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Abstract 

 

Recent failures and losses of financial institutions have prompted the regulatory authorities such as the 

Financial Services Authority in the UK and the Bank for International Settlements to highlight the 

importance of adequate systems and controls to deal with operational risk (OR). An important 

measure taken is requiring these organisations to allocate OR capital. This has given the industry an 

impetus to develop methods for measuring and modelling OR.  

 

Although most firms have only begun to collect data and initiate modifications to their systems to deal 

with quantification of OR, there has not been a shortage of methods proposed. Broadly, these can be 

divided into (i) top-down methods that starts with enterprise-wide risk, which is then allocated to the 

business units and (ii) bottom-up methods that analyses risk at the business unit level and then builds 

up to form a firm-wide evaluation of OR. The consensus appears to be that bottom-up methods will 

be the favoured approach in the long run as data is gathered and as more sophisticated methods 

develop. The preferred approach is one that deals with the cause and effects of OR events.   

 

Amongst the more popular methods are linear models such as time series models, econometric models 

and empirical actuarial models. Since OR losses tend to have ‘fat-tailed’ distributions, extreme value 

theory has been proposed as a solution.  These models tend to rely too much on data availability, a 

problem due to the non-standard and infrequent nature of operational loss events. Furthermore, the 

complex interaction between OR variables often render linear methods mathematically intractable. 

Various non-linear methods have been proposed to overcome these problems, one of which is 

Bayesian networks (BNs).  
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BNs are a combination of graph theory and Bayesian statistical theory to produce networks of 

variables (called nodes) that are linked via directed edges. These edges imply a causal relationship 

between nodes, hence BNs are also classified as a type of Directed Acyclic Graph. Expert input and past 

data are combined in the process of specifying the structure and the underlying probability 

distributions at each node.  Rules on conditional independence of the nodes allow alternative causes to 

be ‘explained away’ when events occur – providing the foundation for causal analysis.  

 

The BN can be structured in such a way to have the various OR factors cascade into an overall loss 

distribution, thus allowing risk capital to be specified.  The causal dependencies inherent in the 

structure make BNs useful for scenario analyses in identifying and measuring the impact of operational 

loss events. This would meet the main requirements of a model for OR in financial institutions.  

 

Developments in an algorithm known as triangulation allow directed graphs to be expressed as a 

network of undirected sub-graphs. This allows computations to be performed locally and therefore 

more efficiently. Bayesian statistical theory is applied in a straightforward and intuitively appealing way 

to update the probabilities in the model as new data arrives – this process is called learning. Model 

assessment is also relatively easy to do via monitors that quantify in real-time how well the model 

prediction compares to actual data.   

 

An illustration of these aspects is provided by way of an online insurance business belonging to a 

fictitious company. A BN is set up and used to model the risk of failure in the system network 

supporting this business. The BN is used to calculate risk capital, scenario testing, causal analysis and 

simulation of future scenarios.  The learning process is also shown and monitors used to discriminate 

between models with and without learning.    
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Chapter One 
Developments in Regulatory Capital Requirements as a Driver for 
Operational Risk Modelling 
 

 

 

 

 

In the past decade, the financial world has been hit by catastrophic failures and losses – the causes of 

which are largely non-financial in nature. Names such as Barings, Daiwa Bank, Orange County, 

Metallgesellschaft, and Long Term Capital Management have entered the vocabulary in the history of 

operational risk (OR). OR has been increasingly recognized as an important source of business 

uncertainty, especially in financial institutions (FI), thus being given much attention by the financial 

community, the public and not least of all, the industry regulators. 

 

It is in such an environment that the new framework for capital adequacy proposed by the Basel 

Committee for Banking Supervision (BCBS) of the Bank for International Settlements has highlighted 

the importance of OR in determining the adequacy of regulatory capital1. OR has been defined by 

BCBS as: 

 

“The risk of loss resulting from inadequate or failed internal processes, 

 people and systems or from external events.” (p2, BCBS (2001a)) 

 

A regulatory standard for capital adequacy calls for quantification of risks that are to be supported by 

the economic capital of FI’s. Naturally, there has been increasing interest in methods of measuring and 

modelling OR in response to these developments. 

                                                 
1 See ¶82 – 87 of BCBS (1999). 
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In the United Kingdom, the Financial Services Authority (FSA) has set a 2004 target date for its policy 

on OR management systems and controls (scheduled to be published in 2003) to take effect, with 

consultation currently well under way2.  With the release of the Integrated Prudential Sourcebook by 

the FSA, FIs will be required to demonstrate adequate systems and controls in managing OR. 

Invariably this would involve some level of scrutiny of the company’s framework for measuring and 

modelling OR. 

 

BCBS is proposing a continuum of approaches to the allocation of capital to OR, starting from the 

Basic Indicator Approach where a fixed percentage is applied across the board, to the Standardised 

Approach where the percentage to be applied for each business line varies as defined by the 

supervisory authority and finally, the Advanced Measurement Approach (AMA) where the bank may 

use an internal mechanism.  The policies proposed encourage banks to develop more sophisticated 

methods by allowing those using the AMA a possibility of lower capital charges (up to 25% lower than 

the Standardised Approach) 3. However, only banks that meet a set of qualitative and quantitative 

criteria set by BCBS may use the AMA.  

 

The interesting question would be “How prepared are banks and FIs in general to operate an internal 

system of OR management and capital allocation?” Or more importantly, “What sort of OR 

management system would be sufficient to meet the criteria set by BCBS?” Authors on the subject 

reveal that most FIs do not have sophisticated treatments of OR. King (1999), one of the earlier 

reference texts on the subject, summarized the current framework used by organizations into the 

following broad categories: 

 

 

                                                 
2 See Consultation Paper 142: Operational risk systems and control and the feedback on the FSA’s website: www.fsa.gov.uk 
3 For more details, refer to BCBS (2001a) and chapter 2 of van den Brink (2002). 
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Framework Description 

Control self-

assessment 
This involves questionnaires and workshops to solicit qualitative opinion of employees on areas 

of risk in the organization. The subjective nature of this method restricts its suitability for 

capital allocation and management performance review. 

 
Process Analysis Operational processes are analysed in detail at task level to identify and classify causation of loss events. 

The problem of subjectivity remains and the documentation is difficult to maintain. 

 

Loss 

Categorisations 

Losses are entered into a database and attributed to loss categories with sufficiently detailed classification 

for risk measures. Double-counting and identification of causes are challenges to overcome. 

 

Performance 

Analysis 

Performance measures (such as Value Chain and Balanced Scorecard) are used to develop associated risk 

measures, ensuring consistency between performance and risk. However, the focus is more on gains and 

not losses. 

 

More recently, Hoffman (2002) sounded a more optimistic note by stating “The best firms are making 

heroic strides toward risk definition, data collection, aggregation and first-level analysis” (p7). Some 

promising trends were identified, including the creation of internal loss event databases, integration of 

internal and external loss data for experimental risk capital calculations, and new risk information 

measures are emerging.  

 

In the light of these developments, it would be interesting to see what solutions are currently available 

for FIs to turn to in handling this important area in risk management. Hence, we proceed to discuss 

some of the existing methods available for modelling OR. 
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Chapter Two  
A Brief Survey of Existing Methods for Modelling Operational Risk  
 

 

 

 

 

2.1 Chapter introduction 

This chapter is an overview of the various existing methods for measuring and modelling OR, both 

in theory and what is used in practice. We will discuss briefly how useful and appropriate these 

methods are in meeting two vital business requirements of the whole OR modelling endeavour: (i) 

determine risk capital and (ii) identify causation of OR in a way that is quantifiable and actionable. 

The considerations will be made vis-a-vis the underlying developments in the regulatory 

environment, which was briefly discussed in the introductory chapter.  

 

 

2.2 Top-down and bottom-up approaches 

The whole spectrum of methods available for modelling OR can be broadly divided into two main 

categories:   

 

(i) Top-down approaches start from a firm-wide determination of OR. This is then allocated to 

business units according to how much each unit is thought to contribute to the overall 

OR.  Some examples include earnings volatility, scorecard approaches and CAPM-based 

modelling. 

 

(ii) Bottom-up approaches model the risk of loss events at the business units and build up to an 

overall picture of firm-wide OR. This is where the latest modelling methods are being 
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developed with increasing involvement of the actuarial profession. The main examples in 

this area are loss distribution analysis and causal modelling4.       

 

At the moment, most organizations are still in the process of classification of OR losses and 

gathering data. As such, top-down approaches are still the main methods of managing, measuring 

and modelling OR. In general, as companies accumulate more extensive internal loss databases and 

as modelling techniques get more sophisticated there will be a move towards bottom-up approaches.  

 

 

2.3 Operational risk capital 

The broad approach to setting of economic capital for banks at the moment revolves around 

obtaining a single figure known as the Value-at-Risk (VaR). This is often defined as a high quantile 

of a loss distribution that is projected over a required period based on past data. Thus, for example, 

BCBS may require that “the bank must be able to demonstrate that the risk measure used for 

regulatory capital purposes reflects a holding period of one-year and a confidence level of 99.9%” (BCBS 

(2001b)). A whole body of literature exists detailing the workings of VaR in setting economic capital 

for market risks and credit risks (see, for example, Jorion (2001) and Dowd (1998)).  

 

Presently, if VaR is calculated for OR, the approach is commonly rather simplistic – ranging from 

the residual approach (firmwide VaR minus market VaR and credit VaR) to setting the VaR as a 

multiple of the standard error. Some of the more advanced approaches use models that essentially 

try to fit a loss distribution from which a VaR figure can be extracted5. With market VaR and credit 

VaR this is more straightforward as an underlying normality is assumed to exist in the data. 

However, the nature of OR losses are such that they either occur fairly often in a majority of minor 

                                                 
4 Ceske et al. (2000) and Marshall (2001) have fairly comprehensive tables on the advantages and disadvantages of 
various examples of both approaches. Both authors agree that bottom-up models are the way forward.  
5 Several recent texts on OR give descriptions of the methodology e.g. Cruz (2002), Hoffman (2002) and King (1999). 
See also BCBS (2001), chapter 19 of Jorion (2001) and p198 of Dowd (1998).   
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cases (high frequency and low severity) or very rarely with catastrophic consequences (low frequency 

and high severity) thus the assumption of normality is not appropriate.  The former type of losses is 

less of a concern as sufficient information is available on them to calculate to a fair degree of 

accuracy the standard risk charges (say, via pricing of products) or reserves to absorb the costs. It is 

the latter that is more of concern in allocating economic capital. It is also the main motivation 

behind most OR modelling endeavours.  

 

The frequency of OR losses are usually modelled using counting processes. The severity of OR 

losses are generally modelled using ‘fat-tailed’ distributions, or distributions with high kurtosis. The 

more popular empirical distributions include Poisson and negative binomial distributions (for 

frequency), and lognormal, gamma and Weibull distributions (for severity). However, due to the lack 

of data at the extremes, it was found that certain asymptotic distributions which had their origins in 

the natural sciences (e.g. in the modelling of hurricanes and sea levels) work fairly well when applied 

to the tails of OR data. This branch of statistics is called Extreme Value Theory (EVT) and consists 

of two main families of distributions: the Generalised Extreme Value (which models maxima and 

minima) and the Generalised Pareto Distribution (which models data above a selected level, also 

known as peaks-over-threshold).  

 

 

2.4 Causal modelling of OR 

The approach taken by BCBS in the classification of OR losses is to deal in terms of the causes of 

the loss. This can be seen from the definition of OR by BCBS given above and their proposed loss 

event type classification (See Annex 2 of BCBS (2002)). The Operational Risk Working Party of the 

Institute of Actuaries proposed a framework for analysis of OR based on cause and consequence in 
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their recent report to GIRO 2002. Throughout the report, they stressed the importance of working 

in terms of causes rather than consequence to avoid double-counting or omissions6.  

 

Modelling of causation of OR losses is not only a neat framework for comprehensive analysis. It is a 

vital basis for the understanding of the how the risk of OR losses arise within the structure and 

operations of the organization. It also provides a basis on which management may intervene to 

achieve the desired alteration in risk profile.  Clearly, causal modelling is not only crucial in 

understanding and managing risks internally; it will be of necessity in the new regulatory regime.  

 

Some existing techniques currently used for causal modelling in risk management include time-series 

analysis and econometric models. A common model is the Autoregressive time-series with Conditional 

Heteroscedasticy (ARCH). Factor analysis is also used to decompose uncertainty in profit and loss figures 

into various causal factors of manageable sizes. Chapter 8 of Cruz (2002) provides a brief overview 

of these methods. Non-linear and non-parametric models are increasingly popular for causal 

modelling as they offer more flexibility and as more research is done in these areas. Some examples 

include neural networks, fuzzy logic and Bayesian networks, which is the focus of this paper. 

 

 

2.5 Challenges of modelling OR 

The besetting problem with any attempt to model OR losses is the lack of data. Internal data of low 

frequency events are rarely sufficient to model the loss distributions to the required accuracy.  

 

The usage of parametric loss distributions requires parameter estimation based on the existing data. 

As such, these methods tend to be too dependent on data quality and quantity. Even for the more 

promising EVT methods, the small sample sizes result in the shape of the tails being very sensitive 

                                                 
6 See Institute of Actuaries (2002) especially ¶2.2.1 and ¶3.5. 
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to inclusions or exclusions of single events – implying a greater degree of subjectivity than may at 

first appear.  

 

There is also the challenge of model selection. Most goodness-of-fit tests use actual data to verify the 

theoretical model, which itself is obtained using the actual data. Lack of data exacerbates this 

inherent cyclical problem in model selection. As regards EVT the existing tests either require visual 

inspection or tend to over-fit (Cruz (2002)). The peaks-over-threshold method, for example, requires 

a visual inspection of the mean excess plot (the graph of threshold versus the mean of all points over 

the threshold) to identify the point where the graph begins to behave linearly to determine the 

threshold on which the rest of the modelling is based. King (1999) gets around this problem by 

fixing the threshold as a quantile of the empirical distribution. Points below the threshold are 

modelled by the empirical distribution whereas points above the threshold are modelled using EVT. 

 

In an attempt to overcome the lack of internal data, the usage of external data has been suggested as 

a solution. The idea is that data from diverse locations may share certain features, thus making sense 

to combine them to obtain a larger database. To achieve this, external data need to be carefully 

filtered and scaled. Cruz (2002) describes a method for pooling data from different locations called 

‘frequency analysis’ and Frachot & Roncalli (2002) propose using linear credibility (a method 

commonly used for premium rating in general insurance) to combine internal and external data.  

There have also been some efforts made at industry-wide level collection of data to provide a shared 

source of external data (e.g. British Bankers Association). Obviously, merging internal and external 

data is not a straightforward exercise – especially in the case of operational loss data. There are 

qualitative problems such as quality of data from external parties, the dissimilarity of OR 

management practices across firms, lack of detailed breakdown of data and lack of up-to-date data 

that may pose difficulties to using external data to set internal capital requirements (which are 

essentially prospective).  
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In any case, the modelling of OR losses would require an in-depth understanding of the complex 

nature of company operations and a model that adequately represents such complexities. Linear 

models may need to be mathematically intractable to sufficiently achieve this objective.  As a logical 

step forward, various non-linear models have been proposed and experimented with in as yet a 

limited number of financial and non-financial institutions.   

 

 

2.6 Expert input and Non-linear Methodologies 

 

The lack of data and complexity of operations in FIs intuitively suggests the inclusion of expert input. 

An expert in this case would be anyone whose knowledge and expertise enables him/her to make 

sufficiently credible conjectures about how company operations affect the company’s risk profile. 

Such input can be used as a proxy for data and yield valuable information about the complexity of 

company operations that is difficult to capture from data alone. The challenge of the modeler, then, 

is to incorporate such input into the overall OR modelling framework. 

 

It has been found that qualitative information, such as management decisions, competencies and 

preferences, can be better incorporated into a measurable (and hence quantitative) framework using 

non-linear methods. Some of these include fuzzy logic, neural networks, system dynamics, and Bayesian 

networks. 

 

Fuzzy logic uses a multivariate logical set that recognizes that human decisions are often not binary 

(e.g. Yes/No, Hot/Cold) by allowing gradations in its formulations (e.g. rather hot, very hot etc.). 

Hoffman (2002) has a brief case study on how this has been used in a bank in its OR management7. 

Although this method has advantages in its ease-of-understanding, “…the theory of fuzzy logic 

                                                 
7 See pp 326-330. 
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cannot replace robust statistical methods in measuring operational risk in a capital-at-risk sense…”8 

Thus, its application for our present concern is limited.   

 

Although not strictly a method that is used for incorporation of qualitative opinion, neural networks 

are useful for modelling complex relationships between variables that would be difficult to do using 

linear methods. The network consists of nodes with values of input, output and intermediate 

variables. Data mining techniques are used to ‘train’ the model by using complex algorithms that 

learn the relationships between the variables. The model is then calibrated such that its output is as 

close to the actual data output as possible. A drawback of this approach is its heavy reliance on the 

availability of data. A brief example of its application can be found in Hoffman (2002), although it 

involves a non-financial institution9.  

 

System dynamics was developed by Jay Forrester of the Massachusetts Institute of Technology and has 

been promoted by Tillinghast-Towers Perrin10 as an OR modelling solution. This approach involves 

using expert input to map a network of cause-and-effect relationships between variables affecting 

the OR of a business unit. The relationship between each cause-and-effect set of variables is then 

quantified by combining data and expert input to obtain a plot on two axes (one for each of the 

cause and effect variables).   

 

This dissertation discusses the usage of Bayesian networks (BNs) as a framework for modelling OR. 

We shall see that it is an efficient and intuitively coherent methodology for incorporating expert 

input. In addition, BNs are useful for capturing causal dependencies.  This satisfies a vital 

requirement of any OR modelling framework: ability to model causation. Developments in the field 

of graphical models (of which BNs are an example of) have made BNs very user friendly and as 

                                                 
8 Hoffman (2002) p327. 
9 More specifically, the National Aeronautic and Space Administration (NASA) in the United States of America. See 
pp299-300. 
10 Miccolis & Shah (2000) and Shah (2001). 
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such, a widely accepted tool for making inference from complex networks of causal relationships. 

For example, BNs have been used for almost two decades now in medical diagnoses and more 

recently in criminal forensic sciences using DNA analysis.  Underlying BNs is the powerful Bayesian 

statistical property that allows the combination of subjective input and empirical observations. This 

lends it very well to situations with a high degree of uncertainty and where data is costly or sparse.    

  

Alexander (2000) provides a brief introduction to modelling OR using BNs.  Marshall (2001), Cruz 

(2002) and Hoffman (2002) give brief overviews of BNs and where they fit into the whole 

framework of OR modelling. There is also an illustrative albeit high-level discussion on causal 

modelling using BNs via a banking example in King (1999).   

 

 

2.7 Chapter conclusion 

We have seen in this chapter that although many new methods have been proposed in the past few 

years, many of these methods place heavy reliance on the data used and not enough on implicit 

knowledge of experts. Furthermore, most of these methods are linear and thus do not fully utilise 

nor capture causal relationships inherent in the data – a step that is vital considering the regulatory 

emphasis on causal identification and action. BNs have been proposed as a potential approach as it 

offers intuitive yet mathematically and computationally tractable means of dealing with these two 

aspects. 

    

In the next chapter, we will proceed with a cursory recall of basic concepts of Bayesian statistics 

before examining how BNs work.  
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Chapter Three  
Bayesian Networks11 
 

 

 

 

3.1 Chapter Introduction 

We will start off by looking at some fundamental inferential properties of Bayesian statistical theory, 

specifically Bayes’ theorem and probability calculus. Then, some of these ideas will be combined with a 

field of information sciences known as graph theory and applied to a well-known example to illustrate 

the basic building block behind BNs: the Directed Acyclic Graph. The rest of the chapter will develop 

the theory behind BNs and how it can be used for probabilistic inference by incorporating expert 

opinion and data.  

 

 

3.2 Bayesian Statistics 

 

3.2.1 Introduction 

In classical probability theory, sample statistics are assumed to belong to a certain population with a 

specified distribution, which is defined by a set of parameters that have a fixed value. The main task 

of the statistician is to estimate these parameters as best as possible based on whatever data is 

available (i.e. the sample statistics). Where possible ‘experiments’ are performed repeatedly to obtain 

a suitably large sample to assign values to these parameters.   

 

                                                 
11 The theory and techniques discussed in this chapter follow closely the ideas presented in Cowell et al (1999). An 
alternative text with some useful introductory examples is Jensen (1996). 
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Bayesian statistics allow these parameters themselves to be random variables. Furthernore, assertions 

made regarding the characteristics of a population are necessarily dependent not just on empirical 

observations or data (objective information) but also on any knowledge available to the statistician 

prior to making the observations (subjective information). This knowledge may come in the form of 

data from a different location that is considered to have a certain degree of relevance to the 

observed population. More importantly, it may also come in the form of information obtained from 

knowledgeable parties i.e. experts whose familiarity with the subject matter makes them a credible 

source.  

 

As a consequence, where classical probability deals predominantly with assessing unconditional 

probability statements such as “the probability of event A is x”, denoted , Bayesian 

statistics vocabulary expand into conditional probabilities with statements such as “the probability of 

event A given event B has occurred is y” (or “the probability of event A conditioned on event B 

has occurred is y”) denoted .  

xAP =)(

yBAP =)|(

 

3.2.2 Bayes’ Theorem and Probability Calculus 

Manipulation of such probabilities involves treating them as functions of variables using certain well-

known rules, collectively known as probability calculus. We introduce the fundamental rule in probability 

calculus: 

(3.1))()|(),( BPBAPBAP =  

This states that the probability of joint occurrence of events A and B is equal to the probability of A 

conditional on B multiplied by probability of event B. Since the function is symmetrical, we 

can express it in the following form: 

),( BAP

(3.2))()|(),( APABPBAP =  

Equating the right hand sides of (3.1) and (3.2) we obtain the definitive theorem in Bayesian 

statistics, Bayes’ Theorem: 
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)(
)()|()|(

AP
BPBAPABP =  (3.3)

This can be interpreted as follows: the posterior probability  is equal to the prior probability 

multiplied by the ratio .  

