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Introduction

The introduction of the Solvency II directive has changed completely the way according to

which insurance companies are managed. A great role is played by the measurement of the

insurer’s risk exposure, through the computation of a capital requirement. Therefore, in

order to improve its solvency position and meet the requirements, the undertaking can put

in place some risk mitigation solutions, among which there are reinsurance treaties.

An exhaustive explanation about alternative reinsurance contracts is provided in Chapter

1. Great attention is paid to the main proportional and non-proportional treaties, highlight-

ing their differences, advantages and drawbacks.

A great role in the choice of the optimal cover is played by the reinsurance premiums

since they influence the net profitability of the direct insurer. Therefore, reinsurance pricing

process has been described in Chapter 2, separately for proportional and non-proportional

treaties.

In Chapter 3, the three-pillars structure characterizing the Solvency II framework has

been briefly depicted. The main focus is on the quantitative requirements, in particular on

the risk modules most affected by the introduction of a reinsurance treaty.

By carrying out the business in more than one segment, the insurance company can be

interested in underwriting a multi-risk product. Therefore, in Chapter 4, multi-line contracts

are introduced, as a more efficient alternative to simple per-peril contracts.

Chapter 5 describes the mathematical tools which can be applied inside an Internal

model for properly fitting the dependence structure among different lines of business. Special

attention is paid to copula functions.

In Chapter 6, it is defined the Internal Model which will be used for assessing the premium

risk capital requirement and the profitability of the direct insurer.

Finally, in Chapter 7, a case study has been carried out providing a risk-profitability

analysis of different reinsurance treaties. The typical trade-off between underwriting risk

and return on equity for the traditional mono-line reinsurance treaties is firstly extended to

a multi-line policy and secondly, by including the counterparty default risk.
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1 Reinsurance

1.1 What is reinsurance and why reinsurance

Reinsurance can be easily defined as the insurance for the insurer. It is the transfer of an

insurance risk from one party to another one through a contractual agreement under which

one party, namely the reinsurer, agrees, in return for a reinsurance premium, to indemnify

another party (the cedent, the primary insurer) for some or all the financial consequences

of certain loss exposure covered by the cedent’s policies. The duration of the treaty is

fixed (typically one year). Notice that reinsurance is something different with respect to

coinsurance. Indeed, in coinsurance, the policyholder underwrites a contract with a pool of

insurance companies. The risk and the premium, paid by the policyholder, are split among

the different companies according to percentages fixed in the agreement. Conversely, if an

insurance companies underwrites a reinsurance treaty, there is not a direct link between the

policyholder and the reinsurer. The insurer will remain responsible for the whole loss and

it has the right to recover from the reinsurer the part of loss the reinsurer is responsible

for. Before describing the main types and characteristics of reinsurance treaties, it is quite

relevant to highlight why an insurance company should be interested in buying reinsurance:

• Increase the insurer’s underwriting capacity.

If an insurance company cedes part of its underwriting risk, it is able, given the same

available capital, to underwrite more policies of the same kind which could be desirable

for different reasons like market share targets.

• Stabilize business result and loss experience.

The insurer’s results fluctuate over time. A reinsurance contract enables the cedent to

reduce the volatility of its financial result, since in good times the insurer’s results get

smaller due to the ceded premium, while in bad years the reinsurer pays part of the

claims.

• Provide catastrophe protection.

A catastrophe event usually involves several customers of the primary insurer for a

relatively small area. The insurer could have to pay a lot of claims brought by a single

event.

• Increase the insurer’s solvency through a reduction of the capital requirement.

Under the Solvency II framework, insurance companies must have an adequate capital
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in the relation to their risk exposure in order to protect beneficiaries and policyholder.

Since reinsurance is a way to reduce the probability to suffer losses, with a reinsur-

ance contract, the insurer is able to reduce the capital requirement, due to the lower

aggregated risk.

• Access benefits from larger diversification pools.

Typically, insurance company’s business is restricted to a local area and extending

it to other markets for getting a larger diversification benefit could be costly and

inefficient, in particular for very risky contracts. On the other hand, reinsurers carry

out their business at an international level, having theoretically more possibilities of

diversification. As a result, the amount of capital needed by the reinsurer for some

risks is lower than the insurer’s one due to the larger diversification.

• Access to reinsurer’s expertise and services.

Often, reinsurer may share its expertise and data on the respective risks with the

cedent. In some situations, an insurance company could not have enough data points

or competences in order to analyse the risks and their tails. It is often cheaper to pass

on those risk to an entity with much more experiences, like a reinsurer, than dealing

with them through other means.

1.2 Distinction between obligatory treaties and facultative treaties

It is relevant to distinguish between obligatory treaties and facultative treaties. In obligatory

treaties, a binding agreement is applied to all risks of a specified risk class. Once the Line

of Business (LoB) or the portfolio covered by the reinsurance treaty has been established

by the two parties, the insurance company is forced to cede all the risks included in the

LoB or in the portfolio, whereas the reinsurance company is forced to accept all of them.

Usually, an obligatory treaty aims at reducing the problem of asymmetric information. From

the reinsurer’s point of view, it avoids that the insurer makes an arbitrary selection of the

contracts to be ceded, ceding only the worst risks. On the other side, it allows the insurer

to cede very risky contracts. Typically, obligatory treaties are mainly for portfolios and

for Lines of Business. Since the insurance contracts are not all written at the beginning of

the year like a reinsurance treaty, it is necessary to determine a cession basis, which is the

criterion defining the way in which risks are ceded by the insurer to the reinsurer.
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The typical cession bases are:

• Risk Attaching During.

The reinsurer agrees to indemnify the primary insurer for losses from policies issued

within the reinsurance period, irrespective of the loss’s occurrence date and of the

time at which the loss is reported. It is called risk attachment since risks underwritten

during a certain reinsurance period attach to that reinsurance period.

• Losses Occurring During.

The reinsurer agrees to indemnify the primary insurer for losses occurring during the

period of reinsurance regardless the issue date of the original policy and the time at

which the loss is reported. Notice that the loss occurrence date refers to the loss

occurrence date for the insurer and not for the policyholder.

• Claims Made Basis/Loss Discovered Basis.

All the losses reported during the (reinsurance) policy period will be recovered, regard-

less the occurrence data and the policy inception date. The reinsurer could introduce

a retroactive date in order to make more practical and reasonable the time period in

which losses can be picked by the contract and to limit the applicability of the contract

to losses occurred after a specific date.

The typical cession basis used in practice is the Loss Occurrence due to its simplicity. Some

problems could arise if the reinsurance program on Loss Occurrence basis is not renewed

because losses for policies in-force occurring after the termination date would not be covered.

This shortfall can be overcome by introducing a run-off clause, according to which the

reinsurer remains liable for claims occurring after the termination of the contract.

Conversely in facultative treaty, both parties have the option to decline or accept a

particular risk. Being highly customized, facultative treaties are usually applied to big risks,

to emerging and new risks or to risks excluded from the obligatory treaties. Both parties

have to analyse specifically the risk prior to commitment, implying no ex-ante guarantee of

cession or coverage. If the reinsurer believes that a particular exposure generated by the

primary insurer is inconsistent with its own risk tolerance, it can decline to write the cover.

On the other hand, if an insurer holds an attractive and profitable risk, it may choose to

retain the entire exposure. In order to cede a risk under facultative treaty, the cedent has

to submit to the reinsurer some information needed for assessing the quality of the ceded

business. It typically regards the original policyholder, the original wording of the policy

and the loss history, quite relevant for determining the performance of the ceded business in
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the past years and the expectation in the future. The obligatory treaty process is efficient

and economical, being less expensive on a “per risk” basis than facultative cover, but it also

reduces a certain amount of the reinsurer’s underwriting power since it is accepting all the

risks without investigating them one by one. As a result, it is possible to write also contracts

which are facultative for one party and obligatory for the other one. The choice of the kind

of the reinsurance treaty depends also on the bargaining power of the insurance company

and of the reinsurer.

Before explaining the characteristics of the different reinsurance treaties, it is necessary

to briefly specify the notation used in the following paragraphs. Denote with X̃t, the total

claim amount at time t, with Z̃i the severity of the i-th claim occurred in the year t. If the

insurance company underwrites a reinsurance contract is possible to rewrite the aggregate

claim amount as:

X̃t = D̃t + R̃t

where D̃t represents the retained amount by the insurance company and R̃t is the amount

paid by the reinsurer.

1.3 Proportional Reinsurance and Non-proportional Reinsurance

A typical distinction in reinsurance treaties is between proportional treaties and non propor-

tional treaties. In proportional treaties, the primary insurer will cede a proportion, defined

at the issue of the reinsurance treaty (ex-ante), of each risk to the reinsurer and it will

pay a reinsurance premium equal to the same proportion of the overall premium charged to

the policyholder. The methodology for assessing the proportion of risk to be ceded to the

reinsurer depends on the type of contract, respectively Quota Share or Surplus. Conversely,

in non-proportional treaties, it is not fixed in advance the ceded proportion of losses and

there is not a direct link between the reinsurance premiums and the ceded proportion of

losses. It is fixed a priority on the claim size in case of an Excess-of-Loss (XL) or on the

aggregate claims amount in case of Stop-Loss (SL) over which the reinsurer is responsible

for, capped at a value called limit. The premium to be paid to the reinsurer is no more

a function of the premium charged by the insurance company to the policyholder, but it

is computed separately by the actuarial department of the reinsurance company. In the

following paragraphs, it will be shown the main characteristics of proportional treaties and

of non-proportional treaties.
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1.4 Proportional Reinsurance

1.4.1 Quota Share

The quota share treaty is the simplest reinsurance contract from a conceptual and admin-

istrative point of view. Premiums and aggregate claims amount are divided at a fixed ratio

α between the insurance company and the reinsurer.

R̃t = αX̃t, with 0 < α < 1

D̃t = (1− α)X̃t

Figure 1: Optimization of profit and minimization of probability of ruin for insurer by choosing
reinsurance treaty, Gulnaz Khishamova

As Figure 1 shows, it is worth to underline that all the risks are shared in the same proportion

regardless the loss and the quality of the risk. The advantage of Quota Share treaty is to allow

the insurer to diversify its risks and to improve its solvency ratio. The main disadvantage

of the treaty regards the fixed proportion of risks ceded. On one side, the simple fixed

proportion of losses retained by the insurer avoids some forms of moral hazard. On the

other side, it limits the benefits which could arise from sharing the risk. Indeed, via a Quota

Share, the insurer has to cede also small risks which could properly be retained, but it retains

too much of very large risks.

For better catching the benefits the insurer obtains from a reinsurance treaty, it is nec-

essary to compare the distribution and the moments of the aggregate claims amount gross
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of reinsurance X̃t and net of reinsurance D̃t. Recalling its linearity property, the expected

value of D̃t is:

E(D̃t) = E((1− α)X̃t) = (1− α)E(X̃t)

Looking only at the expected value of the distribution of the aggregate claims amount net

of reinsurance is not sufficient, since through a reinsurance treaty, the cedent tries to also

reduce the risk (and not only the expected value). Therefore, it is necessary to also compute

the variance, recalling that it is a quadratic operator:

σ2(D̃t) = σ2((1− α)X̃t) = (1− α)2σ2(X̃t)

The standard deviation is easily derived as:

σ(D̃t) = (1− α)σ(X̃t)

It is possible to notice that a Quota Share allows for an equal reduction of the standard

deviation and of the expected value equal to α, the ceded proportion of risk. Indeed, the

CV of the distribution of the aggregate claims amount net of reinsurance is equal to the CV

of the gross distribution:

CV (D̃t) =
(1− α)σ(X̃t)

(1− α)E(X̃t)
=
σ(X̃t)

E(X̃t)
= CV (X̃t)

All the risk indexes are unchanged since through a Quota Share treaty, the distribution of

the aggregate claims amount is only rescaled, as Figure 2 shows. A Quota Share is able to

reduce the absolute volatility, but not the relative volatility. In particular, the reduction of

the risk is equal to the reduction of the expected technical profit (ignoring the effect of the

reinsurance commission). It implies a reduction of the required capital for that risk, but

there is not a reduction of the capital absorption since the CV does not decrease. Indeed,

typically, quota share contracts are used by small companies in order to broad chances for

underwriting policies and to gain experience in new markets bearing a limited amount of

risk. Conversely, an insurance company able to manage its portfolio in a profitable way has

not so much need of a Quota Share, since it will transfer to the reinsurer not only the fixed

proportion of claims, but also the same proportion of the premiums and, consequently, of

the profits.
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Figure 2: Distribution of the aggregate losses on gross and net basis. Alternative risk transfer, Erik
Banks

1.4.2 Surplus Reinsurance

Surplus is a proportional treaty working as a Quota Share with the only difference that the

proportion α is not the same for all risks in the portfolio, but it depends on the coverage

limit of the underlying policy. As a result, it is able to overcome the drawbacks of a Quota

Share, keeping its main advantages. Let Qi be the sum insured of claim Zi and M the fixed

retention line. The amount paid by the reinsurer is defined as:

R̃i =

(
1− M

Qi

)
Z̃i · 1{Qi>M}

where 1{Qi>M} is the indicator function. Conversely, the retained amount is defined as:

D̃i = Z̃i · 1{Qi≤M} +M
Z̃i
Qi
· 1{Qi>M}

For each single risk, if the sum insured is lower than the deductible, the risk remains entirely

to the direct insurer. Conversely if the sum insured is higher than M , premiums and claims

are shared between the reinsurer and the direct insurer in the proportion Qi −M : M . It is

possible to write a closed formula for the ceded portion of claims to be applied to each risk

under a Surplus treaty:

αi = max

(
0;
Qi −M
Qi

)
As the sum insured increases Qi, given the same deductible, the ceded proportion of claims

increases. Indeed, the proportion ceded is higher for the largest risks and smaller or zero
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Figure 3: REINSURANCE, Hansjörg Albrecher, Jan Beirlant, Jozef L. Teugels, 2017

for smallest risks. The surplus holds the simplicity of ceding claims in a proportional way

(as a Quota Share does) to the reinsurer which is responsible mainly (or only) of the largest

policies. Once computed αi, the surplus works as a Quota Share.

It is quite simple to obtain the amount retained by the insurance company and the

amount paid by the reinsurer as:

D̃t =

Ñt∑
i=1

D̃i

R̃t =

Ñt∑
i=1

R̃i

It is possible to show that a Surplus is able to reduce the standard deviation of the net

aggregate claims amount D̃t more than in terms of the expected value. It implies a reduction

of the relative volatility (CV) and a better risk mitigation, also in relative terms, with respect

to a Quota Share, since riskier is the contract, larger is the participation of the reinsurer.

In addition, since the maximum retained size of each claim is M , the surplus reinsurance

contract homogenizes the portfolio of the insurer.

Typically, a surplus reinsurance treaty is used for insurance contracts characterized by

a sum insured like fire insurance, property, accident, and marine insurance. It is possible

to write a surplus treaty also for reducing the volatility of the retained portfolio of the

cedant company because there is a tendency to cede to the reinsurer the largest risks. It

should be clear that the main difference between a Quota Share and a Surplus is in terms

of the proportion ceded to the reinsurer (α). In the extreme case all the proportions αi of

a Surplus are equal, the Surplus degenerates into a Quota Share. More the proportions αi
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Figure 4: Surplus Treaty, Ana J. Mata

are different, more the (relative) risk is reducing. In choosing between a Quota Share and a

Surplus, a lot of attention must be paid also the premium paid to the reinsurer and to the

reinsurance commission.

Regarding the purposes for which an insurance company could be interested in underwrit-

ing a reinsurance cover, proportional treaties allow the insurer to increase the underwriting

capacity, since the insurer cedes a portion of the risk. Surplus is more effective than quota

share because it implies a better harmonization of the portfolio. Both proportional contracts

provide catastrophe protection, even though non-proportional contracts are more effective.

Regarding the stabilization of the loss experience, quota share is quite useless, because it

reduces losses in the same proportion for all the risks in the portfolio, whereas surplus is

very effective since the cession rate is different for each risk according to the sum insured,

making the portfolio more homogeneous. Finally, proportional treaties are very effective in

increasing the insurer’s solvency, especially quota share since they significantly reduce the

insurer’s risk exposure.

1.5 Non-proportional Treaties

1.5.1 Excess of Loss (XL)

In a XL treaty L xs D, the reinsurer agrees to pay for any incurred claim which is greater

than a certain amount D, called the retention, up to a limit L1. The amount ceded to the

reinsurer, named layer function, is defined as:

L(D,L)(Zi) = min(max(Zi −D, 0), L)

1The retention is called also deductible or priority, while the limit can be called also cover.
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Since the XL treaty acts on the single claim size and not on the aggregate claims amount,

it does not affect the number of claims. Indeed, the insurer can reduce its exposure against

extreme severity, but not against extreme frequency. In order to be covered also against

the extreme frequency, a SL treaty, explained in the paragraph 1.5.2, is more suitable. The

amount retained by the insurance company and the amount paid by the reinsurer can be

defined as:

D̃t =

Ñt∑
i=1

min(Zi, D) · 1{Zi≤D+L} + (Zi − L) · 1{Zi>D+L}

R̃t =

Ñt∑
i=1

L(D,L)(Zi) =

Ñt∑
i=1

min(max(Zi −D, 0), L)

The risk mitigation provided by an XL treaty does not assure the intervention by the rein-

surer. Indeed, it will cover losses only if the single loss lies in the range D − D + L. If

all the single claim amounts reported to the primary insurer lie below the deductible, there

is no intervention by the reinsurer. The reduction of the insurer’s risk exposure is still in

place since it is protected from potential extreme single claims. In addition, it should be

noticed that it is true that the reinsurer at most covers a single loss equal to L, but it could

intervene infinite times (in case all the single losses are between D and D+L). Indeed, the

reinsurer could introduce some clauses, respectively Annual Aggregate Deductible (AAD)

and Annual Aggregate Limit (AAL) in order to limit its exposure in terms of number of

claims. AAD and AAL will be presented in the following paragraph.

There are two types of excess of loss contracts:

• Excess of loss per risk, often referred to as Working excess of loss (WXL). The direct

insurer retains a deductible of D for each risk affected by a loss. This type of treaty

protects the direct insurer from individual major losses.

R̃t =

r∑
i=1

L(D,L)(Zi) =

r∑
i=1

min(max(Zi −D, 0), L)

Notice that the layer function is applied to each loss the insurer has to pay, L(D,L)(Zi),

and, then, all the results coming from the layer function are summed up considering

all the r losses of the portfolio occurred in the year.

• Excess of loss per event. This is a per event cover, common in property insurance,

where the direct insurer retains a deductible D per event. This type of treaty is used
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if many risks can be affected by a loss event at the same time.

R̃t =
∑
e

L(D,L)

(
Z̃er
)

All the le losses related to a specific event are considered as a single loss to which the

layer function is applied. Later, the results of the layer function for the different events

are summed.

Usually a per-risk contract has a lower deductible and not so huge limit with respect to a

per-event XL. It must be paid great attention to the definition of “event” since it defines

the set of claims to which the layer function must be applied.

In an XL treaty, the reinsurer suffers from adverse selection since the insurer seeks

protection in particular from risks hard to be modelled and/or having heavy tails or a quite

limited past claim experience. Some moral hazard problems can arise, since for a claim

larger than the retention, in case of an infinite cover, the primary insurer has not incentives

to carefully settle it. One possible solution is the introduction of a limit or clause imposing

that the reinsurer pays only a pre-specifies fraction of the original reinsured amount in the

XL treaty. The XL is typically used in casualty and fire insurance, since it reduces the

exposure of the insurance company in an effective, but quite simple, form.

Annual Aggregate Deductible (AAD) and Annual Aggregate Limit (AAL). As

mentioned in paragraph 1.5.1, in an XL treaty, the reinsurer can insert some clauses in order

to limit its exposure. Introducing an AAD, the insurer will pay both the deductible D and

the AAD, whereas the reinsurer starts to pay losses when the AAD is exhausted. The idea

behind the AAD clause is that the direct insurer retains a large deductible for the first claim,

(namely D+AAD), and a small deductible D in the case of future claims. In practice, the

AAD clause is rarely introduced, conversely the AAL clause is quite typical. Without any

AAL, there will be a limit L to be applied to each claim, but the total amount to be paid by

the reinsurer could be unlimited since it depends on the number of losses. If the reinsurer

wants to limit its exposure to the XL treaty (for instance for capital purposes), it can put

an AAL, since it will be responsible for losses until the AAL is not exhausted. Often AAL

is a given as a multiple of L, the limit per loss. In the case where AAL = (1 + k)L, the

treaty is described as having k reinstatement. In presence of Annual Aggregate Deductible
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AAD and Annual Aggregate Limit AAL, the amount paid by the reinsurer will be:

R̃t = min

(
max

( Ñt∑
i=1

min(max(Zi −D, 0), L)−AAD, 0
)
, AAL

)
=

= LAAD,AAL
(∑

r

LD,C
(
Z̃r
))

Notice that, in terms of expected losses, a stop loss contract with deductible D and cover

L is equivalent to an excess of loss with deductible 0, unlimited cover and AAD=D and

AAL=L.

Reinstatements. Referring always to an XL treaty L xs D with a null Annual Aggregate

Deductible, the contract with k reinstatement is a common variant in particular in property

and casualty insurance. At the beginning, only an initial premium P0 is paid for the coverage

of a first layer defined as: min(R̃t, L). When a claim occurs, the layer could be totally

used up, leaving the insurance company without any coverage for the remaining part of the

reinsurance period. In reinsurance contracts with reinstatements, the layer can be filled again

by paying a reinstatement premium. With a reinstatement clause, the premium payment is

no more deterministic, but it depends on the loss history of the portfolio under reinsurance

treaty during the coverage period. The clause is particularly attractive for the primary

insurance since it has the possibility to pay premiums for purchasing more coverage only if

needed, with a lower financial burden at the beginning.

Indexation Clause. In an XL treaty, a large role is played by claim inflation. Some

claims, like large bodily injury claims, could be settled over a long period. Consequently,

a claim occurred today might be paid and settled at a much higher value than the amount

at which similar claims are settled now. As a result, reinsurance layers could be used much

more frequently than intended at the time of designing them. In order to protect reinsurers

from the consequences of claims inflation, it can be introduced an indexation clause, which

links both the deductible and the limit of the layer to an index, normally a wage index,

calculated at the time at which the claim is settled. From the point of view of the insurer

that purchases excess of loss reinsurance, the effect of the indexation clause is to make

reinsurance a bit cheaper and to reduce the amount of cover it gets.
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1.5.2 Stop Loss (SL) Reinsurance

The purpose of Stop Loss reinsurance is to limit the aggregate claims amount of the insurer

in a given year, across different kinds of causes, different events, or different classes of

insurance. Indeed, the aggregate claims amount faced by the insurer over the time interval

(typically one year) is capped at the priority D. The reinsurer will cover the excess up to a

limit L:

R̃t = min
(
max

(
X̃t −D, 0

)
, L
)

Notice that in a XL treaty, the layer function is applied to the claim severity, while in a SL

treaty, to the aggregate claims amount. Through a SL treaty without limit, the insurer is

ceding the whole tail of the distribution of the aggregate claims amount to the reinsurer,

being covered from the extreme severity (as in an XL treaty), but also from the extreme

frequency. Therefore, for limiting its risk exposure, the reinsurer can put a limit L to its

intervention not insuring the very large aggregate claim amounts for which the primary

insurer is still responsible. For being covered from the tail (above L), the insurer has to

write another reinsurance treaty (multi-layer contract). Typically, the priority and the limit

are expressed in terms of Loss Ratio of the insurance portfolio under reinsurance agreement.

It is very appealing for an insurance company since it reduces the volatility related to the

performance of the insurance company. Indeed, in a proportional treaty, the insurer will

retain the same proportion 1 − α for all claims, but the cession has no impact on the Loss

Ratio of the retained portfolio. Conversely, assuming an infinite cover and a deducible equal

to x% of the LR, the SL allows a reduction of the volatility concerning the loss ratio because

the LR of the retained portfolio will be more or less x% of the loss ratio of the original

portfolio.

Being all-encompassing, typically a Stop Loss treaty is quite expensive and difficult to

be obtain, also for the required, but complicated, modelling of the tail. Indeed, since the

reinsurer is covering all the aggregate claims amount between D and D+L, there are a lot

of ingredients required for setting a good Stop Loss treaty:

• Final loss burden established quickly and reliably.

• High and long-lasting trust relationship between the reinsurer and the insurance com-

pany.

• Good knowledge of the insurance portfolio.

• No peaks in the portfolio.
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• Etc. . .

The SL is a typical coverage in agricultural insurance, especially crop insurance. Com-

pared with proportional treaties, SL and XL are much more effective in providing catastrophe

protection and in stabilizing the loss experience. In addition, the XL per risk is good in

increasing the large line capacity, while the SL allows an increase in the insurer’s solvency.
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2 Pricing

Since reinsurance can be thought as a form of insurance, one solution to price a reinsurance

treaty is to apply principles similar to the ones used in insurance pricing. Before explaining

the typical premium principles, it is important to recall some important differences among

insurance contract and reinsurance treaty. First of all, in a reinsurance treaty, the parties

have to define how to share administrative costs for the acquisition of insurance policies and

the settlement of the claims. In addition, the reinsurance market is typically characterized by

a lower loss experience, a lower number of reinsurance companies and limited diversification

possibilities. As a result, the reinsurance premiums are typically adapted faster to the loss

experience than in insurance market. As for the insurance contracts’ pricing principles,

typically a reinsurance premium consists of the expected aggregate claims amount of the

underlying risk increased of a safety loading and of a margin for taking into administrative

costs, runoff expenses, taxes, and profit. Other features have an influence on the premium.

For instance, it has not to be forgotten the default risk arising from a reinsurance treaty.

The insurer will remain responsible for the entire losses towards the policyholder even if the

reinsurer will be in default. According to the Solvency II directive, a capital requirement

for the default risk related to the reinsurance contracts has to be computed. Actually, the

size of the default risk arising from the reinsurance treaty and borne by the insurer depends

on the rating of the reinsurance company. Worse is the reinsurer’s rating, higher will be

the default risk SCR. As a result, the cedent could ask for a reduction of the reinsurance

premium in case of bad reinsurer’s rating. Another factor influencing the demand and the

supply of reinsurance treaty is the risk appetite of the top management of the two parties

involved in the reinsurance treaty.

2.1 Some principles of premium calculation

Typically, an insurer, before selling an insurance contract, has to assess the riskiness of

its overall position. According to the fair principle, the (fair) premium has to be equal

to the expected value of the aggregate claims amount. If the insurance company asks a

premium exactly equal to the fair premium, the expected profit will be null. As a result,

the fair premium is without any economic interest since it does not provide any expected

profit at the inception of the coverage. A safety loading needs to be added to the fair

premium and, in the Non-Life business, it is typically computed explicitly. The presence of

the safety loading can be justified in two way. First of all, the insurer is bearing some risks
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by underwriting an insurance policy and it is asking a remuneration for them. Secondly,

the safety loading represents a buffer covering the company against adverse loss realizations.

Indeed, the fair premium covers the expected value of the aggregate claims amount, but it

leaves the insurance company uncovered against any deviations from it. The first resource

to be used for covering extreme losses is the safety loading.

Therefore it has to be defined a premium calculation principle, a rule which assigns the

aggregate claims amount X̃t to a premium Pt through a function Ψ such that its position

becomes acceptable in terms of profitability and safety:

Pt = Ψ(X̃t)

Before issuing a reinsurance cover, the insurer and the reinsurer have to perform a similar

analysis on the aggregate claims amount they expect to be responsible for (respectively D̃t

and R̃t). The premium calculation principle of the reinsurer has not to be the same of Ψ (the

insurer’s one), but it has to reflect its risk attitude and the diversification possibilities. Ψ

could be whatever function the company prefers. Here some examples of premium principles

are presented, by denoting with Y the generic risk with Cumulative Density Function FY :

• Expected value principle.

P (Y ) = (1 + θ)E(Y ), with θ > 0

According to this principle, the safety loading is equal to a fixed proportion θ of the

expected aggregate claims amount. The strength of the expected value principle relies

on its simplicity and its transparency. It is typically used in insurance and reinsurance

practice due to the poor data availability and to the limited reliability of information

on the risk beyond the first moment. Its drawback is that the expected value does not

consider properly the riskiness of the portfolio. The principle can be slightly improved

by defining the proportion θ as a function of the riskiness of the portfolio.

• Variance Principle.

P (Y ) = E(Y ) + αV ar(Y ), α > 0

The shortfall of the expected value principle is overcome by the variance principle,

by linking the safety loading to the variance of the risk. It is used in the insurance

practice if more information about the risk is available.
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• Standard Deviation principle.

P (Y ) = E(Y ) + β
√
V ar(Y ), β > 0

The advantage of using the standard deviation instead of the variance is given by

the unit of measure. Indeed, the standard deviation is expressed in the same unit

measure of Y , while the variance, being a quadratic risk measure, in the square of it.

Considerations similar to the ones of the variance principle can be made.

• Zero utility principle.

Denoting with w the deterministic current surplus and with u(x) the utility for the

insurer of having capital x, it holds:

u(w) = E(u(w + P (Y )− Y ))

P (Y ) is defined as the premium which makes indifferent the insurer to enter or not

the contract in terms of expected utility. If the insurer asks a premium equal to P (Y ),

its expected utility arising from the issue of the coverage will be equal to the utility in

case of no policy. The utility function should be:

– Non-decreasing: larger risks require larger premium.

– Concave, denoting risk aversion.

If the variance of the risk is small, it is possible to approximate the premium as:

P (Y ) ≈ E(Y ) +
|u′′(w)|
2u′(w)

V ar(Y )

The main complexity of the zero-utility principle concerns the definition of an appro-

priate utility function describing the risk attitude for all magnitudes.

• Ruin probability principle.

The principle assumes the knowledge of the probability distribution of Y . Since the

fair premium is equal to the expected value of Y , an insurance company will be able

only to cover the expectation of Y, but not any deviations from it. By charging only

the fair premium, sooner or later the company will go probably in ruin. In order to

define a safety loading according to the ruin probability principle, the company has to

fix a level of ruin probability in absence of capital (ε), by accepting a probability equal
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to ε that the aggregate claims amount will be higher than the pure premium. Knowing

the entire probability distribution of Y , it is possible to compute the quantile at level

1− ε, which is equal to the pure premium. As a result, the safety loading can be easily

computed as the distance between the 1− ε th quantile and the expected value. The

choice of ε is playing a big role. Lower is ε, higher will be the safety loading and higher

will be the part of risk borne by the policyholder. The ruin probability principle has the

advantage of considering information coming from the entire probability distribution of

Y , conversely to the expected value principle and the variance principle which consider

only the first two moments. Indeed, it considers of skewness and kurtosis, which

are important features in the aggregate claims amount distribution. The strength of

this principle is also its drawback because it is quite difficult to precisely know the

distribution of the risk.

Up to now, the main principles relevant in premium computation have been presented. In the

following paragraphs, the pricing of reinsurance treaty will be deeply analysed distinguishing

between proportional treaties and non-proportional treaties.

2.2 Pricing Proportional Reinsurance

Denoting with Bt the gross premium charged from the insurance company to the policy-

holder, the reinsurance premium can be easily computed as:

BREt = αBt

Computing the premium paid from the insurer to the reinsurer in a proportional way implies

that the reinsurer is not able to influence the pricing method of the direct insurer. If the

reinsurer will receive entirely BREt , it will obtain a too much favourable result. In general,

the gross premium Bt charged by the insurance company is made up of a risk premium Pt,

equal to the expected aggregate claims amount, a safety loading, and an expense loading.

From a technical point of view, it is correct to cede to the reinsurer a proportion α of the

risk premium, since, on expectation, the reinsurer has to cover α% of the aggregate claims

amount. In addition, also the reinsurer will charge a premium for taking the risk (safety

loading), but it could make a different risk evaluation with respect to the direct insurer. As

a result, ceding α% of the safety loading is only partially correct. Regarding expenses, since

the reinsurer does not afford to all the costs an insurer does (like acquisition costs of policies,

costs for the estimation and settlement of the claims and other administration expenses), it
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is not correct to transfer α% of the expense loading. Indeed, in order to truly “share the

fortune”, it is necessary that the reinsurer pays back a commission to the direct insurer. It is

possible to notice that the negotiation process in proportional treaties takes place through

the reinsurance commissions. Indeed, on one hand, it is true that the reinsurer has not

power to intervene on BREt , being computed as a percentage of Bt, but on the other one, it

can introduce its own risk evaluation through the reinsurance commissions. If the reinsurer

shares the same pricing with the direct insurer, the reinsurance commission will be exactly

α% of the expense loading. If it believes that the direct insurer under-prices the contracts,

it will pay back an amount lower than α% of the expense loading. To sum up, the amount

of the reinsurance commissions depends on the quality of the portfolio ceded and also on

the bargaining power of the insurer and of the reinsurer.

