR(t)− μ)

						
ΦI(t, y, s)β�2I ψ

I(t)�2σ2
, 0

}
, 1

}

=min

{
max

{
pR(t)− μ

βIψI(t)σ2
, 0

}
, 1

}

=min

{
max

{
ι(t, pR(t)), 0

}
, 1

}
,

where ι is defined by (cf. (3.8))

ι(t, pR) :=
pR − μ

σ2βIψI(t)
,

and

π∗
I (t) =− ΦI

y(t, y, s)(μ̃− rI)

ΦI
yy(t, y, s)σ̃

2s2δy
− ΦI

ys(t, y, s)s

ΦI
yy(t, y, s)y

=��−						
ΦI(t, y, s)(��−��βI���ψI(t))(μ̃− rI)

						
ΦI(t, y, s)β�2I ψ

I(t)�2s2δyσ̃2
− 						

ΦI(t, y, s)2δ��βI���ψI(t)uI(t)s−2δ��−1
�s

						
ΦI(t, y, s)β�2I ψ

I(t)�2y

=
1

βIψI(t)ys2δ

(
μ̃− rI
σ̃2

− 2δuI(t)

)
.

q∗ and π∗
I maximize the characteristic operator, since the condition (3.10) is fulfilled:

ΦI
yy(t, y, s) = ΦI(t, y, s)β2

Iψ
I(t)2 < 0.

If we plug π∗
I and the derivatives of ΦI in the HJB-equation, we get

0 = ΦI(t, y, s)

[
− βIψ

I
t (t)y + uI

t (t)s
−2δ + vIt (t)− βIψ

I(t)[θIμ− (pR(t)− μ)(1− q∗(t, pR(t)))]
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− βIψ
I(t)rIy −				

βIψ
I(t)(μ̃− rI)�y

1

				βIψ
I(t)�ys

2δ

(
μ̃− rI
σ̃2

− 2δuI(t)

)
− 2δuI(t)s−2δμ̃+

1

2
β2
Iψ

I(t)2q∗(t, pR(t))2σ2

+
1

2	
					

β2
Iψ

I(t)2y2 σ̃2��s2δ
1

						
β2
Iψ

I(t)2y2s��

2δ

4δ

(
μ̃− rI
σ̃2

− 2δuI(t)

)2

+ 2δ				
βIψ

I(t)uI(t)				
s−2δ−1 σ̃2

�y�
��s2δ+1 1

				βIψ
I(t)�ys

2δ

(
μ̃− rI
σ̃2

− 2δuI(t)

)

+
1

�2
���
2

4 δ2uI(t)2s	
			�−2δ−4δ−2 σ̃2

���s2δ+2 +
�
�
�1

2
2δ(2δ + 1)uI(t)				

s−2δ−2 σ̃2
���s2δ+2

]
.

Since ΦI(t, y, s) < 0, this is equivalent to

0 =− βIψ
I
t (t)y + uI

t (t)s
−2δ + vIt (t)− βIψ

I(t)[θIμ− (pR(t)− μ)(1− q∗(t, pR(t)))]

− βIψ
I(t)rIy − s−2δγ̃2 + 2δs−2δ(μ̃− rI)u

I(t)

− 2δuI(t)s−2δμ̃+
1

2
β2
Iψ

I(t)2q∗(t, pR(t))2σ2

+
1

2
s−2δσ̃2

(
γ̃2

σ̃2
− 4δuI(t)

μ̃− rI
σ̃2

+ 4δ2uI(t)2
)

+ 2δs−2δuI(t)(μ̃− rI)− 4δ2s−2δuI(t)2σ̃2

+ 2δ2uI(t)2s−2δσ̃2 + δ(2δ + 1)uI(t)σ̃2,

where γ̃ := μ̃−rI
σ̃

is the market price of risk. It follows

0 =− βIψ
I
t (t)y + uI

t (t)s
−2δ + vIt (t)− βIψ

I(t)[θIμ− (pR(t)− μ)(1− q∗(t, pR(t)))]

− βIψ
I(t)rIy − s−2δγ̃2 +							

2δs−2δμ̃uI(t) − 2δs−2δrIu
I(t)

��������−2δuI(t)s−2δμ̃ +
1

2
β2
Iψ

I(t)2q∗(t, pR(t))2σ2

+
1

2
s−2δ

��̃σ
2 γ̃

2

��̃σ
2
−

�
�
�1

2
s−2δ

��̃σ
2
���
2

4 δuI(t)
μ̃− rI

��̃σ
2

+
�
�
�1

2
s−2δσ̃2

���
2

4 δ2uI(t)2

+ 2δs−2δuI(t)(μ̃− rI)− 4δ2s−2δuI(t)2σ̃2

+ 2δ2uI(t)2s−2δσ̃2 + δ(2δ + 1)uI(t)σ̃2.

That implies,

0 =− βIψ
I
t (t)y + uI

t (t)s
−2δ + vIt (t)− βIψ

I(t)[θIμ− (pR(t)− μ)(1− q∗(t, pR(t)))]

− βIψ
I(t)rIy − ���

1
2

1 s−2δγ̃2 − 2δs−2δrIu
I(t)

+
1

2
β2
Iψ

I(t)2q∗(t, pR(t))2σ2 +
�����1

2
s−2δγ̃2

�����������
−2δs−2δuI(t)(μ̃− rI)���������

+2δ2s−2δσ̃2uI(t)2
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�����������
+2δs−2δuI(t)(μ̃− rI)����������−4δ2s−2δuI(t)2σ̃2

���������
+2δ2uI(t)2s−2δσ̃2 + δ(2δ + 1)uI(t)σ̃2.

Hence, the HJB-equation is given by

0 =

[
y(−βIψ

I
t (t)− βIψ

I(t)rI)

]

+

[
s−2δ(uI

t (t)− 2δuI(t)rI − 1

2
γ̃2)

]

+

[
vIt (t)− βIψ

I(t)[θIμ− (pR(t)− μ)(1− q∗(t, pR(t)))]

+
1

2
β2
Iψ

I(t)2q∗(t, pR(t))2σ2 + δ(2δ + 1)uI(t)σ̃2

]
.

In the next step, we take a closer look to the three terms in the HJB-equation above. We

can solve these three terms separately, since the first term depends on y and not on s,

the second term on s and not on y, and the third term is independent of y and s. Since

y and s are not necessarily zero, it has to hold

0 =− βIψ
I
t (t)− βIψ

I(t)rI (3.12)

0 =uI
t (t)− 2δuI(t)rI − 1

2
γ̃2 (3.13)

0 =vIt (t)− βIψ
I(t)[θIμ− (pR(t)− μ)(1− q∗(t, pR(t)))]

+
1

2
β2
Iψ

I(t)2q∗(t, pR(t))2σ2 + δ(2δ + 1)uI(t)σ̃2. (3.14)

We start solving the Equation (3.12). It follows that we have the following homogeneous

ODE with the boundary condition for the function ψI :

ψI
t (t) = −rIψ

I(t),

ψI(T ) = 1.

The solution to the homogeneous ODE is given by

ψI(t) = erI(T−t). (3.15)

By (3.15), it holds that ψI(t) > 0 for all t ∈ [0, T ]. Since we assume that for the

reinsurance premium strategy pR it has to hold pR(t) ∈ [pI , p] for all t ∈ [0, T ], we get

pR(t) − μ ≥ pI − μ = (1 + θI)μ − μ = θIμ > 0 for all t ∈ [0, T ] (θI and μ are positive).

Therefore, ι(t, pR(t)) > 0, since βI > 0 and σ2 > 0. Hence, for the optimal reinsurance
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strategy q∗ we have

q∗(t, pR(t)) = min{max{ι(t, pR(t)), 0}, 1}
= min{ι(t, pR(t)), 1}.

Next, we consider the Equation (3.13). First, let δ 
= 0. Then the function uI is described

by the following linear non-homogeneous ODE with boundary condition

uI
t (t) = 2δrIu

I(t) +
1

2
γ̃2

uI(T ) = 0.

To get the solution of the linear non-homogeneous ODE, we use the integrating factor

method. For the above equation, the integrating factor is given by

ũI(t) = e2δrI t.

Next, we multiply the linear non-homogeneous ODE with the reciprocal integrating factor

ũI(t)−1uI
t (t) = ũI(t)−1

(
2δrIu

I(t) +
1

2
γ̃2

)
⇔

e−2δrI tuI
t (t) = 2δrIe

−2δrI tuI(t) +
1

2
γ̃2e−2δrI t

⇔
e−2δrI tuI

t (t)− 2δrIe
−2δrI tuI(t) =

1

2
γ̃2e−2δrI t

⇔
d

dt

(
e−2δrI tuI(t)

)
=

1

2
γ̃2e−2δrI t. (3.16)

Since uI(T ) = 0, it follows

e−2δrI tuI(t) = e−2δrI tuI(t)− e−2δrITuI(T ) =

∫ t

T

d

dt

(
e−2δrIτuI

t (τ)

)
dτ

(3.16)
=

1

2
γ̃2

∫ t

T

e−2δrIτdτ

= − γ̃2

4δrI
(e−2δrI t − e−2δrIT )

⇔
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uI(t) = − γ̃2

4δrI
e2δrI t(e−2δrI t − e−2δrIT )

= − γ̃2

4δrI
(1− e−2δrI(T−t)).

If δ = 0, then the function uI is described by the ODE with boundary condition

uI
t (t) =

1

2
γ̃2 (3.17)

uI(T ) = 0. (3.18)

Hence, the solution is given by

uI(t)
(3.18)
= uI(t)− uI(T ) =

∫ t

T

uI
t (τ)dτ

(3.17)
=

∫ t

T

1

2
γ̃2dτ = −1

2
γ̃2(T − t).

All in all, we have

uI(t) =

⎧⎨
⎩− γ̃2

4δrI
(1− e−2δrI(T−t)), δ 
= 0,

−1
2
γ̃2(T − t), δ = 0.

(3.19)

Now, we will solve the Equation (3.14) for two cases:

Case 1: If ι(t, pR(t)) ≥ 1, then q∗(t, pR(t)) = 1 and we get for (3.14)

vIt (t) = βIψ
I(t)θIμ− 1

2
β2
Iψ

I(t)2σ2 − δ(2δ + 1)uI(t)σ̃2. (3.20)

Since we have the boundary condition vI(T ) = 0, it follows

vI(t) =vI(t)− vI(T ) =

∫ t

T

vIt (τ)dτ

(3.20)
= βIθIμ

∫ t

T

ψI(τ)dτ − 1

2
β2
Iσ

2

∫ t

T

ψI(τ)2dτ − δ(2δ + 1)σ̃2

∫ t

T

uI(τ)dτ.

We have ∫ t

T

ψI(τ)dτ =

∫ t

T

erI(T−τ)dτ

=− 1

rI
(erI(T−t) − 1)

=
1

rI
(1− ψI(t)), (3.21)
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∫ t

T

ψI(τ)2dτ =

∫ t

T

e2rI(T−τ)dτ

=
1

2rI
(1− ψI(t)2) (3.22)

and for δ 
= 0

∫ t

T

uI(τ)dτ =− γ̃2

4δrI

∫ t

T

(1− e−2δrI(T−τ))dτ

=
γ̃2

4δrI
(T − t)− γ̃2

8δ2r2I
(1− e−2δrI(T−t))

=
γ̃2

4δrI
(T − t) +

1

2δrI
uI(t). (3.23)

Hence, for δ 
= 0 we have

vI(t)
(3.21), (3.22)

=
& (3.23)

βIθIμ

rI
(1− ψI(t))− β2

Iσ
2

4rI
(1− ψI(t)2)

− γ̃2(2δ + 1)σ̃2

4rI
(T − t)− (2δ + 1)σ̃2

2rI
uI(t)

and for δ = 0

vI(t)
(3.21), (3.22)

=
βIθIμ

rI
(1− ψI(t))− β2

Iσ
2

4rI
(1− ψI(t)2)

(3.19)
=

βIθIμ

rI
(1− ψI(t))− β2

Iσ
2

4rI
(1− ψI(t)2)

− γ̃2(2δ + 1)σ̃2

4rI
(T − t)− (2δ + 1)σ̃2

2rI
uI(t).

All in all, we have

vI(t) =
βIθIμ

rI
(1− ψI(t))− β2

Iσ
2

4rI
(1− ψI(t)2)

− γ̃2(2δ + 1)σ̃2

4rI
(T − t)− (2δ + 1)σ̃2

2rI
uI(t).

Case 2: If ι(t, pR(t)) < 1, then q∗(t, pR(t)) = ι(t, pR(t)) and we get for (3.14)

vIt (t) =βIψ
I(t)

[
θIμ− (pR(t)− μ)

(
1− pR(t)− μ

βIσ2ψI(t)

)]

− 1

2
β2
Iψ

I(t)2
(
pR(t)− μ

βIσ2ψI(t)

)2

σ2 − δ(2δ + 1)uI(t)σ̃2

=βIψ
I(t)θIμ− βIψ

I(t)(pR(t)− μ) +				
βIψ

I(t)
(pR(t)− μ)2

				βIψ
I(t)σ2
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−						
β2
Iψ

I(t)2σ2 1

2

(pR(t)− μ)2

					β2
Iψ

I(t)2σ���
2

4

− δ(2δ + 1)σ̃2uI(t)

=βIψ
I(t)θIμ− βIψ

I(t)(pR(t)− μ) +
(pR(t)− μ)2

σ2
− 1

2

(pR(t)− μ)2

σ2

− δ(2δ + 1)σ̃2uI(t)

=βIψ
I(t)θIμ− βIψ

I(t)(pR(t)− μ) +
(pR(t)− μ)2

2σ2
− δ(2δ + 1)σ̃2uI(t). (3.24)

With the boundary condition vI(T ) = 0, it follows for δ 
= 0

vI(t) =vI(t)− vI(T ) =

∫ t

T

vIt (τ)dτ

(3.24)
= βIθIμ

∫ t

T

ψI(τ)dτ − βI

∫ t

T

ψI(τ)(pR(τ)− μ)dτ

+

∫ t

T

(pR(τ)− μ)2

2σ2
dτ − δ(2δ + 1)σ̃2

∫ T

t

uI(τ)dτ

(3.21) & (3.23)
=

βIθIμ

rI
(1− ψI(t))− βI

∫ t

T

ψI(τ)(pR(τ)− μ)dτ

+

∫ t

T

(pR(τ)− μ)2

2σ2
dτ − γ̃2(2δ + 1)σ̃2

4rI
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t)

and for δ = 0

vI(t) =vI(t)− vI(T ) =

∫ t

T

vIt (τ)dτ

(3.24)
= βIθIμ

∫ t

T

ψI(τ)dτ − βI

∫ t

T

ψI(τ)(pR(τ)− μ)dτ

+

∫ t

T

(pR(τ)− μ)2

2σ2
dτ

(3.21)
=

βIθIμ

rI
(1− ψI(t))− βI

∫ t

T

ψI(τ)(pR(τ)− μ)dτ

+

∫ t

T

(pR(τ)− μ)2

2σ2
dτ

(3.19)
=

βIθIμ

rI
(1− ψI(t))− βI

∫ t

T

ψI(τ)(pR(τ)− μ)dτ

+

∫ t

T

(pR(τ)− μ)2

2σ2
dτ − γ̃2(2δ + 1)σ̃2

4rI
(T − t)− (2δ + 1)σ̃2

2rI
uI(t).
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All in all, we have

vI(t) =
βIθIμ

rI
(1− ψI(t))− βI

∫ t

T

ψI(τ)(pR(τ)− μ)dτ

+

∫ t

T

(pR(τ)− μ)2

2σ2
dτ − γ̃2(2δ + 1)σ̃2

4rI
(T − t)− (2δ + 1)σ̃2

2rI
uI(t). (3.25)

Now we consider the optimization problem of the reinsurer. Again, we will use the

HJB-approach. The HJB-equation of the reinsurer is given by

0 = sup
pR(·)∈ΛR

DRΦR(t, y),

ΦR(T, y) =UR(y), (3.26)

where DR is the characteristic operator of the reinsurer defined by

DRΦR(t, y) :=ΦR
t (t, y) + ((1− q∗(t, pR(t)))(pR(t)− μ) + rRy)Φ

R
y (t, y)

+
1

2
σ2(1− q∗(t, pR(t)))2ΦR

yy(t, y).

For the value function we have the ansatz

ΦR(t, y) = − 1

βR

exp(−βRyψ
R(t) + vR(t))

where ψR and vR are continuously differentiable functions with boundary conditions

ψR(T ) = 1 and vR(T ) = 0, which follow from the boundary condition (3.26). The

value function of the reinsurer ΦR is negative, since βR and the exponential function are

positive. With the ansatz for the value function, we get

ΦR
t (t, y) = ΦR(t, y)(−βRyψ

R
t (t) + vRt (t)),

ΦR
y (t, y) = ΦR(t, y)(−βRψ

R(t)),

ΦR
yy(t, y) = ΦR(t, y)β2

Rψ
R(t)2.

Since ΦR is negative, it follows for the HJB-equation

0 = ΦR(t, y) inf
pR(·)∈ΛR

[
− βRyψ

R
t (t) + vRt (t)

− βRψ
R(t)[(1− q∗(t, pR(t)))(pR(t)− μ) + rRy]

+
1

2
β2
Rψ

R(t)2σ2(1− q∗(t, pR(t)))2
]
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= ΦR(t, y) inf
pR(·)∈ΛR

[(
− βRψ

R
t (t)− βRψ

R(t)rR

)
y

+

(
vRt (t)− βRψ

R(t)(1− q∗(t, pR(t)))(pR(t)− μ)

+
1

2
β2
Rψ

R(t)2σ2(1− q∗(t, pR(t)))2
)]

(3.27)

The first term of (3.27) depends on y and not on pR(·) and the second term on pR(·) and
not on y. Hence, we can solve both parts separately

0 =− βRψ
R
t (t)− βRψ

R(t)rR, (3.28)

0 = inf
pR(·)∈ΛR

[
vRt (t)− βRψ

R(t)(1− q∗(t, pR(t)))(pR(t)− μ)

+
1

2
β2
Rψ

R(t)2σ2(1− q∗(t, pR(t)))2
]
. (3.29)

By (3.28), the function ψR is characterized by the homogeneous ODE with boundary

condition

ψR
t (t) = −rRψ

R(t),

ψR(T ) = 1.

Hence,

ψR(t) = erR(T−t).

To find the optimal reinsurance premium strategy p∗R(·) we consider different cases:

Case 1: If ι(t, pR(t)) ≥ 1, then q∗(t) := q∗(t, pR(t)) = 1 and (3.29) is given by

0 = inf
pR(·)∈ΛR

[
vRt (t)

]
.

Hence, the function vR is characterized by

vRt (t) = 0,

vR(T ) = 0.

Therefore, vR(t) ≡ 0 and the optimal reinsurance premium strategy is given by

p∗R(t) ≡ pR
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for any pR ∈ [pI , p].

Case 2: If ι(t, pR(t)) < 1, then q∗(t, pR(t)) = ι(t, pR(t)) = pR(t)−μ
σ2βIψI(t)

and Equation (3.29)

becomes

0 = inf
pR(·)∈ΛR

[
vRt (t)− βRψ

R(t)

(
1− pR(t)− μ

σ2βIψI(t)

)
(pR(t)− μ)

+
1

2
β2
Rψ

R(t)2σ2

(
1− pR(t)− μ

σ2βIψI(t)

)2]
.

Hence, we want to minimize the function G : ΛR → R given by

G(pR) =vRt (t)− βRψ
R(t)

(
1− pR(t)− μ

σ2βIψI(t)

)
(pR(t)− μ)

+
1

2
β2
Rψ

R(t)2σ2

(
1− pR(t)− μ

σ2βIψI(t)

)2

.

By the first-order optimality condition (FOOC), we get

dG(pR)

dpR

∣∣∣∣
pR=p∗R(t)

=
βRψ

R(t)

σ2βIψI(t)
(p∗R(t)− μ)− βRψ

R(t)

(
1− p∗R(t)− μ

σ2βIψI(t)

)

− β2
Rψ

R(t)2��2σ2

��2σ2βIψI(t)

(
1− p∗R(t)− μ

σ2βIψI(t)

)

=

(
2βRψ

R(t)

σ2βIψI(t)
+

β2
Rψ

R(t)2

σ2β2
Iψ

I(t)2

)
(p∗R(t)− μ)

−
(
βRψ

R(t) +
β2
Rψ

R(t)2

βIψI(t)

)
!
=0

Hence,

p∗R(t)− μ =
					βRψ

R(t)(βIψ
I(t) + βRψ

R(t))

				βIψ
I(t)

× σ2β�2I ψ
I(t)�2

					βRψ
R(t)(2βIψI(t) + βRψR(t))

=σ2βIψ
I(t)

βIψ
I(t) + βRψ

R(t)

2βIψI(t) + βRψR(t)

= : σ2βIψ
I(t)M(t).

Since it has to hold that p∗R(t) ∈ [pI , p] for all t ∈ [0, T ], we get

p∗R(t) = min{max{μ+ σ2βIψ
I(t)M(t), pI}, p}.
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By the second condition of minimization, it has to hold

d2G(pR)

dp2R

∣∣∣∣
pR=p∗R(t)

=
2βRψ

R(t)

σ2βIψI(t)
+

β2
Rψ

R(t)2

σ2β2
Iψ

I(t)2
!
> 0.

This is true, since βI , βR > 0 and ψI , ψR are positive functions.

We set p̃(t) := μ+σ2βIψ
I(t)M(t) and therefore, p∗R(t) = min{max{p̃(t), pI}, p}. We

consider three cases:

Case 2a: If p̃(t) ≤ pI , then

p∗R(t) = pI and therefore, q∗(t) := q∗(t, p∗R(t)) = ι(t, pI).

For Equation (3.29) it follows

vRt (t) =βRψ
R(t)

(
1− pI − μ

σ2βIψI(t)

)
(pI − μ)

− 1

2
β2
Rψ

R(t)2σ2

(
1− pI − μ

σ2βIψI(t)

)2

. (3.30)

By the boundary condition vR(T ) = 0, we get

vR(t) =vR(t)− vR(T ) =

∫ t

T

vRt (τ)dτ

(3.30)
= βR(pI − μ)

∫ t

T

ψR(τ)dτ − βR(pI − μ)2

σ2βI

∫ t

T

ψR(τ)

ψI(τ)
dτ

− 1

2
σ2β2

R

∫ t

T

ψR(τ)2dτ +
β2
R(pI − μ)

βI

∫ t

T

ψR(τ)2

ψI(τ)
dτ

− β2
R(pI − μ)2

2σ2β2
I

∫ t

T

(
ψR(τ)

ψI(τ)

)2

dτ

Analogous to (3.21) and (3.22), we have

∫ t

T

ψR(τ)dτ =
1

rR
(1− ψR(t)), (3.31)∫ t

T

ψR(τ)2dτ =
1

2rR
(1− ψR(t)2) (3.32)

and ∫ t

T

ψR(τ)

ψI(τ)
dτ =

∫ t

T

e(rR−rI)(T−τ)dτ

=
−1

rR − rI
(e(rR−rI)(T−t) − 1)
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=
1

rR − rI

(
1− ψR(t)

ψI(t)

)
, (3.33)∫ t

T

ψR(τ)2

ψI(τ)
dτ =

∫ t

T

e(2rR−rI)(T−τ)dτ

=
−1

2rR − rI
(e(2rR−rI)(T−t) − 1)

=
1

2rR − rI

(
1− ψR(t)2

ψI(t)

)
, (3.34)∫ t

T

ψR(τ)2

ψI(τ)2
dτ =

∫ t

T

e2(rR−rI)(T−τ)dτ

=
−1

2(rR − rI)
(e2(rR−rI)(T−t) − 1)

=
1

2(rR − rI)

(
1− ψR(t)2

ψI(t)2

)
. (3.35)

For the function vR it follows

vR(t) =
βR(pI − μ)

rR
(1− ψR(t))− βR(pI − μ)2

σ2βI(rR − rI)

(
1− ψR(t)

ψI(t)

)

− σ2β2
R

4rI
(1− ψR(t)2) +

β2
R(pI − μ)

βI(2rR − rI)

(
1− ψR(t)2

ψI(t)

)

− β2
R(pI − μ)2

4σ2β2
I (rR − rI)

(
1−
(
ψR(t)

ψI(t)

)2)
.

Since pI = (1 + θI)μ, we get for the function vI from (3.25)

vI(t)
(3.25)
=

βIθIμ

rI
(1− ψI(t))− βI

∫ t

T

ψI(τ)(pI − μ)dτ

+

∫ t

T

(pI − μ)2

2σ2
dτ − γ̃2(2δ + 1)σ̃2

4rI
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t)

(3.21)
=

βI((1 + θI)μ− pI)

rI
(1− ψI(t))

−
(
(pI − μ)2

2σ2
+

γ̃2(2δ + 1)σ̃2

4rI

)
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t)

=−
(
(pI − μ)2

2σ2
+

γ̃2(2δ + 1)σ̃2

4rI

)
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t).
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Case 2b: If p̃(t) ≥ p, then

p∗R(t) = p and therefore, q∗(t) := q∗(t, p∗R(t)) = ι(t, p).

For Equation (3.29) it follows

vRt (t) =βRψ
R(t)

(
1− p− μ

σ2βIψI(t)

)
(p− μ)

− 1

2
β2
Rψ

R(t)2σ2

(
1− p− μ

σ2βIψI(t)

)2

. (3.36)

Hence,

vR(t) =vR(t)− vR(T ) =

∫ t

T

vRt (τ)dτ

(3.36)
= βR(p− μ)

∫ t

T

ψR(τ)dτ − βR(p− μ)2

σ2βI

∫ t

T

ψR(τ)

ψI(τ)
dτ

− 1

2
σ2β2

R

∫ t

T

ψR(τ)2dτ +
β2
R(p− μ)

βI

∫ t

T

ψR(τ)2

ψI(τ)
dτ

− β2
R(p− μ)2

2σ2β2
I

∫ t

T

(
ψR(τ)

ψI(τ)

)2

dτ

(3.31)−(3.35)
=

βR(p− μ)

rR
(1− ψR(t))− βR(p− μ)2

σ2βI(rR − rI)

(
1− ψR(t)

ψI(t)

)

− σ2β2
R

4rI
(1− ψR(t)2) +

β2
R(p− μ)

βI(2rR − rI)

(
1− ψR(t)2

ψI(t)

)

− β2
R(p− μ)2

4σ2β2
I (rR − rI)

(
1−
(
ψR(t)

ψI(t)

)2)
.