)|( ABP

)(BP )(/)|( APBAP

 

3.2.3 Inference Using Bayes’ Theorem 

Applying Bayes’ theorem to random variables (e.g. one where observations x  sampled from a 

population with a probability distribution defined by the parameter θ ) we obtain the following 

form: 

)(
)()|()|(

xP
PxPxP θθθ =  (3.4)

This allows us to understand Bayes’ theorem in terms of the discussion above on objective and 

subjective information.  The prior is the subjective information alluded to earlier. In this case it is an 

unconditional probability representing the uncertainty about the parameter θ . The function 

is commonly called the likelihood of the dataset x  (also denoted )( |θxL ) and can be 

interpreted as the probability of observing a certain dataset x  given that certain characteristics of the 

population (in this case the parameter θ ) are true.  

)|( θxP

Combining the subjective information and the empirical observations (i.e. the prior and the 

likelihood), we get the posterior probability i.e. the probability that the parameter θ  takes a certain 

value given that observations x  have been made. This is denoted . If we sum  

over the values of x  we get the marginal probability of the parameter θ .  

)|( xP θ )()|( xPxP ∗θ

 

Treating )(xP as a constant of proportionality, (3.4) can be expressed as follows: 

(3.5))()|()|( θθθ PxLxP ∗∝  

Or in words: 
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Posterior ∝ Likelihood * Prior 

Intuitively, we can think of this relationship as representing the Bayesian idea that conjectures about 

a population is the combination of presuppositions (or prior knowledge) about the population and any 

observations made regarding the population. 

 

3.2.4 Epistemology 

The reason why this way of looking at reality is so appealing to our present concern is because 

information about the OR profile of a company is very often incomplete, derived from quantitative 

and qualitative sources and is continuously updated as new data is gathered. Bayesian statistics offers 

a practical, yet intuitively appealing, methodology to deal with such a situation.  

 

We will now examine how BNs apply Bayesian statistics to solve a variety of problems. It is with 

apologies to the reader that the rest of this chapter is rather heavy on terminology.  

 

 

3.3 Introduction to Graphical Models 

  

3.3.1 Introductory Terminology and the Direct Acyclic Graph 

BNs, or variously called belief networks, causal probabilistic networks, directed graphical models or 

generative models, are a type of graphical model. Graphical models are a combination of probability 

theory and graph theory.  It is the result of converging developments in statistical modelling, 

engineering and artificial intelligence that began in the 1980’s.  Initially the extensive calculations in 

probability theory rendered these efforts unfeasible. However, the utilisation of conditional 

independencies in graph theory and recent developments in efficient algorithms for propagation of 

evidence across graphical structures has made this field much more feasible computationally.   
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To illustrate the usage of graphical models, consider the following diagrams: 

 
BABA

 

(a) With directed edge (b) With undirected edge 

fig 3.1 Nodes in graphical models  

 

A and B are called nodes and represent variables A and B. In fig. 3.1(a), the directed edge from A to B 

implies a causal relationship between A and B. To be more precise, it states that a change in what is 

known about A (usually affecting the probabilities of events in A) causes a change in what is known 

about B (and thus the probabilities of events in B). This change is usually the result of new 

information arriving about A (henceforth we will use such statements as “information about A” and 

“information about the events in A” interchangeably). This new information is sometimes called 

evidence.  

 

When variables are connected in this way, we call variable from which the edge originates the parent 

and the variable to which the edge leads the child. When the edge between the nodes are not directed, 

as illustrated in fig. 3.1(b), then no causation is implied, but rather that some ‘weaker’ form of 

association (e.g. correlation) exists between A and B. Using the same sort of descriptive language, A 

and B are called neighbours. It follows, finally, that if no edges exist between A and B, then A and B 

are independent i.e. occurrence of events in A has no bearing on occurrence of events in B and vice 

versa. However, as we shall see, this may depend on whether any intervening variables exist between A 

and B.  

 

Fig 3.1(a) and 3.1(b) also represents the joint probability of A and B. However, (a) and (b) expresses 

this joint probability differently.  In fig. 3.1(a), the causal relationship that exists between A and B 

means that the joint distribution can be expressed as a product of the probability of A and the 
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probability of B conditional on A or simply written: . This, as we have seen in (3.1), is 

simply the fundamental rule in pictorial form. Since no such relationship is defined in fig. 3.1(b), this 

graph only expresses the joint distribution itself:  

)|()( ABPAP

)., BA(P

 

In general, graphical models comprise of a network of such nodes with edges to connect variables 

that have some form of relationship, whether of correlation or of causation. BNs on the other hand 

comprise almost entirely of causal relationships and would thus involve nodes connected by directed 

edges.   

 

BNs belong to a subset of graphical models that are known as a directed acyclic graph (DAG). DAGs 

are constructed with relationships such as those in fig. 3.1(a) as its basic building block. These 

building blocks are arranged in such a way that the variables are not cyclical i.e. moving along the 

edges in the directions implied, it is impossible to return to a previous node. Hence, the term 

“acyclic”.  

 

Associated with each node of a DAG that has at least one parent is a set of conditional probabilities.  

These describe the behaviour of the node conditioned on all its parents. This is often written as 

 where represents the parents of X.   For example, the parent set for node D 

in fig. 3.2 is the set of nodes {A, B, C}. 

))(|( XpaXP )(Xpa

 

 

 D

C
B

A

 

Fig. 3.2 Parent and child nodes 
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A useful property of a DAG is that it illustrates the assumption that the joint density over a set of 

variables U (comprising of variables denoted by the vector X) can be expressed as a product of the 

conditional densities at each node. This is expressed as follows: 

∏=
X

XpaXPUP ))(|()(   (3.6)

This factorization comes from the conditional independence property inherent in the structure of 

DAGs. However, even this expression can make manipulations of DAGs exceedingly complex, 

especially if the nodes represent variables with many states.     

 

3.3.2 Wet grass example 

We pause briefly at this point to consider a popular example to illustrate some of the concepts 

presented so far. In this example, grass in a garden is observed in the morning to be either wet or 

dry. If the grass is wet it could be due to either the sprinkler being on or some rain falling earlier on. 

The probability of rain is 0.1 whereas the probability that the sprinkler is on is 0.2.  The graph and 

probabilities are shown in fig. 3.  

 
 Wy Wn 

Ry Sy 1 0 
Ry Sn 1 0 
Rn Sy 0.5 0.5 
Rn Sn 0 1 

 

 

Ry Rn 

0.1 0.9 
Sy Sn 

0.2 0.8

R S

W 

 

 The subscripts represent the state of the variable e.g. Wy = wet grass, Sn=sprinkler not on etc.  

Fig. 3.3 Sprinkler example. 

 

The probability of the grass being wet conditional on the state of the sprinkler and rain is also shown 

in fig 3.  Thus, for example, given that neither the sprinkler was on nor was there rain, the probability 

of the grass being dry is 1. As a first step, we find the joint density of R, W and S. Using the 
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fundamental rule (3.1) and assuming that R and S are independent (as is represented in the lack of an 

edge between the respective nodes) we know that: 

)()(),|(),,( SPRPSRWPSRWP =  

 

 

 

 

 Wy Wn 

Ry Sy 0.02 0 
Ry Sn 0.08 0 
Rn Sy 0.09 0 
Rn Sn 0 0 
 0.19 0 

 Wy 

Ry Sy 0.11
Ry Sn 0.42
Rn Sy 0.47
Rn Sn 0 
 1 

 Wy 

Ry Sy 0 
Ry Sn 0 
Rn Sy 0.9 
Rn Sn 0 
 0.9 

 Wy Wn 

Ry Sy 0.02 0 
Ry Sn 0.08 0 
Rn Sy 0.09 0.09
Rn Sn 0 0.72
 0.19 0.81

(a) Joint distribution    (c) Normalisation     

Tables 3.1 Manipulation of the joint distribution 

(b) Incorporation of 
information on wet grass

(b) Incorporation of 
information on no rain 

Thus, multiplying the marginals of R and S into the table of conditional probabilities, we get the 

resulting joint distribution in Table 3.1(a). By summing up the columns, we get the marginal or 

unconditional probabilities . We call this marginalisation. We can similarly marginalise for the 

other variables by summing up cells containing the required variable. 

)(WP

 

Suppose that we received the information that the grass is wet, Wy. We might then be interested to 

know if this was caused by rain or the sprinkler. We would want )( yy WRP and )( yy WSP . Using 

Bayes’ theorem (3.3) we can find these as follows: 

53.0
19.0
1.0

)(
)(

)( ===
y

yy
yy WP

WRP
WRP  

Similarly, )( yy WSP =0.58. Another way to arrive at this is to set the probabilities of all events 

involving Wn to 0 (Table 3.1(b)). Then normalise the remaining probabilities (producing Table 3.1(c)) 

before extracting the required values by marginalising (e.g. )( yy WSP =0.11 + 0.47=0.58).  The 

normalisation process has the effect of setting to 1, which is effectively making the statement 

that “the grass is wet”. 

)( yWP
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Thus, we see that with the evidence of wet grass the probabilities of both rain and the sprinkler 

being on have increased substantially, which is what we would expect.  

 

Next, suppose we received additional information that it did not rain earlier. We would set all events 

involving Ry to 0, producing Table 3.1(d). It is trivial to see that normalization then results 

in . This is intuitively obvious: if the grass is wet and it was not caused by rain, then the 

sprinkler caused it.  It is easy to show that the converse is also true.  

1)( =ySP

 

What we have seen here is called conditional dependence. Before anything is known about W, R and S 

are independent. However, they cease to be independent once evidence is entered into W. Thus, R 

and S are conditionally dependent given W.  This property exists wherever there are more than one 

parent nodes to a common child node. It can similarly be shown that in the cases where more than 

one child nodes share a common parent node, the child nodes are conditionally independent given the 

parent node.   

 

 

3.4 Inference in Bayesian Networks 

 

3.4.1 The Advent of Efficient Algorithms 

Inference in DAGs generally involves the incorporation of evidence entered at the nodes along the 

graph. The evidence is then propagated along the network to the other nodes by reversing 

conditional distributions through forming joint distributions (using Bayes’ theorem) and establishing 

marginal posterior distributions from the resulting distributions. The wet grass example above was a 

simple illustration of this process.  However, for a while this approach was still computationally 

unfeasible since these joint densities can get very large. For example, the wet grass model involved 3 

binary nodes and resulted in a joint density with 8 cells. If a model had 5 ternary nodes, the joint 
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density would increase to 243 cells. In reality, a BN for most applications would be much more 

extensive than this.    

 

Developments in this area have shown that DAGs can be transformed in such a way that 

computations can be done ‘locally’ among clusters of nodes, thus involving much smaller joint 

distributions. Efficient algorithms were devised to facilitate the propagation of the ‘message’ to each 

cluster across the network. This drastically reduced the amount of computation required and has 

made inference using BNs fairly user-friendly. In fact, most complex operations using BNs can now 

be performed on laptop computers using software downloadable from the Internet.   

 

These convenient representations of the DAG are called junction trees. These are non-directional 

graphs consisting of a collection of maximal sub-graphs known as cliques. Cliques (sometimes called 

belief universes) are groups of nodes where each node in the group is connected to every other node in 

the group. When a group of nodes are connected this way, we say that they are maximal. Different 

cliques within a junction tree are connected via separators. These are just common nodes shared by 

two adjacent cliques.  

 

3.4.2 Triangulation 

The process of transforming a DAG into a junction tree is called triangulation. Although this strictly 

refers to one of the steps in the process, we will also use it to mean the whole process.  Broadly, we 

can look at this in three stages: 

(i) Moralization 

(ii) Triangulation 

(iii) Specifying the junction tree 

 

We will illustrate these steps using the DAG in Fig. 3.4(a) 
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Moralization 

In this step, all parent nodes of a common child node that are not connected are firstly joined with 

an undirected edge. For example, C, E and F are common parents of G. Thus, edges are added 

between all the pairs of these three nodes. Then all remaining directed edges are rendered non-

directional. The result as shown in Fig. 3.4(b) is what is known as a ‘moral graph’ as all parents are 

‘married’.  

 

Triangulation 

A cycle is a sequence of nodes connected by edges that start and end at the same node. A cycle of 

length n consists of a sequence of n consecutive edges. For example, the cycle C, D, H, G, C in Fig. 

3.4(b) has length 4. Triangulation is the process of adding undirected edges such that any cycle that has 

length over 3 posesses a chord, where a chord is defined as an undirected edge joining two non-

consecutive nodes in the cycle in question. Thus, for example, an edge has to be added between C 

and H or D and G. Suppose we choose to add an edge between D and G, we get the triangulated 

graph in Fig. 3.4(c).  

 

Specifying the Junction Tree 

Once a triangulated graph is obtained, a junction tree can be specified. This involves identifying the 

cliques within the graph and the separators that connect them. Thus, for example, the cliques 

(A,B,C) and (C,D,G) have separator C, whereas the cliques (C,D,G) and (D,G,H) have as a separator 

the clique (D,G). A junction tree is usually shown as in Fig. 3.5.  

 

When the graph is expressed in this form, the evidence can be incorporated locally at the cliques 

where the calculations involve fewer dimensions. Information from the updated cliques is then 

propagated in step to the other cliques of the graph via the separators. Thus, there is no need to deal 

with large joint distributions of the whole graph. This is possible because there is a series of 
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common nodes shared by adjacent cliques running throughout the whole tree – one can picture this 

to act like a series of interlocking chains.  This property is called the running intersection property. 
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 (a) Example of DAG   (b) Moral graph of (a)     (c) Triangulated graph 

Fig 3.4 Triangulation 
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Fig 3.5 Junction tree

 

3.4.3 Inference along the junction tree 

To facilitate the illustration of the steps involved in inferen

example in the previous section where the junction tree 

assume that all the nodes are binary variables, with the stat

Dy for the state D=Yes). The main steps to be taken for in

 

 CEFG
 Separator 

 

i

f

CG
ce along the junction tree, we will use the 

s as shown in fig. 3.5. For simplicity, we 

es (Yes, No) denoted with subscripts (e.g. 

erence using the junction tree are: 
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(i) Defining prior distributions; 

(ii) Initializing the tree; and 

(iii) Two-phased propagation. 

 

(i) Defining prior distributions 

The first thing that needs to be obtained would be the prior distributions. This would be the 

unconditional prior distribution for nodes without parents and conditional prior distributions for 

child nodes – similar to the example in fig 3.3. For our example, we would need unconditional priors 

, ,  and  and conditional priors , , ,  

and . For each prior, we would need the probabilities for each configuration of the 

combination of states of variables involved. Thus, for  we would need figures for 

, , etc.  

)(AP

P

( yCP

)(BP

,|( DI

, yy BA

)(EP

)H

) (CP

)(FP

), yy B

),|( BACP

|(CP

),,|( FECGP

), BA

)|( CDP )|( GHP

| |n A ),|( yny BACP

 

These can be determined by: 

(a) Subjective opinion of the expert.  

Experts are interviewed in a series of questionnaires to arrive at quantified conclusions of 

the probabilities. Of course, sufficient confidence in the accuracy of the expert’s advice is 

a prerequisite to use this method. 

 

(b) Maximum likelihood estimation. For conditional priors this method would entail taking a 

ratio of frequency of the event to the frequency of the parent configuration.  

For example: 
),(

),,(
),(

yy

yyy
yyy BAn

BACn
BACP = . 

 

For unconditional priors, this would simply be the proportion of occurrence between the 

various states of the variable.  
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The method of maximum likelihood assumes that past data is relevant and complete. In practice, 

there will not be a clear dichotomy between these two methods as the experts will also rely on past 

data but tempered with experience and knowledge regarding its applicability for future events. §3.5 

below will discuss updating the priors in the light of new data. 

 

(ii) Initializing the tree 

Next, we need to initialize the tree. For each clique and separator, a table exists with cells that 

correspond to each combination of states of the variables in the clique or separator. For example, 

the clique (A,B,C) will have 8 cells for combinations AyByCy, AnByCy, AnBnCy etc. The numerical 

values in these cells are called potentials. These will change as information is passed along the junction 

tree and as each clique or separator is updated. We will see how this works below.  

 

To initialize, all potentials are set to unity. Priors that factorize as per (3.6) are then multiplied into 

cliques that contain the variables in the factorized set of priors. For example, the potentials in the 

clique (A,B,C) will be multiplied by the values in the joint distribution  = 

. This process is analogous to the steps taken to arrive at table 3.1(a).  

),,( CBAP

)(*)(*),|( BPAPBACP

 

Some cliques may have more variables than any available set of factorized priors. In these cases, the 

priors are still multiplied into the cliques, so long as the variables in the priors are a subset of the 

clique variables. Cliques for which this operation is not possible are left with all potentials as unity. 

The potentials in the separators also remain as unity. Once this has been done, then the tree can be 

used for propagation.    
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(iii) Two-phased propagation 

Propagation involves a messages originating from the leaves of the tree (i.e. the cliques at the 

extremities of the tree) and passed along the tree to the root clique and then back out again to the 

leaves (the choice of the root clique is arbitrary). Along the way the potentials in each clique will be 

updated.   

 

Message passing between two cliques takes place as follows (we call the sending and receiving 

cliques source and sink respectively): 

1. Marginalisation at the source clique: Sum up cells in the clique for common configurations of the 

variables of interest – these are the ones in the separator. For example, (A,B,C) is connected 

to (C,D,G) via separator C. Thus, we marginalize (A,B,C) for variable C by summing up all 

the cells with configurations containing Cy (e.g.  AyByCy, AnByCy, etc) to obtain the sum 

margin Cy and similarly for Cn. This is analogous to how  and  were extracted 

from table 3.1(a). 

)( yWP )( nWP

 

2. Update separator node. The separator node is updated with the sum margins obtained by 

marginalizing the source clique. This becomes the updated potential of the separator. 

 

3. Update sink clique. The clique receiving the message is updated using update ratio. This is the 

ratio of the potentials of the separator after the message is passed to the potentials before the 

message is passed (if this is the collect phase, which takes place right after the initialization, 

the separator potentials would be unity. Hence the update ratio would just be the new 

potentials).  The updating is performed by multiplying the update ratio into the relevant cells 

in the sink clique. These are the ones with variables corresponding to the separator variables.  
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This step is performed sequentially: the leaves are the first to be sum-marginalized, then each 

adjacent clique will be updated in turn until the root clique is updated. Cliques due to receive updates 

from more than one source only send out a message once that has occurred.   This flow towards the 

root clique is called the collect phase. 

 

Then the whole process is repeated but with the messages going out from the root clique to the 

leaves. This flow outwards from the root clique is called the distribute phase. Hence, this process is 

sometimes called two-phased propagation. Once both phases are complete, the tree has achieved 

equilibrium.  At this stage, the potentials at each clique need to be normalised – i.e. scaled so that all 

the potentials add up to 1. They can then be marginalised to obtain the posterior marginal 

distributions for every node variable.  This is the desired result.  

 

3.4.4 Entering evidence into the junction tree 

The scope of this investigation covers only evidence of certain events (e.g. “the grass is wet”). 

Junction trees can incorporate evidence very efficiently. For this purpose, the two-phased 

propagation method is also utilised. The one difference is that the evidence is incorporated at the 

initialization stage. Evidence would involve that a node variable be known for certain to assume one 

of the possible states (e.g. A=Yes or 1)( =yAP ), implying certain knowledge that the variable has not 

assumed any of the other states. This is incorporated into the initial clique potentials by setting all 

potentials involving the other states of the same variable to be equal to 0. In this example, we set the 

potentials for AnByCy, AnByCn, AnBnCy and AnBnCn to 0. The other initial potentials remain as they 

were.  

 

Once this is done, the rest of the propagation then carries on as before. The marginal probabilities 

obtained now will reflect the impact of the evidence entered.  
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3.4.5 Simulation 

A useful application of the junction tree is to generate random samples of configurations for the 

various probability distributions in the DAG. There are two methods of sampling: 

 

(i) Probabilistic logic sampling 

This method samples directly from the DAG itself. Samples are first taken from the 

unconditional nodes based on the marginal probability distributions at these nodes. 

Then, the child nodes of these nodes are sampled based on the conditional probability 

distributions at these nodes conditional on the outcome of the sampled configuration of 

their respective parents. For example, A and B are first sampled from  and  

respectively. Supposing the outcome is A

)(AP )(BP

y and Bn. Then for node C, we sample from 

. This continues until all nodes have been sampled. This will be counted as 

one sample for the whole DAG. This is carried out for as many sample as required. The 

frequencies at each node can then be used to express the sampled marginal probabilities.  

)|( ny BACP

 

If evidence is entered, the process is carried out as before (using the prior probabilities). 

However, samples that include values that are not equal to the evidence entered (at the 

specific nodes) are rejected.  This results in much redundancy in the sampling process. 

 

(ii) Sampling from the junction tree 

A better way to sample with evidence is to exploit the junction tree. The process is 

similar to two-phased propagation. The junction tree is first initialized with the evidence 

incorporated. Then the collect phase is carried out. When the root clique has been 

updated, a configuration is sampled on the root clique.   This sample is then immediately 

entered into the root clique as evidence. The distribute phase is then carried out but with 

the modification of this step of sampling immediately to enter evidence at the clique 
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before passing the message on to the adjacent cliques. The algorithm continues in this 

way until the whole tree has a sampled configuration at each clique.  

 

This method is much more efficient because none of the samples are rejected as 

compared to the probabilitstic logic sampling method. This is due to the fact that 

evidence is already incorporated into the junction tree, thus the sampling process will not 

result in samples with values that are at odds with the evidence.   

 

 

3.5 Updating the BN in the light of fresh data 

 

The method for prior specification so far has been rather simplistic, not taking into account that new 

data from time to time might be useful in updating the probabilities in the BN. In this section, we 

will explore how probabilities derived in §3.4.3(i) can be updated in a Bayesian fashion as new data 

arrives. The methods described are applicable for complete data only. Incomplete data will require 

additional methods which will not be discussed here. 

 

What we will see here is that the expert’s opinion can be quantified in an intuitive way yet 

mathematically tractable in the form of a Dirichlet distribution. This distribution allows for 

convenient updating using Bayesian inference as new data arrives. 

