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INTRODUCTION

Man has always felt the need to protect himself from events which could
affect the peaceful flow of his life and a solution he found was transferring
risk to someone else less averse to risk then him: the insurer.

However insurance companies are not willing to insure every type of risk
because they have to protect themselves from failure; in particular natural
disasters pose several challenges to insurers because they involve potentially
high looses that are extremely uncertain.

In this thesis we will focus on a specific topic: the seismic risk.

In the FIRST CHAPTER we will illustrate the classical extreme value
theory. Considering a sequence X, Xo, X3, ... of independent identically
distributed non-degenerate random variables with common distribution func-
tion F' we will define the sample maxima M,, as the maximum of X, ..., X,
n > 1, and we will prove that the limit distribution of normalised maxima
belongs to one of three distribution functions families: the Gumbel A, the
Frechét &, and the Weibull ¥, with a > 0, called standard extreme value
distributions.

After we will introduce the concept of maximum domain of attraction of the
extreme value distribution, characterizing it on varying of the distribution
family: in particular will be the tail of the distribution function F' to make
the difference.

From a statistical point of view is simpler dealing with a single distribution
function for maxima instead of three different distribution families, thus we
will introduce the generalised extreme value distribution (GEV) Hg,, , where
i € R is the location parameter, ¢ > 0 is the scale parameter and £ € R is
the shape parameter which value, depending whether positive, negative or



zero, distinguishes the three families. Then we will show how making infer-
ence for this distribution, in order to estimate its parameters and check the
model adequacy.

After that we will introduce the generalised Pareto distribution (GPD) G¢ ; 5,
which is the limit distribution of the scaled excess over an high threshold u,
that is (((X —u)/a(u))|X > u). This distribution has some interesting prop-
erties, in particular for g = 0 it well approximates the excess distribution
function F,(z) = P(X —u < z|X > u), x > 0. Finally we will show how to
make inference also for parameters of this distribution.

In the SECOND CHAPTER we will apply the theory developed in the
first chapter to Italian earthquakes data available in the Parametric Cata-
logue of Italian Earthquakes (CPTI15). Our purpose is to find the distribu-
tion family of the maximum magnitude.

First of all we will clean the dataset. Since records refer to the period 1000-
2014, we will keep only reliable and satisfactory records; instead records
referring to replicates will be dropped, since results obtained in the first
chapter concern only independent events.

Then we will estimate GEV distribution parameters for the whole Italian ter-
ritory, first for annual block maxima, then for ten years block maxima and
finally for fifty years block maxima, checking also model adequacy. After
that we will divide the Italian territory in six regions, Sea/Foreign, Alps, Po
valley, Centre, South and Islands, distinguished by their seismic, and we will
analyse what changes estimating zone by zone GEV distribution parameters.
Finally we will use the GPD approach to investigate values assumed by the
shape parameter &, first choosing a threshold value for all Italian records
and then for regional records, every time checking the adequacy of the fitted
model.

In the THIRD CHAPTER we will use estimated distribution functions to
set premiums for seismic risk coverage. Some assumptions will be needed, in
particular we will assume that an insurer insures the whole Italian territory,
consisting of 27 million housing units with an overall reconstruction cost of
3900 billion Euro. Furthermore we will assume that the loss depends in a
proportional manner on the energy released by the earthquake, that in turn
depends on the annual maximum magnitude value. So in our context the
loss L will be a random variable depending on value of annual block maxima
M,,.

Then, from costs of seven recent catastrophic earthquakes concentrated in



the period 1968-2014, we will estimate the proportionality constant k which
will let us infer the extent of loss for all annual block maxima.

Using quantiles of the M,’s distribution function, we will be able to relate
the loss with its exceedance probability and return period: in particular we
will calculate the expected annual loss and the premium, first for the whole
Italian territory then differentiating by region.



CHAPTER 1

LCLASSICAL EXTREME VALUE THEORY

1.1 Basic definitions

Let (2,3, P) a probability space, where Q is the events set, S is a o-algebra
on 2 and P: ¥ — [0,1] is a probability measure.

Definition 1.1.1. Let X : Q@ — R be a random variable. The function F
defined by

F:R—[0,1]
z— P(] —o0,2]) = P(X <x).

is called distribution function. B
The tail of the distribution function is FF =1 — F.

Definition 1.1.2. Suppose h is a non-decreasing function on R. The function
defined as
RT(t) =inf{z € R: h(z) >t}

is called generalised inverse of h, with the convention that inf {} = occ.

Definition 1.1.3. The generalised inverse of the distribution function F'
Fot)=inf{z eR: F(z)>t}, 0<t<l

is called quantile function.
The quantity x; = F* (t) defines the ¢-quantile of F.



We denote by zp =sup{z € R: F(z) < 1} the right endpoint of F.

It can be useful also remember different kind of convergence.

Definition 1.1.4. We say a sequence of real random variables { X, },>1 con-
verges to a random variable X on R

e in probability if Ve > 0 lim, ... P(|X, — X| > ¢€) = 0;

e almost sure if, for almost any w, the sequence of numbers X, (w)
converges to X (w);

e in L, if every X,, (and X) belongs to Ly and
lim,, o0 | X, — X2 = lim,, 0 E[| X, — X]?] = 0.

Between them these relations hold:
. Lo P
o if X, —> X, then X,, — X;
o if X,, 2% X, then X, — X
o if X, LN X, then exists a subsequence X,,, such that X, 22 X

Definition 1.1.5. A sequence of real random variables {X,, },>; is said to
converge in distribution to a random variable X on R if for all f continuous

and bounded function lim, . E[f(X,)] = E[f(X)].

1.2 Limit law for maxima

Let X;, X5, X3, ... be a sequence of independent identically distributed
non-degenerate random variables with common distribution function F'.

Definition 1.2.1. We define the sample mazrima as
M, = max{Xy,..., X}, n>1
and the sample minima as

min{ Xy, ..., X,,} = —max{—-X;,...,— X,,}, n>1



Thanks to the independence and equal distribution of variables, we can
easily write down the exact distribution function of M,,:

P(M, <z)=PX; <uz,..,X,<x)
=PXi <2)-- - P(X, <)
- F(@)-- F(@)
= F"(x), reRneN.

Remark 1.2.1. In practice this is not so useful because the common distribu-
tion function F'is unknown.

We can avoid this problem using standard classical statistical techniques to
estimate F' from observed data, but we must keep in mind that small dis-
crepancies in the estimate could lead to substantial discrepancies for F™.
Alternatively we can directly look for an approximate of F" based on extreme
data only.

From this result we obtain that
o Vo < xp lim, oo P(M, <z)=Ilim, . F"(x) = 0;
e V& > xp, obviously in the case xp < oo, P(M,, < z) = F"(z) = 1,

thus .
M, — xr where zp < 0.

Moreover, since the sequence of numbers M, is non decreasing in n, we
have
a.s.
Mn — TF

but this isn’t enough.
In fact, our aim is showing the limit distribution of maxima but, to achieve
this purpose, we need first give conditions on F' under which

lim P(M,, < u,)

n—0o0

exists for an appropriate constant u,,.

The issue is, in contrast with sums for which the Central Limit Theorem en-
sures the convergence to the Normal distribution under the general condition
E[X?] < oo, that in the case of maxima we always need conditions on the
tail F; these conditions are given in the following



Proposition 1.2.1 (Poisson approximation).
Given a sequence {u,} € R and T € [0, 0], we have

lim nF(u,) =7 << lim P(M, <u,) —e .

n—oo n—o0

Proof. (=) If the first equation holds then

P(M, < u,) = F(un) = (1 — F(up))" = (1 - % +o (%))n i ey

(<) If P(M,, < u,) — e 7 then F(u,) — 0 and taking logarithms of this
condition we have
InP(M, <u,)—In(e")

)
In(1 — F(u,))" —
—nln(l — F(uy,)) —

Since —In(1 — z) ~ x for z — 0, then nF (u,) = 7 + o(1).
More detailed proof, included the case 7 = oo, can be found in Embrechts
et al. [1], Proposition 3.1.1. O

Remark 1.2.2. Assume 7 € (0,00) and consider the random variable

Bn = Z[{X7>un}
i=1

which represents the number of excesses over the threshold w,,.
The indicators

i>Un}t — ) 1=1,...,n
Kzud 7V 0 i X< w,

are independent Bernoulli variables with parameter F'(u,), then B, is a bi-
nomial random variable such that B, ~ B(n, F'(uy,)).

In the context of extremal events n — oo and F(u,) — 0 so, applying the
Poisson limit theorem we have

E[B,] =nF(u,) -7 < B, < P(7).

In particular P(M,, < u,) =P(B, =0) = e ".



Definition 1.2.2. The distribution of a non-degenerate random variable X
is called max-stable distribution if it satisfies

M, = max{X1,..., X, } < c, X +d,, (1.1)

for iid random variables X, Xi,..., X,, with n > 2 and for appropriate centring
and normalising constants ¢, > 0, d,, € R respectively.