For the function vI we get from (3.25)

vI(t)
(3.25)
=

βIθIμ

rI
(1− ψI(t))− βI

∫ t

T

ψI(τ)(p− μ)dτ

+

∫ t

T

(p− μ)2

2σ2
dτ − γ̃2(2δ + 1)σ̃2

4rI
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t)

(3.21)
=

βI((1 + θI)μ− p)

rI
(1− ψI(t))

−
(
(p− μ)2

2σ2
+

γ̃2(2δ + 1)σ̃2

4rI

)
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t).
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Case 2c: If pI < p̃(t) < p, then

p∗R(t) = p̃(t) = μ+ σ2βIψ
I(t)M(t)

and therefore,

q∗(t) := q∗(t, p∗R(t)) =
�μ +						

σ2βIψ
I(t)M(t)��−μ

						
σ2βIψ

I(t)
= M(t).

For Equation (3.29) it follows

vRt (t) =βRψ
R(t)(1−M(t))σ2βIψ

I(t)M(t)− 1

2
β2
Rψ

R(t)2σ2(1−M(t))2. (3.37)

Hence,

vR(t) =vR(t)− vR(T ) =

∫ t

T

vRt (τ)dτ

(3.37)
= σ2βRβI

∫ t

T

(1−M(τ))M(τ)ψR(τ)ψI(τ)dτ

− σ2β2
R

2

∫ t

T

ψR(τ)2(1−M(τ))2dτ.

We get for the function vI from (3.25)

vI(t)
(3.25)
=

βIθIμ

rI
(1− ψI(t))− βI

∫ t

T

ψI(τ)(p̃(t)− μ)dτ

+

∫ t

T

(p̃(t)− μ)2

2σ2
dτ − γ̃2(2δ + 1)σ̃2

4rI
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t)

=
βIθIμ

rI
(1− ψI(t))− σ2β2

I

∫ t

T

ψI(τ)2M(τ)dτ

+
σ2β2

I

2

∫ t

T

ψI(τ)2M(τ)2dτ − γ̃2(2δ + 1)σ̃2

4rI
(T − t)

− (2δ + 1)σ̃2

2rI
uI(t).
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3.4 Verification of the Solution

In this section, we verify that the solution in Section 3.3 obtained by the HJB-approach

is indeed a solution to our Stackelberg game (3.7).

Theorem 3.4 (Verification Theorem, Theorem 2 in Bai et al. [2019]). The solutions

(p∗R(·), q∗(·), π̂∗
I (·)) obtained in Theorem 3.3 are admissible strategies, i.e., p∗R(·) ∈ ΛR and

(q∗(·), π̂∗
I (·)) ∈ ΛI , and the optimal strategies to the Stackelberg game (3.7).

Proof. The proof is based on Lemma 1 and Theorem 2 in Bai et al. [2019]. They are

stated in Appendix C and D.

First, we will show that the strategies are admissible, i.e., p∗R(·) ∈ ΛR and (q∗(·), π̂∗
I (·)) ∈

ΛI .

Reminder: The reinsurance premium strategy of the reinsurer in Theorem 3.3 is given by

p∗R(t) = min{max{μ+ σ2βIψ
I(t)M(t), pI}, p}.

• Since p∗R(·) is non-random and continuous, we have that p∗R(·) is progressively mea-

surable and it holds p∗R(t) ∈ [pI , p] for all t ∈ [0, T ].

• The optimal surplus process of the reinsurer is given by

dY ∗
R(t) = [(1− q∗(t))(p∗R(t)− μ) + rRY

∗
R(t)]dt+ σ(1− q∗(t))dW2(t). (3.38)

Set b(t, y) := (1 − q∗(t))(p∗R(t) − μ) + rRy and σ(t, y) := σ(1 − q∗(t)). Hence, for

y1, y2, y ∈ R we get

‖b(t, y1)− b(t, y2)‖+ ‖σ(t, y1)− σ(t, y2)‖
=‖

������������
(1− q∗(t))(p∗R(t)− μ) + rRy1 −������������

(1− q∗(t))(p∗R(t)− μ) − rRy2‖
+ ‖�������

σ(1− q∗(t)) −�������
σ(1− q∗(t))‖

=rR‖y1 − y2‖
≤C‖y1 − y2‖

‖b(t, y)‖2 + ‖σ(t, y)‖2

=((1− q∗(t))(p∗R(t)− μ) + rRy)
2 + σ2(1− q∗(t))2

≤2(1− q∗(t))2(p∗R(t)− μ)2 + 2r2Ry
2 + σ2(1− q∗(t))2

≤C2(1+‖y‖2)

with C := max{(1 − q∗(t))
√
2(p∗R(t)− μ)2 + σ2,

√
2rR}. By the Existence and

Uniqueness Theorem for SDEs (cf. Theorem 1.31), there exists a unique strong
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solution Y ∗
R(·) to (3.38), which is continuous and adapted, such that

E
[
sup

t∈[0,T ]

|Y ∗
R(t)|2

]
< ∞.

All in all, we have p∗R ∈ ΛR. Next, we will consider the strategies of the insurer.

Reminder: The optimal investment strategy and reinsurance strategy of the insurer are

given by

π∗
I (t) =

1

βIψI(t)Y ∗
I (t)S1(t)2δ

[
μ̃− rI
σ̃2

− 2δuI(t)

]
,

q∗(t) = min{ p
∗
R(t)− μ

σ2βIψI(t)
, 1}.

• q∗(·) is non-random and continuous, therefore q∗(·) is progressively measurable and

it holds q∗(t) ∈ [0, 1] for all t ∈ [0, T ].

• The optimal surplus process of the insurer is given by

dY ∗
I (t) =[θIμ− (1− q∗(t))(p∗R(t)− μ) + Y ∗

I (t)(rI + (μ̃− rI)π
∗
I (t))]dt (3.39)

+ Y ∗
I (t)π

∗
I (t)σ̃S1(t)

δdW1(t) + σq(t)dW2(t).

Let s = S1(t) and c(t) := 1
βIψI(t)s2δ

[
μ̃−rI
σ̃2 − 2δuI(t)

]
. We set

b(t, y) :=θIμ− (1− q∗(t))(p∗R(t)− μ) + rIy + (μ̃− rI)π
∗
I (t)y

=θIμ− (1− q∗(t))(p∗R(t)− μ) + rIy

+ (μ̃− rI)
1

βIψI(t)�ys
2δ

[
μ̃− rI
σ̃2

− 2δuI(t)

]
�y

=θIμ− (1− q∗(t))(p∗R(t)− μ) + rIy + (μ̃− rI)c(t)

and

σ(t, y) :=(σq∗(t), π∗
I (t)ys

δσ̃)�

=

(
σq∗(t),

1

βIψI(t)�ys
2δ

[
μ̃− rI
σ̃2

− 2δuI(t)

]
�ys

δσ̃

)�

=(σq∗(t), c(t)sδσ̃)�.

Hence, for y1, y2, y ∈ R

‖b(t, y1)− b(t, y2)‖+ ‖σ(t, y1)− σ(t, y2)‖
=‖

���������������
θIμ− (1− q∗(t))(p∗R(t)− μ) + rIy1 +							

(μ̃− rI)c(t)
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−
���������������
θIμ− (1− q∗(t))(p∗R(t)− μ) − rIy2 −							

(μ̃− rI)c(t)‖
+ ‖���������

(σq∗(t), c(t)sδσ̃)� −���������
(σq∗(t), c(t)sδσ̃)�‖

=rI‖y1 − y2‖
≤C‖y1 − y2‖,

‖b(t, y)‖2 + ‖σ(t, y)‖2

=(θIμ− (1− q∗(t))(p∗R(t)− μ) + rIy + (μ̃− rI)c(t))
2

+ σ2q∗(t)2 + c(t)2s2δσ̃2

≤2r2Iy
2 + 2(θIμ− (1− q∗(t))(p∗R(t)− μ) + (μ̃− rI)c(t))

2

+ σ2q∗(t)2 + c(t)2s2δσ̃2

≤C2(1+‖y‖2)

with

C := max{
√

2(θIμ− (1− q∗(t))(p∗R(t)− μ) + (μ̃− rI)c(t))2 + σ2q∗(t)2 + c(t)2s2δσ̃2,
√
2rI}.

By the Existence and Uniqueness Theorem for SDEs (cf. Theorem 1.31), there

exists an unique strong solution Y ∗
I (·) to the SDE (3.39), which is continuous and

adapted, such that

E
[
sup

t∈[0,T ]

|Y ∗
I (t)|2

]
< ∞.

• Since S1 and Y ∗
I are adapted, we have that π∗

I is adapted. Furthermore, we have that

t �→ π∗
I (t) is continuous, since ψI(·) and uI(·) are continuous functions. Therefore,

π∗
I is progressively measurable (cf. Theorem (1.18)).

Let y = Y ∗
I (t) and s = S1(t). Then, there exists a constant C̃ > 0 such that

|π∗
I (t)| =

∣∣∣∣ 1

βIψI(t)ys2δ

∣∣∣∣
∣∣∣∣ μ̃− rI

σ̃2
− 2δuI(t)

∣∣∣∣
≤ C̃

∣∣∣∣ 1

ys2δ

∣∣∣∣ < ∞,

since y, s > 0 and the functions uI and ψI are continuous on the compact set [0, T ]

and therefore, bounded on [0, T ]. Hence,

E

[ ∫ T

0

|π∗
I (t)|2dt

]
≤ C̃2TE

[
sup

t∈[0,T ]

∣∣∣∣ 1

ys2δ

∣∣∣∣2
]
< ∞.

Now, we will prove that the optimal strategies q∗ and π∗
I solve the optimization problem
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of the insurer (3.2) for any pR ∈ ΛR. To make it more manageable, we will write ΦI(t)

instead of ΦI(t, Y
pR,(q,πI)
I (t), S1(t)). Let DI be the characteristic operator of Y

pR,(q,πI)
I , i.e.,

DIΦI(t) :=ΦI
t (t) + ΦI

y(t)[θIμ− (pR(t)− μ)(1− q(t)) + Y
pR,(q,πI)
I (t)(rI + (μ̃− rI)πI(t))]

+
1

2
ΦI

yy(t)[q(t)
2σ2 + πI(t)

2σ̃2S1(t)
2δY

pR,(q,πI)
I (t)2] + ΦI

s(t)μ̃S1(t)

+
1

2
ΦI

ss(t)σ̃
2S1(t)

2δ+2 + ΦI
ys(t)πI(t)Y

pR,(q,πI)
I (t)σ̃2S1(t)

2δ+1.

We set M I := R+ × R+ and take a sequence of bounded open sets (M I
n)n∈N with

M I
n ⊂ M I

n+1 ⊂ M I and M I =
⋃

n∈NM
I
n. Furthermore, let τn be the exit time of

(Y
pR,(q,πI)
I (t), S1(t)) from M I

n. We will prove that for all n ∈ N

Et,y,s[Φ
I(τn ∧ T, YI(τn ∧ T ), S1(τn ∧ T ))] < ∞

holds. By Ito’s formula, we have

d(ΦI(t))2 =2ΦI(t)[ΦI
t (t)dt+ ΦI

y(t)dY
pR,(q,πI)
I (t) + ΦI

s(t)dS1(t)

+
1

2
ΦI

yy(t)〈dY pR,(q,πI)
I (t), dY

pR,(q,πI)
I (t)〉+ ΦI

ys(t)〈dY pR,(q,πI)
I (t), dS1(t)〉

+
1

2
ΦI

ss(t)〈dS1(t), dS1(t)〉] + ΦI
y(t)

2〈dY pR,(q,πI)
I (t), dY

pR,(q,πI)
I (t)〉

+ 2ΦI
y(t)Φ

I
s(t)〈dY pR,(q,πI)

I (t), dS1(t)〉+ (ΦI
s(t))

2〈dS1(t), dS1(t)〉
=2ΦI(t)[ΦI

t (t) + ΦI
y(t)(θIμ+ (pR(t)− μ)(1− q(t)) + Y

pR,(q,πI)
I (t)rI

+ Y
pR,(q,πI)
I (t)(μ̃− rI)πI(t)) + ΦI

s(t)S1(t)μ̃+
1

2
ΦI

yy(t)(σ
2q(t)2

+ Y
pR,(q,πI)
I (t)2πI(t)

2σ̃2S1(t)
2δ) + ΦI

ys(t)Y
pR,(q,πI)
I (t)πI(t)σ̃

2S1(t)
2δ+1

+
1

2
ΦI

ss(t)σ̃
2S1(t)

2δ+2]dt+ [ΦI
y(t)

2(σ2q(t)2 + Y
pR,(q,πI)
I (t)2πI(t)

2σ̃2S1(t)
2δ)

+ 2ΦI
y(t)Φ

I
s(t)Y

pR,(q,πI)
I (t)πI(t)σ̃

2S1(t)
2δ+1 + ΦI

s(t)
2σ̃2S1(t)

2δ+2]dt

+ 2ΦI(t)[ΦI
y(t)Y

pR,(q,πI)
I (t)πI(t)σ̃S1(t)

δ + ΦI
s(t)σ̃S1(t)

δ+1]dW1(t)

+ 2ΦI(t)[ΦI
y(t)σq(t)]dW2(t)

=2ΦI(t)DIΦI(t)dt+ [ΦI
y(t)

2(σ2q(t)2 + Y
pR,(q,πI)
I (t)2πI(t)

2σ̃2S1(t)
2δ)

+ 2ΦI
y(t)Φ

I
s(t)Y

pR,(q,πI)
I (t)πI(t)σ̃

2S1(t)
2δ+1 + ΦI

s(t)
2σ̃2S1(t)

2δ+2]dt

+ 2ΦI(t)[ΦI
y(t)Y

pR,(q,πI)
I (t)πI(t)σ̃S1(t)

δ + ΦI
s(t)σ̃S1(t)

δ+1]dW1(t)

+ 2ΦI(t)ΦI
y(t)σq(t)dW2(t).

If we insert q∗(t) and π∗
I (t) into the equation, we have by the proof of Theorem 3.3

DIΦI(t)|(q∗(t),π∗
I (t))

= 0
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and therefore,

d(ΦI(t))2 =
[
ΦI

y(t)
2(σ2q∗(t)2 +							

Y
pR,(q,πI)
I (t)2

1

β2
Iψ

I(t)2							
Y

pR,(q,πI)
I (t)2S1(t)�

�

2δ

4δ

×
[
μ̃− rI
σ̃2

− 2δuI(t)

]2
σ̃2				S1(t)

2δ )

+ 2ΦI
y(t)Φ

I
s(t)							

Y
pR,(q,πI)
I (t)

1

βIψI(t)							
Y

pR,(q,πI)
I (t)				S1(t)

2δ

×
[
μ̃− rI
σ̃2

− 2δuI(t)

]
σ̃2S1(t)��

2δ+1

+ ΦI
s(t)

2σ̃2S1(t)
2δ+2
]
dt

+ 2ΦI(t)
[
ΦI

y(t)							
Y

pR,(q,πI)
I (t)

1

βIψI(t)							
Y

pR,(q,πI)
I (t)S1(t)�2δ

×
[
μ̃− rI
σ̃2

− 2δuI(t)

]
σ̃����S1(t)

δ

+ ΦI
s(t)σ̃S1(t)

δ+1
]
dW1(t) + 2ΦI(t)ΦI

y(t)σq
∗(t)dW2(t).

Next, we will insert the formula for the value function, i.e., the formulas

ΦI
y(t) =− ΦI(t)βIψ

I(t)

ΦI
s(t) =− ΦI(t)2δuI(t)s−2δ−1,

in the equation and get

d(ΦI(t))2 =ΦI(t)2
[
β2
Iψ

I(t)2σ2q∗(t)2 +					β2
Iψ

I(t)2 σ̃2S1(t)
−2δ 1

					β2
Iψ

I(t)2

(
μ̃− rI
σ̃2

− 2δuI(t)

)2

+ 2				
βIψ

I(t)2δuI(t)S1(t)
−2δ��−1 1

				βIψ
I(t)

σ̃2
���S1(t)

(
μ̃− rI
σ̃2

− 2δuI(t)

)
+ 4δ2uI(t)2S1(t)	

			�−2δ−4δ−2 σ̃2
					S1(t)

2δ+2
]
dt

− 2ΦI(t)2
[
				
βIψ

I(t)
1

				βIψ
I(t)S1(t)δ

σ̃

(
μ̃− rI
σ̃2

− 2δuI(t)

)

+ 2δuI(t)S1(t)	
			�−δ−2δ−1 σ̃					S1(t)

δ+1

]
dW1(t)

− 2ΦI(t)2βIψ
I(t)σq∗(t)dW2(t)

=ΦI(t)2
[
β2
Iψ

I(t)2σ2q∗(t)2 +
(

μ̃− rI
σ̃S1(t)δ

)2]
dt

− 2ΦI(t)2βIψ
I(t)σq∗(t)dW2(t)− 2ΦI(t)2S1(t)

−δ μ̃− rI
σ̃

dW1(t).
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Define h(ΦI(t)) := ΦI(t)2, Θ1(t) := β2
Iψ

I(t)2σ2q∗(t)2+
(

μ̃−rI
σ̃S1(t)δ

)2
, Θ2(t) := −2βIψ

I(t)σq∗(t)

and Θ3(t) := −2S1(t)
−δ μ̃−rI

σ̃
. Hence,

dh(ΦI(t)) =h(ΦI(t))[Θ1(t)dt+Θ2(t)dW2(t) + Θ3(t)dW1(t)].

h(ΦI(t)) is a geometric Brownian motion, i.e.

ΦI(t)2 = ΦI(0)2 exp

(
Θ1(t)dt+Θ2(t)dW2(t)− 1

2
Θ2(t)

2dt

+Θ3(t)dW1(t)− 1

2
Θ3(t)

2dt

)
. (3.40)

We will show that
(
exp
(
Θ2(t)dW2(t)− 1

2
Θ2(t)

2dt
))

t∈[0,T ]
and(

exp
(
Θ3(t)dW2(t)− 1

2
Θ3(t)

2dt
))

t∈[0,τn∧T ]
are martingales with expectation 1:

1.
(
exp
(
Θ2(t)dW2(t)− 1

2
Θ2(t)

2dt
))

t∈[0,T ]
is a martingale: We have

E

[
exp

(
1

2

∫ T

0

|Θ2(t)|2dt
)]

= E

[
exp

(
2β2

Iσ
2

∫ T

0

ψI(t)q∗(t)dt
)]

≤ E

[
exp

(
2β2

Iσ
2ψI(0)T

)]
< ∞

since q∗(t) ≤ 1 and ψI(t) ≤ ψI(0) for all t ∈ [0, T ]. Hence, the statement follows

from Novikov’s condition (cf. Theorem 1.28). Therefore,

E

[
exp

(∫ t

0

Θ2(τ)dW2(τ)− 1

2

∫ t

0

Θ2(τ)
2dτ

)]

= E

[
exp

(∫ 0

0

Θ2(τ)dW2(τ)− 1

2

∫ 0

0

Θ2(τ)
2dτ

)]
= 1.

2.

(
exp
(
Θ3(t)dW2(t) − 1

2
Θ3(t)

2dt
))

t∈[0,τn∧T ]

is a martingale: For t ∈ [0, τn ∧ T ] we

have

E

[
exp

(
1

2

∫ t

0

|Θ3(τ)|2dτ
)]

= E

[
exp

(
4γ̃2

∫ t

0

S1(τ)
−2δdτ

)]
< ∞

since S1 is bounded on M I
n and γ̃ := μ̃−rI

σ̃
< ∞. The statement follows from

Novikov’s condition (cf. Theorem 1.28). Therefore, for t ∈ [0, τn ∧ T ]

E

[
exp

(∫ t

0

Θ3(τ)dW2(τ)− 1

2

∫ t

0

Θ3(τ)
2dτ

)]
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= E

[
exp

(∫ 0

0

Θ3(τ)dW2(τ)− 1

2

∫ 0

0

Θ3(τ)
2dτ

)]
= 1.

For (3.40) follows with t ∈ [0, τn ∧ T ]

E[ΦI(t)2] = E

[
ΦI(0)2 exp

(∫ t

0

Θ1(τ)dτ

)]

and since Θ1(t) < ∞ (Y
pR,(q,πI)
I and S1 bounded on M I

n) we have

Et,y,s

[
ΦI(τn ∧ T )

]
= Et,y,s

[
ΦI(τn ∧ T, YI(τn ∧ T ), S1(τn ∧ T ))2

]
< ∞.

Next, we will prove that the value function is exactly the function which solves the HJB-

equation. Since τn is the exit time of (Y
pR,(q,πI)
I (t), S1(t)) from the set M I

n and M I =⋃
n∈NM

I
n, we have that τn → T as n → ∞. Let (pR(·), q(·), πI(·)) ∈ ΛR × ΛI . By Ito’s

formula we have

dΦI(t) =DIΦI(t)dt+ ΦI
y(t)q(t)σdW2(t)

+ ΦI
y(t)Y

pR,(q,πI)
I (t)πI(t)σ̃S1(t)

δdW1(t) + ΦI
s(t)σ̃S1(t)

δ+1dW1(t).

Hence, we have

ΦI(τn ∧ T ) =

∫ τn∧T

t

DIΦI(τ)dτ +

∫ τn∧T

t

ΦI
y(τ)q(τ)σdW2(τ)

+

∫ τn∧T

t

ΦI
y(τ)YI(τ)πI(τ)σ̃S1(τ)

δdW1(τ)

+

∫ τn∧T

t

ΦI
s(τ)σ̃S1(τ)

δ+1dW1(τ). (3.41)

We will prove that
( ∫ τn∧t

0
ΦI

y(τ)q(τ)σdW2(τ)
)
t∈[0,T ]

,
( ∫ τn∧t

0
ΦI

y(τ)YI(τ)πI(τ)σ̃S1(τ)
δdW1(τ)

)
t∈[0,T ]

and
( ∫ τn∧t

0
ΦI

s(τ)σ̃S1(τ)
δ+1dW1(τ)

)
t∈[0,T ]

are square-integrable martingales with expecta-

tion 0:

1.
( ∫ τn∧t

0
ΦI

y(τ)q(τ)σdW2(τ)
)
t∈[0,T ]

is a square-integrable martingale with expectation

0:

For t ∈ [0, τn ∧ T ] we have

E

[ ∫ t

0

ΦI
y(τ)

2q(τ)2σ2dτ

]
≤CE

[ ∫ t

0

ΦI(τ)2dτ

]
< ∞

since ΦI is bounded on the setM I
n, q(t) ≤ 1, ψI(t) ≤ ψI(0) for all t ∈ [0, T ] and C :=

β2
Iσ

2ψI(0)2 < ∞. It follows from Novikov’s condition that
( ∫ t

0
ΦI

y(τ)q(τ)σdW2(τ)
)
t∈[0,τn∧T ]
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is a square-integrable martingale and therefore,
( ∫ τn∧t

0
ΦI

y(τ)q(τ)σdW2(τ)
)
t∈[0,T ]

is

a square-integrable martingale. Hence,

E

[ ∫ τn∧t

0

ΦI
y(τ)q(τ)σdW2(τ)

]
= E

[ ∫ τn∧0

0

ΦI
y(τ)q(τ)σdW2(τ)

]
= 0.

2.
( ∫ τn∧t

0
ΦI

y(τ)YI(τ)πI(τ)σ̃S1(τ)
δdW1(τ)

)
t∈[0,T ]

is a square-integrable martingale with

expectation 0:

For t ∈ [0, τn ∧ T ] we have

E

[ ∫ t

0

ΦI
y(τ)

2YI(τ)
2πI(τ)

2σ̃2S1(τ)
2δdτ

]

≤ CE

[ ∫ t

0

ΦI(τ)2YI(τ)
2πI(τ)

2S1(τ)
2δdτ

]
< ∞

since ΦI , YI and S1 are bounded onM I
n, πI is square-integrable and C := β2

Iψ
I(0)2σ̃2 <

∞. It follows from Novikov’s condition that
( ∫ t

0
ΦI

y(τ)YI(τ)πI(τ)σ̃S1(τ)
δdW1(τ)

)
t∈[0,τn∧T ]

is a square-integrable martingale and therefore,
( ∫ τn∧t

0
ΦI

y(τ)YI(τ)πI(τ)σ̃S1(τ)
δdW1(τ)

)
t∈[0,T ]

is a square-integrable martingale. Hence,

E

[ ∫ τn∧t

0

ΦI
y(τ)YI(τ)πI(τ)σ̃S1(τ)

δdW1(τ)

]

= E

[ ∫ τn∧0

0

ΦI
y(τ)YI(τ)πI(τ)σ̃S1(τ)

δdW1(τ)

]
= 0.

3.
( ∫ τn∧t

0
ΦI

s(τ)σ̃S1(τ)
δ+1dW1(τ)

)
t∈[0,T ]

is a square-integrable martingale with expecta-

tion 0:

For t ∈ [0, τn ∧ T ] we have

E

[ ∫ t

0

ΦI
s(τ)

2σ̃2S1(τ)
2δ+2dτ

]
= E

[ ∫ t

0

ΦI(τ)2uI(τ)24δ2S1(τ)
−4δ−2σ̃2S1(τ)

2δ+2dτ

]

≤ CE

[ ∫ t

0

ΦI(τ)2S1(τ)
−2δdτ

]
< ∞

since ΦI and S1 are bounded on M I
n and C := 4δ2uI(0)2σ̃2 < ∞. It follows from

Novikov’s condition that
( ∫ t

0
ΦI

s(τ)σ̃S1(τ)
δ+1dW1(τ)

)
t∈[0,τn∧T ]

is a square-integrable

martingale and therefore,
( ∫ τn∧t

0
ΦI

s(τ)σ̃S1(τ)
δ+1dW1(τ)

)
t∈[0,T ]

is a square-integrable

martingale. Hence,

E

[ ∫ τn∧t

0

ΦI
s(τ)σ̃S1(τ)

δ+1dW1(τ)

]
= E

[ ∫ τn∧0

0

ΦI
s(τ)σ̃S1(τ)

δ+1dW1(τ)

]
= 0.
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It follows from Equation (3.41) that

Et,y,s[Φ
I(τn ∧ T )] = ΦI(t) + Et,y,s

[ ∫ τn∧T

t

DIΦI(τ)dτ

]
⎧⎨
⎩≤ ΦI(t) for all (q(t), πI(t)) ∈ ΛI

= ΦI(t) if (q(t), πI(t)) = (q∗(t), π∗
I (t))

,

since DIΦI(t)|(q(·),πI(·)) ≤ DIΦI(t)|(q∗(·),π∗
I (·)) = 0 for all (q(·), πI(·)) ∈ ΛI . Since

Et,y,s[|ΦI(τn ∧ T )|2] < ∞,

we have uniform integrability and therefore,

sup
(q(·),πI(·))∈ΛI

Et,y,s[UI(YI(T ))] = sup
(q(·),πI(·))∈ΛI

Et,y,s[Φ
I(T )]

= lim
n→∞

Et,y,s[Φ
I(τn ∧ T )]⎧⎨

⎩≤ ΦI(t) for all (q(t), πI(t)) ∈ ΛI

= ΦI(t) if (q(t), πI(t)) = (q∗(t), π∗
I (t))

.