 

3.5.1 Dirichlet distribution as conjugate prior of a multinomial likelihood  

Recall from (3.5) that Bayesian inference can be expressed in the following way: 

)()|()|( θθθ PxLxP ∗∝  

or:      Posterior ∝ Likelihood * Prior 
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Suppose variable X  in a BN that can take on the values of  with probabilities kxxx ,...,, 21

kθθθ ,...,, 21

1x n

. The likelihood for a sequence of  independent samples, where samples have the 

value , samples have the value , etc, can be represented by the multinomial distribution (of 

which the binomial distribution is a two-parameter case) : 
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A convenient candidate to be used as the conjugate prior for the iθ ’s is the Dirichlet distribution: 

),...,( 1 kD αα with the density: 

∏
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αθ  (3.8)

where , also known as the precision. The Beta distribution is actually a two-parameter 

specific case of the Dirichlet distribution. Since binary nodes (e.g. Yes/No variables) are quite 

common in BNs the Beta distribution is often used.   

∑=+ i iαα

 

The parameters of the Dirichlet distribution, ),...,( 1 kαα , have a rather intuitive interpretation: they 

can be seen as the implied relative sample sizes for the iθ ’s. In practice, the Dirichlet distribution 

would usually not be specified precisely by the expert. Rather, the expert’s conjecture about the iθ ’s 

(e.g. expected value and range) can be used to work backwards to arrive at a Dirichlet distribution 

since we know helpful statistics such as: 

+

=
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α
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jE )(   and  
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−
=
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+

αα
ααα

θ jj
jVar  (3.9)

from which the iα ’s can be derived.  

 

The posterior analysis is fairly straightforward when using the Dirichlet prior. The posterior itself is a 

Dirichlet with its functional form arrived at by multiplying (3.7) and (3.8): 
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∏
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This is a ),...,( 11 kk nnD ++ αα . Thus, the posterior is a Dirichlet distribution with the new 

parameters, and hence the new implied relative sample sizes, equal to the prior implied relative 

sample sizes adjusted by the obtained sample counts.  

 

3.5.2 Specifying the Dirichlet parameters 

Suppose we are considering the variable ),( BACP .  is a binary variable, thus the prior 

distribution will be 

C

),( 21 ααΒ . Its parameters can be specified in the following way. We first gather 

the expert’s opinion on the mean and standard deviation of the probabilities of the values in the 

variable. Some experts who are not familiar with statistical concepts can be asked to quote a best 

estimate and the range of most likely values. The best estimate can then be taken as the mean and 

the range can be taken to encompass two standard deviations about the mean, from which the 

variance can be easily obtained. The results can be stored as shown in Table 3.2.  

yC  nC  
Parent 

)( yE θ  )( yVar θ  )( nE θ  )( nVar θ  
yy BA ,      
yn BA ,      
ny BA ,      
nn BA ,      

 

Table 3.2 Table for recording mean and variance of probability values from prior elicitation exercise 

 

Then, for each parent configuration we have, for a two-parameter case of (3.9), the following pairs 

of simultaneous equations: 

yC :  
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These can then be solved for yα and nα . There will be two sets of parameters ),( 21 αα to choose 

from. In general, it is more conservative to choose the one that gives a lower precision (and thus a 

higher variance).   

 

3.5.3 Bayesian updating with new data 

This can be done in a fairly straightforward manner.  As shown in the posterior analysis that resulted 

in (3.10), all that is required to arrive at the posterior Dirichlet distribution is to add the data counts 

to the relevant prior parameter to obtain the posterior parameter.  Supposing the prior distribution 

for ),( yy BACP  is ),( ny ααΒ  and the following set of data were obtained (only the relevant variables 

are shown):  

{ , ( , , , } ...),,( yyy CBA ...),, nyy CBA ...),,( nyy CBA ...),,( nyy CBA ...),,( yyy CBA

It then follows that the posterior is )3,2( ++Β ny αα . It is worth noting that the same result is arrived 

at whether the data is updated sequentially or in batches.  

 

The updated probability estimates can be obtained by taking the mean from the )3,2( ++ nyΒ αα  

distribution. Thus, the posterior for ),( yyy BACP  is )5( ++ nyy ααα  whereas the posterior for 

),( yyn BACP  is )5( ++ nyn ααα .  

 

This whole process of Bayesian updating is sometimes also described as learning. Thus, when a BN is 

carried out without learning, then the probabilities remain unchanged with data. 
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3.6 Usage of monitors in model assessment 

 

Perhaps of paramount importance, the resulting model needs to be compared against actual data to 

verify that it adequately corresponds to reality and to assess its usefulness as a predictive tool. Very 

often there will be two or more alternatives with regards to model structures or the sets of 

probabilities. In such cases, there will also be a need to distinguish the better model with regards 

these two criteria. 

3.6.1 Logarithmic score 

The main indicator used is the logarithmic score (LS): 

)(log mmm ypS −=  

Where is the predictive distribution for the event, Y , after )(⋅mp m 1−m occurrences of events. If 

learning is allowed then incorporates all updates resulting from the m-1 events. The LS is the 

negative log of the probability of the event in the actual outcome .  

)(⋅mp

my

 

Actually, what the LS does is indicate the level of ‘surprise’ resulting from the actual outcome. For 

example, if the event which occurred was predicted to happen with a probability of 0.1 the LS would 

be –log (0.1) = 2.3. Conversely, an event expected to occur with probability of 0.9 would carry a 

score of 0.1. Thus, the less likely an event is predicted to happen, the more ‘surprising’ it is if it did 

happen.  

 

For a series of M events, the total penalty is ∑ =
=

M

m mSS
1

. If the probabilities  were updated 

with each subsequent event, then the S is invariant to the order in which the ’s occur. A lower 

penalty is always more desirable.  

)(⋅mp

my
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3.6.2 Model assessment 

Now we need some criteria by which to accept or reject a model. The total penalty incurred as a 

single figure is quite arbitrary on its own. It needs to be compared to a standard. This can be done in 

two ways: 

(i) Relative standardisation 

In this method the model defined by the expert is tested against a reference model, 

which is a pre-defined benchmark by which the model is assessed.  The total penalty 

incurred by the model defined by the expert, , is compared against the penalty incurred 

(using the same dataset) by a reference model, . The model is rejected if  exceeds 

. The degree to which the expert model is preferred over the reference model is 

indicated by: 

S

refS S

refS

prior) reference|data
prior) sexpert'dataexp

(
|()(

P
PSSref =−  

This is also known as the Bayes’ Factor in favour of the expert’s model. 

 

(ii) Absolute standardisation 

In this method, a test statistic is compiled using the penalties and tested against a null 

hypothesis  (H0) that the data fits the probabilities assumed in the BN. We define the 

expectation and variance of the penalty at each update: 

∑
=

−=
K

k
kmkmm dpdpE

1

)()( log   (3.11)

∑
=

−=
K

k
mkmkmm EdpdpVar

1

2)()()(  log 2  (3.12)

where the ’s are all the possible states of the node(s) considered. could be seen as a 

probability-weighted average of the logarithmic scores.  

kd mE
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The sums of the actual penalties incurred by the data, , together with the expectation 

and variance at each update are used to compute the following test statistic: 

S

∑
∑

=

=
−

M

m m

M

m m

Var

ES

1

1  (3.13)

Under H0, the actual penalties are from same underlying distribution as the expected 

penalties. Thus, this test statistic will have the standard Normal distribution and for 

values outside the range [-1.96,1.96], H0 will be rejected at the 5% significance level.  

 

3.6.3 Parent-child monitors 

There exists a set of monitors that can be used to diagnose the validity of BN’s in the light of data. 

In general, these monitors are used to obtain the LS for each piece of data from which the total 

penalties can be compiled and tested according to the two criteria laid out above. The one thing that 

differentiates one type of monitor from another is the form of the LS. This allows various aspects of 

the BN to be diagnosed. 

 

The first of these is known as the Parent-Child Monitor. For each parent-child set of nodes, we have 

the following LS: 

)( )( ρ=− kpakm Xxplog  

where )( )( ρ=⋅ kpam Xp  is the probability distribution of the child node  for the parent 

configuration 

k

ρ=)(kpaX after m-1 cases of complete data have arrived and is the state of the k  

node on the mth state. This monitor measures how well the conditional probabilities in the BN that 

link parent and child nodes predict the outcome of the child nodes.  

kx

 

For example, if we are monitoring the parent-child set expressed in the conditional probability 

then as the first piece of data arrives (say, ) the LS can be determined as ),|( yy BACP yyy CBA ,,
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),|(log 11 yyy BACPS −= and this is obtained from the expert prior distribution, ),( ny ααΒ . The data 

is then incorporated into the conditional probability as illustrated in §3.4.3 to obtain the posterior 

which has the distribution ),|(2 yy BACP ),1( ny αα +Β . The process then continues iteratively as each 

subsequent case arrives.  

S

refS

(11 PE

)5.0,

),|( yyy BAC ), yy B−−=

11 |( ACPVar y= 2
1

2)], EBy −1
2)],| PBA yy +

 

The total penalty, , can then be compared with the total penalty from various alternative reference 

models, . Some examples of reference models could be using the same expert prior without 

learning or using a reference prior  with learning.  5.0(Β

For absolute standardisation, the penalties incurred would be the same. Using (3.11) and (3.12), the 

expectation and variance can be calculated for the first data set as follows: 

|(),|(),| 111 nyynyyy ACPBACPPBAC log  log   

11 |()[,|(()[, ACPBACCPB ynyynyyy log  log   

This is similarly performed for all subsequent updates. The test statistic can then be found using 

(3.13). If the absolute value is under 1.96 then the child node is being correctly predicted by the 

conditional probability.  

 

It is often useful to plot the cumulative values of the penalty (for relative standardisation) or 

cumulative values of the test statistic (for absolute standardisation) against the data. The graph can 

be used to compare the different alternative models and their paths give an indication of how 

well/soon the models adapt to the data. The preferred model is the one where the cumulative 

penalty increases very little with new data and the cumulative test statistic centers about zero.  
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3.6.4 Node monitors 

Node monitors measure what is happening at the level of the individual nodes. There are two types 

of node monitors: unconditional node monitors and conditional node monitors. Unconditional node monitors 

detect poorly estimated marginal distributions. The LS is: 

)( υxpmlog −  

where  is the marginal distribution of the states of the node after m-1 cases. The score 

expresses the ‘surprise’ at obtaining =  on the mth

)(⋅mp υX

υX υx  case.  Conditional node monitors can be 

used to detect poor structure, usually upon obtaining reasonable results for the unconditional node 

monitors first. The LS is: 

)\( υυ ε Xxp mmlog −  

where )\( υε Xp mm ⋅ is the probability distribution of the node after m-1 cases of evidence have 

been incorporated and the latest set of evidence 

υX

mε has just been propagated throughout the BN 

except the evidence at node . This score then measures the ‘surprise’ at obtaining = after all 

other nodes have been propagated with evidence.  

υX υX υx

 

The tests can then be performed in a similar manner.  

 

3.6.5 Global monitors 

The global monitor of a BN measures the LS of the total evidence entered for the mth case after m-

1 cases have been entered. This is: 

)( mmp εlog −  

The overall global monitor is just a sum of the LS for all the cases: 

∑
=

−=
M

m
mmpG

1

)(εlog  
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The global monitors of two competing models, and  are then compared, with the preferred 

model having the lower value. The Bayes’ factor in favour of model 2 is .  

1G 2G

)( 21 GG − exp

 

3.7 Chapter Conclusion 

In this chapter, we have examined some theoretical foundations describing the construction of a 

BN, its usage for inference and ways to assess the validity of the resultant model. We shall see in the 

following chapter how all this theory can be put to practice in an OR example. This example will 

also serve to clarify the methods explained in this chapter. 
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Chapter Four  
Applying Bayesian Networks to the Modelling of Operational Risk 
 

 

 

 

4.1 Chapter Introduction 

In this chapter we examine how BNs might be applied in practice for OR modeling. This will be 

illustrated using a hypothetical example of the risks involved in setting up an Internet on-line 

business. A fair amount of detail has been provided within the text to facilitate the clarification of 

concepts introduced in the previous chapter. More complete numerical information underlying the 

illustrations can be found in the Appendices. Reference to relevant sections in chapter 3 will be 

made at various points to allow quick recall of the theory being illustrated.    

 

 

4.2 Network Risk 

The example we are considering is that of a fictitious medium sized insurance company (BayeSure 

Insurance Co. or BSI) that decided to set up an on-line business (called BSNet) so that customers 

may purchase via the Internet more basic products such as travel insurance, personal accident and 

even some cleverly designed health insurance policies. The company has invested a significant 

amount of capital to set up the on-line network infrastructure, involving fancy widgets such as high-

end servers and firewalls. However, as with any on-line business in a high-volume, high-value and 

highly competitive industry, the management is concerned that they have the adequate financial 

resources to deal with contingencies that may damage the business i.e. Operational Risks.  We shall 

call the aspect of OR that results from operating this on-line business Network Risk (NR). 
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After a year of operating BSNet, the management decided to put the I.T. managers, marketing 

personnel and various BSNet user departments together with some statisticians from Risk 

Management Unit to set up a BN to serve a two-pronged strategy: 

(i) Identify causation of NR events such as transaction downtime, server downtime and 

application failure; and 

(ii) Help the management to decide how much risk capital to allocate to cover NR in all but 

the most extreme of scenarios.   

 

Throughout this chapter, we will view samples of output from a program for BN inference called 

XBaies12 which was developed by Robert Cowell of City University.  

 

 

4.3 Defining the Structure 

After some deliberation the working committee was able to put together a structure that looks like fig 

4.113. Table 4.1 is a list of the variables employed in this model.  The set of values for each variable 

are also given along with the abbreviations to be used throughout this chapter. We now briefly 

introduce the causal dependencies in the BN and how it relates to the business environment. 

 

The three main causes of NR loss are transaction downtime (TD), data loss (DL) and server 

downtime (SD). These can have varying degrees of severity but can be grouped into half a day or a 

full day to get a server or network up and running, or in the case of data loss, either 50% or 

complete data loss. Based on data gathered in the first year of operation with some additional expert 

                                                 
12 The latest version Xbaies is still in development. However, a very similar version 2.0 is available at his website 
http://www.staff.city.ac.uk/~rgc. Various computer soft wares are available to perform the operations and calculations 
described in this dissertation (e.g HUGIN, Netica, XBaies).  The steps involved in triangulation and updating of the 
cliques are usually automatically done in the program and not seen in the display. The user need not worry about the 
underlying calculations but instead sees only the marginal densities of each node – and how they change as evidence is 
entered, as we shall see below.  
 
13 Fig. 4.1 and all figures of the BN in this chapter are screen dumps from Xbaies 3.0.  
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input by the marketing department the total cost as a result of various combinations of such events 

were estimated. This would include, for example, the cost of repairs, lost business opportunities 

during the downtime, wages paid to idle staff, costs to recover loss data and damage to reputation 

(perhaps quantified as loss of future business). All this is combined into one variable, Cost, 

representing the bottom-line effect.  

 

Meanwhile, TD is caused by network failure (NF) but there is a mitigating factor: whether or not a 

high-availability network (HAN) was employed in the running of BSNet. SD is caused by server 

failure (SF) which in turn is due to power surges (PS) and the server quality (SQ). Again there are 

mitigating factors here: the availability of uninterrupted power supply (UPS) – perhaps an internal 

generator, and the usage of a high availability server (HAS).  

 

 

No. Description  Values Abbreviation
1. Application Failure Application 

corruption, 
Lockup, OK(No 
failure) 

AF 

2. Cost of losses from network risk 
(Cost) 

0.0m, 0.5m, 1.0m, 
1.5m, 2.0m, 2.5m 

Cost 

3. Data Loss 0%, 50%, 100% DL 
4. End User Modification Yes, No EUM 
5. Firewall Application Proxy, 

Packet Filter 
F 

6. File Access Control High, Low FAC 
7. High Availability Network Yes, No HAN 
8. High Availability Server Yes, No HAS 
9. Hacker Attack Yes, No Hack 
10. Network Failure Yes, No NF 
11. Power Surge Yes, No PS 
12. Server Downtime 0 day, 0.5 day, 1 

day 
SD 

13. Server Failure Yes, No SF 
14. Server Hardware Quality High, Low SQ 
15. Transaction Downtime 0 day, 0.5 day, 1 

day 
TD 

16. Uninterrupted Power Supply Yes, No UPS 
17. Virus Attack Yes, No V 

  

 

  

 

 

 

 

 

 

 

 

 

Table 4.1 Values and abbreviations for Network Risk model  
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fig. 4.1 DAG of Network Risk example 

 

DL can be caused by either SF or application failure (AF). AF has three main causes: (i) 

Modifications made by end users in BSI to the system, either intentionally or accidentally (EUM); (ii) 

Virus attacks (V); and (iii) Malicious hacking by external parties (Hack). These three events are 

largely controlled by the level of file access given to various parties (FAC). The type of firewall (F) 

used will also affect the ease with which malicious hackers can access the system. Malicious hacking 

not only causes AF but NF as well.  

 

This model has been defined to reflect a ‘holding period’ of one week. Thus, for example, the 

marginal distribution for the variable cost would be the expected probability distribution of NR 

costs incurred by the company over the period of one week. The choice of holding period is 

arbitrary as far as the mechanics of the model is concerned. The only consideration in this case 
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would be the availability of data. As the system has commenced for only a year, it makes more sense 

to use 52 sets of weekly data than one set of annual data.  

 

 

4.4 Setting up the BN 

 

4.4.1 Prior specification 

At this point the DAG will need to be populated with the prior probabilities at each node. The main 

methods of prior specification have been described in §3.4.3 and we assume that BSI uses these 

methods to elicit the priors from the experts mentioned above and from past data.  

 

For example, since attack by computer viruses on online networks are a relatively common and well 

documented occurrence, sufficient data might exist for the conditional probabilities for the V|FAC 

node to be obtained using maximum likelihood estimation. Thus, having combined industry 

experience with one year’s worth of BSNet experience, it might have been observed that only in 

10% of cases where a high level of File Access Control is implemented was there a virus attack.  

 

For events like end user modification, the circumstances of different companies (e.g. training and 

recruitment policies) might be so different as to render any external data irrelevant. In this case, the 

I.T. Department together with staff appraisal information from Human Resources Department 

would need to decide on a figure for the probability of adverse end user modification for systems 

with high/low levels of file access control. This corresponds with the EUM|FAC node.   

 

Having performed these exercises, the company arrives at the probabilities detailed in Appendix I. 

For the purpose of this illustration, the figures have been simplified and as such, might not be 

realistic – with apologies to readers well versed in network risks.  
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For flexibility in the model, various unconditional priors have been assigned neutral probabilities. 

These will be treated as input variables to reflect the actual state of BSNet once ‘evidence’ as been 

entered. Power surge, obviously, is outside of the control of the company. Thus past data has been 

used to arrive at the probabilities and it will not be treated as an input variable. 

 

Theoretically, any node can be treated as an input variable. To prevent confusion, when evidence is 

entered in the other nodes it will be treated as a stress or scenario test.  

 

 

fig. 4.2 Unconditional priors 

 

4.4.2 Junction Tree Specification 

Before we go on to use the DAG for inference, we need to obtain a junction tree via the process of 

triangulation as described in §3.4.2. We begin with the moralization of the DAG by establishing moral 

links between parent nodes. The result is shown in fig. 4.3.   
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fig 4.3 Moral links 

 

Then, replacing the directed edges with undirected edges, we get the moral graph for this model. 

Additional edges are added between the following pairs of nodes: (Hack, TD), (Hack, EUM), 

(AF,TD), and (SF,TD). We now have the triangulated graph as shown in fig 4.4. 

 

 

fig 4.4 Triangulated graph 
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We can now specify a junction tree from the cliques identified in the triangulated graph. Junction 

trees are not unique, though it is useful to avoid cliques that are too large. The one chosen for this 

example is shown in fig 4.5. The boxes indicate the cliques and give the members of the clique along 

with the clique size. The root clique is denoted by the box with a bold outline.  
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Table 4.2 is a summary of cliques with their corresponding initial potentials: 

Clique Initial Potentials 
Cost : DL : TD : SD P(Cost|DL, TD, SD) 
UPS : SD : SF : HAS P(SD|UPS, SF, Has)*P(UPS)*P(HAS) 
PS : SQ : SF P(SF|PS, SQ)*P(PS)*P(SQ) 
AF : DL : TD : SF P(DL|AF, SF) 
V : Hack : AF : FAC : EUM P(AF|V, EUM, Hack)*P(V|FAC) 
NF : Hack : TD P(NF|Hack) 
HAN : TD : NF P(TD|NF, HAN)*P(HAN) 
F : Hack : FAC P(Hack|FAC, F)*P(FAC)*P(F) 

 

Table 4.2 Initial potentials 

 

The initialized junction tree can be found in Appendix II. 

 

Two-Phased Propagation 

To illustrate the two-phased propagation algorithm for the whole junction tree, we will focus on 

what goes on at the local level. We shall do this by zooming into the cliques (HAN, TD, NF), 

denoted C1 and (NF, Hack, TD), denoted C2. The separator for these cliques consists of the 

variables NF and TD. First, initialization takes place according to the initial potentials given above. 

The separator potentials are left as unity. The result is seen in fig 4.6(a). 

 

The collect phase begins from the clique C1 because it is a leaf clique. Firstly, the clique potentials are 

normalized. The normalized potentials for C1 are shown in fig 4.6(b).  Then, the sum-marginals 

corresponding to the various combinations of states for variables NF and TD are obtained from C1 

and used to update the separator. 

 

For example, all the cells with configuration NF= “Yes” and TD = “0.5 day” are summed up: 

0.2250 + 0.0250 = 0.2500. This is used to update the corresponding potential in the separator. Once 

the separator has been updated, the sink clique C2 then receives the message from the separator. 

 47



Modelling Operational Risk in Financial Institutions Using Bayesian Networks 

 
 
 
 
 
 
  
 

"
N

F
"

 "
H

ac
k"

 "
T

D
" 

 
0.

00
00

 
N

F=
"Y

es
";T

D
=

"0
 d

ay
";H

ac
k=

"Y
es

"; 
0.

08
50

 
N

F=
"N

o"
;T

D
=

"0
 d

ay
";H

ac
k=

"Y
es

"; 
0.

17
00

 
N

F=
"Y

es
";T

D
=

"0
.5

 d
ay

";H
ac

k=
"Y

es
"; 

0.
00

00
 

N
F=

"N
o"

;T
D

=
"0

.5
 d

ay
";H

ac
k=

"Y
es

"; 
0.