Rewriting (1.1) as
ay o= Mo d g
CTL
where M is called normalised mazima, we can conclude that every max-
stable distribution is a limit distribution for maxima of iid random variables.
Furthermore, max-stable distributions are the only limit laws for M; in fact

the following theorem holds:

Theorem 1.2.2.
The class of all possible non degenerate limit laws for normalised mazima M}
of itd random variables coincides with the class of maz-stable distributions.

Proof. We already proved that every max-stable distribution is a limit dis-
tribution for maxima of iid random variables.
Conversely, to prove that the limit distribution is max-stable, we assume that
lim F"(c,x +d,) = H(z), z€R
n—oo

for some non-degenarate distribution function H.
Then for every k € N

k
lim F™(c,z +d,) = ( lim F"(c,z —I—dn)> = H*z), zeR.

n—oo (n~>oo

Furthermore
lim F™(cppr +dp) = H(z), = €R.

n—o0

For Convergence to types theorem (see Resnick [2], Proposition 0.2) there
exist ¢, > 0, di € R such that
c dpy, — d =
lim =% =&, lim 2" =4, ¢>0.
n—o0 Cp n—o0 Cn
Thus, for iid random variables Yi,...,Y; with distribution function H, we

obtain i
max{Y7,..., i} < Y1 + dy.



The following theorem is the basis of classical extreme value theory, be-
cause it gives the entire range of possible limit distributions for M.

Theorem 1.2.3 (Fisher-Tippett (1928)).

Let {X,,} be a sequence of non degenerate iid random variables.

If there exist norming constants ¢, > 0, d,, € R and some non degenerate
distribution function H such that

Mn_dn
M= d g

n Cn
then H belongs to one of the following distribution functions families:
1. Gumbel A(z)=-exp(—e™) z€R

{0 if 1< 0

2. Fréchet ®,(z)= ‘
exp(—z~%) if x>0

a>0

(=) if <0
3. Weibull qfa@c):{iXp( (=2)%) Z‘;x;o a > 0.
iy r

These distribution functions are called standard extreme value distributions.

Proof. The proof is technical and we only sketch it.
For any t > 0 we have

F["ﬂ(c[m]x + d[m]) — H(I), T € R,
where [t] denotes the integer part of ¢, and also
F'l(c,x 4 d,) = (F™(cox + d,))™M/™ — H'(z), z€R.

So, from Convergence to types theorem (see Resnick |2|, Proposition 0.2 ),
there exists functions v(¢) > 0, §(¢) € R such that
C’n

dn_dn
lim — =~(t), lim B )

n—o0 C[nt] n—o0 C[nt]

i), t>0,

and
H'(x) = H(y()x + 5(1)).

On one hand, for s > 0, we have
H*(x) = H(y(st)x + 6(st))

9



and on the other hand
1 (x) = (H*(2))’
= H'(7y(s)z +d(s))
= H(y(t)(v(s)z +d(s)) +0(¢))
= H(v(t)y(s)x +(t)d(s) + 4(1)).

Since G is assumed non-degenerate we therefore conclude for ¢ > 0, s > 0,
that

A(st) = 1(Dy(s) and 8(st) = (1)S(s) + 3(2).

The first equation is the Hamel functional equation, whose only finite, mea-
surable, nonnegative solution is of the following form:

vt)=t" HeR.

The three cases # = 0, # > 0 and 6 < 0 lead to the Gumbel, Frechét and
Weibull distribution respectively.
For a complete proof see Resnick [2]. O

Remark 1.2.3. Usually the Weibull distribution is defined as

F(z) =1—exp [— (;)a}, x>0, ANa>0

but in the context of extreme value theory is concentrated on (—o0,0), so

—T

‘Da,le—F(—x)Zexp{—(T) ], <0, \Na>0.

Thus we follow the convention and refers to
U, =exp(—(—x)%), <0, a>0

as the Weibull distribution (with scale parameter A = 1).

10
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Figure 1.1: Densities of standard Gumbel (red), Fréchet (green) and Weibull
(blue) distributions, with o = 1.

Even if these families seems to be very different, they are strictly related
from a mathematical point of view. Suppose X be a positive random variable,
then the following properties hold:

X~d, & hX*~A & —X'~vU,

Furthermore is important noting that the limit distribution is unique up
to affine transformations: in fact, if the limit appears as

lim P(c, (M, —d,) < x) = H(cx +d),

n—o0

then, by changing norming constants, we obtain

lim P(¢, ' (M, — Jn) < z)=H(z)

n—o0
where ¢, = ¢, /c and d,=d, — dey/c.
This result is due to Convergence to types theorem (see Resnick [2], Proposi-
tion 0.2) and is useful to define more general distributions: the extreme value
distributions, not standardized.

1.3 Maximum domain of attraction

In the past section we saw all possible limit distributions of normalised max-
ima (Theorem 1.2.3); in this section we will show the necessary and sufficient

conditions under which a distribution F' get precisely that limit distribution
H.

11



Definition 1.3.1. We say that the distribution function £’ of X belongs to
the maximum domain of attraction of the extreme value distribution H if

M, —d,
1 ¢,>0,d, € R such that M;::—iH.

Cn

In this case we write ' € MDA(H).

As direct consequence of Poisson approximation (Theorem 1.2.1) we have

Proposition 1.3.1. The distribution function F belongs to M DA(H) with
norming constants ¢, > 0,d,, € R if and only if

lim nF(c,v +d,)=—-InH(z), =x€cR
n—00

When H(x) = 0 the limit is co.

Another concept which will be useful is the following:

Definition 1.3.2. Two distribution functions F' and G are said to be tail-
equivalent if

1. they have the same right endpoint (i.e. zp = xg);
2. lim, ,,, F(z)/G(z) =k, 0<k<oo.

Indeed, it can be proved (see Embrechts et al. [1]) that every maximum do-
main of attraction is closed to tail-equivalence, that is for two tail-equivalent
distribution functions F' and G

Fe MDA(H) <« Ge MDA(H).

Before going ahead with the characterization of various types of MDA,
is useful giving the following

Definition 1.3.3. A positive, Lebesgue measurable function L on (0, 00) is
called

1. slowly varying at oo (L € Ry) if

I 1, ¢
R T R




2. regularly varying at oo of index v € R\ {0} (L € R,) if

li =t t>0
shee L(z)

3. rapidly varying at oo of index —oo (L € R_o) if

. L(tx) 0 ift>1
lim = )
z—oo L(1) oo f0<t<l

1.3.1 Case of Fréchet distribution o,

The tail of Fréchet distribution decreases like a power law: in fact, by Taylor
expansion, we obtain

O, =1-P, = l—exp(—2™) = 1-[1+(—2" ) +o((—z™)?*)] ~ 7%, 1z — .
The following theorem let us know how far away we can move from a power

tail and still remain in M DA(®,,).

Theorem 1.3.2.
The distribution function F belongs to MDA(®,), a > 0, if and only if

F(x) =27 *L(x)

for some slowly varying function L.

In this case we have M} A ., with norming constants ¢, = F~(1 —1/n)

and d,, = 0.

Proof. The proof uses the proposition given above and the Convergence to
types theorem. See Embrechts et al. [1] for details. O

Note that this result implies that every F' € M DA(®P,) has an infinite
right endpoint zp = o0.

This class of distribution functions (M DA(®,)) contains very heavy-tailed
distributions, that is E[max(0, X)°] = oo for § > «a. For this reason it is
appropriate for modelling large insurance claims.

Example 1.3.1. Distributions like Pareto or Cauchy belongs to the MDA of
Fréchet distribution, in fact their right tails are of the form

F(z) ~ kz™, x— oo,

13



for some k,o > 0 and this implies F € M DA(®,).
In particular norming constants are d,, = 0 and ¢, = (kn)'/°.
Also the log-Gamma distribution belongs to M DA(®,,), in fact its tail is

b1

I'(s)

Intz)s—1 Int A=l
lim%:hm<i+l> —1, t>0,

T—00 (]n x)ﬁ—l z—oo \ In

F(z) ~ (Inz)*'z7, z—o00, o3>0,

where

which implies (Inx)°~! € Ry as we wanted.

1.3.2 Case of Weibull distribution V¥,

First is important noting that every F' € M DA(V,,) has finite right endpoint
xp. Moreover, since Fréchet and Weibull distributions are related by

Do (r) =Vo(—2t), x>0,
we can expect that their M DA are also closely related, as the theorem below
shows.
Theorem 1.3.3. The distribution function F belongs to MDA(Y¥,), a > 0,
if and only if
1. xp < 00

2. F(rp —a27Y) = 27*L(x) for some slowly varying function L.

In this case we have M} A U, with norming constants ¢, = xp—F*<(1—1/n)
and d,, = Tp.

Proof. The proof is rather formal so we remaind to Embrechts et al. [1] for
a sketch. n

Although these distributions have very heavy tails, they’'re not used for
modelling large insurance claims because they are bounded to the right. In
fact, even if in practice there is often an upper limit, if we want to use this
class of distributions in models we also have to incorporate the parameter
rr and make models more complicated.