Next, we do the verification of the optimization problem of the reinsurer, i.e., we prove

that p∗R(·) is the solution to the optimization problem of the reinsurer. Again, we will

write ΦR(t) instead of ΦR(t, Y pR,q
R (t)) to make it more manageable. We define

DRΦR(t) := ΦR
t (t) + ΦR

y (t)[rY
pR,q
R (t) + (1− q∗(t))(pR(t)− μ)] +

1

2
ΦR

yy(t)(1− q∗(t))2σ2.

Now, we set MR := R+ and choose a sequence of bounded open set (MR
n )n∈N with

MR
n ⊂ MR

n+1 ⊂ MR and MR =
⋃

n∈N M
R
n . Let τn be the exit time of Y pR,q

R (t) from MR
n .

We will first prove for all n ∈ N

Et,y[Φ
R(τn ∧ T, Y pR,q

R (τn ∧ T ))2] < ∞.

By Ito’s formula, we have

d(ΦR(t))2 =2ΦR(t)[ΦR
t (t)dt+ ΦR

y (t)dY
pR,q
R (t) +

1

2
ΦR

yy(t)〈dY pR,q
R (t), dY pR,q

R (t)〉]

+
�
�
�1

2
�2Φ

R
y (t)

2〈dY pR,q
R (t), dY pR,q

R (t)〉
=2ΦR(t)[ΦR

t (t)dt+ ΦR
y (t)(rY

pR,q
R (t) + (1− q∗(t))(pR(t)− μ))dt

+ ΦR
y (t)(1− q∗(t))σdW2(t) +

1

2
ΦR

yy(t)(1− q∗(t))2σ2dt]
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+ ΦR
y (t)

2(1− q∗(t))2σ2dt

=2ΦR(t)DRΦR(t)dt+ 2ΦR(t)ΦR
y (t)(1− q∗(t))σdW2(t) + ΦR

y (t)
2(1− q∗(t))2σ2dt.

It holds

DRΦR(t)|pR(t)=p∗R(t) = 0.

Hence, if we insert p∗R(·) we get

d(ΦR(t))2 = 2ΦR(t)ΦR
y (t)(1− q∗(t))σdW2(t) + ΦR

y (t)
2(1− q∗(t))2σ2dt.

Next, we insert

ΦR
y (t) = −ΦR(t)βRψ

R(t),

into the equation and get

d(ΦR(t))2|pR(t)=p∗R(t) =2ΦR(t)2(−βRψ
R(t))(1− q∗(t))σdW2(t)

+ ΦR(t)2(βRψ
R(t))2(1− q∗(t))2σ2dt.

With h(ΦR(t)) := ΦR(t)2 we have

dh(ΦR(t)) = h(ΦR(t))[−2βRψ
R(t)(1− q∗(t))σdW2(t) + (βRψ

R(t))2(1− q∗(t))2σ2dt].

Hence, h(ΦR(t)) is a geometric Brownian motion and therefore, the solution is given by

h(ΦR(t)) = h(ΦR(0)) exp(Θ1(t)dt+Θ2(t)dW2(t)− 1

2
Θ2(t)

2dt)

with Θ1(t) := (βRψ
R(t))2(1− q∗(t))2σ2 and Θ2(t) := −2βRψ

R(t)(1− q∗(t))σ.

Now, we will prove that (exp(Θ2(t)dW2(t)− 1
2
Θ2(t)

2dt))t∈[0,T ] is a martingale with expec-

tation 1. We have

E

[
exp

(
1

2

∫ T

0

Θ2(t)
2dt

)]
=E

[
exp

(
2

∫ T

0

β2
Rψ

R(t)2(1− q∗(t))2σ2dt

)]

=E

[
exp

(
2β2

Rσ
2

∫ T

0

ψR(t)2(1− q∗(t))2dt
)]

≤E

[
exp

(
2β2

Rσ
2ψR(0)2T

)]
<∞,
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since q∗(t) ≥ 0 ⇒ 1− q∗(t) ≤ 1 and ψR(t) ≤ ψR(0) for all t ∈ [0, T ]. Hence, by Novikov’s

condition (exp(Θ2(t)dW2(t)− 1
2
Θ2(t)

2dt))t∈[0,T ] is a martingale and therefore,

E

[
exp

(∫ t

0

Θ2(τ)dW2(τ)− 1

2

∫ t

0

Θ2(τ)
2dτ

)]

= E

[
exp

(∫ 0

0

Θ2(τ)dW2(τ)− 1

2

∫ 0

0

Θ2(τ)
2dτ

)]
= 1.

It follows

E[h(ΦR(t))] =E[h(ΦR(0)) exp(Θ1(t)dt+Θ2(t)dW2(t)− 1

2
Θ2(t)

2dt)]

=E[h(ΦR(0)) exp(Θ1(t)dt)] < ∞,

since for all t ∈ [0, T ]

exp

(∫ t

0

Θ1(τ)dτ

)
=exp

(∫ t

0

(βRψ
R(τ))2(1− q∗(τ))2σ2dτ

)

=exp

(
β2
Rψ

R(0)2σ2t

)
< ∞.

All in all, it holds for all n ∈ N

Et,y[Φ
R(τn ∧ T, Y pR,q

R (τn ∧ T ))2] < ∞.

Next, we will prove that the value function is exactly the function which solves the HJB-

equation. Again, by Ito’s formula we have

dΦR(t) = DRΦR(t)dt+ ΦR
y (t)(1− q∗(t))σdW2(t).

Hence,

ΦR(τn ∧ T ) = ΦR(t) +

∫ τn∧T

t

DRΦR(τ)dτ +

∫ τn∧T

t

ΦR
y (τ)(1− q∗(τ))σdW2(τ).

We show that

(∫ t

0
ΦR

y (τ)(1 − q∗(τ))σdW2(τ)

)
t∈[0,τn∧T ]

is a martingale with expectation

zero. For this, we will prove

E

[ ∫ t

0

ΦR
y (τ)

2(1− q∗(τ))2σ2dτ

]
< ∞.
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For t ∈ [0, τn ∧ T ]

E

[ ∫ t

0

ΦR
y (τ)

2(1− q∗(τ))2σ2dτ

]
=E

[
β2
Rσ

2

∫ t

0

ΦR(τ)2ψR(τ)2(1− q∗(τ))2dτ
]

≤CE

[ ∫ t

0

ΦR(τ)2dτ

]
< ∞

since ΦR is bounded on MR
n and C = β2

Rσ
2ψR(0)2 < ∞. Hence,( ∫ t

0
ΦR

y (τ)(1 − q∗(τ))σdW2(τ)
)
t∈[0,τn∧T ]

is a square-integrable martingale and therefore,( ∫ τn∧t
0

ΦR
y (τ)(1− q∗(τ))σdW2(τ)

)
t∈[0,T ]

is a square-integrable martingale. It follows

E

[ ∫ τn∧t

0

ΦR
y (τ)(1− q∗(τ))σdW2(τ)

]
= E

[ ∫ 0

0

ΦR
y (τ)(1− q∗(τ))σdW2(τ)

]
= 0.

Due to that, we have

Et,y[Φ
R(τn ∧ T )] = ΦR(t) + Et,y

[ ∫ τn∧T

t

DRΦR(τ)dτ

]
⎧⎨
⎩≤ ΦR(t) for all pR(·) ∈ ΛR

= ΦR(t) if pR(t) = p∗R(t)
,

since DRΦR(t)|pR(t) ≤ DRΦR(t)|p∗R(t) = 0. Since Et,y[Φ
R(τn ∧ T )2] < ∞, we have uniform

integrability and therefore,

sup
pR∈ΛR

Et,y[UR(Y
pR,q
R (T ))] = sup

pR∈ΛR

Et,y[Φ
R(T )]

= lim
n→∞

Et,y[Φ
R(τn ∧ T )]⎧⎨

⎩≤ ΦR(t) for all pR(·) ∈ ΛR

= ΦR(t) if pR(t) = p∗R(t)
,

since τn → T as n → ∞ by the construction of (MR
n )n∈N.

3.5 Comparison with Chen and Shen [2018]

Since the first paper regarding Stackelberg games in the context of insurance and reinsur-

ance is Chen and Shen [2018], we compare the difference of our Stackelberg game (which

is a special case of Bai et al. [2019]) with their paper.

Remark. Differences between the solution of Proposition 5.2 in Chen and Shen [2018]

and the solution from Theorem 3.3:
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1. Chen and Shen [2018] use the stochastic HJB-approach and in the appendix also the

deterministic HJB-approach to calculate the solution of the Stackelberg game. In

this master thesis, we only use the deterministic HJB-approach to find the solution.

2. In the solution of Theorem 3.3 we allow in addition that the insurer can invest in

the financial market. Hence, the insurer selects a proportional reinsurance strategy

and an investment strategy whereas the insurer in Chen and Shen [2018] only selects

a proportional reinsurance strategy.

3. We study the same four cases as in Chen and Shen [2018] for the optimal reinsurance

strategy and the reinsurance premium strategy. The solutions in the four cases are

the same for the optimal reinsurance strategy and the reinsurance premium strategy.

4. The value function of the reinsurer is the same as in Chen and Shen [2018]. In

contrast, the value function of the insurer has additional terms which result from

the investment in the risky asset.



Chapter 4

Reinsurance of an Insurance Product

4.1 Motivation

In the previous chapter, we considered a Stackelberg game between a reinsurer and an

insurer on the level of the whole surplus processes and aggregated risks. However, in

reality, reinsurance agreements are mainly written for parts of the insurer’s business lines

or even for single products separately. Therefore, in this chapter we consider a Stackelberg

game between a reinsurer and an insurer in the context of a life insurance product with

a capital guarantee (cf. Escobar-Anel et al. [2021]).

Escobar-Anel et al. [2021] consider an insurer that sells a life insurance product with a

capital guarantee to a representative client. The insurer invests dynamically in a risky

asset, which is non-reinsurable, and reduces the downside risk by buying a put option on

some benchmark fund from the reinsurer. The researchers determine the optimal dynamic

investment and reinsurance strategy of the insurer with no-short-selling and Value-at-Risk

constraints by maximizing the expected utility of the terminal wealth.

In contrast, we model the interaction between the reinsurer and the insurer in form of a

Stackelberg game. Since approximately 200 reinsurance companies and several thousands

insurance companies exist worldwide (cf. Albrecher et al. [2017]), the reinsurer has rather

a monopoly position (cf. Chen and Shen [2018]). Due to the size of the reinsurance

company and as it operates on an international level, the reinsurer is in a good position

to assess the decision of the insurer. Therefore, in the Stackelberg game solved in this

chapter, the reinsurer is the leader and the insurer the follower.

As in Escobar-Anel et al. [2021], we assume that the insurer follows an individual invest-

ment strategy that is riskier than what the reinsurer is willing to reinsure or not even

known exactly to the reinsurer. Therefore, the reinsurance, which is modeled by a put

78
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option, is on some benchmark portfolio, which is not equal to the insurer’s portfolio but

highly correlated with it.

In contrast to Escobar-Anel et al. [2021] and Chapter 3 of this master thesis, we model

the reinsurance contract as a fixed-term investment, not a dynamic one. The reason for

this is that in general the reinsurer and the insurer agree on a reinsurance contract at the

beginning and only adjust it at regular intervals, e.g., annually. Therefore, we assume that

the insurer buys put options from the reinsurer only at the beginning of the investment

period, and the reinsurer pays the reinsurance at the end of the reinsurance contract.

We model the following situation: The financial market contains one risk-free asset, one

non-reinsurable fund and one reinsurable fund. We assume that the non-reinsurable fund

and the reinsurable fund are correlated, but are not the same. The insurer’s portfolio

contains the risk-free asset and the non-reinsurable fund. Since the reinsurer is not willing

to reinsure the insurer’s portfolio, it sells a put option with the capital guarantee as

the strike price and a benchmark portfolio as the underlying. The benchmark portfolio

contains the risk-free asset and the reinsurable fund. Hence, it is highly correlated to the

insurer’s portfolio. In contrast, the reinsurer can invest in the risk-free asset as well as

both the non-reinsurable and reinsurable fund. We allow the reinsurer to invest in the

reinsurable fund so that it can hedge its put option position. It can also invest in the

non-reinsurable fund, as reinsurer’s are usually larger institutional investors than insurers,

which is why their investment universe is usually broader than that of the insurers.

At the beginning of the insurance/reinsurance contract, the representative client pays an

initial contribution to the insurer and the insurer buys reinsurance from the reinsurer.

Hence, the reinsurer chooses a safety loading for the reinsurance premium and the insurer

a reinsurance strategy, i.e., how much put options it is willing to buy from the reinsurer.

At the end, the reinsurer pays the terminal payoff of the put options it sold to the insurer.

The goal of the insurer is to find a reinsurance strategy and an investment strategy that

maximize its expected utility of the total terminal wealth. The reinsurer wants to find

a safety loading of the reinsurance premium and an investment strategy such that its

expected utility of the total terminal wealth is maximized.

We extend the existing literature on Stackelberg games in the context of insurance and

reinsurance by solving a novel Stackelberg game. The novelty of the game has several

aspects: the reinsurance is on an individual life insurance product, is only traded at the

beginning of the investment period and is not on the exact potential loss of the insurer’s

portfolio, but a correlated one.

Because the optimization problem of the insurer has a fixed-term investment in the put

option as well as a portfolio constraint, standard methods cannot be applied. For the
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portfolio constraint, we use the method of auxiliary markets introduced in Cvitanić and

Karatzas [1992]. To overcome the problem of the fixed-term investment, we apply the

generalized martingale method, which is presented in Desmettre and Seifried [2016]. In

contrast, the optimization problem of the reinsurer has an additional investment in a

put option, which is known. We use the idea of replicating strategies as in Korn and

Trautmann [1999] to solve the optimization problem of the reinsurer when an investment

position in an option is fixed.

The chapter is organized as follows: In Section 4.2 we describe formally the financial

market as well as the Stackelberg game between the reinsurer and the insurer. The

optimal solution to the Stackelberg game is derived in Section 4.4. It is divided into the

subsections devoted to the optimization problem of the insurer and optimization problem

of the reinsurer in the context of the Stackelberg games, as the solution approaches differ.

In Section 4.5, we apply the solution methods obtained in Section 4.4 to the case when

both parties have power utility functions and conduct numerical studies.

4.2 Stackelberg Game

4.2.1 Framework

The financial market consists of one risk-free asset S0 and two risky assets S1, S2. The

dynamics of the risk-free asset S0 is given by

dS0(t) =S0(t)rdt, S0(t) = 1

and of the risky assets S1 and S2 by

dS1(t) =S1(t)(μ1dt+ σ1dW1(t)), S1(0) = s1 > 0,

dS2(t) =S2(t)(μ2dt+ σ2(ρdW1(t) +
√

1− ρ2dW2(t))), S2(0) = s2 > 0,

where W (t) = (W1(t),W2(t))
� is a two-dimensional Brownian motion, ρ ∈ [−1, 1] and

r, μ1, μ2, σ1, σ2 are positive and deterministic constants such that μ1 > r, μ2 > r. We

denote

� :=

(
1

1

)
, μ :=

(
μ1

μ2

)
and σ :=

(
σ1 0

σ2ρ σ2

√
1− ρ2

)
.
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The variable r is called the interest rate, μ the yield rate and σ the volatility matrix. The

market price of risk is defined by

γ := σ−1(μ− r�)

and the discount factor (also called pricing kernel) by

Z̃(t) := exp
(
−
(
r +

1

2
‖γ‖2

)
t− γ�W (t)

)
.

The risk-free asset can be interpreted as a bank account. We assume that the risky asset

S1 is a fund in which the insurer can invest but cannot get reinsured. Furthermore, the

risky asset S2 is a fund which is reinsurable but the insurer cannot invest in.

Let πCM ∈ [0, 1]. We model reinsurance as a put option on a benchmark portfolio that

follows the strategy πB(t) = (0, πCM)� for all t ∈ [0, T ]. The constant-mix strategy

consists of investing 1− πCM of the wealth in S0 and πCM in S2, so the dynamics of the

constant-mix portfolio is given by

dV vI ,πB(t) =(1− πCM)V vI ,πB(t)
dS0(t)

S0(t)
+ πCMV vI ,πB(t)

dS2(t)

S2(t)

=V vI ,πB(t)((r + πCM(μ2 − r))dt+ πCMσ2(ρdW1(t) +
√
1− ρ2dW2(t))),

V vI ,πB(0) =vI ,

where vI > 0 denotes the initial contribution of the representative client to the insurer.

The insurer pays at time T a capital guarantee GT to the representative client. We denote

by P a put option with underlying V vI ,πB and strike price GT the reinsurer sells to the

insurer. Hence, the payoff of the put option P is given by

P (T ) = (GT − V vI ,πB(T ))+.1

The price of the put option P at time t is given by

P (t) = Z̃(t)−1E[Z̃(T )(GT − V vI ,πB(T ))+|Ft].

Lemma 4.1. The replicating strategy ψ(t), t ∈ [0, T ], of the put option P is given by

ψ(t) =

(
P (t)− πCMV vI ,πB(t)(Φ(d+)− 1)

S0(t)
, 0,

πCMV vI ,πB(t)(Φ(d+)− 1)

S2(t)

)
, (4.1)

1x+ := max{x, 0}
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where

d+ := d+(t, V
vI ,πB(t)) :=

ln
(
V vI ,πB (t)

GT

)
+
(
r + 1

2
(σ2π

CM)2
)
(T − t)

πCMσ2

√
T − t

.

The dynamics of the put option P is given by

dP (t) =[V vI ,πB(t)(Φ(d+)− 1)πCM(μ2 − r) + rP (t)]dt (4.2)

+ V vI ,πB(t)(Φ(d+)− 1)σ2π
CM(ρdW1(t) +

√
1− ρ2dW2(t)).

Proof. The proof is stated in Appendix A.

4.2.2 Formulation of the Stackelberg Game

The Stackelberg game consists of two optimization problems, the optimization problem

of the insurer and the optimization problem of the reinsurer. As in Chapter 3, we assume

that the reinsurer is the leader of the Stackelberg game and the insurer is the follower.

We assume that the insurer invests continuously in the assets S0 and S1 and buys a specific

number of put options from the reinsurer but only at time 0. Hence, the insurer chooses

a portfolio process πI(t) = (π1I(t), π2I(t))
�, t ∈ [0, T ], such that π2I(t) ≡ 0 Q-a.s. for all

t ∈ [0, T ], and a reinsurance strategy ξI , i.e., how many put options are bought at 0.

Furthermore, we assume that the reinsurer invests continuously in the assets S0, S1 and

S2 and sells put options to the insurer at a price of (1 + θR)P (0) at time 0, where θR

is the safety loading of the reinsurer. Hence, the reinsurer chooses a portfolio process

πR(t) = (π1R(t), π2R(t))
�, t ∈ [0, T ], and the safety loading θR.

Optimization Problem of the Insurer (Follower)

The wealth process of the insurer V
vI0(ξI ,θR),πI

I is given by

dV
vI0(ξI ,θR),πI

I (t) =(1− π1I(t)− π2I(t))V
vI0(ξI ,θR),πI

I (t)
dS0(t)

S0(t)
(4.3)

+ π1I(t)V
vI0(ξI ,θR),πI

I (t)
dS1(t)

S1(t)
+ π2I(t)V

vI0(ξI ,θR),πI

I (t)
dS2(t)

S2(t)

=V
vI0(ξI ,θR),πI

I (t)(πI(t)
�(μ− r�) + r)dt+ V

vI0(ξI ,θR),πI

I (t)πI(t)
�σdW (t),

V πI
I (0) =vI − ξI(1 + θR)P (0) =: vI0(ξI , θR),

where vI > 0 is the initial wealth of the insurer and θR ∈ [0, θmax] with θmax > 0 is the

safety loading of the reinsurer. The aim of the insurer is to maximize its expected utility
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of the terminal wealth plus the reinsurance payout, i.e.

sup
(πI ,ξI)∈ΛI

E[UI(V
vI0(ξI ,θR),πI

I (T ) + ξIP (T ))], (PI)

where UI is the utility function of the insurer and ΛI is the set of all admissible strategies

in the optimization problem (PI) defined by

ΛI := {(πI , ξI)| πI self-financing, πI(t) ∈ K Q-a.s. ∀t ∈ [0, T ], ξI ∈ [0, ξmax],

V
vI0(ξI ,θR),πI

I (t) ≥ 0 Q-a.s. ∀t ∈ [0, T ] and

E[UI(V
vI0(ξI ,θR),πI

I (T ) + ξIP (T ))−] < ∞]}

with K := R × {0} and ξmax := min
{
ξ̄, vI

(1+θR)P (0)

}
with ξ̄ > 0. The set K is convex and

describes the constraint on the portfolio process πI , i.e., the insurer can only invest in the

risky asset S1 and not in S2. We choose ξmax in a way such that the initial wealth of the

insurer is non-negative, i.e., the insurer is solvent at time 0. In addition, we allow that

ξmax can be limited by a constant ξ̄ which is independent of θR. For example, we can

choose ξ̄ to be close to 1 to avoid that the insurer speculates with the reinsurance.

Optimization Problem of the Reinsurer (Leader)

For a given ξI ∈ [0, ξmax], the wealth process of the reinsurer V
vR0(ξI ,θR),πR

R is given by

dV
vR0(ξI ,θR),πR

R (t) =(1− π1R(t)− π2R(t))V
vR0(ξI ,θR),πR

R (t)
dS0(t)

S0(t)
(4.4)

+ π1R(t)V
vR0(ξI ,θR),πR

R (t)
dS1(t)

S1(t)
+ π2R(t)V

vR0(ξI ,θR),πR

R (t)
dS2(t)

S2(t)
,

V
vR0(ξI ,θR),πR

R (0) =vR + ξI(1 + θR)P (0) =: vR0(ξI , θR),

where vR > 0 is the initial wealth of the reinsurer. The aim of the reinsurer is to maximize

the expected utility of the terminal wealth less the reinsurance payout, i.e.

sup
(πR,θR)∈ΛR

E[UR(V
vR0(ξI ,θR),πR

R (T )− ξIP (T ))], (PR)

where UR is the utility function of the reinsurer and ΛR the set of all admissible strategies

in the optimization problem (PR) defined by

ΛR := {(πR, θR)| πR self-financing, V
vR0(ξI ,θR),πR

R (t) ≥ 0 Q-a.s. ∀t ∈ [0, T ],

θR ∈ [0, θmax] and E[UR(V
vR0(ξI ,θR),πR

R (T )− ξIP (T ))−] < ∞}



84 CHAPTER 4. REINSURANCE OF AN INSURANCE PRODUCT

with θmax > 0. Since the reinsurer invests in the risky assets S1 and S2, we have no

constraint on the portfolio process πR of the reinsurer.

Remark. In Section 4.4.2, we will use the wealth process of the reinsurer via the trad-

ing strategy ϕR instead of the portfolio process πR. We denote the wealth process by

V vR0(ξI ,θR),πR if we consider the wealth process with respect to the portfolio process πR

and by V vR0(ξI ,θR),ϕR with respect to the trading strategy ϕR. The relation between the

trading strategy ϕR and the portfolio process πR is given by (cf. Korn [2014])

πiR(t) =
Si(t)

V vR0(ξI ,θR),ϕR(t)
ϕiR(t), i = 1, 2.

Stackelberg Game

Definition 4.2 (Stackelberg Game). The Stackelberg game between the reinsurer and

insurer is given by

sup
(πR,θR)∈ΛR

E[UR(V
v0R(ξ∗I (θR),θR),πR

R (T )− ξ∗I (θR)P (T ))] (SG)

s.t. (ξ∗I (θR), π
∗
I (·|θR)) ∈ arg max

(ξI ,πI)∈ΛI

E[UI(V
v0I(ξI ,θR),πI

I (T ) + ξIP (T ))].

Definition 4.3 (Stackelberg Equilibrium, cf. Definition 2.1). The solution

(π∗
R(·), θ∗R, π∗

I (·|θ∗R), ξ∗I (θ∗R))

of the Stackelberg game (SG) is called the Stackelberg equilibrium.

4.3 Comparison with Chapter 3

In this section, we emphasize the connection between the Stackelberg games in Chapter

3 and Chapter 4 and point out the differences between them.

In Chapter 3, we consider a Stackelberg game between a reinsurer and an insurer. The

aim is to find an optimal reinsurance contract between the reinsurer and the insurer. The

insurer has a claim process, which is approximated by a diffusion process. Therefore, the

insurer has to cover dynamically the aggregated claims. The reinsurer offers a proportional

reinsurance to the insurer, i.e., the insurer transfer a part of its risk to the reinsurer. In

return, the reinsurer receives a reinsurance premium. Since the claims of the insurer occur

dynamically, the insurer can adjust its proportional reinsurance strategy dynamically and

pays dynamically a reinsurance premium to the reinsurer. Hence, the dynamics of the
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surplus process of the reinsurer is given by

dY pR,q
R (t) = (1− q(t))pR(t)dt︸ ︷︷ ︸

Reinsurance premium

− (1− q(t))dC(t)︸ ︷︷ ︸
Payment of proportional
reinsurance to insurer

+ dV̄R(t)︸ ︷︷ ︸
Investment portfolio

of the reinsurer

Y pR,q
R (0) =y0R > 0

and of the insurer by

dY
pR,(q,πI)
I (t) = (pI − (1− q(t))pR(t))dt︸ ︷︷ ︸

Net premium

− dC(t)︸ ︷︷ ︸
Payment of

claims to representative client

+ (1− q(t))dC(t)︸ ︷︷ ︸
Payoff of proportional

reinsurance from reinsurer

+ dV̄I(t)︸ ︷︷ ︸
Investment portfolio

of the insurer

Y
pR,(q,πI)
I (0) =y0I > 0.

