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Abstract

This dissertation attempts to balance the bias and instabilities trade-off observed
in Double Chain Ladder (DCL) (Martinez-Miranda et al. 2012) and its extensions
BDCL (Martínez-Miranda et al. 2013a), IDCL (Agbeko et al. 2014), PDCL
(Hiabu et al. 2016a) using credibility theory. All the extensions of DCL have tried
to stabilise the potentially unstable inflation estimates of DCL by incorporating
prior information from the experts. The resulting inflation estimates, however,
are susceptible to human bias. Hence, we propose to optimise such trade-off by a
weighted average of inflation estimates from DCL and that from those extensions
based on their relative credibility. The intention is to produce better forecasts
of future claim payments for general insurance (GI) companies such that the
prediction error can be reduced.
A pragmatic while untraditional approach developed from validation (Agbeko

et al. 2014) is introduced to weigh the bias and instability during the estimation
process. Empirical studies are conducted on three data sets with various length
and characteristics. As an initial effort, there are limitations in the construction
and estimation of the proposed method that affect its forecasting performance.
However, it is shown that the simple estimation procedures are indeed trying
to replicate the results from a more demanding credibility theory. Importantly,
even under very restricted condition, we are able to produce smaller prediction
error than any of DCL and its previous extensions under most circumstances,
especially for longer tailed GI business. Furthermore, it is suggested that both
DCL and PDCL are always credible while IDCL tends to attract zero credibility.
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1. Introduction

Accurately predicting potential future claims arising from in-force policies and
hence adequately reserving is of utmost importance to a general insurance (GI)
company and its stakeholders. Those potential obligations can account for a
significant proportion of the total outstanding liabilities on the financial state-
ment of a GI company. Hence, their accuracy can have serious implications
on the company’s financial performance and positions, pricing on future prod-
ucts as well as fulfilment of its obligatory duty to its existing policyholders and
regulatory requirements, such as Solvency II (City University London 2014, Fi-
nancial Services Authority 2011). Combining mathematical statistics and tacit
knowledge to help practitioners understand the risks underpinning those po-
tential outstanding liabilities have been highly appreciated by the professionals
and organisations (City University London 2014). The Double Chain Ladder
(DCL) (Martinez-Miranda et al. 2012) represents one such milestone that not
only can modernise the reserving process via formal statistical science, but also
encourages more engaged communications of the familiar Chain Ladder Method
(CLM) (Tarbell 1934) between interested parties. This dissertation is devoted
to improve predictions of future claim payments from DCL and its extensions
(Martínez-Miranda et al. 2013a, Agbeko et al. 2014, Hiabu et al. 2016a) such
that the prediction error, or the cost of point forecasts missing the targeted
payments, is as small as possible.

The simplicity and intuitive appealing of CLM have gained its predomi-
nance amongst GI reserving techniques. The survey conducted by the Institute
and Faculty of Actuaries (IFoA), UK, reveals that all the respondents from either
personal lines or London Market employ CLM (MacDonnell & Labaune 2014).
However, forecasting of future claim payments in CLM is not based on actual
claim risk generating process. Structuring CLM into statistical models (Kremer
1982, Mack 1991, Renshaw & Verrall 1998) have not enhanced the understand-
ing of the real risks behind the company’s balance sheet. Thus, the introduction
of a well formulated risk generating process that is capable of easy implemen-
tation and generalisation is expected to transform the reserving function in GI
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companies into a new era.

Follows the paradigm of Wright (1990) and Mack (1991), Verrall et al.
(2010) introduces a micro model based on compound Poisson processes. A tri-
angle of aggregated incurred claims counts is involved in addition to the usual
triangle of aggregated claim payments. Such extra information is usually read-
ily available within a GI company (Verrall et al. 2010, Martinez-Miranda et al.
2012). This is in contrast to Taylor & McGuire (2004), Norberg (1986, 1993,
1999) where extensive and detailed data is required. The second triangle per-
mits the separation of reporting delay and settlement delay via a delay function.
Not only can the claim tail behaviour be naturally and consistently forecasted,
but also the total reserves can be decomposed into the reported but not settled
(RBNS) and the incurred but not reported (IBNR) components.

The significance of knowing RBNS and IBNR individually lies in the fact
that the company can be more actively engaged in risk management, which may
be much appreciated in an uncertain environment. This is because the sources
and magnitude of risks inherent in RBNS and IBNR are different. The former are
controllable by the company to some extent, while the latter depends on various
other factors unrelated to the company. Whereas the size of RBNS may account
for roughly 80% of the total reserves, it contributes only approximately 20% of
its total fluctuations (as measured by coefficient of variation). Nonetheless, in
Verrall et al. (2010), estimation requires complex computation and prediction
is performed net of claim inflation. Hence, an inquest into a more flexible and
general model is desired.

Built on Verrall et al. (2010), it is in Martinez-Miranda et al. (2012) that
the foundation of this dissertation, DCL, emerges. Inspired by Taylor (1977), the
benefit of adding claim counts is further utilised to represent the claim severities
inflation in the model. The Double comes from the fact that it applies the clas-
sical CLM twice. A simple regression enables the complete replication of CLM
on paid data under certain conditions. Similar to CLM, this ease of applica-
tion allows fast and straightforward automation that is much appreciated in GI
(Clarke & Harland 1974). More than CLM, each and every parameter in DCL
has a real-world interpretation that can be communicated to non-actuaries.

DCL hence becomes the more understandable version of CLM that can be
explained in terms of how each individual claim aggregates to the total payments
made. This enhanced communication can be expected to strengthen the con-
nection between actuaries and other professionals. However, by inputting the
potentially volatile paid data, DCL may also suffer from the instability issue of
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CLM such that predictions from DCL can be far from reality. This is because
the majority of claims that require prediction are those originated in more recent
years where payment data is scarce and prediction is highly sensitive to outliers.
It is identified in Martínez-Miranda et al. (2013a) that the claim inflation esti-
mates are responsible for such potentially unreliable predictions that artificially
impair the company’s ability to meet future financial obligations. By separately
representing claim inflation in the model, DCL facilitates stabilisation of results
to be made by its extensions. Current extensions of DCL involve a third ag-
gregated triangle of incurred data, which is a mixture of actual paid data and
expert’s prior RBNS case estimates and routinely prepared by insurance com-
panies (MacDonnell & Labaune 2014).

Motivated by the “second-best” (MacDonnell & Labaune 2014), namely
the Bornhuetter & Ferguson (1972) CLM , Martínez-Miranda et al. (2013a)
suggests the Bournuetter-Ferguson DCL (BDCL) to reduce the risk of an exag-
gerated outstanding liabilities on GI company’s balance sheet. It is recognised
that by replacing the inflation parameters from DCL by that implied from the
incurred data, forecasting of future payments can be more realistically and sta-
bly achieved. Similar to BF CLM, the robustness of BDCL is attested by its
ability to accommodate a variety of complex and challenging business situations
as well as statistical model structures. Forecasting outstanding liabilities using
BDCL is as pragmatic as, while less subjective than, BF CLM.

Practitioners have been used to applying CLM on incurred data to over-
come the instability issues caused by paid data. Although DCL can replicate the
CLM exactly, predictions by BDCL are different from that by incurred CLM.
This gap of link between CLM and DCL is filled by the Incurred DCL (IDCL)
in Agbeko et al. (2014). IDCL replicates the reserves estimates from incurred
CLM by appropriately scaling the inflation estimates using incurred data. This
enables practitioners to not only compare DCL and CLM using both paid and
incurred data but also maintain the aforementioned benefits of DCL construct.

Nevertheless, the advantage of separating IBNR and RBNS in DCL is still
yet to be fully exploited. While RBNS from case department may have based on
hard facts unknown to actuaries, the IBNR implied from their RBNS estimates
may not be superior than DCL. Thus, the RBNS-preserving DCL (PDCL) is
constructed in Hiabu et al. (2016a) to preserve the prior RBNS case estimates
in DCL framework precisely while keeping the predictive power of a statistical
model.

There has been a classical trade-off between bias and instabilities (Breiman
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1996) while trying to sophisticate and develop DCL. Whereas those extensions
incorporating prior knowledge may be more stable than DCL, they are vulnerable
to human bias (Verrall et al. 2010, Martinez-Miranda et al. 2012). Bias, on the
other hand, is expected to make predictions away from “true” future payments.
Such unpleasant subjectivity is minimal in DCL where “real” data is used. Both
bias and instabilities may cause the forecasts of claim costs to deviate from what
will actually be paid. It is the sum of these two that will eventually determine
the quality of projected outstanding liabilities from DCL and its extensions.

We propose to optimise such trade-off so that, for each unit of instabilities
discarded by DCL, the smallest amount of bias is introduced, yielding a lowest
possible sum of these two. Inspired by the credibility theory (Bühlmann 1967),
we cast our model as a weighted average of DCL and above mentioned extensions.
The proportion attached to DCL is denoted as Z (Whitney 1918), and known
as the credibility factor. It answers the question that to what extent DCL can
be relied upon relative to its extensions. The name ZDCL emphasises the fact
that the credibility factor, Z, is attached to DCL, the low-biased model.

The gain of efficiency in reducing prediction error using ZDCL may be
analogue to that achieved by pooling risks in insurance. Each of bias and insta-
bility represents a potential risk that causes inaccurate predictions of claims and
increases costs to the companies. By diversifying away them amongst different
versions of DCL, the outstanding liabilities can be determined more accurately
as well as more precisely than any one of them alone. As an initial attempt
to demonstrating such benefit, this dissertation focuses on the credibility esti-
mator for the inflation parameter, which has been proven to be crucial to the
correctness of forecasted payments while hardest to estimate.

This initiative further strengthens the connection between DCL and CLM
since credibility theory has long been appreciated by actuaries endorsing CLM.
An eminent pioneer is Bühlmann (1967). While unaware by the authors, BF
CLM and its variate cape-cod CLM, aka the Stanard-Bühlmann CLM (Feld-
blum 2003), are also within the realm of credible reserving. This credibility
interpretation of BF CLM is explicitly developed in Neuhaus (1992). A slightly
different approach is adopted in Benktander (1976) that is further developed in
Mack (2000) and subsequently by Hürlimann (2009). The compatibility between
the credibility CLM and the classical CLM is formalised in Gisler & Wüthrich
(2008). This enhances the assertion that the credibility theory is powerful and
elegant that can be applied under very general conditions (Bühlmann & Gisler
2005). In other words, we can always find a credibility version for almost each
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and every mathematical structure. This generalisability stimulates our confi-
dence in trying to estimate the credibility factor in an unorthodox approach.

Instead of relying on complex statistical structures, we suggest a data-
driven estimation process. It takes advantage of the dynamics of the pragmatic,
versatile and forward-looking validation via back-testing (Martínez-Miranda et al.
2013a, Agbeko et al. 2014). Similar to the origin of validation (Larson 1931),
back-testing is envisaged to test the predictive power of a model. Its prac-
ticality and effectiveness have been attested by its popularities across various
disciplines, such as by practitioners in financial econometrics (Burman & Nolan
1992, Bergmeir & Beìtez 2012, McQuarrie & Tsai 1998, Tashman 2000), and
importantly by GI professionals, such as the General Insurance Research Or-
ganising (GIRO) Committee (Gibson et al. 2007, Bruce et al. 2008), and GI
academics, like Meyers & Shi (2011) and Leong et al. (2012).

The objective of this dissertation is to reduce errors in predicting future
claims and hence the cost for GI companies using a DCL framework. To accom-
plish this task, we will try to balance the trade-off between bias and instabilities.
This process starts with acknowledging the intuitions behind, and limitations of,
the classical CLM in Chapter 2. Chapter 3, devoted to DCL, will be more
elaborated since it is the basis of our entire work. The real-world interpreta-
tion and the first moment assumptions will be given in Section 3.1, while the
details of estimating those parameters and predicting future claim payments is
contained in Section 3.2 and 3.3, respectively. Chapter 4 spends each of the first
three sections describing the three extensions, namely BDCL, IDCL and PDCL,
respectively. The last one, Section 4.4, presents the validation delineated in Ag-
beko et al. (2014). ZDCL is constructed in Section 5.1 with the general steps
to estimate the parameters. Section 5.3 includes a discussion of how we select
and form the statistics that strives to balance bias and instabilities. Based on
Section 4.4 and this measures, Section 5.2 suggests some procedures to decide
the credibility attached to DCL and other extensions, respectively. Empirical
studies is conducted in Chapter 6 to examines ZDCL compared to the other
aforementioned methods. Chapter 7 attempts some limitations and suggests
some possible further studies before reaching a conclusion. We finally remark
some neglected details from past papers in Chapter 8.
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2. Classical Chain Ladder Method:
CLM

The classical CLM has been known in actuarial profession for many decades
(Tarbell 1934) and is a very general construct that have many extensions. This
dissertation will refer CLM to the classical version. For a comprehensive survey,
please refer to England & Verrall (2002). CLM assumes that a run-off triangle,
Cm, is available. Cm accommodates the aggregated incremental data, Cij , in
the upper-right triangle of a m×m matrix with index set

I = {(i, j) : i ∈ {1, . . . ,m}, j ∈ {0, . . . ,m− 1}, i+ j ∈ {1, . . . ,m}}

wherem is the total number of years available, i represents the year of origin and
j records the delay in years. CLM is flexible in the sense that year of origin can be
either underwriting year or accident year; Cij can be actual paid data, incurred
data or claim counts; more frequent intervals than year are readily applicable; it
can be applied to data sets from many business lines in general insurance, and so
on. CLM is intuitive and assumes that past claim experience can be reasonably
expected to repeat under normal circumstances. In particular, the way in which
claim arises and being settled and how claim severities change from one year to
the next is relatively stable over time. Thus, CLM is conceived as a simple and
straightforward method where the cumulative triangle of Cm, Dm, is expected
to have proportionate columns (Taylor 1977), where Dm consists of

Dij =
m−i∑
j=0

Cij

Those proportion is known as the development factor, λ, with

λ = (λ1, . . . , λm−1)

14



where λj represents how the cumulative data Dij is expected to “develop” from
its previous value Di,j−1 in the same row i. Thus, we have

E [Dij |Di,j−1] = λjDi,j−1

In the classical CLM, λ is estimated as

λ̂j =
∑m−j
i=1 Dij∑m−j

i=1 Di,j−1
=
∑m−j
i=1

∑j
k=0Cik∑m−j

i=1
∑j−1
k=0Ci,k

j ∈ 1, . . . ,m− 1

Finally, the future cumulative claims is estimated as for i > 1 as

D̂ij =

 Dij λ̂j for j = m− i+ 1

D̂ij λ̂j for j ∈ {m− i+ 2, . . . ,m− 1}

which yields

Ĉij =

 D̂ij −Di,j−1 for j = m− i+ 1

D̂ij − D̂i,j−1 for j ∈ {m− i+ 2, . . . ,m− 1}

Summing over the row and diagonal of Cm gives the reserve estimates by year of
origin and calendar year, respectively. And the total reserves are then the sum
of all the estimated incremental claims.