17
00

 
N

F=
"Y

es
";T

D
=

"1
 d

ay
";H

ac
k=

"Y
es

"; 
0.

00
00

 
N

F=
"N

o"
;T

D
=

"1
 d

ay
";H

ac
k=

"Y
es

"; 
0.

57
50

 
N

F=
"N

o"
;T

D
=

"0
 d

ay
";H

ac
k=

"N
o"

; 
0.

00
00

 
N

F=
"N

o"
;T

D
=

"0
.5

 d
ay

";H
ac

k=
"N

o"
; 

0.
00

00
 

N
F=

"N
o"

;T
D

=
"1

 d
ay

";H
ac

k=
"N

o"
; 

0.
00

00
0 

   
N

F=
"Y

es
";T

D
=

"0
 d

ay
"; 

0.
66

00
0 

   
N

F=
"N

o"
;T

D
=

"0
 d

ay
"; 

0.
17

00
0 

   
N

F=
"Y

es
";T

D
=

"0
.5

 d
ay

"; 
0.

00
00

0 
   

N
F=

"N
o"

;T
D

=
"0

.5
 d

ay
"; 

0.
17

00
0 

   
N

F=
"Y

es
";T

D
=

"1
 d

ay
"; 

0.
00

00
0 

   
N

F=
"N

o"
;T

D
=

"1
 d

ay
"; 

"
H

A
N

"
 "

T
D

"
 "

N
F

"
  

0.
15

30
 

H
A

N
=

"Y
es

";T
D

=
"0

.5
 d

ay
";N

F=
"Y

es
"; 

0.
01

70
 

H
A

N
=

"N
o"

;T
D

=
"0

.5
 d

ay
";N

F=
"Y

es
"; 

0.
01

70
 

H
A

N
=

"Y
es

";T
D

=
"1

 d
ay

";N
F=

"Y
es

"; 
0.

15
30

 
H

A
N

=
"N

o"
;T

D
=

"1
 d

ay
";N

F=
"Y

es
"; 

0.
33

00
 

H
A

N
=

"Y
es

";T
D

=
"0

 d
ay

";N
F=

"N
o"

; 
0.

33
00

 
H

A
N

=
"N

o"
;T

D
=

"0
 d

ay
";N

F=
"N

o"
; 

(b
) D

ist
rib

ut
e P

ha
se 

– 
me

ssa
ge 

ret
ur

ni
ng

 fr
om

 th
e r

oo
t 

aft
er 

be
in

g p
ro

pa
ga

ted
 a

cro
ss 

th
e t

ree
. 

"
H

A
N

"
 "

T
D

"
 "

N
F

"
  

0.
45

00
0 

   
H

A
N

=
"Y

es
";T

D
=

"0
.5

 d
ay

";N
F=

"Y
es

"; 
0.

05
00

0 
   

H
A

N
=

"N
o"

;T
D

=
"0

.5
 d

ay
";N

F=
"Y

es
"; 

0.
05

00
0 

   
H

A
N

=
"Y

es
";T

D
=

"1
 d

ay
";N

F=
"Y

es
"; 

0.
45

00
0 

   
H

A
N

=
"N

o"
;T

D
=

"1
 d

ay
";N

F=
"Y

es
"; 

0.
50

00
0 

   
H

A
N

=
"Y

es
";T

D
=

"0
 d

ay
";N

F=
"N

o"
; 

0.
50

00
0 

   
H

A
N

=
"N

o"
;T

D
=

"0
 d

ay
";N

F=
"N

o"
; 

1.
00

00
0 

   
N

F=
"Y

es
";T

D
=

"0
 d

ay
"; 

1.
00

00
0 

   
N

F=
"N

o"
;T

D
=

"0
 d

ay
"; 

1.
00

00
0 

   
N

F=
"Y

es
";T

D
=

"0
.5

 d
ay

"; 
1.

00
00

0 
   

N
F=

"N
o"

;T
D

=
"0

.5
 d

ay
"; 

1.
00

00
0 

   
N

F=
"Y

es
";T

D
=

"1
 d

ay
"; 

1.
00

00
0 

   
N

F=
"N

o"
;T

D
=

"1
 d

ay
"; 

0.
00

00
0 

   
N

F=
"Y

es
";T

D
=

"0
 d

ay
"; 

0.
50

00
0 

   
N

F=
"N

o"
;T

D
=

"0
 d

ay
"; 

0.
25

00
0 

   
N

F=
"Y

es
";T

D
=

"0
.5

 d
ay

"; 
0.

00
00

0 
   

N
F=

"N
o"

;T
D

=
"0

.5
 d

ay
"; 

0.
25

00
0 

   
N

F=
"Y

es
";T

D
=

"1
 d

ay
"; 

0.
00

00
0 

   
N

F=
"N

o"
;T

D
=

"1
 d

ay
"; 

"
N

F
"

 "
H

ac
k"

 "
T

D
" 

 
0.

80
00

0 
   

N
F=

"Y
es

";T
D

=
"0

 d
ay

";H
ac

k=
"Y

es
"; 

0.
20

00
0 

   
N

F=
"N

o"
;T

D
=

"0
 d

ay
";H

ac
k=

"Y
es

"; 
0.

80
00

0 
   

N
F=

"Y
es

";T
D

=
"0

.5
 d

ay
";H

ac
k=

"Y
es

"; 
0.

20
00

0 
   

N
F=

"N
o"

;T
D

=
"0

.5
 d

ay
";H

ac
k=

"Y
es

"; 
0.

80
00

0 
   

N
F=

"Y
es

";T
D

=
"1

 d
ay

";H
ac

k=
"Y

es
"; 

0.
20

00
0 

   
N

F=
"N

o"
;T

D
=

"1
 d

ay
";H

ac
k=

"Y
es

"; 
1.

00
00

0 
   

N
F=

"N
o"

;T
D

=
"0

 d
ay

";H
ac

k=
"N

o"
; 

1.
00

00
0 

   
N

F=
"N

o"
;T

D
=

"0
.5

 d
ay

";H
ac

k=
"N

o"
; 

1.
00

00
0 

   
N

F=
"N

o"
;T

D
=

"1
 d

ay
";H

ac
k=

"N
o"

; 

"
N

F
"

 "
H

ac
k"

 "
T

D
" 

 
0.

00
00

 
N

F=
"Y

es
";T

D
=

"0
 d

ay
";H

ac
k=

"Y
es

"; 
0.

10
00

 
N

F=
"N

o"
;T

D
=

"0
 d

ay
";H

ac
k=

"Y
es

"; 
0.

20
00

 
N

F=
"Y

es
";T

D
=

"0
.5

 d
ay

";H
ac

k=
"Y

es
"; 

0.
00

00
 

N
F=

"N
o"

;T
D

=
"0

.5
 d

ay
";H

ac
k=

"Y
es

"; 
0.

20
00

 
N

F=
"Y

es
";T

D
=

"1
 d

ay
";H

ac
k=

"Y
es

"; 
0.

00
00

 
N

F=
"N

o"
;T

D
=

"1
 d

ay
";H

ac
k=

"Y
es

"; 
0.

50
00

 
N

F=
"N

o"
;T

D
=

"0
 d

ay
";H

ac
k=

"N
o"

; 
0.

00
00

 
N

F=
"N

o"
;T

D
=

"0
.5

 d
ay

";H
ac

k=
"N

o"
; 

0.
00

00
 

N
F=

"N
o"

;T
D

=
"1

 d
ay

";H
ac

k=
"N

o"
; 

"
H

A
N

"
 "

T
D

"
 "

N
F

"
   

0.
22

50
0 

   
H

A
N

=
"Y

es
";T

D
=

"0
.5

 d
ay

";N
F=

"Y
es

"; 
0.

02
50

0 
   

H
A

N
=

"N
o"

;T
D

=
"0

.5
 d

ay
";N

F=
"Y

es
"; 

0.
02

50
0 

   
H

A
N

=
"Y

es
";T

D
=

"1
 d

ay
";N

F=
"Y

es
"; 

0.
22

50
0 

   
H

A
N

=
"N

o"
;T

D
=

"1
 d

ay
";N

F=
"Y

es
"; 

0.
25

00
0 

   
H

A
N

=
"Y

es
";T

D
=

"0
 d

ay
";N

F=
"N

o"
; 

0.
25

00
0 

   
H

A
N

=
"N

o"
;T

D
=

"0
 d

ay
";N

F=
"N

o"
; 

Fi
g. 

4.
6 

–I
llu

str
ati

on
 of

 T
wo

-p
ha

sed
 P

ro
pa

ga
tio

n 

(b
) C

oll
ect

 P
ha

se 
– 

me
ssa

ge 
is 

pr
op

ag
at

ed
 to

 
th

e r
est

 of
 th

e t
ree

 a
nd

 co
lle

cte
d 

at
 th

e r
oo

t. 
(a

) I
ni

tia
liz

at
ion

 –
 fa

cto
riz

ed
 p

rio
rs 

mu
lti

pli
ed

 in
to 

 
th

e c
liq

ue
s t

o o
bt

ain
 in

iti
al 

po
ten

tia
ls.

 P
lea

se 
no

te 
th

at
  

ze
ro

 p
ote

nt
ial

s h
av

e b
een

 su
pp

res
sed

. 

 48



Modelling Operational Risk in Financial Institutions Using Bayesian Networks 

The potentials in C2 are multiplied by the update ratio, defined as: 

Separator potential after recent updating 
Separator potential before recent updating 

 

Thus, for example, the cell (NF="No";TD="0 day";Hack="Yes")=0.2 before updating would be 

multiplied by 0.5/1 to get 0.1. When C2 is updated completely (as shown in fig 4.6(b)), it will in turn 

be the sender clique to the next clique in the sequence of the propagation. This algorithm carries on 

until the root clique is updated. Then the collect phase is completed. The result for the whole tree can 

be seen in Appendix II.  

 

The distribute phase then commences and the updating proceeds outwards from the root until it 

reaches C2 again. In fig 4.6(c) we have the updated C2 after the propagation has passed through the 

rest of the junction tree. This time, C2 is the sender and C1 the sink. The separator potentials then 

take on the new set of sum-marginals from C2. C1 is then updated according to the update ratio as 

defined above. For example, the new potential for (HAN="Yes";TD="0.5 day";NF="Yes") would 

be: 

Previous potential for (HAN="Yes";TD="0.5 day";NF="Yes") * Update ratio 

=0.225*0.17/0.25 

=0.153. 

 

From the updated C2, we can sum-marginalize to obtain the posterior marginals for each of the 

variables in the cliques. Thus, for TD the marginal distribution would be P(0 day, 0.5 day, 1 day) = 

(0.66, 0.17, 0.17). 

 

Again, the updated cliques for the whole junction tree after the distribute phase can be seen in 

Appendix II. The marginal distributions are shown in fig 4.7. 
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fig 4.7 Prior Marginal Distributions 

 

At this juncture it is worth mentioning that, although this procedure appears rather tedious, the 

entire two-phased propagation takes place almost instantaneously at a mouse-click when using 

computer software such as XBaies. 

 

 

4.5 Applying the BN to OR modeling  

 

4.5.1 Risk Capital Allocation 

 

We now come to one of the main applications of BNs in modeling of OR. Having set up the model 

as above, the company would like to decide on the amount of financial capital to allocate towards 

protecting the company from all but the most extreme cases of NR.   
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At this point the model can be configured to reflect the actual known state of certain variables to 

reflect the actual position of the company. For example, the I.T. Department may provide the 

information that Application Proxies are used 24 hours as the firewall for the network and that High 

Availability Networks have been purchased and implemented for round-the-clock availability. Such 

information is incorporated by inserting evidence at the relevant cliques as described in §3.4.4. For 

example, to indicated the usage of Application Proxies, all cells of the clique (F, Hack, FAC) 

corresponding to F= “PF” is set to 0. This is due to the fact that the prior distribution for P(FAP,FPF) 

is now (1,0) since we know for certain that the type of firewall used is an Application Proxy. 

 

Supposing the set of evidence in table 4.3 represents the status of BSI’s BSNet system. This is then 

incorporated into the junction tree at the initialization stage. The tree is then propagated as before. 

The new set of posterior marginals incorporating the evidence is shown in fig 4.814.  The evidence 

was not updated for power surge, as this remains uncertain for a future period. 

Variable Evidence 
F Application Proxy 

FAC High 
HAN Yes 
HAS Yes 
SQ High 

UPS Yes 
 

Table 4.3 Evidence entered 

It is now fairly straightforward to determine the risk capital to be allocated to cover NR in BSNet for 

95% of cases over a holding period of one week. This is simply calculated by linearly 

interpolating to obtain the 95th percentile of the probability distribution for cost. In this case, the 

result is 0.32 million. 

 

                                                 
14 XBaies has a user-friendly graphic interface that allows the user to incorporate evidence at the nodes by clicking at the 
desired state of the variable of interest.  E.g., to enter FAC= “High”, all that is needed is a click on the bar representing 
the marginal probability of the state “High” at the FAC node chart. This automatically sets the bar to 1. 
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fig 4.8 Posterior marginals after incorporating evidence 

 

 

4.5.2 Scenario testing and causal analysis 

The model can be used to test various scenarios to help management in optimizing its risk profile. 

For example, if BSI wishes to reduce costs by reducing the level of File Access Control to “Low”, 

the effect of this action can be easily investigated by entering the evidence FAC= “Low” into the 

junction tree. The tree is then propagated and the resulting marginals observed as before (this is 

shown in fig 4.9). We can deduce that the trade-off of the lower costs is an increased capital 

requirement of 0.97 million.  We assume that the 95% confidence level is maintained. 
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fig 4.9 Posterior marginals of scenario testing  

 

The company may wish to perform some stress testing by investigating the impact of adverse events. 

Supposing the management is interested to examine the effects of situation of complete loss of 

data. This can be done by setting the node DL to “100%”. The effect is then propagated again and 

each node is updated accordingly. The final result can be seen in fig 4.10.  
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fig 4.10 Cause and effect of a 100% data loss 

 

Note the shift in the marginal probability distribution of the cost. We can now read off a few 

statistics from this new distribution. The expected cost is now 0.75 million with standard deviation 

0.57 million. The 95th percentile has now increased to 1.64 million.  

 

Note also the changes in the other nodes. For example, we now have and equal to 1. 

Conversely, the probability of “No” has increased significantly for Hack, V, EUM and NF. Similarly, 

AF is overwhelmingly “OK”. We can read from this that server failure is the definite cause of data 

loss. Consequently, we also deduced that a power surge was the definite cause of server failure. As a 

result, other events that might have been the causation of data loss have been explained away, giving 

the increase in “No” probabilities for these nodes.  

)( ySFP )( yPSP

 

This is an example of how BNs can be useful in causal analysis.  
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4.5.3 Simulation  

We might want to use the BN to generate random sample configurations to simulate actual 52-week 

periods in which events may occur with probabilities specified in the BN. This can be useful to 

determine aggregate capital requirements for one-year holding periods.  

 

Using the algorithm for sampling from a junction tree as described in §3.4.5, Xbaies was used to 

generate 52 sample configurations and the results are displayed in Appendix III. This can be 

compared to a sample set of size 9999 (using the same evidence) – also shown in Appendix III. We 

can see that the larger sample size is much closer to the probabilities shown in fig 4.8 from which 

the samples have been obtained.    

 

4.6 Updating the BN with new data 

As the model is implemented, there will be fresh data arriving every week. These can be used to 

update the probabilities in the model using Dirichlet priors as discussed in §3.6. As an example we 

consider the conditional probability P(NF|Hacky) underlying the node NF. 

 

Initially, we have to specify the prior Beta distribution (since this is a binary node). Assuming that 

the process of prior elicitation is done indirectly via the I.T. Department’s opinion about the 

respective ranges of the probabilities specified in Appendix I, we obtain the results in Table 4.4. 

 

 NF 
 NF= “Yes” NF= “No” 

Parent )( yy HackNFPµ  Range 
2

)( yy HackNFPσ yα )( yn HackNFPµ  Range 
2

)( yn HackNFPσ nα
Hack 
=Yes 

0.8 0.70-0.90 0.12 4.3 0.2 0.15-0.25 0.052 1.1

 

Table 4.4 Prior elicitation to specify Beta parameters 

 

 55



Modelling Operational Risk in Financial Institutions Using Bayesian Networks 

The statistics for the case of NF= “Yes” result in )0.3,0.12(Β  whereas the statistics for NF= “No” 

result in . The second set of results was chosen as it results in a lower precision.  )1.1,3.4(Β

 

Suppose that over the course of a year, the system was penetrated by malicious hackers in 6 out of 

the 52 weeks and half of those resulted in network failure. The Beta parameters then can be updated 

accordingly and the latest probability estimates can be obtained from the mean of the posterior Beta. 

The results are shown in Table 4.5.   

 

 NF 
 NF= “Yes” NF= “No” 

Parent 
Prior 
mean 

Data yα  yy n+α  Posterior 
mean 

Prior 
mean

Data nα  nn n+α  
Posterior 

mean 
Hack 
=Yes 

0.8 3 4.3 7.3 0.64 0.2 3 1.1 4.1 0.36 

Table 4.5 Bayesian updating with data 

The results obtained are fairly intuitive: the initial prior estimate of network failure in the event of a 

hacker attack was reduced from 80% to 64% when the data, which indicates a 50% occurrence, was 

incorporated. Similar updates can be performed simultaneously for all the nodes with the complete 

dataset.  

 

We see that Bayesian updating for BNs given new data is fairly easy to perform and would be cost 

effective to conduct regularly as new cases arrive.  

 

4.7 Model Assessment 

To illustrate how the model may be assessed, we shall consider the application of the Parent-Child 

Monitor at the NF node. The conditional probability underlying this node is P(NF|Hack). We shall 

investigate the particular case where malicious hacking has occurred. Supposing sufficient time has 

elapsed such that data is available for 16 weeks where this was the case. We shall see how well the 

model fits the data.  
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What I have done is to simulate 50 cases of data from a slightly different population. The 

distributions are given in table 4.6. This was done to investigate how well the model adapts to the 

data, given that the original prior was not specified very well.  

 
Distribution )|( YesHackYesNFP == )|( YesHackNoNFP ==

Prior 0.8 0.2 
Simulated 0.5 0.5 

 

 

Table 4.6 Probability distribution of NF|Hack 

Two alternatives were compared: one where the probabilities were updated in the same way shown 

in §4.6 as each new cases arrive and the other where the probabilities were left as originally specified. 

At each update, the following statistics were compiled: 

(i) The logarithmic score (or penalty); 

(ii) The expectation of penalty; and  

(iii) The variance of penalty.  

 

The cumulative penalties and the absolute standardisation test statistics were calculated and then 

plotted. The results are found in fig. 4.11 and fig. 4.12.  Details of the calculations are in Appendix IV.  
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fig. 4.11 Parent-child monitor for NF node: relative standardisation  
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We can see that just after 16 cases, the model with learning has an advantage of a Bayes factor of 

4.34, which implies an odds of 76:1 in its favour.  

 

For the absolute standardisation, the model with learning shows much better results when compared 

to the model without learning. However, in both cases, the hypothesis test rejects H0 since the 

threshold of 1.96 had been exceeded. Some modifications might be necessary in the structure of the 

model as this parent-child structure might not be a good predictor of the NF node.    
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fig. 4.11 Parent-child monitor for NF node: absolute standardization 

 

Similar tests can be performed using node and global monitors in forming an opinion on the 

viability of the model. In each case, an alternative structure can be tested in parallel with the results 

plot on the same graph for comparison. This visualisation also facilitates communication of the 

results. 
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4.8 Chapter conclusion 

We have used a fictitious company’s Internet business to illustrate how a BN can be set up using a 

combination of past data and expert input. In this illustration we have also demonstrated the 

application of BNs to the business needs of financial institutions in the following areas: 

(i) Setting of regulatory capital for OR; 

(ii) Scenario testing for causal analysis; and 

(iii) Simulation of future scenarios. 

 

The model has been shown to be easily adaptable to incorporate new input. Techniques for 

assessing the suitability of the model have also been briefly demonstrated.   
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Chapter Five 
Discussion 
 

 

 

5.1 Why Bayesian networks? 

 

We shall now summarise the reasons for adopting BNs as an approach to modelling OR in financial 

institutions.  

 

The main advantage of using BN for modelling OR is the incorporating of expert opinion through: 

(i) Choosing the variables of interest; 

(ii) Defining the structure of the model via the causal dependencies; and 

(iii) Specification of the prior distributions and the conditional probabilities at each node. 

 

Bayesian probability updating ensures that the model is not static, but quickly adapts to new input 

and incorporates it with prior expert opinion in a mathematically tractable manner. Monitors are also 

available to enable the efficacy of this process to be observed in real-time, thus facilitating informed 

model criticism and choice.   

 

We have seen the usage of BNs to model an OR loss distribution, on which business decisions could 

be based – particularly in the allocation of economic capital. Thus, there is tremendous potential 

here for an internal model for the setting of regulatory risk capital for OR, such as is required by the 

emerging regulatory regime for financial institutions. Stress and scenario testing is often a feature of 

early warning systems in regulatory regimes. We have seen how these can be done fairly quickly on 

BNs.      
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Finally, the graphical presentation of BNs aids the understanding of the causal structure and presents 

the risk profile of the company in an intuitive way – improving management understanding of, and 

hence participation in, the management of OR.   

 

 

5.2 Some caveats  

 

Having sung these praises, there are various challenges to overcome in the usage of BN to model 

OR. Firstly, the model can get very complex with many nodes to specify – this is especially so if the 

nodes have many parents.  In such cases, there can be many conditional probabilities to specify – if 

the maximum likelihood method of prior eliciation is used, significant volume of data might actually 

be required, thus reducing one of the main advantages of using Bayesian methods.  

 

The alternative to that would be a rigourous exercise in prior elicitation from experts through costly 

methods such as the Delphi method, which involves many rounds of questionnaires. A main 

challenge in this area is in dealing with experts who may not be comfortable thinking in terms of 

frequencies, although one would hope that this is not the case in financial institutions.  