In comparison, in Chapter 4 we consider again a Stackelberg game between a reinsurer

and an insurer. As in Chapter 3, the goal of Chapter 4 is to find an optimal reinsurance

contract between the reinsurer and the insurer. In contrast to Chapter 3, we do not

consider reinsurance on the whole level of aggregated claims of the insurer. In our case,

the insurer offers a life insurance product to its clients with a capital guarantee and

buys reinsurance for it. The representative client pays an initial contribution to the

insurer and receives in return a capital guarantee at the end of the insurance contract.

Therefore, the insurer has only one claim payment at the end of the contract. The

reinsurer offers an excess-of-loss reinsurance2 to the insurer. The retention of the excess-of-

loss reinsurance is given by the terminal price of a benchmark portfolio, which is different

to the insurer’s portfolio but highly correlated. The capital guarantee of the representative

client is the claim of the excess-of-loss reinsurance. Since, the claim occurs only once,

the reinsurer only offers a one-time reinsurance payment at the end of the reinsurance

contract. In the beginning, the insurer pays a one-time reinsurance premium to the

reinsurer and decides on its reinsurance strategy. The reinsurance strategy of the insurer

has no adjustment during the duration of the reinsurance contract. Hence, the terminal

2Excess-of-loss reinsurance is given by (C − R)+, where C is the claim and R the retention. (cf.
Albrecher et al. [2017])
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surplus of the reinsurer is given by

VR(T )︸ ︷︷ ︸
Terminal value of investment

portfolio of reinsurer

−ξI (GT − V v0I ,πB(T ))+︸ ︷︷ ︸
Payment of excess-of-loss
reinsurance to insurer

.

and the initial wealth by

v0R︸︷︷︸
Initial wealth of

reinsurer before reinsurance

+ξI (1 + θR)P (0)︸ ︷︷ ︸
Reinsurance premium with

safety loading θR from insurer

,

where P (0) is the fair price of the excess-of-loss reinsurance at time 0. For the insurer,

the terminal surplus is given by

VI(T )︸ ︷︷ ︸
Terminal value of investment

portfolio of insurer

+ξI (GT − V v0I ,πB(T ))+︸ ︷︷ ︸
Payoff of excess-of-loss

reinsurance from reinsurer

− GT︸︷︷︸
Payment of claim

(i.e., guarantee) to representative client

and the initial wealth by

v0I︸︷︷︸
Initial contribution

of representative client

−ξI (1 + θR)P (0)︸ ︷︷ ︸
Reinsurance premium with

safety loading θR to reinsurer

.

To conclude, in both Stackelberg games the insurer wants to reinsure its claims. Therefore,

the insurer buys reinsurance from the reinsurer. The main differences of the Stackelberg

games in Chapter 3 and 4 are the following:

1. In Chapter 4, the occurrence of the claims and the reinsurance payment are one-

time events at the end of the insurance and reinsurance contract. In contrast, the

occurrence of the claims and the reinsurance payment are dynamic in Chapter 3.

2. In Chapter 4, the reinsurance premium payment and the selection of the reinsurance

strategy is static at the beginning of the reinsurance contract. In Chapter 3, the

reinsurance premium payment and the selection of the reinsurance strategy are

dynamic.

3. In Chapter 3, the reinsurer offers a proportional reinsurance dynamically, whereas in

Chapter 4, the reinsurer offers a static non-proportional reinsurance (excess-of-loss

reinsurance) with a premium payment at the beginning and a reinsurance payment

at the end of the reinsurance contract.
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4.4 Solution of the Stackelberg Game

4.4.1 Optimization Problem of the Insurer (Follower)

Since we use the method of backward induction, we start with solving the optimization

problem of the insurer (PI). Therefore, let θR ∈ [0, θmax] be arbitrary but fix. We use

the generalized martingale method introduced by Desmettre and Seifried [2016]. In our

case, the fixed-term security (i.e., the put option) is not spanned (i.e., it has not the same

risk drivers as the liquid market). To circumvent conditional random utility functions, we

treat the problem as a constrained optimization problem, i.e., we impose an explicit no

trading constraint on S2. To get an unconstrained optimization problem, and therefore a

spanned fixed investment, we use auxiliary markets introduced by Cvitanić and Karatzas

[1992].

Auxiliary Market

The financial market consisting of S0, S1 and S2 is called the basic financial market M.

In the next step, we introduce the auxiliary market (cf. Cvitanić and Karatzas [1992] and

Section 1.4.3). We set K = R × {0}, which is convex. Its support function is given by

δ : R2 → R ∪ {+∞} with

δ(x) := − inf
y∈K

(x�y) = − inf
y1∈R

(x1y1) =

⎧⎨
⎩0, if x1 = 0,

+∞, otherwise.

The barrier cone of K is defined by

K̃ := {x ∈ R2|δ(x) < +∞} = {x ∈ R2|x1 = 0} = {0} ×R.

For x ∈ K̃ we have δ(x) = 0. Let the class of R2-valued dual processes given by

D :=

{
λ = (λ(t))t∈[0,T ] prog. measurable

∣∣∣∣E
[ ∫ T

0

‖λ(t)‖2dt
]
< ∞, E

[ ∫ T

0

δ(λ(t))dt

]
< ∞

}
.

It holds for λ ∈ D that λ(t) ∈ K̃ Q-a.s for all t ∈ [0, T ],i.e., λ1(t) = 0 Q-a.s. for all

t ∈ [0, T ].

Let λ ∈ D. We introduce the auxiliary market Mλ by

dSλ
0 (t) =Sλ

0 (t)rdt,

dSλ
1 (t) =Sλ

1 (t)(μ1dt+ σ1dW1(t)),
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dSλ
2 (t) =Sλ

2 (t)[(μ2 + λ2(t))dt+ σ2(ρdW1(t) +
√

1− ρ2dW2(t))],

since δ(λ(t)) = 0 and λ1(t) = 0 (cf. Section 1.4.3). We define the market price of risk and

the discount factor (also called pricing kernel) in the auxiliary market by

γλ(t) := γ + σ−1λ(t),

Z̃λ(t) := exp

(
− rt− 1

2

∫ t

0

‖γλ(s)‖2ds−
∫ t

0

γλ(s)
�dW (s)

)
.

For more details about the auxiliary market and ideas of Cvitanić and Karatzas [1992],

see Section 1.4.3.

To apply the generalized martingale method introduced by Desmettre and Seifried [2016],

we only need the stochastic payoff of the fixed-term security and the price at time 0.

Therefore, we are only interested in the stochastic payoff at time T and the price at time

0 of the put option P . In the following, we interpret P (T ) as a random variable, which is

FT -measurable and denote it by Pλ(T ) when working with the auxiliary market Mλ.

Reminder: P (0) denotes the fair price of the put option at time 0 in the basic market by

risk-neutral valuations. In accordance to Desmettre and Seifried [2016], in the auxiliary

market the price of the fixed-term security P with payoff P (T ) is given by P (0), which

is a pre-defined price, here the price of the put option in the basic market, and is not

equal to the fair price of the put option in the auxiliary market E[Z̃λ(T )P (T )]. If we

work in the auxiliary market, we denote the price of the fixed-term security by Pλ(0), i.e.,

Pλ(0) = P (0)3.

The wealth process of the insurer V
vI0(ξI ,θR),πI

λ in Mλ is given by

dV
vλI0(ξI ,θR),πI

λ (t) =(1− π1I(t)− π2I(t))V
vλI0(ξI ,θR),πI

λ (t)
dSλ

0 (t)

Sλ
0 (t)

(4.5)

+ π1I(t)V
vλI0(ξI ,θR),πI

λ (t)
dSλ

1 (t)

Sλ
1 (t)

+ π2I(t)V
vλI0(ξI ,θR),πI

λ (t)
dSλ

2 (t)

Sλ
2 (t)

=V
vλI0(ξI ,θR),πI

λ (t)(πI(t)
�(μ− r�) + r)dt+ V

vλI0(ξI ,θR),πI

λ (t)πI(t)
�σdW (t)

+ V
vλI0(ξI ,θR),πI

λ (t)πI(t)
�λ(t)dt︸ ︷︷ ︸

additional term

,

V
vλI0(ξI ,θR),πI

λ (0) = vI − ξI(1 + θR)Pλ(0) =: vλI0(ξI , θR).

3The price Pλ(0) of the fixed-term security in the auxiliary market is pre-defined and does not equal
to fair price of the put option in the auxiliary market E[Z̃λ(T )Pλ(T )] (cf. Desmettre and Seifried [2016]),
i.e., Pλ(0) 
= E[Z̃λ(T )P (T )].
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The unconstrained optimization problem of the insurer in Mλ is given by

sup
(πI ,ξI)∈Λλ

I

E[UI(V
vλI0(ξI ,θR),πI

λ (T ) + ξIPλ(T ))], (P λ
I )

where

Λλ
I := {(πI , ξI)| πI self-financing, V

vλI0(ξI ,θR),πI

λ (t) ≥ 0 Q-a.s. ∀t ∈ [0, T ],

ξI ∈ [0, ξmax] and E[UI(V
vλI0(ξI ,θR),πI

λ (T ) + ξIP (T ))−] < ∞}.

We denote by (π∗
λ, ξ

∗
λ) the solution to (P λ

I ), i.e.,

(π∗
λ, ξ

∗
λ) = arg sup

(πI ,ξI)∈Λλ
I

E[UI(V
vλI0(ξI ,θR),πI

λ (T ) + ξIPλ(T ))].

Random utility function

As in Desmettre and Seifried [2016], we define the random utility function by

ÛI(x) := UI(x+ ξIPλ(T ))

for x ∈ [0,∞), where ξI ∈ [0, ξmax]. The utility function ÛI is random, since Pλ(T ) is

a random variable. Hence, ÛI : [0,+∞) → [UI(ξIPλ(T )),+∞) and ÛI is continuously

differentiable, strictly increasing and strictly concave. Therefore, it holds Û ′
I : [0,+∞) →

(0, U ′
I(ξIPλ(T ))] and

Û ′
I(x) = U ′

I(x+ ξIPλ(T )).

We denote the inverse function of Û ′
I by ÎI : (0,+∞) → [0,+∞). For y ∈ (0, U ′

I(ξIPλ(T ))]

it is given by II(y) − ξIPλ(T ), where II denotes the inverse of U ′
I . For y > U ′

I(ξIPλ(T ))

we set Î(y) := 0. Hence, the random inverse function ÎI is bijective on (0, U ′
I(ξIPλ(T ))].

Solution of the optimization problem

The procedure of solving the optimization problem of the insurer (PI) is the following:

1. We solve for any λ ∈ D the unconstrained optimization problem of the insurer

(P λ
I ) with the generalized martingale method introduced by Desmettre and Seifried

[2016], i.e., we find (π∗
λ, ξ

∗
λ) for any λ ∈ D.

2. If there exists a λ∗ ∈ D such that π∗
λ∗(t) ∈ K Q-a.s. for all t ∈ [0, T ], then we can
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prove that the solution (π∗
λ∗ , ξ∗λ∗) of the unconstrained optimization problem of the

insurer (P λ
I ) is optimal for the optimization problem of the insurer (PI).

Proposition 4.4 (Optimal solution to (P λ
I )). Assume that for all y ∈ (0,∞)

E[Z̃λ(T )II(yZ̃λ(T ))] < ∞ and E[UI(II(yZ̃λ(T )))] < ∞

holds. Then, there exists a solution (π∗
λ, ξ

∗
λ) to the unconstrained optimization problem

of the insurer (P λ
I ), where

ξ∗λ = arg max
ξ∈[0,ξmax]

ν(ξ).

The function ν is given by

ν(ξI) := E[UI(max{II(y∗(ξI)Z̃λ(T )), ξIPλ(T )})],

where the Lagrange multiplier y∗ := y∗(ξI) is given by the budget constraint

E[Z̃λ(T )ÎI(y
∗Z̃λ(T ))] = vI − ξI(1 + θR)Pλ(0).

The optimal terminal wealth V ∗
λ (T ) := V

vλI0(ξ
∗
I ,θR),π∗

λ
λ (T ) is given by

ÎI(y
∗(ξ∗λ)Z̃λ(T )) = max{II(y∗(ξ∗λ)Z̃λ(T ))− ξ∗λPλ(T ), 0}.

If UI is a power utility function, i.e., UI(x) = 1
bI
xbI with bI ∈ (−∞, 0)\{0}, then the

optimal portfolio process π∗
λ is given by

π∗
λ(t)V

∗
λ (t) = πM

λ (t)(V ∗
λ (t) + ξ∗λZ̃λ(t)

−1E[Z̃λ(T )Pλ(T )1{V ∗
λ (T )>0}|Ft])

where πM
λ is the Merton portfolio process given by

πM
λ (t) =

1

1− bI
(σσ�)−1(μ+ λ(t)− r

−→
1 ).

Proof. This is exactly the statement of Theorem 1.40 and 1.41 in Section 1.4.2. For the

proof of these theorems, see Desmettre and Seifried [2016].

Remark. If we choose ξmax = ξ̄ with ξ̄ < vI
(1+θR)P (0)

for all θR ∈ [0, θmax], then for the

initial wealth of the insurer it follows

vI − ξI(1 + θR)Pλ(0) > 0
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Since the random inverse function ÎI is bijective on (0, U ′
I(ξIPλ(T ))] and given by ÎI(y) =

II(y)− ξIPλ(T ) for y ∈ (0, U ′
I(ξIPλ(T ))], we get

ÎI(y) > 0 ⇔ y ∈ (0, U ′
I(ξIPλ(T ))). (4.6)

It follows for the Lagrange multiplier y∗I by the budget constraint

E[Z̃λ(T )ÎI(y
∗
I Z̃λ(T ))] = vI − ξI(1 + θR)Pλ(0)︸ ︷︷ ︸

>0

(a)⇔
ÎI(y

∗
I Z̃λ(T )) > 0

(b)⇔
y∗I Z̃λ(T ) < U ′

I(ξIPλ(T ))

(c)⇔
II(y

∗
I Z̃λ(T )) > ξIPλ(T ),

where (a) follows from Z̃λ(T ) > 0 Q-a.s. and (b) from (4.6) and (c) from the fact that II

is strictly decreasing. Hence, we get

max{II(y∗I (ξI)Z̃λ∗(T )), ξIP (T )} = II(y
∗
I (ξI)Z̃λ∗(T )) (4.7)

and it follows for the function ν

ν(ξI) =E[UI(max{II(y∗I (ξI)Z̃λ∗(T )), ξIP (T )})]
=E[UI(II(y

∗
I (ξI)Z̃λ∗(T )))].

Hence, by Proposition 4.4 we know that under some conditions there exists an optimal

solution (π∗
λ, ξ

∗
λ) to the unconstrained optimization problem of the insurer (P λ

I ). In the

next proposition, we show how the solutions of the optimization problem of the insurer

(PI) and the unconstrained optimization problem of the insurer (P λ
I ) are linked.

Proposition 4.5 (Optimal solution to (PI)). Suppose that there exists λ
∗ ∈ D such that

for the optimal solution (π∗
λ∗ , ξ∗λ∗) to (P λ∗

I ) we have π∗
λ∗(t) ∈ K Q-a.s. for all t ∈ [0, T ].

Then (π∗
λ∗ , ξ∗λ∗) is optimal for the optimization problem of the insurer (PI).

Proof. The proof is based on the proof of Proposition 8.3 in Cvitanić and Karatzas [1992].

The proof consists of two parts:

1. We fix ξI ∈ [0, ξmax] and prove that π∗
λ∗ is optimal for (PI) given the fixed ξI .
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2. We prove that ξ∗λ∗ is optimal for (PI) given the optimal portfolio process π∗
I ≡ π∗

λ∗ .

1. For any ξI ∈ [0, ξmax] and λ ∈ D it holds

vλI0(ξI , θR) = vI − ξI(1 + θR)Pλ(0)

(∗)
= vI − ξI(1 + θR)P (0)

= vI0(ξI , θR).

where (∗) follows from the fact that Pλ(0) = P (0). Hence, for the initial wealth it

holds

V
vλI0(ξI ,θR),πI

λ (0) = V
vI0(ξI ,θR),πI

I (0). (4.8)

Let ξI ∈ [0, ξmax] be fixed. Furthermore, let πI such that (πI , ξI) ∈ ΛI , i.e., it holds

πI(t) ∈ K Q-a.s. for all t ∈ [0, T ]. Hence, for all λ ∈ D and t ∈ [0, T ] we have

πI(t)
�λ(t) = 0, whence

V
vλI0(ξI ,θR),πI

λ (t) = V
vI0(ξI ,θR),πI

I (t) ≥ 0 a.s., (4.9)

where the equality follows from πI(t)
�λ(t) = 0 and Equation (4.8), and

E[UI(V
vλI0(ξI ,θR),πI

λ (T ) + ξIPλ(T ))
−] = E[UI(V

vI0(ξI ,θR),πI

I (T ) + ξIP (T ))−] < ∞,

where the equality follows from Pλ(T ) = P (T ) and the Equation (4.8). Therefore,

(πI , ξI) ∈ Λλ
I . It follows ΛI ⊂ Λλ

I and

sup
πI :(πI ,ξI)∈ΛI

E[UI(V
vI0(ξI ,θR),πI

I (T ) + ξIP (T ))]

(a)
= sup

πI :(πI ,ξI)∈ΛI

E[UI(V
vλI0(ξI ,θR),πI

λ (T ) + ξIPλ(T ))]

(b)

≤ sup
πI :(πI ,ξI)∈Λλ

I

E[UI(V
vλI0(ξI ,θR),πI

λ (T ) + ξIPλ(T ))], (4.10)

where (a) follows from the Equation (4.9) and Pλ(T ) = P (T ), and (b) from ΛI ⊂ Λλ
I .

Let λ∗ ∈ D and the optimal portfolio process π∗
λ∗ of the unconstrained optimization

problem of the insurer (P λ
I ) given a fixed ξI such that (π∗

λ∗ , ξI) ∈ Λλ
I and π∗

λ∗(t) ∈ K

Q-a.s. for all t ∈ [0, T ]. Then for all t ∈ [0, T ] it holds

V
vλ

∗
I0 (ξI ,θR),π∗

λ∗
λ∗ (t)

(4.9)
= V

vI0(ξI ,θR),π∗
λ∗

I (t). (4.11)
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Hence, (π∗
λ∗ , ξI) ∈ ΛI and

sup
πI :(πI ,ξI)∈Λλ∗

I

E[UI(V
vλ

∗
0I (ξI ,θR),πI

λ∗ (T ) + ξIPλ∗(T ))]

(a)
=E[UI(V

vλ
∗

0I (ξI ,θR),π∗
λ∗

λ∗ (T ) + ξIPλ∗(T ))] (4.12)

(b)
=E[UI(V

v0I(ξI ,θR),π∗
λ∗

I (T ) + ξIP (T ))]

(c)

≤ sup
πI :(πI ,ξI)∈ΛI

E[UI(V
v0I(ξI ,θR),πI

I (T ) + ξIP (T ))], (4.13)

where (a) follows from the definition of π∗
λ∗ , (b) from the Equation (4.11) and

Pλ∗(T ) = P (T ), and (c) from (π∗
λ∗ , ξI) ∈ ΛI .

All in all, we have

E[UI(V
vλ

∗
0I (ξI ,θR),π∗

λ∗
λ∗ (T ) + ξIPλ∗(T ))]

(a)
= sup

πI :(πI ,ξI)∈Λλ∗
I

E[UI(V
vλ

∗
0I (ξI ,θR),πI

λ∗ (T ) + ξIPλ∗(T ))]

(b)
= sup

πI :(πI ,ξI)∈ΛI

E[UI(V
v0I(ξI ,θR),πI

I (T ) + ξIP (T ))],

where (a) follows from the Equation (4.12) and (b) from the inequalities (4.10) and

(4.13). Therefore, π∗
λ∗ is optimal for the optimization problem of the insurer (PI)

given a fixed ξI .

2. Now, let ξ∗λ∗ be the optimal fixed term reinsurance (i.e., number of puts) in the

unconstrained optimization problem of the insurer (P λ∗
I ) given π∗

λ∗ ∈ K. It holds

{ξI | (π∗
λ∗ , ξI) ∈ Λλ∗

I } = [0, ξmax] = {ξI | (π∗
λ∗ , ξI) ∈ ΛI}. (4.14)

Then

E[UI(V
v0I(ξ

∗
I ,θR),π∗

λ∗
I (T ) + ξ∗λ∗P (T ))]

(a)
=E[UI(V

vλ
∗

0I (ξ∗I ,θR),π∗
λ∗

λ∗ (T ) + ξ∗λ∗Pλ∗(T ))]

(b)
= sup

ξI :(π
∗
λ∗ ,ξI)∈Λλ∗

I

E[UI(V
vλ

∗
0I (ξI ,θR),π∗

λ∗
λ∗ (T ) + ξIPλ∗(T ))]

(c)
= sup

ξI :(π
∗
λ∗ ,ξI)∈ΛI

E[UI(V
v0I(ξI ,θR),π∗

λ∗
I (T ) + ξIP (T ))],

where (a) follows from P (T ) = Pλ∗(T ) and Equation (4.11), (b) from the definition

of ξ∗I and (c) from Pλ∗(T ) = P (T ) and Equations (4.9) and (4.14). Therefore, ξ∗λ∗ is
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optimal for the optimization problem of the insurer (PI) given the portfolio process

π∗
λ∗ ∈ K.

All in all, we have (π∗
λ∗ , ξ∗λ∗) is optimal for the optimization problem of the insurer (PI).

4.4.2 Optimization Problem of the Reinsurer (Leader)

In this section, we solve the reinsurer’s (leader’s) optimization problem. For that we adapt

the approach proposed by Korn and Trautmann [1999]. Our aim is to find the optimal

safety loading θ∗R and the optimal portfolio process π∗
R of the optimization problem (PR).

In this approach, we work a lot with trading strategies (instead of the relative portfolio

processes). As mentioned in Section 4.2.2, the trading strategy ϕR of the reinsurer is

linked to the portfolio process πR of the reinsurer as follows (cf. Korn [2014]): For i = 1, 2

and t ∈ [0, T ]

πiR(t) =
Si(t)

V
vR0(ξ

∗
I (θR),θR),πR

R (t)
ϕiR(t).

Therefore, we use the notation V
vI0(ξI ,θR),ϕR

R for the wealth process of the reinsurer with

respect to the trading strategy ϕR. We assume that the insurer has the optimal strategies

(ξ∗I (θR), π
∗
I (t|θR, ξ∗I (θR))) depending on θR ∈ [0, θmax]. Hence, the optimization problem of

the reinsurer is given by

sup
(ϕR,θR)∈Λϕ

R

E[UR(V
v0R(ξ∗I (θR),θR),ϕR

R (T )− ξ∗I (θR)P (T ))], (PϕR

R )

where Λϕ
R is the set of all admissible strategies (ϕR, θR) defined by

Λϕ
R := {(ϕR, θR)| ϕR self-financing, V

v0R(ξ∗I (θR),θR),ϕR

R (t) ≥ 0 Q-a.s. ∀t ∈ [0, T ],

θR ∈ [0, θmax] and E[UR(V
v0R(ξ∗I (θR),θR),ϕR

R (T )− ξ∗I (θR)P (T ))−] < ∞}.

The procedure of solving the optimization problem (PϕR

R ) is the following:

1. We fix θR ∈ [0, θmax], find the optimal trading strategy ϕ∗
R and convert it to π∗

R.

2. We find the optimal safety loading θ∗R ∈ [0, θmax].

Let θR ∈ [0, θmax] be fixed. Our aim is to solve the optimization problem

sup
ϕR:(ϕR,θR)∈ΛR

E[UR(V
v0R(ξ∗I (θR),θR),ϕR

R (T )− ξ∗I (θR)P (T ))]. (P θR,ϕ
R )
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As mentioned at the beginning of this section, we adapt the method introduced in Korn

and Trautmann [1999] to solve the optimization problem (P θR,ϕ
R ). In particular, we will

use Theorem 5.1 and adjust it as mentioned in Remark 5.2 in Korn and Trautmann [1999].

Therefore, we define a new wealth process of the reinsurer with investment in the assets S0,

S1 and S2, and additionally in the put option P . The wealth process V
v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R

is given by

dV
v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R (t) =ϕ0R(t)dS0(t) + ϕ1R(t)dS1(t) + ϕ2R(t)dS2(t) + ξ(t)dP (t), (4.15)

V
v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R (0) =vR + ξ∗I (θR)θRP (0) =: v̄0R(ξ
∗
I (θR), θR).

Remark. Note that v̄0R(ξ
∗
I (θR), θR) is not equal to v0R(ξ

∗
I (θR), θR):

v̄0R(ξ
∗
I (θR), θR) =vR + ξ∗I (θR)θRP (0)

=vR + ξ∗I (θR)(1 + θR)P (0)− ξ∗I (θR)P (0)

=v0R(ξ
∗
I (θR), θR)− ξ∗I (θR)P (0).

Since

V
v̄R0,(ϕR,ξ)
R (T ) = ϕ0R(T )S0(T ) + ϕ1R(T )S1(T ) + ϕ2R(T )S2(T ) + ξ(T )P (T )

and the reinsurer has a short put position −ξ∗I (θR), the optimization problem (P θR,ϕ
R ) is

equivalent to the optimization problem given by

sup
ϕR∈ΛθR,(ϕR,ξ)

R

E[UR(V
v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R (T ))] (P
θR,(ϕR,ξ)
R )

s.t. ξ(t) ≡ −ξ∗I (θR) for all t ∈ [0, T ].

Λ
θR,(ϕR,ξ)
R is the set of all admissible strategies ϕR to the optimization problem (P

θR,(ϕR,ξ)
R ),

i.e.,

Λ
θR,(ϕR,ξ)
R := {ϕR self-financing| V v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R (t) ≥ 0 Q-a.s. ∀t ∈ [0, T ]

and E[UR(V
v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R (T ))−] < ∞}.

For the following proposition, we need to introduce the portfolio optimization problem of

the reinsurer (see Section 1.4.1). The portfolio optimization problem of the reinsurer is

given by

sup
ζR∈ΛS

R

E[UR(V
v̄R0(ξ

∗
I (θR),θR),ζR

R (T ))] (P S
R)
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where V
v̄R0(ξ

∗
I (θR),θR),ζR

R is the wealth process of the reinsurer with respect to the trading

strategy ζR and with initial wealth v̄R0(ξ
∗
I (θR), θR) instead of vR0(ξ

∗
I (θR), θR). ΛS

R is the

set of all admissible strategies in the portfolio optimization problem (P S
R):

ΛS
R := {ζR self-financing| V v̄0R(ξ∗I (θR),θR),ζR(t) ≥ 0 ∀t ∈ [0, T ]

and E[UR(V
v̄0R(ξ∗I (θR),θR),ζR(T ))−] < ∞}.