The reinsurance treaty can have fixed commissions or scaling commissions. In the first

case, the amount of the reinsurance commission to be paid back by the reinsurer is fixed in

advance at the cover issue. Lower is the reinsurance commission, higher is the price assessed

by the reinsurer to the risk and higher will be the impact on the insurer’s profitability.

In practice, typically, the treaty involves scaling commission, implying that the concrete

amount of the reinsurance commissions is not known in advance, but it depends on the

actual loss experience. In the treaty, it is defined the computational methodology of the

commission, which usual forms are:

• Sliding scale commissions.

It is fixed a provisional commission, in terms of percentage, and a reference loss ratio,

defined as the incurred claims, including settlement expenses, divided by the earned

premium. For each percentage point the actual loss ratio deviates from the reference

LR, the commission percentage is inversely adapted to it, according to the upper and

lower limits fixed in the treaty. As a result, the effective amount of the reinsurance

commission is defined ex-post, after having observed the real realizations, in terms of

aggregate claims amount, of the portfolio under reinsurance agreement. Worse is the

quality of the portfolio ceded, higher will be the LR, lower will be the commission rate.

Since the amount of the reinsurance commission is unknown in advance, the scaling

commission introduces an additional source of volatility in the insurer’s technical result.

• Profit sharing provisions.

If the participation of the reinsurer in a year in losses is very successful/low, it passes

back part of the premiums according to some predefined terms.
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• Loss corridors.

In order to reduce its risk exposure, the reinsurer can define an agreement such that

it covers only below a% and above b% of its LR, whereas, between a% and b%, it is

responsibility of the direct insurer.

It must be noticed that, once defined the computation method, the effective calculation of

the reinsurance commissions is quite straightforward, and it depends mainly on the Loss

Ratio. As a result, great attention has to be put on the distribution of the Loss Ratio,

which has to be estimated from information on historical data. As explained before, the LR

is defined as the ratio between claims and premiums. For understanding which premiums

and claims must be considered, it is necessary to look at the cession basis of the reinsurance

treaty. If it is on loss occurring basis, the earned premiums and the accident year losses are

relevant. If the treaty is on risk attaching basis, losses on policies written during the treaty

period are covered. As a result, written premiums, and the losses related to those policies

should be considered. Usually, catastrophes losses and shock losses2 are removed and the

remaining historical losses are developed to the ultimate values. Historical premiums need

to be adjusted to future level in order to include the rate’s changes expected during the

treaty period. Given the data points, the expected loss ratio is estimated by the arithmetic

average of the historical loss ratios adjusted to the future level. In addition, it has to be

adjusted by adding a loading for including catastrophe losses. At the end, the reinsurer can

also modify the final estimate according to his own experience on those claims.

2.3 Pricing Non-proportional Reinsurance

The pricing of a non-proportional treaty is much more involved than for proportional treaties.

The basic idea is to compute the pure premium as the sum of the expected aggregate claims

amount the reinsurer will be responsible for and a loading which takes into account profit

expectation, cost of capital and internal and external costs. Denoting with Y : Ω→ Rd, d ≥ 1

the random vector representing all the risks of the company, it is possible to define the pure

premium principle for the generic risk Yi as:

Pi = E(Yi) + h(F (Y))

2It is important to distinguish between catastrophe losses which cause many claims from shock losses
which cause single very large claims.
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F is the distribution function of Y and h is a generic function suitable for the reinsurance

company. The risk premium is equal to the expected aggregate claims amount related

to the specific risk Yi, whereas typically the safety loading is computed as a function h

applied to a group of risks. It should be clear that more reliable information about the

aggregate claims amount distribution the company has, more accurate and flexible will be

the premium. Typically, the most applied principles are the expected value principle and the

variance principle. Indeed, non-proportional treaty, in particular in presence of clauses like

reinstatement, are much more complex than proportional treaties and the determination of

the first two moments is not straightforward.

Two main approaches can be distinguished in the computation of the pure reinsurance

premium:

• Experience Rating.

The experience rating is the classical approach followed by reinsurance companies

for pricing non-proportional treaties. The fair premium is estimated according to

the experience observed in the last years, by taking the expectation of the losses

the reinsurer is responsible for. It is adopted the same logic of the computation of

the fair premium of an insurance contract, but in practical terms it is much more

complicated. Indeed, typically, the reinsurer is responsible for very extreme claims

which data availability is generally quite poor.

• Exposure Rating.

The exposure rating aims at pricing a reinsurance policy when data for a specific risk

is not sufficient to produce a reliable severity model. It is based on the use of the

exposure curves, which are reengineered severity curves based on losses coming from a

large number of risks (like at market level). The strength of the methodology concerns

the curve calibration at a market level which involves a larger set of available data.

This could be also a drawback since the assumptions underlying the construction of

the curves could be not aligned with the specific portfolio of the company. Exposure

curves are typically used in property reinsurance, like for a XL per risk.

2.3.1 Exposure Rating

Typically, exposure rating is applied when the experience rating is not reliable. As it will

be explained in the paragraph 2.3.2, experience rating works properly if there is a sufficient

data availability which allows to fit properly a severity model and a frequency model and to
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combine them through simulations. Some problems may arise with a property risk:

• First of all, in the severity model, it is implicitly assumed that no claim generated

exceeds the value of the most expensive property in the portfolio, by capping the

severity distribution. It should be more realistic to also consider the value of other

properties in the portfolio.

• Secondly, fitting a realistic severity model is not always so simple.

• The assumption of stable risk profile is not always satisfied in practice and changes in

exposure can affect both the severity and the frequency models.

It appears clear how another pricing method has to be applied, since property risk needs

an individual analysis. The rating of non-proportional reinsurance treaties should not only

rely to the past loss experience, but also on the actual exposure. Regarding per risk covers

(here analysed for a property line), the exposure rating is based on risk profiles. Severity

curves for an individual property risk can be interpreted as a curve providing the probability

that the damage loss is lower than a given percentage of the sum insured or of the maximum

possible loss3, typically expressed as a fraction of the sum insured. In addition, it has to be

considered that the probability of having a total loss (determining the complete destruction

of the property) is finite. By defining the damage ratio as the ratio between the loss and

the total loss expressed as the sum insured or as the Maximum probable loss, typically, the

severity curve may look like in Figure 5.

Figure 5: Severity curve for an individual property, Pricing in general insurance, Pietro Parodi,
2015

3The Maximum Possible Loss is typically expressed as a function of the sum insured. A benchmark value
could be 70%, but it depends on the type of property and on the underwriting’s experience.
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It is an increasing and concave function with a jump for a Damage ratio equal to 100%

(total loss). The height of the jump is the probability of having a total loss.

An empirical severity curve can be built by assuming that properties relatively similar

will have a similar severity curve once rescaled in terms of Damage ratio. The first step

involves the collection of individual losses. Secondly, they need to be divided with respect to

the sum insured or to the MPL, in order to obtain relative losses between 0 and 1. Finally,

they have to be sorted in ascending order. In addition, it is possible to fit to the empirical

severity distribution a model, which can be used as relative severity model in the rating of

the reinsurance treaty.

The problem arising from this methodology is that the client (the reinsurer) could not

have enough losses in its portfolio to build a severity curve for a homogeneous type of

property. Therefore, it is reasonable to aggregate the loss experience of different companies

and produce market severity curves for different types of property which may be used to

complement or to replace the client-specific severity curves.

The exposure curves. An exposure curve gives the percentage of risk which is retained

by the reinsured (or primary insurer) if a given deductible is imposed. It has an increasing,

continuous, and concave shape as a severity curve and it goes up to 100% (infinite deducible),

regardless the probability that a total loss occurs. In this paragraph, the construction of the

exposure curves for a property XL L xs D, without index clause, is provided. Given a loss

Z, the loss to the layer (D,D + L) the reinsurer is responsible for is:

Z(D,L) = min(Z,D + L)−min(Z,D)

Therefore, the expected loss to the layer is:

E(Z(D,L)) = E
(
minE(Z,D + L))− E(min(Z,D)

)
Denoting with N the number of losses, the expected total losses to the layer are:

E(R(D,L)) =
(
E(min(Z,D + L))− E(min(Z,D))

)
E(N)

The previous relation holds by assuming that the claim size is i.i.d. and that the number of

claims and the claim size are independent. Since a property line is considered, the loss Z

cannot exceed the sum insured or the maximum probable loss, denoted with M . Therefore, it
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is reasonable to describe any loss occurring to that property as a percentage of its maximum

value M , z = Z
M . Through this normalization, losses are no more affected by inflation and

currency fluctuations.

The expected loss can be rewritten as:

E(Z) = E

(
Z

M
M

)
= E

(
Z

M

)
M = E(z)M

and

E(min(Z,D)) = E(min(z, d))M

where d = D
M .

Dividing and multiplying by the expected severity, the expected total losses to the layer

(D,D + L) can be written as:

E(RD,L) =
E(min(Z,D + L))− E(min(Z,D))

E(Z)
E(N)E(Z)

Divide both the numerator and the denominator by M :

=
E
(
min(z, d+ l))− E(min(z, d)

)
E(z)

E(X)

=
(
G(d+ l)−G(d)

)
E(X)

where

G(u) =
E(min(z, u))

E(z)

G(u) is a function from [0,1] to [0,1].

It should be clear that G(d) = E(min(z,d))
E(z) can be interpreted as the percentage of risk

retained by the reinsured (primary insurer) after the imposition of a deductible D = dM .

If a loss Z is experienced, the loss retained by the cedent is the minimum between the loss

and the deductible:

Zret = min(Z,D) = M ·min(z, d)

The average expected retained loss is defined as:

E
(
Zret

)
= E

(
min(Z,D)

)
= M · E

(
min(z, d)

)
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Conversely if there was not a reinsurance treaty, the average expected loss would be:

E(Z) = M · E(z)

The percentage of risk retained by the reinsurer is their ratio:

E(Zret)

E(Z)
=
M · E

(
min(z, d)

)
M · E(z)

=
E
(
min(z, d)

)
E(z)

= G(d)

Plotting G(d) as a function of d returns the exposure curve. Given the exposure curve and

knowing the deductible, the computation of the expected losses to the layer given the overall

expected losses is quite straight-forward.

Relationship between exposure curve and severity curve. Given the one-to-one

correspondence between severity curve and exposure curve, it could be interesting to find a

way to move from one to the to the other. The numerator of G(u) can be written as:

E(min(z, u)) =

∫ 1

0

min(z, u)f(z)dz =

∫ u

0

zf(z)dz +

∫ 1

u

uf(z)dz =

=

∫ u

0

zf(z)dz + u ·
∫ 1

u

f(z)dz =

∫ u

0

zf(z)dz + u ·
(
1− F (u)

)
By integrating by parts the integral, it is possible to obtain:

∫ u

0

zf(z)dz + u ·
(
1− F (u)

)
= u · F (u)−

∫ u

0

F (z)dz + u ·
(
1− F (u)

)

=

∫ u

0

(
1− F (z)

)
dz

Using this result, the function G(u) can be written as:

G(u) =

∫ u
0

(
1− F (z)

)
dz

E(z)

whereas its derivative is:

G
′
(u) =

1− F (u)

E(z)

Since F (0) = 0, it follows that the first derivative of G computed in 0 is equal to the

reciprocal of the expected loss:

G
′
(0) =

1

E(z)
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Figure 6: Comparison between exposure curve and severity curve. Pricing in general insurance,
Pietro Parodi, 2015

Therefore, it is possible to write the cumulative distribution function F (z) highlighting the

relation between exposure curve and severity curve:

F (z) =


1− G

′
(z)

G′ (0)
, 0 ≤ z < 1

1, z = 1

One of the properties of the function G(z) is the concavity. A strong concavity implies that

even a small deductible determines a strong reduction in the risk ceded to the reinsurer

and a negligible probability of total loss. On the other hand, if the exposure curve has

not concavity at all (G
′
(u) = 1 for all u), all losses are total losses and a deductible of d%

achieves a reduction of the loss equal to d%.

Use exposure curves in order to price an XL. The fitted exposure curve can be used

in order to rate the XL reinsurance for a portfolio of properties. As shown in the previous

paragraphs, the expected total losses to a layer L xs D for an individual property is defined

as (G(d + l) − G(d)) · E(X). Once fitted the exposure curve, the value of G(d + l) − G(d)

is known. Since typically the exposure rating pricing methodology is applied in case of

poor data availability, the expected value of the aggregate claims amount can be computed

using the premium originally charged by the direct insurer. Recalling the definition of the

expected loss ratio:

E(LR) =
E(X)

Premium
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it is possible to estimate the expected aggregate claims amount as:

E(X) = E(LR) · Premium ≈ LR · Premium

The relationship can be approximated by considering the actual Loss Ratio obtained by the

insurer over a number of past years properly adjusted for the underwriting cycle and other

biasing factors. Therefore, the expected total losses to the layer are computed as:

E(RD,L) = (G(d+ l)−G(d)) · E(LR) · Premium

Considering a number of homogeneous properties in the portfolio equal to K in the portfolio,

it is possible to obtain:

E
(
RD,L

)
=

K∑
k=1

E(RD,L)

=

K∑
k=1

(
Gk(dk + lk)−Gk(dk)

)
·E(Xk) =

=

K∑
k=1

(
Gk(dk + lk)−Gk(dk)

)
·E(LRk) · Pk =

where:

• Gk(z) is the exposure curve for the k-th property

• dk and lk are the limits of the layer of the k-th property expressed in terms of Mk, its

sum insured or MPL.

• Pk is the premium paid by the policyholder to the insurer related to the k-th property.

• E(LRk) is the expected Loss Ratio for the k-th property.

If the portfolio involves homogeneous properties such that it is possible to assume the same

exposure curve and if the expected Loss Ratio does not depend on the value of the property,

the previous relationship becomes:

E(RD,L) = E(LR) ·
K∑
k=1

(
Gk(dk + lk)−Gk(dk)

)
·Pk

The accuracy of the exposure rating applied by the reinsurer will depend on the accuracy

of the rating process of the insurer. In practice, the reinsurer could be not able to get

from the direct insurer the entire list of properties under reinsurance agreements. In such a
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case, properties with similar values of sum insured or MPL will be grouped in B bands and

information about these bands is provided more likely to the reinsurer. The expected losses

to the layer can be approximated as follows:

E
(
RD,L

)
≈ E(LR) ·

B∑
β=1

(
G(dβ + lβ)−G(dβ)

)
·Pβ

where dβ = D
Mβ

and lβ = L
Mβ

, being Mβ the average sum insured or Maximum Possible Loss

in a band, defined as:

Mβ =
Mβ,min +Mβ,max

2

Pβ is equal to the sum of all the premiums paid for properties in the band β.

Parametrization of Exposure curves. If a company decides to use exposure curves

in order to price a reinsurance treaty, it has to calibrate them. There are typically two

possibilities:

• Use market exposure curves.

Among the last years, exposure curves were derived by institutions empirically from

collections of historical losses and they are actually available in graphical or tabulated

forms or implemented in computerized underwriting tools. The main shortfall is that

they are provided only for a limited set of parameters which could be not suitable for

the specific portfolio. Indeed, if it were possible to have a continuous set of parameters,

the exposure curve would be much more smoothed. In addition, it could be difficult

to find a set of parameters to be associated with the information available for a band

of similar properties.

• Build its own MBBEFD class exposure curve.

What is needed in order to build an exposure curve is a large number of claims for

a portfolio of reasonably similar properties and their Maximum Possible Loss. The

first step concerns the division of each claim by the MPL and sort them to form an

empirical relative severity curve. Secondly it is needed to fit a severity curve in the

form:

F (z) =


b(g−1)(1−bz)

b(g−1)+(1−bg)bz , z < 1

1, z = 1

to the empirical severity curve using numerical optimization method for estimating
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the parameters b and g. Finally, the exposure curve is defined as4:

G(z) =

ln

(
b(g−1)+(1−bg)bz

1−b

)
ln(bg)

Aggregate Loss Distribution Using Exposure Rating. It could be also interesting

to develop the Aggregate Loss distribution and the volatility around the point estimate just

obtained from the exposure rating. It is only needed the exposure curve G, the properties

scheduled by bands, the premium for each band and the expected Loss Ratio. Regarding

the severity model, it has been highlighted in the previous paragraphs the one-to-one corre-

spondence between the exposure curve and the severity curve. From the exposure curve, the

severity curve and model are easily built for the losses in the band b and it can be estimated

the average of the individual loss amount for each band, E(Zb). Regarding the frequency

model, only the expected number of losses for each band has to be estimated. From the

definition of the expected Loss Ratio, it is possible to compute the expected total losses for

the band b as:

E(Xb) = E(LRb) · Pb

According to a collective risk model, the expected number of losses for the specific band can

be estimated as:

E(Nb) =
E(Xb)

E(Zb)

Once estimated it, it is only matter of fitting a theoretical distribution of interest as a

Poisson or a Negative Binomial. Once fitted the severity model and the frequency model, it

is possible to obtain the aggregate loss model across all bands via Montecarlo Simulations,

by assuming independence among different bands.

Sources of Uncertainty. The reliability of the results and the robustness of a model de-

pends on its underlying assumptions and on the uncertainty introduced by them. Regarding

exposure rating methodology, there are some critical issues to be taken into account:

• Exposure curve.

More the exposure curve describes realistically the property considered, more correct

are the results. Since each property in the portfolio has unique features, the exposure

curve will always be an approximation of the true exposure.

4For further details, look at “The Swiss Re Exposure Curves and the MBBEFD Distribution class”,
Stefan Bernegger.
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• Loss Ratio.

The Loss Ratio introduced in the exposure rating depends on the assumptions on the

underwriting cycle and on the consistency of the insurer’s pricing strategy. It could be

also affected by some fluctuations with respect to the past values implying parameters

uncertainty.

• Property schedule to be properly updated overtime in order to reflect the real risk.

To conclude the explanation of the exposure rating, it could be interesting to list situations

where this pricing methodology works properly:

• The company resembles the industry.

• Experience is limited in volume to be relied on.

• The past will not predict properly the future due to some changes in the classes, states,

and limits.

• The company uses market data to capture better the severity of loss.

• If used as another view to the company’s experience.

Conversely, the exposure rating does not work properly if:

• The exposure data is incomplete or unreliable.

• The experience rating is very robust and stable.

• Exposure curves are not available.

2.3.2 Experience Rating

In experience rating, the reinsurer bases the calculations of the premium on the loss expe-

rience of the portfolio. It is a technique applying past year’s loss experience to the today’s

reinsurance contracts to get an estimate of the expected losses. As a result, the pricing

methodology works properly only if there is a sufficient, credible, and reliable claim expe-

rience. Only claims data above a certain level, named reporting threshold a, are disclosed

by the insurer to the reinsurer for a certain past period (typically last 5-10 years). Notice

that data collected are not only the ones laying in the interval (D,D+L), but typically also

above a percentage (usually 50%) of the deductible.
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This approach shows different shortfalls regarding the data collected from the insurer:

• It assumes stable risk profile.

Since the experience rating uses past data for predicting future ones, the underlying

assumption is that the portfolio of risks which has generated claims in the past is

very stable and similar to the portfolio which will generate losses in the future. If the

assumption is not met in practice, it is necessary to correct data for the exposure.

• It does not consider the inflation.

• It does not consider the unused capacity.

The unused capacity is the part of the cover which is not “attached” by the losses. If

all the claims related to a portfolio do not exceed D + L, the experience rating will

provide the same price to treaty with the same deductible and limits higher than the

maximum loss observed in the past.

• It ignores IBNR claims.

For having comparable data points, it is necessary to make adjustments in order to consider

some factors affecting the claim size and/or the frequency:

• Inflation.

Data needs to be inflation-corrected by adjustment indices varying across lines of

business (like consumer price index, construction cost index). Another point to be

highlighted is that in a XL treaty a claim which did not touch the layer may nowadays

be above the deductible due to the effect of the inflation. Indeed, the threshold estab-

lished for reporting past claim size to the reinsurer is not at D, but below D. Without

considering inflation, the severity burden inside the layer of an XL is defined as:

E
(
ZD,L

)
=

∫ D+L

D

(
1− FZ(z)

)
dz

By introducing inflation with a factor δ > 1, it can be rewritten as:

∫ D+L

D

(
1− FδZ(z)

)
dz = δ

∫ D+L
δ

D
δ

(
1− FZ(z)

)
dz = δ · E

(
ZD/δ,L/δ

)
It is equal to the scaled (by the factor δ) expected reinsured claim size in the layer[
D
δ ,

D+L
δ

]
. It should be clear that inflation may affect both the claim size and the

claim number in different ways. There could be situations in which the layer with
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deductible D/δ and limit L/δ has a smaller loss expectation that the original layer,

but typically for all relevant cases the opposite holds meaning that the loss in the layer

grows by a factor higher than δ.

• Portfolio Size Changes (exposure).

Data points need to be adjusted to the portfolio volume at the current year. Different

measures are suitable for the volume. A suitable volume measure are the original

premiums charged by the insurer since they provide the best measure of exposure, if

priced consistently. According to the line of business and to the type of cover, it could

be assumed that:

– The claim sizes increase proportionally or according to other functional relation-

ships with the volume.

– Portfolio size changes affect both number of claims and claim size. Typically, in

per-risk XL, volume affects only the number of claims, whereas in cumulative XL,

it will also influence the size of the aggregate claims per event.

• Loss development.

For long-tail lines of business (like liability), due to the low settlement speed, it is

possible that claims are not fully developed. The data reported to the reinsurer will

consists of development patterns and current estimates of the final loss burden. In

order to have comparable data point in terms of number of claims and of sizes of the

claims, the reinsurer has to apply reserving techniques on an individual claim basis.

Once made all the adjustments, the burning cost rating is quite straightforward to be applied.

Indeed, it is possible to build the empirical cumulative density function which can be used for

pricing. It is quite useful the resulting expected claim size, named burning cost, but recall

that the empirical Cumulative Density Function is typically not sufficient for modelling

the entire risk. Indeed, it is implicitly assumed that the largest possible claim has already

occurred. In addition, it is possible to have few data in the layer. In general, if the loss

experience is not fully representative, an additional model is needed for pricing the treaty.

A possibility could be fit an analytical loss model to the observed data. Therefore, once

data points are adjusted, it is typically possible to fit a frequency-severity loss model which

defines the aggregate claims amount to be paid by the reinsurer in a year t as:

R̃t =

Ñt∑
i=1

Z̃i
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Ñt : Ω → N is a random variable modelling the frequency. Z̃i : Ω → R+ are iid random

variables modelling the severity. The frequency and the severity components are supposed

to be independent. In symbols, Ñt⊥{Z̃i : i ∈ i, ..., N}. The Wald’s identity simplifies

the calculation of the expected value of the sum of a random number of random variables.

Applied to a Collective Risk Model, if the variance of the severity and of the frequency

are finite
(
V ar(Z̃) < ∞, V ar(Ñt) < ∞), the expected aggregate claims amount can be

expressed as the product between the expected severity and the expected frequency:

E(R̃t) = E(Ñt) · E(Z̃)

It can be noticed the complementary role of the average claim size and the average claim

number. The knowledge of the expected value of the aggregate claims amount can be helpful

when pricing according to the expected value principle. In addition, it is possible to compute

the variance of the total annual aggregate claims amount in a closed form:

V ar(R̃t) = V ar(Z̃t) · E(Ñt) + V ar(Ñt) · E(Z̃t)
2

Knowing the variance of the aggregate claims amount, it is possible to apply a premium

calculation principles based on the first two moments of R̃t. In the particular case the claim

count follows a homogeneous Poisson process, Ñt ∼ Poi(λ), it holds that:

E(R̃t) = λ · E(Z̃)

E(R̃t) = λ · E(Z̃2)

Before applying a specific model is always fundamental to check whether the underlying

assumptions are met by the data. Important methodological results like the determination

(or approximation) of the distribution of the aggregate claims amount and its moments

would not be possible without them. In reality, there are situations where one or more of

these assumptions do not hold (e.g. modelling attritional claims and large claims together

or treating as one claims belonging to very different LoBs).

In order to proper evaluate the moments and, if possible, the distribution of the total

aggregate claims amount, it is necessary to define a proper distribution for both the frequency

component and the severity component.
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2.4 Frequency Analysis

Regarding frequency analysis, the number of claims with claim size above the reporting

thresholds should be disclosed to the reinsurer. The reinsurer has to fit a prospective model

predicting the number of losses in the future, implying that past data have been adjusted

in order to describe pattern of the future portfolio. For instance, the number of claims

has to be adjusted for the exposure in a quite complicated way depending on the contract

basis. For Risk Attaching During policies, the correct exposure to be used are the premiums

written during the reinsurance policy period, which is matched to the claims attached to the

policy year n (claims effectively covered by the reinsurance treaty in the year). Differently,

for Loss Occurring During policies, the correct exposure are the premiums earned during the

reinsurance period. They could be matched to the claims incurred during the period. If the

earned premiums are not available, under the assumption of uniform writing of premiums

and of occurring claims, it is possible to define the earned premium as the arithmetic average

of the written premiums of two consecutive years.

After having adjusted data, the following step is to fit a frequency model which provides

the probability that a given number of claims occurs during a given period. Even though in

the literature there are a lot of possible distributions to be fitted, in practice the typically

used distributions for the frequency component are the binomial distribution, the Poisson

distribution and the Negative Binomial distribution. They belong to the Panjer class (de-

noted also as [a,b,0] class), which is characterized by the fact that exist constants a and b

such that:

pk
pk−1

= a+
b

k
, k = 1, 2, 3, ...

pk is the probability of having exactly k losses and p0 is determined by imposing the condition∑∞
k=0 pk = 1. This characteristic is used in the calculation of the aggregate claims amount

distribution by applying the Panjer recursive formula. The three distributions differ in terms

of variance/mean ratio, named also index of dispersion, which can drive the choice of the

model to be used. The variance/mean ratio is 1 for the Poisson distribution. If it is greater

than 1, as for the Negative binomial, the claim number process is overdispersed. Conversely,

if it is lower than 1, as for the binomial distribution, the process is underdispersed. Typically,

the Binomial distribution is used in individual risk models, while the Poisson distribution

and the negative Binomial distribution are typically used in collective risk model.
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2.4.1 Binomial distribution

The binomial distribution models the probability of having k successes in an experiment

repeated n times with the probability of any given experiment being successful equal to p.

In insurance and reinsurance practice, it is commonly used when there are n independent

and identically distributed risks. Each risk has a probability p of incurring in a claim and

it is assumed that only one claim for risk is possible which implies a maximum number of

claims per year equal to n. This feature is suitable in individual risk model. Conversely, if

the probability of making a claim depends on the risk, the binomial distribution cannot be

used. The probability of having k claims from the n risks is defined as:

P (Ñ = k) =

(
n

k

)
pk(1− p)n−k

The mean and the variance are respectively equal to:

E(Ñ) = np

V ar(Ñ) = np(1− p)

By increasing the number of risks (n), the expected value and the variance increase. Con-

versely, the coefficient of variation decreases due to the mutuality:

CV (Ñ) =

√
1− p
np

Finally, the skewness is defined as:

γ1 =
(1− 2p√
np(1− p)

The sign of the skewness mainly depends on the value of the probability of getting a claim.

In particular if p > 0.5, the skewness will be negative, implying a left tail. If p < 0.5, the

skewness will be positive and the distribution presents a right tail. Finally, if p = 0.5, the

distribution is perfectly symmetric.

To sum up, the binomial distribution is appropriate for portfolio with (finite) small number

of risks that create small homogeneous events with equal probability p.
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2.4.2 Poisson Distribution (Poi)

A stochastic process is supposed to be Poisson if it satisfies the following properties:

• Starting in 0.

• Stationarity. The distribution of the number of events in an interval depends only on

the length but not on the starting point of the interval. In other words, the probability

of having k simultaneous events is constant among disjoint time intervals.

• The number of events occurring in disjoint time interval are independent.

• Events are rare. The probability of obtaining two events in a small-time window is

negligible and the probability of having one event in that time window is proportional

to the length of the window by a constant λ denoted as Poisson rate.

The Poisson process is useful for large number of risks and small probability of claim occur-

rence, or if the expected number of events is much smaller than the theoretically possible

maximum number of events. It is also applicable to situations in which the event arrivals

can be assumed to be independent, with expected number λ per time unit (typically a year).

The probability of having n events in a time interval of length t is given by:

Pr(Ñ = k) =
e−λt(λt)k

k!

Notice the key assumption of constant rate at which losses happen. Otherwise, it is needed

to fit other distribution like the Negative Binomial. In the interval [0,1] (as one year), the

mean and the variance are given by:

E(Ñ) = V ar(Ñ) = λ

The coefficient of variation, measure of relative volatility, is:

CV (Ñ) =
1√
λ

In terms of skewness, it holds:

γ1(Ñ) =
1√
λ

For any value of λ, the skewness is always positive, implying a right tail and a mass probabil-

ity to have an extreme number of losses, quite dangerous situation for the insurer/reinsurer.
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An increase of the Poisson rate λ leads to an increase in the expected value and the variance

and to a reduction of the relative volatility (CV) and of the skewness. Indeed, the distri-

bution will be more volatility in absolute terms, but less skewed. The Poisson distribution

presents two limitations:

• It is not suitable for taking systemic risk into account.

• Parameter Uncertainty. The Poisson rate is always estimated basing on a small number

of years and it has a significant parameter uncertainty. Since it makes the variance

and the dispersion index increase, it should be more appropriate to fit a distribution

with variance higher than the mean like a Negative Binomial.

2.4.3 Negative Binomial (NB)

Conversely to the Poisson, under the Negative Binomial distribution, the probability of

occurrence of the event is not equal for all the elements. The Negative Binomial distribution

can be defined also as the discrete probability distribution of getting k successes in a sequence

of Bernoulli trials before r > 0 failures occur. Denoting the probability of failure by 1
1+β , β >

0, the probability of getting k successes is given by:

P (Ñ = k) =

(
k + r − 1

k

)(
β

1 + β

)k(
1

1 + β

)r

The mean and the variance of the negative Binomial are given by:

E(Ñ) = rβ

V ar(Ñ) = rβ(1 + β)

Since β > 0, it follows that V ar(Ñ) > E(Ñ). Indeed, the Negative Binomial is suitable

where the Poisson distribution does not have enough volatility, since the variance is always

larger than the mean (dispersion index higher than 1). The skewness is always positive and

defined as:

γ1(Ñ) =
2 + β√
r(1 + β)

It decreases as r increases.

It should be highlighted that a Poisson with a parameter λ Gamma distributed corresponds

to a Negative Binomial. If N ∼ Poi(λ̃) where λ̃ ∼ Gamma(θ, α), it follows that Ñ ∼

NB(β = θ, r = α).
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The Negative Binomial is able to overcome the shortfalls of the Poisson distribution. Indeed,

the Negative Binomial is more suitable than the Poisson distribution to model real-world

situations since the extra volatility enables to take into account of the systemic variations. In

addition, a Poisson with parameter uncertainty can be also modelled as a Negative Binomial

distribution, by approximating the variation around the central value of λ as a gamma

distribution rather than a normal distribution.

2.4.4 Excess Frequency

Since the reinsurer has data regarding claims above the reporting threshold a, it is necessary

to introduce the concept of excess frequency. The number of claims exceeding the reporting

threshold a is defined as:

Na =

N∑
i=1

1{Zi>a}

Denoting with π, the probability that the single loss exceeds the threshold a (π = P [Z > a]),

the distribution of the number of claims exceeding the threshold Na is of the same kind of

the distribution of N , the total number of claims, but with different parameters:

• If N ∼ Poisson(λ)→ Na ∼ Poisson(λπ)

• If N ∼ Binomial(n, p)→ Na ∼ Poisson(n, pπ)

• If N NegBin(a, p)→ Na ∼ NegBin(r, p
p+π(1−p) ), where p = 1

1+β

In addition, the expected excess frequency is defined as:

E(Na) = E(N) · P [Z > a]

It is possible to rewrite the layer function applied in a XL treaty in terms of the excess

frequency as:
N∑
i=1

LD,L(Zi) =

Na∑
i=1

LD,L(Z∗i )

where Z∗i = Zi|Zi > a. The relevance of the (expected) excess frequency will be highlighted

in the computation of the risk premium, in particular in the computation of the expected

total losses to the layer L xs D.