Evidently, the development factor, λ, encompasses all the information that
will be used to predict the potential outstanding liabilities. However, this is not
how actual claim payments “develop”. Thus, risks inherited in potential future
payments are masked. The real-life risks in claim payments come from such
factors, among others, as delay in reporting, delay in payments as well as the
changes in claim severities. Understanding the CLM and hence the actual risk
underpinning those forecasts is one of the task that can be accomplished by
DCL.
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3. Double Chain Ladder: DCL

3.1. Notations and assumptions

3.1.1. Aggregate and micro-level variables

DCL assumes two aggregated triangles available over the index set I, which are
observations of the following random variables (r.v.):

• ℵm = {Nij : (i, j) ∈ I}: the r.v. for the triangle consisting of aggregated
incurred claim counts, Nij

• Nij : the r.v. representing aggregated incremental number of claims for
year of origin i known with j years of delays

• ∆m = {Xij : (i, j) ∈ I}: the r.v. for the triangle accommodating aggre-
gated paid claim amounts, Xij

• Xij : the r.v. denoting total amount paid with j years of delay in respect
of claims incurred in year of origin i

In addition, there are also micro-level variables that describe how the risks are
generated. They are usually unobserved or latent in practice:

• Npaid
ij : the r.v. representing the total number of paid claims for year of

origin i and development year j, i.e.

Npaid
ij = Npaid

ij0 +Npaid
i,j−1,1 + . . .+Npaid

i,0,j =
j∑
l=0

Npaid
ijl

• Npaid
ijl : the r.v. denoting the number of claims paid from the incurred claim

counts Nij with l years of delays, l ∈ {0, . . . ,m− 1}

• Xijl: the r.v. for total paid claim amounts for the paid claims Npaid
ijl , i.e.:

Xijl =
Npaid
ijl∑
k=0

X
(k)
ijl
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• X
(k)
ijl : the r.v. for individual paid claim amount coming from the paid

claims Npaid
ijl , i.e. k ∈ {1, . . . , Npaid

ijl }

3.1.2. First moment parameters and assumptions

DCL is built on this set of parameters:

η ={α, β, α̃, β̃, π, γ, µ}

={(α1, . . . , αm), (β0, . . . , βm−1), (α̃1, . . . , α̃m), (β̃0, . . . , β̃m−1),

(π0, . . . , πm−1), (γ1, . . . , γm), µ}

These parameters have real-world interpretations that are intrinsic to the claim
development process. Specifically, αi : i ∈ {1, . . . ,m} can be considered as
the parameter for the ultimate claim in respect of year of origin i while βj :
j ∈ {0, . . . ,m − 1} is the proportion of αi emerges in reporting year j. Whilst
β̃j : j ∈ {0, . . . ,m− 1} has very similar meanings as βj , α̃i : i ∈ {1, . . . ,m} may
be interpreted as the cumulative claim amounts by the end of delay year m− 1
in respect of claims incurred in year of origin i. In other words, we open to the
possibility that tail may exist. We introduce πl : l ∈ {0, . . . ,m− 1} as the delay
parameter to describe the payment pattern of incurred claims Nij . Furthermore,
an inflation parameter γi : i ∈ {1, . . . ,m} is incorporated to represent severity
inflation in year of origin i. This explicit parametrisation allows the addition of
prior knowledge regarding claim severity inflation from the industry. Finally, µ
is the common severity mean factor for all individual claims.

With these parameters, we follow Martinez-Miranda et al. (2012) and
present the three first moment assumptions critical to the model:

M1. The mean of Nij is in multiplicative parametrisation as E[Nij ] = αiβj with
identification ∑m−1

j=0 βj = 1 (Kremer 1982).

M2. The mean of Npaid
ijl conditional on the number of incurred claims is

E[Npaid
ijl |ℵm] = Nijπl, (i, j) ∈ I, l ∈ {0, . . . ,m− 1}.

M3. The conditional mean of the individual payment size is
E[X(k)

ijl |N
paid
ijl ,ℵm] = µγi with the identification γ1 = 1.

Kremer’s identification scheme (Kremer 1982) in M1 implies that the ℵm has
run off, i.e. the total number of incurred claim in year of origin 1 is completely
known. This identification is either explicitly assumed in Hiabu et al. (2016a)
or implied in Martinez-Miranda et al. (2012). However, it is named as Mack’s
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identification there. The formulation in M2 assumes that payment delay is
independent of the year of origin i and reporting delay j. Similarly, M3 states
that the conditional mean of X(k)

ijl depends only on the year of origin i but not
on the reporting delay j and the delay in payment l.

To reduce complications while concentrate on the essential feature of DCL,
we have restricted ourselves to a smaller model than in Martinez-Miranda et al.
(2012) and Hiabu et al. (2016a), and collected the identification γ1 = 1 in the
M3. This is because M1-M3 are what we can actually work on in the absence
of external knowledge. They have been eventually assumed in all the developing
papers of DCL. The more general assumptions can be found in Appendix A.1.
Most importantly, lessons learnt from using this smaller model can be easily
generalised when more information is available, for example, as suggested in
Verrall et al. (2010) or Miranda et al. (2015).

Martinez-Miranda et al. (2012) shows that, by M2 and M3, the conditional
mean of Xij is

E[Xij |ℵm] = γiµ
j∑
l=0

Ni,j−lπl (3.1)

Adding M1 yields the unconditional mean of Xij :

E[Xij ] = αiγiµ
j∑
l=0

βj−lπl = α̃iβ̃j (3.2)

where
αiγiµ = α̃i (3.3)
j∑
l=0

βj−lπl = β̃j (3.4)

It is worth noting that, without prior knowledge, β̃j have been (Martinez-
Miranda et al. 2012, Verrall et al. 2010, Martinez-Miranda et al. 2011, Martínez-
Miranda et al. 2013a, Hiabu et al. 2016a) and is assumed here to follow Kremer’s
identification, i.e. ∑m−1

j=0 β̃j = 1. Again, similar to above discussion, this simpli-
fication is hardly a constraint and can be easily relaxed later.
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3.2. First-moment parameter estimation

The first application of CLM is to the number of incurred claims. Under M1,
Kremer (1982) shows that

βj =


1∏m−1

l=1 λl
for j = 0

λj−1∏m−1
l=j λl

for j ∈ {1, . . . ,m− 1}

and

αi =
m−i∑
j=0

Nij

m−1∏
j=m−i+1

λj ∀i ∈ {1, . . . ,m}

In a similar fashion, {α̃, β̃} can be obtained via the second application of CLM
on the paid triangle. Since Equation (3.3) can be solved independently from
Equation (3.4), π is then the solution to this system of equations:

β̃0
...
...

β̃m−1

 =


β0 0 · · · 0

β1 β0
. . . 0

... . . . . . . 0
βm−1 · · · β1 β0




π0
...
...

πm−1

 (3.5)

The identification γ1 = 1 in M3 yields µ = α̃1
α1
.Rearranging Equation (3.3) yields:

γi = α̃i
µαi

for i ∈ {2, . . . ,m− 1}

These are the relationships between parameters, their estimates will be distin-
guished from the estimators by placing a ̂ on top. When predicting reserves,
only a subset of estimated η, namely θ̂ =

(
α̂, β̂, γ̂, µ̂, π̂

)
, is sufficient.

3.3. Point forecast of RBNS and IBNR

The index over which the reserves are estimated are:

J1 = {(i, j) : i ∈ {2, . . . ,m}, j ∈ {0, . . . ,m− 1}, i+ j ∈ {m+ 1, . . . , 2m− 1}}

J2 = {(i, j) : i ∈ {1, . . . ,m}, j ∈ {0, . . . , 2m− 1}, i+ j ∈ {m+ 1, . . . , 2m− 1}}

J3 = {(i, j) : i ∈ {2, . . . ,m}, j ∈ {0, . . . , 2m− 1}, i+ j ∈ {2m, . . . , 3m− 2}}
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One of the advantages of the DCL framework over CLM is its ability to estimate
reserves over J2 ∪ J3.

RBNS is defined over the index J1 ∪ J2 (Martinez-Miranda et al. 2011).
There are two versions of the best estimate of the RBNS component in cell (i, j),
X̂RBNS
ij , which differs in whether the actual or estimated number of incurred

claims is used (Martinez-Miranda et al. 2012). By Equation (3.1), the first

version is X̂RBNS(1)
ij = E

[
XRBNS
ij |ℵm

]∧
and can be obtained by

X̂
RBNS(1)
ij =

j∑
l=i−m+j

Ni,j−lπ̂lµ̂γ̂i (3.6)

Alternatively, (3.2) gives the second version X̂RBNS(2)
ij = E

[
XRBNS
ij

]∧
and

X̂
RBNS(2)
ij =

j∑
l=i−m+j

N̂i,j−lπ̂lµ̂γ̂i =
j∑

l=i−m+j
α̂iβ̂j π̂lµ̂γ̂i (3.7)

Similarly, IBNR spins over the index set J1 ∪ J̃2 ∪ J3, where J̃2 is all index
contained in J2 except for (i, j) : i = 1, j ∈ {m, . . . , 2m − 1}. Previously,
this small detail have been ignored by authors such as Martinez-Miranda et al.
(2012). IBNR always uses Equation (3.2) to arrive at its best estimate X̂IBNR

ij =

E
[
XIBNR
ij

]∧
:

X̂IBNR
ij =

i−m+j−1∑
l=0

α̂iβ̂j π̂lµ̂γ̂i (3.8)

Regardless whether Equation (3.6) or (3.7) is used, the reserve estimate in cell
(i, j), X̂ij , can be obtained by:

X̂ij =


X̂RBNS
ij for (i, j) ∈ {i = 1, j ∈ {m, . . . , 2m− 1}}

X̂RBNS
ij + X̂IBNR

ij for (i, j) ∈ J1 ∪ J̃2

X̂IBNR
ij for (i, j) ∈ J3

(3.9)

It is proved in Martinez-Miranda et al. (2012) that

X̂CLM
ij = X̂

RBNS(2)
ij + X̂IBNR

ij for (i, j) ∈ J1 (3.10)

where X̂CLM
ij is the reserve estimates given by CLM. And when only J1 is consid-

ered, which is the only region where classical CLM is able to predict reserve esti-
mates, the reserves from CLM equal that from DCL in each cell. In other words,
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when the expected number of incurred claims, N̂ij , and raw delay parameter, π̂,
are used, the reserve estimates from DCL over the index set I are exactly the
same as the reserve estimates from classical CLM. However, Martinez-Miranda
et al. (2012) suggests the use of actual observed Nij to estimate RBNS and hence
Equation (3.6) may be preferred.

Outstanding RBNS by year of origins are found by summing over the rows
of RBNS estimates within J1∪J2, while summing along the diagonal of J1∪J2

gives the RBNS cash flow estimates by calendar year. Similar summing can be
done for IBNR, except that it is over the index set J1 ∪ J̃2 ∪ J3. The final
reserve estimate in cell (i, j) is the sum of both RBNS and IBNR reserves over
the relevant index set.
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4. Extensions and validation of DCL

Current published extensions to the classical DCL all assume an additional tri-
angle of the aggregated incurred claim amounts available. While this triangle
also sits in the same index as ℵm and ∆m, it is not real-data in the sense that
it contains RBNS estimates from expert’s knowledge. To be consistent, we will
regard this set of data as observations of the following r.v.

• Im = {Iij : (i, j) ∈ I}: the r.v. for the triangle of aggregated incurred
claim amounts, Iij

• Iij : the r.v. follows this relationship

Iij = Xij +XRBNS.case.estimates
ij

where XRBNS.case.estimates
ij is the r.v. for RBNS coming from experts who

are familiar with characteristics of the claims

This chapter only introduces the first three published extensions while the more
developed Haibu et al. (2016b) will be left to interested readers.

4.1. Bornhuetter-Ferguson Double Chain Ladder: BDCL

DCL shares the same limitation of CLM that it is very sensitive to outliers,
especially for the more recent years where data is sparse (Martínez-Miranda
et al. 2013a). However, the more recent years are also where the majority of
reserves is intended for. Thus, BDCL shares the approach of the Bornhuetter &
Ferguson (1972) to CLM by incorporating prior information. However, BDCL
is more systematic and less objective than BF CLM. Specifically, the inflation
parameter in DCL is replaced with more stable one estimated from the incurred
data.

It is shown in Martínez-Miranda et al. (2013a) that under M1-M3 in
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Section 3.1.2,

E [Iij ] =
m−1∑
l=0

E

N
paid
ijl∑
k=0

X
(k)
ijl

 = αiµγiβj = α̃iβj (4.1)

where α̃i is cumulative paid claim for year of origin i and βj is the proportion
of number of incurred claims reported in year j. Hence, if the incurred data
represents the “true” underlying payment process, the same inflation parameter
can be extracted from either paid data or incurred data.