Thus distributions with xr = oo are preferred.

14



Example 1.3.2. Uniform distribution on (0, 1) belongs to the MDA of Weibull
distribution. The right endpoint is xp = 1 < 0o and its right tail is of the
form

Fl—-azYHY=a21eR,

which implies F' € MDA(V,).

In particular norming constants are ¢, = 1—F~(1—1/n) =n""' and d,, = 1.
More generally can be proved that the Beta distribution belongs to MDA of
Weibull distribution.

1.3.3 Case of Gumbel distribution A

The tail of Gumbel distribution decreases to 0 at an exponential rate: in
fact, by Taylor expansion, we obtain

Az) =1-A(2) = 1—exp(—e ) = 1-[1+(—e ) H+o((—e ™)*)] ~ e, 1z — oo.

Thus M DA(A) contains distribution functions which tails range from light
(as Normal distribution) to moderately-heavy (as log-Normal distribution).
Furthermore cases rp = oo and xr < 0o are both possible.

Theorem 1.3.4. The distribution function F with right endpoint vp < 00
belongs to MDA(A) if and only if

_ Tt
3 z<axp such that F(m):c(x)exp(—/ ﬁdt), z<x<zTp

a(t)
where ¢, g are measurable functions satisfying c(x) — ¢ > 0, g(x) — 1
as © — xp, and a is a positive, absolutely continuous function (respect to
Lebesgue measure) with density a (x) such that lim,_,,, a () = 0.
Norming constants can be chosen as d, = F*(1 —1/n) and c, = a(d,).

A possible choice for the function a is a(x) = f;F g((fv)) dt, v < xp.

Proof. The proof is long and technical, see Resnick [2]|, Corollary 1.7 and
Proposition 1.9 for a complete implementation. O

Example 1.3.3. [It’s rather complicated showing that Normal distribution
belongs to MDA of Gumbel distribution because the proof uses the notion of
Von Mises function and we didn’t introduce it. However, to get an idea we
remaind to Embrechts et al. [1], Example 3.3.29.

Similarly can be proved that also the Gamma distribution belongs to M DA(A).
Using the transformation X = g(X) = e*to% where X ~ N(0,1), p € R

15



and o > 0, we have the log-Normal distribution. Since X € MDA(N), this
implies 3
lim P(M, < ettolenatdn)y — A(z), zeR

n—o0

where ¢, and d,, are the norming constant of X.
This implies

lim P(e™# %M, <1+ ocpz +o(c,)) = Ax), z€R.

n—oo
Since ¢, — 0, it follows that

1 -
(M, — e'*oin) 5 A,

o'cnel“ro'dn

so X € M DA(N) with norming constants &, = oc,e? 7% and d, = ettodn,

1.4 Generalised extreme value distribution

In the past section we saw that the limit distribution of standardised maxi-
mum of iid random variables belongs to one of these three families: Fréchet,
Weibull, Gumbel.

A one-parameter representation of these distributions can be useful, mainly
for statistical applications.

Definition 1.4.1. The distribution function defined as
exp{—(1 + &a)"VE} i ¢£0

He(z) = L L
exp{—e "} if =0

where 1 4 £x > 0 and H, is obtained as a limit of H, for £ — 0, is called
standard generalised extreme value distribution (SGEV).

The parameter & is called shape parameter.

The support of H¢(z) corresponds to

r>—1/§ for £€>0

r<—1/§ for £<0
reR for £=0.

For different values of ¢ we found the three distribution functions of
Fisher-Tippet theorem (1.2.3), in particular

16



e if £ =1/a > 0 we have the Fréchet distribution ®,;
e if ¢ = —1/a < 0 we have the Weibull distribution U,;
e if £ =0 we have the Gumbel distribution A.

Consequently, we can also give a unique characterisation of the maxi-
mum domain of attraction which includes characteristics of each distribution
family.

Theorem 1.4.1. The distribution function F' belongs to MDA(He), £ € R,
if and only if there exists a positive measurable function a such that for
14+&x>0

lim —————~ = 4
e " if £&= 0.

U—TR F(u)
Proof. We only sketch the case £ > 0 reminding to Embrechts et al. [1],
Theorem 3.4.5 for more details.
(=) For £ > 0 we have He(z) = @,((x + a)/a), o = 1/€, and for Theorem
(1.3.2) FF € MDA(H;) is equivalent to ' € R_,. Using the rapresentation
theorem for regularly varying functions we obtain

F(u+ a(u)x) {(1 +&x)7VE if £ 0

tim S0 (14 2)

which is the relation above. B )
(<) If the relation holds, chosen d, = (1/F)* (n), then 1/F(d,) ~ n. Sub-
stituting u = d,, in the relation above, we obtain

T\ —« L F(dn -+ a(dn)x) Y =

and for Proposition (1.3.1) F € MDA(H), £ =1/a. O

Remark 1.4.1. We can also introduce the location-scale family H,, ,, with
p € R and o > 0, by replacing the argument x above with (x — u)/o. We
denote it with GEV and it’s support has to be adjusted accordingly.

In particular we obtain

exp{—[1 +5(%)}*1/5} if £ 0

Hepo(x) =
a expd —e )} it =0




which supportis z > p—0/6if £ >0, 2 < p—oc/fif £ <0and z € R if
£=0.

Mean and variance for SGEV distribution are obtained using moments
(see Hosking and Wallis [3], Kotz and Nadarajah [4], Reiss and Thomas [5]
p. 17-18):

(~1PT(1 - j) ifE<0
mj =4 I'(1 = j¢) if ¢e (0,1/7)
00 if £ 1/5.

In particular if X has H, distribution function we have
—T(1-¢) ifé<o

EX]=m =<T(1-¢&) if&e(0,1)
00 ifé>1

Var(X) =mg —mi =T(1 —-2¢) — [£0(1 = &) if £<1/2, €#0.

Remark 1.4.2. For a variable X with H,, , distribution function we have

g = J# €0 -T-0) ifé<land (20
o0 if €1

S -26) -1 =P ifé<1/2and €40

Var(X) = {oo if £>1/2.

If £ =0, using the moment generating function
Ele”] = e"T'(1 — at), olt| <1,

we have
E[X]=p+~o
where v = 0.57722 is the Euler’s constant, and

2

Var(X) = %02.
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Quantiles of H¢ are given by

_ - _ i
- {[( np) €= 1)/g HELO
—In(—1Inp) if £&=0

and they have a special meaning: x, = H{ (p) is the return level associated
with the return period 1/(1 — p), that is the level z, is expected to be
exceeded on average once every 1/(1 — p) years. The quantity 1 — p is called
probability of exceedance and represents the probability that M falls
beyond the threshold z,,.

In particular, substituting — Inp with y,, we obtain

S (y,* = 1)/§ ifE&£0
"l =Iny, if £=0

and plotting quantiles against Iny, =: w, (w, - —oco as 1 —p — 0),
(7 = 1)/ if E#£0
T, =
Pl —w, if £&=0

we can see that the plot is linear when £ = 0, convex with no finite bound
for 1 —p — 0 when £ > 0 and concave with asymptotic limit x, = —1/¢ for
1 —p— 0 when £ < 0. This kind of graph is called return level plot.

Return level plot
40 T T T T T

30 P

20

w
@
=
g °f \%
=
S
£=0
20k J
30t £<0
-40 .
10 8 6 4 2 0 2 4 6 8 10
Iny

Figure 1.2: Return level plots of the SGEV distribution with £ = 0.2, £ = —0.2
and & = 0.
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1.5 Inference for GEV distribution

In this section we refer to He,, ., with {,u € R, o0 > 0, and our purpose is
showing methods used for estimating GEV distribution parameters.

Since GEV distribution is the limit distribution of the normalised max-
ima of a sequence of iid random variables, for estimating its parameters is
necessary having a sequence of independent variables all with the same GEV
distribution function of the normalised maxima.

For this purpose we consider a sequence of independent random variables
Xi,..., Xpm, for large value of n, with the same distribution function F' and
we block them in m groups of equal length n; group’s maxima are called
block maxima and are denoted by Z;, i =1,...,m.

Notice that the choice of n is critical: in fact if n is too small there would be
bias in estimation and extrapolation due to poor approximation of the limit
distribution given in theorem 1.2.3; on the other hand if n is too big there
would be few groups, leading to large estimation variance.

Practical considerations often lead to blocks of length one year: in this way
is plausible assuming that block maxima have a common distribution.
Furthermore, is useful also that 2, Z,...,Z,, are independent so that we can
easily write the log-likelihood.

Remark 1.5.1. If the X;, j = 1,...,nm, are independent the Z;, ¢ = 1,...,m
are also independent. However, independence of the Z;’s is likely to be a
reasonable approximation even if the X;’s constitute a dependent series (see

Coles [6]).