2.4.5 Fitting Process

Theoretically, in order to choose the most suitable model, one can refer to the common

characteristics of the Binomial, Poisson and Negative Binomial distribution which is their
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belongness to the Panjer class. Inside a class [a,b,0], it could be possible to fit the model

pk
pk−1

= a + b
k on the empirical frequencies p̂k and estimate the parameters a and b by

standard linear regression models in order to identify the most proper distribution. The

method is quite elegant, but in practice it is very improbable to have a sufficient number of

empirical frequencies allowing for good and reliable estimate of the parameters. Therefore,

in practice, it is better to rely on some general criteria. In particular, the use of the binomial

distribution is reasonable only for individual risk model where each risk can have at most

one loss. In a collective risk model, characterised by the absence of an overall limit to the

number of claims in a given year, it is preferred to fit a distribution characterized by a

variance/mean ratio at least equal to the one of a Poisson process. The Poisson distribution

is justifiable only if the Poisson rate is quite constant and where there is a negligible effect of

systemic risk. Since in reality systemic risk is quite common, through a Poisson distribution,

it could be underestimated the volatility of the loss experience. As a result, in general it

is better to fit a Negative Binomial, estimate its parameters r̂ and β̂ and check from the

historical claim counts by method of moment or by maximum likelihood. If the constraints

r̂ > 0 and β̂ > 0 are met, fit a Negative Binomial, otherwise fit a Poisson distribution, and

estimate the Poisson rate λ.

2.5 Severity Analysis

Data transferred from the insurer to the reinsurer involves claims above the reporting thresh-

old a. Before determining the conditional loss distribution for the single loss (Z > a), it is

necessary to properly adjust the statistical material. In paragraph 2.3.2, the adjustments

regarding economic changes (like inflation) and changes in the portfolio have been presented.

Another adjustment necessary for the severity component regards the IBNER (Incurred But

Not Enough Reserved) which involves the difference between the final settled amount and

the overall estimate (consisting of paid and outstanding). The possible solutions to IBNER

are:

• Ignore IBNER, if there are not sufficient information on the development of the in-

dividual reserve or on the split between paid and outstanding. The shortfall of this

solution is the bias introduced in case of under or over reserving.

• Use just Closed claims. The approach still introduces some bias since the claims still

open are typically the largest ones.

• Identify trends in the estimated reserves for individual claims and use them in order
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to predict the ultimate value of each claim.

In addition, recall that the claims reported to the reinsurer are the ones above the reporting

threshold which is typically lower than the deductible, whereas the aim of the loss model is

to price a treaty with deductible D. Indeed, it has to be defined how many losses should

be taken into account for fitting the chosen distribution. If from one hand, it is desirable

to consider as many claims as possible in order to provide a reliable statistical basis, on the

other hand the distribution of small losses is typically very different from the distribution

of high losses. The Pareto distribution, which is typically used for modelling large losses,

solves the issue, being closed to truncation as described in the following paragraph. Once

historical data have been adjusted, it is possible to build a severity model by fitting a proper

distribution. It should be highlighted that rather than fitting all the possible distributions

from a distribution-fitting tool, it is preferred to restrict the number of admissible models,

selecting them according to the experience and to theory. For instance, distributions with

negative domain must be excluded. In addition, model complexity has to be penalized,

since models more complex than needed make poor predictions. It is suggested, if there is

sufficient data, to split the dataset int the training set (used for parameter estimation) and

a test set (used for selection and validation), whereas if the data is insufficient, to use the

AIC5 criterion.

Some considerations about extreme value theory (EVT). Reinsurance pricing in-

volves modelling claims above a certain threshold. According to the Extreme Value Theory,

it is necessary to consider a threshold distribution, which is a distribution taking values

above a certain positive threshold. In addition, the severity distribution density should

decrease with size since a large loss is typically less likely than a smaller loss. The Nor-

mal Distribution has to be excluded since its domain involves real numbers. In actuarial

pricing practice, typically a lognormal distribution is fitted. Since in a non-proportional

treaty, claims are reported above the threshold, it is more proper to fit a shifted lognormal

distribution, having a density function defined as:

fX(x) =
1

σ(x− d)
√

(2π)
e

(ln(x−d)−µ)2

2σ2 , x > d, d > 0

Moments are defined as:

E(X) = exp

(
µ+

σ2

2

)
+d

5AIC = −2loglik + 2d, where d is the number of parameters. Due to the presence of the penalty term
2d, the model with the smallest AIC achieves a compromise between fit and complexity.
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V ar(X) = exp
(
2µ+ σ2

)
(exp

(
σ2
)
− 1)

γ(X) = (exp
(
σ2
)

+ 2)
√

exp(σ2)− 1

Notice that the variance and the skewness are the same of a Lognormal distribution starting

in 0. Only the expected value is shifted by the parameter d.

With respect to a Normal distribution, the Lognormal distribution overcomes the problem

of possible negative values in the domain. In case of a non-proportional treaty, the (shifted)

Lognormal distribution has to be still avoided due to its behaviour not totally decreasing.

A distribution more suitable for describing reinsurance losses is the Pareto distribution or

the Generalized Pareto Distribution (GPD). According to the Pickland-Balkema-de Haan

theorem, the tail of any distribution can be modelled by a Generalized Pareto Distribution

(GPD):

F (x) =


1−

(
1 + ξ x−µσ

)− 1
ξ , ξ 6= 0

1− exp
(
−x−µσ

)
, ξ = 0

The probability density function is 0 up to the value µ and then it declines to 0 more or less

quickly according to the scale parameter ξ. In particular:

• If ξ > 0, the distribution goes to zero as power law (quite slowly).

• If ξ = 0, the distribution goes to zero as exponential (very fast).

• If ξ < 0, the distribution is capped and it is zero above a certain threshold.

σ is a scale parameter which stretches the distribution horizontally without impacting its

behaviour towards 0. Parameters can be estimated via Maximum Likelihood.

Regarding Excess of Loss severity model, the fundamental and mostly used distribution

is the Pareto distribution. Recalling that the Pareto distribution is a particular case of the

GPD, its cumulative distribution function and its density function can be defined as:

F (x) =


1−

(
x
µ

)−α
, x > µ

0, else

f(x) =


α · µα · x−α−1, x > µ

0, else

The parameters α and µ are strictly positive. Its density function is 0 up to µ and then

it shows a decreasing J-shaped behaviour approaching the orthogonal axis asymptotically.
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Figure 7: Density function of a Pareto distribution for different values of α

α is the shape parameter influencing the tail behaviour of the distribution, while µ is the

scale parameter, defining the minimum value the Pareto distribution can take. Figure 7

shows the density function of Pareto distributions with the same minimum value equal to

10 and different values of α, to detect the effect of the shape parameter. Higher is the shape

parameter α, lower is the relevance of the tail.

The moments of a Pareto distribution are given by:

E(Xk) =


α·µk
α−k , k < α

+∞, k ≥ α

The k-th order moment only exists for k < α. Specifically, the expected value and the

variance are:

E(X) = µ · α

α− 1
, α > 1

V ar(X) = µ2 · α

(α− 1)2 · (α− 2)
, α > 2

In order to parametrize the Pareto distribution, it is possible to apply method of moments

(MM) or the Maximum Likelihood (ML). Due to the poor data availability, it is better to

use a Bayesian estimator, combining the ML/MM estimates with some typical values of α

provided for certain lines of business. In particular:

• Earthquake and storm, α ≈ 1.

• Fire, α ∼ 2, fire in industry α ≈ 1.5.

• Motor Liability α ≈ 2.5.
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• Motor Liability α ≈ 2.5.

• General Liability α ≈ 1.8.

• Occupational injury α ≈ 2.

It should be noticed the case of earthquake and storm, for which there could be some

problems. In particular, if α < 1, the expected value does not converge and it is not possible

to run Montecarlo Simulations for pricing. Another characteristic is worth remembering

regards its behaviour in forming certain conditional distributions. In particular, if X is

Pareto(µ, α)-distributed and T ≥ µ, then:

X|X > T ∼ Pareto(T, α)

P (X > x|X > T ) =
P (X > max(x, T ))

P (X > T )
=

=


(
x
T

)−α
, x > T

1, else

By truncating a Pareto distribution, it is obtained still a Pareto distribution, with the same

shape parameter α. Indeed, this distribution is closed under truncation. The closure under

truncation property is very crucial given the data at disposal of the reinsurer. Indeed, if it

is possible to say that if losses above the reporting threshold a are Pareto distributed, also

losses above the deductible D will be Pareto distributed with the same shape parameter α

(but different starting point).

Finally, Figure 8 allows a comparison between the density function of a Pareto distribu-

tion and a Lognormal distribution having the same mean and variance in order to show how

the Pareto distribution satisfies much more the properties of a threshold distribution with

respect to a shifted Lognormal.

Expected Losses to the Layer. Once fitted a distribution for the individual reinsured

claim size and for the number of claims, it is quite simple to compute the expected aggregate

claims amount of the reinsurer. For an XL treaty, the loss to the layer (D,D + L) can be

defined as:

LD,L(Z) = min(Z,D + L)−min(Z,D)
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Figure 8: Comparison between the Pareto and the shifted Lognormal density functions.

The expected loss to the layer, if an individual loss has occurred before, is computed as:

E
(
LD,L(Z)

)
= E(min(Z,D + L)−min(Z,D)) = E(min(Z,D + L))− E(min(Z,D))

In particular, if the assumptions of independence between claim size and frequency and of

independence and of identical distribution of the claim sizes hold, the expected total losses

of a L xs D cover can be expressed as follows:

E(R(D,L)) = E

( Ñt∑
i=1

LD,L(Z)

)
= E(Ñt) · E(LD,L

(
Z̃)
)
=

= E(Ñt) ·
(
E(min(Z,D + L))− E(min(Z,D))

)
Recall that Ñt is the number of losses from the ground up (meaning the number of losses

reported to the insurer). Given the assumptions hold, the expected aggregate claims amount,

of which the reinsurer is responsible for, can be written as the product between the expected

frequency and the expected severity burden for the reinsurer. The expected severity burden

E(LD,L
(
Z̃)
)

can be expressed in terms of the distribution function of the loss, FZ , using the

stop-loss transformation. The stop-loss transform of a random variable X is the function in

real numbers:

sltX : R+ → R+

sltX(u) =

∫ +∞

u

(
1− FX(t)

)
dt
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Figure 9: Stop-loss transformation computed in 0.

Its name comes from the fact that it provides exactly the expected loss in a stop-loss treaty

with infinite cover as a function of the deductible. It is a decreasing convex function with

extremes equal to6:

sltX(0) =

∫ +∞

0

(
1− FX(t)

)
dt = E(X)

sltX(∞) = 0

Therefore, according to the Stop-Loss Transformation, the expected severity burden within

a layer with cover equal to L and a deductible D can be computed as the integral of the

survival function of Z between the extremes D and D + L:

E
(
LD,L(Z)

)
=

∫ D+L

D

(
1− FX(t)

)
dt

Notice that if Z is Pareto distributed, Z ∼ Pareto(α, µ), the expected severity burden can

6Indeed, according to the Darth Vader rule, the expected value of a non-negative random variable X
with finite expectation can be related with its distribution function as follows:

E(X) =

∫ +∞

0

(
1− FX(t)

)
dt
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Figure 10: E
(
L2,2(Z)

)
be expressed in a closed form7:

E
(
LD,L(Z)

)
= µα · 1

1− α

(
(D + L)−α+1 −D−α+1

)

This result is very powerful in particular in the case the Pareto distribution has a parameter

α ≤ 1. Indeed, in that case, the distribution has an infinite expected value, but the expected

severity burden will always exist thanks to a limit on the severity equal to L.

The shortfall of this formulation is that typically, the expected claim count from the

ground up, E(Ñt), is typically unknown. Indeed, claims are reported to the reinsurer only

up to the reporting threshold. Therefore, it is more useful to rewrite the previous formula

in function of the expected number of claims exceeding the threshold a:

E(R(D,L)) =
E(min(Z,D + L))− E(min(Z,D))

Pr(Z > a)
· E(Na)

where E(Na) = E(N) · Pr(Z > a). The ratio E(min(Z,D+L))−E(min(Z,D))
Pr(Z>a) is the average

severity conditional on the severity being above the reporting threshold. It can be rewritten

by knowing the probability of having a claim higher than the threshold a, based on the

7

E
(
LD,L(Z)

)
=

∫ D+L

D

(
1− FZ(t)

)
dt =

∫ D+L

D

(
t

µ

)−α
dt =

=

∣∣∣∣µ
(
t
µ

)−α+1

−α+ 1
+ k

∣∣∣∣D+L

D

=
µ

µ−α+1
·

1

−α+ 1
·
∣∣t−α+1

∣∣D+L

D
=

= µα ·
1

−α+ 1

(
(D + L)−α+1 −D−α+1

)
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severity model above a:

E(min(Z,D + L)|Z > a)− E(min(Z,D)|Z > a)

To sum up, the fair premium of the reinsurer can be computed as:

E(R(D,L)) = E(min(Z,D + L)|Z > a)− E(min(Z,D)|Z > a) · E(Na)

2.6 Distribution of the Aggregate Claims Amount

In order to make sensible risk-management decisions, it is necessary to know the aggregate

claims amount distribution. Generally, its calculation is quite difficult to be solved analyti-

cally. The cumulative distribution function of the aggregate claims amount can be expressed

as:

FR(r) = Pr(Z1 + ...+ ZN ≤ r)

The complexity arises from the fact it is involved a sum of random variables with distribution

FZ(z) and the distribution of the sum of random variables is a complicated function, named

convolution function, of the individual distributions. In addition, the number of random

variables is still a random variable. Since different values of N correspond to mutually

exclusive events, it is possible to write FR(r) as a weighted sum of the probability of mutually

exclusive events:

FR(r) = Pr(Z1 + ...+ ZN ≤ r) =

∞∑
n=0

Pr(N = n) · Pr(Z1 + ...+ Zn ≤ r)

By conditioning with respect to N , the problem has been reduced to calculating the dis-

tribution of the sum of a fixed number of random variables. The previous equation can be

rewritten, by calculating the convolutions of a fixed number of variables:

FR(r) =

∞∑
n=0

Pr(N = n) · FZ(r)∗n

where FZ(r)∗n is the n-th convolution power of FZ(r). If the severity distribution is contin-

uous, a similar relationship holds for the probability density function:

fR(r) =

∞∑
n=0

Pr(N = n) · fZ(r)∗n
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where fZ(r)∗n is the n-th convolution power of fZ(r). According to this formulation, the

cumulative distribution function of the aggregate claims amount can be seen as an infinite

sum of multi-dimensional integrals and typically it is not possible to write down its solution

in a closed form. Therefore, numerical methods are needed. Typically, in non-proportional

reinsurance pricing, an additional complexity can arise in presence of non-differentiable

function operating possibly on single claims amounts, on aggregation of them, and even

on the frequency component. Nevertheless, in order to calculate the distribution of the

aggregate claims amount, there are three typical approaches:

• Parametric Approximations.

• Numerical quasi-exact methods.

• Montecarlo Simulation Methods.

2.6.1 Parametric Approximations

Unlucky, it is not possible to apply the Central Limit Theorem8 since the number of claims

is itself a random variable. As a result, the variance is not simply given by the sum of the

variances of the severity distributions, but it must take into account also of the volatility of

the number of losses. In addition, there is no guarantee that the resulting distribution is still

Gaussian. It could be still possible to approximate the aggregate claims amount distribution

by a Gaussian distribution (Normal Approximation) by modifying the variance for taking

the extra volatility into account.

FR(r) ∼ Φ

(
r − E(R)

σ(R)

)

This approach has two main shortfalls:

• The error can be significantly high when the frequency is very low and its upper limit

is quite difficult to be calculated.

• The aggregate loss distribution is typically not symmetric and the Gaussian does not

capture the right-hand tail. Higher is the skewness, poorer is the accuracy.

8The Central Limit Theorem (CLT) states that, given a sequence of i.i.d random variables X1, . . . , Xn
with expected value µ and variance σ2 <∞, where X̃n denotes its empirical average, it holds that:

√
n(X̄n − µ)

d−→ N(0, σ2)

where
d−→ stands for convergence in distribution.
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If the skewness of R is available, it is possible to apply a Normal Power Approximation:

FR(r) ∼ Φ

(
− 3

γ(R)
+

√
9

γ2(R)
+ 1 +

6

γ(R)
·
(
r − E(R)

σ(R)

))

The relationship holds for the right tail and for skewness index lower than 1.

In addition, if the three first moments are available, it is possible to fit a translated gamma

approximation which fits a shifted gamma distribution to the aggregate claims amount.

R ∼ Γ

(
4

γ2(R)
,

2

γ(R) · σ(R)

)
+E(R)− 2σ(R)

γ(R)
, with γ(R) > 0

It fits a skewed distribution, but the way in which modelling the tail and quantifying the

error is still an unsolved issue. Regarding both parameters approximations methods, the

accuracy is very poor, in particular when the number of claims is small and the severity

tail is fat. Therefore, they could perform very poorly going in tail regions which are of

substantial important in reinsurance. In addition, they are not flexible methods, but they

have the advantage of being easy and quick to implement.

2.6.2 Numerical Quasi-Exact Methods

In Numerical quasi-exact methods, the aggregate claims amount distribution is defined by

calculating the convolution integrals using discrete mathematics. Indeed, integrals can be

approximated as a finite sum. It is necessary to discretize continuous distribution, respec-

tively the severity distribution fZ(z) and the aggregate loss distribution fR(r) using steps

of height h. In particular, fk is the value of f(z) evaluated in z = hk. In such a way, it is

possible to approximate the aggregate loss distribution as a finite sum:

fR,k =

k∑
n=0

Pr(N = n) · f∗nZ,k

The two typical numerical quasi-exact methods are the Fast Fourier Transform Method

(FFT) and the Panjer recursion. In practice, regarding the FFT, it is necessary to make sure

that numerical errors are sufficiently small, paying attention to the choice of the parameters

in terms of number of subdivisions M and discretization step h. In particular, the step h

must be defined sufficiently smaller than the typical loss amount and such that the difference

between the statistics of the severity computed on that value of h and the true ones is not

significant. M cannot be too large in order to avoid computational issues. In addition,

M · h must be chosen such that the probability of obtaining total losses larger than M · h is
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negligible. Given the same number of steps (M), a too low value of h could lead to a poor

approximation since it could not capture the full range of loss amount. On the other side, a

value too high of h could lead to an insufficient granularity of the severity distribution. To

sum up, the Fast Fourier method has an arbitrary degree of flexibility achieved according

to the calibration of the discretisation step and the number of points. It is less flexible than

a parameter approximation method, but it is very fast. In particular, the speed does not

depend on the number of claims, but only on the number of subdivisions. If the frequency

distribution belong to the (a,b,0) class, it is possible to apply the Panjer recursion. In

particular, the density function of the aggregate claims amount can be written as:

gk =

k∑
n=0

pn · f∗nk

where pn = Pr(N = n). For a distribution belonging to the Panjer class, the following

relationship holds:

pk =

(
a+

b

k

)
·pk−1, k ≥ 1

with p0 6= 0. The recursive formula for the aggregate claims amount is:

gk =
1

1− af0

k∑
j=1

(
a+

bj

k

)
·fj · gk−1, k = 1, 2, ...

g0 is the probability of having aggregate claims amount equal to 0 and it is given by:

g0 = Pr(R = 0)


e−λ(1−f0) (Poisson Case)

(1 + q(f0 − 1))m (Binomial Case)

(1− β(f0 − 1))m (Negative Binomial Case)

As for the FFT, the Panjer recursion has an arbitrary degree of accuracy achieved through

the calibration of the discretisation step. With respect to the FFT, the Panjer recursion

is slower and has a simpler implementation, but it can be fitted only for certain frequency

distributions. In addition, there are not many constraints on the choice of the parameters

and different levels of accuracy can be achieved by setting different discretization steps.

However, if the number of claims is very large, a computational issue can arise. Indeed,

g = 0 = e−λ(1−f0) could be lower than the smallest number a computer is able to represent.
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2.6.3 Montecarlo Simulation

The Monte Carlo simulations is the most typical way applied for calculating the aggregate

claims amount distribution since it is flexible and easy to implement. In order to run

Montecarlo simulations, two inputs are need:

• Frequency model, like the Negative Binomial, representing the number of claims in

excess of the reporting threshold. Recall that the reporting threshold has to be lower

than the deductible.

• Severity model, like a GPD or a Pareto distribution, representing the distribution of

the claim size above the reporting threshold.

The algorithm for obtaining the distribution of the aggregate claims amount ceded to the

reinsurer consists of the following steps:

1. Sample a number n of losses from the frequency model.

2. For each of these n losses, sample a random number from the severity model, obtaining

the vector: z1, z2, . . . , zn.

3. Calculate the amount of losses to be ceded to the reinsurer.

4. Repeat steps 1 to 3 for S times, where S denotes the number of simulations. Higher

is S, higher is the accuracy of the methodology.

5. The outcome of the S simulated scenarios, if ordered in ascending order, provides an

approximation of the distribution of the aggregate losses to the layer.

In practice, the possible complexities arising from the application of Montecarlo Simulations

are:

• A higher value of S implies a better precision in the calculation of quantiles, but also

a slower methodology.

• The desired number of simulations is not known in advance.

• The sorting process requires the store of all the scenarios in the computer’s memory

which could be problematic if the number of simulations is very large.

To sum up, the accuracy of MC simulations can be easily improved by increasing the number

of simulations. It is completely flexible, but it is very slow when the number of claims and

the number of simulations is high.
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In practice, typically Montecarlo simulation method is preferred where the maximum

level of flexibility is needed, whereas the FFT should be used only when computational effi-

ciency is prioritized. The Panjer recursion is typically applied when computational efficiency

is less crucial and an ease of implementation is required.

After having calculated the entire distribution of the aggregate claims amount above

the threshold, the computation of the technical premium is quite straightforward. Only

some additional complexities with respect to insurance pricing need to be highlighted in

case of high layers. First of all, the results of the model could be very unreliable due to

the high volatility in that region of the distribution and the poor data availability. Due

to the high volatility, the marginal cost of setting capital aside is important. Secondly,

the presence of reinstatement premiums makes the premium paid over the course of the

contract a stochastic variable. Indeed, the premium has to be calculated basing on the

expected value of that random variable and on a correction factor driven by the estimated

number of reinstatements.

2.7 Reinstatement Premiums

It is quite simple to calculate the expected losses to a layer through Montecarlo simulations

also in case of a limited number of reinstatements. Especially in property line, a premium

is charged to reinstate the layer which implies that the premium to be paid is not fixed in

advance, but it needs to be simulated being itself a random variable. Analytical formulas

have been developed in order to calculate the premium to be charged upfront according to

the reinstatement structure. Since typically reinstatements are present for short-tail risks,

it is not necessary to consider layer indexation, which is typical of liability line. Considering

an XL L xs D without aggregate deductible and without reinstatement and having claims

Z1, . . . , Zn, the aggregate claims amount to the layer are defined as:

R(D,L) =

n∑
i=1

LD,L(Zi) =

n∑
i=1

min(Zi, D + L)−min(Zi, D)

Its expected value is computed as:

E(R(D,L)) =

n∑
i=1

E(LD,L(Zi))

Let’s now introduce the constraint that there will be only k reinstatements to the layer,

which is equivalent to assume an aggregate limit equal to: AL = (1 + k) · L and a null
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aggregate deductible. Denote with P0 is the initial premium paid for the cover of a first

layer min(R(D,L), L). For each reinstatement j, there will be a reinstatement premium

equal to:

Pj = βj · P0

where βj is a number between 0 and 1. For the k reinstatements, the sequence (βj)1≤j≤k

is fixed in advance and called premium plan. The values βj can be fixed (pro-rata capita)

or dependent on the time the reinstatements are paid (pro-rata temporis). The reasoning

underlying the pro-rata temporis is that closed to the expiry date of a contract it will be less

likely that the next layer will be used up. Easily, the expected loss to the layer is defined as:

E(R(D,L; 0, (k + 1)L)) = E

(
L0,(k+1)L

( n∑
i=1

E(LD,L(Zi))
))

The expected overall premium is:

E(P ) = P0 ·
(

1 +

k−1∑
j=0

βj
L
E

(
LjL,L

( n∑
i=1

LD,LZi
)))

By inverting the previous analytical formula, the upfront premium can be easily obtained.

In practice, it is much more common to calculate the expected losses and the premiums

through Montecarlo simulations. Assume to determine the premium basing on the expected

losses to the layer and not on the full aggregate claims amount distribution. Given an XL

treaty, for each scenario, it is simulated the total losses to the layer before the aggregate

limit: R(D,L). Secondly, it is computed the number of required reinstatements defined

as the ratio between the total losses to the layer and the limit L. It should be considered

also the fact that the treaty could define a maximum number of possible reinstatements. In

addition, the treaty defines for each reinstatement the related premium as a percentage of

the upfront premium:

Pj = βj · P0, with 0 ≤ βj ≤ 1

The effective reinstatement premium required by each loss will be defined according to

the proportion of layer “eaten” by the loss. For the h-th loss, the premium for the j-th

reinstatement will be equal to:

Ph,j = βj · P0 ·
min(reinstatementj , L)

L
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where reinstamentj denotes the amount of the h-th loss exceeding the previous j−1 layers.

If the reinstated layer L is used completely, the related reinstatement premium will be

equal to Pj , otherwise it will be defined according to the percentage of layer used. For

each simulated scenario, the total premium is computed as the sum of the upfront premium

and the reinstatement premiums. To sum up, given a total loss Xi, a total premium Pi is

calculated as a multiple (not necessarily an integer) of the upfront premium:

Pi = ρi · P0, with ρi ≥ 1

At the end of the simulation process, it will be available an estimate of the expected losses

E
(
R(D,L; 0, (k+1)L)

)
and an estimate of the total expected premium defined as the product

between the expected number of reinstatements and the upfront premium:

E(P ) = E(ρ) · P0

What it is interesting for pricing purposes, it is the estimate of the necessary number of

reinstatements, E(ρ). Indeed, the upfront premium can be computed as:

P0 =
P

ρ
=

(
E(min(Z,D + L))− E(min(Z,D))

)
·E(N)

ρ
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3 Solvency II

As explained in the Chapter 1, one of the reasons why an insurance company is interested

in underwriting a reinsurance treaty is the reduction of its capital requirement. In this

Chapter, the Solvency II regime will be described, starting from an introduction regard-

ing the general framework and moving towards the computation of the Solvency Capital

Requirement (SCR) for the macro-risks most affected by a reinsurance treaty (respectively

the Non-Life Underwriting Risk and the Counterparty Default Risk), looking also at the

amendments introduced by the Review 2018 and at the possible changes according to the

EIOPA Opinion on Review 2020.

3.1 Introduction

3.1.1 Before Solvency II

From the beginning of the 21st century, some discussions about the pertinence of the Sol-

vency I framework started. In particular, the Required Solvency Margin (RSM) under the

Solvency I framework considered essentially just the underwriting risk ignoring other risks as

the operational risk, market risk, credit risk, liquidity risk and their dependence structure.

In addition, the factor-based approach was not able to properly measure the complex forms

of risks and of risk transfers. Those factors led to wrong and unreasonable estimation of

the capital requirement. At that time, the Solvency Ratio was well above 2, since insurance

undertakings held an Available Solvency Margin much larger than the RSM which was not

properly estimated. In addition, there was not sufficient attention to the qualitative aspects

of the supervision and no rules regarding insurance groups. Therefore, a new regulation and

of a holistic risk management were surely necessary as the financial crisis of 2009 highlighted.

3.1.2 Why Solvency II

Before presenting the review of the prudential regime for insurance undertakings introduced

by Solvency II, it could be interesting to make a comparison with respect to the previous

solvency regime.

First of all, Solvency II has higher risk sensitivity. Indeed, the Required Solvency Margin

under the Solvency I framework was computed by applying the same percentages to the

volume of premiums or of claims of the total business without considering the different

volatilities of the Lines of Business. Conversely the Solvency Capital Requirement regarding

the Non-Life Underwriting Risk is computed separately for each segment considering the
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peculiar characteristics.

In addition, the SCR considers much more macro risks than the RSM of Solvency I by

including the counterparty risk, the market risk, the credit risk, the operational risk, and

much more proper measurements of the underwriting risks.

Another aspect properly improved in the passage from Solvency I to Solvency II regards

the aggregation. Indeed, under Solvency I, the diversification was not properly measured,

and it was considered only by computing the capital requirement on the total business.

Differently, Solvency II prescribes the computation of the SCR for submodules which are

aggregated through linear correlation (in the Standard Formula). In a (partial) internal

model, the undertaking can use different aggregation tools (as copulae) which are more

flexible and able to describe the real dependence structure existing between risk submodules.

As previously anticipated, a big news of the Solvency II framework is the introduction of an

ad-hoc calculation of the capital requirement, through internal models.

3.1.3 Solvency II objectives

The main objective of Solvency II is the protection of policyholders and beneficiaries, which

is reached through the introduction of a capital requirement computed under a risk-based

approach (more risks, more capital). In particular it must consider all the risks the insurance

undertaking is exposed to, overcoming the shortfalls of the Solvency I framework. The role

of the capital requirement is to assure that insurance companies will be able to meet their

commitments towards beneficiaries and policyholders. The protection of policyholders and

of beneficiaries cannot be absolute, since it would imply an infinite capital, totally unfeasible

for the undertaking. A proper level of confidence must be chosen in order to balance the

trade-off between the policyholder’s protection and the cost of capital. In particular, the

higher is the level of confidence, the higher is the protection of the policyholders, but also

the higher is the capital requirement. In the Solvency II framework, the chosen level of

confidence is 99.5%, which is equivalent to accept that 0.5% of the insurance undertakings

will go in ruin (in one year).

The Solvency II framework presents also secondary objectives which must be taken into

account without undermining the main one. Examples of secondary objectives are the

financial stability and the deepening of the single market, which can be achieved through

the introduction of uniform rules (regulatory harmonization), by reducing the member states’

options. The last objective, which is also an effect of the implementation of the Solvency II

framework, is an improvement of the international competitiveness between the European

57



insurance companies. Indeed, the amount of the capital requirement strictly depends on the

quality of the risk management, implying that the insurers will carry out their business with

the optimal amount of capital.

3.1.4 Lamfalussy Approach

One of the objectives of the Solvency II project is the regulatory harmonization which can

be reached through a complex regulation system structured in different levels, denoted as

the Lamfalussy approach. At the level 1, there is the Solvency II directive9, adopted by

the council of the European Union and by the European Parliament in November 2009.

It defines only the general framework, structure, and principles of Solvency II (principle-

based approach). At that time, it was not defined the implementation date, which was set

only in December 2013 to be 1st January 2016. In addition, revisions to the Solvency II

directive, including the application date, are contained in Omnibus II directive (April 2014).

At the level 2, there are the implementing measures and regulations issued by the European

Commission. They specify rules and detailed measures on the new solvency regime. The

most important regulation is the Delegated Acts published in January 2015, explaining also

in quantitative terms the details of the first pillar’s calculation. At the level 2.5, there are the

technical standards proposed by EIOPA and adopted by the European Commission. They

include the Regulatory Technical Standards and the Implementing Technical Standards. At

level 3, there are the guidelines by EIOPA aiming at ensuring consistent implementation

and cooperation between Member States of the European Union. They regard specifications

of rules directly issued by EIOPA and since EIOPA has not legislative power, a national

implementation is needed. Finally, at level 4, there is the rigorous enforcement of Community

legislation by the Commission.

3.1.5 Three Pillars Structure

One of the main characteristics of the Solvency II framework is the three-pillars structure:

• Pillar I

The Pillar I involves the quantitative requirements needed to check whether the insur-

ance company has sufficient resources in order to cover the risks to which it is exposed.

In order to comply with the requirement, its Solvency Ratio (i.e., the ratio between

Eligible Own Funds and the Capital Requirement) shall be not lower than 100%.

9Directive 2009/138/EC.
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• Pillar II : governance requirements and supervisory review requirements.

It aims at implementing a sound and prudent business management through a proper

system of governance. In addition, it includes also an ORSA process.

• Pillar III

The Pillar III regards the reporting and disclosure requirements which should strengthen

the market discipline.

3.2 Pillar I

The calculation of the Solvency Ratio involves the computation of the Own Funds and of the

capital requirement. In particular, the Solvency II framework prescribes two risk measures:

the Solvency Capital Requirement and the Minimum Capital Requirement.

Before introducing the Own Funds (OF) and their different configuration, it is crucial the

definition of evaluation criteria for assets and of liabilities since they affect the value of the

OF.

3.2.1 Evaluation Criteria

The Solvency II directive prescribes the Full Fair Value approach, according to which assets

and liabilities (except technical provisions) must be evaluated at their current exit price

(Fair Value) using market-consistent information and methodologies (Article 7510 of Di-

rective 2009/138/CE). The regulation states that insurers should use IFRSs if IFRSs are

consistent with the fair value and that insurers should use fair value if IFRSs are not con-

sistent with the fair value.

The article 76 of the Solvency II directive proposes a technical provisions’ evaluation very

closed to the definition of the current exit value:

�The value of technical provisions shall correspond to the current amount insurance and

reinsurance undertakings would have to pay if they were to transfer their insurance and

reinsurance obligations immediately to another insurance or reinsurance undertaking�.