Proposition 4.6 (Optimal solution to (PϕR

R )).

(a) There exists an optimal trading strategy ϕ∗
R to the optimization problem (P

θR,(ϕR,ξ)
R ).

The optimal terminal wealth in the optimization problem (P
θR,(ϕR,ξ)
R ) is given by

V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (T ) = IR(y
∗
R(θR)Z̃(T ))

where y∗R ≡ y∗R(θR) is the Lagrange multiplier determined by

E[Z̃(t)IR(y
∗
RZ̃(T ))] = vR + ξ∗I (θR)θRP (0).

IR is the inverse function of U ′
R.

(b) Let ψ be the replicating strategy given by (4.1) and ζ∗R the optimal trading strategy

of the portfolio optimization problem (P S
R). Then, the optimal trading strategy ϕ∗

R

to the optimization problem (P
θR,(ϕR,ξ)
R ) (and therefore the optimal trading strategy

to the optimization problem (PϕR

R )) given the constraint ξ(t) ≡ −ξ∗I (θR) in the put

option P is given by

ϕ∗
0R(t) =

V v̄0R(ξ∗I (θR),θR),(ϕ∗
R,ξ)(t)−∑2

i=1 ϕ
∗
i (t)Si(t) + ξ∗I (θR)P (t)

S0(t)

ϕ∗
1R(t) = ζ∗1R(t)

ϕ∗
2R(t) = ζ∗2R(t) + ψ2(t)ξ

∗
I (θR).

Remark. Compared to the solution method of the optimization problem of the insurer in

Section 4.4.1, we do not consider random utility functions in the case of the optimization

problem of the reinsurer. Hence, the utility function UR and the marginal inverse function

IR are not random.

Proof. The proof is based on the proof of Theorem 4.1 in Korn and Trautmann [1999].

For the dynamics of the put option it holds (4.2). Hence, for the wealth process

V
v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R it follows that:

V
v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R (t) =ϕ0R(t)S0(t) + ϕ1R(t)S1(t) + ϕ2R(t)S2(t) + ξ(t)P (t)
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(∗)
=ϕ0R(t)S0(t) + ϕ1R(t)S1(t) + ϕ2R(t)S2(t)

+ ξ(t)ψ0(t)S0(t) + ξ(t)ψ2(t)S2(t)

=(ϕ0R(t) + ξ(t)ψ0(t))S0(t) + ϕ1R(t)S1(t) + (ϕ2R(t) + ξ(t)ψ2(t))S2(t)

=:ζ0R(t)S0(t) + ζ1R(t)S1(t) + ζ2R(t)S2(t),

where (∗) follows from the Equation (4.2) and

ζR(t) = (ζ0R(t), ζ1R(t), ζ2R(t))
�

:= (ϕ0R(t) + ξ(t)ψ0(t), ϕ1R(t), ϕ2R(t) + ξ(t)ψ2(t))
� (4.16)

is a self-financing trading strategy. Hence, the dynamics are given by

dV
v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R (t) =ζ0R(t)dS0(t) + ζ1R(t)dS1(t) + ζ2R(t)dS2(t).

The wealth process V
v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R equals the wealth process V v̄0R(ξ∗I (θR),θR),ζR defined

in (1.11). If the trading strategy ϕR is admissible for the optimization problem (P
θR,(ϕR,ξ)
R )

(i.e., ϕR ∈ Λ
θR,(ϕR,ξ)
R ), then the trading strategy ζR is admissible to the portfolio optimiza-

tion problem (P S
R):

V v̄0R(ξ∗I (θR),θR),ζR(t) = V
v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R (t) ≥ 0 ∀t ∈ [0, T ]

and

E[UR(V
v̄0R(ξ∗I (θR),θR),ζR(T ))−] = E[UR(V

v̄0R(ξ∗I (θR),θR),(ϕR,ξ)

R (T ))−] < ∞.

Hence, we are in the case of the portfolio optimization problem (P S
R). By Theorem 1.37,

there exists an optimal trading strategy ζ∗R to the portfolio optimization problem (P S
R)

and the optimal terminal wealth V
v̄0R(ξ∗I (θR),θR),ζR
R is given by

V
v̄0R(ξ∗I (θR),θR),ζR
R (T ) = IR(y

∗
R(θR)Z̃(T )),

where y∗R ≡ y∗R(θR) is determined by the budget constraint

E[Z̃(T )IR(y
∗
RZ̃(T ))] = vR + ξ∗I (θR)θRP (0).

Therefore, there exists an optimal trading strategy ϕ∗
R for the optimization problem

(P
θR,(ϕR,ξ)
R ) and the optimal wealth process V

v̄0R(ξ∗I (θR),θR),(ϕ∗
R,ξ)

R is given by

V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (T ) = V
v̄0R(ξ∗I (θR),θR),ζR
R (T )

= IR(y
∗
R(θR)Z̃(T )).
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By (4.16), we get for the optimal trading strategy ϕ∗
R the following representation:

ϕ∗
1R(t) =ζ∗1R(t)

ϕ∗
2R(t) =ζ∗2R(t)− ξ(t)ψ2(t)

=ζ∗2R(t) + ξ∗I (θR)ψ2(t)

ϕ∗
0R(t) =ζ∗0R(t)− ξ(t)ψ0(t)

(∗)
=
V v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)(t)−∑2
i=1 ζ

∗
iR(t)Si(t)

S0(t)

− ξ(t)
P (t)− ψ2(t)S2(t)

S0(t)

=
V v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)(t)−∑2
i=1 ϕ

∗
iR(t)Si(t)

S0(t)

− ξ(t)ψ2(t)S2(t) + ξ(t)(P (t)− ψ2(t)S2(t))

S0(t)

=
V v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)(t)−∑2
i=1 ϕ

∗
iR(t)Si(t) + ξ∗I (θR)P (t)

S0(t)
,

where (∗) follows from Theorem 1.37.

By Proposition 4.6 we have an explicit solution for the optimal terminal value

V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (T ) and the optimal trading strategy ϕ∗
R in the optimization problem

(PϕR

R ), i.e.,

V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (T ) = V
v0R(ξ∗I (θR),θR),ϕ∗

R
R (T )− ξ∗I (θR)P (T ).

In the next step, our aim is to find the optimal safety loading θ∗R of the reinsurer in the

optimization problem (PR).

Proposition 4.7 (Optimal safety loading). Let ϕ∗
R(·|θR) be the optimal trading strategy

in the optimization problem (PϕR

R ) for θR ∈ [0, θmax]. Then, the optimal safety loading θ∗R
of the reinsurer is given by

θ∗R = arg max
θR∈[0,θmax]

E[UR(V
v0R(ξ∗I (θR),θR),ϕ∗

R
R (T )− ξ∗I (θR)P (T ))].

Proof. We define the function κ : [0, θmax] → R by

κ(θR) :=E[UR(V
v0R(ξ∗I (θR),θR),ϕ∗

R
R (T )− ξ∗I (θR)P (T ))]

=E[UR(IR(y
∗
R(θR)Z̃(T )))],
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where y∗R ≡ y∗R(θR) is the Lagrange multiplier determined by the budget constraint

E[Z̃(t)IR(y
∗
RZ̃(T ))] = v0R + ξ∗I (θR)θRP (0).

We show that the map θR �→ κ(θR) is continuous. By Section 4.4.1, the map ξ∗I (·) is given
by

ξ∗I (θ) = arg max
ξ∈[0,ξmax(θ)]

ν(ξ, θ)

with ξmax(θ) = min{ξ̄, vI
(1+θ)P (0)

} and

ν(ξ, θ) := E[UI(max{II(y∗I (ξ, θ)Z̃λ∗(T )), ξP (T )})],

where the Lagrange multiplier y∗I ≡ y∗I (ξ, θ) is given by the budget constraint of the insurer

E[Z̃λ∗(T )ÎI(y
∗
I Z̃λ∗(T ))] = vI − ξ(1 + θR)P (0).

The Lagrange multiplier y∗I (ξ, θ) is continuous with respect to ξ and θ, since ÎI is a contin-

uous function and vI − ξ(1+ θR)P (0) is continuous with respect to ξ and θ. Furthermore,

we have that the functions II , max and UI are continuous. Therefore, the function ν is

continuous with respect to ξ and θ. In addition ν is strictly concave with respect to ξ

(by Lemma A.3 in Desmettre and Seifried [2016]) if UI is strictly concave. Since UI is

a utility function, it is strictly concave. Furthermore, the map θ �→ ξmax(θ) is continu-

ous. By Berges Maximum Theorem (Theorem 1.12 in Section 1.1) we have that the map

θ �→ ξ∗I (θ) is continuous.

Next, we argue that θ �→ κ(θ) is continuous. The Lagrange multiplier y∗R(θ) is contin-

uous, since IR is a continuous function and v0R + ξ∗I (θ)θP (0) is continuous with respect

to θ. Furthermore, we have that the functions IR and UR are continuous. Therefore, the

function κ is continuous with respect to θ.

Since [0, θmax] is compact, it follows from the Weierstrass Theorem (Theorem 1.11 in

Section 1.1) that there exists θ∗R such that

θ∗R = arg max
θR∈[0,θmax]

κ(θR).
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4.4.3 Stackelberg Game

Proposition 4.8 (Stackelberg equilibrium). The Stackelberg equilibrium of the Stackel-

berg game (SG) is given by (π∗
R(·|θ∗R), θ∗R, π∗

I (·|θ∗R), ξ∗I (θ∗R)), where

• π∗
R(·|θ∗R) is given by

π∗
iR(t|θ∗R) = ϕ∗

iR(t|θ∗R)
Si(t)

V
v0R(ξ∗I (θ

∗
R),θ∗R),ϕ∗

R
R (t)

where ϕ∗
R is given by Proposition 4.6,

• θ∗R is given by Proposition 4.7, and

• (π∗
I (·|θ∗R), ξ∗I (θ∗R)) are given by Proposition 4.4 and 4.5.

4.5 Example: Power utility function

4.5.1 Optimization Problem of the Insurer (Follower)

We fix θR ∈ [0, θmax]. The utility function UI of the insurer is given by a power utility

function, i.e.

UI(x) :=
1

bI
xbI (4.17)

with bI ∈ (−∞, 1)\{0}. Then we have

U ′
I(x) = xbI−1 and II(y) = y

1
bI−1 ,

where bI − 1 < 0. For ξI ∈ [0, ξmax], the random utility function ÛI is given by

ÛI(x) := UI(x+ ξIP (T )) =
1

bI
(x+ ξIP (T ))bI .

Therefore, we have for x ∈ [0,∞) and y ∈ (0, Û ′
I(0)]

Û ′
I(x) = U ′

I(x+ ξIP (T )) = (x+ ξIP (T ))bI−1 and ÎI(y) = y
1

bI−1 − ξIP (T ). (4.18)

First, we calculate the optimal wealth process V ∗
λ to the optimization problem (P λ

I ) for a

given ξI ∈ [0, ξmax] and λ ∈ D.

If ξI = vI
(1+θR)P (0)

, then the insurer invests all his initial wealth in the reinsurance (i.e.,
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vI0(ξI , θR) = 0) and therefore, the optimal wealth process V ∗
λ is given by

V ∗
λ (t) = 0

for all t ∈ [0, T ]. Hence, the optimal terminal surplus is given by ξIP (T ).

If ξI ∈ [0, ξmax] with ξI 
= vI
(1+θR)P (0)

, then the insurer invests only a part of his wealth

in the reinsurance. Therefore, we need to calculate the optimal terminal wealth of the

insurer to the optimization problem (P λ
I ).

First, we find the optimal Lagrange multiplier y∗I from the budget constraint

E[Z̃λ(T )(y
∗
I Z̃λ(T ))

1
bI−1 − ξIZ̃λ(T )P (T )] = vI − ξI(1 + θR)P (0)

⇔
(y∗I )

1
bI−1E[Z̃λ(T )

bI
bI−1 ] = vI − ξI(1 + θR)Pλ(0) + ξIE[Z̃λ(T )Pλ(T )]

⇔

(y∗I )
1

bI−1 =
vI − ξI(1 + θR)Pλ(0) + ξIE[Z̃λ(T )Pλ(T )]

E[Z̃λ(T )
bI

bI−1 ]

⇔

y∗I =

(
vI − ξI(1 + θR)Pλ(0) + ξIE[Z̃λ(T )Pλ(T )]

E[Z̃λ(T )
bI

bI−1 ]

)bI−1

.

(4.19)

Reminder: Pλ(0) 
= E[Z̃λ(T )Pλ(T )], i.e., the price of the fixed-term security is not equal

to the price of a put option with payoff Pλ(T ) in the auxiliary market.

Since y∗I depends on ξI , we will write y∗I (ξI) instead of y∗I from now on. By Proposition

4.4, the optimal terminal wealth to the optimization problem (P λ
I ) is given by

V ∗
λ (T ) =Î(y∗I (ξI)Z̃λ(T ))

(4.18)
= (y∗I (ξI)Z̃λ(T ))

1
bI−1 − ξIPλ(T )

(4.19)
=

((
vI − ξI(1 + θR)Pλ(0) + ξIE[Z̃λ(T )Pλ(T )]

E[Z̃λ(T )
bI

bI−1 ]

)bI−1

Z̃λ(T )

) 1
bI−1

− ξIPλ(T )

=
vI − ξI(1 + θR)Pλ(0) + ξIE[Z̃λ(T )Pλ(T )]

E[Z̃λ(T )
b

b−1 ]
Z̃λ(T )

1
b−1 − ξIPλ(T ).

Hence, the wealth process is given by

V ∗
λ (t) =

1

Z̃λ(t)
E[Z̃λ(T )V

∗
λ (T )|Ft]
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=
1

Z̃λ(t)
E

[
Z̃λ(T )

(
vI − ξI(1 + θR)P (0) + ξIE[Z̃λ(T )P (T )]

E[Z̃λ(T )
bI

bI−1 ]
Z̃λ(T )

1
bI−1 − ξIP (T )

)∣∣∣∣Ft

]

=
1

Z̃λ(t)

(
vI − ξI(1 + θR)P (0) + ξIE[Z̃λ(T )P (T )]

E[Z̃λ(T )
bI

bI−1 ]
E[Z̃λ(T )

bI
bI−1 |Ft]− ξIE[Z̃λ(T )P (T )|Ft]

)
.

By Proposition 4.4, the optimal portfolio process π∗
λ is given by

π∗
λ(t) =πM

λ (t)
V ∗
λ (t) + ξIZ̃λ(t)

−1E[Z̃λ(T )P (T )|Ft]

V ∗
λ (t)

=πM
λ (t)

E[Z̃λ(T )
bI

bI−1 |Ft](vI − ξI(1 + θR)P (0) + ξIE[Z̃λ(T )P (T )])

V ∗
λ (t)Z̃λ(t)E[Z̃λ(T )

bI
bI−1 ]

,

where πM
λ is Merton’s relative portfolio process given by

πM
λ (t) =

1

1− bI
(σσ�)−1(μ+ λ(t)− r�).

Next, we calculate the optimal λ∗ ∈ D such that π∗
λ∗(t) ∈ K Q-a.s. for all t ∈ [0, T ], as

then π∗
λ∗(t)�λ∗(t) = 0 Q-a.s. for all t ∈ [0, T ]. Since π∗

λ is given by πM
λ multiplied by a

random variable bigger than zero, it is sufficient to show that πM
λ∗(t) ∈ K Q-a.s. for all

t ∈ [0, T ]. Let λ∗ ∈ D, i.e., λ∗
1(t) = 0 for a.e. t ∈ [0, T ]. Then, for t ∈ [0, T ]

πM
λ∗(t) ∈ K

⇔
1

1− bI
(σσ�)−1

(
μ1 − r

μ2 + λ∗
2(t)− r

)
∈ K. (4.20)

Since

σσ� =

(
σ1 0

σ2ρ σ2

√
1− ρ2

)
·
(
σ1 σ2ρ

0 σ2

√
1− ρ2

)

=

(
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)
,

we have by Theorem 1.2 (since σ2
1σ

2
2 − (σ1σ2ρ)

2 = σ2
1σ

2
2(1− ρ2))

(σσ�)−1 =
1

σ2
1σ

2
2(1− ρ2)

(
σ2
2 −σ1σ2ρ

−σ1σ2ρ σ2
1

)
,
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and Equation (4.20) is equivalent to the linear equation

0 =
1

(1− bI)σ2
1σ

2
2(1− ρ2)

(−σ1σ2ρ(μ1 − r) + σ2
1(μ2 + λ∗

2(t)− r))

⇔
σ1σ2ρ(μ1 − r) = σ2

1(μ2 + λ∗
2(t)− r)

⇔
λ∗
2(t) ≡ λ∗

2 =
σ2ρ

σ1

(μ1 − r)− μ2 + r.

Therefore, the optimal λ∗ ∈ D is given by

λ∗(t) ≡ λ∗ =

(
0

σ2ρ
σ1

(μ1 − r)− μ2 + r

)
.

Remark. This is the same λ∗ as if we use the minimization criterion in Example 15.1 in

Cvitanić and Karatzas [1992], i.e.

λ∗ = arg min
x∈K̃

‖γ + σ−1x‖2.

But this is a coincidence, since the result in Cvitanić and Karatzas [1992] is not for random

utility functions.

It remains to determine the optimal reinsurance strategy ξ∗I . By Proposition 4.4, we have

ξ∗I = arg max
ξI∈[0,ξmax]

ν(ξI),

where the function ν is given by

ν(ξI) := E

[
1

bI
max{(y∗I (ξI)Z̃λ∗(T ))

1
bI−1 , ξIP (T )}bI

]
.

We will solve this later numerically.

Remark. If we choose ξmax = ξ̄ with ξ̄ < vI
(1+θR)P (0)

for all θR ∈ [0, θmax], then the insurer

always invests a part of his wealth in the reinsurance. From Equation (4.7), it follows for

the function ν

ν(ξI) =E

[
1

bI
max{(y∗I (ξI)Z̃λ∗(T ))

1
bI−1 , ξIP (T )}bI

]
(4.7)
= E

[
1

bI
(y∗I (ξI)Z̃λ∗(T ))

bI
bI−1

]
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=
1

bI
y∗I (ξI)

bI
bI−1E

[
Z̃λ∗(T )

bI
bI−1

]
def. y∗I (ξI)=

1

bI
(vI − ξI(1 + θR)P (0) + ξIE[Z̃λ∗(T )P (T )])bIE

[
Z̃λ∗(T )

bI
bI−1

]1−bI
.

It follows for the optimal reinsurance strategy ξ∗I

ξ∗I =arg max
ξI∈[0,ξ̄]

(
1

bI
(vI − ξI(1 + θR)P (0) + ξIE[Z̃λ∗(T )P (T )])bIE

[
Z̃λ∗(T )

bI
bI−1

]1−bI
)

=

⎧⎨
⎩ξ̄, if − (1 + θR)P (0) + E[Z̃λ∗(T )P (T )] ≥ 0,

0, if − (1 + θR)P (0) + E[Z̃λ∗(T )P (T )] < 0

=

⎧⎨
⎩ξ̄, if E[Z̃λ∗ (T )P (T )]−P (0)

P (0)
≥ θR,

0, if E[Z̃λ∗ (T )P (T )]−P (0)
P (0)

< θR.
(4.21)

Summary:

• The optimal λ∗ ∈ D is given by

λ∗ = (0,
σ2ρ

σ1

(μ1 − r)− μ2 + r)�.

• The Lagrange multiplier y∗(ξI) is given by

y∗I (ξI) =
(
vI − ξI(1 + θR)P (0) + ξIE[Z̃λ∗(T )P (T )]

E
[
Z̃λ∗(T )

bI
bI−1

] )bI−1

.

• The optimal reinsurance strategy ξ∗I is given by

ξ∗I = arg max
ξI∈[0,ξmax]

ν(ξI),

where the function ν is given by

ν(ξI) := E

[
1

bI
max{(y∗I (ξI)Z̃λ∗(T ))

1
bI−1 , ξIP (T )}bI

]
. (4.22)

• The optimal terminal surplus is given by

V ∗
I (T ) + ξ∗IP (T ) =max{(y∗I (ξ∗I )Z̃λ∗(T ))

1
bI−1 , ξ∗IP (T )}

=max

{
vI − ξ∗I (1 + θR)P (0) + ξIE[Z̃λ∗(T )P (T )]

E[Z̃λ∗(T )
bI

bI−1 ]
Z̃λ∗(T )

1
bI−1 , ξ∗IP (T )

}
,
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where V ∗
I denotes the optimal wealth process of the insurer (4.3).

• The optimal portfolio process is given by

π∗
I (t) =πM

λ∗(bI)
E[Z̃λ∗(T )

bI
bI−1 |Ft](vI − ξ∗I (1 + θR)P (0) + ξ∗IE[Z̃λ∗(T )P (T )])

V ∗
I (t)Z̃λ∗(t)E[Z̃λ∗(T )

bI
bI−1 ]

, (4.23)

where

πM
λ∗(bI) =

1

1− bI
(σσ�)−1(μ+ λ∗ − r�).

4.5.2 Optimization Problem of the Reinsurer (Leader)

The optimal reinsurance strategy of the insurer is given by ξ∗I (θR) and the utility func-

tion of the reinsurer is given by a power utility function, i.e., for x ∈ (0,∞) and bR ∈
(−∞, 1)\{0}

UR(x) :=
1

bR
xbR .

Hence, we have for x, y ∈ (0,∞)

U ′
R(x) = xbR−1 and IR(y) = y

1
bR−1 . (4.24)

First, we calculate the Lagrange multiplier y∗R, which solves the budget constraint

E[Z̃(T )IR(y
∗
RZ̃(T ))] = vR + ξ∗I (θR)θRP (0)

(4.24)⇔
E[Z̃(T )(y∗RZ̃(T ))

1
bR−1 ] = vR + ξ∗I (θR)θRP (0)

⇔
(y∗R)

1
bR−1E[Z̃(T )

bR
bR−1 ] = vR + ξ∗I (θR)θRP (0)

⇔

y∗R =

(
vR + ξ∗I (θR)θRP (0)

E[Z̃(T )
bR

bR−1 ]

)bR−1

.

Since y∗R depends on θR, we will write y
∗
R(θR) instead of y∗R from now on. By Proposition

4.6, the optimal terminal wealth of the optimization problem (P
θR,(ϕR,ξ)
R ) is given by

V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (T ) =IR(y
∗
R(θR)Z̃(T ))
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=(y∗R(θR)Z̃(T ))
1

bR−1

Lemma A.1
= (vR + ξ∗I (θR)θRP (0))Z̃(T )

1
bR−1

× exp

([
r

bR
bR − 1

− 1

2
‖γ‖2 bR

(bR − 1)2

]
T

)
.

Hence, the optimal wealth process is given by

V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (t) =Z̃(t)−1E[Z̃(T )V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (T )|Ft]

=(vR + ξ∗I (θR)θRP (0))

× exp

([
r

bR
bR − 1

− 1

2
‖γ‖2 bR

(bR − 1)2

]
T

)
× Z̃(t)−1E[Z̃(T )

bR
bR−1 |Ft]

(∗)
=(vR + ξ∗I (θR)(1 + θR)P (0))

× exp

([
r

bR
bR − 1

− 1

2
‖γ‖2 bR

(bR − 1)2

]
T

)

× exp

(
−
(
r

bR
bR − 1

− 1

2
‖γ‖2 bR

(bR − 1)2

)
(T − t)

)
× Z̃(t)−1Z̃(t)

bR
bR−1

=(vR + ξ∗I (θR)(1 + θR)P (0))

× exp

((
r

bR
bR − 1

− 1

2
‖γ‖2 bR

(bR − 1)2

)
t

)
Z̃(t)

1
bR−1 ,

where (∗) follows by Lemma A.1 with k = bR
bR−1

and λ = 0. Since the optimal wealth

process V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R has the form

V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (t) =(vR + ξ∗I (θR)(1 + θR)P (0))

× exp

((
r

bR
bR − 1

− 1

2
‖γ‖2 bR

(bR − 1)2

)
t

)
Z̃(t)

1
bR−1

=(vR + ξ∗I (θR)(1 + θR)P (0))

× exp

((
r

bR
bR − 1

− 1

2
‖γ‖2 bR

(bR − 1)2

)
t

)

× exp

(
−
(
r +

1

2
‖γ‖2

)
1

bR − 1
t− 1

bR − 1
γ�W (t)

)
=(vR + ξ∗I (θR)(1 + θR)P (0))

× exp

((
r − 1

2
‖γ‖2

[ 1

bR − 1
+

bR
(bR − 1)2

])
t− 1

bR − 1
γ�W (t)

)
=:g(t,W1(t),W2(t)),
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where g has all the properties from Theorem 1.38, we can calculate the optimal trading

strategy ζ∗R to the portfolio optimization problem (P S
R) directly. The gradient of g with

respect to W1 and W2 is given by

∇xg(t,W1(t),W2(t)) = −V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (t)

bR − 1
γ

= −V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (t)

bR − 1
σ−1(μ− r�).

By Theorem 1.38, the optimal trading strategy ζ∗R to the portfolio optimization problem

(P S
R) is given by (for i = 1, 2)

ζ∗iR(t) =− V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (t)

Si(t)
πM
i (bR),

where πM is the Merton portfolio process given by

πM(bR) =
1

1− bR
(σσ�)−1(μ− r�).

Hence,

ζ∗1R(t) =
V

v̄0R(ξ∗I (θR),θR),(ϕ∗
R,ξ)

R (t)

S1(t)
πM
1 (bR)

ζ∗2R(t) =
V

v̄0R(ξ∗I (θR),θR),(ϕ∗
R,ξ)

R (t)

S2(t)
πM
2 (bR).

Hence, by Proposition 4.6, the optimal trading strategy ϕ∗
R to the optimization problem

of the reinsurer (PR) is given by

ϕ∗
1R(t) =ζ∗1R(t)

=
V

v̄0R(ξ∗I (θR),θR),(ϕ∗
R,ξ)

R (t)

S1(t)
πM
1 (bR)

ϕ∗
2R(t) =ζ∗2R(t) + ψ2(t)ξ

∗
I (θR)

=
V

v̄0R(ξ∗I (θR),θR),(ϕ∗
R,ξ)

R (t)

S2(t)
πM
2 (bR)

+
πCMV vI ,πB(t)(Φ(d+)− 1)

S2(t)
ξ∗I (θR).

The optimal safety loading strategy θ∗R is given by

θ∗R = arg max
θR∈[0,θmax]

E
[ 1
bR

(V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (T ))bR
]
.
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This will be solved numerically.