The use of these block maxima for the estimation of M} =~ distribution
parameters is justified as follows.
The idea is to consider M =~ as maximum of nm variables and, at the same
time, as maximum of m maxima, each of which is the maximum of n variables.
More precisely we know from theorem 1.2.3 that, for n large,

Mn - dn
P(M! < x) = IP’(— < x) ~ He,po(),
Cn

so for any m € N, since nm is also large, we have

Mnm - dnm
- S {L‘) ~ Hf?.qu(x)'

Cnm

P(M:, <) = IP(
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On the other hand, being M} =~ the maximum of m maxima each of which is
the maximum of n variables, we obtain

P(M:, <) = [P(M”C—;d” < x)r ~ H, o ().

Therefore Hy,, , and H{"

o are identical apart from norming constants used
on M,.,.

Then let us consider Z;, © = 1,...,m as independent random variables
with GEV distribution

exp{~[1+¢ (3527} ire£0

H' U(Zl == z n
S ) expq —e —(5 )} ifé&=0

(1.2)

where 1+ & (%) > 0, whose density functions are given by

[1+6€(3552)] 7 Hepo(20) /o if €40

h .o Zi - Zi—
tne (%) {6_(0)]{5;#70(2}1’)/0 if €=0.

The log-likelihood is

Hh&w ZZ] =

l(p,0,§) =In

—mino— (14 3) S0 n[1+€(352)] - S8, [L+€ (354)) 7 ife#0
—mlno — 37" (2E) =3, e~ (50) if¢€=0
(1.3)
and their maximization with respect the parameter vector (u,o,§), ob-
tained equating partial derivatives of equations (1.3) to zero, gives the max-
imum likelihood estimates i, & and é ; there is no analytical solution, but it
can be achieved using standard numerical methods.
The estimates vector (ji, &,f) has approximately a multivariate normal dis-

tribution with mean (u, 0, &), so it’s an unbiased estimator for parameters of
GEYV distribution.

Quantiles estimates can then be obtained substituting (i, d, é) in the
quantile expression for GEV distribution with location and scale parameters,
leading to

(1.4)

s i l(=np) = 1)6/E i ££0
P f— o ln(—1Inp) if €= 0.
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The variance-covariance matrix of quantiles estimates is calculated by the
delta method, which we briefly illustrate.

Let we consider a rez}l valued continuous and differentiable function h of
a consistent estimator @ of @, defined in a neighbourhood of @, such that
Vh(0) # 0 and write its first-order Taylor expansion

h(B) ~ h(8) + Vh(8)T (0 — 0).

e Var(h(0)) = Var(h() + Vh(8)" (8 — 0))
= Var(h(0) + Vh(0)'6 — Vh(0)79))
= Var(Vh(6)6)
= Vh(0)"Var(6)Vh(8).

For more details see Davison [7].

Since 2, is a function of (f,5,€), we can obtain

Var(z,) ~Vz VVz,

~

where V' is the variance-covariance matrix of (f1,,¢) and

o1 (] 1

o [(—mp)~¢ — 1]/¢ if €0
o {=(=Inp)~*[¢In(=Inp) + 1] + 1}o/¢?

Vz, = 22| =S F

7 1

Ozp —In(—1Inp) if £&=0.

L 0¢ |
L 0

In the case in which f < 0it’s also possible to give the maximum likelihood
estimate of the right endpoint 2z, because for the Weibull distribution it is
finite. Since zp corresponds to z, where p = 1, we have

2 _0—/57

where its variance-covariance matrix is evaluated for p = 1.
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Another method for making inference on a particular component of the
parameter vector (u,o,&) is the profile likelihood. It consists in fixing the
parameter of interest and maximizing the log-likelihood (1.3) with respect to
the remaining parameters. This is repeated for a range of values of the pa-
rameter of interest. The corresponding maximized values of the log-likelihood
constitute the profile likelihood, used to obtain approximate confidence in-
tervals (see Coles [6]).

Other methods can then be used for model checking:

1. the probability plot is a comparison of the empirical and fitted distri-
bution functions.
With ordered block maximum data zq) < ... < 2y, the empirical
distribution function is given by H(z) = i/(m + 1) and the fitted
distribution function H (2(s)) is obtained by substitution of parameter
estimates into expression (1.2) with z; = 2z, ¢ = 1, ..., m.
If the GEV model works well H (2)) ~ H (2(:)) and the probability
plot, consisting of the locus of points

{(ﬁ(»z(i))’ff('%))) i=1, m}

should lie close to the unit diagonal. Its weakness for extreme value
models is that both distributions tend toward approach to 1 as z; in-
creases, so probability plot provides the least information in the region
of more interest;

2. the quantile plot solves the weakness of probability plot because it
consists of the points

{(ﬁrl(z’/(m + 1)),%)) =1, m} .
Departures from linearity indicate model failure;

3. the return level plot consists of the locus of points

{(Iny,, 2,) : 0 <p<1}

and is particularly convenient in extreme value models because the tail
of the distribution is compressed and return level estimates 2, for long
return periods can be displayed. Furthermore, the linearity of the plot
in the case £ = 0 is useful in judging the effect of the estimated shape
parameter. Empirical estimates of the return level function found above
can also be added in order to use return level plot as model diagnostic;
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4. another equivalent diagnostic, not based on comparison of empirical
and fitted distribution functions, consists in comparing the probability
density function of the fitted model with the histogram of the data.

1.6 Threshold models

Another point of view used for modeling extremal events, especially when
other data on extremes are available, is considering events which exceed a
certain threshold. Theorem 1.4.1 gives an interesting interpretation.

In fact, reformulating the relation found there, we have

X>u) - {(1 +€a)VE i E£0

lim P (M >z
e’ ité=0

where X is a random variable with distribution function F' € M DA(Hy).
This relation represents the limit distribution for the scaled excess over the
(high) threshold u, with scaling factor a(u).

Definition 1.6.1. Let X be a random variable with distribution function F
and upper endpoint xp. For fixed u < zp, the function

F(z)=P(X —u<z|X >u), x>0,

is called the excess distribution function of the random variable X over the
threshold u. The function

e(u) =E[X —ulX > u]
is called the mean excess function of X.

Remark 1.6.1. In insurance context the function F), is usually called ezcess
of loss distribution function.

As we can expect, the complement to 1 of the reformulation at the be-
ginning of this section is a limit distribution function, in particular we have
the following

Definition 1.6.2. Let X be a random variable with distribution function
F € MDA(H). We call standard generalised Pareto distribution (SGPD)
the distribution function

Colar) = 1—(1+&x)7 Y8 if €40
U F R if €= 0,
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where Gy can be interpreted as the limit of G¢ for { — 0 and the support is
x>0 if £€>0

0<z<-1/6 if £<0.

Therefore the SGPD represents the limit distribution function of the
scaled excess over the threshold w:

X —
<—U‘X > u) 4G
a(u)
Remark 1.6.2. We can also introduce the location-scale family G 5, with
f € R and 6 > 0, by replacing the argument = above with (v — i)/5. We

denote it with GPD and it’s support has to be adjusted accordingly.
In particular we obtain

z—ji\—1/¢€ :
1— (14225 jfe£0
G€~~(£If): (_T;ﬂ a ) ]
1l—e 3 if €= 0,
which supportisx > pif £ >0, p<ax < p—a/if £ <.
Mean and variance of a random variable X with G¢ ;s distribution function
are given by (see Suzuki-Parker [8])

E[X] = i+ if £€<1

Var(X) =

) 1
M-era-2 7 %%

Duality between the GEV distribution and the GPD implies that the
shape parameter £ is the same for both distributions, in particular it estab-
lishes the qualitative behaviour of generalised Pareto distribution. As we
can expect, the generalized Pareto distribution has three basic forms, each
corresponding to a limiting distribution of excess data from a different class
of underlying distributions:

e distributions whose tails decrease exponentially, such as the Normal,
lead to a generalized Pareto shape parameter £ = 0;

e distributions whose tails decrease as a polynomial, such as the log-
Gamma, lead to a positive shape parameter £ > 0;
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Figure 1.3: Densities of generalised Pareto distribution for t = 0, & = 1 and
different values of £: &€ = —0.25 (blue), £ =0 (red), £ =1 (green).

e distributions whose tails are finite, such as the Beta, lead to a negative
shape parameter £ < 0.

The generalised Pareto distribution has some interesting properties. The
most important is that

VEeR, FeMDA(H;) < lim sup [[Fu(z) = Gesw(x)]| =0

U=TF O<z<zp—u

for some positive function &(u).
As a consequence of this result we will assume g = 0, as in many statistical
applications.

Let us show now these properties:

e the class of GPDs is closed with respect to changes of the threshold,

that is
G,E~5—($]_ + 3?2) = ( T )1/5
— - = G+Ex =11 _—
Gg;&(xl) &0+¢ (1’2) +€0’+§(L’1
for z1, 29 € 0, 00) ifc=0
D0, -6/¢ ifé<0



e if X has GPD with £ < 1, then for u < zp

e(u) = E[X — u|X > u] = "1+ 55“, G+ u> 0,
This implies that, given an iid sample z1, ..., x,, the range of thresholds

we can choose is the set of u for which the empirical mean excess
function e, (u) is roughly linear. This graph is called mean residual
life plot.