Conversely to assets, technical liabilities are not listed in the market and, consequently,

a market value is not available. Therefore, it is not possible to follow a mark to market

approach. Only a mark to model approach is feasible, by introducing a methodology con-

sistent with the definition of current exit value. In addition, the evaluation shall be market-

consistent, meaning that the undertaking must use all the information coming from the

10”Assets shall be valued at the amount for which they could be exchanged between knowledgeable willing
parties in an arm’s length transaction�. �Liabilities shall be valued at the amount for which they could be
transferred, or settled, between knowledgeable willing parties in an arm’s length transaction”.
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financial markets and the underwriting risks data. The introduction of a market-consistent

evaluation aims at limiting as much as possible the subjectivity and the discretion related

to the hypotheses typically made in the Local GAAP technical provisions’ evaluation. The

methodology prescribed by the Solvency II framework in order to evaluate technical lia-

bilities depends on the type of the liability itself. In particular, the distinction is made

between:

• Hedgeable liabilities.

If future cashflows related to the insurance or reinsurance obligations can be replicated

reliably using financial instruments for which a reliable market value is observable, the

value of technical provisions associated with those future cash-flows shall be determined

on the basis of the market value of those financial instruments (replicating portfolio

technique11). Unlucky, the majority of the insurance cashflows are not hedgeable and,

therefore, the replicating portfolio technique can be applied only for very peculiar

insurance contracts as unit-linked and index-linked without guarantees.

• Non-hedgeable liabilities.

The value of technical provisions shall correspond to the sum of a best estimate and

of a risk margin. The Best Estimate (BE) shall be equal to the probability weighted

average of future cashflows, taking into account the time value of money by using the

relevant risk-free rate term structure (r(0, t)), monthly calculated and published by

EIOPA:

BE =

T∑
t=1

E(Ft)

(1 + r(0, t))t

In addition, it has to be computed on the basis of credible and current information

and realistic assumptions, by considering also the financial guarantees existing on the

insurance contracts under evaluation. In the projection of cashflows, all the cash in

and out flows needed for settling the insurance liability must be properly taken into

account over its lifetime. In principle, the BE should be evaluated for each contract or

claim, but the regulation allows to make the cashflow projection on groups of contracts

suitably defined.

11If either a financial instrument or an insurance contract has a set of future random cash flows F that is
hedgeable, then its fair value is equal to the market price of the correspondent replicating portfolio:

F =

N∑
i

xiRi → V (F ) =

N∑
i

xiV (Ri)

It is a direct consequence of the Law of one price, which requires the hypothesis of absence of arbitrage
opportunity.

60



Finally, the Best Estimate has to be calculated gross of reinsurance, without any

deduction for recoverables arising from reinsurance contracts and special purpose ve-

hicles. The recoverables shall take into account the expected losses due to default

of the counterparty, defined as the loss given default of the counterparty weighted

by the probability of default of the reinsurer/special vehicle. The loss given default

corresponds to expected present value of the change in cash-flows underlying the re-

coverables, resulting from a default of the counterparty at a certain point in time. It is

evaluated market consistently and the probability of default depends on the rating of

the counterparty.12 When the amount of the recoverable is estimated, it is possible to

calculate a net value of the Best Estimate defined as the difference between the gross

BE and the recoverables.

The second term involved in the computation of technical provisions is the Risk Mar-

gin (RM). There are different methodologies available for computing the RM, but in

order to avoid discretion in the evaluation, the Solvency II directive imposes a Cost

of Capital approach, as defined in article 77, being more in line with the definition of

current exit value. In particular, the risk margin should be calculated by determining

the cost of providing an amount of eligible own funds equal to the SCR necessary to

support the insurance obligations over the lifetime thereof:

RM =

T∑
t=0

CoC · SCRt
(1 + r(0, t+ 1))t+1

The first step in the computation of the RM is the projection of the Solvency Capital

Requirement from the evaluation date (t=0) to the total run-off of the overall liabilities

(t = T ). SCRt includes only a specific set of risks, respectively: the underwriting risk

for existing business, the default risk13, the operational risk and the material market

risk. Secondly, the cost of capital, CoC ·SCRt, for each year must be quantified. The

cost of capital rate CoC is the lack of profitability a shareholder suffers by investing

in the Own Funds of the insurance undertaking, since they cannot be invested freely

but according to some constraints set by the regulation. It can be defined as the

difference between the rate of return obtainable on the market through an investment

with a risk profile like the insurer’s one and the risk-free rate. In the Solvency II

framework, the cost of capital rate is fixed at 6% for all the companies, regardless

12Worse is the rating, higher is the probability of default.
13with respect to reinsurance contracts and any other material exposures which are closely related to the

insurance and reinsurance obligations
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their risk profile. Finally, the cost of capital must be properly discounted at the basic

risk-free rates without any volatility adjustment or matching adjustment. Notice that

the discounting is applied for a year more than the period to which the SCR refers,

since the SCR at the generic time t will be used for covering risks in t+1.

Finally, the RM must be computed separately for the Life business and the Non-Life

business. A calculation segment14 specific would be more in line with the current

exit value’s definition, but it is very time-consuming (a lot of assumptions, data,

and computations) and it does not allow for any diversification benefit. The main

complexity in the RM computation regards the SCR projection, especially for very

long-term business. Therefore, the regulation allows for some proxies which make the

RM computation more feasible:

1. Approximate the individual risks or sub-risks within some or all modules and

sub-modules to be used for the calculation of future SCRs.

2. Estimate all future discounted SCRs “at once”, as using an approximation based

on the duration approach (mostly applied by Life insurance companies).

3. Approximate the risk margin by calculating it as a percentage of the best estimate

defined by the regulation and segment specific.

4. Approximate the whole SCR for each future year, as using a proportional ap-

proach (mostly used by Non-Life insurers).

SCRt = SCR0 ·
BEnett

BEnet0

The projected SCR at the generic time t is computed by applying to the current

SCR a proportionality factor given by the ratio between the Best estimate net of

reinsurance at time t and the best estimate net of reinsurance at the evaluation

time. It is implicitly assumed that the SCR decreases in the same proportion the

BE15 does. Since the BE is a (present) expected value, whereas the SCR is a risk

measure, it is like assuming that the risk decreases in the same proportion the

expected value does. This assumption could be not met in practice, since typically

during the first development years the less risky claims are settled and, as a result,

14The Annex I of the Delegated Acts list the 12 segments present in the Solvency II framework. The first
nine segments regard the Non-Life obligations related to direct insurance business and to the proportional
treaties as risk taker, while the last three regard Non-Life obligations, related to non-proportional treaties
as risk taker.

15The Best Estimate presents a decreasing behaviour since in the technical provisions’ evaluation, the
existing business is considered.

62



the expected value decreases more than the risk leading to an underestimation of

the RM.

According to the Opinion on Review 2020, EIOPA advices to introduce a new formu-

lation for the calculation of the Risk Margin which tries to fix two unsolved issues:

– The Cost of Capital Approach is sensitive to changes in interest rates, especially

for long-term products. Interest rates are involved in the projection of risks and

in their discounting such that a decrease in interest rates will increase the risk

margin. Consequently, wrong estimates of the long end of the risk-free curve

can lead to overestimation or underestimation the risk margin. Therefore, the

current Cost of Capital approach could be too much sensitive to interest rates

changes and it could lead to unintended consequences and procyclical behaviors

of undertakings.

– Due to its complexity, the projection of future SCR is typically approximated by

taking a central scenario over the liabilities’ lifetime. In this central scenario, an

average emergence of risk is assumed, ignoring shock events. The consequence is

that SCRt could be not significantly different from SCRt−1, other than in the

run-off of liabilities, and that the dependence of risks over time is completely

ignored. For instance, if a loss occurs in one period, the current approach ignores

that the future SCRs may be expected to be lower16. On average it will take

into account the loss also in the future periods, even though it could not happen

in future, leading to an overestimation of the projected SCRs. Therefore, it is

necessary that the economic approach applied for the projection of future SCRs

considers the dependence of risks overtime even if its exact definition can be quite

challenging17.

In order to take into account the time dependence and to reduce the RM sensitivity

to interest rates changes, EIOPA Opinion on Review 2020 amends the formula for the

calculation of the Risk Margin as follows:

RM = CoC ·
T∑
t=0

max (λt, f loor) · SCRt
(1 + r(0, t+ 1))t+1

16The effect of the time dependence among risks depends also on the characteristics of the undertaking’s
risk profile. For instance, for some kinds of risks, an emergence of a risk in a period may make further
emergences of risks in future more likely.

17The estimation of time dependence would require a full stochastic projection of future SCRs throughout
the whole lifetime of the insurance obligations.
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The future projected SCRs computed under the current approach are adjusted in order

to consider the time dependence:

– SCR
′

0 = SCR0: the current SCR is not adjusted since no risks have emerged.

– For t ≥ 1, SCR
′

t = max

(
λ · SCR′t−1 · SCRt

SCRt−1
, f loor · SCRt

)
.

The adjusted future SCRs (SCR
′

t) are determined under the assumption that the

emergence of risk during the interval [t-1, t] leads to an annual reduction of the

SCR by the factor:

µ = 1− λ

The maximum function assures that the adjusted SCR
′

t is at least equal to a floor

percent of the unadjusted SCR. The parameter floor avoids excessive reductions

of the adjusted future projected SCRs and it considers that for some risks (as

expense risk) the emergence of risks generally does not lead necessarily to a

reduction in the risk behavior in future periods.

By the annual reduction accumulated through time, the adjusted SCR decreases

smoothly in an exponential way by the factor λt with respect to the unadjusted SCRs.

From the outputs of the analyses performed, EIOPA notices that the introduction of

the floored, exponential and time dependent element λ will reduce the sensitivity of the

risk margin with respect to interest rates changes especially for long-term products.

The calibration of the parameters λ and floor is quite complicated due to the high

volatility in the assessment of time dependence. Since typically the time dependence

of risks is assumed to not exceed 2.5%, λ should not be lower than 97.5%. In addition,

the accumulated reduction of the projected future SCRs should not exceed 50%. The

final values set by EIOPA in its analysis are floor = 50% and λ = 97.5%, which could

lead to a reduction of the size and of the volatility of the Risk Margin.

To conclude this paragraph on the evaluation criteria, it could be useful to highlight the two

motivations behind the Full Fair value approach:

• The FV is a uniform approach which limits subjectivity and discretion in particular

for traded financial instruments. Conversely for the liabilities, the subjectivity is not

completely deleted since not always a market value is available.

• The full FV approach allows for a correct measurement of the risks since the SCR is

defined as the loss of the BOF in the worst-case scenario.
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The main drawback of the full Fair Value approach is its volatility. Being a current value, the

Fair Value is highly affected by the financial market conditions. If the financial conditions

are very volatile, also the value of assets and liabilities will be very volatile, implying quite

unstable value of BOF and consequently of the Solvency Ratio.

3.2.2 Own Funds

The Own Funds are the available resources held by an insurance company in order to cover

possible future losses in the perspective of the policyholder. There are different configura-

tions of Own Funds. The Basic Own Funds (BOF) are given by the sum of the excess of

assets over liabilities and the subordinated liabilities. Ancillary Own Funds (AOF) consist

of items other than BOF which can be called up to absorb losses. Typically, they include

unpaid share capital, initial fund that has not been called up, letters of credit and guaran-

tees and any other legally binding commitments received by the insurance undertaking. The

amount of AOF to be taken into account in the computation of Own Funds is subject to the

supervisory approval. The Total Own Funds (TOF) are simply given by the sum of Basic

OF and Ancillary OF. The TOF must be reduced by the future dividends the company

expects to pay in the next year since they will be no more available for covering possible

losses in the perspective of the policyholders.

Once assessed the TOF, it is important to properly tier them in order to consider their

ability to fully absorb future losses on a going basis. In particular, Own Funds are classified

into three tiers:

• Tier 1: OF with high quality and fully absorbing losses.

• Tier 2: intermediate quality own fund items.

• Tier 3: low quality own funds items.

The excess of assets over liabilities belong to the Tier 1 since they are resources fully at

disposal of the insurance undertaking. Subordinated liabilities can belong to a particular

tier according to their contractual characteristics. Conversely, AOF can be only of Tier 2

or 3. The characteristics determining the tier are the permanent availability, the subordina-

tion, sufficient duration, absence of encumbrances, of incentives to redeem and of mandatory

servicing costs. In addition, the sum of paid-in preference share and of the related share

premium account, of paid-in subordinated mutual member accounts and of paid-in subordi-

nated liabilities must be less than 20% of total Tier 1 Funds.
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In order to move from the Total Own Fund to the Eligible Own Funds, the directive puts

some quantitative limits. The eligible amount of own funds to cover the Solvency Capital

Requirement shall be equal to the sum of the amount of Tier 1, the eligible amount of Tier

2 and the eligible amount of Tier 3, according to the following constraints:

• the proportion of Tier 1 items in the eligible own funds shall be higher than one third

of the total amount of eligible own funds.

• the eligible amount of Tier 3 items shall be less than one third of the total amount of

eligible own funds.

• the eligible amount of Tier 1 items shall be at least one half of the Solvency Capital

Requirement.

• the eligible amount of Tier 3 items shall be less than 15% of the Solvency Capital

Requirement.

• the sum of the eligible amounts of Tier 2 and Tier 3 items shall not exceed 50% of the

Solvency Capital Requirement.

The eligible amount of Basic Own Funds to cover the Minimum Capital Requirement shall

be equal to the sum of the amount of Tier 1 and the eligible amount of basic own fund items

classified in Tier 2, subjected to all of the following quantitative limits:

• the proportion of Tier 1 items in the eligible basic own funds shall be higher than one

half of the total amount of eligible basic own funds.

• the eligible amount of Tier 1 items shall be at least 80% of the Minimum Capital

Requirement.

• the eligible amount of Tier 2 items shall not exceed 20% of the Minimum Capital

Requirement.

3.2.3 SCR

The Solvency Capital Requirement ”shall correspond to the Value at Risk of the basic own

funds of an insurance or reinsurance undertaking subject to a confidence level of 99,5% over

a one-year period”18. In other words, it is the level of patrimonial resources that keeps the

company solvent in a Worst-Case Scenario subject to a 99.5% confidence level over one-

year period. The SCR takes into account all quantifiable risks and, at least, the Non-Life

18Art.101.3, Directive 2009/138/EC.
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underwriting risk, the Life underwriting risk, the health underwriting risk, the market risk,

the credit risk and the operational risk. It shall cover existing business, as well as the new

business expected to be written over the following 12 months on a going concern. The SCR

has to be computed by insurance undertaking at least once a year or every time the risk

profile deviates significantly from the assumptions underlying the last reported Solvency

Capital Requirement.

There are four possible approaches for calculating the Solvency Capital Requirement:

1. Standard Formula.

The risk map, the aggregation approach, modules, and the aggregation parameters are

fixed by the second level regulation. The vast majority of Italian insurance companies

applies it.

2. Full internal Model.

The risk map, the aggregation approach, modules, and the aggregation parameters are

developed internally by the company according to its peculiar characteristics.

3. Standard Formula with the Undertaking Specific Parameters (USP).

The risk map, the aggregation approach and the aggregation parameters are fixed by

the second level regulation, but some parameters in the underwriting risk modules

may be company specific.

4. Partial Internal Model.

The company applies the Standard Formula for some modules and for others an In-

ternal Model.

For applying USP, Full internal model or partial internal model, it is required an authoriza-

tion by the Supervisory authority. From now on, the calculation of the SCR according to

the Standard Formula is depicted.

SCR Computation - Standard Formula. The Solvency Capital Requirement in the

Standard Formula is based on a modular structure. The Basic SCR is made up of six

macro-modules, respectively the market risk, the health underwriting risk, the Non-Life

underwriting risk, the Life underwriting risk, the counterparty default risk, and the SCR

intangible. Each module is divided into submodules as Figure 11 shows. The SCR is

computed for each submodule according to two possible approaches, the scenario-based

approach, or the factor-based approach, with fixed parameters/shocks, as the Delegated
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Figure 11: Modular structure of the Standard Formula, IVASS

Acts states. In a scenario-based approach, a stressed scenario for the specific submodule

is calibrated at 99.5% confidence level. In order to compute the SCR, it is necessary to

compute the value of assets, liabilities, and Basic Own Funds in the normal scenario and in

the stressed one. The SCR is defined as the loss in the BOF, computed as the difference

between the current BOF and the stressed BOF:

SCR = max[∆BOF |Stress; 0]

For some risk submodules there could be more than one stressed scenario and the SCR is

given by the scenario in which the variation in the BOF is higher. Life Underwriting risk,

Market risk and Cat risk for Non-Life business are typical examples of a Scenario-Based

Approach.

In a factor-based approach, the SCR is computed by applying specific percentages to

volume of risk exposure as premiums and technical provisions:

SCR = f(TPs;Premiums)

It is based on single risks exposures and risk factors, which are calibrating considering the

tail of the distribution, the trend, and the volatility effect. Premium&Reserve risk and

Operational risk modules are two typical examples of Factor-Based Approach.

The scenario-based approach is much more in line with the definition of Value at Risk,

but, in some cases, it is too difficult to be applied (for instance for Non-Life premium and
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reserve risk). Therefore, the factor-based approach is more feasible since it takes into account

the dimension of the company through some accounting variables without measuring with

precision the risks. In some cases, like for the premium and reserve risk, parameters could

be calibrated using internal data (see USP in paragraph 3.5.2).

In order to compute the Basic SCR, a two-step aggregation, based on linear correlation

coefficients, is compulsory. The first aggregation regards the SCRs of submodules for the

same risk module. The second-step aggregation allows to compute the Basic SCR as:

BSCR =

√∑
i,j

Corri,j · SCRi · SCRj + SCRintangibles

Five risk modules (Life Underwriting risk, Non-Life underwriting risk, Health Underwriting

risk, counterparty default risk and market risk) are aggregated by applying the aggregation

formula mathematically proved for the standard deviation. All the linear correlation coef-

ficients involved in the two-step’s aggregation are provided by the second-level regulation

(Table 1).

Market Default Life Health Non-Life
Market 1
Default 0.25 1
Life 0.25 0.25 1
Health 0.25 0.25 0.25 1
Non-Life 0.25 0.5 0 0 1

Table 1: Correlation Matrix for the macro-risks.

Since they are typically lower than 1, a diversification benefit is allowed. Conversely, notice

that the SCR for intangibles is added, by assuming full correlation and no diversification

benefit with respect to the other modules.

Finally, the SCR is defined as:

SCR = BSCR− adjustment+ SCRoperational

Adjustments consider the loss absorbing capacity of profit sharing of Life insurance contracts

and deferred taxes. In this last computation, no diversification benefit is allowed.

Non-Compliance with the SCR. If the insurance undertaking observes that the SCR

is no longer complied with, or where there is a risk of non-compliance in the following three

months, it shall immediately inform the supervisory authority. Within two months from

the observation of non-compliance with the Solvency Capital Requirement, it must submit
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a realistic recovery plan to the supervisory authority. Finally, the compliance with the

SCR shall be restored within six months, by increasing eligible own funds or by decreasing

the risks. Typical measures applied for increasing the EOF are the issue of new equity, of

new subordinated debts or new Ancillary Own Funds. The other possibility for getting a

Solvency Ratio higher than 1 is to decrease the Solvency Capital Requirement, by reducing

the risk exposure. In other words, the company can try to improve the diversification (quite

difficult in practice) or to decrease market risks with a change in the asset allocation. The

other possibility is to decrease the underwriting risks through a reinsurance contract, or by

selling the insurance portfolio or by modifying the business plan and/or the underwriting

policies.

In addition, in case of exceptional adverse insurance market situations, the supervisory

authority may extend the recovery period from six months up to a maximum of seven years.

3.2.4 MCR

The MCR is defined as the minimum level of security below which the amount of financial

resources should not fall19. Indeed, it corresponds to an amount of eligible basic own funds

below which policyholders and beneficiaries are exposed to an unacceptable level of risk if

undertaking will go on to carry out the business. It must be computed every three months

in a clear and simple manner applying a factor-based approach. In addition, the MCR shall

be calculated as a linear function of a set or sub-set of the following variables, measured net

of reinsurance: the undertaking’s technical provisions, written premiums, capital at risk,

deferred tax, and administrative expenses. The linear function is calibrated according to

the Value at Risk of the basic own funds subject to a confidence level of 85% over a one-year

period. Further details are specified in the Delegated Act. The MCR cannot fall below 25%

of the SCR and it cannot exceed 45% of the SCR.

Finally, the regulation sets some absolute floors, relevant only for very small companies:

• EUR 2.200.000 for Non-Life insurance undertakings, including captive insurance un-

dertakings.

• EUR 3.200.000 for Life insurance undertakings, including captive insurance undertak-

ings.

• EUR 3.200.000 for reinsurance undertakings, except in the case of captive reinsurance

undertakings, in which case the Minimum Capital Requirement shall be not less than

19Art. 129, Directive 2009/138/EC.
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EUR 1.000.000.

In case of non-compliance with the MCR, the measures imposed by the regulation are

stricter than for the non-compliance with the SCR since the level of EOF is too low for

offering sufficient protection to policyholders and beneficiaries. In particular, the insurance

undertakings shall immediately inform the supervisory authority where they observe that

the Minimum Capital Requirement is no longer complied with or where there is a risk of

non-compliance in the following three months. Within one month from the observation of

non-compliance with the Minimum Capital Requirement, the undertaking shall submit a

short-term realistic finance scheme to the supervisory authority to restore the EOF within

three months from that observation or to reduce its risk profile to ensure compliance with the

Minimum Capital Requirement. The supervisory authority shall withdraw the authorisation

in the event that the undertaking does not comply with the Minimum Capital Requirement,

or if it considers that the finance scheme submitted is manifestly inadequate or if it fails

to comply with the approved scheme within three months from the observation of non-

compliance with the Minimum Capital Requirement.

3.3 Pillar II

As the financial crisis in 2009 has shown, setting only quantitative requirements is not

sufficient in order to avoid crisis since a lot of moral hazard problems can arise from the

exaggerate risk exposure assumed by the top management. In addition, not all the risks

the company is exposed to can be measured in a quantitative way. Therefore, the Sol-

vency II framework sets up also a second Pillar involving qualitative requirements, in order

to encourage companies to develop and use better techniques for internal control and risk

management.

A well-structured system of governance is crucial for getting a sound and prudent manage-

ment of the business and it has to be proportionate to the nature, scale, and complexity

of the operations of the insurance undertakings (proportionality principle). In particular,

a great role is played by the key functions, respectively the risk management function, the

compliance function, the actuarial function, and the internal audit function. The internal

control and risk management system of an undertaking is structured on three levels. At level

1, there are operational units, which are monitored by three key functions at level 2: risk

management function, actuarial function, and compliance function. The risk management

must identify, measure, monitor, manage and report, on a continuous basis the risks (also
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the ones not included in the computation of the SCR), at an individual and at an aggregated

level, to which the undertaking is or could be exposed, and their interdependencies. It must

be effective and well-integrated into the organizational structure and in the decision-making

processes of the insurance undertaking. The actuarial function monitors the computation of

the Technical Provisions, provides an opinion on the overall underwriting policy and on the

adequacy of reinsurance arrangements and checks the data quality. Finally, the compliance

function identifies on a continual basis the regulations to be applied by the undertaking and

assesses their impact on the company’s processes and procedures in order to prevent the risk

of non-compliance. The second level functions are monitored by the internal audit (third

level) which evaluates the adequacy, the efficiency and effectiveness of the internal control

system and other elements of the system of governance.

In addition, the Second Pillar involves an Own Risk and Solvency Assessment (ORSA)

under which the company has to make a risk and solvency evaluation over a mid-term period

(3 years). It has to be assessed the overall solvency requirement, taking into account the

specific risk profile, the approved risk tolerance limits, and the business strategy of company.

Every possible deviations of the risk profile of the company from the assumptions underlying

the SCR calculated using the standard formula or an internal model (partial or full), must

be considered. ORSA must be an integral part of the business strategy and it must be taken

into account in strategic decisions. It has to be performed periodically and every time there

is a significant change in the risk profile.

3.4 Pillar III

In order to strengthen the market discipline, insurance undertakings must disclose publicly

on annual basis a report on their financial and solvency conditions. The great introduction

of Solvency II is that the company has not only to disclose its financial and solvency position

to the supervisory authority, as was made in the past, but also to the market. In such a way,

the asymmetry of information typically present in the relationship insurer-insured should

reduce (increasing the transparency). In addition to the private report submitted to the su-

pervisory authority, denoted as Solvency Supervisory Report, the undertaking has to publish

on its website publicly the solvency and financial conditions’ report (SFCR). The latter shall

contain a description of a list of information including the business, the performance, the

system of governance, the capital management and much more details listed in the article

51 of the Solvency II directive. Since the company has to disclose its solvency situation to

the market, the policyholders are able to clearly evaluate the company’s security, making
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the market discipline much stronger. Therefore, it is desirable for the undertaking to show

a favourable and solvent situation in order to favourably impress market participants and

policyholders. By the Review 2020, EIOPA advices to simplify the content of the Regular

Supervisory Report and of the Solvency and Financial Condition Report in order to reduce

the burden related to the preparation of those reports. In addition, EIOPA introduces two

different parts of the SFCR, one dedicated to policyholders and the other one addressed to

other users.

After having introduced the general framework of Solvency II, the formulas for comput-

ing the SCR for the Non-Life Underwriting Risk and the Counterparty Default Risk are

presented.

3.5 Non-Life Underwriting Risk

The Non-Life underwriting risk module must reflect the risk arising from Non-Life insurance

obligations, related to the perils covered and to the processes used in the business conduct.

It includes three risk submodules: Premium&Reserve Risk, the Lapse Risk, and the Cat

Risk. The Lapse risk is very negligible for Non-Life business, conversely to the Life business,

but it could be a bit more significant in case of multiannual coverages. According to the

Quantitative Impact Study 5 (QIS5), the Cat risk and the Premium&Reserve risk were

depicted by quite similar proportion (50% vs 70%20), whereas nowadays the situation is

completely changed since Cat risk is much less relevant (15-20%) due to the spread of Cat

reinsurance treaties. The SCR for Premium&Reserve submodule is computed according to

a factor-based approach, whereas the SCR for Lapse risk and the Cat Risk on the basis of

the scenario-based approach calibrated according to a VaR 99.5% on one-year time horizon.

The premium and reserve risk regards “the risk of loss, or of adverse change in the value

of insurance liabilities, resulting from fluctuations in the timing, frequency and severity of

insured events and in the timing and amount of claim settlements”21. In particular, the

premium risk represents the risk to have insufficient pricing coming from the policies which

will be underwritten (renewals included) in the following year and of the existing business

still in force in order to cover the claim amount and the expenses. EIOPA clarified that the

premium risk also includes the expense risk (i.e., the risk that the real expenses afforded

by the company are higher than the expense loading). The expense risk is quite negligible

20Proportions computed before diversification.
21Article 105, 2a, Directive 2009/138/EC.
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for Non-Life coverages, since they are usually on annual basis, but it can become more

significant in case of multiannual coverages. The Reserve risk represents the risk of claim

reserve at the date of reference to be insufficient for the time horizon of one year.

The Lapse risk is “the risk of loss, or of adverse change in the value of insurance liabilities,

resulting from changes in the level or volatility of the rates of policy lapses, terminations,

renewals and surrenders”22.

Finally, the CAT risk represents the risk of losses or unfavorable variations in the insurance

liabilities value coming from high volatility in assumptions for pricing and reserving due to

exceptional or extreme events.

Once computed the SCR for each risk submodule, the total SCR for Non-Life Under-

writing risk is computed by applying the usual aggregation formula and by assuming a small

positive correlation between Cat Risk and Premium&Reserve risk (and uncorrelation among

all the other submodules):

SCRNL =
√
SCR2

P&R + SCR2
CAT + SCR2

Lapse + 2 · 0.25 · SCRP&R · SCRCAT

In the following paragraphs, only Premium&Reserve risk is depicted. The SCR for the

Premium&Reserve Risk submodule is defined as:

SCRP&R = 3 · σnl · Vnl

where:

• σnl is the aggregated standard deviation for Non-Life premium and reserve risk.

• Vnl is a volume measure.

• 3 is a multiplier.

3.5.1 Volume Measure

The volume measure Vnl for Non-Life premium and reserve risk shall be equal to the sum of

the volume measures for premium and reserve risk for each segment. The volume measure

of a particular segment s shall be defined as:

Vs =
(
V(prem,s) + V(res,s)

)
·(0.75 + 0.25 ·DIVs)

22Article 105, 3f, Directive 2009/138/EC.
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where V(prem,s) is the volume measure for premium risk for the segment s, V(res,s) is the

volume measure for reserve risk for the segment s and DIVs is an index considering the

geographical diversification. The volume measure for the premium risk for the segment s

shall be computed as:

V(prem,s) = max(Ps, P(last,s)) + FP(existing,s) + FP(future,s)

Ps is defined as an estimate of the premiums to be earned by the insurance undertaking

in the segment s during the following 12 months, whereas P(last,s) denotes the premiums

earned by the insurance undertaking in the segment s during the last 12 months. In addition,

FP(existing,s) involves the expected present value of premiums to be earned by the insurance

undertaking in the segment s after the following 12 months for existing contracts. Finally,

FP(future,s) denotes:

• for contracts which initial term is one year or less, the expected present value of

premiums to be earned by the insurance company in the segment s, excluding the

premiums to be earned during the 12 months after the initial recognition date.

• for all contracts with initial term more than one year, the amount equal to 30% of the

expected present value of premiums to be earned by the insurance undertaking in the

segment s after the following 12 months.

Insurance undertakings can adopt an alternative calculation for the volume measure of

premium risk:

V(prem,s) = Ps + FP(existing,s) + FP(future,s)

This possibility is admissible only if the undertaking meets the following conditions:

• According to decisions of its administrative, management or supervisory body, the

undertaking’s earned premiums in the segment s during the following 12 months will

not exceed Ps.

• the undertaking has established effective control mechanisms to ensure that the limits

on earned premiums will be met and it has informed its supervisory authority about

this decision.

In both calculation methodologies, the premium must be net of the reinsurance premiums.

The volume measure for the reserve risk for the segment s is defined as the best estimate

for claims outstanding for that segment. This amount should be reduced by the recoverable
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from reinsurance contracts and special purpose vehicles.

For all segments, the factor for geographical diversification of a particular segment s shall

be computed as:

DIVs =

∑
r

(
V(prem,s,r) + V(res,s,r)

)2(∑
r

(
V(prem,s,r) + V(res,s,r)

))2
The summations at the numerator and at the denominator involve all the geographical areas

defined by the Delegated Acts. V(prem,s,r) and V(res,s,r) denote respectively the volume

measure for premium risk and the volume measure for the reserve risk of the segment s and

the region r. The factor for geographical diversification shall be equal to 1:

• for Credit and Suretyship (segment 6) and for non-proportional treaties (segments 10,

11 and 12).

• if insurance undertakings use an undertaking-specific parameter for the standard de-

viation for Non-Life premium risk and/or Non-Life reserve risk of the segment.

If DIVs = 1, there is no geographical diversification, and the total volume is simply given

by the sum of the premium volume estimated for the next year and the loss reserve. As the

factor decreases (till the minimum value 0), the diversification increases up to a maximum

benefit of 25%.

3.5.2 Standard Deviation

The aggregated standard deviation for the Non-Life premium and Reserve risk comes from

a two-steps aggregation. The first step aims at computing σs by aggregating the volatility

factors of the premium risk and of the reserve risk for the specific segment:

σs =

√
σ2

(prem,s) · V
2
(prem,s) + σ(prem,s) · V(prem,s) · σ(res,s) · V(res,s) + σ2

(res,s) · V
2
(res,s)

V(prem,s) + V(res,s)

V(prem,s) and V(res,s) denote the volume measure for premium risk and the volume measure

for reserve risk of segment s. Weighting the standard deviations by the volume measures is

a way to consider which is the most relevant risk between the reserve risk and the premium

risk for the specific segment. For instance, in long-tail segment as 4 and 8, the reserve risk is

typically much more important than the premium risk, conversely to short-tail segment (as

5). σ(prem,s) and σ(res,s) are respectively the standard deviation for Non-Life premium risk

and the standard deviation for the Non-Life reserve risk of segment s. For calculating them,

insurance undertakings can refer to the market-wide volatility factors (Table 2), specified by
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the Delegated Acts or apply an Undertaking Specific Parameter Approach (USP) subject

to the supervisory authority’s approval.