Remark. If we choose ξmax = ξ̄ with ξ̄ < vI
(1+θR)P (0)

for all θR ∈ [0, θmax], then the optimal

reinsurance strategy ξ∗I (θR) is given by (cf. Equation (4.21))

ξ∗I (θR) =

⎧⎨
⎩ξ̄, if E[Z̃λ∗ (T )P (T )]−P (0)

P (0)
≥ θR,

0, if E[Z̃λ∗ (T )P (T )]−P (0)
P (0)

< θR.

It follows for the optimal safety loading θ∗R

θ∗R =arg max
θR∈[0,θmax]

E
[ 1
bR

(y∗R(θR)Z̃(T ))
bR

bR−1

]
=arg max

θR∈[0,θmax]

1

bR
(vR + ξ∗I (θR)θRP (0))bRE[Z̃(T )

bR
bR−1 ]1−bR

=arg max
θR∈[0,θmax]

ξ∗I (θR)θR.

Hence, the reinsurer chooses the largest θR ∈ [0, θmax] such that ξ∗I (θR) = ξ̄, i.e.,

θ∗R ≈ min

{
E[Z̃λ∗(T )P (T )]− P (0)

P (0)
, θmax

}
. (4.25)

Summary:

• The Lagrange multiplier y∗R(θR) is given by

y∗R(θR) =
(
vR + ξ∗I (θR)θRP (0)

E[Z̃(T )
bR

bR−1 ]

)bR−1

.

• The optimal safety loading strategy θ∗R is given by

θ∗R = arg max
θR∈[0,θmax]

κ(θR),

where the function κ is given by

κ(θR) := E
[ 1
bR

(y∗R(θR)Z̃(T ))
bR

bR−1

]
. (4.26)

• The optimal terminal surplus is given by

V ∗
R(T )− ξ∗I (θ

∗
R)P (T ) =V

v̄0R(ξ∗I (θ
∗
R),θ∗R),(ϕ∗

R,ξ)

R (T )

=(vR + ξ∗I (θ
∗
R)θ

∗
RP (0))Z̃(T )

1
bR−1
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× exp

([
r

bR
bR − 1

− 1

2
‖γ‖2 bR

(bR − 1)2

]
T

)
.

• The optimal trading strategy is given by

ϕ∗
1R(t) =

V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (t)

S1(t)
πM
1 (bR)

ϕ∗
2R(t) =

V
v̄0R(ξ∗I (θR),θR),(ϕ∗

R,ξ)

R (t)

S2(t)
πM
2 (bR)

+
πCMV vI ,πB(t)(Φ(d+)− 1)

S2(t)
ξ∗I (θR),

where πM is the Merton portfolio process given by

πM(bR) =
1

1− bR
(σσ�)−1(μ− r�).

Hence, the optimal portfolio process is given by

π∗
R(t) = πM(bR) +

⎛
⎝ 0

πCMV v0,πB (t)(Φ(d+)−1)

V
v̄0R(ξ∗

I
(θ∗

R
),θ∗

R
),(ϕ∗

R
,ξ)

R (t)
ξ∗I (θ

∗
R)

⎞
⎠ . (4.27)
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4.5.3 Numerical Analysis

For the numerical analysis, we use the following parameters:

Parameter Symbol Values
Interest rate r 1.02%
Drift coefficient for S1 μ1 17.52%
Drift coefficient for S2 μ2 12.37%
Diffusion coefficient for S1 σ1 23.66%
Diffusion coefficient for S2 σ2 21.98%
Correlation coefficient ρ 80.12%
Portfolio process CM strategy πB (0%, 29.48%)�

Initial value of S1 s1 1
Initial value of S2 s2 1
Guarantee GT 100
Initial wealth of insure vI 100
Initial wealth of reinsurer vR 300
Relative risk aversion of insurer 1− bI 10
Relative risk aversion of reinsurer 1− bR 10
Time horizon T 10
Maximal safety loading of reinsurer θmax 50%
Maximal amount of reinsurance ξmax = ξ̄ 1.5

Table 4.1: Parameters for the numerical analysis

Parameter Selection

In this part, we discuss the selection of the parameters, which are summarized in Table

4.1. For the majority of parameters, we choose the same values as in Escobar-Anel et al.

[2021]. There, the market parameters are calibrated to the German market in the period

from January 1, 2003, till June 8, 2020.

The risk-free rate is modeled by the Euro OverNight Index Average (EONIA) daily data

which describes the interest rates on overnight unsecured loans between banks by using a

weighted average4. For calibrating the parameters of S1, we use the TecDAX daily data

and for calibrating the parameters of S2, we use the DAX daily data. The DAX (Deutscher

Aktienindex) is a performance index which represents the 30 largest companies5 and the

TecDAX represents the 30 largest technology companies on the German Stock Exchange6.

In this way, we model the following situation. The insurer invests in bonds and prefers

4cf. https://www.ecb.europa.eu/explainers/tell-me-more/html/benchmark\_rates\_qa.en.

html
5cf. https://www.dax-indices.com/index-details?isin=DE0008469008
6cf. https://www.dax-indices.com/index-details?isin=DE0007203275
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the technological sector instead of the overall portfolio in its stock portfolio. One reason

could be that the insurer’s asset manager has special knowledge in the technology sector

and/or believes that the TecDAX has a better performance than the DAX. In contrast,

the reinsurer considers the insurer’s technology-focused portfolio too risky to be reinsured.

Therefore, the reinsurer offers reinsurance only on a mixed portfolio consisting of bonds

and DAX.

The relative proportion πCM of the constant mix portfolio is selected such that it equals

the optimal initial proportion of the insurer in the risky asset without reinsurance.

In the German Life Insurance Market, the capital guarantee for the representative client

is usually less than or equal to 100% of the representative client’s initial endowment.

For example, ERGO offers the life insurance product ERGO Rente Garantie where the

guarantee lies between 80% and 100%. In contrast, Allianz offers a guarantee between 60%

and 90%. Hence, we assume that the representative client has a 100% capital guarantee

of the initial capital and investigate in the sensitivity analysis GT varying from 60% to

110% of vI .

For convenience, we set the insurer’s initial wealth vI to 100. Since the reinsurer is the

leader of the Stackelberg game, it is natural to assume that it is a larger company with

more initial capital. Therefore, we set vR to 300. Chen and Shen [2018] select the initial

capital of the reinsurer and the insurer in a similar way in their numerical studies.

In Chen and Shen [2018], the authors assume that the reinsurer and insurer have the

same risk aversion. In contrast, Bai et al. [2019] assume that the insurer is more risk

averse than the reinsurer. For this, we first consider the situation where the reinsurer and

the insurer have the same risk aversion. Afterwards, we explore the situations where the

parties have different risk aversion. In the base case, we choose bI = bR = −9, which is

consistent with Escobar-Anel et al. [2021].

For the maximal level of safety loading we choose 50%. It was chosen because Chen and

Shen [2018] and Chen and Shen [2019] choose an upper bound on the safety loading of

the reinsurer with 45%. But Bai et al. [2019] choose a safety loading of the reinsurer with

200%.

We do not allow that the insurer can speculate with the reinsurance by going short or

buying to much of it. Since the underlying of the put option is not the portfolio of the

insurer but a correlated portfolio, we allow that ξmax = ξ̄ = 1.5.

Algorithm for calculation Stackelberg equilibrium:

1. Choose a sequence of θR in the interval [0, θmax] with ΔθR = 0.0001.
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2. Determine for any θR the corresponding optimal reinsurance strategy ξ∗I (θR):

2a. choose a sequence of ξI in the interval [0, ξmax] with ΔξI = 0.01.

2b. apply the function ν to each ξI using (4.22).

2c. then ξ∗I = arg max ν(ξI).

3. Apply the function κ to each pair (θR, ξ
∗
I (θR)) using (4.26).

4. Then θ∗R = arg max κ(θR).

5. Calculate the optimal investment strategies π∗
I and π∗

R using (4.23) and (4.27),

respectively.

Remark.

(a) The functions ν and κ are independent of π∗
I and π∗

R. Therefore, we can calculate the

reinsurance strategy ξ∗I and the safety loading θ∗R first and afterwards the investment

strategies π∗
I and π∗

R.

(b) In our case, it holds

ξ̄ <
v0I

(1 + θmax)P (0)
(≈ 17.3064)

≤ v0I
(1 + θR)P (0)

for all θR ∈ [0, θmax]. Hence, by Equations (4.21) and (4.25), we have the concrete

formulas

θ∗R = min

{
E[Z̃λ∗(T )P (T )]− P (0)

P (0)
, θmax

}
ξ∗I (θ

∗
R) = 1.5.

Therefore, it is not necessary to use the above algorithm.

For detailed information about the Matlab functions, see Appendix B.1.

Stackelberg Equilibrium

The relative portfolio processes at time 0 of the reinsurer and the insurer without rein-

surance (i.e., ξI = 0) are given by

π∗
R(0) =(33.48%,−5.38%)�,
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π∗
I (0) =(29.48%, 0%)�.

The reinsurer has a short position in the stock S2 due to speculation. In comparison, the

Stackelberg equilibrium is given by

θ∗R =20.86%,

ξ∗I (θ
∗
R) =1.5,

π∗
R(0) =(33.48%,−9.41%)�,

π∗
I (0) =(31.69%, 0%)�.

As we see, the short position of the reinsurer in the stock S2 increases due to the hedge

of the short position in the put option. Figure 4.1 shows the dependence of ξ∗I on θR ∈
[0, θmax]. If θR increases then ξ∗I (θR) decreases from the maximal value ξmax = 1.5 to

the minimal value 0. But the optimal reinsurance strategy fo the insurer is to buy the

maximal amount of put options (i.e., ξ∗I (θ
∗
R) = ξmax).

Figure 4.1: Dependence of ξ∗I on θR

This is exactly what we expect due to Equation (4.21) and Equation (4.25), since

E[Z̃λ∗(T )P (T )]− P (0)

P (0)
= 20.86%.
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Hence, the reinsurer sets the maximal price for the reinsurance such that the insurer still

buys reinsurance.

E[Z̃λ∗(T )P (T )] is the fair price of the put option P at time 0 in the optimal axuiliary

market Mλ∗ , whereas P (0) is the fair price of the put option P at time 0 in the basic

market M. Hence, the optimal safety loading of the reinsurer is the difference between

the fair price of the put option P at time 0 in the optimal auxiliary market and in the

basic market in relation to the fair price of the put option P at time 0 in the basic market.

Sensitivity Analysis

In the sensitivity analysis, we consider two possible changes in the Stackelberg game.

First, we consider a change in the behavior of the leader and the follower, i.e., we vary

the relative risk aversion of the reinsurer and the insurer. Next, we take a closer look at

the change of the put option price with respect to changes of the interest rate r, the time

horizon T , and the capital guarantee GT .

The relative risk aversion of a decision maker indicates its risk appetite. If the relative

risk aversion increases, the decision maker tries to reduce its risk. For the sensitivity

analysis we consider 1 − bR = RRAR ∈ {5, 7.5, 10, 12.5, 15} and 1 − bI = RRAI ∈
{5, 7.5, 10, 12.5, 15}. See Tables B.1 and B.2 in Appendix B.2 for the exact values of the

numerical analysis.

Figure 4.2: Sensitivity of the reinsurer’s part of the Stackelberg equilibrium w.r.t. RRAR
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Figure 4.3: Sensitivity of the insurer’s part of the Stackelberg equilibrium w.r.t. RRAI

Surprisingly, a change of the relative risk aversion of the reinsurer and the insurer does

not influence the optimal reinsurance strategy ξ∗I (θ
∗
R) and the optimal safety loading θ∗R.

The insurer always buys the maximal amount of reinsurance, independent of its risk

appetite. Since the safety loading of the reinsurer only depends on the put option price,

it is independent of the behavior of the reinsurer and the insurer and therefore, it does

not change under the relative risk aversion of the reinsurer and the insurer.

In contrast, the optimal relative portfolio processes at time 0 of the reinsurer π∗
R(0) and

of the insurer π∗
I (0) changes under the relative risk aversion, see Figures 4.2 and 4.3. The

optimal relative portfolio process of the reinsurer is only influenced by the behavior of the

reinsurer and vice versa for the insurer.

If the relative risk aversion of the reinsurer increases, i.e., the reinsurer wants to reduce

its risk, then the investment in the risk-free security S0 increases whereas the investment

in the risky asset S1 decreases and the short position in the risky security S2 is reduced.

Hence, the reinsurer reduces his risk by investing less in the risky asset S1 and speculates

less in the risky asset S2.

If the relative risk aversion of the insurer increases, the proportion of the investment in

the risky asset S1 decreases. Hence, the insurer reduces its risk by investing less in the

risky asset S1.

In contrast to the parties’ relative risk aversion, a change of the interest rate r, of the time

horizon T and of the guarantee GT (being the strike price of the put option) influences the
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put option price. Hence, we also investigate how the Stackelberg equilibrium changes when

the interest rate r ∈ {−2%,−1%, 0%, 1%, 2%}, the time horizon T ∈ {1, 5, 10, 15, 20}, and
the guarantee GT ∈ {0.6% · vI , 0.7% · vI , 0.8% · vI , 0.9% · vI , 1% · vI , 1.1% · vI} change. See

Tables B.3, B.4 and B.5 in Appendix B.2 for the values of the analysis.

Figure 4.4: Sensitivity of the reinsurer’s part of the Stackelberg equilibrium w.r.t. r

In Figures 4.4 and 4.5, we see the influence of the interest rate r on the Stackelberg

equilibrium. Again, the optimal reinsurance strategy ξ∗I (θ
∗
R) of the insurer is ξmax = 1.5,

i.e., the insurer chooses the maximum amount of reinsurance independently of the interest

rate as long as the safety loading is not unbearably high. Since the optimal safety loading

θ∗R of the reinsurer depends on the put option price, the interest rate influences the optimal

safety loading. If the interest rate r increases, then the fair price of reinsurance (without

safety loading) decreases, whereas the optimal safety loading θ∗R increases. In other words,

once it is cheaper for the reinsurer to hedge its liabilities toward insurer, the reinsurer

tries to increase profit by increasing the safety loading to the maximal value at which the

insurer is still willing to purchase reinsurance.

If the interest rate r increases, then the investment in the risky asset S1 decreases and

the short position of the risky asset S2 is reduced. The decrease of the investment in S1

follows from the fact that it becomes more attractive to invest in the risk-free asset S0.

Since the put option price decreases with an increasing interest rate, the reinsurer has to

hedge the short position in the put less and therefore the investment in S2 increases (i.e.,

the short position in S2 is reduced).
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Figure 4.5: Sensitivity of the insurer’s part of the Stackelberg equilibrium w.r.t. r

The relative portfolio process of the insurer behaves in the same way: if the interest rate

increases, the proportion invested in the risky asset S1 decreases, since the investment in

the risk-free security S0 becomes more attractive for the insurer.

Figure 4.6: Sensitivity of the reinsurer’s part of the Stackelberg equilibrium w.r.t. T
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Figure 4.7: Sensitivity of the insurer’s part of the Stackelberg equilibrium w.r.t. T

Figure 4.8: Put option price in the basic market and optimal auxiliary market w.r.t. T

The impact of the time horizon T is seen in Figures 4.6 and 4.7. The optimal reinsurance

strategy ξ∗I (θ
∗
R) of the insurer again is the maximum amount ξmax. The fair put option

price in the basic market does not change notably if the time horizon T exceeds 5 years (cf.
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Figure 4.8). In contrast, the fair price of the put option in the optimal auxiliary market

increases significantly and, therefore, the difference between these two prices increases (cf.

Figure 4.8). Accordingly, the optimal safety loading θ∗R of the reinsurer increases with

respect to an increasing time horizon.

For the relative portfolio processes of the reinsurer and insurer we only see small changes.

The investment of the reinsurer in the risky asset S1 stays constant when varying the time

horizon. The short position in the risky asset S2 is reduced if the time horizon increases.

The relative portfolio process of the insurer increases very slightly if the time horizon

increases.

Figure 4.9: Sensitivity of the reinsurer’s part of the Stackelberg equilibrium w.r.t. GT
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Figure 4.10: Sensitivity of the insurer’s part of the Stackelberg equilibrium w.r.t. GT

In Figures 4.9 and 4.10 we see the influence of the guarantee GT on the Stackelberg equi-

librium. Again, the optimal reinsurance strategy ξ∗I (θ
∗
R) is constant with respect to the

guarantee. The optimal safety loading θ∗R of the reinsurer decreases with the guarantee,

since the put option price increases.

The portfolio process of the reinsurer only changes in the short position of S2 due to the

short put position and the increase of the put option price. The short position in S2

increase if the guarantee increases, since the reinsurer has to hedge a higher put option

price.

The investment of the insurer in the risky asset S1 increases very slightly when the guar-

antee increases.



Chapter 5

Conclusion

This master thesis studies Stackelberg games between a reinsurance company and an

insurance company. In Chapter 3, we solve a Stackelberg game between a reinsurer and

an insurer, where the insurer buys reinsurance on the whole aggregated claims and adjusts

its reinsurance strategy dynamically. The game we set up and investigate is a special case

from Bai et al. [2019].

In Chapter 4, we solve a more realistic product-specific Stackelberg game between a

reinsurer and an insurer. Instead of a reinsurance on the whole company level, we consider

reinsurance in the context of a life insurance product with a capital guarantee. The

reinsurance is modeled by an excess-of-loss reinsurance, i.e. a put option that protects

the insurer against potential losses in the case the investment portfolio of the insurer does

not cover the guarantee. The underlying of the put option is a (reinsurable) benchmark

portfolio, which is not the same as the insurer’s portfolio but highly correlated. The

reason for this is that the individual investment strategy of the insurer is too risky for

the reinsurer to offer reinsurance on it. Since continuous adjustment of the reinsurance

strategy of the insurer is not realistic, we assume that the reinsurance is only purchased

at the beginning of the investment horizon.

To solve the Stackelberg game we use backward induction. First, we apply the methods

introduced by Cvitanić and Karatzas [1992] and Desmettre and Seifried [2016] to solve

the optimization problem of the insurer. This problem has two challenges: fixed-term

reinsurance modeled as a put option and market incompleteness due to the inability to

hedge the put option within the investment universe of the decision maker. Second, we

solve the optimization problem of the reinsurer, with the idea introduced by Korn and

Trautmann [1999].

The Stackelberg equilibrium is given by the optimal strategy chosen by the reinsurer
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and by the insurer. The reinsurer selects its optimal safety loading, whereas the insurer

chooses its reinsurance strategy (i.e., the optimal amount of put options) and both choose

their own optimal investment strategy.

In the numerical studies, we limit the number of put options to 1.5 to avoid the use of

the reinsurance for speculation purposes by the insurer. We find that in the Stackelberg

equilibrium the reinsurer selects the largest safety loading such that the insurer is still

willing to buy reinsurance and the insurer then buys the maximal amount of reinsurance.

The investment strategies of the reinsurer and insurer are mostly influenced by the interest

rate and the relative risk aversion of the reinsurer and the insurer, respectively.

Since the Stackelberg equilibrium depends on the underlying model, it may change if we

adjust or extend the model. A future research direction could be the extension of the

model to allow the reinsurer and the insurer to adjust the reinsurance contract at regular

intervals, e.g., annually. Another direction is the usage of more advanced financial market

models, e.g., models with jumps, stochastic interest rates, etc. Analogous to Escobar-

Anel et al. [2021], the model can be extend by including no-short-selling constraints or

Value-at-Risk constraints.
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Appendix to Chapter 4

Lemma A.1. For k ∈ R, λ ∈ R2 and t ∈ [0, T ] it holds

E[Z̃λ(T )
k|Ft] = exp

(
−
(
rk +

1

2
‖γλ‖2k − 1

2
‖γλ‖2k2

)
(T − t)

)
Z̃λ(t)

k.

Proof. For λ ∈ R2 and t ∈ [0, T ] we define

Z̃λ(t) := exp

(
−
(
r +

1

2
‖γλ‖2

)
t− γ�

λ W (t)

)
,

where γλ := γ + σ−1λ. First, we will prove that for any k ∈ R(
exp

(
− 1

2
‖γλ‖2k2t− kγ�

λ W (t)

))
t∈[0,T ]

is a martingale. It holds

E

[
exp

(
1

2
k2‖γλ‖2T

)]
< ∞

since k, ‖γλ‖, T < ∞. Therefore, by Novikov’s condition (cf. Theorem 1.28) we have that(
exp

(
− 1

2
‖γλ‖2k2t− kγ�

λ W (t)

))
t∈[0,T ]

is a martingale. Next, we calculate the expectation E[Z̃λ(T )
k|Ft]:

E[Z̃λ(T )
k|Ft] =E

[
exp

(
−
(
r +

1

2
‖γλ‖2

)
kT − kγ�

λ W (T )

)∣∣∣∣Ft

]

=exp

(
−
(
r +

1

2
‖γλ‖2

)
kT +

1

2
‖γλ‖2k2T

)
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× E

[
exp

(
− 1

2
‖γλ‖2k2T − kγ�

λ W (T )

)∣∣∣∣Ft

]

=exp

(
−
(
r +

1

2
‖γλ‖2

)
kT +

1

2
‖γλ‖2k2T

)

× exp

(
− 1

2
‖γλ‖2k2t− kγ�

λ W (t)

)

=exp

(
−
(
rk +

1

2
‖γλ‖2k − 1

2
‖γλ‖2k2

)
(T − t)

)
Z̃λ(t)

k,

where the third equality follows from the martingale property.

Lemma A.2. Let λ ∈ R2 and t ∈ [0, T ]. Furthermore, let P be a put option with strike

price GT > 0 and the constant mix portfolio V vI ,πB as underlying. Then

EQ[Z̃λ(T )P (T )|Ft] = Z̃λ(t)[e
−r(T−t)GTΦ(−d1(t))

− V vI ,πB(t)e(μ̃−σ̃�γλ)(T−t)Φ(−d2(t))], (A.1)

where Φ is the cumulative function of the standard normal distribution and

d1(t) := d1(t, V
vI ,πB(t)) :=

ln
(V vI ,πB (t)

GT

)
+
(
r + μ̃− 1

2
‖σ̃‖2 − σ̃�γλ

)
(T − t)

πCMσ2

√
T − t

,

d2(t) := d2(t, V
vI ,πB(t)) := d1(t, V

vI ,πB(t)) +
‖σ̃‖2√T − t

πCMσ2

with μ̃ := πCM(μ2 − r) and σ̃ := πCMσ2(ρ,
√

1− ρ2)�. Note that EQ denotes the expec-

tation with respect to the probability measure Q.

Proof. Under the probability measure Q the stochastic process W is a Brownian motion

and the underlying V vI ,πB of the put option is given by

V vI ,πB(t) = V vI ,πB(s) exp

((
r + μ̃− 1

2
‖σ̃‖2

)
(t− s) + σ̃�(W (t)−W (s))

)

with s ≤ t.

First, we define the probability measure Q̃ as the equivalent probability measure to Q

with the Radon-Nikodym derivative

dQ̃

dQ

∣∣∣∣
Ft

= Zλ(t) = e−
1
2
‖γλ‖2t−γ�

λ W (t).

By Girsanov’s theorem (cf. Theorem 1.29), the stochastic process W̃ defined by

W̃ (t) := W (t) + γλt
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is a Brownian motion and the underlying process V vI ,πB of the put option has the following

dynamics in terms of W̃ :

V vI ,πB(t) = V vI ,πB(s) exp

((
r + μ̃− 1

2
‖σ̃‖2 − σ̃�γλ

)
(t− s) + σ̃�(W̃ (t)− W̃ (s))

)
(A.2)

with s ≤ t. We denote by EQ̃ the expectation with respect to the probability measure Q̃.

For the payoff P (T ) of the put option it holds

P (T ) =(GT − V vI ,πB(T ))+

=(GT − V vI ,πB(T ))1{GT>V vI ,πB (T )} (A.3)

Then

Z̃λ(t)
−1EQ[Z̃λ(T )P (T )|Ft]

Bayes thm.
=

Thm. 1.27
EQ̃[e

−r(T−t)P (T )|Ft]

=e−r(T−t)EQ̃[P (T )|Ft]

(A.3)
= e−r(T−t)EQ̃[GT1{GT>V vI ,πB (T )}|Ft]

− e−r(T−t)EQ̃[V
vI ,πB(T )1{GT>V vI ,πB (T )}|Ft].

1. We calculate the expectation EQ̃[GT1{GT>V vI ,πB (T )}|Ft]. Therefore,

{GT > V vI ,πB(T )}
(A.2)
=

{
GT > V vI ,πB(t) exp

((
r + μ̃− 1

2
‖σ̃‖2 − σ̃�γλ

)
(T − t) + σ̃�(W̃ (T )− W̃ (t))

)}

=

{
ln

(
GT

V vI ,πB(t)

)
−
(
r + μ̃− 1

2
‖σ̃‖2 − σ̃�γλ)

)
(T − t) > σ̃�(W̃ (T )− W̃ (t))

}
.

We have

σ̃�(W̃ (T )− W̃ (t)) =πCMσ2(ρ(W̃1(T )− W̃1(t)) +
√

1− ρ2(W̃2(T )− W̃2(t)))

d
=πCMσ2

√
T − tZ

where Z ∼ N (0, 1) under Q̃. Hence,{
ln

(
GT

V vI ,πB(t)

)
−
(
r + μ̃− 1

2
‖σ̃‖2 − σ̃�γλ)

)
(T − t) > σ̃�(W̃ (T )− W̃ (t))

}

=

{
ln
(

GT

V vI ,πB (t)

)− (r + μ̃− 1
2
‖σ̃‖2 − σ̃�γλ)

)
(T − t)

πCMσ2

√
T − t

> Z

}
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=: {−d1(t, V
vI ,πB(t)) > Z}.

Since W̃ (T )−W̃ (t) is independent of Ft (due to the independent increment property

of the Brownian motion), we get

EQ̃[GT1{GT>V vI ,πB (T )}|Ft] =GTEQ̃[1{GT>V vI ,πB (T )}|Ft]

=GT Q̃(−d1(t, V
vI ,πB(t)) > Z)

=GTΦ(−d1(t, V
vI ,πB(t))),

where Φ is the cumulative function of the standard normal distribution.

2. We calculate the expectation EQ̃[V
vI ,πB(T )1{GT>V vI ,πB (T )}|Ft]. First, we define Q̂ as

an equivalent probability measure to Q̃ with the Radon-Nikodym derivative

dQ̂

dQ

∣∣∣∣
Ft

= e−
1
2
‖σ̃‖2t+σ̃�W̃ (t).