 

There is also the issue of the non-uniqueness of the causal structure of the model. It is easily seen 

that choosing a suitable model structure can be as much an art as a science. Although a BN is cheap 

and easy to run, the whole process of setting up one can be costly, resource consuming and 

potentially politically messy if many business units/cost centres are involved. In many cases, a fairly 

complex BN is required to capture all the necessary variables. In addition, accuracy of results might 

be pursued at the expense of model parsimony especially when business (or even regulatory) 

decisions are at stake. 
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The main advantage of BNs – ability to incorporate subjective knowledge – can be a disadvantage 

when it comes to setting regulatory capital. Regulators who require an objective standard to approve 

of internal models may find it difficult to find a standard for acceptance of BNs due to its high 

subjective content. Regulators might need to specify rules on the process of model specification and 

prior elicitation to reduce the subjectivity.  

 

   

5.3 Extensions  

 

In the Network Risk example, the distributions have been expressed as discrete probabilities for 

simplicity.  More advanced modelling can be used to deal with continuous distributions in BNs – 

these are also known as conditional Gaussian distributions. Chapter 7 of Cowell et al (1999) provides 

a fairly comprehensive treatment of CG.  

 

In the example above, we have assumed the existence of complete data. In reality, this is seldom the 

case. Certain data cells will be missing or just impossible to obtain. Cowell et al (1999) suggests 

various methods such as the EM algorithm and the Gibbs Sampler to deal with updating of the BN 

with incomplete data. The Gibbs sampler uses a Markov Chain Monte Carlo process to recursively 

update the parameters of a Bayesian network to obtain a predictive distribution.  

 

As discussed above, specification of the structure is often subject to debate. Thus, a logical 

progression is to move towards structural learning – i.e. letting the data speak for itself not just with 

regards the probability distributions of the variables but even the very structure itself. This is 

currently an active area of research and chapter 11 of Cowell et al (1999) provides useful suggestions 

of work being done.    
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Post-script 
 

Probabilistic reasoning using expert systems, of which BNs are an example, is a specific case of a 

larger universe of scientific modelling known as Artificial Intelligence. This exciting confluence of 

various streams of scientific knowledge – statistics, engineering, econometrics, and information 

technology – will continue to be a fertile space for collaboration to discover newer and better ways 

to understand the world we live in. In researching for this dissertation, I am humbled by the amount 

of thought that has been put into this field yet I am also inspired to be part of its evolution through 

my pilgrimage within the actuarial profession and beyond.   
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APPENDIX I 

Network Risk: Prior Distributions  
 
Unconditional Priors 
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DL 

% 100% 
 0.9 
1 0.8 
2 0.6 
5 0 
3 0 
 0 
TD|HAN, NF
  TD 

HAN NF 0 day 0.5 day 1 day 
Y 0 0.9 0.1 Y 
N 1 0 0 
Y 0 0.1 0.9 N 
N 1 0 0 
AF|V, EUM, Hack

SD|UPS, SF, HAS
  SD 

SF UPS 0 day 0.5 day 1 day 

Y 0.5 0.5 0 Y 
N 0 0.2 0.8 
Y 1 0 0 N 
N 1 0 0 
Y 0 0.1 0.9 
N 0 0 1 
Y 1 0 0 
N 1 0 0 

 
V|FA
 EUM|FAC
 NF|Hack
 NF 

Hack Y N 
Y 0.8 0.2 
N 0 1 
DL|AF,SF
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Cost|SD, TD, DL
   Cost 

DL TD SD 0.0m 0.5m 1.0m 1.5m 2.0m 2.5m 
0 day 1 0 0 0 0 0 

0.5 day 0 0.6 0.4 0 0 0 0 day 
1 day 0 0.1 0.2 0.3 0.2 0.2 
0 day 0.7 0.3 0 0 0 0 

0.5 day 0 0.5 0.3 0.2 0 0 0.5 day 
1 day 0 0 0.2 0.4 0.2 0.2 
0 day 0.6 0.4 0 0 0 0 

0.5 day 0 0.4 0.3 0.2 0.1 0 

0% 

1 day 
1 day 0 0 0.1 0.2 0.4 0.3 
0 day 0.6 0.4 0 0 0 0 

0.5 day 0 0.5 0.4 0.1 0 0 0 day 
1 day 0 0 0.1 0.3 0.4 0.2 
0 day 0.3 0.3 0.2 0.2 0 0 

0.5 day 0 0.3 0.3 0.2 0.2 0 0.5 day 
1 day 0 0 0.1 0.2 0.5 0.2 
0 day 0.3 0.2 0.2 0.2 0.1 0 

0.5 day 0 0.3 0.2 0.2 0.2 0.1 

50% 

1 day 
1 day 0 0 0 0.1 0.4 0.5 
0 day 0.4 0.4 0.2 0 0 0 

0.5 day 0 0.4 0.3 0.2 0.1 0 0 day 
1 day 0 0 0 0.3 0.4 0.3 
0 day 0.2 0.2 0.3 0.2 0.1 0 

0.5 day 0 0.2 0.2 0.3 0.2 0.1 0.5 day 
1 day 0 0 0 0.2 0.4 0.4 
0 day 0 0.1 0.2 0.3 0.2 0.2 

0.5 day 0 0 0.2 0.3 0.3 0.2 

100% 

1 day 
1 day 0 0 0 0 0.2 0.8 
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NETWORK RISK: PROPAGATION EXAMPLE 
INITIALIZATION 
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"PS" "SQ" "SF"  
0.05000    PS="Yes";SQ="H";SF="Yes"; 
0.22500    PS="Yes";SQ="L";SF="Yes"; 
0.20000    PS="Yes";SQ="H";SF="No"; 
0.75000    PS="No";SQ="H";SF="No"; 
0.02500    PS="Yes";SQ="L";SF="No"; 
0.75000    PS="No";SQ="L";SF="No"; 

"UPS" "SD" "SF" "HAS"  
0.25000    UPS="Yes";SD="0 day";HAS="Yes";SF="Yes"; 
0.25000    UPS="Yes";SD="0.5 day";HAS="Yes";SF="Yes"; 
0.10000    UPS="No";SD="0.5 day";HAS="Yes";SF="Yes"; 
0.40000    UPS="No";SD="1 day";HAS="Yes";SF="Yes"; 
0.05000    UPS="Yes";SD="0.5 day";HAS="No";SF="Yes"; 
0.45000    UPS="Yes";SD="1 day";HAS="No";SF="Yes"; 
0.50000    UPS="No";SD="1 day";HAS="No";SF="Yes"; 
0.50000    UPS="Yes";SD="0 day";HAS="Yes";SF="No"; 
0.50000    UPS="No";SD="0 day";HAS="Yes";SF="No"; 
0.50000    UPS="Yes";SD="0 day";HAS="No";SF="No"; 
0.50000    UPS="No";SD="0 day";HAS="No";SF="No"; 

"DL" "TD" "SD" "SF" 
1.00000    DL="0%";TD="0 day";SD="0 day";SF="Yes"; 
1.00000    DL="50%";TD="0 day";SD="0 day";SF="Yes"; 
1.00000    DL="100%";TD="0 day";SD="0 day";SF="Yes"; 
1.00000    DL="0%";TD="0.5 day";SD="0 day";SF="Yes"; 
1.00000    DL="50%";TD="0.5 day";SD="0 day";SF="Yes"; 
1.00000    DL="100%";TD="0.5 day";SD="0 day";SF="Yes"; 
1.00000    DL="0%";TD="1 day";SD="0 day";SF="Yes"; 
1.00000    DL="50%";TD="1 day";SD="0 day";SF="Yes"; 
1.00000    DL="100%";TD="1 day";SD="0 day";SF="Yes"; 
1.00000    DL="0%";TD="0 day";SD="0.5 day";SF="Yes"; 
1.00000    DL="50%";TD="0 day";SD="0.5 day";SF="Yes"; 
1.00000    DL="100%";TD="0 day";SD="0.5 day";SF="Yes"; 
1.00000    DL="0%";TD="0.5 day";SD="0.5 day";SF="Yes"; 
1.00000    DL="50%";TD="0.5 day";SD="0.5 day";SF="Yes"; 
1.00000    DL="100%";TD="0.5 day";SD="0.5 day";SF="Yes"; 
1.00000    DL="0%";TD="1 day";SD="0.5 day";SF="Yes"; 
1.00000    DL="50%";TD="1 day";SD="0.5 day";SF="Yes"; 
1.00000    DL="100%";TD="1 day";SD="0.5 day";SF="Yes"; 
1.00000    DL="0%";TD="0 day";SD="1 day";SF="Yes"; 
1.00000    DL="50%";TD="0 day";SD="1 day";SF="Yes"; 
1.00000    DL="100%";TD="0 day";SD="1 day";SF="Yes"; 
1.00000    DL="0%";TD="0.5 day";SD="1 day";SF="Yes"; 
1.00000    DL="50%";TD="0.5 day";SD="1 day";SF="Yes"; 
1.00000    DL="100%";TD="0.5 day";SD="1 day";SF="Yes"; 
1.00000    DL="0%";TD="1 day";SD="1 day";SF="Yes"; 
1.00000    DL="50%";TD="1 day";SD="1 day";SF="Yes"; 
1.00000    DL="100%";TD="1 day";SD="1 day";SF="Yes"; 
1.00000    DL="0%";TD="0 day";SD="0 day";SF="No"; 
1.00000    DL="50%";TD="0 day";SD="0 day";SF="No"; 
1.00000    DL="100%";TD="0 day";SD="0 day";SF="No"; 
1.00000    DL="0%";TD="0.5 day";SD="0 day";SF="No"; 
1.00000    DL="50%";TD="0.5 day";SD="0 day";SF="No"; 
1.00000    DL="100%";TD="0.5 day";SD="0 day";SF="No"; 
1.00000    DL="0%";TD="1 day";SD="0 day";SF="No"; 
1.00000    DL="50%";TD="1 day";SD="0 day";SF="No"; 
1.00000    DL="100%";TD="1 day";SD="0 day";SF="No"; 
1.00000    DL="0%";TD="0 day";SD="0.5 day";SF="No"; 
1.00000    DL="50%";TD="0 day";SD="0.5 day";SF="No"; 
1.00000    DL="100%";TD="0 day";SD="0.5 day";SF="No"; 
1.00000    DL="0%";TD="0.5 day";SD="0.5 day";SF="No"; 
1.00000    DL="50%";TD="0.5 day";SD="0.5 day";SF="No"; 
1.00000    DL="100%";TD="0.5 day";SD="0.5 day";SF="No"; 
1.00000    DL="0%";TD="1 day";SD="0.5 day";SF="No"; 
1.00000    DL="50%";TD="1 day";SD="0.5 day";SF="No"; 
1.00000    DL="100%";TD="1 day";SD="0.5 day";SF="No"; 
1.00000    DL="0%";TD="0 day";SD="1 day";SF="No"; 
1.00000    DL="50%";TD="0 day";SD="1 day";SF="No"; 
1.00000    DL="100%";TD="0 day";SD="1 day";SF="No"; 
1.00000    DL="0%";TD="0.5 day";SD="1 day";SF="No"; 
1.00000    DL="50%";TD="0.5 day";SD="1 day";SF="No"; 
1.00000    DL="100%";TD="0.5 day";SD="1 day";SF="No"; 
1.00000    DL="0%";TD="1 day";SD="1 day";SF="No"; 
1.00000    DL="50%";TD="1 day";SD="1 day";SF="No"; 
1.00000    DL="100%";TD="1 day";SD="1 day";SF="No"; 

"Cost" "DL" "TD" "SD"  
1.00000    Cost="0.0m";TD="0 day";SD="0 day";DL="0%"; 
0.70000    Cost="0.0m";TD="0.5 day";SD="0 day";DL="0%"; 
0.30000    Cost="0.5m";TD="0.5 day";SD="0 day";DL="0%"; 
0.60000    Cost="0.0m";TD="1 day";SD="0 day";DL="0%"; 
0.40000    Cost="0.5m";TD="1 day";SD="0 day";DL="0%"; 
0.60000    Cost="0.5m";TD="0 day";SD="0.5 day";DL="0%"; 
0.40000    Cost="1.0m";TD="0 day";SD="0.5 day";DL="0%"; 
0.50000    Cost="0.5m";TD="0.5 day";SD="0.5 day";DL="0%"; 
0.30000    Cost="1.0m";TD="0.5 day";SD="0.5 day";DL="0%"; 
0.20000    Cost="1.5m";TD="0.5 day";SD="0.5 day";DL="0%"; 
0.40000    Cost="0.5m";TD="1 day";SD="0.5 day";DL="0%"; 
0.30000    Cost="1.0m";TD="1 day";SD="0.5 day";DL="0%"; 
0.20000    Cost="1.5m";TD="1 day";SD="0.5 day";DL="0%"; 
0.10000    Cost="2.0m";TD="1 day";SD="0.5 day";DL="0%"; 
0.10000    Cost="0.5m";TD="0 day";SD="1 day";DL="0%"; 
0.20000    Cost="1.0m";TD="0 day";SD="1 day";DL="0%"; 
0.30000    Cost="1.5m";TD="0 day";SD="1 day";DL="0%"; 
0.20000    Cost="2.0m";TD="0 day";SD="1 day";DL="0%"; 
0.20000    Cost="2.5m";TD="0 day";SD="1 day";DL="0%"; 
0.20000    Cost="1.0m";TD="0.5 day";SD="1 day";DL="0%"; 
0.40000    Cost="1.5m";TD="0.5 day";SD="1 day";DL="0%"; 
0.20000    Cost="2.0m";TD="0.5 day";SD="1 day";DL="0%"; 
0.20000    Cost="2.5m";TD="0.5 day";SD="1 day";DL="0%"; 
0.10000    Cost="1.0m";TD="1 day";SD="1 day";DL="0%"; 
0.20000    Cost="1.5m";TD="1 day";SD="1 day";DL="0%"; 
0.40000    Cost="2.0m";TD="1 day";SD="1 day";DL="0%"; 
0.30000    Cost="2.5m";TD="1 day";SD="1 day";DL="0%"; 
0.60000    Cost="0.0m";TD="0 day";SD="0 day";DL="50%"; 
0.40000    Cost="0.5m";TD="0 day";SD="0 day";DL="50%"; 
0.30000    Cost="0.0m";TD="0.5 day";SD="0 day";DL="50%"; 
0.30000    Cost="0.5m";TD="0.5 day";SD="0 day";DL="50%"; 
0.20000    Cost="1.0m";TD="0.5 day";SD="0 day";DL="50%"; 
0.20000    Cost="1.5m";TD="0.5 day";SD="0 day";DL="50%"; 
0.30000    Cost="0.0m";TD="1 day";SD="0 day";DL="50%"; 
0.20000    Cost="0.5m";TD="1 day";SD="0 day";DL="50%"; 
0.20000    Cost="1.0m";TD="1 day";SD="0 day";DL="50%"; 
0.20000    Cost="1.5m";TD="1 day";SD="0 day";DL="50%"; 
0.10000    Cost="2.0m";TD="1 day";SD="0 day";DL="50%"; 
0.50000    Cost="0.5m";TD="0 day";SD="0.5 day";DL="50%"; 
0.40000    Cost="1.0m";TD="0 day";SD="0.5 day";DL="50%"; 
0.10000    Cost="1.5m";TD="0 day";SD="0.5 day";DL="50%"; 
0.30000    Cost="0.5m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.30000    Cost="1.0m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.20000    Cost="1.5m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.20000    Cost="2.0m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.30000    Cost="0.5m";TD="1 day";SD="0.5 day";DL="50%"; 
0.20000    Cost="1.0m";TD="1 day";SD="0.5 day";DL="50%"; 
0.20000    Cost="1.5m";TD="1 day";SD="0.5 day";DL="50%"; 
0.20000    Cost="2.0m";TD="1 day";SD="0.5 day";DL="50%"; 
0.10000    Cost="2.5m";TD="1 day";SD="0.5 day";DL="50%"; 
0.10000    Cost="1.0m";TD="0 day";SD="1 day";DL="50%"; 
0.30000    Cost="1.5m";TD="0 day";SD="1 day";DL="50%"; 
0.40000    Cost="2.0m";TD="0 day";SD="1 day";DL="50%"; 
0.20000    Cost="2.5m";TD="0 day";SD="1 day";DL="50%"; 
0.10000    Cost="1.0m";TD="0.5 day";SD="1 day";DL="50%"; 
0.20000    Cost="1.5m";TD="0.5 day";SD="1 day";DL="50%"; 
0.50000    Cost="2.0m";TD="0.5 day";SD="1 day";DL="50%"; 
0.20000    Cost="2.5m";TD="0.5 day";SD="1 day";DL="50%"; 
0.10000    Cost="1.5m";TD="1 day";SD="1 day";DL="50%"; 
0.40000    Cost="2.0m";TD="1 day";SD="1 day";DL="50%"; 
0.50000    Cost="2.5m";TD="1 day";SD="1 day";DL="50%"; 
0.40000    Cost="0.0m";TD="0 day";SD="0 day";DL="100%"; 
0.40000    Cost="0.5m";TD="0 day";SD="0 day";DL="100%"; 
0.20000    Cost="1.0m";TD="0 day";SD="0 day";DL="100%"; 
0.20000    Cost="0.0m";TD="0.5 day";SD="0 day";DL="100%"; 
0.20000    Cost="0.5m";TD="0.5 day";SD="0 day";DL="100%"; 
0.30000    Cost="1.0m";TD="0.5 day";SD="0 day";DL="100%"; 
0.20000    Cost="1.5m";TD="0.5 day";SD="0 day";DL="100%"; 
0.10000    Cost="2.0m";TD="0.5 day";SD="0 day";DL="100%"; 
0.10000    Cost="0.5m";TD="1 day";SD="0 day";DL="100%"; 
0.20000    Cost="1.0m";TD="1 day";SD="0 day";DL="100%"; 
0.30000    Cost="1.5m";TD="1 day";SD="0 day";DL="100%"; 
0.20000    Cost="2.0m";TD="1 day";SD="0 day";DL="100%"; 
0.20000    Cost="2.5m";TD="1 day";SD="0 day";DL="100%"; 
0.40000    Cost="0.5m";TD="0 day";SD="0.5 day";DL="100%"; 
0.30000    Cost="1.0m";TD="0 day";SD="0.5 day";DL="100%"; 
0.20000    Cost="1.5m";TD="0 day";SD="0.5 day";DL="100%"; 
0.10000    Cost="2.0m";TD="0 day";SD="0.5 day";DL="100%"; 
0.20000    Cost="0.5m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.20000    Cost="1.0m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.30000    Cost="1.5m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.20000    Cost="2.0m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.10000    Cost="2.5m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.20000    Cost="1.0m";TD="1 day";SD="0.5 day";DL="100%"; 
0.30000    Cost="1.5m";TD="1 day";SD="0.5 day";DL="100%"; 
0.30000    Cost="2.0m";TD="1 day";SD="0.5 day";DL="100%"; 
0.20000    Cost="2.5m";TD="1 day";SD="0.5 day";DL="100%"; 
0.30000    Cost="1.5m";TD="0 day";SD="1 day";DL="100%"; 
0.40000    Cost="2.0m";TD="0 day";SD="1 day";DL="100%"; 
0.30000    Cost="2.5m";TD="0 day";SD="1 day";DL="100%"; 
0.20000    Cost="1.5m";TD="0.5 day";SD="1 day";DL="100%"; 
0.40000    Cost="2.0m";TD="0.5 day";SD="1 day";DL="100%"; 
0.40000    Cost="2.5m";TD="0.5 day";SD="1 day";DL="100%"; 
0.20000    Cost="2.0m";TD="1 day";SD="1 day";DL="100%"; 
0.80000    Cost="2.5m";TD="1 day";SD="1 day";DL="100%"; 
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NETWORK RISK: PROPAGATION EXAMPLE 
INITIALIZATION (Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DL:TD:SD:SF node 
From previous page 

"HAN" "TD" "NF"  
0.45000    HAN="Yes";TD="0.5 day";NF="Yes"; 
0.05000    HAN="No";TD="0.5 day";NF="Yes"; 
0.05000    HAN="Yes";TD="1 day";NF="Yes"; 
0.45000    HAN="No";TD="1 day";NF="Yes"; 
0.50000    HAN="Yes";TD="0 day";NF="No"; 
0.50000    HAN="No";TD="0 day";NF="No"; 

"NF" "Hack" "TD"  
0.80000    NF="Yes";TD="0 day";Hack="Yes"; 
0.20000    NF="No";TD="0 day";Hack="Yes"; 
0.80000    NF="Yes";TD="0.5 day";Hack="Yes"; 
0.20000    NF="No";TD="0.5 day";Hack="Yes"; 
0.80000    NF="Yes";TD="1 day";Hack="Yes"; 
0.20000    NF="No";TD="1 day";Hack="Yes"; 
1.00000    NF="No";TD="0 day";Hack="No"; 
1.00000    NF="No";TD="0.5 day";Hack="No"; 
1.00000    NF="No";TD="1 day";Hack="No"; 

"F" "Hack" "FAC"  
0.05000    F="AP";FAC="High";Hack="Yes"; 
0.15000    F="PF";FAC="High";Hack="Yes"; 
0.25000    F="AP";FAC="Low";Hack="Yes"; 
0.40000    F="PF";FAC="Low";Hack="Yes"; 
0.45000    F="AP";FAC="High";Hack="No"; 
0.35000    F="PF";FAC="High";Hack="No"; 
0.25000    F="AP";FAC="Low";Hack="No"; 
0.10000    F="PF";FAC="Low";Hack="No"; 

"Hack" "AF" "TD"  
1.00000    Hack="Yes";TD="0 day";AF="App Corr"; 
1.00000    Hack="No";TD="0 day";AF="App Corr"; 
1.00000    Hack="Yes";TD="0.5 day";AF="App Corr"; 
1.00000    Hack="No";TD="0.5 day";AF="App Corr"; 
1.00000    Hack="Yes";TD="1 day";AF="App Corr"; 
1.00000    Hack="No";TD="1 day";AF="App Corr"; 
1.00000    Hack="Yes";TD="0 day";AF="Lockup"; 
1.00000    Hack="No";TD="0 day";AF="Lockup"; 
1.00000    Hack="Yes";TD="0.5 day";AF="Lockup"; 
1.00000    Hack="No";TD="0.5 day";AF="Lockup"; 
1.00000    Hack="Yes";TD="1 day";AF="Lockup"; 
1.00000    Hack="No";TD="1 day";AF="Lockup"; 
1.00000    Hack="Yes";TD="0 day";AF="OK"; 
1.00000    Hack="No";TD="0 day";AF="OK"; 
1.00000    Hack="Yes";TD="0.5 day";AF="OK"; 
1.00000    Hack="No";TD="0.5 day";AF="OK"; 
1.00000    Hack="Yes";TD="1 day";AF="OK"; 
1 00000 Hack="No";TD="1 day";AF="OK";