The estimated parameter in BDCL, θ̂BDCL = {α̂, β̂, γ̂BDCL, µ̂, π̂} changes
from θ̂ in Section 3.2 only by the estimated inflation γ̂BDCL. The steps as detailed
in Martínez-Miranda et al. (2013a) are

Step 1 Estimate θ as in Section 3.2 using ∆m and ℵm, yielding θ̂ = {α̂, β̂, γ̂, µ̂, π̂}

Step 2 Repeat Step 1 with ∆m replaced by Im to obtain the estimate γ̂BDCL

Step 3 Replace γ̂ by γ̂BDCL in θ̂ to arrive at θ̂BDCL

It may be worth informing future users of the DCL package provided by Martinez-
Miranda et al. (2013b) that the BDCL estimation processes there do not follow
the steps enlisted in Martínez-Miranda et al. (2013a). Such effect on inflation
estimates will be negligible if the first row of Im and ∆m are almost the same,
while noticeable if that is not the case. The resulting γ̂BDCL may not confirm to
M3 and contradict to Equation 4.1. To be consistent, in this study, we strictly
follow the steps in Martínez-Miranda et al. (2013a).

4.2. Incurred Double Chain Ladder: IDCL

As suggested in Section 3.3, under certain conditions, DCL is able to replicate
CLM exactly. However, practitioners may sometimes prefer applying CLM on
incurred data due to its potentially closer resemblance to reality. Thus, IDCL is
created by Agbeko et al. (2014) mainly for the purpose of linking DCL to CLM
by replicating the results from incurred CLM. By virtue of the construct of DCL,
practitioners not only can relate the incurred CLM to IDCL, but also receive the
added benefit of separating RBNS and IBNR and natural tail estimates. IDCL
starts with exactly the same Step 1 and ends with almost the same Step 3 as
in Section 4.1. From Step 2, the estimation becomes

Step 2 Estimate the IDCL inflation parameter by rescaling the inflation esti-
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mates from DCL, γ̂, with the ratio of two reserve estimates as

γ̂IDCL = R̂∗i
R̂i
γ̂ (4.2)

where R̂∗i is estimated reserves from CLM using incurred data in respect of
year of origin i and R̂i is the reserve estimates from DCL as in Section 3.3
for the same year.

Step 3 Replace γ̂ by γ̂IDCL in θ̂ to arrive at θ̂IDCL

For γ̂IDCL
i to be meaningful, it will take the value of γ̂i if the incurred CLM

suggests that the claims for year i has been fully run-off, i.e. R̂∗i = 0.

4.3. RBNS-Preserve Double Chain Ladder:RBNS-PDCL
or PDCL

If we believe that case department in the company has done a reasonably good
job at estimating the RBNS case reserves based on facts and prior knowledges,
then it may be appropriate that we can fully utilise them. On the other hand,
the IBNR implied from their RBNS estimates may entail too much uncertainty
to be considered better than that estimated from DCL framework. Thus, the
RBNS-preserve DCL intends to fully take advantage of the experts knowledge
while keeping the predictive power of a mathematical model. The full steps
leading to the set of parameter θ̂PDCL are as follows (Hiabu et al. 2016a, Haibu
et al. 2016b):

Step 1 Find the RBNS case estimate for each year of origin by

XRBNS.case.estimate
i =

m−i∑
j=0

Iij −
m−i∑
j=0

Xij (4.3)

Step 2 Perform a DCL estimation and predict the cash flows of RBNS
X̂RBNS.DCL
ij (i, j) ∈ J1 ∪ J2 and IBNR X̂IBNR.DCL

ij (i, j) ∈ J1 ∪ J̃2 ∪ J3

Step 3 The RBNS implied from incurred data is preserved by construct the
component

X̂RBNS.pres
ij = XRBNS.case.estimate

i∑
j∈J1(i)∪J2(i)X

RBNS.DCL
ij

X̂RBNS.DCL
ij (4.4)
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Step 4 Construct the preliminary square (Sij) by

Sij =
{

Xij , if (i, j) ∈ I
X̂RBNS.pres
ij + X̂IBNR.DCL

ij , if (i, j) ∈ J1
(4.5)

Step 5 Estimate the pair of PDCL parameters {α̃PDCL, β̃PDCL} by

̂̃αPDCL
i = ∑m−1

j=0 Sij ,
̂̃
β
PDCL
i =

∑m

i=1 Sij∑
(i,j)∈I∪J1

Sij
(4.6)

where we used the shorthand α̃PDCL = (α̃PDCL
1 , . . . , α̃PDCL

m ) and
β̃PDCL = (β̃PDCL

1 , . . . , β̃PDCL
m )

Step 6 Estimate other parameters via the procedure detailed in Section 3.2 and
obtain the set {̂̃αPDCL

,
̂̃
β
PDCL

, π̂PDCL, γ̂PDCL∗ , µ̂PDCL}

Step 7 The properly defined PDCL inflation parameter γPDCL is estimated by

γ̂PDCL
i = XRBNS.case.estimate

i∑
j∈J1(i)∪J2(i)X

RBNS.PDCL∗
ij

γ̂PDCL∗
i (4.7)

where X̂RBNS.PDCL∗
ij is estimated using this set

θ̂PDCL∗ = {α̂PDCL, β̂PDCL, π̂PDCL, γ̂PDCL∗ , µ̂PDCL}

Step 8 Replace γ̂PDCL∗ in θ̂PDCL∗ by π̂PDCL and obtain
θ̂PDCL = {α̂PDCL, β̂PDCL, π̂PDCL, γ̂PDCL, µ̂PDCL}

In Step 2 of the estimation process, the RBNS and IBNR estimates can be
estimated via any variate of DCL (Hiabu et al. 2016a, Haibu et al. 2016b), and
different methods usually yield different PDCL parameters. It is deduced that
the more developed Haibu et al. (2016b) has employed DCL. To be consistent
with the research direction, this dissertation will use the steps described in Haibu
et al. (2016b) rather than that in Hiabu et al. (2016a). In addition, it is observed
that, in both Hiabu et al. (2016a) and Haibu et al. (2016b), the counterpart of
Equation (4.7) is missing the γ̂PDCL∗

i in the formula.

4.4. Validation via back-testing

Validation provide some guidance as to which model predicts the future payments
that are more closer to reality. Since it is always that payments are predicted,
DCL and its extensions can be compared on the same paid-data scale. This is
contrary to CLM, where incurred CLM and paid CLM are incomparable.
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The validation process assumes that the last few c years are unknown
(i.e. is cut-off from the available sample) while exactly the same estimation and
prediction is carried out on this smaller sample consists of m−c years of history.
Then, the predictions over the last c years are compared against the observed
values to estimate the prediction errors. In Agbeko et al. (2014), comparisons are
made based on three error measures that considers the error within the cell, the
error across the calendar year and the total error for all the cells, respectively. A
full account of the procedure can be found in Agbeko et al. (2014). Hiabu et al.
(2016a) adds another measure similar to the cell error suggested by Agbeko et al.
(2014). All the error measures in Hiabu et al. (2016a) and Agbeko et al. (2014)
have been scaled down by appropriately transformed observed values to form a
percentage measure.

For those errors, let us denote X̂ij , Xij as the expected and actual paid
claims over the omitted cells region Bc, respectively, where c is the cut off year.

• Cell error proposed by Agbeko et al. (2014) and is called point error in
Martinez-Miranda et al. (2013b)

Point error =

√√√√∑∀(i,j)∈Bc(Xij − X̂ij)2∑
∀(i,j)∈Bc X

2
ij

(4.8)

• Calendar error suggested by Agbeko et al. (2014)

Calendar error =

√√√√√∑c
k=1

(∑
i+j=m−k(Xij − X̂ij)

)2

∑c
k=1(∑i+j=m−kXij)2 (4.9)

• Total error suggested by Agbeko et al. (2014)

Total error =
|
∑
∀(i,j)∈Bc Xij − X̂ij |∑
∀(i,j)∈Bc Xij

(4.10)

• Relative error defined in Hiabu et al. (2016a)

Relative error =
∑

(i,j)∈Bc |Xij − X̂ij |∑
(i,j)∈Bc |Xij |

(4.11)
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5. Z-balanced Double Chain Ladder:
ZDCL

5.1. Credible construction of ZDCL

It is verified in Martínez-Miranda et al. (2013a) that, amongst all the parameters
that will be used to forecast the future, inflation parameter for more recent years
are the hardest to estimate. We start with this parameter as a venture into
exploring the predictive capacity within a credibility DCL framework. It has
been established that inflation parameter from DCL is sensitive to volatilities in
the data while that from prior information may be tamed with human bias. The
credibility inflation parameter γZDCL is defined as a linear combination of those
two, i.e.

γZDCL = Zγ + (1− Z)γ0 (5.1)

where Z ∈ [0, 1] is a real-valued scalar, γ is the inflation parameter from DCL in
Chapter 3 and γ0 is a prior inflation estimator. Equation 5.1 states that γZDCL is
a weighted average of γ and γ0 with the weights being Z and 1−Z, respectively.
In credibility theory, Z represents how credible γ is compared to γ0, while 1−Z
measures how much low-bias we have to sacrifice in exchange for low-instability.

Equation 5.1 has reduced the problem by assuming that the same credi-
bility is attached to each element of γ. This may not be the case in practice
since inflation for older years have more data to estimate and hence may be
more credible. In other words, we could have various values of Zi attached to
different elements of γ. However, as indicated in Chapter 1 and above, the aim
of this dissertation is more modest than devising a complete credibility model.
Similar to the discussion in Section 3.1.2, this simplification aids in grasping the
essential features of ZDCL.

The general steps to arrive at ZDCL estimates are similar to that in Sec-
tion 4.1 and 4.2.

Step 1 Estimate θ as in Section 3.2 using ∆m and ℵm, yielding θ̂ = {α̂, β̂, γ̂, µ̂, π̂}
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Step 2 Obtain relevant inflation estimates γ̂BDCL, γ̂IDCL and γ̂PDCL as in Sec-
tion 4.1, 4.2 or 4.3, respectively, and estimate γ̂ZDCL by

γ̂ZDCL = Ẑγ̂ + (1− Z)̂̃γ0 (5.2)

where ̂̃γ0 = ∑
∀k ŵ

kγ̂k with ŵk ∈ [0, 1] and ∑∀k ŵk = 1. wk is the weights
for one of currently available DCL variate k.

Step 3 Replace γ̂ by γ̂ZDCL in θ̂ to arrive at θ̂ZDCL

Since prior knowledge can hardly be exact, we open to the possibility that more
than one form of prior information may be necessary in Step 2. In this disser-
tation, we limited k to be in {BDCL, IDCL, PDCL}. It is highly possible that
only one variates is needed in Equation 5.2 so that ̂̃γ0 = γ̂k for some k.

To properly apply the credibility formula to estimate Z, we need to know
or estimate the instability of each of the inflation parameters. However, it is
usually the case that only one data set will be available, which does not per-
mit the acquisition of such knowledge. Mathematical statistics may help with
the problem lack of data by imposing distributional assumptions. Nonetheless,
this level of mathematical sophistication is outside the scope of this disserta-
tion. Fortunately, it is argued in Bühlmann & Gisler (2005) that there exits a
credibility estimator for almost each and every parameter under very general
conditions. This credibility estimator can be expected to reduce prediction er-
rors from both of its components. Thus, we devise a pragmatic and data-driven
approach in Section 5.2 that fully exploiting the potential of validation in an
unconventional manner. It allows the estimation of γZDCL to be made under the
very generalisable assumptions M1-M3.

5.2. ZDCL procedures to balance Bias vs. instability
trade-off

In Martínez-Miranda et al. (2013a), Agbeko et al. (2014) and Hiabu et al.
(2016a), back-testing is envisaged as a model selection tool to compare mod-
els. In this section, we view back-testing as a strategy to arrive at Ẑ. These
procedures will employ the combined error in Section 5.3 that is designed as a
proxy to represent both bias and instability equally regardless how many years
have been cut-off.

Step 1: Choose a range of cut-off years c. For each candidate ĉ, estimate each
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error measure at vary values of γ̂ZDCL as follows:

1. Estimate γ, γBDCL, γIDCL and γPDCL using the procedure detailed in
Chapter 3 and Chapter 4

2. Varying each of the coefficients on γ̂, γ̂BDCL, γ̂IDCL and γ̂PDCL sys-
tematically, for example by ε each time, between 0 and 1 inclusive, to
arrive at different values of γ̂ZDCL per Equation (5.2)

3. For each γ̂ZDCL, calculate and register the empirical combined error
per Equation (5.8) and the corresponding coefficients on γ̂, γ̂BDCL,
γ̂IDCL and γ̂PDCL, respectively

Step 2: Find the minimum value of combined error at each cut-off year and
plot it against the corresponding cut-off year. We call this Minimum Error
Path graph.

Step 3: Choose ĉ∗ such that there is a clear trough at this point in the MEP
plotted in Step 2, i.e. the MEP forms a ∨ at ĉ∗, subject to

ĉ∗ / 25% of the total years available

Ẑ is selected as the one that minimised the combined error at ĉ∗. The set
of coefficients associated with Ẑ yields γ̂ZDCL by Equation 5.2.

The benefit of going through Step 1 rather than some optimisation techniques
is that we will be able to see how the errors develop to the minimum at each cut-
off year by creating a Minimum Error Development (MED) graph as suggested
in Appendix B.2. The shape of MED will empirically test our ZDCL model
and suggests its viability. Specifically, a convex MED implies that there exists a
unique set of inflation estimates which is expected to best predict future claim
payments. And ZDCL is able to obtain such estimates and potentially results in
better forecasts than any other methods.

Step 3 is critical to the entire credibility estimation in trying to balance
the bias and instabilities. The main rational underpinning back-testing is that
using past to predict current can reasonably resemble the situation where current
is incorporated to predict the future. When deciding on how many years to cut
off, there is again a trade-off between bias and volatility. The crude adjustment
in combined error in Section 5.3 can only mitigate this trade-off rather than
eliminate it. Cutting too little years off may cause instability problem as we
need to compare errors on a very small sample of payment data that is known
to be potentially volatile. Thus, for a single company, we are reluctant to take
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ĉ∗ = 1, especially when the hiatory of data is sufficiently long and Step 1-
Step 3 indeed suggests otherwise. However, by cutting more years off to reduce
volatility, bias increases. This is because more data will be used to estimate
the error measures and less data is available for parameter estimation. By the
back-testing algorithm, it means that the estimated error is expected to be a
less relevant indication to the future prediction performance of the model but
rather biased towards the current experience. This is particular important here,
since the estimated Ẑ is supposed to be applied to predict the future. Hence,
we constrain the maximum years that can afford to be cut-off for any data set.
It is merely a rough measure and should be further investigated.