By Girsanov’s theorem (cf. Theorem 1.29), the stochastic process Ŵ defined by

Ŵ (t) := W̃ (t)− σ̃t

is a Brownian motion with respect to Q̂ and the underlying process V vI ,πB of the

put option can be rewritten in terms of Ŵ as follows:

V vI ,πB(t) =V vI ,πB(s) exp

((
r + μ̃− 1

2
‖σ̃‖2 − σ̃�γλ + ‖σ̃‖2

)
(t− s) + σ̃�(Ŵ (t)− Ŵ (s))

)

=V vI ,πB(s) exp

((
r + μ̃+

1

2
‖σ̃‖2 − σ̃�γλ

)
(t− s) + σ̃�(Ŵ (t)− Ŵ (s))

)

with s ≤ t. By EQ̂ we denote the expectation with respect to the probability measure

Q̂. Then

EQ̃[V
vI ,πB(T )1{GT>V vI ,πB (T )}|Ft]

= V vI ,πB(t)EQ̃

[
exp

((
r + μ̃− 1

2
‖σ̃‖2 − σ̃�γλ

)
(T − t) + σ̃�(W̃ (T )− W̃ (t))

)

1{GT>V vI ,πB (T )}|Ft

]
= V vI ,πB(t)EQ̂[ exp((r + μ̃− σ̃�γλ)(T − t))1{GT>V vI ,πB (T )}|Ft].
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With the same arguments as in point 1, we get

{GT > V vI ,πB(T )}

=

{
GT > V vI ,πB(t) exp

((
r + μ̃+

1

2
‖σ̃‖2 − σ̃�γλ

)
(T − t) + σ̃�(Ŵ (T )− Ŵ (t))

)}

=

{
ln
(

GT

V vI ,πB (t)

)− (r + μ̃+ 1
2
‖σ̃‖2 − σ̃�γλ)

)
(T − t)

πCMσ2

√
T − t

> Ẑ

}

=: {−d2(t, V
vI ,πB(t)) > Ẑ},

where Ẑ ∼ N (0, 1) under Q̂. Since Ŵ (T )− Ŵ (t) is independent of Ft, we get

EQ̃[V
vI ,πB(T )1{GT>V vI ,πB (T )}|Ft]

= V vI ,πB(t)EQ̂[ exp((r + μ̃− σ̃�γλ)(T − t))1{GT>V vI ,πB (T )}|Ft]

= V vI ,πB(t) exp((r + μ̃− σ̃�γλ)(T − t))Q̂(−d2(t, V
vI ,πB(t)) > Ẑ)

= V vI ,πB(t) exp((r + μ̃− σ̃�γλ)(T − t))Φ(−d2(t, V
vI ,πB(t))),

where Φ is the cumulative function of the standard normal distribution.

All in all, we have

EQ[Z̃λ(T )P (T )|Ft] =Z̃λ(t)Z̃λ(t)
−1EQ[Z̃λ(T )P (T )|Ft]

=Z̃λ(t)e
−r(T−t)EQ̃[GT1{GT>V vI ,πB (T )}|Ft]

− Z̃λ(t)e
−r(T−t)EQ̃[V

vI ,πB(T )1{GT>V vI ,πB (T )}|Ft]

=Z̃λ(t)e
−r(T−t)GTΦ(−d1(t))

− Z̃λ(t)e
−r(T−t)V vI ,πB(t) exp((r + μ̃− σ̃�γλ)(T − t))Φ(−d2(t))

=Z̃λ(t)[e
−r(T−t)GTΦ(−d1(t))

− V vI ,πB(t)e(μ̃−σ̃�γλ)(T−t)Φ(−d2(t))],

where

d1(t) := d1(t, V
vI ,πB(t)) :=

ln
(V vI ,πB (t)

GT

)
+
(
r + μ̃− 1

2
‖σ̃‖2 − σ̃�γλ)

)
(T − t)

πCMσ2

√
T − t

d2(t) := d2(t, V
vI ,πB(t)) := d1(t, V

vI ,πB(t)) +
‖σ̃‖2√T − t

πCMσ2

.

Lemma A.3 (Replicating strategy of the put option). The replicating strategy ψ(t) :=
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(ψ0(t), ψ1(t), ψ2(t))
� of the put option P is given by

ψ(t) =

(
P (t)− V (t)πCM(Φ(d+)− 1)

S0(t)
, 0,

πCMV vI ,πB(t)(Φ(d+)− 1)

S2(t)

)
,

i.e., for the put option price it holds

P (t) =ψ0(t)S0(t) + ψ1(t)S1(t) + ψ2(t)S2(t)

=
P (t)− V (t)πCM(Φ(d+)− 1)

S0(t)
S0(t) +

πCMV vI ,πB(t)(Φ(d+)− 1)

S2(t)
S2(t),

where

d+ := d+(t, V
vI ,πB(t)) :=

ln
(V vI ,πB (t)

GT

)
+
(
r + 1

2
(πCMσ2)

2
)
(T − t)

πCMσ2

√
T − t

.

The strategy ψ is self-financing, i.e., for the dynamics of the put option it holds

dP (t) = ψ0(t)dS0(t) + ψ1(t)dS1(t) + ψ2(t)dS2(t).

Proof. By Equation (A.1) (if we set λ = 0), the price of the put option is given by

P (t) =Z̃(t)−1E[Z̃(T )P (T )|Ft]

(A.1)
= e−r(T−t)GTΦ(−d1(t, V

vI ,πB(t)))

− V vI ,πB(t)e(μ̃−σ̃�γ)(T−t)Φ(−d2(t, V
vI ,πB(t))), (A.4)

where

d1(t, V
vI ,πB(t)) :=

ln
(V vI ,πB (t)

GT

)
+
(
r + μ̃− 1

2
‖σ̃‖2 − σ̃�γ)

)
(T − t)

πCMσ2

√
T − t

,

d2(t, V
vI ,πB(t)) := d1(t, V

vI ,πB(t)) +
‖σ̃‖2√T − t

πCMσ2

.

Reminder: μ̃ := πCM(μ2 − r), σ̃ := πCMσ2(ρ,
√
1− ρ2)� and

γ :=σ−1(μ− r�)

=
1

σ1σ2

√
1− ρ2

(
σ2

√
1− ρ2 0

−σ2ρ σ1

)(
μ1 − r

μ2 − r

)

=
1

σ1σ2

√
1− ρ2

(
σ2

√
1− ρ2(μ1 − r)

−σ2ρ(μ1 − r) + σ1(μ2 − r)

)
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=

⎛
⎝ μ1−r

σ1

− ρ√
1−ρ2

μ1−r
σ1

+ 1√
1−ρ2

μ2−r
σ2

⎞
⎠ .

Hence,

μ̃− σ̃�γ =πCM(μ2 − r)− πCMσ2

(
ρ
√

1− ρ2
)⎛⎝ μ1−r

σ1

− ρ√
1−ρ2

μ1−r
σ1

+ 1√
1−ρ2

μ2−r
σ2

⎞
⎠

=πCM(μ2 − r)− πCMσ2ρ
μ1 − r

σ1

+ πCMσ2					√
1− ρ2

ρ

					√
1− ρ2

μ1 − r

σ1

− πCM
��σ2					√

1− ρ2
1

					√
1− ρ2

μ2 − r

��σ2

=πCM(μ2 − r)− πCMσ2ρ
μ1 − r

σ1

+ πCMσ2ρ
μ1 − r

σ1

− πCM(μ2 − r)

=0.

For the put option price in (A.4) it follows

P (t) =e−r(T−t)GTΦ(−d1(t, V
vI ,πB(t)))− V vI ,πB(t)e(μ̃−σ̃�γ)(T−t)Φ(−d2(t, V

vI ,πB(t)))

=e−r(T−t)GTΦ(−d1(t, V
vI ,πB(t)))− V vI ,πB(t)Φ(−d2(t, V

vI ,πB(t))),

where

d1(t, V
vI ,πB(t)) =

ln
(V vI ,πB (t)

GT

)
+
(
r − 1

2
‖σ̃‖2))(T − t)

πCMσ2

√
T − t

=
ln
(
V vI ,πB (t)

GT

)
+
(
r − 1

2
(πCMσ2)

2)
)
(T − t)

πCMσ2

√
T − t

,

d2(t, V
vI ,πB(t)) = d1(t, V

vI ,πB(t)) +
‖σ̃‖2√T − t

πCMσ2

= d1(t, V
vI ,πB(t)) + πCMσ2

√
T − t.

The stock price S2 and the constant mix portfolio value V vI ,πB are given by

S2(t) =S2(0) exp
((

μ2 − 1

2
σ2
2

)
t+ σ2(ρW1(t) +

√
1− ρ2W2(t))
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V vI ,πB(t) =vI exp

((
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Hence, the relation between S2 and V is given by

V vI ,πB(t) =
vI

S2(0)
exp
((

r +
1

2
πCMσ2

2

)
(1− πCM)t

)
S2(t)

πCM

.
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Therefore,

∂P (t)

∂S1(t)
= 0

and

∂P (t)

∂S2(t)
=e−r(T−t)GT

∂

∂S2(t)
Φ(−d1(t, V

vI ,πB(t)))− ∂V vI ,πB(t)

∂S2(t)
Φ(−d2(t, V

vI ,πB(t)))

− V vI ,πB(t)
∂

∂S2(t)
Φ(−d2(t, V

vI ,πB(t))).

We have for i = 1, 2
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∂
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)
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=

vI
S2(0)
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2
πCMσ2

2

)
(1− πCM)t

)
πCMS2(t)

πCM−1

=V vI ,πB(t)πCMS2(t)
−1,

∂(di(t, V
vI ,πB(t)))

∂S2(t)
=
∂ ln
(V vI ,πB (t)

GT

)
∂S2(t)

1

πCMσ2

√
T − t

=
GT

V vI ,πB(t)

∂

∂S2(t)

(
V vI ,πB(t)
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)
1
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√
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1

���πCM σ2

√
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�
�GT
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�
�GT S2(t)
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=− φ(−di(t, V

vI ,πB(t)))
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vI ,πB(t)))

∂S2(t)
,

where φ is the density of the standard normal distribution, i.e., for x ∈ R

φ(x) =
1√
2π

e−
1
2
x2

.

Hence,

∂P (t)
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1
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T − t
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−1
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vI ,πB(t)))

S2(t)
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√
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√
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We define d2(t, V
vI ,πB(t)) =: d+. Since it holds Φ(−x) = 1− Φ(x), we get
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=− πCMV vI ,πB(t)Φ(−d2(t, V

vI ,πB(t)))
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=
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Appendix B

Appendix to Numerical Analysis

B.1 Matlab Functions

In the following, we give some short explanations to the Matlab functions, which we use

in the numerical studies. The seed in the analysis is set to 1 (i.e., rng(1)).

• Matlab function ”PayoffPutOption”: This function calculates a realization of the

payoff of a put option with strike price GT and underlying V vI ,πB for a realization

of the Brownian motion W , i.e.,

P (T ) = (GT − V vI ,πB(T ))+.

We need the function for the calculation of the expectation in the function ν.

1 function [payoffPutOption] = PayoffPutOption(WT,vI,GT,r,mu,sigma ,

piCM ,T)

2 % Calculation of the payoff of the put option in the basic market

3 % The underlying of the put option is a constant mix portfolio V

4 % and the strike price is given by G_T.

5 % WT is a realization of the Brownian motion W at time T

6

7 tildeMu = piCM*(mu(2)-r);

8 tildeSigma = piCM*sigma (2,:).’;

9

10 % Constant mix portfolio at time T

11 VT = vI*exp((r+tildeMu -0.5* norm(tildeSigma)^2)*T+tildeSigma .’*WT);

12

13 % Payoff put option at time T

14 payoffPutOption = max(GT-VT ,0);

15 end

133
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• Matlab function ”TerminalDiscFactor”: This function calculates a realization of the

discounting factor at the terminal time T : Z̃λ∗(T ) in the auxiliary market Mλ∗ and

Z̃(T ) in the basic market M. If we want the discounting factor for the basic market,

then we set the input argument ”lam” to 0 and otherwise to 1.

1 function [ZT] = TerminalDiscFactor(WT,r,mu,sigma ,T,lam)

2 % Discounting Factor Z at time T

3 % Function for both dicounting factors Z: for the basic market

4 % and the auxiliary market with the optimal lambda.

5 % lam == 0: Discounting factor Z in the basic financial market

6 % WT is a realization of the Brownian motion W at time T

7

8 lambda = [0;( sigma (2,1)*(mu(1)-r))/sigma (1,1)-mu(2)+r];

9 gammaLambda = inv(sigma)*(mu+lambda -r);

10 gamma = inv(sigma)*(mu-r);

11

12 % Discounting factor at time T

13 if lam == 0

14 ZT = exp(-(r+0.5* norm(gamma)^2)*T-gamma.’*WT);

15 else

16 ZT = exp(-(r+0.5* norm(gammaLambda)^2)*T-gammaLambda .’*WT);

17 end

18

19 end

• Matlab function ”LagrangeMultiplierI”: With this function we can determine the

Lagrange multiplier y∗I of the insurer, i.e.,

y∗I =

(
vI − ξI(1 + θR)P (0) + ξIE[Z̃λ∗(T )P (T )]

E[Z̃λ∗(T )
bI

bI−1 ]

)bI−1

.

1 function [y] = LagrangeMultiplierI(xiI ,thetaR ,vI,bI,GT,r,mu,sigma ,

piCM ,P0,T)

2 % Lagrange multiplier for the insurer

3 % Determiniation of the Lagrange multiplier which solves the

4 % budget constraint of the insurer

5

6 % Definitions

7 tildeMu = piCM*(mu(2)-r);

8 tildeSigma = piCM*sigma (2,:).’;

9 k = bI/(bI -1);

10 lambda = [0;( sigma (2,1)*(mu(1)-r))/sigma (1,1)-mu(2)+r];

11 gammaLambda = inv(sigma)*(mu+lambda -r);

12
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13 % Expectation of the discounting factor to the power k in the

auxiliary

14 % market

15 expectationZAuxiliary = exp(-r*k*T-0.5* norm(gammaLambda)^2*(k-k

^2)*T);

16

17 % Price of the put option in the auxiliary market at time 0

18 d1 = (log(vI/GT)+(r+tildeMu -0.5* norm(tildeSigma)^2-...

19 tildeSigma .’* gammaLambda)*T)/(piCM*norm(sigma (2,:))*sqrt(T)

);

20 d2 = d1+(norm(tildeSigma)^2* sqrt(T))/(piCM*norm(sigma (2,:)));

21 pricePutOptionAuxiliary0 = exp(-r*T)*GT*normcdf(-d1) -...

22 vI*exp((tildeMu -tildeSigma .’* gammaLambda)*T)*normcdf(-d2);

23

24 % Function of the Lagrange multiplier

25 y = ((vI -xiI *(1+ thetaR)*P0+xiI*pricePutOptionAuxiliary0)/...

26 expectationZAuxiliary).^(bI -1);

27 end

• Matlab function ”nu”: This function determines the following expectation for a

ξI ∈ [0, ξmax]:

ν(ξI) = E

[
1

bI
max{(y∗I (ξI)Z̃λ∗(T ))

1
bI−1 , ξIP (T )}bI

]
.

y∗I (ξI) is calculated by the Matlab function ”LagrangeMultiplierI”, Z̃λ∗(T ) by the

Matlab function ”TerminalDiscFactor” and P (T ) by the Matlab function ”Payoff-

PutOption”. For the calculation of the expectation, we use the Monte-Carlo Method

and the method of antithetic variables (cf. Chapter 4.4 in Korn [2014]).

1 function [nuXiI] = nu(xiI ,thetaR ,vI,bI,GT,r,mu,sigma ,piCM ,P0,T,WT)

2 % Function nu

3 % For the calculation of the optimal reinsurance startegy

4 % xi_I^ast we maximze the function nu.

5 % WT is a realization of the Brownian motion W at time T

6

7 % Lagrange multiplier of the insurer

8 y = LagrangeMultiplierI(xiI ,thetaR ,vI,bI,GT,r,mu,sigma ,piCM ,P0,T);

9

10 % The arguments of the maximum in the expectation;

11 % We use the idea of antithetic variates to double the variables

12 argument1Positive = (y.’* TerminalDiscFactor(WT,r,mu,sigma ,T,1))

.^(1/(bI -1));

13 argument1Negative = (y.’* TerminalDiscFactor(-WT,r,mu,sigma ,T,1))

.^(1/(bI -1));
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14 argument2Positive = xiI.’* PayoffPutOption(WT,vI,GT,r,mu,sigma ,piCM ,

T);

15 argument2Negative = xiI.’* PayoffPutOption(-WT,vI,GT,r,mu,sigma ,piCM

,T);

16

17 expectationPositive = (1/bI).*max(argument1Positive ,

argument2Positive).^(bI);

18 expectationNegative = (1/bI).*max(argument1Negative ,

argument2Negative).^(bI);

19

20 nuXiI = mean(( expectationPositive+expectationNegative)./2,2);

21 end

• Matlab function ”OptimalInvestmentStrategyI”: With this function, we can deter-

mine the optimal investment strategy of the insurer at time 0. With the input

argument ”typ” we can choose if we want to calculate the portfolio process π∗
I or

the trading strategy ϕ∗
I (typ=”portfolio” or typ=”trading”).

1 function [piI0ptimal] = OptimalInvestmentStrategyI(xiI ,thetaR ,r,mu,

sigma ,vI ,...

2 P0 ,bI,piCM ,GT,T,

typ)

3 % Optimal Portfolio Process of the Insurer

4 % typ can be portfolio process or trading strategy

5

6 arguments

7 xiI; thetaR; r; mu; sigma; vI; P0; bI; piCM; GT; T;

8 typ char {mustBeMember(typ ,{’portfolio ’,’trading ’})} = "

portfolio"

9 end % typ can only be ’trading ’ or ’portfolio ’

10 % ’portfolio ’: output is optimal portfolio process

11 % ’trading ’: output is optimal trading strategy

12

13 lambda = [0;( sigma (2,1)*(mu(1)-r))/sigma (1,1)-mu(2)+r];

14 gammaLambda = inv(sigma)*(mu+lambda -r);

15 tildeMu = piCM*(mu(2)-r);

16 tildeSigma = piCM*sigma (2,:).’;

17

18 % Merton portfolio in the auxiliary market

19 piMertonAuxiliary = inv(sigma*sigma.’)*(mu+lambda -r)/(1-bI);

20

21 % Price of the put option in the optimal auxiliary market

22 d1 = (log(vI/GT)+(r+tildeMu -0.5* norm(tildeSigma)^2- tildeSigma .’*

gammaLambda)*T)/...

23 (piCM*norm(sigma (2,:))*sqrt(T));
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24 d2 = d1+(norm(tildeSigma)^2* sqrt(T))/(piCM*norm(sigma (2,:)));

25 pricePutOptionAuxiliary0 = exp(-r*T)*GT*normcdf(-d1) -...

26 vI*exp((tildeMu -tildeSigma .’* gammaLambda)*T)*

normcdf(-d2);

27 if typ == "portfolio"

28 piI0ptimal = ((vI-xiI *(1+ thetaR)*P0+xiI*pricePutOptionAuxiliary0

)/...

29 (vI-xiI *(1+ thetaR)*P0))*piMertonAuxiliary;

30 else

31 piI0ptimal = (vI-xiI *(1+ thetaR)*P0+xiI*pricePutOptionAuxiliary0)

...

32 *piMertonAuxiliary;

33 end % Gives optimal portfolio process or trading strategy

34

35 end

• Matlab function ”LagrangeMultiplierR”: With this function we can determine the

Lagrange multiplier y∗R of the reinsurer, i.e.,

y∗R =

(
vR + ξ∗I (θR)θRP (0)

E[Z̃(T )
bR

bR−1 ]

)bR−1

.

1 function [y] = LagrangeMultiplierR(xiI ,thetaR ,vR,P0,bR,r,mu,sigma ,T

)

2 % Lagrange multiplier for the reinsurer

3 % Determiniation of the Lagrange multiplier which solves the

4 % budget constraint of the reinsurer

5

6 % Definitions

7 gamma = inv(sigma)*(mu-r);

8 k = bR/(bR -1);

9

10 % Expectation of the discounting factor to the power k in the basic

11 % market

12 expectationZ = exp(-r*k*T -0.5* norm(gamma)^2*(k-k^2)*T);

13

14 % Function Lagrange Multiplier

15 y = ((vR+xiI.* thetaR*P0)/expectationZ).^(bR -1);

16

17 end

• Matlab function ”kappa”: This function determines the following expectation for a
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θR ∈ [0, θmax]:

κ(θR) = E

[
1

bR
(y∗R(θR)Z̃(T ))

bR
bR−1

]
.

y∗R(θR) is calculated by the Matlab function ”LagrangeMultiplierR” and Z̃(T ) by

the Matlab function ”TerminalDiscFactor”. For the calculation of the expectation,

we use the Monte-Carlo Method and the method of antithetic variables (cf. Chapter

4.4 in Korn [2014]).

1 function [kappaThetaR] = kappa(xiI ,thetaR ,vR,P0,bR,r,mu,sigma ,T,WT)

2 % Function kappa on page 87

3 % For the calculation of the optimal safety loading theta_R^ast

4 % we maximize the function kappa.

5 % WT is a realization of the Brownian motion W at time T

6

7 % Lagrange multiplier of the reinsurer

8 y = LagrangeMultiplierR(xiI ,thetaR ,vR,P0,bR,r,mu,sigma ,T);

9

10 % We use the idea of antithetic variates to double the variables

11 ZTPositive = TerminalDiscFactor(WT,r,mu,sigma ,T,0);

12 ZTNegative = TerminalDiscFactor(-WT,r,mu,sigma ,T,0);

13

14 expectationPositive = (y.’* ZTPositive).^(bR/(bR -1))/bR;

15 expectationNegative = (y.’* ZTNegative).^(bR/(bR -1))/bR;

16

17 kappaThetaR = mean(( expectationPositive+expectationNegative)./2 ,2);

18

19 end

• Matlab function ”OptimalInvestmentStrategyR”: With this function, we determine

the optimal investment strategy of the reinsurer at time 0. With the input argument

”typ” we can choose if we want to calculate the portfolio process π∗
R or the trading

strategy ϕ∗
R (typ=”portfolio” or typ=”trading”).

1 function [opInvR] = OptimalInvestmentStrategyR(xiI ,thetaR ,vI,vR ,...

2 GT ,r,mu ,sigma ,piCM ,T,P0 ,bR ,typ)

3 % Optimal Trading Strategy of the Reinsurer

4 arguments

5 xiI; thetaR; vI; vR; GT; r; mu; sigma; piCM; T; P0; bR;

6 typ char {mustBeMember(typ ,{’portfolio ’,’trading ’})} = "

portfolio"

7 end % typ can only be ’trading ’ or ’portfolio ’

8 % ’portfolio ’: output is optimal portfolio process

9 % ’trading ’: output is optimal trading strategy
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10

11 % Merton portfolio in the basic market

12 piM = inv(sigma*sigma.’)*(mu -r)./(1-bR);

13

14 % Replicating strategy of the put option at time 0

15 d = (log(vI/GT)+(r+0.5*( piCM*norm(sigma (2,:)))^2)*T)/...

16 (piCM*norm(sigma (2,:))*sqrt(T));

17 psi0 = piCM*vI*( normcdf(d) -1);

18

19 % Output is a 2-dimensional Vector

20 opInvR = zeros (2,1);

21

22 if typ == "portfolio"

23 opInvR (1,1) = piM(1,1);

24 opInvR (2,1) = piM(2,1)+xiI*psi0/(vR+xiI*thetaR*P0);

25 else

26 opInvR (1,1) = piM(1,1)*(vR+xiI*thetaR*P0);

27 opInvR (2,1) = piM(2,1)*(vR+xiI*thetaR*P0)-xiI*psi0;

28 end % Gives optimal portfolio process or trading strategy

29

30 end

• Matlab function ”stackelbergEquilibrium”: This function is the algorithm from Sec-

tion 4.5.3. We use it to determine the Stackelberg equilibrium at time 0, i.e.,

(π∗
R(0), θ

∗
R, π

∗
I (0|θ∗R), ξ∗I (θ∗R)).

1 function [xiIOptimal , xiMaxOptimal , investmentIOptimal ,

thetaROptimal ,investmentROptimal] ...

2 = stackelbergEquilibrium(xiMax ,stepSizeXi ,thetaMax ,

stepSizeTheta ,vI ,vR ,...

3 bI,bR,GT,r,mu1 ,mu2 ,sigma1 ,sigma2 ,rho ,

piCM ,s1,s2,T,N,typ)

4 % Stackelberg equilibrium to the Stackelberg game in Chapter 4

5 % Compute the Stackleberg equilibrium which consists of the

6 % optimal reinsurance strategy of the insurer

7 % xi_I^ast(theta_R^ast), optimal investment strategy of the

8 % insurer pi_I^ast(theta_R^ast) or phi_I^ast(theta_R^ast),

9 % optimal safety loading of the reinsurer theta_R^ast , and the

10 % optimal investment strategy of the reinsurer pi_R^ast or

11 % phi_R^ast. The second output is the maximal amount of xi_I ,

12 % i.e., we can compare it with the optimal reinsurance strategy

13 % if we get the maximum value or less than the maximum.

14 % With the input -argument "typ" we can choose if we want the
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15 % optimal portfolio process of optimal trading strategy of

16 % the insurer and reinsurer.

17 % typ == "portfolio" or "trading"

18

19 % Additional parameters

20 thetaR = 0: stepSizeTheta:thetaMax;

21 tildeMu = piCM*(mu2 -r);

22 tildeSigma = piCM*sigma2 *[rho;sqrt(1-rho^2)];

23 mu = [mu1;mu2];

24 sigma = [sigma1 ,0; sigma2*rho ,sigma2*sqrt(1-rho^2)];

25 gamma = inv(sigma)*(mu-r);

26 lambda = [0;( sigma2*rho*(mu1 -r))/sigma1 -mu2+r];

27 gammaLambda = inv(sigma)*(mu+lambda -r);

28 k = bI/(bI -1);

29

30 % Price of the put option in the basic market

31 d1 = (log(vI/GT)+(r+tildeMu -0.5* norm(tildeSigma)^2-...