In the case £ > 1 the mean is infinite;

e if in a model the number of exceedances N is exactly Poisson and the
excess distribution function is an exact GPD, then the maximum of
these excesses has an exact GEV distribution.

In other words, if N ~ P(A) is independent of the independent and
identically distributed sequence X1, ..., Xy with a GPD with parame-
ters £ and &, then the maximum My = max{Xj,..., X} is such that

x\ /¢
P(My < z) =exp [_)\ (1 + §T> } = HE;/«G(I)
G
where 1 = 6(\¢ — 1)/€ and 0 = G)°.
Proof. We know that P(M,, < z) = Gg;(z) if n is fixed and, from

remark (1.2.2), that the number of excesses is roughly Poisson. Then
we have

oo An
P(My <zx)= ZG_AFG?;(}(@
n=0 ’



1 T -1/
= exp {— (1—1+E+§&—>\5)]

= exp [_ (1 Pt 1)/5)} ~1/¢

oM
= He 50061y /e.60¢ ().

The case £ = 0 reduces to

P(My < z) = exp(—e~ (@771 N/7).

1.7 Inference for threshold models

Let us consider an iid sample x4, ..., z,,. Extreme events are those exceed-
ing the threshold w, that is {z;|z; > w, ¢ = 1,...,k}. Ordering these ex-
ceedances x(1) < ... < (), we can define threshold excess as

Y=z —u, =1,k

which have the generalised Pareto distribution, not standardised.
Assuming g = 0, the y;’s densities for ¢ = 1, ..., k are of the form

(1+¢2)7Y irezo

95;&(%) = if €=

S

[

—

Q= Q=

Remark 1.7.1. As for the choice of blocks dimension, also in the threshold
choice attention is required. In fact, if the threshold is

e too low the asymptotic basis of the model would be violated leading to
bias;

e to0 high there would be few excesses leading to high variance.

As for the GEV distribution, inference on generalised Pareto distribution
consists on maximum likelihood estimation of the parameters vector (7, &).
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So parameters estimates are obtained equating to zero the partial derivatives
of the log-likelihood, which is given by the following formula

k
[(6,§) =In [H 96;6(%‘)] =

ke - (14 1) S m[1+€%] g0
—klng — L% v, if £&=0.

Also in this case no analytical solution exists, so numerical methods are
required.

For what concerns model checking, the fitted generalised Pareto model can be
checked using probability plots, quantile plots, return level plots and density
plots as explained in Section (1.5).

(1.5)
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CHAPTER 2

STATISTICAL ANALYSIS OF ITALTAN
EARTHQUAKES DATA

2.1 Introduction

The theory of extreme events developed in the past chapter can now be
applied to Italian earthquakes data.

In this chapter we will analyze data from the last Parametric Catalogue of
Italian Earthquakes (CPTI15), in which is recorded information on events
from year 1000 to 2014. In addition to general parameters, such as origin
time and zone, also macroseismic and instrumental parameters are available:

e macroseismic parameters concern damage effects due to the passage of
seismic waves on urban centres, single buildings and on people. These
parameters are the result of an elaboration of information collected in
the field by teams of experts (i.e. seism classification by Mercalli scale);

e instrumental parameters are those obtainable from instruments, that
is epicentre location and magnitude.

Is important underlying the difference between Mercalli and Richter scale.
The first was introduced by Giuseppe Mercalli (1850-1914) with the purpose
of measuring the earthquake intensity from destructive effects on buildings
and people: it’s a discrete scale and consists of 12 levels. The second one,
introduced by Charles Francis Richter (1900-1985), measures the energy re-
leased by an earthquake at the point of fracture of the Earth’s crust, named
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focus. This is a continuous scale based on the "magnitude", a dimensionless
quantity.

Richter scale | Mercalli scale | Perception level
(magnitude) (degree)

0 I instrumental

1 I instrumental

2 I-11 instrumental /feeble
3 III-1V slight /moderate

4 V rather strong

5 VI-VII strong/very strong
6 VIII-IX rouinous/disastrous
7 X-XTI very disastrous/catastrophic
8 XIIT apocalyptic

9 XII apocalyptic

Because of its scarce relation with physical characteristics of earthquake
cause, this scale was recently substituted by the Moment Magnitude scale,
introduced by H. Kanamori and T.C. Hanks in 1979, defined by

2
Mw = g(lOQloMo — 603)

where M is the seismic moment at the focus measured in N-m and constants
are chosen such that having values similar to Richter scale.

The energy released by an earthquake, strictly related with it’s destroying
power, is proportional (for less then a constant) to oscillation width raised
to the 3/2 power. So, in term of released energy, a magnitudo difference of
1 is equivalent to a factor of 10"3/2 = 31.6, a magnitudo difference of 2 is
equivalent to a factor of 10%3/2 = 1000 and in general, a magnitudo difference
of my — my is equivalent to a factor of

fap = 103

(see Kanamori [13]).

Other information in the Parametric Catalogue is about the complete-
ness. Since the period under study is too large, our knowledge of historical
earthquakes derives from archive data which often are fragmentary and not
completely reliable. This feature intensifies moving across the Italian ter-
ritory: in fact floods, fires and other located events may have destroyed
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archives, causing a loss of information. For this purpose each record presents
an item related to the year from which we can consider information satisfac-
tory and reliable.

Finally, we can also distinguish main shocks from replicates.

2.2 Preparation of the dataset

First of all, in order to develope our analysis, we need cleaning the dataset!.
The entire Catalogue consists of 4390 records belonging both to Italian ter-
ritory (dry land and sea) and neighboring foreign Countries. The reason of
this can be immediately found keeping in mind that effects of an earthquake
whose epicentre is located not far from the border with Italy can be felt even
in Italian territory. Note that foreign data in the dataset were kept directly
from foreign catalogues for more accuracy.

Observations not in the completeness period must be dropped, and also
records representing replicates: in fact the theory in the first chapter is valid
for independent events only.

After this procedure our dataset consists of 1728 records.

The variables used in this analysis are the following:
1. Year is the year of earthquake origin;

2. MwDef is the default moment magnitude, that is the weighted average
of macroseismic and instrumental moment magnitude with weights the
square inverse of their respectively errors;

3. region is the completeness zone in which is located the epicentre. We
distinguish 6 areas:

Sea,/Foreign
Alps
Po wvalley

Centre
South
Islands.

'For the preparation of the dataset and all elaborations realised we had used Stata
software.
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One can ask why we consider the variable region such defined. The
reason derives from a geological cause.
Italian territory in fact is distinguished from a seismic point of view by the
presence of faults, which obviously are not homogeneously distributed. An
idea can be given by the following map.

PERICOLOSITA SISMICA
attuale delle conos ientifiche non &
prevedere un terremoto, in
, l'ora ed il luogo in cui
0, le informazioni su possibili terremoti futuri
ono fornite solo in termini di probabilita che si
, in un dato intervallo di 0, di
ce
la pericolosi

territorio
mappa si basa
informazioni geologiche
0 al n
quindi I'energia)
St onfrontando tutte queste informazioni & possibile
nere i valori di scuotimento del terreno in un d:

MAPPA DI sismicA
acclrazine. messina G sudo
on pObRBIa sk ol 10% i 0 ani
tataa sl g

[ 0-00zs
. oo
[ ocs-omms
. o001
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.o
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om0z
. 020z
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W 025025
. oos0n

[ comununno - onnrectozors

Figure 2.1: Seismic hazard map (2013). Violet areas are the most seismic, grey’s
the less ones. For the source see ING [18].
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2.3 GEV distribution parameters estimation

2.3.1 Global analysis

Consider the whole set of Italian records, consisting of 1728 independent

observations. We can call them x4, ..., T179s.
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Figure 2.2: Scatter plot of =1, ..., x17928.

This picture gives an idea about completeness: in fact the step structure
of the graph let us understand that reliable information about weakest earth-
quakes is more recent instead of that on strongest ones, which is to be found
far back in time. Moreover we can also see the difference in return periods
from seism with low magnitude and those with highest one.

Variaskle | Ok Mean 5td. Dew Min Max
MwDef 1728 4_701€15 53217&%9 3 .85 T.32
Year 1728 1333. €53 87.1305 I 1117 2614'

Figure 2.3: Minimum and maximum value of magnitude and year of observation.
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The following step is grouping observations in blocks of length one year.
Since in many years data are not available, we obtain only 270 block maxima.
Remember that independent records lead to independent block maxima.
Now we can apply to z1, ..., zo79 the maximum likelihood estimation method.

ML fit of GEV Humbker of cbs = 270
Wald chiz {0) =
Log likelihood = -232.94435 Brok » chi2 =
blockmaxima Coef. S5td. Err. Z Bxlz] [95% Conf. Interval]
scale
_cons .5068625 .0253133 20.02 0.000 . 4572493 .5564756
shape
_cons -.0722326 .0491349 -1.47 0.142 < -.1685353 .02407
locaticon
_cons 5.381541 0350767 153.42 0.000 5.312792 5.45029

Figure 2.4: Parameter estimates and 95% confidence intervals.