In sum, we want to find an acceptable level of cut-off that is as large as
possible so that we can reduce the instability problem. At the same time, we
also want to cut the data off as little as possible in order to ensure that the
estimated errors will remain representative of the future errors that is expected
from the model.

Furthermore, we have intentionally designed the combined error such that
its estimates from different cut-off years can be on an approximately equal
ground. Therefore, a ∨ shape in the MEP suggests that before this point we
have been able to capture most of the information contained in the original data.
The combined effect of bias and volatilities from the model are decreasing. A
sudden increase signals that either bias or instability or both have risen sharply
and hence the forecasts does not resemble the true payments.

Evidently, validation is the driver while the error measure play an essential
role in this procedure. Cutting years off as in Agbeko et al. (2014) is the “best”
we can do in real-life situation, which is similar to the real-data test in Bruce et al.
(2008). Hence, for an individual company, we intend to improve the estimation
process by modifying evaluation statistics for more fair and unified comparison.

5.3. Representing Bias and Instability in errors

The error measures in Agbeko et al. (2014) employ both square and absolute loss
function, while the relative error in Hiabu et al. (2016a) adopts the absolute loss
function exclusively. Although the original loss functions have been transformed,
their properties remain. The estimator that minimises the prediction errors
is mean and median for square loss and absolute loss, respectively (Domingos
2000). Since DCL is based on the specification of means as seen in Section 3.1.2,
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the errors that we can measure are also based on the estimated means. It
seems reasonable to estimate the expected claim inflation using the quartic loss
function, which is also favoured by Bühlmann & Gisler (2005).

The denominator in error measures proposed by Agbeko et al. (2014) and
Hiabu et al. (2016a) are based on observed values. However, we believe that
they should be replaced by forecasted counterparts and suggest to form error
measure based on Equation 5.3:

Sum of squared error
Sum of squared predictions (5.3)

We may regard Equation (5.3) as a competition between signal and noises. The
predicted value is the signal given by the model while the errors are noises in
the data uncounted for given the model. The smaller the noise compared to
signal, the clear signal we can receive so that prediction can be more accurate.
By focusing on the model output in the error, we can be more confident that we
are assessing the future predictive power of the model instead of concentrating
on the data we already have.

Nonetheless, Equation 5.3 may be incomparable between different cut-off
years. A larger error may result simply due to the artefact of cutting more
years off. Thus, we propose Equation (5.4)-(5.7) to assess the error in each cell,
within an year of origin, across a calendar year and in total, respectively, where
Equation (5.3) will be defined accordingly. GI practitioners are able to assess the
model performance in the dimension that is most important to their business.
Their respective counterpart in absolute loss is supplied in Section B.1.

• The mean point error is more tailored to measure the volatility of errors
since each difference will count. There is no possibility for negative and
positive errors to cancel each other over any dimensions.

Mean point error =

√√√√∑∀(i,j)∈Bc(Xij − X̂ij)2∑
∀(i,j)∈Bc X̂

2
ij

× 1√
c(m− c)

(5.4)

• The mean origin error allows such cancellation within an year of origin and
is more comparable to stochastic models developed in CLM such as Mack
(1993). It will be exactly the same as the mean point error when only 1
year is cut off. With more years being cut off, more bias detection ability
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is incorporated.

Mean origin error =

√√√√√∑m
i=1

(∑m−i+1
j=m−i−c+1(Xij − X̂ij)

)2

∑m
i=1(∑m−i+1

j=m−i−c+1 X̂ij)2
× 1√

m− c
(5.5)

• The mean calendar error may be of interest in a business environment
where knowing cash flow over a calendar year can assist business planning.
Positive and negative errors in cells compensate each other over a calendar
year and does not affect the total cash flows in a year. Its ability to detect
volatility increases as the number of cut-off years increases.

Mean calendar error =

√√√√√∑c
k=1

(∑
i+j=m−k(Xij − X̂ij)

)2

∑c
k=1(∑i+j=m−k X̂ij)2

× 1√
c

(5.6)

• The total error allows volatilities to be cancelled to the largest extent.
However, it is sensitive to bias where the forecasts are away from the
actual claim payments in roughly the same direction. The less years being
cutting off, the more alike will be between Equation (5.6) and (5.7).

Total error =

√√√√(∑∀(i,j)∈Bc Xij − X̂ij)2

(∑∀(i,j)∈Bc X̂ij)2
(5.7)

The chosen error in Section 5.2 is intended to represent bias and volatility as
equally as possible. This is particularly beneficial for data that does not have
sufficient history to allow the bias component in the mean origin error or the
volatility part in the mean calendar error to surface. A simple strategy is to
combine the error detecting power on both horizontal and diagonal direction:

Combined error =
√
Mean origin error2 + Mean calendar error2 (5.8)

When the cut-off year is small, the first components will error more on volatility
while the other will focus on bias. As more years being cut-off, both component
will try to capture bias and volatility. Unlike the other two measures, both com-
ponents of combine error are usually on roughly equal scale. Hence, Equation 5.8
is approximately balanced and may be compared among different cut-off years.

It is important to keep in mind that the consideration in this section is the
bias and volatilities embedded in the deviations between the observed and the
estimated values.
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6. Empirical study

6.1. Exploratory analyses

It is suggested that a practical method needs to be capable of being applied to
data sets across different business lines and lengths of periods available (Verrall
et al. 2010). Thus, we illustrate our method via three data sets with various
lengths and claim characteristics that have been aggregated in yearly format.
The first two data sets are provided by the company developing the professional
software implementing DCL, Res-timator. The first one collects claims from
bodily injury (BI) insurance policies and the second data sets is for material
damage (MD) insurance claims. Both data sets contain 11-year of data and are
aggregated by accident years. The third data set is from Martínez-Miranda et al.
(2013a) and also available in R package DCL by Martinez-Miranda et al. (2013b).
It records 19 underwriting years of personal accident (PA) claims. The analyses
are conducted in R (R Core Team 2016) with modification on the package DCL

by Martinez-Miranda et al. (2013b). We follow Martínez-Miranda et al. (2013a)
and denote the estimated ultimate claim count as the exposure measure.

The cumulative paid data, exposure, cumulative paid data adjusted by ex-
posure only as well as by both exposure and estimated inflation parameter from
DCL is plotted in Figure C.1, Figure C.2 and Figure C.3 for BI, MD, and PA,
respectively. The paid data is plotted against development year while exposure
is against year of origin. If the data does follow the DCL assumptions, parallel
curves should be expected in the left bottom panel for the exposure-adjusted cu-
mulative paid data where the vertical difference diminishes after inflation adjust-
ment in the right bottom panel. The value of the prior information materialises
when the volatility in the paid data has triggered the violations of M1-M3.

As intended, those plots demonstrate that these three data are in very
different nature.

The exposure plotted in right top panel for both BI and MD suggest that
both businesses experienced a strong growth during first 4 years while witnessed a
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drastic decline in the following years. For BI, the volume of businesses in year 11
seems to be even smaller than in year 1. It is highly likely that these two data sets
come from the same company. In comparison, the right top panel in Figure C.3
indicates that the company who supplied the 19-year PA data appears to have
sustained a relative stable volume of businesses after a significant expansion in
the first 9 years.

The curves for BI claim payments in Figure C.1 for various accident years
become closer and closer with each additional adjustment. However, there are
still some discernible differences between the curves in the right bottom panel
after both adjustments have been applied. The cumulative paid curves for MD
in the top left panel of Figure C.2, however, have already in parallel. By the
time both adjustments are made in the right bottom panel, the 11 curves be-
come overlapping and hardly differentiable. Hence, it would appear that MD
remarkably confirms to the DCL assumptions. Figure C.3 suggests that PA is
much more volatile than any other two data sets. The rate of change in the
cumulative paid curves still varies considerably in the right bottom panel with
both exposure and inflation adjustments applied.

Above observations confirm to the fact that material damage claims are
generally short-tailed while both bodily injury and personal accident claims tend
to be medium- to long-tailed. In addition, we expect that, for MD, the predic-
tions by DCL should be sufficiently reliable and hence the credibility we will
attach to DCL in ZDCL is close to 1. In contrast, there may be significant
portion of prior knowledges is necessary in ZDCL to stabilise the future claims
projected by DCL for BI and PA.

6.2. Parameter estimates and prediction

This section presents the parameter estimated by employing the procedures in
Section 5.2 and resulting point forecasts of outstanding liabilities for three data
sets. We will discuss the validation results in the immediate subsequent section.

6.2.1. 11-year BI

The sharp turn in MEP graph in Figure C.4 suggests that not only ĉ∗ = 3 but
also the potential of reducing prediction errors in ZDCL is significant. Table C.1
records the minimum combined error and the corresponding coefficient on each
of the estimated inflation parameters by DCL, BDCL, IDCL and PDCL for each
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cut-off year. When ĉ = 3, the weights given to γ̂ and γ̂PDCL is 0.33 and 0.67,
respectively. Comparatively, the pure data-driven γ̂ is less reliable than γ̂PDCL

by about a half. However, the other two candidates, γ̂BDCL and γ̂IDCL, have
been entirely absent in the formulation of γ̂ZDCL. Then, γ̂ZDCL is estimated by

γ̂ZDCL = 0.33γ̂ + 0.67γ̂PDCL (6.1)

The resulting estimates is tabulated in Table C.2 and visualised in Figure 6.1.

Figure 6.1.: Inflation parameter estimates for 11-year BI

To reveal the tail differences, The magnitude of both γ̂IDCL and γ̂PDCL may have been adjusted for
the first couple of years where reserves estimates are negligible.

The red line for γ̂ in Figure 6.1 suggests that the average bodily injury claim
payment does not always increase with years but rather contracted during the
middle of this 11 years and followed by a sharp peak at year 10. We acknowledge
the fact that the reliability for both γ̂IDCL and γ̂PDCL may have been negatively
affected by the small amount of outstanding liabilities in the first couple of years
(Hiabu et al. 2016a). Nonetheless, much higher severity inflations are implied
from the case department’s views than paid data. This overstatement is present
in each element of γ̂IDCL and later surfaces in γ̂BDCL as time approaches the
end of this period. In contrast, γ̂PDCL start with a moderately high value and
then drops to its lowest value in year 10. γ̂ZDCL, as a credibility estimates,
achieves its goal of balancing bias and instability by completely disregarding
those overly high value implied from incurred data and relying on that estimated
from paid data and a mixture of payments and RBNS case estimates. It is worth
emphasising that DCL itself earns more creditability than that given to γ̂ since
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γ̂PDCL contains IBNR obtained from DCL as well.

The predicted outstanding liabilities are shown in Table C.4. Although
balances between DCL and PDCL by accident year, ZDCL yields the lowest
total reserves estimate amongst all methods with 5% lower than that from DCL.
This seemly unexpected result may be explained by the divergences between the
delay parameter estimates for DCL and PDCL, respectively, in Table C.3.

6.2.2. 11-year MD

Performing the procedures in Section 5.2 on 11-year MD suggests that ĉ∗ = 2,
according to the MEP graph in Figure C.5. In consistent with the observation
and statement in Section 6.1, the gain by adding in prior knowledge seems slim.
This is supported by Table C.5 where the reduction from 1-year to 2-year min-
imum combined error is insignificant and highly likely to be coincidental. To
finish the exercise, we give 83% of trust to γ̂ and the rest to γ̂PDCL as suggested
by Table C.5. Again, both γ̂BDCL and γ̂IDCL have not earned any credibility and
attracted weights of 0. Then, ZDCL can estimate the inflation for MD as

γ̂ZDCL = 0.83γ̂ + 0.17γ̂PDCL (6.2)

which gives Table C.6 and Figure 6.2. Payment per material damage claims
seems to have experienced steady decreases. The red line for γ̂ and blue line
for γ̂BDCL almost overlaps with each other except for year 11 where a small
departure between two lines is revealed. To the contrary, it is those estimates
from IDCL and PDCL that fluctuate with γ̂IDCL always above γ̂PDCL except for
year 11. From year 8, the line for γ̂IDCL joins that for γ̂BDCL and γ̂, leaving
the green line for γ̂PDCL alone away from the other lines. With the majority of
credibility given to γ̂, γ̂ZDCL has almost the same value as γ̂. Given the fact that
γ̂PDCL also contains information from DCL and that MD reasonably confirms
to DCL assumptions, there may be a plausible case for ZDCL to assume that
Ẑ = 1, which is also contained in Equation (5.1).

Other parameters in Table C.7 from different methods have similar values.
Hence, it is not surprising that the forecasts of outstanding liabilities by ZDCL in
Table C.8 is roughly 30% higher than that from DCL and about 13% lower than
that from PDCL. Furthermore, we see a consistency here, the average payment
of material damage claims in Table C.8 accounts for less than 5% of that from
the bodily injury claims in Table C.4.
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Figure 6.2.: Inflation parameter estimates for 11-year MD

To reveal the tail differences, The magnitude of both γ̂IDCL and γ̂PDCL may have been adjusted for
the first couple of years where reserves estimates are negligible.

6.2.3. 19-year PA

The turn at ĉ∗ = 4 in Figure C.6 is material and hence is selected. For PA, DCL
seems to give less reliable predictions by itself alone and we have to rely more on
prior information given by case department. Table C.9 suggests that γ̂ is only
28% credible while γ̂ZDCL has to draw another 22% from γ̂BDCL and a further
50% from γ̂PDCL. This gives

γ̂ZDCL = 0.28γ̂ + 0.22γ̂BDCL + 0.5γ̂PDCL (6.3)

Table C.10 tabulates the estimated inflation parameters by underwriting years,
which are illustrated in Figure 6.3. It is similar to that found in Hiabu et al.
(2016a) except that different adjustments may have been applied to the first
couple of years to reveal tail differences. Both γ̂ and γ̂BDCL are in congruence
and depict a stable increasing tend in the average bodily injury settlement until
year 15. For the last 4 years, γ̂ rises sharply and almost approaches a value of
7. On the other hand, both γ̂IDCL and γ̂PDCL drop to near zero for the middle
of this 19 years before it started to converges to γ̂BDCL from year 13. It seems
that the unstable values of γ̂ in the last few years have detrimentally affected its
credibility, so that γ̂ZDCL has to stabilises it with very large proportion of human
judgement. For the last few years, where considerable part of outstanding lia-
bilities come from, γ̂ZDCL is only half of γ̂. Meanwhile, ZDCL is able to correct
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potential downward bias of inflation estimates from IDCL (Hiabu et al. 2016a)
and PDCL, which allows γ̂ZDCL to give much more sensible value of change in
claim severities between year 6 and 13. The future payments are predicted in
Table C.12 with additional inputs in Table C.11. The forecasted total outstand-
ing liabilities from ZDCL is roughly 16.7% higher than that predicted by BDCL
while approximately 31.8% lower than that suggested by DCL.