Segment s σ(prem,s) σ(res,s)

1) Motor vehicle liability insurance and proportional reinsurance 10% 9%
2) Other motor insurance and proportional reinsurance 8% 8%
3) Marine, aviation and transport insurance and prop. reinsurance 15% 11%
4) Fire and other damage to property insurance and prop. reins. 8% 10%
5) General liability insurance and proportional reinsurance 14% 11%
6) Credit and suretyship insurance and proportional reinsurance 19% 17.2%
7) Legal expenses insurance and proportional reinsurance 8.3% 5.5%
8) Assistance and its proportional reinsurance 6.4% 22%
9) Miscellaneous financial loss insurance and prop. reinsurance 13% 20%
10) Non-proportional casualty reinsurance 17% 20%
11) Non-proportional marine, aviation and transport reinsurance 17% 20%
12) Non-proportional property reinsurance 17% 20%

Table 2: Market-wide volatility factors.

It is implicitly assumed a correlation coefficient equal to 0.5 between σ(prem,s) and σ(res,s)

for all the segments which takes into account the diversification benefit.

For each segment, the standard deviation for Non-Life premium risk shall be equal to

the product of the standard deviation for Non-Life gross premium risk and the adjustment

factor for non-proportional reinsurance. For segments 1, 4 and 5, the adjustment factor

for non-proportional reinsurance shall be equal to 80%, while for all the others to 100%.

The regulation allows an Undertaking Specific Parameter approach also for the adjustment

factor (see paragraphs 3.5.2).

The second aggregation is among volatility of different segments in order to compute the

standard deviation of the Non-Life premium and reserve risk:

σnl =
1

Vnl
·
√∑

r,c

Corrr,c · σr · σc · Vr · Vc

Vnl is the volume measure for Non-Life premium and reserve risk. The summation involves

all the possible combinations (r, c) of the segments. The correlation Corrr,c between the

segments r and c is defined by the second-level regulation. σr and σc denote respectively

the standard deviations for Non-Life premium and reserve risk of segments r and c, whereas

Vr and Vc are the volume measures of segments r and c.

Undertaking Specific Parameter (USP). The regulation allows insurance undertak-

ings to replace the following subset of standard parameters by undertaking-specific param-

eters:
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• the standard deviation for Non-Life premium risk.

• the standard deviation for Non-Life reserve risk.

• the adjustment factor for non-proportional reinsurance treaties provided that there is a

recognizable excess of loss reinsurance contract or a recognizable stop loss reinsurance

contract for that segment.

Data used to calculate undertaking-specific parameters must be declared as complete, ac-

curate and appropriate according to the constraints set by the regulation. The insurance

undertaking shall submit a written application for approval of the use of USP to the supervi-

sory authority. In duly justified circumstances, they may revert to the standard parameters,

by sending a request to the supervisory authority, stating the reasons for the inappropri-

ateness of the USP and providing documentary evidence for this, but the revocation is of

competence of the supervisory authority.

Regarding the standard deviations of premium risk and reserve risk, the final volatility fac-

tor to be applied is given by a weighted average between the market-wide parameter and

the USP parameter estimated using company’s empirical data:

σ(prem,s) = cs · σ(U,prem,s) + (1− cs) · σ(M,prem,s)

σ(res,s) = cs · σ(U,res,s) + (1− cs) · σ(M,res,s)

For estimating σ(U,prem,s) and σ(U,res,s), the Delegated Acts provides one method for the

Premium Risk based on Loss Ratio volatility and two methodologies for the reserve risk,

respectively one based on the run-off volatility and the other one on the Merz and Wuthrich

formula. The company has to prove that the assumptions underlying the methodology are

met by its data which must be of sufficient quality.

The weights cs are the credibility factors defined by the regulation distinguishing between

segments 1,5, 6 and the other ones (Tables 3 and 4).

Time lenghts in years 5 6 7 8 9 10
Credibility factor c 34% 43% 51% 59% 67% 74%

Time lenghts in years 11 12 13 14 ≥ 15
Credibility factor c 81% 87% 92% 96% 100%

Table 3: Credibility factors for segments 1, 5 and 6.

The credibility factor is related to the time length in year of data used in the calibration

which depends on the type of parameter to be replaced and on the methodology applied (if
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Time lenghts in years 5 6 7 8 9 ≥10
Credibility factor c 34% 51% 67% 81% 92% 100%

Table 4: Credibility factors for segments other than 1, 5 and 6.

the regulation allows for more than one methodology, as for the reserve risk). Larger is the

time series, higher is the credibility cs. In case of full credibility (given by at least 15 years of

data for segments 1, 5 and 6 and by at least 10 years of data for the others), the parameter

is completely company-specific, and the market-wide parameter does not play any role. For

all the segment, at least 5 years of data are needed, in order to get a minimum credibility

of 34%.

The USP for the adjustment factor can be applied only if the treaty is recognizable. An

XL reinsurance contract or a SL reinsurance contract for a segment is defined recognisable

if it meets the following conditions:

• the XL treaty shall provide for complete compensation up to a specified limit or without

limit for losses, larger than a specified retention, related to single insurance claims or

to all insurance claims under the same policy during a specified time period. The

SL treaty must provide for complete compensation for aggregated losses of the ceding

undertaking related to all insurance claims in the segment during a specified time

period and larger than a specified retention (and up to a limit, if present).

• cover all insurance claims that the insurance undertaking may incur in the segment

during the following 12 months.

• allow for a sufficient number of reinstatements such that it is possible to cover all

claims of multiple events incurred during the following 12 months.

• meet the requirements of the techniques of risk mitigation.

The adjustment factor for non-proportional treaty coming from an USP approach should be

computed as follows:

NPUSP,s = cs ·NP
′

s + (1− cs) ·NPs

It is a weighted average between a value estimated through insurer data (NP
′

s) by applying

a predefined methodology and a market-wide value (NPs) equal to 80% for segments 1,

4 and 5 and to 100% for all the other ones. cs are the same credibility factor defined for

premium risk and reserve risk (Tables 3 and 4). The data to be used in the calibration of the

USP adjustment factor for an XL treaty consists of the ultimate claim amounts of insurance
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claims, denoted with Yi, reported to the insurance undertaking in segment s during the

last financial years, separately for each insurance claim. By considering an XL treaty with

retention b1 and limit b2, NP
′

s is computed as:

NP
′

s =

√
ω1 − ω2 + ω + 2 · (b2 − b1) · (µ2 − µ1)

ω

whereas, if the XL has no limit, the formula degenerates to:

NP
′

s =

√
ω1

ω

µ and ω denote the first and second moment, respectively, of the claim amount distribution

evaluated over the last n years gross of reinsurance:

µ =
1

n

n∑
i=1

Yi

ω =
1

n

n∑
i=1

Y 2
i

ω1 is the estimate of the quadratic mean of the claim amount net of reinsurance derived by

evaluating the effect of reinsurance retention on a lognormal distribution. The formulas of

µ1, µ2, ω1, ω2 are specified by the Delegated Acts. The main drawback of this formulation

is the complete ignorance of the systematic volatility, which is typically present in practice,

implying typically an overestimation of the benefits obtained by the undertaking from the

reinsurance treaty.

The data involved in the estimation of NP
′

s for a Stop Loss treaty shall consist of the

aggregated annual losses of insurance claims that were reported to the insurance undertaking

in segment s during the last financial years. In absence of priority, the NP
′

s is defined as:

NP
′

s =

√
ω − µ2

1

ω − µ2

In presence of a limit, the formula becomes:

NP
′

s =

√(
ω1 − ω2 + ω + 2 · (b2 − b1) · (µ2 − µ)

)
−(µ1 + µ− µ2)2

ω − µ2

The values of µ1, µ2, ω1, ω2 are computed according to the formulas provided by the Dele-

gated Acts on the aggregated claim amount.
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Review 2020. According to the Opinion on Review 2020, EIOPA advices to not change

the current regulation on the adjustment factor for the recognition of the non-proportional

reinsurance for the premium risk. Conversely, it advices to introduce an adjustment factor for

the reserve risk in order to take into account the Adverse Development Covers (ADC). ADC

are a form of retrospective reinsurance in which the insurer cedes the claims development

risk associated with policies from past underwriting periods. In other words, they cover the

reserve risk23 for a defined portfolio or segment. According to the results of the numeric

sensitivity analyses performed in 2016 and 2017, EIOPA advised in 2018 to not recognize

adverse development covers in the Non-Life underwriting risk of the Standard Formula, since

the proposal typically led to underestimation of the real risk and worked properly only for

mono-line insurers. In particular, it seems that bigger is the part of the portfolio not covered

by the ADC, more the risks are potentially underestimated. Since ADC covers policies from

past underwriting periods in run-off, as time passes by, the part of the portfolio covered by

ADC decreases and the possible under-estimation increases.

Even though the standard deviation for reserve risk has been calibrated including already

the average effect of (non-proportional) reinsurance, stakeholders argued that, given the

limited amount of ADCs existing in the market, the net of reinsurance calibration might be

misleading. Indeed, further analyses have shown that the initial calibration of the volatility

of the reserve risk net of reinsurance has no material difference with respect to a gross of

reinsurance calibration. According to the outcomes coming from the numerous analyses

later performed, EIOPA advices to recognise adverse development covers with the following

limitations:

• Each ADC can only be applied on one specific group of policies (with the same risk

characteristics within the same segment), with a separate attachment and detachment

point.

• The attachment point shall not exceed (1 + σ) times Best Estimate reserves.

• The additional reinsurance premium (C) shall not be negative.

The limitation on attachment and detachment point have been introduced in order to reach

a proper balance between risk transfer and capital relief. Undertakings should perform on an

annual basis, the recalculation of the cover, possible reinsurance recoverable, the attachment

point and premium in order to decrease the risk of underestimation due to the decreasing

reserves’ behaviour.
23In particular, the risk that existing claims reserves are not sufficient to cover the insurance obligations.
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In addition, EIOPA advises to compute the standard deviation for Non-Life reserve risk of a

particular segment as the product of the standard deviation for Non-Life gross reserve risk

of the segment and the adjustment factor for non-proportional reinsurance, calculated as:

Adjustmentfactor =
A− (B − C) ·D · E

A

where:

• A is the impact on basic own funds of reserve risk scenario as defined under the

Standard Formula.24.

• B is the ADC recovery under reserve risk scenario, computed as the lower of the

following:

– BEN ·(1+3 ·σ(res,s))−AP , where where BEN denotes the nominal best estimate

net reserves covered by the reinsurance structure and AP reinsurance structure

attachment point.

– Reinsurance structure cover size.

• C is the additional reinsurance premium.

• D is the cession to the reinsurer (expressed in percentage).

• E is the prudency factor set to 100%. It is added in order to overcome the risk of

possible underestimation. It will be evaluated by EIOPA, based on reported data, on

a bi-annual basis.

Finally, EIOPA advises to develop further level 3 guidance on the application of Adverse De-

velopment Covers in the Standard Formula in order to clarify the definition of the applicable

covers, of the parameters involved and of the way to calculate the appropriate adjustment

factor.

3.5.3 The multiplier

The Non-Life capital requirement could be derived as the difference between the VaR at

99.5% level of confidence and the expected value25 of the probability distribution of the total

losses. In the Standard Formula, this distance is approximated by taking a multiple (triple)

of the standard deviation. Theoretically, the value of the multiplier should vary according

24It is computed as: 3 ·Nominal BE net reserves · σ(res,s)
25ignoring the impact of the expected technical result.
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to the probability distribution of aggregate claims amount. For instance, if the underlying

distributional assumption were the Gaussian, the multiplier at level 99.5% would be 2.58.

Surely, the normal distribution is not suitable since it ignores skewness, kurtosis, and fat

tail, which typically characterize the empirical distribution of the aggregate claims amount.

Indeed, in QIS5, it was assumed that the aggregate claims amount follows a Lognormal

distribution for which it exists a formula for the multiplier measuring the exact distance

between the 99.5-th percentile of a Lognormal distribution and its expected value26:

ρ(σnl) =

exp

[
N0.995 ·

√
ln(σ2

nl + 1)

]
√
σ2
nl + 1

− 1

This formula takes into account of the (relative) volatility and of the skewness of the proba-

bility distribution27. Therefore, when the volatility is closed to 0, also the skewness is closed

to 0 and ρ(σ)
σ is closed to the Gaussian multiplier (2.58). Conversely, larger is the coefficient

of variation, higher is the skewness, higher is the multiplier and higher is the SCR. Even

though, the QIS5 formula was quite good, a lot of controversies arose at that time in par-

ticular from small companies claiming that the capital requirement in that way computed

was completely unsustainable. Therefore, the final solution of the regulation is a multiplier

equal to 3 which comes from an underlying assumption of positively skewed distribution for

the aggregate claims amount. Its shortfall is that it does not depend on the risk profile of

the company and on the effective skewness of the distribution. The multiplier 3 is generally

advantageous (disadvantageous) for company with very high (low) relative volatility since

their capital requirement should be higher (lower) according to their real risk profile. In

other words, there is no consideration of the size factor.

In addition, another shortfall of the Standard Formula is the complete ignorance of

the expected technical result. Indeed, a technical profit, providing more resources to the

reinsurer, should reduce the capital requirement, while a technical loss should increase it.

Ignoring the technical result leads to an overestimation of the capital requirement in case of

technical profit and to an its underestimation in case of technical loss, which can be quite

dangerous.

26In QIS5, the capital requirement for Non-Life Premium&Reserve risk was computed as:

SCRNL = ρ(σnl) · Vnl

27Recall the relationship between skewness and volatility valid for a Lognormal distribution:

γ = CV · (3 + CV 2)
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3.6 Counterparty Default Risk

The other risk module quite affected by a reinsurance contract is the counterparty default

risk. Indeed, the insurance company is exposed to it because, in case of the reinsurer’s

default, it will remain responsible for the whole amount with respect to policyholder. The

counterparty default risk shall reflect possible losses due to unexpected default, or deterio-

ration in the credit standing, of the counterparties and debtors of insurance undertakings

over the following 12 months. Therefore, it regards risk-mitigating contracts, as reinsur-

ance arrangements, securitisations and derivatives, receivables from intermediaries and all

the credit exposures not covered in the spread risk sub-module. In addition, it shall be

evaluated separately for each counterparty and regardless the legal form of its contractual

obligations. The SCR for the counterparty default risk module is computed by aggregating

the SCRs calculated separately for type 1 exposures
(
SCR(def,1)

)
and for type 2 exposures(

SCR(def,2)

)
as follows:

SCRdef =
√
SCR2

(def,1) + 1.5 · SCR(def,1) · SCR(def,2) + SCR2
(def,2)

Type 1 include exposures where the counterparty is likely to be listed as for risk-mitigation

contracts including reinsurance arrangements, cash at bank and other items28. Type 2

exposures shall consist of all credit exposures not covered in the spread risk sub-module and

neither in type 1 exposures, as receivables from intermediaries and policyholder debtors. The

following list of credit risk shall be not included in the counterparty default risk: the credit

risk transferred by a credit derivative, the credit risk on debt issued by special purpose

vehicles, the underwriting risk of credit and suretyship insurance or reinsurance and the

credit risk on mortgage loans not fulfilling the requirements set by the Article 191 of the

Delegated Acts. Here only the SCR computation for type 1 exposures is explored since

reinsurance treaties belong to them.

3.6.1 Capital Requirement

The formula of the capital requirement for the counterparty default risk related to exposures

of type 1 depends on the value of the standard deviation of the loss distribution of type 1

exposures (σ).

28defined in article 189.2 of Delegated Acts.
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• If σ is lower than or equal to 7% of the total losses-given-default on all type 1 exposures:

SCR(def,1) = 3σ

• If σ is between 7% and 20% of the total losses-given-default on all type 1 exposures:

SCR(def,1) = 5σ

Since Review 2018, in order to avoid computational burden, if the article 88 is complied

with and if the standard deviation of the loss distribution of type 1 exposures lower

than or equal to 20% of the total losses-given default on all type 1 exposures, the SCR

for counterparty default risk may be calculated29 as:

SCR(def,1) = 5σ

• If σ is higher than 20% of the total losses-given-default on all type 1 exposures, the

capital requirement for counterparty default risk on type 1 exposures shall be equal to

the total losses-given-default on all type 1 exposures.

The standard deviation of the loss distribution of type 1 exposures shall be equal to:

σ =
√
V

where V denotes the variance of loss distribution of type 1 exposures:

V = Vinter + Vintra

Vinter is calculated as:

Vinter =
∑
j,k

PDk · (1− PDk) · PDj · (1− PDj)

1.25 · (PDk + PDj)− PDk · PDj
· TLGDj · TLGDk

The summation involved regards all possible combinations (j, k) of different probabilities of

default on single name exposures. TLGDj refers to the sum of losses-given-default on type

1 exposures from counterparty with a probability of default PDj .

29Optional simplification.
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Vintra is defined as:

Vintra =
∑
j

1.5 · PDj · (1− PDj)

2.5− PDj

∑
PDj

LDG2
i

The first summation involves all different probabilities of default on single name exposures,

whereas the second sum regards the loss-given-default on the single name exposure i LGDi

of all single name exposures that have a probability of default equal to PDj .

3.6.2 Loss-given-to-default

The loss-given-default (LGD) on a single name exposure must be equal to the sum of the

loss-given-default on each exposure to counterparties belonging to the single name exposure.

It shall be net of the liabilities towards those counterparties if the liabilities and exposures

are set off in the case of their default. The insurance undertaking has also the possibility

to calculate the loss-given-default (including the risk-mitigating effect on underwriting and

market risks and the risk-adjusted value of collateral), for a group of single name exposures

and assign to them highest probability of default associated with single name exposures

included in the group.

Regarding a reinsurance agreement, the LGD is defined as:

LGD = max[50% · (Recoverables+ 50% ·RMre)− F · collateral, 0]

where:

• Recoverables are defined as the best estimate of amounts recoverable.

• RMre denotes the risk mitigating effect on underwriting risk which represents the

additional loss above the current value of the counterparty exposure expected to arise

in a stressed situation. It is defined as the larger of 0 and the difference between

the hypothetical capital requirement for underwriting risk the insurance undertaking

would apply if the reinsurance arrangement did not exist and the capital requirement

for underwriting risk of the insurance undertaking. In order to calculate it, it could

be applied a simplified approach, provided that its use is proportionate to the nature
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scale and complexity of the undertakings’ counterparty risk profile (see article 8830):

RMre = RMre,all ·
Recoverablesi
Recoverablesall

RMre,all denotes the risk mitigating effect on underwriting risk of the reinsurance

arrangements for all counterparties calculated as the difference between the hypothet-

ical capital requirement for underwriting risk the insurance undertaking would apply

if none of the reinsurance arrangements exist and the capital requirement for under-

writing risk of the insurance undertaking. Recoverablesi and Recoverablesall refer

respectively to the best estimate of amounts recoverable from the reinsurance arrange-

ment for counterparty i and to the best estimate of amounts recoverable from the

reinsurance arrangement for all counterparties.

In addition, if the reinsurance arrangement for the counterparty i is proportional, the

risk-mitigating effect on underwriting risk j can be computed as:

RMj = SCRj ·
Recoverablesi

BE −Recoverablesall

where BE denotes the best estimate of obligations gross of the amounts recoverable,

while SCRj the capital requirements for underwriting risk j of the insurance or rein-

surance undertaking.

According to EIOPA Opinion on Review 2020, the calculation of the risk mitigat-

ing effect is the most burdensome component of the counterparty default risk mod-

ule. Therefore, EIOPA advices to introduce an additional optional simplification for

its computation. The basic idea is to extend the current simplification RMre =

RMre,all
Recoverablesi
Recoverablesall

to derivatives in order to calculate the risk mitigating effect

jointly for reinsurance arrangements and for derivatives31. The first step of the sim-

plified calculation aims at computing the total risk mitigating effect related to all

reinsurance agreements, derivatives exposure, and securitizations as:

RMtotal = BSCR∗,without −BSCR∗

BSCR∗,without is the Basic Solvency capital requirement excluding the counterparty

30A simplified calculation of a (sub)module is allowed if it is proportionate to the nature, scale, and
complexity of the risks by assessing the nature, scale, and complexity of the risks of the undertaking falling
within the relevant module or sub-module and the error introduced in the results of the simplified calculation.

31Consider that this simplification works properly for simple derivative structure, whereas it is quite
inappropriate for complex derivative strategies.
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default risk module which would result if no derivatives, reinsurance arrangements

and insurance securitisations were in force. Conversely, BSCR∗ is the current Basic

Solvency Capital Requirement if the counterparty default risk module is excluded.

Secondly, the total risk mitigating effect must be allocated towards the different coun-

terparties in a simple and proportional way:

RMi =
max |EADi|∑n
i=1 max |EADi|

·RMTotal

It is assumed that the undertaking is exposed to the counterparty default risk towards

n counterparties. |EADi| denotes the absolute value of the exposure at default of the

derivative, reinsurance arrangement, special purpose vehicles and insurance securiti-

sations towards the counterparty i. If the risk mitigating instrument is a derivative,

EADi will be the Fair Value of the derivative, whereas if the risk mitigating instru-

ment is a reinsurance arrangement, it will be the best estimate of amounts recoverable

from the reinsurance arrangement towards counterparty i. The absolute value ensures

that derivatives and recoverables with negative values are properly considered in the

risk mitigating effect calculation.

Finally, the risk mitigating effect for the specific counterparty i is given by a proportion

of the total risk mitigating effect, where the proportion is given by the ratio between

the maximum (absolute value of) exposure towards the counterparty i and the total

exposure with respect to all n counterparties.

• collateral refers to the risk-adjusted value of collateral.

It shall be equal to the difference between the value of the assets held as collateral

evaluated market-consistently and the adjustment for market risk, if criteria set out by

Article 214 of the Delegated Acts are met. If at least one of the previous constraints is

not fulfilled, different calculations are set by the second-level regulation. The adjust-

ment for market risk is computed as the difference between the hypothetical capital

requirement for market risk of the insurance undertaking that would apply if the as-

sets held as collateral were not included in the calculation and the hypothetical capital

requirement for market risk of the insurance undertaking if the assets held as collateral

were included in the calculation.

• F is a factor which considers the economic effect of the collateral arrangement in

relation to the reinsurance treaty in case of any credit event related to the counterparty.
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If in case of insolvency of the counterparty, the insurance undertaking’s proportional

share of the counterparty’s insolvency estate in excess of the collateral is determined

without taking into account that the undertaking receives the collateral, the factor F

shall be equal to 100%, otherwise it shall be equal to 50%.

Where the reinsurance arrangement is with an insurance or reinsurance undertaking or a

third country insurance or reinsurance undertaking and 60% or more of that counterparty’s

assets are subject to collateral arrangements, the loss-given-default shall be calculated as:

LGD = max[90% · (recoverables+ 50% ·RMre)− F · collateral, 0]

Review 2018 allows this computation of the LGD for reinsurance arrangement even without

the constraint on the collateral arrangement32, provided that the use of this simplified for-

mula is proportionate to the nature scale and complexity of the undertakings’ counterparty

risk profile.

3.6.3 Probability of default

The probability of default on a single name exposure must be computed as the average of

the probabilities of default on each exposure to counterparties belonging to the single name

exposure, weighted by their loss-given-default. If for the single name exposure i is available

a credit assessment by a nominated ECAI33, the probability of default PDi shall be defined

in accordance with the table 5:

Credit Quality Step 0 1 2 3 4 5 6
Probability of default 0.002% 0.01% 0.05% 0.24% 1.2% 4.2% 4.2%

Table 5: Probability of default.

Conversely, if a credit assessment is not available and if the undertaking meets its Minimum

Capital Requirement, the probability of default PDi is assessed according to the undertak-

ing’s Solvency Ratio34 (Table 6). If the solvency ratio falls in between the solvency ratios

above specified, the value of the probability of default must be linearly interpolated from

the closest values of probabilities of default corresponding to the closest solvency ratios.

Whereas if the SR is lower than 75%, the probability of default shall be 4,2%. Conversely, if

32Therefore, by applying this optional simplification, the LGD, and consequently the SCR for the coun-
terparty default risk, is computed on the basis of the assumption that more than 60% of the counterparty’s
assets are subject to collateral arrangements.

33An ECAI (External Credit Assessment Institution) is an entity, recognized by the competent Supervisory
Authority, which can produce external credit assessments.

34The solvency ratio is computed as the ratio of the eligible amount of own funds to cover the SCR and
the Solvency Capital Requirement.
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Solvency Ratio 196% 175% 150% 125% 122% 100% 95% 75%
Probability of default 0.01% 0.05% 0.1% 0.2% 0.24% 0.5% 1.2% 4.2%

Table 6: Probability of default.

the SR is higher than 196%, PDi shall be 0,01%. Finally, if the insurance undertaking does

not meet its Minimum Capital Requirement, the probability of default shall be assigned

equal to 4,2%.
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4 Multi-risk Reinsurance Treaties

A multi-risk product is an instrument which combines several exposures into a single con-

tract, giving the insurer an efficient and cost-effective risk mitigation solution. The interven-

tion of the multi-risk reinsurer is triggered by the occurrence of one (or more) of the several

perils defined in the treaty. Therefore, a great role is played by the correlation (dependence)

structure of the risks belonging to the portfolio and by their joint probability. In addition,

multi-risk products offer a risk protection which is typically cheaper than the sum of the

protections provided by per-peril basis products.

It is possible to split multi-risk products into two categories:

• Multiple peril products.

They are contracts which cover multiple classes of (un)related events. Typical ex-

amples of multiple peril products are multi-line policies, commercial general liability

policy and umbrella policies.

• Multiple trigger products.

They are contracts which provide coverage only if multiple events occur. Typical

examples of multiple trigger products are dual and triple trigger instruments with

fixed, variable or switching trigger references.

4.1 Multiple peril products

The typical reinsurance treaties provide coverages on a per-peril basis, defining proper and

distinct contract conditions in terms of deductible, limit, and premiums. Covers are typically

added when exposure emerges or grows up and several forms of protection can be purchased

from different reinsurers. A risk protection strategy defined as above could not be an efficient

and cost-effective program and multiple peril products could be a more proper solution.

Indeed, they gather all the exposures the insurance company wants to reinsure into a single

comprehensive policy with an aggregate deductible, limit and premium. Since the design

of multi-peril products is quite involved, most of them have a multiannual duration (from

3 to 7 years). Through a multi-peril product, all exposures are covered under one policy.

Therefore, it is no more important which is the specific source of a loss because the policy

will provide appropriate indemnification if the peril is under the scope of the contract.

The typical benefits arising from multiple peril contracts are:

• Lower transaction costs. The negotiation is no more necessary for each individual risk
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exposure.

• Lower premium. Since typically the exposures included in multiple perils contracts are

not perfectly correlated, a diversification benefit arises and makes the overall premium

to be lower than the sum of the premiums of the hypothetical single exposure policies.

• Less chance of over-insurance. In normal business scenarios, it is quite unlikely that

the insurer will incur in simultaneous claims from each of the named perils.

Notwithstanding the risk reduction of possible over-insurance, the insurance company has

always to pay attention to not under-insurer its business through a single policy cap. In order

to avoid this undesired situation, typically multiple peril policies include reinstatements,

allowing to refresh the limits if totally used prior to maturity. The reinstatement provision

defines the details on the new granted limits and the premium to be paid.

The usual multiple peril products purchased on the market are the following:

• Multi-line policy, which contains common policy conditions and specific coverages with

own declarations and causes of loss forms. If a loss occurs in any of the perils named in

the policy, the cedant (i.e., the direct insurer) is covered up to a net amount reflecting

the deductible and the cap.

• Commercial general liability (CGL) policy. It is typically purchased when the insurance

company seeks to cover exposures related only to liabilities as products, environmental

damage and director and officer fiduciary breaches (D&O).

• Commercial umbrella policy. It provides protection for very large amounts regarding a

broad range of insurable risks, which are much higher than the one obtainable through

typical property and casualty covers. It serves primary as an excess layer facility rather

than a first loss cover since it pays out the ultimate net loss in excess of a retained

limit. It may present some exclusions, failing to be truly comprehensive in scope.

In order to write the desired multiple peril policy, the direct insurer can choose between the

attachment method and the single text method. Under the attachment method, different

monoline policies are grouped together into a new-brand agreement. Via the single text

method, the existing covers are drafted again into a new policy such that all the named

perils are included into a single agreement. Generally, the attachment method is easier to

define, but it could be subject to overlaps, conflicts, or gaps.

Finally, in order to define the aggregate deductible and limit of the multiple peril product,

the insurer has to identify its retained risk appetite on a portfolio basis and, by making a
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cost-benefit scenarios analysis, determine the optimal value of limit and deductible. The

results surely depend heavily on correlations and joint event probabilities.

4.2 Multiple Trigger products

Conversely to multiple peril policies, multiple trigger products are effective only if various

events jointly occur. If only one of the named events occurs and the cedant suffers a loss,

no pay-out is made. According to this definition, multiple peril policies can be considered

as single trigger product since the indemnification occurs once the total aggregate claim

amount exceeds the stated deductible.

Typically, multiple trigger products are dual triggers or triple triggers policies. Dual triggers

contracts require the onset of two events before the pay-out occurs, whereas triple triggers

three breaches. Since dual (triple) triggers provide payments if and only if the second (third)

events occur, the likelihood of a pay-out is lower than for similar multiple peril contracts.

As a result, the cedant obtains a cheaper protection also against risks that might have been

defined as uninsurable. Therefore, it is possible to obtain a unique and manageable joint

risk exposure which allows better risk diversification within the insurer’s portfolio.

Typically, multiple perils products are created as multi-year insurance contracts with trigger

annually reset which could be in several forms as:

• Fixed trigger. The trigger is simply a barrier which determines whether or not an

event occurs, indicating whether the contract will pay out, without usually impacting

on the value of the contract.

• Variable trigger. The value of the pay-out is defined according to the level of the

trigger in relation to some defined events.

• Switching trigger. The trigger varies according to the performances of the individual

risk exposures in the cedant’s portfolio.

In addition, the contract may be created on a per occurrence basis or aggregate basis. Per

occurrence triggers permit a reset of the trigger each time an event occurs, while aggregate

triggers allow accumulation over multiple events.

In order to properly define a multiple trigger contract, the cedant must analyse the

casual relationship between specific events and claims. The focus is on events which can

create losses and, on the behaviour, and the characteristics of such claims (dimension with

respect to time or severity of an event, static or dynamic). Once the casual relationships
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are properly analysed, triggers have to be structured such that they are able to provide an

appropriate level of protection at a price which reflects a lower probability of pay-out.

Generally, the nature and the level of the trigger is negotiated between the cedant and

the insurer but, in order to avoid moral hazard instances, one of the triggers must be based

on an outside metric. In any case, the outside trigger must be sufficiently correlated with

the cedant’s underlying exposure. For instance, one trigger can refer to a financial or non-

insurance event (as an equity index level or an interest rate), whereas another one a specific

insurance hazard (as a business interruption loss or a property damage loss). In addition, the

cedant has to prove an insurable interest for the multiple trigger structure to be considered

insurance.

Although their advantages, multiple trigger products have certain drawbacks. Most

transactions include a charge reflecting the cost of product development, since multiple trig-

ger products are highly customized. Indeed, introducing standardizations could determine

an excess of basis risk inside a given transaction which can remove the benefits offered. In

addition, their accounting and legal treatment belong to a ‘grey area’, since a non-financial

insurance trigger is surely an insurance component, whereas if the trigger is tied to a finan-

cial index, it could be seen as derivative (implying a mark-to-market treatment and less tax

deductions). Typically, these products are treated entirely as insurance by proving explicitly

that there is an insurable interest and a risk exposure’s transfer. Indeed, the main difference

between a multiple trigger and a derivative is that the multiple trigger guarantees post-loss

financing if the event occurs, whereas the same does not hold necessarily for the derivative

(for instance the loss occurs, but the derivative is out-of-the-money).

4.3 Medium-term growth prospects

Regarding the outlook for multi-risk products, it is needed to split between multiple peril

policies and multiple trigger instruments. Multiple peril contracts are likely to expand in

future years, but only gradually. Indeed, even if they are good at managing portfolios

of similar risks, they are overcome by more comprehensive Enterprise Risk Management

programs, which group several risks by using the most efficient vehicles/instruments.

Conversely, multiple trigger contracts should feature strong end-user demand. The relative

pricing efficiencies and the recognition of the savings that can be achieved have become more

widely broadcast.

To sum up, growth prospects for multiple peril policies might therefore be seen as moderate,

while prospects for multiple triggers appear stronger.
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5 Dependence structure

5.1 Introduction

When an insurance company faces a portfolio of risks, it has usually to manage two problems:

• Modelling the risk itself through a statistical model.

• Aggregating the risks.