"V" "Hack" "AF" "FAC" "EUM"  
0.09000    V="Yes";EUM="Yes";AF="App Corr";FAC="High";Hack="Yes";
0.54000    V="No";EUM="Yes";AF="App Corr";FAC="High";Hack="Yes"; 
0.07000    V="Yes";EUM="No";AF="App Corr";FAC="High";Hack="Yes"; 
0.54000    V="No";EUM="No";AF="App Corr";FAC="High";Hack="Yes"; 
0.01000    V="Yes";EUM="Yes";AF="Lockup";FAC="High";Hack="Yes"; 
0.36000    V="No";EUM="Yes";AF="Lockup";FAC="High";Hack="Yes"; 
0.03000    V="Yes";EUM="No";AF="Lockup";FAC="High";Hack="Yes"; 
0.18000    V="No";EUM="No";AF="Lockup";FAC="High";Hack="Yes"; 
0.18000    V="No";EUM="No";AF="OK";FAC="High";Hack="Yes"; 
0.63000    V="Yes";EUM="Yes";AF="App Corr";FAC="Low";Hack="Yes";
0.18000    V="No";EUM="Yes";AF="App Corr";FAC="Low";Hack="Yes"; 
0.49000    V="Yes";EUM="No";AF="App Corr";FAC="Low";Hack="Yes"; 
0.18000    V="No";EUM="No";AF="App Corr";FAC="Low";Hack="Yes"; 
0.07000    V="Yes";EUM="Yes";AF="Lockup";FAC="Low";Hack="Yes"; 
0.12000    V="No";EUM="Yes";AF="Lockup";FAC="Low";Hack="Yes"; 
0.21000    V="Yes";EUM="No";AF="Lockup";FAC="Low";Hack="Yes"; 
0.06000    V="No";EUM="No";AF="Lockup";FAC="Low";Hack="Yes"; 
0.06000    V="No";EUM="No";AF="OK";FAC="Low";Hack="Yes"; 
0.04000    V="Yes";EUM="Yes";AF="App Corr";FAC="High";Hack="No"; 
0.09000    V="No";EUM="Yes";AF="App Corr";FAC="High";Hack="No"; 
0.05000    V="Yes";EUM="No";AF="App Corr";FAC="High";Hack="No"; 
0.03000    V="Yes";EUM="Yes";AF="Lockup";FAC="High";Hack="No"; 
0.27000    V="No";EUM="Yes";AF="Lockup";FAC="High";Hack="No"; 
0.03000    V="Yes";EUM="Yes";AF="OK";FAC="High";Hack="No"; 
0.54000    V="No";EUM="Yes";AF="OK";FAC="High";Hack="No"; 
0.05000    V="Yes";EUM="No";AF="OK";FAC="High";Hack="No"; 
0.90000    V="No";EUM="No";AF="OK";FAC="High";Hack="No"; 
0.28000    V="Yes";EUM="Yes";AF="App Corr";FAC="Low";Hack="No"; 
0.03000    V="No";EUM="Yes";AF="App Corr";FAC="Low";Hack="No"; 
0.35000    V="Yes";EUM="No";AF="App Corr";FAC="Low";Hack="No"; 
0.21000    V="Yes";EUM="Yes";AF="Lockup";FAC="Low";Hack="No"; 
0.09000    V="No";EUM="Yes";AF="Lockup";FAC="Low";Hack="No"; 
0.21000    V="Yes";EUM="Yes";AF="OK";FAC="Low";Hack="No"; 
0.18000    V="No";EUM="Yes";AF="OK";FAC="Low";Hack="No"; 
0.35000    V="Yes";EUM="No";AF="OK";FAC="Low";Hack="No"; 
0.30000    V="No";EUM="No";AF="OK";FAC="Low";Hack="No"; 

"AF" "DL" "TD" "SF"  
0.10000    AF="App Corr";TD="0 day";DL="0%";SF="Yes"; 
0.10000    AF="Lockup";TD="0 day";DL="0%";SF="Yes"; 
0.20000    AF="OK";TD="0 day";DL="0%";SF="Yes"; 
0.10000    AF="App Corr";TD="0.5 day";DL="0%";SF="Yes"; 
0.10000    AF="Lockup";TD="0.5 day";DL="0%";SF="Yes"; 
0.20000    AF="OK";TD="0.5 day";DL="0%";SF="Yes"; 
0.10000    AF="App Corr";TD="1 day";DL="0%";SF="Yes"; 
0.10000    AF="Lockup";TD="1 day";DL="0%";SF="Yes"; 
0.20000    AF="OK";TD="1 day";DL="0%";SF="Yes"; 
0.10000    AF="Lockup";TD="0 day";DL="50%";SF="Yes"; 
0.20000    AF="OK";TD="0 day";DL="50%";SF="Yes"; 
0.10000    AF="Lockup";TD="0.5 day";DL="50%";SF="Yes"; 
0.20000    AF="OK";TD="0.5 day";DL="50%";SF="Yes"; 
0.10000    AF="Lockup";TD="1 day";DL="50%";SF="Yes"; 
0.20000    AF="OK";TD="1 day";DL="50%";SF="Yes"; 
0.90000    AF="App Corr";TD="0 day";DL="100%";SF="Yes"; 
0.80000    AF="Lockup";TD="0 day";DL="100%";SF="Yes"; 
0.60000    AF="OK";TD="0 day";DL="100%";SF="Yes"; 
0.90000    AF="App Corr";TD="0.5 day";DL="100%";SF="Yes"; 
0.80000    AF="Lockup";TD="0.5 day";DL="100%";SF="Yes"; 
0.60000    AF="OK";TD="0.5 day";DL="100%";SF="Yes"; 
0.90000    AF="App Corr";TD="1 day";DL="100%";SF="Yes"; 
0.80000    AF="Lockup";TD="1 day";DL="100%";SF="Yes"; 
0.60000    AF="OK";TD="1 day";DL="100%";SF="Yes"; 
0.50000    AF="App Corr";TD="0 day";DL="0%";SF="No"; 
0.70000    AF="Lockup";TD="0 day";DL="0%";SF="No"; 
1.00000    AF="OK";TD="0 day";DL="0%";SF="No"; 
0.50000    AF="App Corr";TD="0.5 day";DL="0%";SF="No"; 
0.70000    AF="Lockup";TD="0.5 day";DL="0%";SF="No"; 
1.00000    AF="OK";TD="0.5 day";DL="0%";SF="No"; 
0.50000    AF="App Corr";TD="1 day";DL="0%";SF="No"; 
0.70000    AF="Lockup";TD="1 day";DL="0%";SF="No"; 
1.00000    AF="OK";TD="1 day";DL="0%";SF="No"; 
0.50000    AF="App Corr";TD="0 day";DL="50%";SF="No"; 
0.30000    AF="Lockup";TD="0 day";DL="50%";SF="No"; 
0.50000    AF="App Corr";TD="0.5 day";DL="50%";SF="No"; 
0.30000    AF="Lockup";TD="0.5 day";DL="50%";SF="No"; 
0.50000    AF="App Corr";TD="1 day";DL="50%";SF="No"; 
0.30000    AF="Lockup";TD="1 day";DL="50%";SF="No";
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APPENDIX II 

NETWORK RISK: PROPAGATION EXAMPLE 
COLLECT PHASE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

"Cost" "DL" "TD" "SD"  
0.03704    Cost="0.0m";TD="0 day";SD="0 day";DL="0%"; 
0.02593    Cost="0.0m";TD="0.5 day";SD="0 day";DL="0%"; 
0.01111    Cost="0.5m";TD="0.5 day";SD="0 day";DL="0%"; 
0.02222    Cost="0.0m";TD="1 day";SD="0 day";DL="0%"; 
0.01481    Cost="0.5m";TD="1 day";SD="0 day";DL="0%"; 
0.02222    Cost="0.5m";TD="0 day";SD="0.5 day";DL="0%"; 
0.01481    Cost="1.0m";TD="0 day";SD="0.5 day";DL="0%"; 
0.01852    Cost="0.5m";TD="0.5 day";SD="0.5 day";DL="0%"; 
0.01111    Cost="1.0m";TD="0.5 day";SD="0.5 day";DL="0%"; 
0.00741    Cost="1.5m";TD="0.5 day";SD="0.5 day";DL="0%"; 
0.01481    Cost="0.5m";TD="1 day";SD="0.5 day";DL="0%"; 
0.01111    Cost="1.0m";TD="1 day";SD="0.5 day";DL="0%"; 
0.00741    Cost="1.5m";TD="1 day";SD="0.5 day";DL="0%"; 
0.00370    Cost="2.0m";TD="1 day";SD="0.5 day";DL="0%"; 
0.00370    Cost="0.5m";TD="0 day";SD="1 day";DL="0%"; 
0.00741    Cost="1.0m";TD="0 day";SD="1 day";DL="0%"; 
0.01111    Cost="1.5m";TD="0 day";SD="1 day";DL="0%"; 
0.00741    Cost="2.0m";TD="0 day";SD="1 day";DL="0%"; 
0.00741    Cost="2.5m";TD="0 day";SD="1 day";DL="0%"; 
0.00741    Cost="1.0m";TD="0.5 day";SD="1 day";DL="0%"; 
0.01481    Cost="1.5m";TD="0.5 day";SD="1 day";DL="0%"; 
0.00741    Cost="2.0m";TD="0.5 day";SD="1 day";DL="0%"; 
0.00741    Cost="2.5m";TD="0.5 day";SD="1 day";DL="0%"; 
0.00370    Cost="1.0m";TD="1 day";SD="1 day";DL="0%"; 
0.00741    Cost="1.5m";TD="1 day";SD="1 day";DL="0%"; 
0.01481    Cost="2.0m";TD="1 day";SD="1 day";DL="0%"; 
0.01111    Cost="2.5m";TD="1 day";SD="1 day";DL="0%"; 
0.02222    Cost="0.0m";TD="0 day";SD="0 day";DL="50%"; 
0.01481    Cost="0.5m";TD="0 day";SD="0 day";DL="50%"; 
0.01111    Cost="0.0m";TD="0.5 day";SD="0 day";DL="50%"; 
0.01111    Cost="0.5m";TD="0.5 day";SD="0 day";DL="50%"; 
0.00741    Cost="1.0m";TD="0.5 day";SD="0 day";DL="50%"; 
0.00741    Cost="1.5m";TD="0.5 day";SD="0 day";DL="50%"; 
0.01111    Cost="0.0m";TD="1 day";SD="0 day";DL="50%"; 
0.00741    Cost="0.5m";TD="1 day";SD="0 day";DL="50%"; 
0.00741    Cost="1.0m";TD="1 day";SD="0 day";DL="50%"; 
0.00741    Cost="1.5m";TD="1 day";SD="0 day";DL="50%"; 
0.00370    Cost="2.0m";TD="1 day";SD="0 day";DL="50%"; 
0.01852    Cost="0.5m";TD="0 day";SD="0.5 day";DL="50%"; 
0.01481    Cost="1.0m";TD="0 day";SD="0.5 day";DL="50%"; 
0.00370    Cost="1.5m";TD="0 day";SD="0.5 day";DL="50%"; 
0.01111    Cost="0.5m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.01111    Cost="1.0m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.00741    Cost="1.5m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.00741    Cost="2.0m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.01111    Cost="0.5m";TD="1 day";SD="0.5 day";DL="50%"; 
0.00741    Cost="1.0m";TD="1 day";SD="0.5 day";DL="50%"; 
0.00741    Cost="1.5m";TD="1 day";SD="0.5 day";DL="50%"; 
0.00741    Cost="2.0m";TD="1 day";SD="0.5 day";DL="50%"; 
0.00370    Cost="2.5m";TD="1 day";SD="0.5 day";DL="50%"; 
0.00370    Cost="1.0m";TD="0 day";SD="1 day";DL="50%"; 
0.01111    Cost="1.5m";TD="0 day";SD="1 day";DL="50%"; 
0.01481    Cost="2.0m";TD="0 day";SD="1 day";DL="50%"; 
0.00741    Cost="2.5m";TD="0 day";SD="1 day";DL="50%"; 
0.00370    Cost="1.0m";TD="0.5 day";SD="1 day";DL="50%"; 
0.00741    Cost="1.5m";TD="0.5 day";SD="1 day";DL="50%"; 
0.01852    Cost="2.0m";TD="0.5 day";SD="1 day";DL="50%"; 
0.00741    Cost="2.5m";TD="0.5 day";SD="1 day";DL="50%"; 
0.00370    Cost="1.5m";TD="1 day";SD="1 day";DL="50%"; 
0.01481    Cost="2.0m";TD="1 day";SD="1 day";DL="50%"; 
0.01852    Cost="2.5m";TD="1 day";SD="1 day";DL="50%"; 
0.01481    Cost="0.0m";TD="0 day";SD="0 day";DL="100%"; 
0.01481    Cost="0.5m";TD="0 day";SD="0 day";DL="100%"; 
0.00741    Cost="1.0m";TD="0 day";SD="0 day";DL="100%"; 
0.00741    Cost="0.0m";TD="0.5 day";SD="0 day";DL="100%"; 
0.00741    Cost="0.5m";TD="0.5 day";SD="0 day";DL="100%"; 
0.01111    Cost="1.0m";TD="0.5 day";SD="0 day";DL="100%"; 
0.00741    Cost="1.5m";TD="0.5 day";SD="0 day";DL="100%"; 
0.00370    Cost="2.0m";TD="0.5 day";SD="0 day";DL="100%"; 
0.00370    Cost="0.5m";TD="1 day";SD="0 day";DL="100%"; 
0.00741    Cost="1.0m";TD="1 day";SD="0 day";DL="100%"; 
0.01111    Cost="1.5m";TD="1 day";SD="0 day";DL="100%"; 
0.00741    Cost="2.0m";TD="1 day";SD="0 day";DL="100%"; 
0.00741    Cost="2.5m";TD="1 day";SD="0 day";DL="100%"; 
0.01481    Cost="0.5m";TD="0 day";SD="0.5 day";DL="100%"; 
0.01111    Cost="1.0m";TD="0 day";SD="0.5 day";DL="100%"; 
0.00741    Cost="1.5m";TD="0 day";SD="0.5 day";DL="100%"; 
0.00370    Cost="2.0m";TD="0 day";SD="0.5 day";DL="100%"; 
0.00741    Cost="0.5m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.00741    Cost="1.0m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.01111    Cost="1.5m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.00741    Cost="2.0m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.00370    Cost="2.5m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.00741    Cost="1.0m";TD="1 day";SD="0.5 day";DL="100%"; 
0.01111    Cost="1.5m";TD="1 day";SD="0.5 day";DL="100%"; 
0.01111    Cost="2.0m";TD="1 day";SD="0.5 day";DL="100%"; 
0.00741    Cost="2.5m";TD="1 day";SD="0.5 day";DL="100%"; 
0.01111    Cost="1.5m";TD="0 day";SD="1 day";DL="100%"; 
0.01481    Cost="2.0m";TD="0 day";SD="1 day";DL="100%"; 
0.01111    Cost="2.5m";TD="0 day";SD="1 day";DL="100%"; 
0.00741    Cost="1.5m";TD="0.5 day";SD="1 day";DL="100%"; 
0.01481    Cost="2.0m";TD="0.5 day";SD="1 day";DL="100%"; 
0.01481    Cost="2.5m";TD="0.5 day";SD="1 day";DL="100%"; 
0.00741    Cost="2.0m";TD="1 day";SD="1 day";DL="100%"; 
0.02963    Cost="2.5m";TD="1 day";SD="1 day";DL="100%"; 

"DL" "TD" "SD" "SF" 
0.0186 DL="0%";TD="0 day";SD="0 day";SF="Yes"; 
0.0162 DL="50%";TD="0 day";SD="0 day";SF="Yes"; 
0.0752 DL="100%";TD="0 day";SD="0 day";SF="Yes"; 
0.0030 DL="0%";TD="0.5 day";SD="0 day";SF="Yes"; 
0.0010 DL="50%";TD="0.5 day";SD="0 day";SF="Yes"; 
0.0244 DL="100%";TD="0.5 day";SD="0 day";SF="Yes"; 
0.0030 DL="0%";TD="1 day";SD="0 day";SF="Yes"; 
0.0010 DL="50%";TD="1 day";SD="0 day";SF="Yes"; 
0.0244 DL="100%";TD="1 day";SD="0 day";SF="Yes"; 
0.0186 DL="0%";TD="0 day";SD="0.5 day";SF="Yes"; 
0.0162 DL="50%";TD="0 day";SD="0.5 day";SF="Yes"; 
0.0752 DL="100%";TD="0 day";SD="0.5 day";SF="Yes"; 
0.0030 DL="0%";TD="0.5 day";SD="0.5 day";SF="Yes"; 
0.0010 DL="50%";TD="0.5 day";SD="0.5 day";SF="Yes"; 
0.0244 DL="100%";TD="0.5 day";SD="0.5 day";SF="Yes"; 
0.0030 DL="0%";TD="1 day";SD="0.5 day";SF="Yes"; 
0.0010 DL="50%";TD="1 day";SD="0.5 day";SF="Yes"; 
0.0244 DL="100%";TD="1 day";SD="0.5 day";SF="Yes"; 
0.0186 DL="0%";TD="0 day";SD="1 day";SF="Yes"; 
0.0162 DL="50%";TD="0 day";SD="1 day";SF="Yes"; 
0.0752 DL="100%";TD="0 day";SD="1 day";SF="Yes"; 
0.0030 DL="0%";TD="0.5 day";SD="1 day";SF="Yes"; 
0.0010 DL="50%";TD="0.5 day";SD="1 day";SF="Yes"; 

0.0030 DL="0%";TD="1 day";SD="1 day";SF="Yes"; 
0.0010 DL="50%";TD="1 day";SD="1 day";SF="Yes"; 
0.0244 DL="100%";TD="1 day";SD="1 day";SF="Yes"; 
0.0951 DL="0%";TD="0 day";SD="0 day";SF="No"; 
0.0149 DL="50%";TD="0 day";SD="0 day";SF="No"; 
0.0000 DL="100%";TD="0 day";SD="0 day";SF="No"; 
0.0162 DL="0%";TD="0.5 day";SD="0 day";SF="No"; 
0.0121 DL="50%";TD="0.5 day";SD="0 day";SF="No"; 
0.0000 DL="100%";TD="0.5 day";SD="0 day";SF="No"; 
0.0162 DL="0%";TD="1 day";SD="0 day";SF="No"; 
0.0121 DL="50%";TD="1 day";SD="0 day";SF="No"; 
0.0000 DL="100%";TD="1 day";SD="0 day";SF="No"; 
0.0951 DL="0%";TD="0 day";SD="0.5 day";SF="No"; 
0.0149 DL="50%";TD="0 day";SD="0.5 day";SF="No"; 
0.0000 DL="100%";TD="0 day";SD="0.5 day";SF="No"; 
0.0162 DL="0%";TD="0.5 day";SD="0.5 day";SF="No"; 
0.0121 DL="50%";TD="0.5 day";SD="0.5 day";SF="No"; 
0.0000 DL="100%";TD="0.5 day";SD="0.5 day";SF="No"; 
0.0162 DL="0%";TD="1 day";SD="0.5 day";SF="No"; 
0.0121 DL="50%";TD="1 day";SD="0.5 day";SF="No"; 
0.0000 DL="100%";TD="1 day";SD="0.5 day";SF="No"; 
0.0951 DL="0%";TD="0 day";SD="1 day";SF="No"; 
0.0149 DL="50%";TD="0 day";SD="1 day";SF="No"; 
0.0000 DL="100%";TD="0 day";SD="1 day";SF="No"; 
0.0162 DL="0%";TD="0.5 day";SD="1 day";SF="No"; 
0.0121 DL="50%";TD="0.5 day";SD="1 day";SF="No"; 
0.0000 DL="100%";TD="0.5 day";SD="1 day";SF="No"; 
0.0162 DL="0%";TD="1 day";SD="1 day";SF="No"; 
0.0121 DL="50%";TD="1 day";SD="1 day";SF="No"; 
0.0000 DL="100%";TD="1 day";SD="1 day";SF="No"; 
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0.0244 DL="100%";TD="0.5 day";SD="1 day";SF="Yes"; 

"PS" "SQ" "SF"  
0.05000    PS="Yes";SQ="H";SF="Yes"; 
0.22500    PS="Yes";SQ="L";SF="Yes"; 
0.20000    PS="Yes";SQ="H";SF="No"; 
0.75000    PS="No";SQ="H";SF="No"; 
0.02500    PS="Yes";SQ="L";SF="No"; 
0.75000    PS="No";SQ="L";SF="No"; 

"UPS" "SD" "SF" "HAS"  
0.06250    UPS="Yes";SD="0 day";HAS="Yes";SF="Yes"; 
0.06250    UPS="Yes";SD="0.5 day";HAS="Yes";SF="Yes"; 
0.02500    UPS="No";SD="0.5 day";HAS="Yes";SF="Yes"; 
0.10000    UPS="No";SD="1 day";HAS="Yes";SF="Yes"; 
0.01250    UPS="Yes";SD="0.5 day";HAS="No";SF="Yes"; 
0.11250    UPS="Yes";SD="1 day";HAS="No";SF="Yes"; 
0.12500    UPS="No";SD="1 day";HAS="No";SF="Yes"; 
0.12500    UPS="Yes";SD="0 day";HAS="Yes";SF="No"; 
0.12500    UPS="No";SD="0 day";HAS="Yes";SF="No"; 
0.12500    UPS="Yes";SD="0 day";HAS="No";SF="No"; 
0.12500    UPS="No";SD="0 day";HAS="No";SF="No"; 
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APPENDIX II 

NETWORK RISK: PROPAGATION EXAMPLE 
COLLECT PHASE (Continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