Figure 6.3.: Inflation parameter estimates for 19-year PA

To reveal the tail differences, The magnitude of both γ̂IDCL and γ̂PDCL may have been adjusted for
the first couple of years where reserves estimates are negligible..

6.3. Prediction improvement examination

We will compare the accuracy of point forecasts from ZDCL with that from
other methods using all the errors in Section 5.3 and for all cut-off years up to
the decided ĉ∗.

6.3.1. 11-year BI

Table 6.1 tabulates the change in prediction errors by adopting ZDCL as opposed
to other methods for each cut-off year up to ĉ∗. Columns of Table 6.1 represent
the methods other than ZDCL and rows indicate errors suggested in Section 5.3.
It is derived from Table C.13, which registers the estimated error measures by
cut-off year for each method. Negative figure in Table 6.1 indicates a reduction
in the relevant error.

For BI, ZDCL is able to reduce almost all forms errors suggested in Sec-
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tion 5.3 for all cut-off years except for two occasions. The two positive values in
Table 6.1 are the 2-year-cut-off mean calendar and total error where DCL seems
to outperform. This may not so disappointing if we recall that the sudden peak
in γ̂ in Figure 6.1 at year 10. Overall, ZDCL seems to be the best in forecasting
outstanding liabilities, followed by DCL. IDCL seems to be the worst amongst
all the methods considered.

Table 6.1.: % change in prediction errors by adopting ZDCL as oppose to DCL,
BDCL, IDCL, PDCL for 11-year BI

c Error DCL BDCL IDCL PDCL

1

Mean point -18.58 -27.28 -40.54 -21.52
Mean accident -18.58 -27.28 -40.54 -21.52
Mean calendar -6.14 -30.43 -54.32 -9.20
Combined -8.45 -29.95 -52.77 -11.49
Total -6.14 -30.43 -54.32 -9.20

2

Mean point -5.52 -33.59 -46.58 -19.68
Mean accident -14.64 -56.56 -66.70 -33.75
Mean calendar 2.60 -53.64 -70.73 -19.39
Combined -2.33 -54.37 -69.92 -23.57
Total 43.81 -59.78 -75.67 -29.11

3

Mean point -8.49 -42.35 -55.89 -26.37
Mean accident -41.44 -70.98 -77.92 -39.17
Mean calendar -11.44 -71.31 -81.69 -18.60
Combined -26.89 -71.19 -80.57 -28.27
Total -17.67 -75.64 -84.40 -17.97

It measures the percentage changes in error estiamtes tabulated in Table C.13 after adopting ZDCL
from other methods. Negatives in this table means ZDCL is able to reduce the error measures.

6.3.2. 11-year MD

As already be alluded to by discussions in both Section 6.1 and 6.2, DCL can
fit this data set sufficiently well, which again is proved in Table 6.2. With
1 year being cut off, only the mean point error can be reduced by ZDCL by
roughly 8% while the total error is more than 100% smaller in DCL. DCL still
outperforms ZDCL in total error by more than 90% when 2 years has been cut
though ZDCL is able reduce other error measures this time. Similar to the
BI, ZDCL is able to forecast future payments better than BDCL, IDCL and
PDCL under all circumstances. However, unlike BI, both IDCL and PDCL have
produced worse predictions than BDCL.
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Table 6.2.: % change in prediction errors by adopting ZDCL as oppose to DCL,
BDCL, IDCL, PDCL for 11-year MD

c Error DCL BDCL IDCL PDCL

1

Mean point -8.24 -13.09 -56.42 -70.11
Mean accident -8.24 -13.09 -56.42 -70.11
Mean calendar 101.15 -16.01 -67.32 -67.97
Combined 68.06 -15.66 -66.45 -68.20
Total 101.15 -16.01 -67.32 -67.97

2

Mean point -25.12 -5.29 -14.13 -36.99
Mean accident -21.08 -12.00 -41.04 -57.64
Mean calendar -4.28 -11.04 -72.45 -65.17
Combined -12.72 -11.42 -66.14 -62.43
Total 92.88 -17.86 -77.03 -69.79

It measures the percentage changes in error estiamtes tabulated in Table C.14 after adopting ZDCL
from other methods. Negatives in this table means ZDCL is able to reduce the error measures.

6.3.3. 19-year PA

Comparing Table 6.3 to Table 6.1 and Table 6.2, it seems that the case depart-
ment in this company have been able to collectively correct their miscalculation
of reserves over a two-year interval since BDCL has produced very small total
error when the 2 or 4 years have been cut off from the data. For the 1-year
and 3-year cut-off in Table 6.3, ZDCL can always yield smaller errors than any
other methods for any error in question. Again, the predictions from IDCL is
the worst in Table C.15.

Table 6.3.: % change in prediction errors by adopting ZDCL as oppose to DCL,
BDCL, IDCL, PDCL for 19-year PA

c Error DCL BDCL IDCL PDCL

1

Mean point -17.43 -45.03 -58.91 -38.60
Mean accident -17.43 -45.03 -58.91 -38.60
Mean calendar -87.53 -46.26 -91.59 -70.07
Combined -78.76 -45.49 -85.94 -57.24
Total -87.53 -46.26 -91.59 -70.07

2

Mean point -5.92 -17.66 -27.53 -3.16
Mean accident -11.24 -19.97 -28.59 -4.11
Mean calendar -54.50 25.58 -58.75 24.47
Combined -46.76 1.37 -52.56 11.42
Total -66.99 225.00 -63.85 383.11

3

Mean point 19.79 -26.30 -38.73 -13.19
Mean accident 13.05 -33.15 -43.68 -18.33
Mean calendar -37.87 -12.42 -67.53 -25.02
Combined -27.31 -22.47 -62.33 -22.66
Total -88.14 -51.10 -92.24 -72.50

4

Mean point -13.16 -37.47 -54.17 -11.61
Mean accident -50.57 -58.18 -68.92 -25.85
Mean calendar -46.15 -3.54 -71.56 -20.97
Combined -46.89 -24.50 -71.23 -21.83
Total -73.29 293.75 -79.67 7.85

It measures the percentage changes in error estiamtes tabulated in Table C.15 after adopting ZDCL
from other methods. Negatives in this table means ZDCL is able to reduce the error measures.
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6.4. Illustration of the validity of estimation procedure

A full account of how and why credibility theory is able to help GI companies in
predicting their outstanding liabilities is beyond the scope of this dissertation.
However, we intend to practically demonstrate the plausibility of the steps in
Section 5.2. This has implication on whether we have approximated desired
credibility estimates.

In Section 5.2, a Minimum Error Development (MED) graph is suggested
to inform the ability of those procedures to find the value of Z that minimise
the prediction errors. The MED graph for the BI, MD, and PA is supplied
in Figure C.7, C.8 and C.9, respectively. With the exception of 1-year cut
error for BI and MD, which is only based on 10 data points, all the MED
graphs exhibit a convex shape. It is evident that there indeed exists a credibility
inflation estimates that can balances the bias and instabilities so as to achieve
the minimum amount of prediction error. From Table C.1, C.5 and C.9, we
learnt that those estimated credibility factors are non-trivial. Therefore, by
going through the estimation process, it seems that we can be confident that
the estimated credibility estimates, and hence the predicted future claims, are
largely valid.
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7. Limitation, further studies and
conclusion

7.1. Limitations and further studies

We have based our work on intuitive reasoning throughout while not laid down a
solid theoretical background for credibility theory. As expressed by professionals
(MacDonnell & Labaune 2014), being pragmatic is the key of a model and that
is the central theme here. The beloved practicality, however, is attempted at the
expense of the results being unable to sustain rigorous scrutiny. In particular,
we have used back-testing to estimate the parameters, validating on the same
data sets may suffer from the critique that we have re-engineered the validation
results. To mitigate such effect, we use only one error measure in one cut-off
year to estimate parameter while validate results using all the error statistics
and for more than one cut-off years. Although not completely satisfactory, we
have shown that the prediction in ZDCL is better under most scenarios. Given
the fact that we have applied the same credibility to all the years of origin,
the potential of reducing prediction errors as suggested in Table 6.1, 6.2, and
6.3 are encouraging. We believe that with differentiated credibility factor, more
accurate predictions can be expected by employing ZDCL. This is one possible
route to fully explore the potential of credibility theory.

The estimation procedures are demonstrated in a rather subjective manner
since we want to explain the rational underpinning each step. It may be desirable
if the entire process can be done automatically, which is relatively simple to
achieve. Furthermore, the adjustments to form the combined error measure may
be too crude. It is suggested as a proxy to incorporate both bias and volatility
as fair as possible for all data sets regardless of their (reasonable) length of
history. Future studies may consider to devise measures with more insights from
mathematical statistics.

Finally, we have not extended this framework into a stochastic model while
endeavours to obtain the best point forecasts. Nevertheless, as it is evident from

42



the richness of stochastic CLM literatures, see, for example, Schmidt (2015),
England & Verrall (2002), Wüthrich & Merz (2008), there should be a wealth of
stochastic assumptions that can be accommodated by DCL. In particular, DCL
is rigorously articulated from basic principle of claim risk generation. We briefly
introduce one such possible structure from Martinez-Miranda et al. (2012) in
Section 8.1. In the future, a stochastic version of credibility balanced DCL may
be explored.

7.2. Conclusion

We have attempted a credibility balanced DCL to achieve the optimal trade-off
between bias and instability so as to reduce prediction errors. The empirical
studies on three data sets with various background and characteristics are in
congruence on:

1. For each cut-off year, there is an “optimal” trade off between bias and
instability such that the prediction error is minimised.

2. While unconventional and heuristic, the simple and straightforward pro-
cedures in Section 5.2 have strived to mimic the estimation results from a
more complex credibility theory and attach appropriate credibility factors
to each of γ̂, γ̂BDCL, γ̂IDCL and γ̂PDCL to achieve the overall ”optimal”
trade-off for all cut-off years. Even under inflexible assumptions, the re-
sults are motivating.

3. It is always the case that the credibility given to γ̂ and γ̂PDCL, respectively,
are non-zero while to γ̂IDCL is zero.

4. ZDCL is always able to outperform IDCL regardless which error measure
and how many years are cut off.

5. ZDCL can outperform DCL, BDCL, and PDCL under most situations,
especially for odd cut-off years and for longer-tailed business.
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8. Remarks on forecasting scenarios in
past papers

While studying papers, we found some inconsistencies in the empirical stud-
ies. Specifically, the outstanding liabilities forecasted by different methods have
not been conducted under the same model assumptions. For example, in both
Hiabu et al. (2016a) and Haibu et al. (2016b), DCL generates outstanding li-
ability forecasts under the first moment assumption while BDCL have applied
the stochastic assumptions in Martinez-Miranda et al. (2012) to predicts future
payments. This seems rather unusual since both papers have not mentioned
any stochastic assumptions and the validity of BDCL is proved indeed under
the M1-M3 in Hiabu et al. (2016a). To facilitate the further discussion, the
stochastic DCL proposed in Martinez-Miranda et al. (2012) is introduced with
added comments.

8.1. A possible stochastic model

One of the flexibilities of DCL is its ability to extend to various stochastic models
by imposing different distributional assumptions. This would allow the genera-
tion of predictive distributions of reserves via the bootstrap detailed in Martinez-
Miranda et al. (2011), which may assist the fulfilment of regulatory requirement,
such as Solvency II. Synthesised from Verrall et al. (2010) and Martinez-Miranda
et al. (2011), Martinez-Miranda et al. (2012) suggests a possible mathematical
structure:

D1. Nij ’s are independent Poisson variables with mean E[Nij ] = αiβj and
Kremer’s identification(Kremer 1982) ∑m−1

j=0 βj = 1. In other words,

Nij ∼ Poisson(αiβj) with
m−1∑
j=0

βj = 1 ∀(i, j) ∈ I ∪ J1
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D2. The conditional distribution of Npaid
ijl given Nij is multinomial:

(
Npaid
i,j,0 , . . . , N

paid
i,j,m−1

)
|Nij ∼ Multinomial (Nij ; p0, . . . , pm−1) ∀(i, j)

where (p0, . . . , pm−1) denotes the delay probabilities with∑m−1
l=0 pl = 1 and

pl ∈ [0, 1], ∀l ∈ {0, . . . ,m− 1}

D3. The individual payment size X(k)
i,j−l,l’s are independent from the number of

incurred claims Nij , ∀(i, j − l, l) : i ∈ {1, ˙,m− 1}, j ∈ {0, . . . , 2m − 1}, l ∈
{0, . . . ,min(j, d)}.

D4. The X(k)
i,j−l,l are mutually independent and has marginal distribution Fij

with mean µij and variance σ2
i,j for all (i, j) ∈ I∪J1∪J2∪J3. It is further

assumed that µij and σ2
ij can be parametrised as µij = µγi and σ2

ij = σ2γ2
i ,

respectively.

Without loss of generality, D2 assumes that the maximum years of delay is
m− 1. Alternatively, it can be informed by expert’s opinion as in Verrall et al.
(2010). It is by D3 that D4 can be discussed without regarding to number of
incurred claims. Hence D3 and D4 are in the order different from that in both
Martinez-Miranda et al. (2012) and Martínez-Miranda et al. (2013a). In D4, µ
and σ2 is the common mean and variance factor for all Fij , respectively. It is
implied that the distribution of X(k)

i,j−l,l depends only the year of origin i.