The dependence structure according to which risks are aggregated affects the risk diver-

sification which is a typical key indicator in insurance and investments. Stronger is the

dependence structure, lower is the diversification and higher is the company’s need for cap-

ital. Typically, risks within an insurance portfolio are rarely independent. For instance, the

line of business Motor Own Damage (MOD) is typically correlated with Motor Third-Party

Liability (MTPL). Indeed, they involve claims arising from motor accidents and in addi-

tion, both are affected by economic cycles. Also, the segment General Third Party Liability

(GTPL) is influenced by economic cycles, and it is correlated with MTPL due to similar

evaluation methods of personal injuries.

Therefore, the introduction and the choice of a dependence structure is crucial for a multi-

line insurer, in particular if it decides to cede risks via a multi-risk reinsurance treaty. If

aggregate claims amounts among different lines of business are positively dependent and the

insurance company models them simply as independent, there could be a possible underes-

timation of the effective capital requirement calculated inside its internal model. Indeed, a

positive dependence implies a non-negative likelihood to get high aggregate claims amounts

jointly from different LoBs, making the capital requirement increase.

Several dependence structures can be fit inside an internal model. The most used and

simplest measure of dependence is the linear correlation coefficient. In the Solvency II

framework, the dependence structure underlying the Standard Formula involves fixed cor-

relation coefficients between segments, to be applied by all the companies regardless their

real business. Conversely, if the company decides to apply for an internal model, it has to

fit a dependence structure properly describing the existing relationships between risks going

also beyond the simple Pearson linear correlation coefficient.

In the following paragraphs, a presentation of the possible different dependence struc-

tures will be carried out. In particular, in paragraph 5.2, a brief introduction about the

linear correlation coefficient is provided in order to highlight its strengthens and shortfalls.

Starting from paragraph 5.4, copulae functions will be introduced and presented as a possible
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improvement of the basis correlation structure.

5.2 Linear correlation coefficient

Typically, the first indicator calculated for assessing the dependence structure between ran-

dom variables is the Pearson correlation coefficient (ρ(X,Y )). ρ(X,Y ) describes the linear

dependence between variables by a unique real number. Given two non-degenerated35 ran-

dom variables X and Y , the Pearson linear correlation coefficient can be defined as:

ρ(X,Y ) =
Cov(X,Y )√
V ar(X)V ar(Y )

where

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

ρ(X,Y ) ranges from -1 to 1. Higher is its absolute value, stronger is the relationship between

the random variables. IfX and Y are independent, ρ(X,Y ) = 0, since E(XY ) = E(X)E(Y ).

The opposite does not necessarily hold. In particular, if the linear correlation coefficient is

null, X and Y could be also dependent (but not linearly correlated). If ρ(X,Y ) = ±1, there

is a perfect linear dependence between the two variables. Conversely, if −1 < ρ(X,Y ) < 1,

the linear correlation is not perfect, which does not mean that there is not any non-linear

dependence.

Assuming to have at disposal two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) of

paired realisations of the non-degenerate variables X and Y , it is possible to compute the

sample mean, variance, covariance through the following unbiased estimators:

x̄ =
1

n

n∑
i=1

xi

ˆV ar(X) =
1

n− 1

n∑
i=1

(xi − x̄)2

ˆCov(X,Y ) =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

They can be used for defining the estimator of the linear correlation coefficient which is

asymptotically unbiased:

ρ̂(X,Y ) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n
i=1(yi − ȳ)2

35A non-degenerated random variable has finite mean and finite non-null variance.
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Some difficulties in the interpretation of the Pearson linear correlation coefficient can arise

when:

• the expected value of one variable is not defined (as for the Cauchy distribution).

• the variance of one variable is not defined (as for the Pareto distribution, quite used

in the reinsurance field).

• one variable has null variance.

Although its computation is quite straightforward, the Pearson correlation coefficient has

some shortfalls:

• It estimates the dependence between variables on the assumption that their relation-

ship is linear. In practice, dependences could be also non-linear and, by ignoring this

possible evidence, the Pearson linear correlation coefficient could lead to misleading

information.

• In addition, ρ̂(X,Y ) is a good estimator of linear dependence when X and Y are

correlated, but there is not a general criterion which determines whether there is

linear correlation between two random variables based on its value (except when X

and Y can be approximated by a Normal distribution).

• It is not invariant to non-linear strictly increasing transformations36, with the excep-

tion of positive, affine relationships.

• Being a function of the marginal distributions, as the form of the marginals changes,

also the value of the linear correlation coefficient will change.

• A well-defined risk measure must rank risks correctly. In other words, bigger are the

risks, bigger should be the risk measure. If the random variables X and Y double, the

Pearson correlation coefficient does not change:

ρ(2X, 2Y ) =
Cov(2X, 2Y )√
V ar(2X)V ar(2Y )

=
4Cov(X,Y )√

4V ar(X)4V ar(Y )
= ρ(X,Y )

Indeed, assuming a linear correlation between two variables, it is like assuming the

same correlation coefficient in any point of the distribution. Therefore, correspond-

ing percentiles of the distributions at different confidence levels share the same linear

36The translation invariance is one of the properties a risk measure shall meet since it assures a proper
treatment of riskless cash flows.

97



dependence structure. This feature could be quite problematic in practice and in

particular in insurance business, since typically the dependence increases when diver-

sification is most needed: in case of stress.

As highlighted by its shortfalls, the Pearson correlation coefficient is not able to properly

describe the non-linear behaviour of diversification and the tail dependence, particularly

crucial in insurance field.

5.3 Tail dependence

Tail dependence is a phenomenon by which the percentiles related to the tail(s) of the

distributions tend to be associated each other more strongly than the percentiles in the

body of the distributions. It could be quite relevant in the insurance field, since risks may

be reasonably independent except in the region of very large aggregate claims amounts which

are of full interest in the Solvency Capital Requirement computation. Easily the upper tail

dependence between two random variables X and Y with distribution function absolutely

continuous can be defined as:

τ(u) = Pr
(
Y > F−1

Y (u)|X > F−1
X (u)

)
It is the conditional probability that Y is above a given percentile at level u given that

also X is above its percentile at the same level. Being a conditional probability, it ranges

between 0 and 1. Typically, it is of interest the behaviour of the dependence in the tail

corresponding at the extremes of the interval (0,1). Therefore, it is possible to say that it

exists an asymptotic tail dependence if and only if τ+ = limu→1− τ(u) > 0 . In addition,

the (asymptotic) tail dependence is function of the copula linked to the joint distribution

and it does not depend on the marginals.

Graphically, it is possible to detect the tail dependence by drawing the rank scatterplot of

the random variables. It is appropriate to model the dependence by a linear correlation

coefficient only if the rank scatterplot shows a linear dependence. Otherwise, it is suggested

to fit a generalized non-linear dependence structure. A suggestion could be to apply a

mathematical tool: copula functions.

5.4 Copula functions

Copula is a multivariate cumulative distribution function which margins are standard uni-

form. Copula functions are able to overcome the shortfalls of the Pearson linear correla-
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tion coefficient, building joint cumulative function from the CDFs (Cumulative Distribution

Functions) of the marginals and taking into account the potentially different dependence

structures in different points of the distribution. Their popularity is given by the Sklar’s

Theorem.

Assume to have a generic random vector (X1, X2, . . . , Xd) of known marginal distri-

bution F1(x1), F2(x2), . . . , Fd(xd). According to the Sklar’s theorem, it exists a function

C : [0, 1]d → [0, 1] (satisfying the properties of multivariate distribution function37) such

that the multivariate cumulative distribution function can be written as:

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

If the CDFs of the marginals F1(x1), F2(x2), . . . , Fd(xd) are continuous, the copula C is

unique. In case at least one CDF associated to a marginal is non-continuous or not uniformly

continuous, it is always possible to separate the marginals from the dependence structure

through a copula, but it is no more uniquely identified.

Therefore, the Sklar’s theorem states that the joint cumulative distribution function can be

decomposed into:

• the copula, which contains all information about the dependence structure among the

random variables.

• the univariate marginal cumulative distribution functions which contain all information

about the marginal distribution of the random variables.

Therefore, it is possible to split the characteristics of each marginal and the effect of the

dependence and to analyse and calibrate them separately. The decomposition provided

by the Sklar’s theorem is based on the probability integral transform. According to this

statistical result, having a vector of random variables, it is possible to define uniform random

variables U1, U2, . . . , Ud such that U1 = F1(x1), U2 = F2(x2), . . . , Ud = Fd(xd). The copula

function C can be represented as a multivariate distribution function of uniform marginal

37The copula function shall satisfy the following conditions:

1. For k = 1, . . . , d:

C(u1, . . . , uk−1, 0, uk+1, . . . , ud) = 0, ∀ u1, . . . , uk−1, 0, uk+1, . . . , ud ∈ [0, 1]

C(1, . . . , 1, u, 1, . . . , 1) = u, ∀ u ∈ [0, 1]

These equalities assure that the marginals are uniform.

2. The function C is non-decreasing in order to obtain a measure of probability linked to the copula
which is positive in each subset of the domain. In other words, it assures that the joint cumulative
distribution function associated to the copula is continuous and non-decreasing in each component.

99



distributions:

C(u1, . . . , ud) = P (U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud)

Since the function C describes the dependence structure, by applying it to the marginals of

interest, it is possible to get the joint cumulative multivariate distribution F (x1, . . . , xd). In

addition, through copulae, given the same marginals, it is possible to change the dependence

structure by choosing a different copula and obtaining a completely different joint distribu-

tion.

Here three basic examples of copulae are provided:

• Product Copula.

Π(u1, ..., ud) =

d∏
i=1

ui

It is the dependence structure underlying mutually independent random variables

X1, X2, ..., Xd. Therefore, the resulting joint distribution is only given by the product

of the marginals:

F (x1, ..., xd) =

d∏
i=1

Fi(xi)

In a two-dimensional case, the sample p-th percentile of X1 can be matched with any

percentile of X2 with equal probability (i.e., at random).

• Full dependence copula.

M(u1, . . . , ud) = min(u1, . . . , ud)

In the bivariate case, it is the dependence structure underlying fully dependent and

concordant variables, implying that the p-th percentile of X1 will be always matched

by the p-th percentile of X2. Applied to an insurer’s internal model, claims from each

LoB occur jointly, implying a very large total aggregate claims amount.

• Full Negative dependence copula.

W (u1, ..., ud) = max

( d∑
k=1

uk + d− 1, 0

)

It is the dependence structure of variables which are fully dependence and discordant.

In the two-dimensional case, the p-th percentile of X1 will be always matched with

the (1-p)-th percentile of X2. Applied to the capital requirement computation, the

aggregate claims amount of one LoB compensate the ones from other LoBs each other.
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In the literature, there are a lot of possible copulae in between the two extreme cases of

M(u1, u2) and W (u1, u2). Indeed, the Frechet-Hoeffding bounds inequality states that:

M(u1, . . . , ud) ≤ C(u1, . . . , ud) ≤W (u1, . . . , ud)

M(u1, . . . , ud) and W (u1, . . . , ud) are denoted respectively as the lower bound and the upper

bound of Frechet-Hoeffding. Π(u1, u2) could be considered to be right in the middle between

the full dependence and the full negative dependence cases. If there is at least some kind of

dependence, there will be some degree of regularity in the way the percentiles are associated.

For instance, for dependent and concordant distributions, the top percentiles of X1 will

tend to be associated with the top percentiles of X2. Due to the surely present degree of

randomness, some top percentiles of X1 will associate with the bottom percentiles of X2,

and vice versa.

In addition, conversely to the Pearson correlation coefficient, copulae functions are invariant

with respect to monotonic strictly increasing transformation of marginals. Since the copula

links the ranks of random variables, transformations which preserve the ranks of random

variables will also preserve the copula. Therefore, if the transformation is strictly monotonic,

the functional form of the copula is unchanged. For instance, it is possible to associate to

the copula function C, the function C̄ : [0, 1]d → [0, 1], named survival copula, defined as:

C̄(u1, ..., ud) =

n∑
k=1

uk + 1− d+ C(1− u1, ..., 1− ud)

It is the function obtained by inverting all the arguments of the copula function and it has

tails with opposite orientation with respect to the original copula C.

Copulae are quite powerful function to describe dependence, but they require the esti-

mation of their parameters. Therefore, for obtaining a reliable estimate, a sufficiently long

dataset is needed. In actuarial fields, data availability is quite restricted, implying that

the use of copula function is a bit trickier than in finance. A possible (practical) solution

is to calibrate the parameters according to a sort of combination between the empirical

observations and priors which are based on the subjective judgement of actuaries and of

underwriters (Bayesian approach).

In the following paragraphs, copulae belonging to two different copula families, respec-

tively the Gaussian copula and the Gumbel copula, are presented, highlighting their points

of strength and shortfalls. Before presenting copulae, it could be useful to introduce another

101



measure of dependence, the Kendall’s tau.

5.5 Kendall’s tau

The Kendall’s tau is typically computed as a concordance index measuring general forms of

dependence which could be not necessarily linear. Given two vectors of realizations of the

random variables X and Y of size n, the Kendall’s tau is calculated as:

τ =
2

n(n− 1)

∑
i<j

sign(xi − xj)sign(yi − yj)

i = 1, . . . , n; j = 1, . . . , n

A pair of values (xi, yi) is said to be concordant (discordant) if the movement with respect

to the following value (xj , yj) is in the same (opposite) direction for the two time series.

The Kendall’s tau increases due to concordant pairs and decreases in presence of discordant

pairs38.

Being a measure of concordance, the Kendall’s tau can be defined also as:

τ =
number of concordant pairs − number of discordant pairs

n(n−1)
2

As the Pearson correlation coefficient, it ranges between -1 and 1 and higher is its absolute

value, stronger is the relationship between the two random variables. If it takes on value

of (-)1, there is a perfect, not necessarily linear, positive (negative) dependence between

the two random variables. Therefore, after having observed an increasing behaviour in the

values of X, it is expected to observe an increasing behaviour in the values of Y too.

The main difference between the Pearson correlation coefficient and the Kendall’s Tau is that

the first one is a value correlation, whereas the second one a rank correlation. Therefore,

conversely to the Pearson linear correlation coefficient, the Kendall’s Tau is not affected by

the values of the variables X and Y , but by only their rank.

In addition, τ does not depend on the shape of the marginals, but exclusively on

the copula function linking them. It is used for calibrating the dependence parameter in

Archimedean copulae where it is not possible to refer to linear correlation, since those cop-

ulae are good at catching tail dependence and non-linear dependence.

38Indeed, if the pair is concordant, sign(xi−xj)sign(yi−yj) = 1, if discordant, sign(xi−xj)sign(yi−yj) =
−1.
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According to the Skar’s theorem, on the same set of marginals, it is possible to fit different

copulae, obtaining a different joint probability distribution. In order to allow comparisons,

it is necessary to calibrate the copulae on consistent measures of dependence. Therefore, it

could be useful to highlight the relationship existing between the Pearson linear correlation

coefficient (ρ) and the Kendall’s Tau (τ):

ρ = sin

(
π

2
τ

)

5.6 Gaussian copula

The Gaussian copula is an elliptical copula39 corresponding to the dependence structure

underlying a multivariate normal distribution with a given correlation matrix Σ. According

to the Sklar’s theorem, it can be defined as:

CGaΣ (u) = ΦdΣ
(
Φ−1(u1), ...,Φ−1(ud)

)
ΦdΣ is the distribution function of a multivariate standard normal of dimension d with cor-

relation matrix Σ, whereas Φ−1 is the inverse of a univariate normal distribution. The

Gaussian copula is symmetric, and it does not have any tail dependence (with the exception

of ρ = ±1). Whatever is the value of the correlation, going far enough in the tails, extreme

events tend to occur independently. In other words, the occurrence of an extreme event for

one of the variables does not allow to obtain information on the occurrence of extreme events

for the other variables. Therefore, if from the rank scatterplot of the data of interest, it is

evident the presence of a tail dependence, it is not recommended to use a Gaussian copula,

but a copula with tail dependence. Indeed, fitting a Gaussian copula to the aggregate claims

amount distribution in presence of right tail dependence will lead to an overestimation of the

diversification benefit and to an underestimation of the capital requirement. This result is

justified from the fact that in case of bad performances from a LoB, due to tail dependence,

there is a non-negative probability that also the other LoBs will perform badly. By holding

the capital requirement obtained by fitting a Gaussian copula, the company could not have

sufficient resources to cover the very high total aggregate claim amount.

The Gaussian copula depends on a set of parameters depicted by the correlation matrix Σ.

Higher is the correlation/dependence, lower is the diversification benefit. Fitting a Gaussian

39Elliptical copulae are a family of copulae defined on elliptical probability distributions. Elliptical mul-
tivariate distributions are a family of distributions including the multivariate standard distribution and the
t-Student multivariate distribution.
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copula, the diversification benefit decreases linearly as the parameters of the correlation

matrix increase (equivalent to a stronger dependence between risks). In addition, in absence

of correlation, the correlation matrix coincides with the identity matrix (Σ = I) and the

multivariate Gaussian copula degenerates to the product copula.

5.6.1 Simulations out of a Gaussian copula

The procedure followed for generating samples out of the vector of Gaussian-copula cor-

related random variables X = (X1, . . . , Xd) with given marginals is quite straightforward.

The inputs are:

• The correlation matrix Σ of dimension d. Σ must be squared of dimension dxd (in

the bivariate case 2x2), symmetric, positive-defined, with elements in between (-1,1)

and unitary diagonal elements. In the bivariate case, only if ρ = ±1, the matrix is

not positive-defined and the generation of samples out of the Gaussian distribution

follows the algorithms for the full dependence copula (ρ = +1) and the full negative

dependence copula (ρ = −1).

• The cumulative distribution function F1, F2, . . . , Fd of the d marginals.

• m, the number of simulations.

The first step for obtaining simulations out of a Gaussian copula involves the determination

of the Cholesky matrix A associated to Σ, such that Σ = AA′. In the bivariate Gaussian

copula, the dependence (correlation) structure existing between the random variables X1

and X2 is given by the correlation matrix Σ:

Σ =

1 ρ

ρ 1


where ρ is the linear (Pearson) correlation coefficient. In this case, the Cholesky’s decom-

position is quite simple to calculate, and it is equal to the following lower left triangular

matrix:

A =

1 0

ρ
√

1− ρ2


Secondly, m vectors of d elements n must be generated out of d independent standard

normal distributions (mean equal to 0 and variance equal to 1): ni ∼ N(0, 1), for i =

1, . . . , d. For obtaining a set of correlated normally distributed variates, it is necessary to
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create the vector z of m elements given by the product between the matrix A and ni:

zi = Ani, i = 1, ...,m

Then, zi must be transformed uniform variables:

ui = Φ(zi), i = 1, ...,m

where Φ is the CDF of the standard normal distribution. The vectors {u}i=1,..,m represent

samples out of the Gaussian copula.

Once the dependence structure among the variables of the random vector X has been

defined, it is possible to introduce the marginal distributions in order to determine the joint

distribution of X. It is necessary to associate the quantiles ui to the ones of the marginals

applying the inverse probability integral transform, creating the vectors xi:

xij = F−1
j (ui)

i = 1, ...,m, j = 1, ..., d

where = Fj is the marginal cumulative distribution functions of the random variable Xj .

The vector {xi}i=1,..,m represents a sample of m elements of the distribution with marginals

X1, . . . , Xd and Gaussian dependence structure.

The inverse probability integral transform cannot be applied when the marginal cumu-

lative distributions are unknown. In this case, assuming to have realizations of the random

vector X, it is possible to build their joint probability distribution through a sorting process

of their realizations. In particular, the realizations of X1 will be sorted according to the

rank of u1, the ones of X2 according to the rank of u2 and so on.

5.7 Gumbel copula

As highlighted in paragraph 5.6, the Gaussian copula does not fit any tail dependence. In

the computation of the capital requirement, the tail dependence could play a quite relevant

role since it will increase the likelihood of joint occurrence of large aggregate claims amount

from different LoBs. The Gumbel copula, belonging to the Archimedean copula family,

can help in modelling tail dependence. Archimedean copulae are characterized by the fact

that one parameter θ, denoted as dependence parameter, controls the dependence between
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marginals. The domain of θ depends on the type of copula, but, in general, the closer is to

its lower (upper) bound, the more the marginals tend to independence (total dependence).

In order to estimate θ, a measure of association is needed. Typically, it is used the Kendall’s

Tau since it is related to θ, by the following mathematical equality:

τ = 1− θ−1

The Gumbel copula stresses the right tail dependence. Therefore, it could be applied to

model the dependence structure between aggregate claims amounts of different Lines of

Business. In other words, when high aggregate claims amount has been observed for one

segment, it is quite probable that also in the other line of business high aggregate claims

amount will be observed. In addition, it has a very small left tail dependence for finite

quantile, but asymptotically, there is not left tail dependence.

The Gumbel copula in the bivariate case is defined as:

C(F1(x1), F2(x2)) = exp

[
−
[(
− ln

(
F1(x1)

))θ
+
(
− ln

(
F2(x2)

))θ]1/θ]

θ ∈ [1,+∞)

A value of θ equal to 1 implies independence between random variables. Higher is the value

of θ, stronger is the dependence and the right tail dependence.

5.7.1 Simulations out of a Gumbel copula

The procedure for simulating realizations of two random variables X and Y related by

a Gumbel copula is based on the conditional distribution method. Assume to have two

standard uniform random variables (U1, U2), which joint distribution function is C, the

copula between X and Y . Take a generic observation of (U1, U2), represented by the pair

(u1, u2). For applying the conditional distribution method, it is necessary to compute the

conditional distribution function of U2, given U1 = u1, denoted by Fu1(u2):

Fu1
(u2) = P [U2 ≤ u2|U1 = u1] =

= lim
∆u1→0

C(u1 + ∆u1, u2)− c(u1, u2)

∆u1
=
∂C(u1, u2)

∂u1
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For obtaining draws of a copula, samples out of two independent standard uniform distri-

butions (u1, v2) must be generated. Easily, u2 can be computed as:

u2 = F−1
u1

(v2)

where F−1
u1

is the quasi-inverse of Fu1
.

Fu1
under a Gumbel copula is not invertible. Therefore, an acceptance-rejection method

must be applied, implying a higher computational time. Once obtained the draws out of the

Gumbel copula, the same sorting procedure explained in paragraph 5.6.1 must be applied

to the realizations of the two random variables X and Y .

The Gumbel copula is very good in stressing right tail dependence, but, being an

Archimedean copula, it fits only pairwise dependence. In a multidimensional case higher

other the bivariate one, variables must be aggregated two-by-two, whereas through a Gaus-

sian copula, it is possible to aggregate all of them at once. Therefore, for Gumbel copula,

and in general for Archimedean copulae, some issues can arise in aggregating more than two

marginals. Indeed, they have only one communal measure of dependence θ, which could

be not able to describe the potentially different dependence structures between pairs of

marginals. Vine copulae overcome these shortfalls.
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6 Internal model

In order to choose whether to underwrite or not a reinsurance treaty, the insurer has to

perform a risk-profitability analysis. In particular, in this chapter, a model is introduced in

order to study the impact of the reinsurance cover on the risk profile and on the profitability

of the cedant. The insurer’s risk profile is measured by its capital requirement computed

according to an internal model, based on a collective approach. Moreover, its performances

are assessed through the Return on Equity.

6.1 Profitability

Before introducing a measure for the insurer’s performances, a brief reminder of the risk

reserve in one-year time horizon is needed. The stochastic risk reserve at the end of the year

1 for a mono-line insurer is given by the following relationship:

Ũ1 = U0(1 + j) +
[
B1 − X̃1 − Ẽ1

]
(1 + j)1/2

where:

• j is the annual rate of investment return. Since the investment risk is ignored, j

corresponds to the risk-free rate.

• Ẽ1 are the general and acquisition expenses.

• X̃1 is the stochastic aggregate claim amount.

• B1 are the gross premium volume, ignoring the effect of the premium reserve (i.e., by

assuming the coincidence between written premiums and earned premiums).

In addition, it is assumed that claims, premiums, and expenses are realized, on average, in

the middle of the year. Therefore, they are invested at the risk-free rate j for half a year.

The gross premium amount is supposed to be composed as follows:

B1 = P1 + λP1 + cB1

The risk premium is computed as the expected aggregate claims amount:

P1 = E(X̃1)
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To P1, it is added a safety loading (expected technical profit) and an expense loading cor-

responding to the expected value of expenses:

cB1 = E(Ẽ1)

Under this assumption, the technical profit B1 − X̃1 − Ẽ1 can be easily rewritten as P1(1 +

λ)− X̃1. In addition, the gross volume premium is assumed to increase yearly by the claim

inflation (i) and real growth (g):

B1 = (1 + i)(1 + g)B0

Notice that i, g and j are assumed to be constant (and not time-dependent) during the

one-year time period.

A measure for the performances of the direct insurer is the expected Return on Equity

(RoE), which can be defined in function of the risk reserve. Indeed, it can be computed as:

R̄(0, 1) = E

(
Ũ1 − U0

U0

)
= (1 + g)(1 + i)

ru0 + λp

u0
− 1

where r is a synthetic index calculated as:

r =
1 + j

(1 + i)(1 + g)

Moreover, p represents the incidence of the risk premium on gross premium increased by the

investment return for half a year:

p =
P1

B1
(1 + j)1/2 =

1− c
1 + λ

(1 + j)1/2

R̄(0, 1) is a measure of profitability gross of any reinsurance treaty. In order to define the

efficiency and the convenience of underwriting a reinsurance cover, the gross ROE must be

compared with the ROE net of reinsurance. Therefore, the risk reserve must be extended

to the case where the insurance company underwrites a reinsurance treaty:

Ũ1 = U0(1 + j) +
[
B1 − X̃1 − Ẽ1 −

(
BRE1 − X̃RE

1 − CRE1

)]
(1 + j)1/2

With respect to the formula of the gross risk reserve, the technical result for the reinsurer,

(BRE1 − X̃RE
1 −CRE1 ), is introduced. In particular, BRE1 represents the gross premiums paid
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to the reinsurer, whereas CRE1 denotes the commissions typically characterizing the pricing

process of proportional treaties. In particular, for a quota share treaty with a retained

quota equal to α, the premiums paid to the reinsurer and the reinsurance commissions can

be calculated as:

BRE1 = (1− α)B1

CRE1 = cREBRE1

The coefficient cRE is fixed in advance in case of fixed commissions or it could change in

accordance with the Loss Ratio in case of scaling commissions.

X̃RE
1 is the stochastic aggregate claim amount charged to the reinsurer, which is computed

for an Excess-of-Loss treaty with priority M and no limit as:

X̃RE
1 =

K̃1∑
k=1

max
[
0, Z̃k,1 −M

]
Therefore, the risk premium charged by the reinsurer shall be:

PRE1 = E
(
X̃RE

1

)
= n1E

(
Z̃RE1

)
Notice that in the formula it is involved the total expected number of claims (and not only

the ones exceeding the priority). E
(
Z̃RE1

)
can be calculated through the stop-loss transform

as:

E(Z̃RE1 ) =

∫ +∞

M

(Z −M)dS1(Z) =

∫ +∞

M

(1− S1(Z))dZ

where S1(Z) is the cumulative distribution function of the claim amount Z in the year 1.

Easily, the gross premium to be paid to the XL reinsurer can be computed:

BRE1 =
(
1 + λRE

)
PRE1

cRE = 0

where λRE denotes the safety loading coefficient applied by the reinsurer. It increases as

the priority increases since the part of the distribution ceded is more volatile.
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6.2 Solvency Capital Requirement

In this paragraph, a possible internal model for the premium risk and expense risk is in-

troduced. Denote with Ỹ1 the random variable representing the one-year (0,1) stochastic

technical result, evaluated at the end of the year 0 for a multi-line Non-Life insurer. It is

possible to define Ỹ1 as:

Ỹ1 =

[ L∑
h=1

(Bwritt1,h + PR0,h − P̃R1,h)−
L∑
h=1

Ẽ1,h−

L∑
i=1

(
X̃paid,CY

1,h + X̃paid,PY
1,h + ˜PCO

CY

1,h + ˜PCO
PY

1,h − PCO0,h

)]

where:

• L is the number of LoBs.

• Bwritt1,h are the estimated gross written premiums for the h-th LoB. The company has

to consider the budget plan, approved by the board, for the next year in terms of

volume of the written premiums. For conservative reasons, if the expected premiums’

volume is decreasing, the company will take the (known) volume of the premiums of

the previous year.

• PR0,h and P̃R1,h are respectively the initial and deterministic premium provision and

the final and stochastic premium provision. Their difference allows to switch from

written premiums to earned premiums.

• Ẽ1,h are the expenses of the year for the h-th LoB, excluding settlement expenses

which are already included in the payments or in claims provisions.

• X̃paid
1,h = X̃paid,CY

1,h + X̃paid,PY
1,h represents the payments made in year 1. It is split into

two components, respectively:

– X̃paid,CY
1,h : the payments in the year 1 for claims incurred in the current year.

– X̃paid,PY
1,h : the payments in the year 1 for claims incurred in previous years.

This distinction is quite relevant since these claims are covered by different amounts.

Payments for claims occurred in the current year are covered by the premiums (pre-

mium risk), whereas the other ones by the claim reserve (reserve risk).

• PCO0,h and ˜PCO
PY

1,h are respectively the initial and the final provision for outstanding

claims.
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Since the insurer is supposed to be multi-line, a proper dependence structure should be

introduced in terms of payments and expenses. Typically, payments and expenses are as-

sumed independent. Much more relevant is the dependence assumption among aggregate

claim amounts arising from different LoBs. Only in the case those amounts are independent,

the total aggregate claim amount can be calculated as the simple sum of the LoBs’ ones.

Otherwise, a proper aggregation procedure, as through copula functions, must be fit and

well calibrated.

By ignoring Cat risk (and the related extreme events) and lapse risk, it is possible to

split the effect on the technical result of the premium risk component and the reserve risk

component:

Ỹ1 = Ỹ pr1 + Ỹ res1

where

Ỹ pr1 =

[ L∑
h=1

(Bwritt1,h + PR0,h − P̃R1,h)−
L∑
h=1

Ẽ1,h −
L∑
i=1

(
X̃paid,CY

1,h + ˜PCO
CY

1,h

)]

Ỹ res1 =

L∑
h=1

(PCO0,h − X̃paid,PY
1,h − ˜PCO

PY

1,h )

Since in the case study, the reserve risk is not taken into account, here only the premium

risk is considered and analysed. The contribution of the premium to the technical profit

arises from the comparison between premiums, claims and expenses for claims occurred in

the current year. Recalling that the claims outstanding provision under the Solvency II is

defined as the sum of the Best Estimate and the Risk Margin, the premium component of

the stochastic technical result can be rewritten as:

Ỹ pr1 =

[ L∑
h=1

(Bwritt1,h + PR0,h − P̃R1,h)−

L∑
h=1

Ẽ1,h −
L∑
i=1

(
X̃paid,CY

1,h + B̃E
CY

1,h + ˜RM
CY

1,h

)]

As in paragraph 6.1, the gross premiums of the LoB h can be defined in function of the risk

premiums as:

Bwritt1,h = P1,h + λhP1,h + chB1,h

where λhP1,h is the safety loading and chB1,h is the expense loading. In particular, the risk

premium is defined as the expected amount of payments and reserve for claims incurred in
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the current year:

P1,h = E
(
X̃paid,CY

1,h + B̃E
CY

1,h

)
The expense loading is computed as the expected value of expenses:

chB1,h = E(Ẽ1,h)

Substituting this definition of the gross premium, Ỹ pr1 can be rewritten as:

Ỹ pr1 =

[ L∑
h=1

(P1,h + λhP1,h + chB1,h + PR0,h − P̃R1,h)−

L∑
h=1

Ẽ1,h −
L∑
i=1

(
X̃paid,CY

1,h + B̃E
CY

1,h + ˜RM
CY

1,h

)]

Recall that the claims outstanding provision in the year 1 is not affected by the reserve risk,

which is already considered in its proper risk submodule (respectively, the reserve risk).

Therefore, the additional volatility coming from the run-off is not considered here.

In order to neglect the impact of the premium reserve, the written premiums are assumed

to be equal to the earned premiums. It follows that the stochastic technical result’s premium

risk component can be defined as:

Ỹ pr1 =

[ L∑
h=1

(P1,h + λhP1,h + chB1,h)−
L∑
h=1

Ẽ1,h −
L∑
i=1

(
X̃paid,CY

1,h + B̃E
CY

1,h + ˜RM
CY

1,h

)]

It could be interesting to calculate the expected value of the random variable Ỹ pr1 :

E(Ỹ pr1 ) = E

[ L∑
h=1

(P1,h + λhP1,h + chB1,h)−
L∑
h=1

Ẽ1,h −
L∑
i=1

(
X̃paid,CY

1,h + B̃E
CY

1,h + ˜RM
CY

1,h

)]

By recalling the definition of the risk premium and of the expense loading:

P1,h = E
(
X̃paid,CY

1,h + B̃E
CY

1,h

)
chB1,h = E

(
Ẽ1,h

)
and applying the linearity property of the expected value, it is possible to calculate the

expected technical result (only for the premium component) as:

E(Ỹ pr1 ) =

L∑
h=1

λhP1,h
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By definition, the safety loading is the expected technical profit introduced in the pricing

process by the insurer in order to get a remuneration for the risk borne and to have a capital

buffer.