"AF" "DL" "TD" "SF"  
0.00707    AF="App Corr";TD="0 day";DL="0%";SF="Yes"; 
0.00312    AF="Lockup";TD="0 day";DL="0%";SF="Yes"; 
0.04561    AF="OK";TD="0 day";DL="0%";SF="Yes"; 
0.00612    AF="App Corr";TD="0.5 day";DL="0%";SF="Yes"; 
0.00189    AF="Lockup";TD="0.5 day";DL="0%";SF="Yes"; 
0.00096    AF="OK";TD="0.5 day";DL="0%";SF="Yes"; 
0.00612    AF="App Corr";TD="1 day";DL="0%";SF="Yes"; 
0.00189    AF="Lockup";TD="1 day";DL="0%";SF="Yes"; 
0.00096    AF="OK";TD="1 day";DL="0%";SF="Yes"; 
0.00312    AF="Lockup";TD="0 day";DL="50%";SF="Yes"; 
0.04561    AF="OK";TD="0 day";DL="50%";SF="Yes"; 
0.00189    AF="Lockup";TD="0.5 day";DL="50%";SF="Yes"; 
0.00096    AF="OK";TD="0.5 day";DL="50%";SF="Yes"; 
0.00189    AF="Lockup";TD="1 day";DL="50%";SF="Yes"; 
0.00096    AF="OK";TD="1 day";DL="50%";SF="Yes"; 
0.06367    AF="App Corr";TD="0 day";DL="100%";SF="Yes"; 
0.02498    AF="Lockup";TD="0 day";DL="100%";SF="Yes"; 
0.13681    AF="OK";TD="0 day";DL="100%";SF="Yes"; 
0.05512    AF="App Corr";TD="0.5 day";DL="100%";SF="Yes"; 
0.01516    AF="Lockup";TD="0.5 day";DL="100%";SF="Yes"; 
0.00288    AF="OK";TD="0.5 day";DL="100%";SF="Yes"; 
0.05512    AF="App Corr";TD="1 day";DL="100%";SF="Yes"; 
0.01516    AF="Lockup";TD="1 day";DL="100%";SF="Yes"; 
0.00288    AF="OK";TD="1 day";DL="100%";SF="Yes"; 
0.03537    AF="App Corr";TD="0 day";DL="0%";SF="No"; 
0.02186    AF="Lockup";TD="0 day";DL="0%";SF="No"; 
0.22802    AF="OK";TD="0 day";DL="0%";SF="No"; 
0.03062    AF="App Corr";TD="0.5 day";DL="0%";SF="No"; 
0.01326    AF="Lockup";TD="0.5 day";DL="0%";SF="No"; 
0.00480    AF="OK";TD="0.5 day";DL="0%";SF="No"; 
0.03062    AF="App Corr";TD="1 day";DL="0%";SF="No"; 
0.01326    AF="Lockup";TD="1 day";DL="0%";SF="No"; 
0.00480    AF="OK";TD="1 day";DL="0%";SF="No"; 
0.03537    AF="App Corr";TD="0 day";DL="50%";SF="No"; 
0.00937    AF="Lockup";TD="0 day";DL="50%";SF="No"; 
0.03062    AF="App Corr";TD="0.5 day";DL="50%";SF="No"; 
0.00568    AF="Lockup";TD="0.5 day";DL="50%";SF="No"; 
0.03062    AF="App Corr";TD="1 day";DL="50%";SF="No"; 
0.00568    AF="Lockup";TD="1 day";DL="50%";SF="No"; 

0.02250    V="No";EUM="Yes";AF="OK";FAC="Low";Hack="No"; 
0.04375    V="Yes";EUM="No";AF="OK";FAC="Low";Hack="No"; 
0.03750    V="No";EUM="No";AF="OK";FAC="Low";Hack="No"; 

"V" "Hack" "AF" "FAC" "EUM"  
0.01125    V="Yes";EUM="Yes";AF="App Corr";FAC="High";Hack="Yes";
0.06750    V="No";EUM="Yes";AF="App Corr";FAC="High";Hack="Yes"; 
0.00875    V="Yes";EUM="No";AF="App Corr";FAC="High";Hack="Yes"; 
0.06750    V="No";EUM="No";AF="App Corr";FAC="High";Hack="Yes"; 
0.00125    V="Yes";EUM="Yes";AF="Lockup";FAC="High";Hack="Yes"; 
0.04500    V="No";EUM="Yes";AF="Lockup";FAC="High";Hack="Yes"; 
0.00375    V="Yes";EUM="No";AF="Lockup";FAC="High";Hack="Yes"; 
0.02250    V="No";EUM="No";AF="Lockup";FAC="High";Hack="Yes"; 
0.02250    V="No";EUM="No";AF="OK";FAC="High";Hack="Yes"; 
0.07875    V="Yes";EUM="Yes";AF="App Corr";FAC="Low";Hack="Yes";
0.02250    V="No";EUM="Yes";AF="App Corr";FAC="Low";Hack="Yes"; 
0.06125    V="Yes";EUM="No";AF="App Corr";FAC="Low";Hack="Yes"; 
0.02250    V="No";EUM="No";AF="App Corr";FAC="Low";Hack="Yes"; 
0.00875    V="Yes";EUM="Yes";AF="Lockup";FAC="Low";Hack="Yes"; 
0.01500    V="No";EUM="Yes";AF="Lockup";FAC="Low";Hack="Yes"; 
0.02625    V="Yes";EUM="No";AF="Lockup";FAC="Low";Hack="Yes"; 
0.00750    V="No";EUM="No";AF="Lockup";FAC="Low";Hack="Yes"; 
0.00750    V="No";EUM="No";AF="OK";FAC="Low";Hack="Yes"; 
0.00500    V="Yes";EUM="Yes";AF="App Corr";FAC="High";Hack="No"; 
0.01125    V="No";EUM="Yes";AF="App Corr";FAC="High";Hack="No"; 
0.00625    V="Yes";EUM="No";AF="App Corr";FAC="High";Hack="No"; 
0.00375    V="Yes";EUM="Yes";AF="Lockup";FAC="High";Hack="No"; 
0.03375    V="No";EUM="Yes";AF="Lockup";FAC="High";Hack="No"; 
0.00375    V="Yes";EUM="Yes";AF="OK";FAC="High";Hack="No"; 
0.06750    V="No";EUM="Yes";AF="OK";FAC="High";Hack="No"; 
0.00625    V="Yes";EUM="No";AF="OK";FAC="High";Hack="No"; 
0.11250    V="No";EUM="No";AF="OK";FAC="High";Hack="No"; 
0.03500    V="Yes";EUM="Yes";AF="App Corr";FAC="Low";Hack="No"; 
0.00375    V="No";EUM="Yes";AF="App Corr";FAC="Low";Hack="No"; 
0.04375    V="Yes";EUM="No";AF="App Corr";FAC="Low";Hack="No"; 
0.02625    V="Yes";EUM="Yes";AF="Lockup";FAC="Low";Hack="No"; 
0.01125    V="No";EUM="Yes";AF="Lockup";FAC="Low";Hack="No"; 
0.02625    V="Yes";EUM="Yes";AF="OK";FAC="Low";Hack="No"; 

"Hack" "AF" "TD"  
0.0613 Hack="Yes";TD="0 day";AF="App Corr"; 
0.0803 Hack="No";TD="0 day";AF="App Corr"; 
0.1225 Hack="Yes";TD="0.5 day";AF="App Corr"; 
0.0000 Hack="No";TD="0.5 day";AF="App Corr"; 
0.1225 Hack="Yes";TD="1 day";AF="App Corr"; 
0.0000 Hack="No";TD="1 day";AF="App Corr"; 
0.0190 Hack="Yes";TD="0 day";AF="Lockup"; 
0.0435 Hack="No";TD="0 day";AF="Lockup"; 
0.0379 Hack="Yes";TD="0.5 day";AF="Lockup"; 
0.0000 Hack="No";TD="0.5 day";AF="Lockup"; 
0.0379 Hack="Yes";TD="1 day";AF="Lockup"; 
0.0000 Hack="No";TD="1 day";AF="Lockup"; 
0.0048 Hack="Yes";TD="0 day";AF="OK"; 
0.4513 Hack="No";TD="0 day";AF="OK"; 
0.0096 Hack="Yes";TD="0.5 day";AF="OK"; 
0.0000 Hack="No";TD="0.5 day";AF="OK"; 
0.0096 Hack="Yes";TD="1 day";AF="OK"; 
0 0000 Hack="No";TD="1 day";AF="OK";

"F" "Hack" "FAC"  
0.02500    F="AP";FAC="High";Hack="Yes"; 
0.07500    F="PF";FAC="High";Hack="Yes"; 
0.12500    F="AP";FAC="Low";Hack="Yes"; 
0.20000    F="PF";FAC="Low";Hack="Yes"; 
0.22500    F="AP";FAC="High";Hack="No"; 
0.17500    F="PF";FAC="High";Hack="No"; 
0.12500    F="AP";FAC="Low";Hack="No"; 
0.05000    F="PF";FAC="Low";Hack="No"; 

"NF" "Hack" "TD"  
0.0000 NF="Yes";TD="0 day";Hack="Yes"; 
0.1000 NF="No";TD="0 day";Hack="Yes"; 
0.2000 NF="Yes";TD="0.5 day";Hack="Yes"; 
0.0000 NF="No";TD="0.5 day";Hack="Yes"; 
0.2000 NF="Yes";TD="1 day";Hack="Yes"; 
0.0000 NF="No";TD="1 day";Hack="Yes"; 
0.5000 NF="No";TD="0 day";Hack="No"; 
0.0000 NF="No";TD="0.5 day";Hack="No ; "
0.0000 NF="No";TD="1 day";Hack="No"; 

"HAN" "TD" "NF"  
0.22500    HAN="Yes";TD="0.5 day";NF="Yes"; 
0.02500    HAN="No";TD="0.5 day";NF="Yes"; 
0.02500    HAN="Yes";TD="1 day";NF="Yes"; 
0.22500    HAN="No";TD="1 day";NF="Yes"; 
0.25000    HAN="Yes";TD="0 day";NF="No"; 
0.25000    HAN="No";TD="0 day";NF="No"; 

DL:TD:SD:SF node 
From previous page 
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"PS" "SQ" "SF"  
0.0250 PS="Yes";SQ="H";SF="Yes"; 
0.1125 PS="Yes";SQ="L";SF="Yes"; 
0.1000 PS="Yes";SQ="H";SF="No"; 
0.3750 PS="No";SQ="H";SF="No"; 
0.0125 PS="Yes";SQ="L";SF="No"; 
0.3750 PS="No";SQ="L";SF="No"; 

"UPS" "SD" "SF" "HAS"  
0.0172 UPS="Yes";SD="0 day";HAS="Yes";SF="Yes"; 
0.0172 UPS="Yes";SD="0.5 day";HAS="Yes";SF="Yes"; 
0.0069 UPS="No";SD="0.5 day";HAS="Yes";SF="Yes"; 
0.0275 UPS="No";SD="1 day";HAS="Yes";SF="Yes"; 
0.0034 UPS="Yes";SD="0.5 day";HAS="No";SF="Yes"; 
0.0309 UPS="Yes";SD="1 day";HAS="No";SF="Yes"; 
0.0344 UPS="No";SD="1 day";HAS="No";SF="Yes"; 
0.2156 UPS="Yes";SD="0 day";HAS="Yes";SF="No"; 
0.2156 UPS="No";SD="0 day";HAS="Yes";SF="No"; 
0.2156 UPS="Yes";SD="0 day";HAS="No";SF="No"; 
0.2156 UPS="No";SD="0 day";HAS="No";SF="No"; 

"DL" "TD" "SD" "SF" 
0.00192 DL="0%";TD="0 day";SD="0 day";SF="Yes"; 
0.00168 DL="50%";TD="0 day";SD="0 day";SF="Yes"; 
0.00775 DL="100%";TD="0 day";SD="0 day";SF="Yes"; 
0.00031 DL="0%";TD="0.5 day";SD="0 day";SF="Yes"; 
0.00010 DL="50%";TD="0.5 day";SD="0 day";SF="Yes"; 
0.00252 DL="100%";TD="0.5 day";SD="0 day";SF="Yes"; 
0.00031 DL="0%";TD="1 day";SD="0 day";SF="Yes"; 
0.00010 DL="50%";TD="1 day";SD="0 day";SF="Yes"; 
0.00252 DL="100%";TD="1 day";SD="0 day";SF="Yes"; 
0.00307 DL="0%";TD="0 day";SD="0.5 day";SF="Yes"; 
0.00268 DL="50%";TD="0 day";SD="0.5 day";SF="Yes"; 
0.01240 DL="100%";TD="0 day";SD="0.5 day";SF="Yes"; 
0.00049 DL="0%";TD="0.5 day";SD="0.5 day";SF="Yes"; 
0.00016 DL="50%";TD="0.5 day";SD="0.5 day";SF="Yes"; 
0.00402 DL="100%";TD="0.5 day";SD="0.5 day";SF="Yes"; 
0.00049 DL="0%";TD="1 day";SD="0.5 day";SF="Yes"; 
0.00016 DL="50%";TD="1 day";SD="0.5 day";SF="Yes"; 
0.00402 DL="100%";TD="1 day";SD="0.5 day";SF="Yes"; 
0.01036 DL="0%";TD="0 day";SD="1 day";SF="Yes"; 
0.00905 DL="50%";TD="0 day";SD="1 day";SF="Yes"; 
0.04185 DL="100%";TD="0 day";SD="1 day";SF="Yes"; 
0.00167 DL="0%";TD="0.5 day";SD="1 day";SF="Yes"; 
0.00053 DL="50%";TD="0.5 day";SD="1 day";SF="Yes"; 
0.01358 DL="100%";TD="0.5 day";SD="1 day";SF="Yes"; 
0.00167 DL="0%";TD="1 day";SD="1 day";SF="Yes"; 
0.00053 DL="50%";TD="1 day";SD="1 day";SF="Yes"; 
0.01358 DL="100%";TD="1 day";SD="1 day";SF="Yes"; 
0.49207 DL="0%";TD="0 day";SD="0 day";SF="No"; 
0.07718 DL="50%";TD="0 day";SD="0 day";SF="No"; 
0.00000 DL="100%";TD="0 day";SD="0 day";SF="No"; 
0.08399 DL="0%";TD="0.5 day";SD="0 day";SF="No"; 
0.06263 DL="50%";TD="0.5 day";SD="0 day";SF="No"; 
0.00000 DL="100%";TD="0.5 day";SD="0 day";SF="No"; 
0.08399 DL="0%";TD="1 day";SD="0 day";SF="No"; 
0.06263 DL="50%";TD="1 day";SD="0 day";SF="No"; 
0.00000 DL="100%";TD="1 day";SD="0 day";SF="No"; 
0.00000 DL="0%";TD="0 day";SD="0.5 day";SF="No"; 
0.00000 DL="50%";TD="0 day";SD="0.5 day";SF="No"; 
0.00000 DL="100%";TD="0 day";SD="0.5 day";SF="No"; 
0.00000 DL="0%";TD="0.5 day";SD="0.5 day";SF="No"; 
0.00000 DL="50%";TD="0.5 day";SD="0.5 day";SF="No"; 
0.00000 DL="100%";TD="0.5 day";SD="0.5 day";SF="No"; 
0.00000 DL="0%";TD="1 day";SD="0.5 day";SF="No"; 
0.00000 DL="50%";TD="1 day";SD="0.5 day";SF="No"; 
0.00000 DL="100%";TD="1 day";SD="0.5 day";SF="No"; 
0.00000 DL="0%";TD="0 day";SD="1 day";SF="No"; 
0.00000 DL="50%";TD="0 day";SD="1 day";SF="No"; 
0.00000 DL="100%";TD="0 day";SD="1 day";SF="No"; 
0.00000 DL="0%";TD="0.5 day";SD="1 day";SF="No"; 
0.00000 DL="50%";TD="0.5 day";SD="1 day";SF="No"; 
0.00000 DL="100%";TD="0.5 day";SD="1 day";SF="No"; 
0.00000 DL="0%";TD="1 day";SD="1 day";SF="No"; 
0.00000 DL="50%";TD="1 day";SD="1 day";SF="No"; 
0.00000 DL="100%";TD="1 day";SD="1 day";SF="No"; 

"Cost" "DL" "TD" "SD"  
0.49399 Cost="0.0m";TD="0 day";SD="0 day";DL="0%"; 
0.05901 Cost="0.0m";TD="0.5 day";SD="0 day";DL="0%"; 
0.02529 Cost="0.5m";TD="0.5 day";SD="0 day";DL="0%"; 
0.05058 Cost="0.0m";TD="1 day";SD="0 day";DL="0%"; 
0.03372 Cost="0.5m";TD="1 day";SD="0 day";DL="0%"; 
0.00184 Cost="0.5m";TD="0 day";SD="0.5 day";DL="0%"; 
0.00123 Cost="1.0m";TD="0 day";SD="0.5 day";DL="0%"; 
0.00025 Cost="0.5m";TD="0.5 day";SD="0.5 day";DL="0%"; 
0.00015 Cost="1.0m";TD="0.5 day";SD="0.5 day";DL="0%"; 
0.00010 Cost="1.5m";TD="0.5 day";SD="0.5 day";DL="0%"; 
0.00020 Cost="0.5m";TD="1 day";SD="0.5 day";DL="0%"; 
0.00015 Cost="1.0m";TD="1 day";SD="0.5 day";DL="0%"; 
0.00010 Cost="1.5m";TD="1 day";SD="0.5 day";DL="0%"; 
0.00005 Cost="2.0m";TD="1 day";SD="0.5 day";DL="0%"; 
0.00104 Cost="0.5m";TD="0 day";SD="1 day";DL="0%"; 
0.00207 Cost="1.0m";TD="0 day";SD="1 day";DL="0%"; 
0.00311 Cost="1.5m";TD="0 day";SD="1 day";DL="0%"; 
0.00207 Cost="2.0m";TD="0 day";SD="1 day";DL="0%"; 
0.00207 Cost="2.5m";TD="0 day";SD="1 day";DL="0%"; 
0.00033 Cost="1.0m";TD="0.5 day";SD="1 day";DL="0%"; 
0.00067 Cost="1.5m";TD="0.5 day";SD="1 day";DL="0%"; 
0.00033 Cost="2.0m";TD="0.5 day";SD="1 day";DL="0%"; 
0.00033 Cost="2.5m";TD="0.5 day";SD="1 day";DL="0%"; 
0.00017 Cost="1.0m";TD="1 day";SD="1 day";DL="0%"; 
0.00033 Cost="1.5m";TD="1 day";SD="1 day";DL="0%"; 
0.00067 Cost="2.0m";TD="1 day";SD="1 day";DL="0%"; 
0.00050 Cost="2.5m";TD="1 day";SD="1 day";DL="0%"; 
0.04731 Cost="0.0m";TD="0 day";SD="0 day";DL="50%"; 
0.03154 Cost="0.5m";TD="0 day";SD="0 day";DL="50%"; 
0.01882 Cost="0.0m";TD="0.5 day";SD="0 day";DL="50%"; 
0.01882 Cost="0.5m";TD="0.5 day";SD="0 day";DL="50%"; 
0.01255 Cost="1.0m";TD="0.5 day";SD="0 day";DL="50%"; 
0.01255 Cost="1.5m";TD="0.5 day";SD="0 day";DL="50%"; 
0.01882 Cost="0.0m";TD="1 day";SD="0 day";DL="50%"; 
0.01255 Cost="0.5m";TD="1 day";SD="0 day";DL="50%"; 
0.01255 Cost="1.0m";TD="1 day";SD="0 day";DL="50%"; 
0.01255 Cost="1.5m";TD="1 day";SD="0 day";DL="50%"; 
0.00627 Cost="2.0m";TD="1 day";SD="0 day";DL="50%"; 
0.00134 Cost="0.5m";TD="0 day";SD="0.5 day";DL="50%"; 
0.00107 Cost="1.0m";TD="0 day";SD="0.5 day";DL="50%"; 
0.00027 Cost="1.5m";TD="0 day";SD="0.5 day";DL="50%"; 
0.00005 Cost="0.5m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.00005 Cost="1.0m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.00003 Cost="1.5m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.00003 Cost="2.0m";TD="0.5 day";SD="0.5 day";DL="50%"; 
0.00005 Cost="0.5m";TD="1 day";SD="0.5 day";DL="50%"; 
0.00003 Cost="1.0m";TD="1 day";SD="0.5 day";DL="50%"; 
0.00003 Cost="1.5m";TD="1 day";SD="0.5 day";DL="50%"; 
0.00003 Cost="2.0m";TD="1 day";SD="0.5 day";DL="50%"; 
0.00002 Cost="2.5m";TD="1 day";SD="0.5 day";DL="50%"; 
0.00090 Cost="1.0m";TD="0 day";SD="1 day";DL="50%"; 
0.00271 Cost="1.5m";TD="0 day";SD="1 day";DL="50%"; 
0.00362 Cost="2.0m";TD="0 day";SD="1 day";DL="50%"; 
0.00181 Cost="2.5m";TD="0 day";SD="1 day";DL="50%"; 
0.00005 Cost="1.0m";TD="0.5 day";SD="1 day";DL="50%"; 
0.00011 Cost="1.5m";TD="0.5 day";SD="1 day";DL="50%"; 
0.00026 Cost="2.0m";TD="0.5 day";SD="1 day";DL="50%"; 
0.00011 Cost="2.5m";TD="0.5 day";SD="1 day";DL="50%"; 
0.00005 Cost="1.5m";TD="1 day";SD="1 day";DL="50%"; 
0.00021 Cost="2.0m";TD="1 day";SD="1 day";DL="50%"; 
0.00026 Cost="2.5m";TD="1 day";SD="1 day";DL="50%"; 
0.00310 Cost="0.0m";TD="0 day";SD="0 day";DL="100%"; 
0.00310 Cost="0.5m";TD="0 day";SD="0 day";DL="100%"; 
0.00155 Cost="1.0m";TD="0 day";SD="0 day";DL="100%"; 
0.00050 Cost="0.0m";TD="0.5 day";SD="0 day";DL="100%"; 
0.00050 Cost="0.5m";TD="0.5 day";SD="0 day";DL="100%"; 
0.00075 Cost="1.0m";TD="0.5 day";SD="0 day";DL="100%"; 
0.00050 Cost="1.5m";TD="0.5 day";SD="0 day";DL="100%"; 
0.00025 Cost="2.0m";TD="0.5 day";SD="0 day";DL="100%"; 
0.00025 Cost="0.5m";TD="1 day";SD="0 day";DL="100%"; 
0.00050 Cost="1.0m";TD="1 day";SD="0 day";DL="100%"; 
0.00075 Cost="1.5m";TD="1 day";SD="0 day";DL="100%"; 
0.00050 Cost="2.0m";TD="1 day";SD="0 day";DL="100%"; 
0.00050 Cost="2.5m";TD="1 day";SD="0 day";DL="100%"; 
0.00496 Cost="0.5m";TD="0 day";SD="0.5 day";DL="100%"; 
0.00372 Cost="1.0m";TD="0 day";SD="0.5 day";DL="100%"; 
0.00248 Cost="1.5m";TD="0 day";SD="0.5 day";DL="100%"; 
0.00124 Cost="2.0m";TD="0 day";SD="0.5 day";DL="100%"; 
0.00080 Cost="0.5m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.00080 Cost="1.0m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.00121 Cost="1.5m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.00080 Cost="2.0m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.00040 Cost="2.5m";TD="0.5 day";SD="0.5 day";DL="100%"; 
0.00080 Cost="1.0m";TD="1 day";SD="0.5 day";DL="100%"; 
0.00121 Cost="1.5m";TD="1 day";SD="0.5 day";DL="100%"; 
0.00121 Cost="2.0m";TD="1 day";SD="0.5 day";DL="100%"; 
0.00080 Cost="2.5m";TD="1 day";SD="0.5 day";DL="100%"; 
0.01256 Cost="1.5m";TD="0 day";SD="1 day";DL="100%"; 
0.01674 Cost="2.0m";TD="0 day";SD="1 day";DL="100%"; 
0.01256 Cost="2.5m";TD="0 day";SD="1 day";DL="100%"; 
0.00272 Cost="1.5m";TD="0.5 day";SD="1 day";DL="100%"; 
0.00543 Cost="2.0m";TD="0.5 day";SD="1 day";DL="100%"; 
0.00543 Cost="2.5m";TD="0.5 day";SD="1 day";DL="100%"; 
0.00272 Cost="2.0m";TD="1 day";SD="1 day";DL="100%"; 
0.01087 Cost="2.5m";TD="1 day";SD="1 day";DL="100%"; 
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NETWORK RISK: PROPAGATION EXAMPLE 
DISTRIBUTE PHASE (Continued) 
 