Hence, similar to Equation (3.1) and (3.2), Martinez-Miranda et al. (2012)
also provides the conditional and unconditional mean of Xij in the stochastic
case:

E[Xij |ℵm] = γiµ
j∑
N

Ni,j−lpl (8.1)

E[Xij ] = αiγiµ
j∑
l=0

βj−lpl = α̃iβ̃j (8.2)

respectively, where
αiγiµ = α̃i (8.3)
j∑
l=0

βj−lpl = β̃j (8.4)

Following from Verrall et al. (2010), it can be shown that the conditional variance
of Xij is given by

V [Xij |ℵm] = γ2
i

min(j,m−1)∑
l=0

Ni,j−lpl
(
σ2 + (1− pl)µ2

)
(8.5)
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The estimation processes only differ from that in Section 3.2 by adjusting
the delay function to a properly defined probability space and an additional
estimation for the variance parameter that is provided in Appendix A.2

In order for D2 to be satisfied, some adjustment to the estimated delay
function may be necessary. This is because, for some data set, Equation (3.5)
may yield estimates that, for example, the total number of reported claims is
more that actually incurred, which cannot happen in reality. To obtain prop-
erly defined delay probabilities, two adjustments are currently suggested, both
are available in DCL package by Martinez-Miranda et al. (2013b) in R (R Core
Team 2016), which we will denote as P1 and P2, respectively, and are described
in Appendix B.3. Alternatively, one could optimise Equation (3.5) by imposing
the constraint that π̂l ∈ [0, 1],∀l ∈ {0, . . . ,m − 1}. Martinez-Miranda et al.
(2011) and Martinez-Miranda et al. (2012) claim that forecasting future pay-
ments using the adjusted p̂ = {p̂0, . . . , p̂m−1} and raw π̂ are very similar in prac-
tice. We will empirically test and prove this statement by using three real-life
data in Section 8.2. Nonetheless, if the delay function have been adjusted, as in
Martínez-Miranda et al. (2013a), Kremer’s identification (Kremer 1982) needs to
be preserved by dividing the estimated mean factor µ̂ by κ̂ = ∑m−1

j=0
∑j
l=0 β̂j−lp̂l,

which we denote as µ̂d.

The point estimates in the stochastic model will largely the same except
possibly p̂ and µ̂d. Hence, the point parameter estimates in this case will be
θ̂d =

(
α̂, β̂, γ̂, µ̂d, p̂

)
in vector notation. The corresponding estimates of RBNS

and IBNR becomes:

X̂
RBNS(1)
ij =

j∑
l=i−m+j

Ni,j−lp̂lµ̂dγ̂i (8.6)

X̂
RBNS(2)
ij =

j∑
l=i−m+j

N̂i,j−lp̂lµ̂dγ̂i =
j∑

l=i−m+j
α̂iβ̂j p̂lµ̂dγ̂i (8.7)

and

X̂IBNR
ij =

i−m+j−1∑
l=0

α̂iβ̂j p̂lµ̂dγ̂i (8.8)

Equation (8.6)-(8.8) is the counterpart of Equation (3.6)-(3.8) in the stochastic
model, respectively. The total reserve is then in the same manner found by
summing the RBNS and IBNR component accordingly by as in Equation (3.9).
Following the procedure in Martinez-Miranda et al. (2011), a predictive distribu-
tion can be obtained via bootstrap either with or without parameter uncertainty.
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It may deserve to mention that by the time this report is written, both
IDCL and PDCL have only been theorised and tested within the first moment as-
sumptions. This may because DCL is a new innovation and under continuously
improvements, it only seems sensible to investigate the model structure first.
Constructing a stochastic version of a well-constructed model will be straightfor-
ward. Although this does affect the point forecasts, it does mean that particular
care is required while bootstrapping extensions based on either IDCL or PDCL.

8.2. Summary of varying forecasting scenarios and its
effects

While one of the advantage of DCL is the provision of tails, some practitioner
may prefer to remove the tails in order to assess the estimation power of the
model and to compare with that of the classical CLM. For example, all the
reserve estimates in both Hiabu et al. (2016a) and Haibu et al. (2016b) have
been reported without tails. This removal of tails, although stated explicitly in
Haibu et al. (2016b), does not seem to be indicated in Hiabu et al. (2016a).

Point forecasts of outstanding liabilities have different values in the devel-
opment papers of DCL. We conclude that, these differences arose because, based
on the current developments, the forecasts can vary depending on three factors

• whether expected or actual number of incurred claim is used in estimating
RBNS reserves

• whether tail is included; i.e whether the forecast is over J1 or over J1 ∪
J2 ∪ J3.

• whether raw or adjusted delay function estimates is used, and if adjusted,
which adjusting method is used; i.e. whether π̂, or P1 or P2 is used

In total, there are 2 × 2 × 3 = 12 variates in the best estimates of reserves
alone. The 12 possible ways to arrive the best estimates of reserves are listed in
Table 8.1.

A summary of which forecasting scenario is used together with their re-
spective reserve predictions in Martinez-Miranda et al. (2012), Martínez-Miranda
et al. (2013a), Hiabu et al. (2016a), Haibu et al. (2016b) as well as in Res-timator
are provided in Table 8.2. To our best knowledge, both Hiabu et al. (2016a) and
Haibu et al. (2016b) have not specify the scenario applied on each method and
why different scenarios have been employed to compare reserves from DCL and
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its extensions.

Table 8.1.: 12 outstanding liabilities forecasting scenarios

Notation Equations for
RBNS

π̂, P1 or P2 Nij orN̂ij Cell index

F1 (3.7) π̂ N̂ij J1

F2 (3.7) π̂ N̂ij J1 ∪ J2 ∪ J3
F3 (3.6) π̂ Nij J1
F4 (3.6) π̂ Nij J1 ∪ J2 ∪ J3

F5 (8.7) P1 N̂ij J1

F6 (8.7) P1 N̂ij J1 ∪ J2 ∪ J3
F7 (8.6) P1 Nij J1
F8 (8.6) P1 Nij J1 ∪ J2 ∪ J3

F9 (8.7) P2 N̂ij J1

F10 (8.7) P2 N̂ij J1 ∪ J2 ∪ J3
F11 (8.6) P2 Nij J1
F12 (8.6) P2 Nij J1 ∪ J2 ∪ J3

Table 8.2.: Forecasting methods used in DCL developing papers and in
Res-timator

DCL BDCL IDCL PDCL
Martínez-Miranda et al. (2013a) F8 F8 - -
Point forecast (£000s) 191,918 112,233 - -
Hiabu et al. (2016a) F7 F3 F7 Special
Point forecast (£Millions) 191.9021 112.2385 88.5565 102.8528
Haibu et al. (2016b) F7 F3 F7 F1
Point forecast (£Millions) 191.9021 112.2385 88.5565 101.9427
Res-timator F12 F12 F12 Special
Point forecast (£) 192,209,489 112,510,134 88,699,690 103,410,756

PDCL have different treatment in Hiabu et al. (2016a) and Res-timator, which we do not intend to drill
into detail in this report. Suffices to say that it does not followed the steps in Hiabu et al. (2016a) and
have been discarded in the more developed paper Haibu et al. (2016b).

Table 8.2 can be checked with the those in Appendix D, where we have
collected results for all 12 methods from DCL, BDCL and IDCL for the 19-
year PA data that was used in all the relevant papers. Beside to support the
results in Table 8.2, Appendix D is also intended to prove that the effects of
adjusted delay probability in real-life data are negligible. The largest percentage
difference between 12 scenarios is 1.3% found in BDCL forecasts. We further
have applied the 12 forecasting scenarios on 11-year BI and MD. The largest
percentage change is 3.1% (in IDCL forecasts) and -0.5% (in IDCL forecasts) for
BI and MD, respectively.

It is also observed that the differences in BDCL point forecasts for 12
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scenarios are smaller when the steps in Martínez-Miranda et al. (2013a) pre-
sented in Section 4.1 have been closely followed rather than using DCL package
by Martinez-Miranda et al. (2013b).
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A. Additional remarks

A.1. More generalised first moment assumptions

M2-M3 can be slightly generalised as in Martinez-Miranda et al. (2012)

M2. The mean of Npaid
ijl conditional on the number of incurred claims is

E[Npaid
ijl |ℵm] = Nij π̃l, (i, j) ∈ I, l ∈ {0, . . . ,m− 1}.

M3. The conditional mean of the individual payment size is
E[X(k)

ijl |N
paid
ijl ,ℵm] = µ̃ijl = µ̃jlγi

In other words, the severity mean depends on all three time dimensions, namely
the year of origin i (through the inflation parameter γi), the reporting delay j
as well as the payment delay l. Therefore, Equation (3.1)-(3.4) becomes

E[Xij |ℵm] = γi

j∑
l=0

Ni,j−lµ̃j−l,lπ̃l

and

E[Xij ] = αiγi

j∑
l=0

βj−lµ̃j−l,lπ̃l = ˜̃αi ˜̃βj
where

αiγi = ˜̃αi
j∑
l=0

βj−lµ̃j−l,lπ̃l = ˜̃
βj

respectively. Here, we have used a slightly different notations from Martinez-
Miranda et al. (2012) to emphasise that ˜̃αi and ˜̃βj have different meanings from
α̃i and β̃j . Whereas α̃i contains actual monetary amount ˜̃αi is merely a mixture
of count and inflation effects. In contrast, β̃j does not involve severity while ˜̃βj
does. However, this set of assumption is over-parametrised and the proposed
solution is to reduce dependence of severity mean to only the reporting delay
j, i.e. µ̃jl = µ̃j and form the common mean factor µ = ∑m−1

l=0 π̃µ̃l with the
adjustment πl = π̃µ̃l/µ, which yield Equation (3.1)-(3.4) exactly.
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A.2. Estimation of variance

The estimation of σ2 is facilitated by the observation on Equation (8.5) that
the conditional variance of Xij is approximately proportional to its conditional
mean. Equation (8.5) can be written as (Martinez-Miranda et al. 2011):

V [Xij |ℵm] ≈ γiϕ
min(j.d)∑
l=0

Ni,j−lplγiµ = γiϕE[Xij |ℵm]

where ϕ is the dispersion parameter and the second equality is by Equation (8.1).
This resembles the an over-dispersion Poisson model, hence the dispersion pa-
rameter ϕ can be estimated via the generalised χ2 statistics (McCullagh & Nelder
1989). Martinez-Miranda et al. (2011) shows that

ϕ = σ2 + µ2

µ
− µ

n

∑
∀(i,j∈I)

∑min(j,d)
l=0 Ni,j−lp

2
l∑min(j,d)

l=0 Ni,j−lpl
(A.1)

From Equation (A.1), the estimator for σ2 can be written as

σ2 = µϕ− µ2 + µ2

n

∑
∀(i,j∈I)

∑min(j,d)
l=0 Ni,j−lp

2
l∑min(j,d)

l=0 Ni,j−lpl

However, Verrall et al. (2010) suggests to further approximate ϕ by

ϕV NJ ≈
σ2 + µ2

µ

This yields the approximate variance factor σ2
V NJ as

σ2
V NJ ≈ µϕV NJ − µ2

The justification in Verrall et al. (2010) and Martinez-Miranda et al. (2011)
is that the difference between σ2 and σ2

V NJ will be small if ϕ is large. The
dispersion parameter is estimated as:

ϕ̂V NJ = 1
n− (d+ 1)

∑
(i,j)∈I

(Xij − X̂ij)2

X̂ij γ̂i

where n = (m + 1) ∗ m/2 is the total number of cells in I, Xij and X̂ij is the
observed and estimated value in cell (i, j), respectively, and γi is the inflation
estimate for year of origin i.
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B. Formulae and details

B.1. Error measures based on absolute error loss

•
Mean relative errors=

∑
(i,j)∈Bc

|Xij−X̂ij |∑
(i,j)∈Bc

|X̂ij |
× 1√

c(m−c)

•
Mean relative origin error=

∑m

i=1 |
∑m−i+1

j=m−i−c+1(Xij−X̂ij)|∑m

i=1 |
∑m−i+1

j=m−i−c+1 X̂ij |
× 1√

m−c

•
Mean relative calendar error=

∑c

k=1 |
∑

i+j=m−k(Xij−X̂ij)|∑c

k=1 |
∑

i+j=m−k X̂ij |
× 1√

c

•
Relative total error=

|
∑
∀(i,j)∈Bc

Xij−X̂ij |∑
∀(i,j)∈Bc

X̂ij

B.2. ZDCL estimation procedures details

Assume that the output from Step 2 in Section 5.2 is collected in Table B.1.

Table B.1.: Illustrative output of Step 1
Z (1− Z) ∗

wBDCL
(1−Z)∗wIDCL (1− Z) ∗

wPDCL
Error measure

0 0 0 1 error1
0 0 ε 1− ε error2
... · · ·

...
...

. . .
...

... · · ·
...

1− ε ε 0 0 errors−1
1 0 0 0 errors

The first four columns contains coefficients on each of γ̂, γ̂BDCL, γ̂IDCL and γ̂PDCL, respectively, while
the last column contains the value of the combined error. s is the total length of the matrix

where s is the total number of rows of the matrix. These matrices will
have first four columns recording the coefficients and the last column registering
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the corresponding error value. With the error measure in Section 5.3, we will
have c matrices. The MED graph could be plotted as follows:

1. Start from error1: error1 is on the graph

2. error2 is on the graph if and only if error2 6 error1

3. error3 is on the graph if and only if error3 6 error1 ∩ error3 6 error2, and
so forth until it reaches the minimum

4. Reverse the direction and start from errors: errors is on the graph

5. errors−1 is on the graph if and only if errors−1 6 errors, and so on until it
reaches the minimum again

This graph will be a single point if the first error is the minimum, i.e. when full
credibility is given to γ̂PDCL.

B.3. Delay parameter adjustment details

P1: The default adjustment method in the DCL package.

• Find the minimum d∗ such that π̂d∗ < 0 otherwise d∗ = m

• Among the positive values, find the minimum d such that∑d∗
k=0 π̂k < 1

• Therefore,

p̂k =


π̂k if 0 < k < d

p̂k = 1−∑d−1
k=0 p̂k if k = d

p̂k = 0 if d < k 6 m− 1

P2: The professional software Res-timator uses this method and is optional
inDCL package.