In order to compute the capital requirement, a risk measure shall be introduced. Un-

der the Solvency II framework, a VaR risk measure at 99.5% level of confidence shall be

considered. Therefore, the SCR for premiums and expense risk can be calculated as:

SCRprem&exp
1 = −V aR0.5%(Ỹ pr1 )

Notice that the VaR is calculated at a level of confidence of 0.5% which is exactly the

complement to 100% of 99.5% level defined by the Solvency II directive. It is taken the

opposite of the 0.5% percentile since the risk for the stochastic technical result is on the left

tail (risk of decrease in value).

Equivalently, the SCR can be defined also as:

SCRprem&exp
1 = V aR99.5%

{ L∑
h=1

X̃CY
1,h +

L∑
h=1

Ẽ1,h

}
−

L∑
h=1

(
P1,h + λhP1,h + chB1,h

)

where X̃CY
1,h = X̃paid,CY

1,h +B̃E
CY

1,h . The Risk Margin is excluded from the SCR’s computation

in order to avoid circularity problems, since in turn the RM is a function of the SCR.

Finally, the SCR for premium and expense risk for the single LoB h can be calculated as:

SCRprem&exp
1,h = V aR99.5%

{
X̃CY

1,h + Ẽ1,h

}
−
(
P1,h + λhP1,h + chB1,h

)
In order to evaluate the convenience of underwriting or not a reinsurance treaty, the

gross SCR for premium and expense risk shall be compared with the net SCR. Therefore, in

case the direct insurer underwrites reinsurance contracts, measures must be considered net

of reinsurance. In particular, premiums and payments must be net of the premiums paid

to the reinsurer and of the claims of competence of the reinsurance company. In addition,

reinsurance commissions, if present, must be properly taken into account. Therefore, the

Solvency Capital Requirement for premium&expense risk in presence of reinsurance treaties

becomes:

SCRprem&exp
1 = V aR99.5%

{ L∑
h=1

X̃CY
1,h +

L∑
h=1

Ẽ1,h −
L∑
h=1

C̃RE1,h

}
−

L∑
h=1

(
P1,h + λhP1,h + chB1,h

)
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6.3 Collective Risk Model for the aggregate claims amount

It should be noticed that both the Solvency Capital Requirement and the Return of Equity

depend on the aggregate claims amount for the h-th LoB. Therefore, in the last paragraph of

chapter 6.2, an analysis on X̃1,h is carried out. For obtaining a simpler and lighter notation,

the subscript h is hidden. Following the logic of the Collective Risk Model (CRM), the

aggregate claims amount X̃1 is given by a mixed compound process:

X̃1,h =

K̃1∑
k=1

Z̃k,1

Aggregate claims amounts in year 0 and 1 are assumed to be uncorrelated (no long-term

cycles).

K̃1 denotes the random number of claims occurred in the year 1 and its distribution

is typically assumed to be the Poisson law. In practice, the simple Poisson law fails in

describing properly the claim number distribution, because, in addition to pure random

fluctuations, there are other type of fluctuations. In particular, short-period fluctuations

affect only in the short-term the probability distribution without any time-dependence and

they could be well represented by a structure variable. Therefore, the parameter of the

Poisson becomes stochastic (n1q̃), where q̃ is the structure variable with unitary expected

value, which assures to not affect the expected number of claims. The expected number of

claims is given by the expected number of claims in the basic portfolio (at time 0) increased

by the real growth rate for one year:

n1 = n0(1 + g)

The implicit assumption is that the additional policyholders entering in the portfolio due to

the growth rate g have the same claim frequency of the ones inside the basic portfolio. A

typical distribution of q̃ is a Gamma distribution with equal parameters. A mixed Poisson-

Gamma turns out to be a Negative Binomial and X̃1 is typically denoted as compound Polya

process. In addition, the number of claims distribution K̃1 is assumed to be independent

with respect to any claims size amount Z̃k,1, for k = 1, 2, . . . .

Z̃k,1 represents the random amount of the k-th claim in the year 1. The claim size

amounts Z̃k,1 are assumed to be independent and identically distributed random variables,

which follow a continuous distribution scaled yearly by the inflation rate i. Therefore, their
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simple moment of the q-th order is simply defined as:

E(Z̃qk,1) = (1 + i)qE(Z̃qk,0)

Since the claim amount is only rescaled (yearly), the shape of its distribution is assumed to

be constant over time.

Under these assumptions, the moments of the aggregate claim amount distribution can

be easily derived:

E(X̃1) = n1m1 = n0m0(1 + i)(1 + g)

Notice that the introduction of the structure variable does not impact on the expected

aggregate claim amount. Conversely, q̃ introduces an additional source of volatility:

σ2(X̃1) = n1a2,Z1
+ n2

1m
2
1σ

2
q

γ(X̃1) =
n1a3,Z1

+ 3n2
1m1a2,Z1

σ2
q + n3

1m
3
1γqσ

3
q(

n1a2,Z1
+ n2

1m
2
1σ

2
q

)3/2
In addition, it could be useful to compute the standard deviation of the loss ratio:

σ

(
X̃1

B1

)
=

1− c
1 + λ

√
r2,Z0

n0(1 + g)
+ σ2

q

Great attention is paid to its asymptotic limit:

lim
n0→∞

σ

(
X̃1

B1

)
=

1− c
1 + λ

σq

Considering the market as a single portfolio, n0 can be assumed to be close to infinite. The

increasing dimension will not eliminate the Loss ratio’s variability, since there will be still

the impact of the structure variable, which represents a systematic risk eliminable only by

reinsurance covers (as quota share or stop loss). Therefore, from the asymptotic volatility

of the Loss Ratio, it is possible to derive the volatility of the structure variable. σq can

be estimated as the standard deviation of the market Loss Ratio, properly adjusted for the

proportion of risk premiums with respect to the gross ones. The shortfall of this estimation

method is that the volatility of the Loss Ratio also includes the effect of the underwriting

cycles, which is quite difficult to be isolated. Due to this additional source of randomness,

the value of σq, coming from the volatility of the market Loss ratio, could be overestimated.
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6.4 Expenses

Inside the Internal Model, the other random variable to be properly modelled in order to

calculate the SCR regards expenses. Typically, the Non-Life expense volatility is very low,

due to the annual maturity of coverages. Therefore, taking them as deterministic could be

a not so strong assumption. If the very low volatility is taken into account, expenses are

assumed to be stochastic, and three items must be defined:

• The distribution of expenses. Lognormal or normal distributions could be good choices.

• The parameters of the distribution, which could be calibrated according to the histor-

ical time series of the expense ratio.

• The dependence structure between expenses and the aggregate claim amount. Typi-

cally, X and E are assumed to be independent, but their dependence structure depends

effectively on the particular reality of the company. If the insurer recognizes some fees

in addition to acquisition costs to the agencies in case they underwrite portfolios of

good quality, expenses will be a function of the aggregate claims amount and the in-

dependence assumption will be violated. Since the entity of these additional fees is

generally contained, the independence assumption is typically admitted.

In any case, due to the lower relevance of the expense risk with respect to the premium risk,

the distributional and the dependence assumptions on E have usually not a strong impact

on the capital charge, except for some lines of business as pecuniary losses.
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7 Case Study

7.1 Parameters’ Calibration

The aim of this case study is to carry out a risk-profitability analysis of several reinsurance

treaties, in order to determine which is the optimal risk mitigation solution for the direct

insurer. In particular, the cedent is assumed to be a big size multi-line insurance company,

which business is made up of the segments Motor Third Party Liability (MTPL), General

Third-Party Liability (GTPL) and Motor Own Damage (MOD) according to the following

proportions:

• MTPL: 65%

• GTPL: 20%

• MOD: 15%

Since the risk profile is assessed through the computation of the Solvency Capital Require-

ment for premium risk, the time period considered is one year. A collective Risk Model

is fitted, as described in paragraph 6.3, in order to model the next year aggregate claims

amount. In particular, some assumptions related to the dynamic portfolio are needed, re-

garding the claim inflation rate i (3%), the financial rate r (1%) and the portfolio’s growth

rate g (1.9%). The random variable number of claims has been modelled via a mixed Pois-

son, where the structure variable is a Gamma (i.e., Negative Binomial), whereas for the

single claim amount and expenses through Lognormal distributions. The parameters of

these random variables are briefly summarized in table 7.

Segment λ c ca σ(ca) cm σ(cm)
MTPL -1.36% 21.3% 15.8% 0.3% 5.5% 0.13%
GTPL 10.69% 32.5% 27.3% 0.4% 5.2% 0.16%
MOD 10.63% 30.9% 25.8% 0.7% 5.1% 0.14%

Segment σq m0 cZ n0

MTPL 5.93% 4500 5 80000
GTPL 7.96% 10000 10 8225
MOD 4.74% 2500 2 25900

Table 7: Parameters of the Internal Model

The safety loading coefficient (λ) has been calibrated for each segment according to

market data published by Ania40. In particular, it has been obtained as the complementary

to 1 of the average of the last five Combined Ratios (excluding the run-off component)

40Data from 2015 to 2019.
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and then rescaled by the incidence of risk premiums with respect to gross premiums. It

is implicitly assumed that the current safety loading is still in line with the ones observed

in the last 5 years. Taking a longer time series could not improve the estimate, since

the pricing strategy could be changed over time, introducing bias in the estimation. The

segment MTPL has a small negative safety loading, implying, on average, technical losses.

Indeed, it is a quite competitive line of business and, in order to acquire more market shares,

the insurance company can adopt aggressive tariff strategies, by inserting a negative safety

loading. Conversely, segments GTPL and MOD have a positive safety loading coefficient,

determining an expected technical profit.

Acquisition and management expenses of the segment h are supposed to be stochastic

and described by two Lognormal random variables with mean and standard deviation equal

respectively to (cAhB1,h, σ
A
hB1,h) and (cMh B1,h, σ

M
h B1,h). In addition, they are supposed to

be independent with respect to the aggregate claims amount. The expense loading coeffi-

cient c and its volatility have been calculated respectively as the average and the standard

deviation of the last five Expense Ratios, computed separately for acquisition expenses and

management expenses. As expected, the acquisition expenses of the segment MTPL are

lower than the ones of the other lines of business, because, being a compulsory insurance,

there is not so much need to have a distributional channel. On average, the management

expenses are quite similar among the three segments, and they have typically a lower inci-

dence on the premiums than acquisition expenses. Notice also that the volatility factors for

both acquisition and management expenses are much lower than the corresponding claims’

volatility factors, showing the lower relevance of expense risk with respect to the premium

risk for a Non-Life company. Indeed, typically Non-Life contracts have an annual matu-

rity, implying a lower expenses volatility and a consequent lower complexity related to their

estimation.

The volatility of the structure variable q̃ has been calibrated according to the Loss Ratio

volatility (see paragraph 6.3). In order to obtain a more reliable estimate, the standard

deviation of the market Loss Ratio has been calculated on the whole time series available

(respectively data from 1998 to 2019). The most volatile structure variable is for the segment

GTPL since its technical result is typically subject to high volatility.

We assume that the insurance company could try to reduce its risk exposure through

the following reinsurance treaties:

• A quota share ceding 10% of the business, with fixed reinsurance commissions.

The fixed commissions coefficient is assumed to be equal to the total expense loading
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coefficient set by the insurer:

cfixedRE = c

• A quota share ceding 10% of the business, with scaling reinsurance commissions.

The scaling commissions have been calculated in accordance with the expected Loss

Ratio. The expected Loss ratio, defined as the incidence of the risk premiums with

respect to the gross premiums, returns to be equal to 79.82% (MTPL), 60.98% (GTPL)

and 62.48% (MOD). The highest expected loss ratio is recorded for MTPL segment,

due to its lower safety loading coefficient (lower is the expected profitability, higher is

the expected loss ratio).

Five classes of width 5 percentage points define the effective amount of the scaling

commissions’ coefficient:

cRE =



c+ 2δc, if LR ≤ E(LR)− 7.5%

c+ δc, if E(LR)− 7.5% < LR ≤ E(LR)− 2.5%

c, if E(LR)− 2.5% < LR ≤ E(LR) + 2.5%

c− δc, if E(LR) + 2.5% < LR ≤ E(LR) + 7.5%

c− 2δc, if LR > E(LR) + 7.5%

where δ = 10%. Notice that the middle class is centred on the expected loss ratio, and

it recognizes exactly the expense loading coefficient c. Lower is the Loss ratio, more

profitable is the ceded portfolio, higher will be the commissions retroceded from the

reinsurer to the insurer.

• An excess of loss (XL) treaty, with priority M and without cover.

In order to get comparable values among the different segments, it is assumed that the

priority M is defined in accordance with the moments of the claim size distribution

as:

M = E(Z) + k · σ(Z)

The multiplier k has been calculated by taking a typical priority value for the MTPL

segment, which is 500000. Therefore, the rounded multiplier k is 21. The resulting

priorities are respectively 491310 for MTPL, 2173300 for GTPL and 110725 for MOD.

More or less, they correspond to the 99.98-th percentile of the claim size distribution.

• XL treaty, with priority M and limit 2M.
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• Multi-Line treaty.

An umbrella policy acting on the aggregate claim amounts arising from all the segments

is introduced. Its priority has been calibrated as described in paragraph 7.4.1.

In terms of risk measure, the capital requirement for premium risk will be computed as

stated by the Standard Formula (see paragraph 3.5) and by applying an internal model (see

paragraph 6.2). The measure of profitability applied is the Return on Equity (ROE).

7.2 Mono-line Analysis

First of all, it is analysed the aggregate claims amount distribution and the reinsurance

impact on the profitability and on the risk profile separately for each segment.

7.2.1 Distributions

The main characteristics of the aggregate claims amount distributions simulated41 separately

for each line of business are summarised in Table 8.

Segment Mean Variance CV Skewness
MTPL 377 903 102 5.41153 · 1014 6.156% 0.128
GTPL 86 312 956 1.34996 · 1014 13.461% 2.971
MOD 67 957 302 1.10905 · 1013 4.9% 0.097

Table 8: Simulated moments of X

The main comments are:

• The segment MTPL has the highest expected aggregate claims amount due to the

highest expected number of claims.

• Only referring to the absolute variance could be misleading, since the lines of business

have different dimension due to the different expected number of claims. Therefore,

it is better to refer to the coefficient of variation (absolute volatility divided by the

mean). The most variable segment is General Third-Party Liability, due to the high

coefficient of variation of the claim size distribution (cZ = 10).

• The skewness of the GTPL aggregate claims amount distribution is highly above the

threshold level of 1. Therefore, from Figure 12, it is possible to notice the long right

tail. In addition, consider that the high value of the coefficient of variation of the claim

size distribution makes the convergence process of the simulated moments to their

theoretical values much slower. Indeed, the exact skewness for the segment GTPL,

41600000 Monte Carlo simulations are run.
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Figure 12: Comparison between Gross Aggregate Claims amount distributions for each segment

given the current parametrization, should be 5.977. A better convergence could be

obtained by increasing the number of simulations (due to the law of large numbers),

but it will require a higher computational time. Conversely, the MTPL and MOD

distributions are almost symmetrical due to the low value of the skewness index.

The same analysis can be performed on the aggregate claims amount distribution net of the

reinsurance treaty. Results related to the quota share treaty are summarised in Table 9.

Segment Mean CV Skewness
MTPL 340 112 792 6.156% 0.128
GTPL 77 681 660 13.461% 2.971
MOD 61 161 571 4.9% 0.097

Table 9: Simulated moments of net aggregate claims amount – Quota Share

Since the quota share treaty cedes losses in the same proportion regardless their magnitude,

it is expected a reduction in terms of expected value and standard deviation equal to the

ceded quota. The coefficient of variation and the skewness are exactly the same of the gross

aggregate claim amounts distribution because the treaty only rescales it. Therefore, the

treaty is able to reduce the risk only in absolute terms, but it is not able to protect the

insurer from extreme events (by reducing the relative volatility). In Figure 13, it is possible

to notice that the shape of the distribution is totally unchanged.

Table 10 summarises the simulated moments of the aggregate claims amount distribution

net of the XL treaty without limit. Conversely to the quota share treaty, the XL is able

to reduce also the relative volatility and the skewness. Indeed, the XL cuts the right tail

of the claim size distribution, covering only extreme claims. Therefore, also the aggregate

claims amount distribution will be less (relatively) volatile and less skewed (but not tail-cut,

since the treaty does not affect the number of claims). The strongest effect is recorded for
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Figure 13: Graphical comparison between net and gross distributions – Quota Share

Segment Mean CV Skewness
MTPL 370 201 287 6.046% 0.117
GTPL 82 874 038 10.236% 0.201
MOD 67 751 827 4.885% 0.096

Table 10: Net and gross simulated moments of aggregate claims amount – XL (no limit)

GTPL business. Even if the priority M corresponds more or less for all the segments to

the 99.98-th percentile of their claim size distribution, the skewness index decreases strongly

from 2.971 to 0.201. Figure 14 shows how the XL is able to reduce the very long right tail,

characterizing the GTPL business. Similar effects but smaller in magnitude are observed

also for MTPL and MOD.

Figure 14: Graphical comparison between net and gross aggregate claims amount distribution – XL
(no limit)

In order to limit its risk exposure, the reinsurer can impose a limit on the claim amount

it is responsible for. In Table 11, the results are summarised. The expected net aggregate

claims amount is higher than in the XL without limit as expected. Indeed, without any limit
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Segment Mean CV Skewness
MTPL 371 821 915 6.089% 0.126
GTPL 83 942 921 12.268% 3.678
MOD 67 764 039 4.887% 0.096

Table 11: Net and gross simulated moments of aggregate claims amount – XL (with limit)

the reinsurer will cover for each claim the entire claim size above the priority, whereas this

value is upper bounded at the limit if present. By introducing a cover, the right tail of the

claim size distribution is not cut, but it is still of competence of the direct insurer. Therefore,

the reduction of the skewness and of the coefficient of variation coming from the XL with

limit is lower than the one obtained from the corresponding XL without limit. The result in

terms of skewness with respect to the gross case does not hold for the segment GTPL. Since

the GTPL gross distribution is characterized by a very volatile and skewed claim size, by

only ceding a portion of the tail of its distribution, extreme claims are still of competence of

the insurer, making the skewness of the net aggregate claims amount distribution increase

strongly.

7.2.2 Reinsurance Premiums

In order to quantify the impact of reinsurance treaties on the cedent’s profitability and risk

profile, it should be assessed how reinsurance coverages are priced. Premiums paid to the

quota share reinsurer are summarized in Table 12, separately for each segment.

Segment BRE Fixed Commissions Average Scaling Commissions
MTPL 47 338 674 10 083 138 10 084 953
GTPL 14 157 650 4 601 236 4 638 819
MOD 10 877 479 3 361 141 3 361 197

Table 12: Premiums paid to the quota share reinsurer.

On average, the scaling commissions corresponds to the fixed commissions, for the way in

which they are defined. Therefore, fixed and scaling commissions should have a similar

impact on the net profitability, but a different effect on the cedent’s risk profile due to the

additional volatility arising from the scaling commissions.

The Excess of Loss treaties have been priced as the aggregate claims amount the rein-

surer expects to pay increased by a safety loading. The safety loading coefficient has been

calculated as (absolute value of) the safety loading coefficient applied by the direct insurer

adjusted for the ratio between the gross and the net relative volatility. It is a way to increase

the remuneration for the risk borne since the reinsurer covers only extreme events. Results

are depicted respectively in Table 13 for the XL without limit and in Table 14 for the XL
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with limit.

Segment BRE - XL (no limit) λRE - XL (no limit)
MTPL 7 811 604 1.425%
GTPL 3 922 815 14.071%
MOD 227 323 10.633%

Table 13: Premiums of the XL treaty without limit and the related safety loading coefficient.

Segment BRE - XL (with limit) λRE - XL (with limit)
MTPL 6 167 258 1.415%
GTPL 2 648 300 11.741%
MOD 213 807 10.63%

Table 14: Premiums of the XL treaty with limit and the related safety loading coefficient.

The introduction of a limit in the XL cover makes the expected aggregate claims amount

ceded to the reinsurer decrease, implying a lower risk premium. In addition, it leads a lower

reduction of the relative volatility, determining lower safety loading. Due to both effects,

the premium charged by the reinsurer for the XL with limit is lower than the one for the

XL without limit.

Comparing the proportional treaties with the non-proportional ones, it is possible to say

that for all the segments the quota share treaties have a stronger impact on the profitability

due to the higher premiums paid to the reinsurer. This result does not hold for the XL

treaty without limit, which implies a very strong reduction of the relative volatility and of

the skewness, leading to a very high premium.

7.2.3 Profitability per segment

Before making a risk-profitability analysis for the whole multi-line insurer, it is assessed the

impact of the different reinsurance treaties on the profitability separately for each segment.

The gross and net expected returns on equity are summarized in Table 15.

MTPL GTPL MOD
Gross -3.766% 28.57% 28.951%

Net quota (fixed) -3.29% 25.813% 26.156%
Net quota (scaling) -3.288% 25.925% 26.156%
Net XL (no limit) -3.846% 27.128% 28.867%
Net XL with limit -3.843% 27.741% 28.872%

Table 15: Net and gross profitability differentiated per segment

For all the segments, the XL treaties determines a reduction of the profitability. Notice that

for MOD, the difference between gross ROE and net ROE is very limited, due to the small

effect on the relative volatility and the skewness given by the reinsurance cover. Conversely,
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the highest reduction in profitability due to the XL treaty is recorded for GTPL. In all the

cases, the introduction of a limit leads to a lower profitability reduction since the reinsurer’s

intervention is upper bounded.

The quota share treaty has a different impact according to the segment to which it is

applied. It implies a profitability reduction for GTPL and MOD, since a portion equal to

α of the expected technical profit is ceded. Since the segment MTPL has a negative safety

loading coefficient, a proportion α of the expected technical losses (i.e., the safety loading)

is ceded, implying an improvement of the profitability. In addition, for all the segments, the

introduction of scaling commissions with respect to fixed ones does not have a very strong

impact on the expected Return on Equity.

7.2.4 Premium risk Solvency Capital Requirement

Internal Model. The capital requirement for premium risk has been calculated gross and

net of the reinsurance treaties according to the internal model. The results are summarised

in Figure 15. For obtaining a better comparison between the different segments, it should be

more reasonable to calculate the capital absorption, i.e., the ratio between SCR and (gross)

premiums.

Figure 15: SCR/B per segment

The following general comments can be made:

• all reinsurance treaties are effective in all the segments in reducing the cedent’s risk

profile.

• the introduction of scaling commissions leads to an increase in the volatility, which

makes the capital requirement (and consequently the capital absorption) increase.
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• The introduction of a limit inside the XL makes the solvency capital requirement

increase since there is a lower risk protection provided by the reinsurer. This result

does not hold for the segment MOD, since the introduction of the limit in the XL

cover does not impact so much on the characteristics of net aggregate claims amount,

due to the very low skewness of the gross distribution. Therefore, the lower premiums

of the XL treaty with limit are able to compensate the slightly higher skewness and

relative volatility with respect to the XL without limit, making the two resulting

capital requirements be very similar.

In addition, it should be noticed that the capital absorption strongly decreases with the

introduction of the XL treaty without limit in the GTPL segment. The reinsurance cover

is able to make the aggregate claims amount distribution less skewed and more insurable,

determining a quite low ratio between capital requirement and premiums.

The introduction of scaling commissions determines a consistent increase of SCR for the

MOD. Since the segment is characterized by a quite low (relative) volatility, the incidence

of the scaling commission on the aggregate claims amount’s volatility is higher for MOD

than for the other lines of business (7% versus 4-5%). Therefore, scaling commissions makes

the MOD’s volatility increase dramatically, determining that the capital absorption net of

quota share (21.12%) becomes also higher than the gross one (16.25%).

Standard Formula. In the Solvency II framework, it is possible to compute the capital

requirement also by applying the Standard Formula. In order to show its shortfalls and

limits, it is possible to make a comparison between the per-segment capital requirements

obtained by applying the Standard Formula and the Internal Model. Since the Standard

Formula does not consider the expected profit, a sensitivity analysis inside the Internal

Model is performed by removing the safety loading and the expenses in order to get more

comparable results.

MTPL GTPL MOD
Gross - no safety loading 62 802 013 40 707 567 8 888 074

Net quota (fixed) - no safety loading 56 523 955 36 638 161 8 000 045
Net quota (scaling) - no safety loading 58 540 582 37 558 408 8 672 273
Net XL (no limit) - no safety loading 60 298 434 23 447 632 8 837 389
Net XL with limit - no safety loading 61 158 358 34 859 558 8 838 356

Gross - no safety loading and expenses 62 792 108 40 732 146 8 890 177

Table 16: Sensitivity analysis per segment on the SCR

As Table 16 shows, the ignorance of the safety loading makes the SCR decrease (increase)
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in case the expected technical profit is negative (positive). Indeed, in case of positive safety

loading, the company will have more resources to cover the risks and its need for capital

goes down. Therefore, the Standard Formula is overestimating the premium risk SCR when

the safety loading is positive and underestimating it when λ is negative.

In addition, by removing the expenses, the capital requirement should decrease since the

risk borne is lower. This does not happen for the segments MOD and GTPL and it could be

justified by particular behaviour in terms of skewness and of standard deviation. Therefore,

by ignoring expenses, it is possible to say that:

• the standard deviation decreases, making the SCR decrease.

• The skewness increases, making the implicit multiplier and the SCR increase.

For segments GTPL and MOD, the second effect prevails on the first one, making the SCR

increase in absence of expenses.

Comparison. Finally, a brief comparison between the results of the Internal model and

the Standard Formula is provided. The SCR excluding the safety loading and expenses is

assumed to be the most comparable with the SF one. In order to simplify the comparison,

also the multipliers and the volatility factors implicit in the Internal Model are reported in

Table 17.

Internal Model Standard Formula
MTPL - SCR 62 792 108 142 016 023
GTPL - SCR 40 732 146 59 462 129
MOD - SCR 8 890 177 26 105 950
MTPL - multiplier 2.697 3
GTPL - multiplier 3.507 3
MOD - multiplier 2.670 3
GTPL - SCR 40 732 146 59 462 129
MOD - SCR 8 890 177 26 105 950
MTPL - volatility factor 4.914% 10%
GTPL - volatility factor 8.207% 14%
MOD - volatility factor 3.062% 8%

Table 17: Comparison between Standard Formula and Internal Model in terms of SCR, volatility
factor and multiplier.

For each segment, it is possible to notice how the Standard Formula is strongly overestimat-

ing the capital requirement. The result can be justified by a market-wide volatility factor

higher than the one implicit in the Internal Model. At the same time, for segments MTPL

and MOD also the multiplier is overestimated, whereas for GTPL is underestimated. In-

deed, underlying the Standard Formula, there is a general assumption of skewed aggregate

128



claims amount distribution, but not dependent on the risk profile and on the size of the

insurance company.

Up to now the comparison involves only gross SCRs, but the Standard Formula will

present other limits in the computation of the capital requirement net of reinsurance treaties,

as the results in Table 18 shows. There is no consideration of the additional volatility

introduced by scaling commissions since it is obtained the same SCR for the quota share

with fixed commissions and for the quota share with scaling commissions. In addition, for

the non-proportional treaties, the Standard Formula allows for a non-proportional factor

equal to 80% only for some segments, which reduces the volatility factors, but it does not

consider the effective risk reduction coming from the XL covers.

MTPL GTPL MOD
Gross 31.487% 44.082% 25.19%

Net quota (fixed) 28.338% 39.674% 22.671%
Net quota (scaling) 28.338% 39.674% 22.671%
Net XL (no limit) 24.774% 34.288% 25.137%
Net XL with limit 24.862% 34.606% 25.140%

Table 18: Gross and net capital absorption – Standard Formula

7.3 Aggregation

Once properly analysed the risk-profitability effect of the reinsurance treaties on the single

segments, it is possible to carry out the same analysis on their aggregation, considering

the insurer as a multi-line company. Therefore, an assumption of dependence structure is

needed and crucial since it will impact on the overall solvency capital requirement and on the

diversification benefit. In terms of profitability, the dependence structure does not play any

role. Indeed, the expected return on equity is based on an expectation, which is not affected

by the dependence. Therefore, the total ROE can be easily computed as the sum of the

ROEs per segment, properly weighted for their relevance in the insurer business, measured

by the ratio between the premiums of the segment and the total gross premiums. Results

gross and net of reinsurance treaties are summarized in Table 19. It is possible to make

similar comments to the ones reported in the profitability analysis per segment.

Conversely, the dependence structure strongly affects the aggregated SCR. In the follow-

ing paragraphs, the overall premium risk Solvency Capital Requirement is computed as

prescribed by the Standard Formula and by applying the Internal Model three different

dependence structures: independence, Gaussian copula and Gumbel copula.
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ROE
Gross 7.477%

Net quota (fixed) 6.829%
Net quota (scaling) 6.852%
Net XL (no limit) 7.188%
Net XL with limit 7.252%

Table 19: gross and net ROE

7.3.1 Linear Correlation

The Standard Formula prescribes an aggregation of the volatility factors according to the

mathematical formula of standard deviation’s aggregation with given correlation coefficients.

The resulting Solvency ratios42 are summarized in Table 20.

Solvency Ratio
Gross 89.243%

Net quota (fixed) 99.159%
Net quota (scaling) 99.159%
Net XL (no limit) 111.312%
Net XL with limit 110.826%

Table 20: Aggregated Solvency ratios - Standard Formula

Without any reinsurance treaties, the insurance company has not sufficient own funds to

meet the capital requirement if computed according to the Standard Formula. Only under-

writing the XL treaties, its Solvency Ratio results to be above the threshold 100%. Results

in terms of risk-profitability are summarized in Figure 16.

Figure 16: Risk-profitability analysis – Standard Formula

On the y-axis, it is drawn the expected return on equity, whereas on the x-axis, the Solvency

42The initial capital available is assumed to be equal to 25% of the gross premiums.
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ratio. The desired reinsurance treaty should maximize the Solvency Ratio and minimize the

profitability reduction. It seems that the XL treaties are better than the quota share treaties,

since they are able to make the SR increase more and to lower the ROE less. In addition,

the insurance company has to decide whether or not to introduce the limit. The choice

depends on which are the guidelines of the cedent in terms of profitability promised to the

shareholders and of its risk appetite. If the company wants to improve as much as possible

its solvency position, the XL without limit seems to be the best solution. If it wants to

protect as much as possible the gross profitability, it is better to sacrifice a small portion of

Solvency Ratio in change of a smaller reduction of ROE.

7.3.2 Independence

By simply assuming an independence structure, the total aggregate claims amount is given

by the sum of the aggregate claims amounts of each single segment. The empirical density

function and the main characteristics of its distribution are depicted in Figure 17 and in

Table 21. The distribution is quite symmetric, and it is not particularly highly volatile,

since aggregate claims amounts from different segments occur independently and tend to

compensate each other. In addition, it is possible to notice that the coefficient of volatility

and the skewness are quite in line with the one of MTPL, being the predominant segment

in the portfolio.

Figure 17: Total Aggregate Claims amount distribution

Results in terms of Solvency Capital Requirement are summarized in Table 22. As

expected, all the reinsurance treaties are able to reduce the aggregate capital requirement.
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Mean 532 131 990
Variance 6.88233 · 1014

CV 4.93%
Skewness 0.356

Table 21: Total Aggregate Claims Amount moments

SCR
Gross 61576713

Net quota (fixed) 55408875
Net quota (scaling) 57926695
Net XL (no limit) 54198895
Net XL with limit 58386718

Table 22: SCR – Internal Model

The XL treaty without limit is the most effective in reducing the SCR. Conversely to the

results obtained from the Standard Formula, the introduction of scaling commissions makes

the Solvency Ratio decrease due to the additional volatility.

As made for the single segments, it is possible to carry out some sensitivity analyses

in order to make a much proper comparison between the Internal model and the Standard

Formula results. The Solvency Ratios are summarized in Table 23.

Solvency Ratios
Gross, no λ 237.034%

Net quota (fixed), no λ 263.412%
Net quota (scaling), no λ 253.653%
Net XL (no limit), no λ 266.3030%
Net XL with limit, no λ 249.288%

Gross, no λ and expenses 237.015%

Table 23: SRs ignoring the effect of the safety loading and of expenses – Internal Model

By removing expenses, there is still a bit inconsistent result since the SCR increases. As

justified in paragraph 7.2.4, the remotion of expenses implies a reduction of the standard

deviation and an increase of the skewness (and of the implicit multiplier), which effect

prevails.