32 tildeSigma .’*gamma)*T)/(piCM*sigma2*sqrt(T));

33 d2 = d1+(norm(tildeSigma)^2* sqrt(T))/(piCM*sigma2);

34 P0 = exp(-r*T)*GT*normcdf(-d1) -...

35 vI*exp((tildeMu -tildeSigma .’*gamma)*T)*normcdf(-d2);

36

37 % N independent normal distributed random variables W1 and W2

38 WT = normrnd (0,1,2,N)*sqrt(T);

39

40 if xiMax == ’No upper bound’

41 xiIOptimalGivenTheta = [];

42 xiMaxThetaR = []; % If we have no upper bound on xiMax ,

43 % we will use the sequence in line 45

44 parfor nTheta =1: size(thetaR ,2)

45 xiI = 0: stepSizeXi :(vI /((1+ thetaR(nTheta))*P0));

46 ExpectationInsurer = nu(xiI ,thetaR(nTheta),vI,bI,GT ,...

47 r,mu ,sigma ,piCM ,P0 ,T,WT);

48 [maximalValueInsurer ,maximalIndexInsurer] = ...

49 max(ExpectationInsurer);

50 xiMaxThetaR(nTheta) = vI/((1+ thetaR(nTheta))*P0);

51 xiIOptimalGivenTheta(nTheta) = xiI(maximalIndexInsurer);

52 end

53

54 ExpectationReinsurer = kappa(xiIOptimalGivenTheta ,thetaR ,...

55 vR ,P0 ,bR,r,mu,sigma ,T,WT);

56

57 [maximalValueReinsurer ,maximalIndexReinsurer] = ...

58 max(ExpectationReinsurer);

59 thetaROptimal = thetaR(maximalIndexReinsurer);
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60 xiIOptimal = xiIOptimalGivenTheta(maximalIndexReinsurer);

61 xiMaxOptimal = xiMaxThetaR(maximalIndexReinsurer);

62 else

63 xiIOptimalGivenTheta = [];

64 % We will use this sequence , if we have an upper bound of xiMax

65 xiI = 0: stepSizeXi:xiMax;

66 parfor nTheta =1: size(thetaR ,2)

67 ExpectationInsurer = nu(xiI ,thetaR(nTheta),vI,bI,GT ,...

68 r,mu ,sigma ,piCM ,P0 ,T,WT);

69 [maximalValueInsurer ,maximalIndexInsurer] = ...

70 max(ExpectationInsurer);

71 xiIOptimalGivenTheta(nTheta) = xiI(maximalIndexInsurer);

72 end

73

74 ExpectationReinsurer = kappa(xiIOptimalGivenTheta ,thetaR ,...

75 vR ,P0 ,bR,r,mu,sigma ,T,WT);

76

77 [maximalValueReinsurer ,maximalIndexReinsurer] = ...

78 max(ExpectationReinsurer);

79 thetaROptimal = thetaR(maximalIndexReinsurer);

80 xiIOptimal = xiIOptimalGivenTheta(maximalIndexReinsurer);

81 xiMaxOptimal = xiMax;

82 end % Do we assume that xi^max has an upper bound?

83

84 % Optimal investment strategy of the insurer

85 investmentIOptimal = OptimalInvestmentStrategyI(xiIOptimal ,...

86 thetaROptimal ,r,mu ,sigma ,vI ,P0 ,bI ,piCM ,GT ,T,typ);

87

88 % Optimal trading strategy reinsurer

89 investmentROptimal = OptimalInvestmentStrategyR(xiIOptimal ,...

90 thetaROptimal ,vI ,vR ,GT ,r,mu ,sigma ,piCM ,T,P0 ,bR ,typ);

91

92

93 end

For the sensitivity analysis, we calculate the Stackelberg equilibrium with the Monte Carlo

Method for different values of bI , bR, r, T and GT . We check the outcome of the method

with the explicit formula for θ∗R (cf. (4.25)).

1 %% Choosen paremeters

2 r = 0.0102;

3 mu1 = 0.1752;

4 mu2 = 0.1237;

5 sigma1 = 0.2366;

6 sigma2 = 0.2198;
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7 rho = 0.8012;

8 piCM = 0.2947;

9 s1 = 1;

10 s2 = 1;

11 GT = 100;

12 T = 10;

13 vI = 100;

14 vR = 300;

15 thetaMax = 0.5;

16 bI = -9;

17 bR = -9;

18 N = 10000;

19 stepSizeXi = 0.01;

20 stepSizeTheta = 0.0001;

21 xiMax = 1.5;

22 typ = "portfolio";

23

24 %% Stackelberg equilibrium

25 rng (1);

26 [xiIOptimal , xiMaxOptimal , investmentIOptimal , thetaROptimal ,...

27 investmentROptimal] = stackelbergEquilibrium(xiMax ,...

28 stepSizeXi ,thetaMax ,stepSizeTheta ,vI,vR,bI,bR,GT,r,mu1 ,...

29 mu2 ,sigma1 ,sigma2 ,rho ,piCM ,s1 ,s2 ,T,N,typ);

30

31 % To check that the calculation of the Monte Carlo Simulation

32 % is correct , we calculate the explicit formula of the

33 % optimal safety loading of the reinsurer

34

35 % Additional parameters

36 tildeMu = piCM*(mu2 -r);

37 tildeSigma = piCM*sigma2 *[rho;sqrt(1-rho^2)];

38 mu = [mu1;mu2];

39 sigma = [sigma1 ,0; sigma2*rho ,sigma2*sqrt(1-rho^2)];

40 gamma = inv(sigma)*(mu-r);

41 lambda = [0;( sigma2*rho*(mu1 -r))/sigma1 -mu2+r];

42 gammaLambda = inv(sigma)*(mu+lambda -r);

43

44 % Put price basic market

45 d1 = (log(vI/GT)+(r+tildeMu -0.5* norm(tildeSigma)^2-...

46 tildeSigma .’*gamma).*T)./( piCM.* sigma2 .*sqrt(T));

47 d2 = d1+(norm(tildeSigma)^2.* sqrt(T))./( piCM*sigma2);

48 P0 = exp(-r.*T).*GT.* normcdf(-d1) -...

49 vI.*exp((tildeMu -tildeSigma .’*gamma).*T).* normcdf(-d2);

50

51 % Put price auxiliary market
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52 d1 = (log(vI/GT)+(r+tildeMu -0.5* norm(tildeSigma)^2-...

53 tildeSigma .’* gammaLambda).*T)./( piCM*norm(sigma (2,:)).*sqrt(T));

54 d2 = d1+(norm(tildeSigma)^2.* sqrt(T))./( piCM*norm(sigma (2,:)));

55 PA0 = exp(-r.*T).*GT.* normcdf(-d1) -...

56 vI*exp((tildeMu -tildeSigma .’* gammaLambda).*T).* normcdf(-d2);

57

58 thetaROptimalCheck = min((PA0 -P0)/P0,thetaMax);

59

60 %% Plot: Dependence of xi_I^ast on theta_R

61 rng (1)

62 % Additional parameters

63 thetaR = 0: stepSizeTheta:thetaMax;

64 tildeMu = piCM*(mu2 -r);

65 tildeSigma = piCM*sigma2 *[rho;sqrt(1-rho^2)];

66 mu = [mu1;mu2];

67 sigma = [sigma1 ,0; sigma2*rho ,sigma2*sqrt(1-rho^2)];

68 gamma = inv(sigma)*(mu-r);

69 lambda = [0;( sigma2*rho*(mu1 -r))/sigma1 -mu2+r];

70 gammaLambda = inv(sigma)*(mu+lambda -r);

71 k = bI/(bI -1);

72

73 % Price of the put option in the basic market

74 d1 = (log(vI/GT)+(r+tildeMu -0.5* norm(tildeSigma)^2-...

75 tildeSigma .’*gamma)*T)/(piCM*sigma2*sqrt(T));

76 d2 = d1+(norm(tildeSigma)^2* sqrt(T))/(piCM*sigma2);

77 P0 = exp(-r*T)*GT*normcdf(-d1) -...

78 vI*exp((tildeMu -tildeSigma .’*gamma)*T)*normcdf(-d2);

79

80 % N independent normal distributed random variables W1 and W2

81 WT = normrnd (0,1,2,N)*sqrt(T);

82

83 xiIOptimalGivenTheta = [];

84 xiI = 0: stepSizeXi:xiMax;

85 parfor nTheta =1: size(thetaR ,2)

86 ExpectationInsurer = nu(xiI ,thetaR(nTheta),vI,bI,GT ,...

87 r,mu ,sigma ,piCM ,P0 ,T,WT);

88 [maximalValueInsurer ,maximalIndexInsurer] = ...

89 max(ExpectationInsurer);

90 xiIOptimalGivenTheta(nTheta) = xiI(maximalIndexInsurer);

91 end

92

93 plot(thetaR ,xiIOptimalGivenTheta ,’.r’);

94 legend(’\xi_I^\ast(\ theta_R)’);

95 xlabel(’\theta_R ’);

96
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97

98 %% Analysis of put option price in auxiliary and basic market

99 % The analysis is w.r.t. the time horizon T

100 T = 1:1:20;

101

102 % Additional parameters

103 tildeMu = piCM*(mu2 -r);

104 tildeSigma = piCM*sigma2 *[rho;sqrt(1-rho^2)];

105 mu = [mu1;mu2];

106 sigma = [sigma1 ,0; sigma2*rho ,sigma2*sqrt(1-rho^2)];

107 gamma = inv(sigma)*(mu-r);

108 lambda = [0;( sigma2*rho*(mu1 -r))/sigma1 -mu2+r];

109 gammaLambda = inv(sigma)*(mu+lambda -r);

110

111 % Put price basic market

112 d1 = (log(vI/GT)+(r+tildeMu -0.5* norm(tildeSigma)^2-...

113 tildeSigma .’*gamma).*T)./( piCM.* sigma2 .*sqrt(T));

114 d2 = d1+(norm(tildeSigma)^2.* sqrt(T))./( piCM*sigma2);

115 P0 = exp(-r.*T).*GT.* normcdf(-d1) -...

116 vI.*exp((tildeMu -tildeSigma .’*gamma).*T).* normcdf(-d2);

117

118 % Put price auxiliary market

119 d1 = (log(vI/GT)+(r+tildeMu -0.5* norm(tildeSigma)^2-...

120 tildeSigma .’* gammaLambda).*T)./( piCM*norm(sigma (2,:)).*sqrt(T));

121 d2 = d1+(norm(tildeSigma)^2.* sqrt(T))./( piCM*norm(sigma (2,:)));

122 PA0 = exp(-r.*T).*GT.* normcdf(-d1) -...

123 vI*exp((tildeMu -tildeSigma .’* gammaLambda).*T).* normcdf(-d2);

124

125 % plot of the put prices w.r.t. T

126 p = plot(T,P0,T,PA0 ,’LineWidth ’ ,2);

127 p(1).Color = [0.4940 0.1840 0.5560];

128 p(2).Color = [0.4660 0.6740 0.1880];

129 legend(’Put opion price in the basic market ’ ,...

130 ’Put opion price in the optimal auxiliary market ’);

131 ylim ([2 ,5.5]);

132 xlabel(’Time horizon T’);

133 xlim ([1 ,20]);

134 xticks ([1;5;10;15;20]);

For the plots in the sensitivity analysis, we used the following script:

1 %% Relative portfolio process reinsurer w.r.t. risk aversion

2 piR1 = [66.96;44.64;33.48;26.78;22.32];

3 piR2 = [ -14.79; -11.2; -9.41; -8.33; -7.61];

4 RRA =[5;7.5;10;12.5;15];

5 thetaROptimal = [20.86;20.86;20.86;20.86;20.86];
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6

7 % Plot

8 yyaxis left

9 p = plot(RRA ,100-piR1 -piR2 ,’-’,RRA ,piR1 ,’-’,RRA ,piR2 ,’-’,’LineWidth ’ ,2);

10 p(1).Color = [.2 .6 .5];

11 p(2).Color = [0 0.4470 0.7410];

12 p(3).Color = [0.6350 0.0780 0.1840];

13 ylim ([ -20 ,100]);

14 ylabel ({’Optimal relative portfolio process at time 0’;’of the reinsurer

(%)’});

15 yyaxis right

16 q = plot(RRA ,thetaROptimal ,’--’,’LineWidth ’ ,2);

17 ylim ([0 ,40]);

18 ylabel ({’Optimal safety loading of the reinsurer (%)’});

19

20 legend(’Risk -free investment ’,’Risky investment S_1’,’Risky investment

S_2’ ,...

21 ’\theta_R ^\ast’,’Location ’,’northwest ’,’NumColumns ’ ,4);

22 xlabel(’Relative risk aversion of the reinsurer (RRA_R=1-b_R)’);

23 xticks(RRA);

24

25 %% Relative portfolio process insurer w.r.t. risk aversion

26 piI1 = [63.38;42.25;31.69;25.35;21.13];

27 RRA =[5;7.5;10;12.5;15];

28 xiIOptimal = [1.5;1.5;1.5;1.5;1.5];

29

30 % Plot

31 yyaxis left

32 p = plot(RRA ,100-piI1 ,’-’,RRA ,piI1 ,’-’,’LineWidth ’ ,2);

33 ylabel ({’Optimal relative portfolio process at time 0’;’of the insurer

(%)’});

34 ylim ([0 ,80]);

35 p(1).Color = [.2 .6 .5];

36 p(2).Color = [0 0.4470 0.7410];

37 yyaxis right

38 q = plot(RRA ,xiIOptimal ,’--’,’LineWidth ’ ,2);

39 ylim ([0 ,3]);

40 ylabel(’Optimal reinsurance strategy of the insurer ’);

41

42 legend(’Risk -free investment ’,’Risky investment S_1’,’\xi_I^\ast(\

theta_R ^\ast)’ ,...

43 ’Location ’,’northwest ’,’NumColumns ’ ,3);

44 xlabel(’Relative risk aversion of the insurer (RRA_I=1-b_I)’);

45 xticks(RRA);

46
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47

48 %% Relative portfolio process reinsurer w.r.t. interest rate

49 piR1 = [35.55;34.87;34.18;33.49;32.81];

50 piR2 = [ -12.82; -11.94; -10.61; -9.42; -8.89];

51 r = [-2,-1,0,1,2];

52 thetaROptimal = [1.64;5.4;11.46;20.63;34.09];

53

54 % Plot

55 yyaxis left

56 p = plot(r,100-piR1 -piR2 ,’-’,r,piR1 ,’-’,r,piR2 ,’-’,’LineWidth ’ ,2);

57 p(1).Color = [.2 .6 .5];

58 p(2).Color = [0 0.4470 0.7410];

59 p(3).Color = [0.6350 0.0780 0.1840];

60 ylim ([ -20 ,100]);

61 ylabel ({’Optimal relative portfolio process at time 0’;’of the reinsurer

(%)’});

62 yyaxis right

63 q = plot(r,thetaROptimal ,’--’,’LineWidth ’ ,2);

64 ylim ([0 ,40]);

65 ylabel ({’Optimal safety loading of the reinsurer (%)’});

66

67 legend(’Risk -free investment ’,’Risky investment S_1’,’Risky investment

S_2’ ,...

68 ’\theta_R ^\ast’,’Location ’,’northwest ’,’NumColumns ’ ,4);

69 xlabel(’Interest rate r (%)’);

70 xticks(r);

71

72

73 %% Relative portfolio process insurer w.r.t. interest rate

74 piI1 = [55.11;43.23;36.24;31.76;28.65];

75 r = [-2,-1,0,1,2];

76 xiIOptimal = [1.5;1.5;1.5;1.5;1.5];

77

78 % Plot

79 yyaxis left

80 p = plot(r,100-piI1 ,’-’,r,piI1 ,’-’,’LineWidth ’ ,2);

81 ylabel ({’Optimal relative portfolio process at time 0’;’of the insurer

(%)’});

82 ylim ([0 ,80]);

83 p(1).Color = [.2 .6 .5];

84 p(2).Color = [0 0.4470 0.7410];

85 yyaxis right

86 q = plot(r,xiIOptimal ,’--’,’LineWidth ’ ,2);

87 ylim ([0 ,3]);

88 ylabel(’Optimal reinsurance strategy of the insurer ’);
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89

90 legend(’Risk -free investment ’,’Risky investment S_1’,’\xi_I^\ast(\

theta_R ^\ast)’ ,...

91 ’Location ’,’northwest ’,’NumColumns ’ ,3);

92 xlabel(’Interest rate r (%)’);

93 xticks(r);

94

95

96 %% Relative portfolio process reinsurer w.r.t. time horizon

97 piR1 = [33.48;33.48;33.48;33.48;33.48];

98 piR2 = [ -11.64; -10.32; -9.41; -8.77; -8.28];

99 T = [1 ,5 ,10 ,15 ,20];

100 thetaROptimal = [5.66;13.79;20.86;26.96;32.62];

101

102 % Plot

103 yyaxis left

104 p = plot(T,100-piR1 -piR2 ,’-’,T,piR1 ,’-’,T,piR2 ,’-’,’LineWidth ’ ,2);

105 p(1).Color = [.2 .6 .5];

106 p(2).Color = [0 0.4470 0.7410];

107 p(3).Color = [0.6350 0.0780 0.1840];

108 ylim ([ -20 ,100]);

109 ylabel ({’Optimal relative portfolio process at time 0’;’of the reinsurer

(%)’});

110 yyaxis right

111 q = plot(T,thetaROptimal ,’--’,’LineWidth ’ ,2);

112 ylim ([0 ,40]);

113 ylabel ({’Optimal safety loading of the reinsurer (%)’});

114

115 legend(’Risk -free investment ’,’Risky investment S_1’,’Risky investment

S_2’ ,...

116 ’\theta_R ^\ast’,’Location ’,’northwest ’,’NumColumns ’ ,4);

117 xlabel(’Time horizon T’);

118 xticks(T);

119 xlim ([1 ,20]);

120

121

122 %% Relative portfolio process insurer w.r.t. time horizon

123 piI1 = [30.49;31.34;31.69;31.8;31.81];

124 T = [1 ,5 ,10 ,15 ,20];

125 xiIOptimal = [1.5;1.5;1.5;1.5;1.5];

126

127 % Plot

128 yyaxis left

129 p = plot(T,100-piI1 ,’-’,T,piI1 ,’-’,’LineWidth ’ ,2);

130 ylabel ({’Optimal relative portfolio process at time 0’;’of the insurer
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(%)’});

131 ylim ([0 ,80]);

132 p(1).Color = [.2 .6 .5];

133 p(2).Color = [0 0.4470 0.7410];

134 yyaxis right

135 q = plot(T,xiIOptimal ,’--’,’LineWidth ’ ,2);

136 ylim ([0 ,3]);

137 ylabel(’Optimal reinsurance strategy of the insurer ’);

138

139 legend(’Risk -free investment ’,’Risky investment S_1’,’\xi_I^\ast(\

theta_R ^\ast)’ ,...

140 ’Location ’,’northwest ’,’NumColumns ’ ,3);

141 xlabel(’Time horizon T’);

142 xticks(T);

143 xlim ([1 ,20]);

144

145

146

147 %% Alternative Plots: Guarantee Reinsurer

148 piR1 = [33.48;33.48;33.48;33.48;33.48;33.48];

149 piR2 = [ -5.4; -5.52; -6.05; -7.33; -9.41; -11.92];

150 piR = [100-piR1 -piR2 ,piR1 ,piR2];

151 GT = [60;70;80;90;100;110];

152 thetaROptimal = [50;43.96;34.16;26.65;20.86;16.4];

153

154 yyaxis left

155 p = plot(GT ,100-piR1 -piR2 ,’-’,GT,piR1 ,’-’,GT,piR2 ,’-’ ,...

156 ’LineWidth ’ ,2);

157 p(1).Color = [.2 .6 .5];

158 p(2).Color = [0 0.4470 0.7410];

159 p(3).Color = [0.6350 0.0780 0.1840];

160 yyaxis right

161 q = plot(GT,thetaROptimal ,’--’,’LineWidth ’ ,2);

162 xlabel(’Guarantee G_T’);

163 yyaxis left

164 ylabel ({’Optimal relative portfolio process at time 0’;’of the reinsurer

(%)’});

165 ylim ([ -20 ,130]);

166 yyaxis right

167 ylabel ({’Optimal safety loading of the reinsurer (%)’});

168 ylim ([0 ,60]);

169 xticks(GT);

170 legend(’Risk -free investment ’,’Risky investment S_1’,’Risky investment

S_2’ ,...

171 ’\theta_R ^\ast’,’Location ’,’northwest ’,’NumColumns ’ ,4);
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172

173

174 %% Alternative Plots: Guarantee Insurer

175 piI1 = [29.48;29.52;29.72;30.34;31.69;34.12];

176 piI = [100-piI1 ,piI1];

177 GT = [60 ,70 ,80 ,90 ,100 ,110];

178 xiIOptimal = [1.5;1.5;1.5;1.5;1.5;1.5];

179

180 % Plot

181 yyaxis left

182 p = plot(GT ,100-piI1 ,’-’,GT,piI1 ,’-’,’LineWidth ’ ,2);

183 ylim ([0 ,80]);

184 p(1).Color = [.2 .6 .5];

185 p(2).Color = [0 0.4470 0.7410];

186 ylabel ({’Optimal relative portfolio process at time 0’;’of the insurer

(%)’});

187 yyaxis right

188 q = plot(GT,xiIOptimal ,’--’,’LineWidth ’ ,2);

189 ylim ([0 ,3]);

190 ylabel ({’Optimal reinsurance strategy of the insurer ’});

191

192 legend(’Risk -free investment ’,’Risky investment S_1’,’\xi_I^\ast(\

theta_R ^\ast)’ ,...

193 ’Location ’,’northwest ’,’NumColumns ’ ,4);

194 xlim ([60 ,110]);

195 xlabel(’Guarantee G_T’);

196 xticks(GT);
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B.2 Sensitivity Analysis

This section contains the values to the numerical study in Section 4.5.3.

RRAR

RRAI 5 7.5 10 12.5 15

5
θ∗R 20.86% 20.86% 20.86% 20.86% 20.86%

ξ∗I (θ
∗
R) 1.5 1.5 1.5 1.5 1.5

7.5
θ∗R 20.86% 20.86% 20.86% 20.86% 20.86%

ξ∗I (θ
∗
R) 1.5 1.5 1.5 1.5 1.5

10
θ∗R 20.86% 20.86% 20.86% 20.86% 20.86%

ξ∗I (θ
∗
R) 1.5 1.5 1.5 1.5 1.5

12.5
θ∗R 20.86% 20.86% 20.86% 20.86% 20.86%

ξ∗I (θ
∗
R) 1.5 1.5 1.5 1.5 1.5

15
θ∗R 20.86% 20.86% 20.86% 20.86% 20.86%

ξ∗I (θ
∗
R) 1.5 1.5 1.5 1.5 1.5

Table B.1: Sensitivity of θ∗R and ξ∗I w.r.t. RRAR and RRAI

RRAR

RRAI 5 7.5 10 12.5 15

5
π∗
R(0)

(
66.96%
−14.79%

) (
66.96%
−14.79%

) (
66.96%
−14.79%

) (
66.96%
−14.79%

) (
66.96%
−14.79%

)
π∗
I (0)

(
63.38%
0%

) (
42.25%
0%

) (
31.69%
0%

) (
25.35%
0%

) (
21.13%
0%

)

7.5
π∗
R(0)

(
44.64%
−11.20%

) (
44.64%
−11.20%

) (
44.64%
−11.20%

) (
44.64%
−11.20%

) (
44.64%
−11.20%

)
π∗
I (0)

(
63.38%
0%

) (
42.25%
0%

) (
31.69%
0%

) (
25.35%
0%

) (
21.13%
0%

)

10
π∗
R(0)

(
33.48%
−9.41%

) (
33.48%
−9.41%

) (
33.48%
−9.41%

) (
33.48%
−9.41%

) (
33.48%
−9.41%

)
π∗
I (0)

(
63.38%
0%

) (
42.25%
0%

) (
31.69%
0%

) (
25.35%
0%

) (
21.13%
0%

)

12.5
π∗
R(0)

(
26.78%
−8.33%

) (
26.78%
−8.33%

) (
26.78%
−8.33%

) (
26.78%
−8.33%

) (
26.78%
−8.33%

)
π∗
I (0)

(
63.38%
0%

) (
42.25%
0%

) (
31.69%
0%

) (
25.35%
0%

) (
21.13%
0%

)

15
π∗
R(0)

(
22.32%
−7.61%

) (
22.32%
−7.61%

) (
22.32%
−7.61%

) (
22.32%
−7.61%

) (
22.32%
−7.61%

)
π∗
I (0)

(
63.38%
0%

) (
42.25%
0%

) (
31.69%
0%

) (
25.35%
0%

) (
21.13%
0%

)

Table B.2: Sensitivity of π∗
R(0) and π∗

I (0) w.r.t. RRAR and RRAI
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r -2% -1% 0% 1% 2%
θ∗R 1.64% 5.40% 11.46% 20.63% 34.09%

ξ∗I (θ
∗
R) 1.5 1.5 1.5 1.5 1.5

π∗
R(0)

(
35.55%
−12.82%

) (
34.87%
−11.94%

) (
34.18%
−10.61%

) (
33.49%
−9.42%

) (
32.81%
−8.89%

)
π∗
I (0)

(
55.11%
0%

) (
43.23%
0%

) (
36.24%
0%

) (
31.76%
0%

) (
28.65%
0%

)
Table B.3: Sensitivity of the Stackelberg equilibrium w.r.t. r

T 1% 5% 10% 15% 20%
θ∗R 5.66% 13.79% 20.86% 26.96% 32.62%

ξ∗I (θ
∗
R) 1.5 1.5 1.5 1.5 1.5

π∗
R(0)

(
33.48%
−11.64%

) (
33.48%
−10.32%

) (
33.48%
−9.41%

) (
33.48%
−8.77%

) (
33.48%
−8.28%

)
π∗
I (0)

(
30.49%
0%

) (
31.34%
0%

) (
31.69%
0%

) (
31.80%
0%

) (
31.81%
0%

)
Table B.4: Sensitivity of the Stackelberg equilibrium w.r.t. T

GT 60% 70% 80% 90% 100% 110%
θ∗R 50% 43.96% 34.18% 26.65% 20.86% 16.40%

ξ∗I (θ
∗
R) 1.5 1.5 1.5 1.5 1.5 1.5

π∗
R(0)

(
33.48%
−5.40%

) (
33.48%
−5.52%

) (
33.48%
−6.05%

) (
33.48%
−7.33%

) (
33.48%
−9.41%

) (
33.48%
−11.92%

)
π∗
I (0)

(
29.48%
0%

) (
29.52%
0%

) (
29.72%
0%

) (
30.34%
0%

) (
31.69%
0%

) (
34.12%
0%

)
Table B.5: Sensitivity of the Stackelberg equilibrium w.r.t. GT
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