 

"V" "Hack" "AF" "FAC" "EUM"  
0.00090 V="Yes";EUM="Yes";AF="App corr";FAC="High";Hack="Yes";
0.00540 V="No";EUM="Yes";AF="App Corr";FAC="High";Hack="Yes";
0.00630 V="Yes";EUM="No";AF="App Corr";FAC="High";Hack="Yes";
0.04860 V="No";EUM="No";AF="App Corr";FAC="High";Hack="Yes"; 
0.00010 V="Yes";EUM="Yes";AF="Lockup";FAC="High";Hack="Yes"; 
0.00360 V="No";EUM="Yes";AF="Lockup";FAC="High";Hack="Yes"; 
0.00270 V="Yes";EUM="No";AF="Lockup";FAC="High";Hack="Yes"; 
0.01620 V="No";EUM="No";AF="Lockup";FAC="High";Hack="Yes"; 
0.01620 V="No";EUM="No";AF="OK";FAC="High";Hack="Yes"; 
0.12285 V="Yes";EUM="Yes";AF="App Corr";FAC="Low";Hack="Yes";
0.03510 V="No";EUM="Yes";AF="App Corr";FAC="Low";Hack="Yes";
0.06370 V="Yes";EUM="No";AF="App Corr";FAC="Low";Hack="Yes";
0.02340 V="No";EUM="No";AF="App Corr";FAC="Low";Hack="Yes"; 
0.01365 V="Yes";EUM="Yes";AF="Lockup";FAC="Low";Hack="Yes"; 
0.02340 V="No";EUM="Yes";AF="Lockup";FAC="Low";Hack="Yes"; 
0.02730 V="Yes";EUM="No";AF="Lockup";FAC="Low";Hack="Yes"; 
0.00780 V="No";EUM="No";AF="Lockup";FAC="Low";Hack="Yes"; 
0.00780 V="No";EUM="No";AF="OK";FAC="Low";Hack="Yes"; 
0.00160 V="Yes";EUM="Yes";AF="App Corr";FAC="High";Hack="No";

0.01800 V="Yes";EUM="No";AF="App Corr";FAC="High";Hack="No"; 
0.00120 V="Yes";EUM="Yes";AF="Lockup";FAC="High";Hack="No"; 
0.01080 V="No";EUM="Yes";AF="Lockup";FAC="High";Hack="No"; 
0.00120 V="Yes";EUM="Yes";AF="OK";FAC="High";Hack="No"; 
0.02160 V="No";EUM="Yes";AF="OK";FAC="High";Hack="No"; 
0.01800 V="Yes";EUM="No";AF="OK";FAC="High";Hack="No"; 
0.32400 V="No";EUM="No";AF="OK";FAC="High";Hack="No"; 
0.02940 V="Yes";EUM="Yes";AF="App Corr";FAC="Low";Hack="No";
0.00315 V="No";EUM="Yes";AF="App Corr";FAC="Low";Hack="No"; 
0.02450 V="Yes";EUM="No";AF="App Corr";FAC="Low";Hack="No"; 
0.02205 V="Yes";EUM="Yes";AF="Lockup";FAC="Low";Hack="No"; 
0.00945 V="No";EUM="Yes";AF="Lockup";FAC="Low";Hack="No"; 
0.02205 V="Yes";EUM="Yes";AF="OK";FAC="Low";Hack="No"; 
0.01890 V="No";EUM="Yes";AF="OK";FAC="Low";Hack="No"; 
0.02450 V="Yes";EUM="No";AF="OK";FAC="Low";Hack="No"; 
0.02100 V="No";EUM="No";AF="OK";FAC="Low";Hack="No"; 

DL:TD:SD:SF node 
From previous page 

"AF" "DL" "TD" "SF"  
0.00195 AF="App Corr";TD="0 day";DL="0%";SF="Yes"; 
0.00086 AF="Lockup";TD="0 day";DL="0%";SF="Yes"; 
0.01254 AF="OK";TD="0 day";DL="0%";SF="Yes"; 
0.00168 AF="App Corr";TD="0.5 day";DL="0%";SF="Yes"; 
0.00052 AF="Lockup";TD="0.5 day";DL="0%";SF="Yes"; 
0.00026 AF="OK";TD="0.5 day";DL="0%";SF="Yes"; 
0.00168 AF="App Corr";TD="1 day";DL="0%";SF="Yes"; 
0.00052 AF="Lockup";TD="1 day";DL="0%";SF="Yes"; 
0.00026 AF="OK";TD="1 day";DL="0%";SF="Yes"; 
0.00086 AF="Lockup";TD="0 day";DL="50%";SF="Yes"; 
0.01254 AF="OK";TD="0 day";DL="50%";SF="Yes"; 
0.00052 AF="Lockup";TD="0.5 day";DL="50%";SF="Yes"; 
0.00026 AF="OK";TD="0.5 day";DL="50%";SF="Yes"; 
0.00052 AF="Lockup";TD="1 day";DL="50%";SF="Yes"; 
0.00026 AF="OK";TD="1 day";DL="50%";SF="Yes"; 
0.01751 AF="App Corr";TD="0 day";DL="100%";SF="Yes"; 
0.00687 AF="Lockup";TD="0 day";DL="100%";SF="Yes"; 
0.03762 AF="OK";TD="0 day";DL="100%";SF="Yes"; 
0.01516 AF="App Corr";TD="0.5 day";DL="100%";SF="Yes";
0.00417 AF="Lockup";TD="0.5 day";DL="100%";SF="Yes"; 
0.00079 AF="OK";TD="0.5 day";DL="100%";SF="Yes"; 
0.01516 AF="App Corr";TD="1 day";DL="100%";SF="Yes"; 
0.00417 AF="Lockup";TD="1 day";DL="100%";SF="Yes"; 
0.00079 AF="OK";TD="1 day";DL="100%";SF="Yes"; 
0.06102 AF="App Corr";TD="0 day";DL="0%";SF="No"; 
0.03770 AF="Lockup";TD="0 day";DL="0%";SF="No"; 
0.39334 AF="OK";TD="0 day";DL="0%";SF="No"; 
0.05283 AF="App Corr";TD="0.5 day";DL="0%";SF="No"; 
0.02288 AF="Lockup";TD="0.5 day";DL="0%";SF="No"; 
0.00828 AF="OK";TD="0.5 day";DL="0%";SF="No"; 
0.05283 AF="App Corr";TD="1 day";DL="0%";SF="No"; 
0.02288 AF="Lockup";TD="1 day";DL="0%";SF="No"; 
0.00828 AF="OK";TD="1 day";DL="0%";SF="No"; 
0.06102 AF="App Corr";TD="0 day";DL="50%";SF="No"; 
0.01616 AF="Lockup";TD="0 day";DL="50%";SF="No"; 
0.05283 AF="App Corr";TD="0.5 day";DL="50%";SF="No"; 
0.00981 AF="Lockup";TD="0.5 day";DL="50%";SF="No"; 
0.05283 AF="App Corr";TD="1 day";DL="50%";SF="No"; 
0.00981 AF="Lockup";TD="1 day";DL="50%";SF="No";

0.00360 V="No";EUM="Yes";AF="App Corr";FAC="High";Hack="No"; 

"Hack" "AF" "TD"  
0.0613 Hack="Yes";TD="0 day";AF="App Corr"; 
0.0803 Hack="No";TD="0 day";AF="App Corr"; 
0.1225 Hack="Yes";TD="0.5 day";AF="App Corr"; 
0.0000 Hack="No";TD="0.5 day";AF="App Corr"; 
0.1225 Hack="Yes";TD="1 day";AF="App Corr"; 
0.0000 Hack="No";TD="1 day";AF="App Corr"; 
0.0190 Hack="Yes";TD="0 day";AF="Lockup"; 
0.0435 Hack="No";TD="0 day";AF="Lockup"; 
0.0379 Hack="Yes";TD="0.5 day";AF="Lockup"; 
0.0000 Hack="No";TD="0.5 day";AF="Lockup"; 
0.0379 Hack="Yes";TD="1 day";AF="Lockup"; 
0.0000 Hack="No";TD="1 day";AF="Lockup"; 
0.0048 Hack="Yes";TD="0 day";AF="OK"; 
0.4513 Hack="No";TD="0 day";AF="OK"; 
0.0096 Hack="Yes";TD="0.5 day";AF="OK"; 
0.0000 Hack="No";TD="0.5 day";AF="OK"; 
0.0096 Hack="Yes";TD="1 day";AF="OK"; 
0 0000 Hack="No";TD="1 day";AF="OK";

"NF" "Hack" "TD"  
0.0000 NF="Yes";TD="0 day";Hack="Yes"; 
0.0850 NF="No";TD="0 day";Hack="Yes"; 
0.1700 NF="Yes";TD="0.5 day";Hack="Yes"; 
0.0000 NF="No";TD="0.5 day";Hack="Yes"; 
0.1700 NF="Yes";TD="1 day";Hack="Yes"; 
0.0000 NF="No";TD="1 day";Hack="Yes"; 
0.5750 NF="No";TD="0 day";Hack="No"; 
0.0000 NF="No";TD="0.5 day";Hack="No ; "
0.0000 NF="No";TD="1 day";Hack="No"; 

"F" "Hack" "FAC"  
0.0250 F="AP";FAC="High";Hack="Yes"; 
0.0750 F="PF";FAC="High";Hack="Yes"; 
0.1250 F="AP";FAC="Low";Hack="Yes"; 
0.2000 F="PF";FAC="Low";Hack="Yes"; 
0.2250 F="AP";FAC="High";Hack="No"; 
0.1750 F="PF";FAC="High";Hack="No"; 
0.1250 F="AP";FAC="Low";Hack="No"; 
0.0500 F="PF";FAC="Low";Hack="No"; 

"HAN" "TD" "NF"  
0.1530 HAN="Yes";TD="0.5 day";NF="Yes"; 
0.0170 HAN="No";TD="0.5 day";NF="Yes"; 
0.0170 HAN="Yes";TD="1 day";NF="Yes"; 
0.1530 HAN="No";TD="1 day";NF="Yes"; 
0.3300 HAN="Yes";TD="0 day";NF="No"; 
0.3300 HAN="No";TD="0 day";NF="No"; 
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APPENDIX III 

Network Risk: Simulation Results  
 
Sample size 52 
 

 AF   DL   TD   SD 
 Counts Prob   Counts Prob   Counts Prob   Counts Prob 

App Corr 7 13.5%  0% 45 86.5% 0 day 49 94.2%  0 day 50 96.2%
Lock Up 2 3.8%  50% 4 7.7% 0.5 day 3 5.8%  0.5 day 2 3.8%
OK 43 82.7%  100% 3 5.8% 1 day 0 0.0%  1 day 0 0.0%
 52 100.0%   52 100.0%   52 100.0%   52 100.0%
 
 

 EUM    HAN   HAS   Hack 
 Counts Prob   Counts Prob   Counts Prob   Counts Prob 

Yes 4 7.7%  Yes 52 100.0% Yes 52 100.0%  Yes 6 11.5%
No 48 92.3%  No 0 0.0% No 0 0.0%  No 46 88.5%
 52 100.0%   52 100.0%   52 100.0%   52 100.0%
 
 

 NF   PS   SF   UPS 
 Counts Prob   Counts Prob   Counts Prob   Counts Prob 

Yes 3 5.8%  Yes 13 25.0% Yes 5 9.6%  Yes 52 100.0%
No 49 94.2%  No 39 75.0% No 47 90.4%  No 0 0.0%
 52 100.0%   52 100.0%   52 100.0%   52 100.0%
 
 

 V   F   FAC   SQ 
 Counts Prob   Counts Prob   Counts Prob   Counts Prob 

Yes 4 7.7%  AP 52 100.0% High 52 100.0%  High 52 100.0%
No 48 92.3%  PF 0 0.0% Low 0 0.0%  Low 0 0.0%
 52 100.0%   52 100.0%   52 100.0%   52 100.0%
 
 

 Cost 
 Counts Prob 

0.0m 49 94.23%
0.5m 2 3.85%
1.0m 0 0.00%
1.5m 0 0.00%
2.0m 1 1.92%
2.5m 0 0.00%
 52 100.00%
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Sample size 9999 
 

 AF   DL   TD   SD 
 Counts Prob   Counts Prob   Counts Prob   Counts Prob 

App Corr 1027 10.27%  0% 8991 89.92% 0 day 9280 92.81%  0 day 9740 97.41%
Lock Up 473 4.73%  50% 688 6.88% 0.5 day 643 6.43%  0.5 day 259 2.59%
OK 8499 85.00%  100% 320 3.20% 1 day 76 0.76%  1 day 0 0.00%
 9999 100.00%   9999 100.00%   9999 100.00%   9999 100.00%
 
 

 EUM    HAN   HAS   Hack 
 Counts Prob   Counts Prob   Counts Prob   Counts Prob 

Yes 949 9.5%  Yes 9999 100.0% Yes 9999 100.0%  Yes 899 9.0%
No 9050 90.5%  No 0 0.0% No 0 0.0%  No 9100 91.0%
 9999 100.0%   9999 100.0%   9999 100.0%   9999 100.0%
 
 

 NF   PS   SF   UPS 
 Counts Prob   Counts Prob   Counts Prob   Counts Prob 

Yes 719 7.2%  Yes 2403 24.0% Yes 501 5.0%  Yes 9999 100.0%
No 9280 92.8%  No 7596 76.0% No 9498 95.0%  No 0 0.0%
 9999 100.0%   9999 100.0%   9999 100.0%   9999 100.0%
 
 

 V   F   FAC   SQ 
 Counts Prob   Counts Prob   Counts Prob   Counts Prob 

Yes 963 9.6%  AP 9999 100.0% High 9999 100.0%  High 9999 100.0%
No 9036 90.4%  PF 0 0.0% Low 0 0.0%  Low 0 0.0%
 9999 100.0%   9999 100.0%   9999 100.0%   9999 100.0%
 
 

 Cost 
 Counts Prob 

0.0m 9186 91.87%
0.5m 529 5.29%
1.0m 162 1.62%
1.5m 97 0.97%
2.0m 24 0.24%
2.5m 1 0.01%
 9999 100.00%
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APPENDIX IV 

Network Risk: Calculations for Parent-Child Monitor for NF Node 
 
With learning: 

m 
Data 
NF yα  nα  )( yE θ  )( nE θ  - log yθ - log nθ mS  S  mE  mVar  ∑ mE  ∑ mVar

 

Test 
Statistic

0 Prior 4.32 1.08 0.800 0.200 0.223 1.609       
1 Yes 5.32 1.08 0.831 0.169 0.185 1.779 0.223 0.223 0.500 0.307 0.500 0.307 -0.500
2 No 5.32 2.08 0.719 0.281 0.330 1.269 1.779 2.002 0.454 0.357 0.954 0.664 1.286
3 No 5.32 3.08 0.633 0.367 0.457 1.003 1.269 3.272 0.594 0.178 1.548 0.842 1.878
4 Yes 6.32 3.08 0.672 0.328 0.397 1.116 0.457 3.728 0.657 0.069 2.205 0.912 1.595
5 Yes 7.32 3.08 0.704 0.296 0.351 1.217 0.397 4.125 0.633 0.114 2.838 1.026 1.271
6 No 7.32 4.08 0.642 0.358 0.443 1.028 1.217 5.342 0.608 0.156 3.446 1.182 1.745
7 No 7.32 5.08 0.590 0.410 0.527 0.892 1.028 6.370 0.652 0.079 4.098 1.260 2.024
8 No 7.32 6.08 0.546 0.454 0.605 0.790 0.892 7.262 0.677 0.032 4.774 1.293 2.188
9 No 7.32 7.08 0.508 0.492 0.677 0.710 0.790 8.052 0.689 0.009 5.463 1.301 2.270
10 No 7.32 8.08 0.475 0.525 0.744 0.645 0.710 8.762 0.693 0.000 6.156 1.301 2.284
11 Yes 8.32 8.08 0.507 0.493 0.679 0.708 0.744 9.506 0.692 0.002 6.848 1.304 2.328
12 No 8.32 9.08 0.478 0.522 0.738 0.650 0.708 10.214 0.693 0.000 7.541 1.304 2.341
13 No 8.32 10.08 0.452 0.548 0.794 0.602 0.650 10.864 0.692 0.002 8.233 1.306 2.302
14 Yes 9.32 10.08 0.480 0.520 0.733 0.655 0.794 11.658 0.689 0.009 8.922 1.315 2.386
15 Yes 10.32 10.08 0.506 0.494 0.681 0.705 0.733 12.391 0.692 0.002 9.614 1.317 2.420
16 No 10.32 11.08 0.482 0.518 0.729 0.658 0.705 13.096 0.693 0.000 10.308 1.317 2.430

 

Where )|( YesHackYesNFPy ===θ and )|( YesHackNoNFPn ===θ  
 

Table A4.1 Penalties and test statistics for model with learning 
 
 
With learning: 

m 
Data 
NF 

)( yE θ  )( nE θ - log yθ  - log nθ mS  S  mE  mVar  ∑ mE  ∑ mVar  Test 
Statistic 

0 Prior 0.800 0.200 0.223 1.609       
1 Yes 0.800 0.200 0.223 1.609 0.223 0.223 0.500 0.307 0.500 0.307 -    0.500 
2 No 0.800 0.200 0.223 1.609 1.609 1.833 0.500 0.307 1.001 0.615      1.061 
3 No 0.800 0.200 0.223 1.609 1.609 3.442 0.500 0.307 1.501 0.922      2.021 
4 Yes 0.800 0.200 0.223 1.609 0.223 3.665 0.500 0.307 2.002 1.230      1.500 
5 Yes 0.800 0.200 0.223 1.609 0.223 3.888 0.500 0.307 2.502 1.537      1.118 
6 No 0.800 0.200 0.223 1.609 1.609 5.498 0.500 0.307 3.002 1.845      1.837 
7 No 0.800 0.200 0.223 1.609 1.609 7.107 0.500 0.307 3.503 2.152      2.457 
8 No 0.800 0.200 0.223 1.609 1.609 8.717 0.500 0.307 4.003 2.460      3.005 
9 No 0.800 0.200 0.223 1.609 1.609 10.326 0.500 0.307 4.504 2.767      3.500 
10 No 0.800 0.200 0.223 1.609 1.609 11.935 0.500 0.307 5.004 3.075      3.953 
11 Yes 0.800 0.200 0.223 1.609 0.223 12.159 0.500 0.307 5.504 3.382      3.618 
12 No 0.800 0.200 0.223 1.609 1.609 13.768 0.500 0.307 6.005 3.690      4.041 
13 No 0.800 0.200 0.223 1.609 1.609 15.378 0.500 0.307 6.505 3.997      4.438 
14 Yes 0.800 0.200 0.223 1.609 0.223 15.601 0.500 0.307 7.006 4.305      4.143 
15 Yes 0.800 0.200 0.223 1.609 0.223 15.824 0.500 0.307 7.506 4.612      3.873 
16 No 0.800 0.200 0.223 1.609 1.609 17.433 0.500 0.307 8.006 4.920      4.250 

 
Table A4.2 Penalties and test statistics for model without learning 
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Sm Test Statistic 

m 
With learning Without learning

Bayes Factor 
With learning Without learning 

1 0.223 0.223 0.000 -0.500 -0.500 
2 2.002 1.833 -0.170 1.286 1.061 
3 3.272 3.442 0.170 1.878 2.021 
4 3.728 3.665 -0.063 1.595 1.500 
5 4.125 3.888 -0.237 1.271 1.118 
6 5.342 5.498 0.156 1.745 1.837 
7 6.370 7.107 0.737 2.024 2.457 
8 7.262 8.717 1.455 2.188 3.005 
9 8.052 10.326 2.274 2.270 3.500 
10 8.762 11.935 3.173 2.284 3.953 
11 9.506 12.159 2.653 2.328 3.618 
12 10.214 13.768 3.554 2.341 4.041 
13 10.864 15.378 4.513 2.302 4.438 
14 11.658 15.601 3.943 2.386 4.143 
15 12.391 15.824 3.433 2.420 3.873 
16 13.096 17.433 4.337 2.430 4.250 

 
Table A4.3 Comparison of model alternatives 
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