It is possible to say that in gross and net terms, the Standard Formula is overestimating

the Solvency Capital requirement, by assuming that the Internal Model is perfectly able

to describe the insurer’s risk exposure. By ignoring the safety loading and expenses, the

different results can be explained by:

• Multiplier. The Standard Formula prescribes a multiplier equal to 3, whereas the

implicit multiplier in the Internal Model is 2.771 (lower skewness).

• Volatility Factor. From the two-step aggregation, the aggregate volatility factor under-
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lying the Standard Formula computation is equal to 8.897%, whereas in the Internal

model it is much lower and equal to 3.625%.

• Dependence structure. Underlying the Standard Formula, there is an assumption of

linear correlation between segments, which makes the SCR increase with respect to

the independence assumption.

Once assessed the Solvency Capital Requirement including the effect of the safety loading

and of expenses, it is possible to define which could be the optimal reinsurance treaty for

the cedent (Figure 18).

Figure 18: Risk-profitability analysis – Internal Model

The XL without limit is the treaty which reduces the most the Solvency Capital Require-

ment. A similar risk reduction could be obtained via a quota share with fixed commissions,

but with a higher profitability reduction. In addition, if the company does not want to

sacrifice too much ROE, the introduction of a limit inside the XL coverage could be a good

solution.

7.3.3 Gaussian Copula

An independence structure among aggregate claims amount of the segments could be a

not so realistic assumption. Therefore, a Gaussian copula has been fitted and calibrated

according to the (Pearson) linear correlation coefficients provided by the Delegated Acts43.

The aggregation process has been made on the sum of the random variables aggregate

43In particular, the correlation coefficient between MTPL and GTPL and MTPL and MOD is 0.5, whereas
the one between GTPL and MOD is 0.25.
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Figure 19: rank scatterplot between MTPL and GTPL – Gaussian copula

claims amount and expenses (X + E) of each segment. Since their joint distribution is not

known in closed form, a sorting process has been introduced. Therefore, for each segment,

the realizations of X + E (denoted as T ) have been sorted according to the rank of the

simulations out of the Gaussian copula. Secondly, to the sorted realizations of X + E, the

related aggregate claims amount ceded to the reinsurer and the reinsurance commissions are

associated with. In order to verify the appropriateness of the sorting process, the following

plots (respectively Figures 19, 20 and 21) are drawn, linking the rank of variables T for all

the possible pairs of combinations of segments44. From the plots, it is possible to notice the

linear behaviour in the body of the distribution since the Gaussian copula is the dependence

structure of a multivariate linearly correlated Normal distribution. In the tails’ regions,

there is totally independence (no tail dependence). In addition, higher is the correlation

coefficient between the pairs of marginals, stronger is their linear relationship. Indeed, there

is a stronger relationship between segments MTPL-GTPL and MOD-MTPL than between

MOD-GTPL.

It is also good practice to check the convergence of the simulated (rank) linear correlation

with respect to the original parameters provided by the Delegated Acts. From Table 24, it

is possible to notice a quite good convergence towards the theoretical value, which can be

improved by increasing the number of simulations.

44In order to get a clearer graph, only 35000 simulations are drawn.
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Figure 20: rank scatterplot between MTPL and MOD – Gaussian copula

Figure 21: rank scatterplot between GTPL and MOD – Gaussian copula
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MTPL GTPL MOD
MTPL 1 0.4820515 0.4810494
GTPL 0.4820515 1 0.2391731
MOD 0.4810494 0.2391731 1

Table 24: Linear correlation coefficient – Gaussian copula

The capital requirements obtained under the independence assumption and the Gaussian

copula are summarised and compared in Figure 22.

Figure 22: SCR – Internal model, Independence (blue) and Gaussian copula (red)

It is possible to notice that the SCR is significantly higher with respect to the independence

case, implying a higher capital absorption and a lower Solvency Ratio, given the same gross

premiums and initial capital available. This result could be explained recalling the relation-

ship existing between dependence structure and the diversification benefit. Even though

the Gaussian copula does not have any tail dependence, it fits a dependence stronger than

the independence case, implying a lower diversification benefit and, consequently, a higher

Solvency Capital Requirement. Since the Gaussian copula fits a linear dependence structure

calibrated according to the coefficients stated in the Delegated Acts, these results are more

comparable to the ones of the Standard Formula with respect to the independence assump-

tion. In any case, the Standard Formula is still providing higher results than the internal

model, showing its inappropriateness. In particular, excluding expenses, the multiplier, and

the volatility factor implicit in the Internal model under the Gaussian copula assumption are

respectively 2.874 and 6.059%, which are higher than in the independence case, but lower

than the ones provided by the Standard Formula.

Once assessed the SCR to be met by the insurance company, a risk profitability analysis

on the reinsurance contracts is needed and depicted in Figure 23. From the plot, it should
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Figure 23: Risk-profitability analysis – Gaussian copula

be noticed that the reinsurance treaties are quite good in decreasing the Solvency capital

requirement, but not as in the independence case. The XL without limit is still the contract

providing the highest improvement of Solvency Ratio, with a quite limited reduction in

terms of profitability. In this case, there is a quite relevant sacrifice in terms of Solvency

Ratio, by introducing the limit in the XL treaty. The quota share treaties are not so able

to provide a consistent increase in the Solvency Ratio and they imply the highest reduction

of profitability. They should be avoided.

7.3.4 Gumbel Copula

The main limit of the Gaussian copula is the absence of tail dependence, which should be

considered, if present, in the solvency capital requirement computation. Therefore, a Gum-

bel copula is introduced. In order to make consistent comparisons, the value of the Kendall’s

tau has been computed in function of the parameters of the Gaussian copula according to

the formula specified in paragraph 5.5. Once assessed the Kendall’s Tau, easily the param-

eter θ can be calculated. Since the Gumbel copula is able to fit only pairwise dependence,

the following two-step aggregation is needed.

First of all, the segments GTPL and MOD are aggregated. Therefore, simulations out of

a Gumbel copula of parameter theta equal to 1.191698 (coming from a linear correlation

coefficient equal to 0.25) are run. Then, for each segment, the realizations of X + E are

sorted according to the rank of the copula simulations. Aggregate claims amounts ceded to

the reinsurer and scaling commissions are properly associated with them. For the second

aggregation, a bit of reasoning is needed since the Delegated Acts do not provide any cor-

relation coefficient between MTPL and the aggregated GTPL-MOD. Therefore, in order to
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allow proper comparisons, an idea could be to estimate the linear correlation coefficient be-

tween aggregate claims amounts and expenses (variable T ) for MTPL and aggregate claims

amounts and expenses for GTPL and MOD aggregated through the Gaussian copula. The

procedure is the following:

• Denote with Th, the random variable representing the sum of aggregate claims amount

and expenses for a specific segment h. Therefore, T gaussh is the sum of expenses and

aggregate claims amount for the segment h after the application of the Gaussian copula.

• Estimate the variance of the following random variables:

Zgauss = T gaussMTPL + T gaussGTPL + T gaussMOD

Y gauss = T gaussGTPL + T gaussMOD

W gauss = T gaussMTPL

Since Zgauss can be seen as the sum of Y gauss and W gauss, the variance of Zgauss can

be calculated as:

var(Zgauss) = var(Y gauss) + var(W gauss) + 2ρσ(Y gauss)σ(W gauss)

Therefore, ρ can be calculated as:

ρ =
var(Zgauss)− var(Y gauss)− var(W gauss)

2σ(Y gauss)σ(W gauss)

The resulting correlation coefficient is 0.5603546, which implies a value of θ equal to 1.609451.

As for the first aggregation, simulations out of a Gumbel copula with parameter θ equal to

1.609451 are run. Secondly, simulations of MTPL and of the aggregate GTPL-MOD are

sorted according to the rank of the copula’s simulations. Finally, the correspondent aggregate

claims amounts of GTPL and MOD are computed.

Table 25 summarises the estimated rank correlation between pairs of marginals out of the

Gumbel copula. Notice that the correlation between MTPL and MOD is quite far from

the initial Pearson correlation coefficient (0.5) defined by the Delegated Acts, due to the

aggregation procedure adopted.
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MTPL GTPL MOD
MTPL 1 0.5156009 0.2707733
GTPL 0.5156009 1 0.2378412
MOD 0.2707733 0.2378412 1

Table 25: Linear correlation coefficient – Gumbel copula

In Figures 24, 25 and 26, the rank scatterplots of simulations out of the copula-correlated

marginals are drawn45. With respect to a Gaussian copula, it is possible to notice the

additional tail dependence. In particular, it is emphasised the right tail dependence, which

is stronger, higher is the parameter theta. A higher value of theta is determined by a stronger

dependence structure (higher Pearson correlation coefficient).

Figure 24: rank scatterplot between MTPL and GTPL – Gumbel copula

45In order to get a clearer graph, only 35000 simulations are drawn.
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Figure 25: rank scatterplot between MTPL and MOD – Gumbel copula

Figure 26: rank scatterplot between GTPL and MOD – Gumbel copula

Before computing the capital requirement, it could be interesting to make a comparison

in terms of aggregate claims amount distribution under the three dependence structures.

Their main characteristics are summarised in Table 26. As expected, the mean is totally

not affected by the dependence structure. Conversely, stronger is the dependence, higher is

the variance. Indeed, with respect to the independence case, the Gaussian copula introduces

a linear correlation between aggregate claims amounts of different segments. In addition,

the Gumbel copula also considers a right tail dependence, which is an additional source of
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dependence among lines of business. Finally, the skewness is the highest under the Gumbel

copula, due to tail dependence.

Mean Standard Deviation Skewness
Independence 532 173 360 26 234 201 0.3555567

Gaussian Copula 532 173 360 32 244 548 0.3840831
Gumbel Copula 532 173 360 32 401 943 0.7205448

Table 26: Main characteristics of the aggregate claims amount distribution under three different
dependence assumptions.

Once properly analysed the distribution, it is possible to compute the premium SCR as

made under the Gaussian copula. Solvency capital requirements net and gross of reinsurance

are summarized in Table 27.

Solvency Capital Requirement Solvency Ratios
Gross 90 691 059 190.084%

Net quota (fixed) 81 619 207 211.212%
Net quota (scaling) 84 870 652 203.120%
Net XL (no limit) 68 686 281 250.981%
Net XL with limit 83 661 930 206.055%

Table 27: SCRs and Solvency Ratios – Gumbel copula

It could be interesting to notice that each Solvency Capital Requirement is higher than the

corresponding one under the Gaussian copula, which is at the same time higher than the one

under the independence assumption. Indeed, the right tail dependence fitted by the Gumbel

copula increases the likelihood to get jointly high aggregate claims amounts for more than

one segment with respect to the Gaussian copula. Stronger is the tail dependence, higher

should be the capital requirement. Therefore, by introducing tail dependence, the capital

requirement increases and the Solvency Ratio of the cedent decreases, increasing the need

of risk mitigation techniques as reinsurance treaties. In any case, even assuming a Gumbel

copula as dependence assumption, also in the gross case, the insurance company is meeting

the capital requirement.

In order to compare more properly the results of the different dependence assumptions,

it is possible to compute the implicit volatility factor and multiplier. They are respectively

6.089% and 3.143. With respect to the Standard Formula, under the Gumbel copula as-

sumption, the multiplier should be higher than the one stated by the Delegated Acts, due to

tail dependence. Nevertheless, the volatility factor is significantly lower than 8.89%, imply-

ing a lower capital requirement. Compared with the Gaussian copula and the independence

assumption, both the multiplier and the volatility factor result to be higher than the other

ones, due to the additional volatility and skewness introduced by the right tail dependence.
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As made for the two dependence structures assumed before, it is proposed a final plot

summarising the trade-off between risk and profitability (Figure 27).

Figure 27: Risk-profitability analysis – Gumbel copula

It seems that the XL without limit is still the best choice for the direct insurance, since by

suffering a quite small reduction in terms of profitability, it gets the highest improvement of

Solvency Ratio. The quota share treaties are too much unfavourable in terms of profit with

respect to the quite restrained SR’s increase.

From the analyses carried out up to now, it should be clear the big role played by the

dependence structure. Assuming an unrealistic dependence structure could lead to wrong

estimations of the capital requirement and of the diversification benefit the company is able

to get. In any case, under all the dependence structures, the reinsurance treaty optimal

for the cedent seems to be the XL without limit, which tries to solve the risk-profitability

trade-off.

In paragraph 7.4, a similar risk-profitability analysis is carried out of a multi-line reinsurance

treaty acting on the three segments carried out by the direct insurer.
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7.4 Multi-line Reinsurance treaty

Being a multi-line company, the direct insurer can decide to underwrite a multi-risk product,

which could be more efficient than per-peril basis coverages.

7.4.1 Calibration

Regarding an umbrella treaty, a big role is played by the calibration of its priority. Therefore,

it is important to study the impact of different values of the priority on the risk profile

and on the profitability of the direct insurer. The calibration has been made considering

the aggregate claims amounts of the segments MTPL, GTPL and MOD assumed to occur

independently each other. The priority has been calculated as a percentage of the gross

premiums and it could be useful to compute which percentile of the total aggregate claims

amount distribution it corresponds to. The main characteristics of the total aggregate claims

amount distribution net of the multi-line treaty are depicted in Table 28.

Priority Percentile Level Mean Std Dev. CV Skewness
80%B 0.9599 531 645 883 24 897 954 4.683% -0.08163

80.5%B 0.9695 531 772 779 25 146 495 4.729% -0.03669
80.53%B 0.97 531 779 346 25 159 796 4.731% -0.03421
80.75%B 0.9735 531 824 344 25 252 276 4.748% -0.01666

81%B 0.9770 531 869 061 25 346 759 4.766% 0.001794
82%B 0.9871 531 995 419 25 632 158 4.818% 0.061815

82.5%B 0.9904 532 035 872 25 731 658 4.837% 0.084833
83.5%B 0.9948 532 087 980 25 869 548 4.862% 0.119602

Table 28: main characteristics of the net aggregate claims amount – Multi-line treaty

The following comments can be made:

• Higher is the priority, higher is the expected net aggregate claims amount, because the

tail of X distribution is cut more on the right.

• As the priority decreases, the standard deviation decreases since the part of the dis-

tribution ceded to the reinsurer is more volatile.

• Higher is the priority, smaller is the ceded right tail and smaller is the reduction of the

skewness. Notice that if the proportion of premiums is very low (lower or equal than

80.75%), the skewness of the aggregate claims amount distribution becomes negative.

Therefore, the distribution of X presents a left tail, which is quite favourable for the

direct insurer.

A graphical comparison between the gross and net aggregate claims amount distribution is

proposed in Figure 28, for a value of priority equal to 80.53%B.
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Figure 28: Net and gross aggregate claims amount distribution

Priority E(XR) Saved Capital Safety loading BRE
80%B 527 477 25 654 213 1 539 253 2 066 729

80.5%B 400 581 22 067 279 1 324 037 1 724 618
80.53%B 394 013 21 852 743 1 311 165 1 705 178
80.75%B 349 016 20 275 802 1 216 548 1 565 564

81%B 304 299 18 484 750 1 109 085 1 413 384
82%B 177 940 11 337 366 680 242 858 182

82.5%B 137 488 7 780 432 466 826 604 314
83.5%B 85 380 819 508 49 170 134 550

Table 29: Decomposition of the premiums paid to the reinsurer - Multi-line treaty

In order to select the priority according to its risk-profitability impact, it is necessary to

define a pricing principle for the multi-risk product. The umbrella policy can be priced as

the expected aggregate claims amount paid by the reinsurer increased by a safety loading.

The safety loading can be computed as the cost of the capital saved by underwriting the

reinsurance treaty (ignoring the effect of the safety loading), where the cost of capital rate

is assumed to be 6%. The resulting premiums (and their composition) are summarised in

Table 29. As the priority increases, the reinsurer expects to cover a lower aggregate claims

amount since less right tail is ceded, implying a lower risk premium. At the same time,

the saved capital resulting from the multi-risk product decreases, leading to a lower safety

loading. Both effects determine that an increasing priority makes the premiums to be paid

to the multi-line reinsurer to be lower.
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Finally, in Figure 29, a risk-profitability analysis is carried out. In particular for the pre-

vious set of priorities, the capital requirement for premium risk and the ROE is calculated.

Figure 29: ROE versus SCR for different levels of priority

As expected, as the priority decreases, the SCR and the ROE decrease linearly. Therefore,

the usual risk-profitability trade-off must be solved. In this case study, 80.53% of the gross

premiums has been chosen as priority of the multiline treaty.

Once defined the characteristics of the multi-risk product, it is possible to introduce it in

the risk-profitability analysis of the reinsurance treaties assuming the different dependence

structure.

7.4.2 SCR computation

Once defined the characteristics of the multi-risk product, it is possible to compute the

resulting net capital requirement in order to evaluate its ability to reduce the cedent’s risk

exposure.

As expected, Figure 30 shows how the umbrella policy, in all the dependence structures

assumed in the Internal model, is able to strongly decrease the capital requirement. In

absolute terms, the highest capital reduction with respect to the gross case is obtained by

fitting a Gumbel copula between aggregate claims amounts of different segments. Indeed,

under this dependence structure, the priority corresponds to the lowest level of percentile.

Therefore, the right tail of the aggregate claims amount distribution is cut more on the

left determining a stronger reduction of the relative volatility and of the skewness and
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Figure 30: SCR – Internal model, under Independence (blue), Gauss Copula (red) and Gumbel
copula (green)

a consequent higher reduction of capital requirement. By comparing the risk mitigation

effect of the multi-line product with respect to the one of the other reinsurance treaties, it is

possible to notice that the umbrella policy always determines the lowest capital requirement.

Therefore, if the goal of the cedent is to significantly improve its solvency position, the multi-

risk product seems to be the best solution. Before taking a risk mitigation decision, it is

always better to check its impact on the profitability.

7.4.3 Profitability

Conversely to the reinsurance treaties previously introduced, the dependence structure has

an influence on the expected return of equity net of the umbrella policy, due to the way the

premiums charged by the multi-line reinsurer are priced. The risk premium (i.e., expected

aggregate claims amount for the reinsurer) changes as the dependence structure changes,

since the chosen priority corresponds to percentiles of different level. In addition, the safety

loading, being a function of the saved capital, is strictly dependent on the dependence as-

sumption. The gross and net expected returns on equity are summarised in Table 30.

ROE
Gross 7.477%

Net multi-line - Independence 6.712%
Net multi-line - Gaussian copula 6.012%
Net multi-line - Gumbel copula 5.693%

Table 30: gross and net ROE – umbrella policy

The highest profitability reduction occurs under the Gumbel copula assumption, since it

is the dependence structure determining the highest premiums to be paid to the reinsurer.
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This ROE reduction is the highest recorded among all the reinsurance treaties and all the

dependence structures considered in this case study. In addition, also by assuming indepen-

dence or a Gaussian copula between aggregate claims amounts of different segments, the

profitability reduction is quite high and superior with respect to the other coverages.

Therefore, in order to make an efficient decision about the optimal reinsurance treaty,

it is not only possible to choose the contract providing the highest reduction of capital

requirement, because it could lead to a dramatic profitability reduction. In paragraph 7.4.4,

the multi-risk product is introduced in the risk-profitability analysis carried out under the

several dependence structures.

7.4.4 Risk-profitability analysis

The following figures show the effect of the several reinsurance treaties jointly on the risk

profile and on the profitability of the cedent, by assuming three different dependence struc-

tures.

If it is assumed independence between aggregate claims amounts of different segments (Fig-

ure 31), a good choice could be the multi-risk product.

Figure 31: Risk-profitability analysis – Independence

Indeed, it implies a profitability reduction a little higher than the XL treaty without limit,

which is more than compensated by the much lower net capital requirement. Therefore, the

umbrella policy is able to strongly improve the solvency position of the cedent, by implying

a not too high ROE’s sacrifice.
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Completely different comments can be made by fitting the copulas as dependence struc-

ture (Figures 32 and 33). Indeed, it is true that the multi-line product strongly decreases

the capital requirement, but the profitability reduction could be too high and excessive.

Therefore, the XL treaty without limit seems still to be the optimal contract, finding a

compromise between risk reduction and net profitability.

Figure 32: ROE vs Solvency Capital Requirement – Gaussian copula

Figure 33: Risk-profitability analysis – Gumbel copula
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7.5 Counterparty Default Risk

Underwriting a reinsurance treaty does not lead only to a lower underwriting risk, but it

increases also the cedent’s exposure to counterparty default risk. Therefore, in the last

section of this case study, the choice of the optimal reinsurance treaty is made by looking

at the net profitability and net total SCR, computed by aggregating the premium risk SCR

and the counterparty default risk SCR.

The counterparty default risk SCR has been calculated, for simplicity, as stated by the

Standard Formula. Recoverables are assumed to be equal to the reinsurance premiums.

The risk mitigating effect on the underwriting risk, RMre, has been defined as the capital

requirement reduction (computed inside the Internal model) arisen from underwriting the

reinsurance cover. It is assumed that the treaties are underwritten by the same reinsurer.

This last assumption will strongly affect the value of the counterparty default risk SCR,

since the variability arising from all possible combinations (j, k) of different probabilities of

default on single name exposures is null (i.e., Vinter = 0). In order to get a range of values,

Credit Quality Step of the reinsurer is assumed to be equal both to its maximum and its

minimum values.

Regarding the basis reinsurance treaties, the probability of default and loss-given-to-

default of the treaties of the same kind acting on the single segments have been aggregated

as stated by the Standard Formula. Since the risk mitigating effect on the underwriting

risk of treaties acting on the single segment is not affected by the dependence structure, the

resulting counterparty default risk SCRs for quota share treaties and XL treaties are totally

independent on the dependence assumption made inside the Internal Model. In Table 31,

the extremes of the range between which varies the counterparty default risk SCR according

to the reinsurer’s credit quality step are reported.

SCRdefault, CQS=0 SCRdefault, CQS=6
Net Quota (fixed) 281 856 21 249 597
Net Quota (fixed) 275 911 20 801 329
Net XL (no limit) 79 276 5 976 733
Net XL (with limit) 45 838 3 455 774

Table 31: Counterparty Default Risk SCR – basis treaties

As expected, worse is the credit quality step of the reinsurer (closer to 6), higher is the

probability of default and higher is the capital requirement. Comparing the two proportional

treaties, it is possible to notice how the SCR in case of scaling commissions is lower with

respect to the case with fixed commissions. Indeed, the treaties have the same reinsurance
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premiums, but the quota share with fixed commissions determines a lower capital reduction

(and a consequent lower risk mitigating effect) with respect to the quota share with fixed

commissions. In addition, the introduction of a limit in the XL treaty makes the counterparty

default risk SCR decrease. Indeed, the lower premiums and lower capital reduction leads to

a lower loss-given-to-default. Finally, the proportional treaties have a higher counterparty

default risk SCR with respect to the non-proportional ones due to the higher reinsurance

premiums, which lead to a higher LGD.

Once analysed the basis reinsurance treaties, it is possible to calculate the counterparty

default risk SCR for the multi-line policy under the three dependence structures (Table 32).

Dependence Structure SCRdefault, CQS=0 SCRdefault, CQS=6
Independence 61 205 4 614 334
Gaussian copula 118 052 8 900 087
Gumbel copula 143 839 10 844 234

Table 32: Counterparty default risk SCR – Multi-line policy

Conversely to basis treaties, the counterparty default risk SCR for multi-line products de-

pends on the dependence assumption made. Stronger is the dependence structure, higher

are the reinsurance premiums and higher is the capital reduction for the underwriting risk

module. Therefore, higher are Loss-given-to-default and the consequent higher SCR.

Once computed for each reinsurance treaty the resulting counterparty default risk SCR,

it is possible to aggregate it with the Non-Life underwriting risk SCR in order to compute

the total capital requirement. The aggregation procedure is the one stated by the Standard

Formula:

SCR =
√
SCR2

Non−Life + SCR2
default + 2 · 0.5 · SCRNon−Life · SCRdefault

In Figure 34, it is evaluated the relevance of the Non-Life underwriting risk and the Counter-

party default risk on the total Solvency capital requirement (including the diversification),

by assuming the worst credit quality step for the reinsurer. In order to properly take into

account the diversification benefit, the SCR UWR and default risk has been recalculated

after aggregation as the relevance of each risk module on the total SCR before aggregation

(i.e., without diversifications) applied to the total SCR after diversification. The major

role is played by the Non-Life Underwriting risk module. Among the different reinsurance

treaties, the counterparty default risk SCR is the most relevant for quota share treaties with
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respect to the non-proportional ones.

Figure 34: SCR decomposition, worst CQS – Independence

Conversely, by assuming the best credit quality step for the reinsurer, the relevance of

the counterparty default risk module on the total SCR is infinitesimally small.

Figure 35: SCR decomposition, best CQS – Independence

The same comments hold for the other two dependence structures.

7.6 Optimal Reinsurance Treaty

Once calculated the total capital requirement net of the reinsurance treaties, it is possible

to evaluate their effect on the cedent’s risk profile and profitability under each dependence

structure.
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7.6.1 Independence

From the following plots, it is possible to evaluate if the insurance company has to review its

risk mitigation decision, by introducing the counterparty default risk module. If the reinsurer

has a very good rating (i.e., best credit quality step), the introduction of the counterparty

default risk module does not affect too much the value of the final SCR (see Table 33).

Therefore, it does not influence the choice of the optimal reinsurance treaty (Figure 36).

Figure 36: Risk-profitability analysis gross and net of the counterparty default risk module (best
CQS) – Independence

The contract able to reduce at most the capital requirement is the umbrella policy. If the

consequent profitability reduction is too high, the XL treaties could be a good compromise.

Figure 37: Risk-profitability analysis gross and net of the counterparty default risk module (worst
CQS) – Independence

In case the reinsurer has the worst credit quality step (Figure 37), the counterparty default
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risk increases, making also the total SCR increase. In particular, the effect of this risk

module is quite strong for proportional treaties, since the net aggregate SCR results to be

higher than the gross one. Therefore, quota share treaties should be avoided.

Finally, in Table 33, a brief summary of the capital requirements and of ROE for the sev-

eral reinsurance treaties resulting from the Internal model with the independence assumption

is provided.

SCR UWR Total SCR (best CQS)
Gross 61 576 713 61 576 713
Net Quota (fixed) 55 408 875 55 550 339
Net quota (scaling) 57 926 695 58 065 142
Net XL (no limit) 54 198 895 54 238 576
Net XL (with limit) 58 386 718 58 409 650
Net Multi-line 41 429 148 41 459 784

Total SCR (worst CQS) ROE
Gross 61 576 713 7.477%
Net Quota (fixed) 68 550 018 6.829%
Net quota (scaling) 70 662 221 6.852%
Net XL (no limit) 57 421 023 7.118%
Net XL (with limit) 60 189 056 7.252%
Net Multi-line 43 918 496 6.712%

Table 33: SCR and ROE – Independence

7.6.2 Gaussian Copula

Table 34 summarises the SCRs and the ROEs obtained by fitting a Gaussian copula between

aggregate claims amounts of different segments.

SCR UWR Total SCR (best CQS))
Gross 81 569 236 81 569 236
Net Quota (fixed) 73 416 264 73 557 597
Net quota (scaling) 76 483 138 76 621 466
Net XL (no limit) 66 030 763 66 070 437
Net XL (with limit) 75 946 512 75 969 441
Net Multi-line 43 275 463 43 334 609

Total SCR (worst CQS) ROE
Gross 81 569 236 7.477%
Net Quota (fixed) 86 032 315 6.829%
Net quota (scaling) 88 731 711 6.852%
Net XL (no limit) 69 212 941 7.118%
Net XL (with limit) 77 732 033 7.252%
Net Multi-line 48 343 900 6.012%

Table 34: SCR and ROE – Gaussian copula

As under the independence assumption, if the reinsurer has the best Credit Quality Step, the

introduction of the counterparty default risk does not affect too much the SCR. Conversely,
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if the CQS is 6, the increase of capital requirement due to the possible counterparty default

for quota share treaties overcompensates the benefits provided by the reinsurer covers. The

umbrella policy strongly reduces the capital requirement (around 50%), but it implies the

highest reduction in terms of profitability. Therefore, a good alternative could be an XL

without limit. The decision is confirmed by looking at Figure 38.

Figure 38: Risk-profitability analysis with and without counterparty default risk, best credit quality
step – Gauss copula

7.6.3 Gumbel copula

Finally, the analysis is carried only under the last dependence structure assumed: Gumbel

copula. As results in Table 35 and Figure 39 show, even if the reinsurer has the worst CQS,

the choice of the reinsurance treaty is not affected by the introduction of the counterparty

default risk. The umbrella policy determines a reduction of 2% of the ROE, which could

be not easily accepted by the stakeholders. Therefore, the other non-proportional per-peril

treaties provide a satisfactory risk reduction and a higher net profitability.
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Figure 39: Risk profitability analysis – Gumbel copula

SCR UWR Total SCR (best CQS))
Gross 90 691 059 90 691 059
Net Quota (fixed) 81 619 207 81 619 207
Net quota (scaling) 84 870 652 84 870 652
Net XL (no limit) 68 686 281 68 686 281
Net XL (with limit) 83 661 930 83 661 930
Net Multi-line 44 086 156 44 086 156

Total SCR (worst CQS) ROE
Gross 90 691 059 7.477%
Net Quota (fixed) 94 061 765 6.829%
Net quota (scaling) 96 959 503 6.852%
Net XL (no limit) 71 861 298 7.118%
Net XL (with limit) 85 442 247 7.252%
Net Multi-line 50 391 141 5.693%

Table 35: SCR and ROE – Gumbel copula

Therefore, to sum up, whatever is the dependence structure assumed, if the principal

purpose of the insurance company is to improve its solvency position, the umbrella policy

is able to strongly decrease the capital requirement, with a profitability reduction varying

according to the dependence structure assumed. Conversely, if the firm wants to find a

compromise between risk and profitability reduction, the XL treaties seem to be a much

proper solution.

155



Conclusions

The aim of this thesis is to understand the effects of several reinsurance treaties on the risk

profile and on the profitability of a multi-line insurance company. A detailed case study

has been provided. All the parameters involved in the internal model has been calibrated

according to market data.

First of all, the impact of basis reinsurance treaties on the aggregate claims amount

distribution has been analysed for each line of business. Results are quite different according

to the segment and to the kind of reinsurance treaty introduced.

Secondly, the aggregate claims amount and expenses of each line of business have been

aggregated under the simplest dependence assumption (independence) in order to compute

the premium risk in a partial Internal model. In both gross and net terms, the Standard

Formula is overestimating the capital requirement, due to the higher (implicit) multiplier,

market-wide volatility factors and dependence assumption.

By introducing a measure of profitability (the return on equity), it is possible to define

which is the optimal reinsurance treaty under the independence assumption. The XL treaties

provide a satisfactory capital reduction, and the introduction of a limit could contain the

profitability’s sacrifice.

Modelling the dependence between aggregate claims amounts of different segments via a

Gaussian copula leads to capital requirements higher than under the independence assump-

tion, without modifying the choice of the optimal reinsurance treaty.

The tail dependence introduced by the Gumbel copula leads to a strong increase of the

SCR. Nevertheless, the insurance company, also without risk mitigation tools, is able to

meet the quantitative requirements. The non-proportional treaties are still the contracts to

be preferred.

Under these three dependence structures, an umbrella policy has been introduced. Surely,

the multi-risk product is the most efficient in improving the solvency position, but the

profitability reduction could be quite high in particular when the dependence is modelled

via a Gumbel copula. Therefore, the choice of the optimal treaty can be reviewed according

to the guidelines in terms of risk appetite and profitability fixed by the insurance company.

Finally, the counterparty default risk SCR is introduced in order to understand whether

it can affect the choice of the risk mitigation solution. By assuming the worst and the

best credit quality step, it is possible to have a range in which the corresponding capital

requirement varies. If the reinsurer’s rating is very high, the counterparty default risk
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has a completely negligible effect on the total SCR. Therefore, the choice of the optimal

reinsurance treaty is not at all affected. By assuming the worst credit quality step for the

reinsurer, the capital requirement net of the quota share treaties strongly increases also

above the gross SCR, because of higher recoverables. In this case study, results suggest to

avoid proportional treaties, whatever is the dependence assumption. Therefore, the insurer

has to choose between the XL treaties and the umbrella policy. XL treaties are quite good

in finding a good compromise between risk and profitability reduction, but they are not able

as the umbrella policy to improve the insurer’s solvency position.

In conclusion, reinsurance treaties can be considered very crucial risk mitigation tools

if they are coherent with the risk appetite and the target return on equity defined by the

insurance company. Multi-risk products, if properly calibrated, seem to be very effective

and efficient in reducing the capital requirement, implying that their diffusion is likely to

grow over time.
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