At first sight we are induced thinking that é = —0.0722326 < 0 means
that the limit distribution of maxima can be represented by Weibull family,
but the confidence interval extends well above zero. So, the evidence from
data for a bounded distribution is not strong. Let’s check the fitted model.

6 8
.

Modeled probability
4
|

Empirical quantile

2

4 6 6
Empirical probability Modeled quantile

Figure 2.5: Probability plot (on the left) and Quantile plot (on the right).
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Neither the probability plot nor the quantile plot give cause to doubt the
validity of the fitted model: each set of plotted points is near linear.
Even the comparison between kernel density (that is the "empirical" den-
sity obtained by an independent and identically distributed sample using a

smoothing process) and fitted density doesn’t instill doubt that model doesn’t
fit well.

Figure 2.6: Kernel density plot.

Finally we can use the return level plot for judging the effect of the
estimated shape parameter. Since the model-based curve and empirical es-

timates are in reasonable agreement, we can thus deduce that the model is
suitable.

Return level

10 100
Return period

Figure 2.7: Return level plot.
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These diagnostic plots all suggest that model fits well but we are not still
sure if the distribution family is the Weibull or the Gumbel one. So we resort
to using the log-likelihood ratio test applied to the estimated model and a
model with the constraint & = 0.

Likelihood-ratic test LR chiZ {l) = 2.08
(Assumption: gumbelitalia nested in gewvitalia) Prob » chiz = 0.1507
Zkaike's information criteriom and Bayesian information criterion
Model Obs 11 {null) 11 imndel) df AIC BIC
gumbelitalia 270 -233_37&7 z 471 _5534 479_150Z
gevitalia 270 -Z3Z_5444 3 471 _BEET 482 e84

Note: HN=0bs used in caelculating BIC; see [R] BIC note

Figure 2.8: Likelihood ratio test between the fitted model and the model repre-
senting the Gumbel family.

This test, which compares double difference between the two models log-
likelihood to value of the x?(1) statistic, results not significant. This means
that fitted model doesn’t produce more information than the simpler one, so
the model with & = 0 is better than the more general. Also AIC and BIC
values confirm it.

This implies that block maxima distribution is well represented by the Gum-
bel family.

2.3.2 Ten years blocks

Let’s now grouping the 1728 reliable observations in blocks of length 10
years: block maxima are now zi, ..., 252 and, as in the previous case, there
are decades in which there aren’t records.

From the following table we can see that parameter estimates are now
all significant, including the shape parameter f = —0.4136025 < 0. It’s
confidence interval doesn’t include zero so we deduce that the block maxima
distribution is now the Weibull distribution. Location and scale parameter
estimates remain almost similar to the previous estimates.
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ML fit of GEV Number of obs = 52
Wald chi2 {0) =

Log likelihood = -37.34228 Frob > chiZ2 =
blockmaxi~10 Coef. 5td. Err. z Pxlz]| [95% Conf. Interval]
scale

_cons .53383 .0806337 g8.80 0.000 .41458901 . 85267
shape

_cons -.4136025 09686682 -4.28 —. 6030887 -.2241363
location

_cons 6.19984 . 081515 T6.08 0.000 6.040073 6.359608

Figure 2.9: Parameter estimates for decade block maxima.

The model adequacy can be assessed using diagnostic plots.
Both probability and quantile plots are roughly linear, suggesting good fit of
the model.

6 8
L L

6
L

Modeled probability
4
.

6 65 7 75
Modeled quantile

Elﬁpirica\ probab‘iﬁty
Figure 2.10: Probability plot (on the left) and Quantile plot (on the right) for
block of length 10 years.

In the return level plot below we can see that the model-based curve
and empirical estimates are in agreement, suggesting pertinence of the fitted
model. Also the comparison between kernel and fitted density leads to the
conclusion that model describes well the data.
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Figure 2.11: Return level plot (on the left) and kernel density plot (on the right)

for block of length 10 years.

2.3.3 Fifty years blocks

Blocks are now of 50 years length, so the number of records we use to perform
our analysis is very low leading to probable large estimation variance. Let

them be 21y eeey R214-

ML fit of GEV Humber of obs = 14
Wald chiz {0} =

Log likelihood = -3.4930601 Frob > chiz2 =
blockmaxi~50 Coef. Std. Err. z P>z [95% Conf. Intervall]
scale

_cons . 385448 0976931 3.85 0.000 .193973 .5769231
shape

_cons -.5642924 2265895 -2.93 0.003 ‘ -1.10&4 -.2201852
location

_cons 6.772366 1129873 59.94 0.000 6.550915 6.993817

Figure 2.12: Parameter estimates for fifty years block maxima.

As in the ten years blocks case, parameter estimates are all significant. In
particular we have ¢ = —0.6642924 < 0 and it’s confidence interval doesn’t
contain zero leading to the Weibull distribution family.
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Conversely from what we expected, the variance of estimates is not too large,
as we can see in the table below.

Covariance matrix of coefficients of gevfit model

scale shape location

e (V) _cons _ocons _cons
scale

_cons 005354355
shape

_cons -.01452085 -05134278
location

_cons —.00354448 —.0104802Z23 01276614

Figure 2.13: Variance and covariance matrix of parameter estimates for 50 years
block maxima.

Adequacy of fitted model can be assessed by diagnostic plots. Although
we have only 14 observations, probability and quantile plots are still roughly
linear. In the return level plot empirical estimates adapt quite well to the
model based-curve and the kernel density shape is vaguely similar to the
fitted model density.
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Figure 2.14: Probability plot (on the left) and Quantile plot (on the right) for
block of length 50 years.
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Figure 2.15: Return level plot (on the left) and kernel density plot (on the right)
for block of length 50 years.

2.3.4 Zone analysis

In previous subsections we studied how parameter estimates change mod-
ifying the block size. Now our aim is understanding what is the family
distribution of regional one year block maxima.
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Figure 2.16: Scatter plot of regional records.
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From an introductory investigation we see that number of records sub-
stantially vary among regions: this is due not only for a difference in seismic,
but mainly from data reliability which changes region to region as explained
at the beginning of the chapter. For example the first observation in the
"Sea/Foreign" region dates back to 1980, instead the "Po valley" one dates
back to 1117 (it’s the first record of the whole cleaned dataset).
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Figure 2.17: Frequency of regional records.

Let’s take a look to the following tables.
Regional scale and shape parameter estimates are all significant and values
are similar moving from a zone to another: in fact f € [4.586424,5.000841]
and ¢ € [0.3923321, 0.5900632].
Different is the behaviour of the shape parameter estimates, which are little
significant or totally insignificant in each region considered.

For "Sea/Foreign" region we have € = —0.3041806 < 0 and it’s confidence
interval doesn’t contain zero so, despite the parameter estimate is little sig-
nificant, we can deduce that block maxima distribution is well represented

by the Weibull family.
For "Alps" region ¢ = 0.025207 > 0 but it isn’t significant at all and it’s
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confidence interval extends well below zero. Fitting the model with the con-
straint £ = 0, we see that ji and & assume values similar to those in the more
general model and are still significant, thus we can deduce that a Gumbel
family is more appropriate.

-» region = Sea/Foreign

ML £it of GEV Humbker of coks = 29
Wald chiZ {0}

Log likelihood = -13.727656 Prob » chi2 =
blockmaxim~g Coef. Std. Err. z Exlz| [95% Conf. Interwval]
scale

_cona .35923321 .0587779 6.67 0.000 .2771285 .5075348
shape

_cons -.3041508 .1394031 -2.18 @ -.5774058 -. 0309357 ,
location

_cons 5.000841 .0815326 61.34 0.000 4.84104 5.1a0642

-> region = RAlps

ML fit of GEW Number of obs = 144
Wald chiz (0) =

Log likelihood = -104.38939 Prob > chi2 =
blockmaxim~g Coef. Std. Err. Z P>l z| [95% Conf. Interwvall]
scale

_cona .4179327 .0308849 13.53 0.000 . 3573994 4784661
shape

_cons . 025207 .0801803 0.31 0.753 -.1319439 . 1823579
location

_cons 4.586424 .0409042 112.13 0.000 4.306254 4.866585

Figure 2.18: Regional parameter estimates and 95% confidence intervals.

Instead "Po valley" region has a negative shape parameter estimate é =
—0.0942388 < 0, it discloses the same situation of "Alps" region, with a con-
fidence interval containing zero and high p-value. Performing a model with
¢ =0, i1 and ¢ values remain very similar inducing us choosing also in this
case a Gumbel family distribution than the Fréchet one.

43



Regarding "Centre" region we can see a little significance ofé = —0.1371585 <
0, but zero doesn’t belong to the confidence interval, than we can say that
in this case block maxima follow the Weibull distribution.