• Let p̂∗k = 0 if π̂k < 0 otherwise p̂∗k = π̂k ∀k ∈ {0, . . . ,m− 1}

• Then define the offset quantity r∗ = 1−∑m−1
k=0 p̂

∗
k

• The finally we arrive at

p̂k = p̂∗k + r∗ × p̂∗k∑m−1
k=0 p̂

∗
k

∀k
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C. Empirical study tables and figures

C.1. Preliminary analyses

Figure C.1.: Exploratory analyses for 11-year BI

From left to right, the panel dipicts the cumulative paid data and exposure, respectively.
Each curve in the left panel represents one accident year changing by development year while
the exposure is against accident year.

From left to right the panel dipicts the cumulative paid adjusted by exposure and adjusted by
exposure and inflation paratmers estimated from DCL, respectively. Each curve represents
one accident year changing by development year.
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Figure C.2.: Exploratory analyses for 11-year MD

From left to right, the panel dipicts the cumulative paid data and exposure, respectively.
Each curve in the left panel represents one accident year changing by development year while
the exposure is against accident year.

From left to right the panel dipicts the cumulative paid adjusted by exposure and adjusted by
exposure and inflation paratmers estimated from DCL, respectively. Each curve represents
one accident year changing by development year.
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Figure C.3.: Exploratory analyses for 19-year PA

From left to right, the panel dipicts the cumulative paid data and exposure, respectively.
Each curve in the left panel represents one underwriting year changing by development year
while the exposure is against underwriting year.

From left to right the panel dipicts the cumulative paid adjusted by exposure and adjusted by
exposure and inflation paratmers estimated from DCL, respectively. Each curve represents
one underwriting year changing by development year.
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C.2. Parameters and outstanding liabilities

Figure C.4.: Minimum Error Path (MEP) graph for 11-year BI

Table C.1.: Minimum combined error and associated Z values by cut-off years
for 11-year BI

c Z (1− Z) ∗
wBDCL

(1− Z) ∗
wIDCL

(1− Z) ∗
wPDCL

Minimum

1 0.05 0 0.00 0.95 0.2555
2 0.61 0 0.00 0.39 0.1186
3 0.33 0 0.00 0.67 0.0756
4 0.15 0 0.14 0.71 0.0954

The error is found by minimising errors by simultaneously considering weights in three dimensions. The
other dimension is constructed by the constraint that weights sum up to 1.

Table C.2.: Inflation parameter estimates from DCL, BDCL, IDCL, and PDCL
for 11-year BI

Accident year DCL BDCL IDCL PDCL ZDCL
1 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.22510 1.29754 22.28266 6.55447 4.79577
3 1.04509 1.09127 4.15413 2.16907 1.79816
4 1.01772 1.07248 2.32745 1.48924 1.33364
5 0.89078 0.91529 1.29097 0.89804 0.89564
6 0.84804 1.01513 1.76810 1.26161 1.12513
7 0.86920 1.13007 1.68601 1.13999 1.05063
8 0.83692 1.06651 1.34755 0.85727 0.85055
9 1.00557 1.20424 1.35844 0.85949 0.90770
10 1.55816 1.31559 1.32883 0.77684 1.03468
11 0.92514 1.67010 1.78222 0.93883 0.93431
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Table C.3.: Delay parameters from DCL and PDCL and common mean factor
for 11-year BI

π

A/Year DCL/BDCL/IDCL/ZDCL PDCL
1 0.06231 0.06205
2 0.11642 0.11605
3 0.14818 0.13809
4 0.16996 0.15718
5 0.15900 0.14827
6 0.14847 0.14423
7 0.06587 0.06928
8 0.07389 0.07847
9 0.04005 0.04874
10 0.01808 0.02956
11 0.00205 0.01432
µ (£) 22403.62

Table C.4.: Outstanding liabilities by accident year from DCL, BDCL, IDCL,
PDCL and ZDCL for 11-year BI in £000s

A/Y CLM DCL BDCL IDCL PDCL ZDCL
1 0.000 91.475 91.475 91.475 136.380 91.475
2 172.040 314.341 332.928 5717.384 3878.270 1230.521
3 899.506 997.578 1041.660 3965.287 3703.841 1716.414
4 2430.744 2578.987 2717.744 5897.954 5358.176 3379.542
5 3718.574 3818.435 3923.489 5533.878 4771.060 3839.278
6 5531.675 5697.859 6820.462 11879.594 9910.983 7559.563
7 8692.075 8757.947 11386.403 16987.953 12539.988 10585.967
8 12340.557 12425.414 15834.128 20006.629 13293.982 12627.885
9 15614.738 15732.043 18840.217 21252.648 13667.644 14200.812
10 29508.541 29588.480 24982.103 25233.624 14796.846 19647.858
11 16633.950 16708.991 30163.686 32188.835 16995.646 16874.593
Total 95542.399 96711.550 116134.294 148755.261 99052.816 91753.908

Prediction is performed under F4 in Table 8.1.

Figure C.5.: Minimum Error Path (MEP) graph for 11-year MD
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Table C.5.: Minimum combined error and associated Z values by cut-off years
for 11-year MD

c Z (1− Z) ∗
wBDCL

(1− Z) ∗
wIDCL

(1− Z) ∗
wPDCL

Minimum

1 1.00 0.00 0.00 0.00 0.0551
2 0.83 0.00 0.00 0.17 0.0535
3 0.00 1.00 0.00 0.00 0.1247
4 0.00 0.14 0.86 0.00 0.0957

The error is found by minimising errors by simultaneously considering weights in three dimensions. The
other dimension is constructed by the constraint that weights sum up to 1.

Table C.6.: Inflation parameter estimates from DCL, BDCL, IDCL and PDCL
for 11-year MD

Accident year DCL BDCL IDCL PDCL ZDCL
1 1.00000 1.00000 1.00000 1.00000 1.00000
2 0.96372 0.96476 16.54482 6.29607 1.87022
3 0.91453 0.91503 2.25602 1.63450 1.03692
4 0.89192 0.89172 1.08723 0.80006 0.87630
5 0.92995 0.93142 1.33189 1.14104 0.96583
6 0.91412 0.91581 1.14507 0.98909 0.92686
7 0.91452 0.91694 1.07017 0.88175 0.90895
8 0.86100 0.85789 0.80502 0.57460 0.81231
9 0.79312 0.79366 0.81511 0.57939 0.75679
10 0.71283 0.71535 0.74431 0.63181 0.69906
11 0.65699 0.72102 0.84559 1.01295 0.71750

Table C.7.: Delay parameters from DCL and PDCL and common mean factor
for 11-year MD

π

A/Year DCL/BDCL/IDCL/ZDCL PDCL
1 0.68207 0.67797
2 0.22198 0.22705
3 0.03231 0.03250
4 0.02767 0.02747
5 0.01454 0.01391
6 0.01005 0.00960
7 0.00533 0.00514
8 0.00192 0.00192
9 0.00313 0.00312
10 0.00092 0.00106
11 0.00009 0.00028
µ (£) 1085.035
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Table C.8.: Outstanding liabilities by accident year from DCL, BDCL, IDCL,
PDCL and ZDCL for 11-year MD in £000s

A/Y CLM DCL BDCL IDCL PDCL ZDCL
1 0.000 0.209 0.209 0.209 0.385 0.209
2 2.986 3.563 3.567 61.170 51.081 6.915
3 30.610 31.702 31.719 78.204 71.820 35.945
4 132.442 132.734 132.704 161.799 127.606 130.410
5 184.431 184.919 185.212 264.845 237.655 192.055
6 327.497 330.612 331.225 414.142 361.049 335.222
7 540.561 537.232 538.655 628.668 510.021 533.960
8 891.979 886.484 883.286 828.848 576.592 836.355
9 1161.574 1160.769 1161.554 1192.945 833.419 1107.591
10 1741.275 1704.974 1710.999 1780.258 1499.072 1672.031
11 4412.212 4412.395 4842.398 5679.020 6881.033 4818.801
Total 9425.566 9385.594 9821.528 11090.109 11149.731 9669.494

Prediction is performed under F4 in Table 8.1.

Figure C.6.: Minimum Error Path (MEP) graph for 19-year PA

Table C.9.: Minimum combined error and associated Z values by cut-off years
for 19-year PA

c Z (1− Z) ∗
wBDCL

(1− Z) ∗
wIDCL

(1− Z) ∗
wPDCL

Minimum

1 0.46 0.00 0.54 0.00 0.0248
2 0.26 0.00 0.25 0.49 0.0805
3 0.42 0.00 0.02 0.56 0.0953
4 0.28 0.22 0.00 0.50 0.0795
5 0.71 0.00 0.00 0.29 0.0990

The error is found by minimising errors by simultaneously considering weights in three dimensions. The
other dimension is constructed by the constraint that weights sum up to 1.

60



Table C.10.: Inflation parameter estimates from DCL, BDCL, IDCL, PDCL and
ZDCL for 19-year PA

Underwriting year DCL BDCL IDCL PDCL ZDCL
1 1.00000 1.00000 1.00000 1.00000 1.00000
2 1.11729 1.11729 1.11729 1.11729 1.11729
3 1.49473 1.49549 1.49473 126.98337 64.23926
4 1.74609 1.74452 1.74609 -29.25359 -13.75419
5 2.10746 2.10782 2.45402 5.85723 3.98245
6 2.09357 2.09139 0.82390 0.41915 1.25575
7 2.24954 2.23962 0.14356 0.03173 1.13786
8 2.12500 2.11582 0.79262 1.10935 1.61461
9 1.90280 1.88777 0.28472 0.42208 1.15823
10 2.01967 2.00670 0.79691 1.30015 1.65628
11 2.07036 2.05038 0.65670 1.15901 1.60909
12 2.26660 2.21353 -0.52391 0.00587 1.12138
13 2.31566 2.30678 2.05092 3.03157 2.67113
14 2.47468 2.44271 1.97987 2.88490 2.67084
15 2.38288 2.31091 1.84105 2.68585 2.51421
16 2.83913 2.38747 1.26057 1.96908 2.27764
17 3.18153 2.49436 1.76960 2.09704 2.44688
18 4.17470 2.74981 2.15977 2.47035 2.92355
19 6.75014 2.85389 2.67027 2.88864 3.72844

Table C.11.: Delay parameters from DCL and PDCL and common mean factor
for 19-year PA

π

A/Year DCL/BDCL/IDCL/ZDCL PDCL
1 0.05922 0.06673
2 0.30977 0.31709
3 0.20318 0.20356
4 0.19964 0.19332
5 0.13884 0.13178
6 0.04403 0.04494
7 0.02268 0.02232
8 0.00949 0.00987
9 0.00176 0.00157
10 0.00288 0.00252
11 0.00020 0.00022
12 0.00259 0.00196
13 0.00189 0.00141
14 0.00319 0.00216
15 -0.00017 -0.00005
16 0.00125 0.00084
17 -0.00042 -0.00024
18 0.00004 0.00000
19 -0.00004 -0.00001
µ (£) 2579.002
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Table C.12.: Outstanding liabilities by accident year from DCL, BDCL, IDCL,
PDCL, and ZDCL for 19-year PA in £000s

A/Y CLM DCL BDCL IDCL PDCL ZDCL
1 0.000 -0.033 -0.033 -0.033 -0.015 -0.033
2 0.000 0.634 0.634 0.634 0.699 0.634
3 0.000 -0.367 -0.368 -0.367 -23.573 -15.792
4 0.000 -1.398 -1.397 -1.398 7.935 11.013
5 17.312 15.090 15.093 17.572 31.097 28.515
6 34.620 31.702 31.669 12.476 4.962 19.017
7 138.113 142.219 141.592 9.076 1.475 71.974
8 244.858 250.324 249.243 93.370 97.482 190.265
9 352.247 360.057 357.213 53.876 60.875 219.337
10 394.267 383.014 380.554 151.128 191.418 314.247
11 552.383 525.768 520.694 166.770 237.157 408.933
12 683.887 632.035 617.237 -146.092 1.386 313.581
13 1050.408 977.482 973.732 865.728 1178.343 1127.755
14 2536.084 2549.764 2516.823 2039.939 2845.111 2753.852
15 5736.951 5449.868 5285.262 4210.649 5979.288 5760.115
16 14088.912 15438.845 12982.752 6854.829 10325.431 12532.901
17 21005.736 21741.878 17045.895 12093.031 13910.876 17003.170
18 44687.657 44459.344 29284.613 23000.944 25825.154 32045.473
19 98972.310 98973.805 41845.072 39152.831 42101.569 58095.880
Total 190495.745 191930.031 112246.280 88574.963 102776.669 130880.837

Prediction is performed under F4 in Table 8.1.

C.3. Estimated errors

Table C.13.: Prediction errors for DCL, BDCL, IDCL, PDCL and ZDCL up to
ĉ∗ for 11-year BI

c Error DCL BDCL IDCL PDCL ZDCL

1

Mean point 0.1254 0.1404 0.1717 0.1301 0.1021
Mean accident 0.1254 0.1404 0.1717 0.1301 0.1021
Mean calendar 0.2524 0.3405 0.5186 0.2609 0.2369
Combined 0.2818 0.3683 0.5463 0.2915 0.2580
Total 0.2524 0.3405 0.5186 0.2609 0.2369

2

Mean point 0.0743 0.1057 0.1314 0.0874 0.0702
Mean accident 0.0690 0.1356 0.1769 0.0889 0.0589
Mean calendar 0.1037 0.2295 0.3635 0.1320 0.1064
Combined 0.1245 0.2665 0.4043 0.1591 0.1216
Total 0.0872 0.3118 0.5155 0.1769 0.1254

3

Mean point 0.0601 0.0954 0.1247 0.0747 0.0550
Mean accident 0.0777 0.1568 0.2061 0.0748 0.0455
Mean calendar 0.0682 0.2105 0.3299 0.0742 0.0604
Combined 0.1034 0.2624 0.3890 0.1054 0.0756
Total 0.1081 0.3654 0.5706 0.1085 0.0890

The errors are defined in Section 5.3 and predicitons is performed under F2 in Table 8.1.
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Table C.14.: Prediction errors for DCL, BDCL, IDCL, PDCL and ZDCL up to
ĉ∗ for 11-year MD

c Error DCL BDCL IDCL PDCL ZDCL

1

Mean point 0.0340 0.0359 0.0716 0.1044 0.0312
Mean accident 0.0340 0.0359 0.0716 0.1044 0.0312
Mean calendar 0.0433 0.1037 0.2665 0.2719 0.0871
Combined 0.0551 0.1098 0.2760 0.2912 0.0926
Total 0.0433 0.1037 0.2665 0.2719 0.0871

2

Mean point 0.0430 0.0340 0.0375 0.0511 0.0322
Mean accident 0.0446 0.0400 0.0597 0.0831 0.0352
Mean calendar 0.0421 0.0453 0.1463 0.1157 0.0403
Combined 0.0613 0.0604 0.1580 0.1424 0.0535
Total 0.0267 0.0627 0.2242 0.1705 0.0515

The errors are defined in Section 5.3 and predicitons is performed under F2 in Table 8.1.