-> region = Po wvalley

ML fit of GEV Number of cbs = 143
Wald chi2 {0) =

Log likelihood = -112.92514 Prok » chi2 =
blockmaxim~g Coef. 5td. Err. z BxlZ| [895% Conf. Interval]
acale

_cons 4791222 . 031988 14.98 0.000 4164268 . 5418176
shape

_cons -.0942388 .0605681 -1.56 @ -.21295 .0244725
location

_cons 4.,784348 .0450312 106.26 0.000 4.6896687 4.8732046
-> region = Centre
ML fit of GEV Numbker of chsa = 1495

Wald chi2 {0) =

Log likelihood = -186.32241 BProb » chi2 =
blockmaxim~g Coef. Std. Err. z B>z [95% Conf. Interval]
scale

_cons .5TT1983 .0342522 16.85 0.000 . 5100852 . 5443314
shape

_cons -.1371585 .0585835 -2.34 —.25198 -.022337
location

_cons 4. 966685 0471752 105.28 0.000 4.874223 5.059144

Figure 2.19: Regional parameter estimates and 95% confidence intervals.

Finally "South" and "Islands" regions show the same shape parameter
estimates behaviour: in both cases we have a not significant and positive
value of £ (precisely € = 0.1389487 for "South", £ = 0.1092782 for "Islands")
with confidence intervals extending below zero. As in previous cases, scale
and location parameter estimates of restricted model don’t differ so much
from estimates of the more general one and are still significant, making us
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prone to choose the Gumbel family distribution for block maxima.

-»> regicn = South

ML £it of GEV Humber of cks = 134
Wald chi2 (0}

Log likelihood = -152.02562 Probk » chi2 =
blockmaxim~g Coef. Std. Err. Z P>z [95% Conf. Interwall]
zcale

_cons .5900832 0475278 12.34 0.000 49683228 . 6838035
shape

_cons 1359487 .090682835 1.53 @ -. 0386759 . 3165733 >
locaticn

_cons 4.844757 06068208 79.92 0.000 4.,725943 4.963571
- region = Islands
ML £it of GEV Humber of cks = 91

Wald chi2 (0} =

Log likelihood = -64.841048 Probk » chi2 =
blockmaxim~g Coef. Std. Err. Z P>l z| [95% Conf. Interwvall]
zcale

_cons .3948911 .0357114 11.046 0.000 . 3248982 4648841
shape

_cons 1092782 0&35482 1.30 @ —. 05506813 . 27368176 >
locaticn

_cons 4.643488 0469782 95.84 0.000 4.551393 4.735544

Figure 2.20: Regional parameter estimates and 95% confidence intervals.

2.3.5 Results comparison

In order to compare in a simple manner results obtained in previous subsec-

tions, it can be useful summarize them in a table?.

Zome star (*) if p<0.05, two stars (**) if p<0.01, and three stars (¥***) if p<0.001.
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Zone shape & 95% C.I. Dist.Fam.

Italy (1 year b.m.) -0.0722326 [-0.1685353 , 0.02407] Gumbel

Italy (10 year b.m.) | -0.4136025 *** | |-0.6030687 , -0.2241363] | Weibull

Italy (50 year b.m.) | -0.6642924 ** | |-1.1084 , -0.2201852] Weibull

"Sea/Foreign" region | -0.3041806 * [-0.5774056 , -0.0309557] | Weibull

"Alps" region 0.025207 [-0.1319439 , 0.1823579] | Gumbel
"Po valley" region -0.0942388 [-0.21295 , 0.0244725] Gumbel
"Centre" region -0.1371585 * [-0.25198 , -0.022337] Weibull
"South" region 0.1389487 [-0.0386759 , 0.3165733] | Gumbel
"Islands" region 0.1092782 [-0.0550613 , 0.2736176] | Gumbel

2.4 GPD parameters estimation

2.4.1 Global analysis

Let us consider the iid sample formed by the 1728 records of the cleaned
dataset: remember that those data refer to whole Italian territory.

The first step consists in ordering these values in an increasing manner respect
to the magnitude x(;) < ... < z(1728) and defining threshold excess as

Yyi=xe —u, t=1,..,1728

for a certain threshold w.

200 250
1

150

Frequency

4.00 5.00 6.00 7.00 8.00

Figure 2.21: Histogram of Italian records for different values of magnitude.
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Default options put threshold at the minimum recorded value of magni-
tude, corresponding to u = 3.95, leading to these parameter estimates:

Taking sample minimum of 3.95 as the threshold.

ML fit of generalized Pareto distribution Number of ohs = 1727
Wald chi2{0) =
Log likelihood = -1189.1328 Prob > chiz =
MwDef Coef. Std. Err. z Pxlz| [95% Conf. Interval]

ln=ig

_cons -.0897912 .0294933 -3.04 -.1475497 -.0319853
®i

_cons -.2216549 . 017868 -12.41 < —-. 2566756 -.1866342 >

sig .9141221 .0269605 8627787 9685208

Figure 2.22: Parameter estimates and 95% confidence intervals for v = 3.95.

Location parameter estimate doesn’t appear because of the assumption
i = 0 made in Section 1.6. Scale and shape parameter estimates are both
significant, in particular f = —0.2216549 < 0 with a 95% confidence interval
not including zero.

From the histogram above, we could think to choose the initial value of
threshold as u = 4.5. In fact this choice would leave almost half observations
below and half above u, avoiding violation of model asymptotic bases (if the
threshold is too low) and high variance (if the threshold is too high).

More accurate instrument in threshold selection, which uses threshold ex-
cesses y; for i = 1, ..., 1728, is the mean residual life plot: above the threshold
at which the generalised Pareto distribution provides a valid approximation
to the excess distribution function F,(x), the mean residual life plot should
be approximately linear (see properties of GPD in Section 1.6).

For u < 4.5 the graph below appears to curve, for 4.5 < u < 5 is approx-
imately linear, and for u > 5 it decreases rapidly. We can be tempted to
choose as threshold u = 5, but above this value there are only 419 records.
Thus is better to choose as threshold v = 4.5.
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Figure 2.23: Mean residual life plot.

Support for this choice is provided by the following graph, representing
parameter estimates at different values of the threshold. Perturbations for
high thresholds are visible but they are small relative to sampling errors, so
u = 4.5 appears reasonable.

Insig

Xi

4 45 5 55 6 65
Threshold

Figure 2.24: Parameter estimates against threshold for Italian data.
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Maximum likelihood estimates in this case are given in the table below.

ML fit of generalized Pareto distribution Humber of obks = 418
Wald chi2 (0} =
Log likelihood = -443.80699 Probk > chiz =
MwDef Coef. Std. Err. z Ex|z| [85% Conf. Interval]

lnsig

_cons -.4097485 0476707 -2.60 -.5031835 -.31631686
®i

_cons -.1068004& .0345775 -3.09 -, 1745711 -.03903

sig .6638165 .0316448 . 8046035

Figure 2.25: Parameter estimates and 95% confidence intervals for v = 4.5.

 Parameter estimates are both significant and the confidence interval for
¢ = —0.1068006 < 0 is in the negative domain, leading to the Weibull distri-
bution family.

Same diagnostic plots of GEV distribution case can be used for assessing
model adequacy.

8.00
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Figure 2.26: Probability plot (on the left) and Quantile plot (on the right) for
GPD with u = 4.5.

As we can see, probability and quantile plot are pretty much linear, indi-
cating model good fit. The return level plot shows that the model-based curve
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and empirical estimates are in reasonable agreement and the kernel density
plot, even if the empirical density is initially concave, leaves no doubt on
model adequacy.
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Figure 2.27: Return level plot (on the left) and kernel density plot (on the right)
for GPD with u = 4.5.

2.4.2 Zone analysis

As for the GEV distribution, we want to perform a differentiating analysis
by zones also for the generalised Pareto distribution.

The first zone we analyse is "Sea/Foreign" region for which we have 89 ob-
servations distributed as follow:
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Figure 2.28: Histogram of "Sea/Foreign" region records.
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Minimum and maximum magnitude recorded are 4 and 5.92 respectively
and the histogram suggests to choose the threshold at 4.6. This value in fact
allows to leave almost half observations below and half above w.

Mean residual life plot is approximately linear for u € [4.5,4.75] and plot-
ting parameter estimates against threshold we can see that sampling errors
increase beyond the value 4.6; thus these graphs give support to our choice.
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Figure 2.29: Mean residual life plot (on the left) and parameter estimates against
threshold (on the right) for "Sea/Foreign" region.

We can now estimate scale and shape parameter for the threshold selected:

ML fit of generalized Pareto distribution Number of obs = 49
Wald chi2{d) =
Log likelihood = -4.5695061 Prob » chiz2 =
MuDef Coef. 5td. Err. Z Pxlzl [95% Conf. Interval]

lnsig

_cons -.5570594 .194759 -2.88 -.9387802 -.175339
xi

_cons -.3496852 .1414264 -2.47 -, 6269934 -.072377

3ig .5728911 1115757 . 39110448 .8391725

Figure 2.30: Parameter estimates and 95% confidence intervals for u = 4.6.