Table C.15.: Prediction errors for DCL, BDCL, IDCL, PDCL and ZDCL up to
ĉ∗ for 19-year PA

c Error DCL BDCL IDCL PDCL ZDCL

1

Mean point 0.0522 0.0784 0.1049 0.0702 0.0431
Mean accident 0.0522 0.0784 0.1049 0.0702 0.0431
Mean calendar 0.2421 0.0562 0.3591 0.1009 0.0302
Combined 0.2476 0.0965 0.3741 0.1230 0.0526
Total 0.2421 0.0562 0.3591 0.1009 0.0302

2

Mean point 0.0456 0.0521 0.0592 0.0443 0.0429
Mean accident 0.0605 0.0671 0.0752 0.0560 0.0537
Mean calendar 0.1554 0.0563 0.1714 0.0568 0.0707
Combined 0.1668 0.0876 0.1872 0.0797 0.0888
Total 0.2166 0.0220 0.1978 0.0148 0.0715

3

Mean point 0.0379 0.0616 0.0741 0.0523 0.0454
Mean accident 0.0544 0.0920 0.1092 0.0753 0.0615
Mean calendar 0.1249 0.0886 0.2390 0.1035 0.0776
Combined 0.1362 0.1277 0.2628 0.1280 0.0990
Total 0.2065 0.0501 0.3157 0.0891 0.0245

4

Mean point 0.0342 0.0475 0.0648 0.0336 0.0297
Mean accident 0.0615 0.0727 0.0978 0.0410 0.0304
Mean calendar 0.1365 0.0762 0.2584 0.0930 0.0735
Combined 0.1497 0.1053 0.2763 0.1017 0.0795
Total 0.2830 0.0192 0.3719 0.0701 0.0756

The errors are defined in Section 5.3 and predicitons is performed under F2 in Table 8.1.
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Figure C.7.: Minimum Error Development (MED) graph for 11-year BI

The horizontal is the index of the values rather than Z values. The trend can be interpreated by
ackowledgeing the fact that as the index value increase, more credibility is given to γ̂ though not
strictly. By the algorithm in Section 5.2, the first couple index have the same Ẑ attached to γ̂ while
vary the weight given to other inflation estimates. Then the Ẑ increases but again hold constent when
other weights varies, and so on.
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Figure C.8.: Minimum Error Development (MED) graph for 11-year MD

The horizontal is the index of the values rather than Z values. The trend can be interpreated by
ackowledgeing the fact that as the index value increase, more credibility is given to γ̂ though not
strictly. By the algorithm in Section 5.2, the first couple index have the same Ẑ attached to γ̂ while
vary the weight given to other inflation estimates. Then the Ẑ increases but again hold constent when
other weights varies, and so on.

Figure C.9.: Minimum Error Development (MED) graph for 19-year PA

The horizontal is the index of the values rather than Z values. The trend can be interpreated by
ackowledgeing the fact that as the index value increase, more credibility is given to γ̂ though not
strictly. By the algorithm in Section 5.2, the first couple index have the same Ẑ attached to γ̂ while
vary the weight given to other inflation estimates. Then the Ẑ increases but again hold constent when
other weights varies, and so on.
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D. Table for point forecasts under
different scenarios

Table D.1.: Outstanding reserves from DCL for 19-year PA per year of origin in
£000s

A/Y CLM F1(same
as CLM)

F2 F3 F4 F5 F6

1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
2 0.0 0.0 0.1 0.3 0.6 0.1 0.3
3 0.0 0.0 0.1 -0.3 -0.4 0.5 0.7
4 0.0 0.0 0.2 -1.4 -1.4 1.4 1.7
5 17.3 17.3 17.5 15.1 15.1 6.8 7.1
6 34.6 34.6 34.9 31.3 31.7 34.1 34.6
7 138.1 138.1 138.5 141.4 142.2 137.4 138.1
8 244.9 244.9 245.4 249.4 250.3 244.0 244.9
9 352.2 352.2 352.8 359.1 360.1 351.3 352.3
10 394.3 394.3 394.8 382.5 383.0 393.4 394.3
11 552.4 552.4 552.9 525.6 525.8 551.5 552.4
12 683.9 683.9 684.4 631.7 632.0 683.0 683.9
13 1050.4 1050.4 1050.9 977.1 977.5 1049.7 1050.4
14 2536.1 2536.1 2536.7 2549.3 2549.8 2535.2 2536.1
15 5737.0 5737.0 5737.6 5449.2 5449.9 5736.0 5737.1
16 14088.9 14088.9 14089.6 15438.4 15438.8 14088.1 14089.3
17 21005.7 21005.7 21006.4 21741.4 21741.9 21005.2 21006.2
18 44687.7 44687.7 44688.6 44458.4 44459.3 44687.2 44688.7
19 98972.3 98972.3 98973.8 98972.3 98973.8 98972.2 98974.7
Total 190495.7 190495.7 190505.1 191920.8 191930.0 190477.2 190492.9
Change from F1 0.0 0.0 9.4 1425.1 1434.3 -18.6 -2.8
% change 0.0 0.0 0.0 0.7 0.8 0.0 0.0

A/Y F7 F8 F9 F10 F11 F12
1 0.0 0.0 0.0 0.1 0.0 0.0
2 0.5 0.8 0.2 0.4 0.5 0.9
3 0.1 0.1 1.0 1.3 0.6 0.6
4 0.7 0.8 4.8 5.1 3.4 3.5
5 3.9 4.0 25.3 25.8 23.0 23.2
6 30.9 31.4 47.0 47.6 43.7 44.4
7 140.7 141.8 156.1 156.9 159.4 160.6
8 248.5 249.8 266.6 267.6 271.0 272.6
9 358.2 359.5 375.4 376.5 382.1 383.7
10 381.8 382.5 416.9 418.0 405.0 406.2
11 524.6 525.2 576.1 577.2 549.2 550.1
12 630.9 631.5 705.6 706.6 653.5 654.3
13 976.4 977.1 1069.0 1069.9 995.8 996.6
14 2548.3 2549.3 2558.7 2559.8 2571.8 2572.9
15 5448.3 5449.4 5760.0 5761.3 5472.5 5473.7
16 15437.3 15438.5 14110.5 14112.0 15458.9 15460.4
17 21740.7 21741.8 21019.4 21020.6 21754.4 21755.7
18 44458.0 44459.5 44699.0 44700.9 44470.0 44471.8
19 98972.2 98974.7 98975.2 98978.2 98975.2 98978.2
Total 191902.1 191917.8 190766.6 190785.8 192190.3 192209.5
Change from F1 1406.3 1422.0 270.8 290.1 1694.6 1713.7
% change 0.7 0.7 0.1 0.2 0.9 0.9
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Table D.2.: Outstanding reserves from BDCL for 19-year PA per year of origin
in £000s

A/Y F1 F2 F3 F4 F5 F6
1 0.0 0.0 0.0 0.0 0.0 0.1
2 0.0 0.1 0.3 0.6 0.1 0.3
3 0.0 0.1 -0.3 -0.4 0.5 0.7
4 0.0 0.2 -1.4 -1.4 1.4 1.7
5 17.3 17.6 15.1 15.1 6.8 7.1
6 34.6 34.9 31.3 31.7 34.1 34.6
7 137.5 137.9 140.8 141.6 136.8 137.5
8 243.8 244.3 248.3 249.2 243.0 243.8
9 349.5 350.0 356.3 357.2 348.6 349.5
10 391.7 392.3 380.0 380.6 390.9 391.7
11 547.1 547.6 520.6 520.7 546.1 547.1
12 667.9 668.4 616.9 617.2 667.0 667.9
13 1046.4 1046.8 973.3 973.7 1045.6 1046.4
14 2503.3 2503.9 2516.3 2516.8 2502.4 2503.4
15 5563.7 5564.3 5284.6 5285.3 5562.8 5563.8
16 11847.6 11848.2 12982.4 12982.8 11846.9 11847.9
17 16468.8 16469.2 17045.5 17045.9 16468.3 16469.1
18 29435.0 29435.6 29284.0 29284.6 29434.7 29435.7
19 41844.4 41845.1 41844.4 41845.1 41844.4 41845.5
Total 111098.5 111106.4 112238.5 112246.3 111080.4 111093.7
Change from F1 0.0 7.9 1140.0 1147.8 -18.0 -4.8
% change 0.0 0.0 1.0 1.0 0.0 0.0

A/Y F7 F8 F9 F10 F11 F12
1 0.0 0.0 0.0 0.1 0.0 0.0
2 0.5 0.8 0.2 0.4 0.5 0.9
3 0.1 0.1 1.0 1.3 0.6 0.6
4 0.7 0.8 4.8 5.1 3.4 3.5
5 3.9 4.0 25.3 25.8 23.0 23.2
6 30.8 31.4 46.9 47.5 43.7 44.3
7 140.1 141.2 155.4 156.2 158.7 159.9
8 247.4 248.7 265.4 266.4 269.9 271.4
9 355.3 356.7 372.4 373.5 379.1 380.7
10 379.4 380.0 414.2 415.3 402.4 403.6
11 519.6 520.1 570.5 571.7 543.9 544.8
12 616.1 616.7 689.1 690.1 638.2 639.0
13 972.7 973.3 1064.9 1065.8 992.0 992.8
14 2515.4 2516.3 2525.6 2526.7 2538.6 2539.7
15 5283.8 5284.8 5586.0 5587.2 5307.2 5308.4
16 12981.5 12982.5 11865.8 11867.0 12999.6 13000.9
17 17045.0 17045.8 16479.4 16480.4 17055.7 17056.7
18 29283.7 29284.7 29442.5 29443.7 29291.6 29292.8
19 41844.4 41845.5 41845.7 41846.9 41845.7 41846.9
Total 112220.3 112233.6 111355.1 111371.3 112494.0 112510.1
Change from F1 1121.9 1135.1 256.6 272.8 1395.5 1411.7
% change 1.0 1.0 0.2 0.2 1.3 1.3
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Table D.3.: Outstanding reserves from IDCL for 19-year PA per year of origin
in £000s

A/Y F1 F2 F3 F4 F5 F6
1 0.0 0.0 0.0 0.0 0.0 0.1
2 0.0 0.1 0.3 0.6 0.1 0.3
3 0.0 0.1 -0.3 -0.4 0.5 0.7
4 0.0 0.2 -1.4 -1.4 1.4 1.7
5 20.2 20.4 17.6 17.6 7.9 8.3
6 13.6 13.7 12.3 12.5 13.4 13.6
7 8.8 8.8 9.0 9.1 8.8 8.8
8 91.3 91.5 93.0 93.4 91.0 91.3
9 52.7 52.8 53.7 53.9 52.6 52.7
10 155.6 155.8 150.9 151.1 155.2 155.6
11 175.2 175.4 166.7 166.8 174.9 175.2
12 -158.1 -158.2 -146.0 -146.1 -157.9 -158.1
13 930.3 930.7 865.4 865.7 929.7 930.3
14 2029.0 2029.4 2039.6 2039.9 2028.3 2029.0
15 4432.5 4432.9 4210.1 4210.6 4431.8 4432.6
16 6255.5 6255.8 6854.6 6854.8 6255.1 6255.6
17 11683.6 11683.9 12092.8 12093.0 11683.3 11683.9
18 23119.1 23119.5 23000.5 23000.9 23118.8 23119.6
19 39152.2 39152.8 39152.2 39152.8 39152.2 39153.2
Total 87961.4 87965.9 88571.0 88575.0 87947.1 87954.5
Change from F1 0.0 4.4 609.6 613.5 -14.4 -7.0
% change 0.0 0.0 0.7 0.7 0.0 0.0

A/Y F7 F8 F9 F10 F11 F12
1 0.0 0.0 0.0 0.1 0.0 0.0
2 0.5 0.8 0.2 0.4 0.5 0.9
3 0.1 0.1 1.0 1.3 0.6 0.6
4 0.7 0.8 4.8 5.1 3.4 3.5
5 4.5 4.7 29.5 30.0 26.8 27.0
6 12.2 12.4 18.5 18.7 17.2 17.5
7 9.0 9.0 10.0 10.0 10.2 10.3
8 92.7 93.2 99.4 99.8 101.1 101.7
9 53.6 53.8 56.2 56.3 57.2 57.4
10 150.7 150.9 164.5 164.9 159.8 160.3
11 166.4 166.6 182.7 183.1 174.2 174.5
12 -145.8 -146.0 -163.1 -163.3 -151.1 -151.2
13 864.8 865.3 946.8 947.6 882.0 882.7
14 2038.8 2039.5 2047.1 2048.0 2057.6 2058.5
15 4209.5 4210.3 4450.2 4451.2 4228.1 4229.1
16 6854.2 6854.7 6265.1 6265.7 6863.7 6864.4
17 12092.4 12093.0 11691.2 11691.9 12100.0 12100.7
18 23000.2 23001.0 23124.9 23125.9 23006.4 23007.4
19 39152.2 39153.2 39153.4 39154.6 39153.4 39154.6
Total 88556.5 88563.4 88082.3 88091.3 88691.3 88699.7
Change from F1 595.0 601.9 120.9 129.9 729.8 738.2
% change 0.7 0.7 0.1 0.1 0.8 0.8
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