Shape parameter estimate é = —0.3496852 < 0 isn’t much significant,
however it’s confidence interval doesn’t contain zero, leading to the Weibull
distribution family. All model diagnostic plots, even if with some discrepan-
cies, confirm model adequacy.
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Figure 2.31: Probability plot and Quantile plot (on the top), Kernel density plot
and Return level plot (on the bottom) for u = 4.6.

For "Alps" region we have 355 observations.

104

Frequency
60 80 100

40

Figure 2.32: Histogram of "Alps" region records.
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The histogram above shows how they are distributed. Minimum magni-
tude is 3.95 and the maximum is 6.5. Furthermore it suggests to choose as
threshold u = 4.4.

The mean residual life plot is approximately linear for v € [4.3,4.6]: this
isn’t the unique interval but the others concern too high values of threshold,
with scarce number of excesses which can leads to high variance. In fact sam-
pling errors in the graph of parameter estimates against threshold increase
up to u = 4.5.
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Figure 2.33: Mean residual life plot (on the left) and parameter estimates against
threshold (on the right) for "Alps" region.

Thus we can choose the threshold level at © = 4.4 and give maximum
likelihood parameter estimates:

ML £it of generalized Pareto distribution Number of obs = 171
Wald chi2 {0} =
Log likelihood = -50.622055 Prob > chi2 =
MwDef Coef. Std. Err. z Exlz]| [95% Conf. Interval]

lnsig

_cons -.5234722 10367339 -5.05 -. 7266692 -.3202751
xi

_cons -.1804924 .07135 -2.53 @ ‘—.3203359 -.0406489 ’

3ig .5924533 061422 . 4835148 . 7259453

Figure 2.34: Parameter estimates and 95% confidence intervals for u = 4.4.
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From the table we can see that scale parameter estimate is highly signifi-
cant, unlike the shape one which is little significant. However f = —0.1804924
is negative and has a confidence interval completely contained in the negative
domain so, also in this case, the family distribution is the Weibull.

As usually we use diagnostic plots for assessing model adequacy, which is
pretty good even if the goodness-of-fit in the probability plot seems uncon-
vincing.
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Figure 2.35: Probability plot (on the top left), Quantile plot (on the top right),
Kernel density plot (on the bottom left) and Return level plot (on the bottom
right) for u = 4.4.

For "Po valley" region we have 245 records, distributed as the histogram
in the next page shows. At first sight a good threshold is u = 4.7.
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Figure 2.36: Histogram of "Po valley" region records.

Mean residual life plot and the other graph below both suggest choosing
as threshold a value u € [4.5,4.6].
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Figure 2.37: Mean residual life plot (on the left) and parameter estimates against
threshold (on the right) for "Po valley" region.

So maximum likelihood estimates for u = 4.6 are the following:
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ML f£it of generalized Pareto distrikbuticon Humber of chbs = 1l4a
Wald chi2 (0)

Log likelihood = -50.4068237 Prob > chi2 =
MwDef Coef. S5td. Err. z Prlz| [95% Conf. Interwval]
lnsig
_cona -.4522351 .1134558 -3.848 0.000 -. 6746044 -.2298658
xi
_cons -.20251487 .07939686 -2.55 <—.3531311 -.0468023 >
sig .6362048 0721811 . 5093579 . 7948402

Figure 2.38: Parameter estimates and 95% confidence intervals for u = 4.6.

Shape parameter isn’t much significant but it’s confidence interval doesn’t
contain zero so, being f = —0.2025167 < 0, we can say that the family
distribution is again the Weibull one.

Even in this case model diagnostic plots confirm a good fit of the model.
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Figure 2.39: Probability plot and Quantile plot (on the top), Kernel density plot
and Return level plot (on the bottom) for v = 4.6.
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For "Centre" region there are 555 records distributed as follow:
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Figure 2.40: Histogram of "Centre" region records.

The value of threshold which leaves half observations on the left and half
on the right is approximately u = 4.5.
Using the mean residual life plot we can see that a good interval in which
selecting the threshold could be [4.3,4.8], because there the graph is almost
linear. Furthermore, plotting parameter estimates against threshold, we can
see certain stability in estimates for u € [4.5,5]. Since sampling errors in-
crease with threshold increasing, we can opt for u = 4.5.
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Figure 2.41: Mean residual life plot (on the left) and parameter estimates against
threshold (on the right) for "Centre" region.

Both parameter estimates for the selected threshold are significant: in
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ML fit of generalized Pareto distributicon Number of obs = 301
Wald chiz{0) =
Log likelihood = -157.73659 Prob » chi2 =
MwDef Coef. Std. Err. Z Pxlzl [95% Conf. Interval]

lnsig

_cons -.2623753 .0796314 -3.29 -.4184499 -.1063008
Xi

_cons -.2135829 .05630868 -3.749 -, 3238422 -.1032238

3ig .TE92223 .0612543 . 8580661 .8991543

Figure 2.42: Parameter estimates and 95% confidence intervals for u = 4.5.

particular we have é = —0.2135829 < 0 with a confidence interval not con-
taining zero. Thus the family distribution is the Weibull.
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Figure 2.43: Probability plot and Quantile plot (on the top), Kernel density plot
and Return level plot (on the bottom) for v = 4.5.

In every diagnostic plot we can see good agreement between empirical
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and fitted data which allows us to say that chosen model is adequate.

Let’s now analyse "South" region, whose observations amount to 307.
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Figure 2.44: Histogram of "South" region records.

From the first graph below we can see that the threshold u = 4.5 suggested
by the histogram is not good because mean residual life plot is not liner in a
neighbourhood of this value, but it is approximately linear for u € [4.6,4.9].
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Figure 2.45: Mean residual life plot (on the left) and parameter estimates against
threshold (on the right) for "South" region.

The second graph shows constant sampling errors for u > 4.5, then we
could choose u = 4.6 as threshold.
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Remember that too high values of u can’t be chosen because of an insufficient
number of excesses.

For v = 4.6 maximum likelihood estimates are both not significant and
€ = —0.1068119 < 0 has a confidence interval containing zero as the following
table shows.

ML fit of generalized Pareto distribution Humber of obs = 141
Wald chi2 {0} =
Log likelihood = -103.80488 Probk > chiz2 =
MwDef Coef. S5td. Err. z Exlzl [95% Conf. Interval]

lnsig

_cons -.1569833 .1589475 -0.39 @ -. 4685147 .154548
xi

_cons -.1068119 .1351037 -0.79 —. 3716103 .15798 66

31ig .8547T183 .1358553 . 6259313 1.14713

Figure 2.46: Parameter estimates and 95% confidence intervals for v = 4.6.

In this situation we can think that a model with & = 0 would be better:
it isn’t so. In fact in this case scale parameter estimate has p-value equal
to one, that is estimate not significant at all, and also AIC and BIC values
suggest the more general model would be better.

Likelihood-ratic test LR chiz{ly = T74.39
(Assumption: gpdgumbelscuth nested in gpdsouth) Probk » chiZz = 0_0ooa0
Lkaike's information criterion amnd Bayesian information criterion
Model Cks 1l {inull) 1l imodel) df AIC BIC
gpdgumbels-~h 141 - -141 1 284 Z8€.59488
gpdsouth 141 - -103_8043 z 211._&038 217.5073

Note: HN=0bs used in calculating BIC; see [R] BIC note

Figure 2.47: Likelihood ratio test between the fitted model and the model with
£E=0.

This lack of fit can be seen also from the probability and quantile plot, in
which only few points lie on the diagonal line, or from discrepancies between
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fitted and kernel density. In the return level plot observations lie even out of
confidence interval.
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Figure 2.48: Probability plot (on the top left) and Quantile plot (on the top
right), Kernel density plot (on the bottom left) and Return level plot (on the
bottom right) for u = 4.6.

Finally the last region is "Islands", with 177 records.
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Figure 2.49: Histogram of "Islands" region records.
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Suggested threshold is ©w = 4.5. Let’s see if mean residual life plot and
parameter estimates against threshold graph confirm this choice.

Insig

2
L

Mean excess
0

-2
L

6 44 46
Threshold Threshold

Figure 2.50: Mean residual life plot (on the left) and parameter estimates against
threshold (on the right) for "Islands" region.

Mean residual life plot is essentially linear until © = 5.2, but above this
value there are too few observations to perform a model. Instead the other
graph shows a big increase in sampling error over u = 4.5, thus this value
can be chosen as threshold.

Shape parameter estimate for u = 4.5 isn’t significant as we can see from the
following table.

ML £it of generalized Pareto distributicon Humber of obs = a0
Wald chi2 {0} =
Log likelihood = -34.513473 Prob > chi2 =
MwDef Coef. Std. Err. z B>z [95% Conf. Interval]
lnsig
_cons -.5870707 .1508826 -3.89 0.000 -. 8827952 -.2913463
xi
_cons —.0294482 .1080004 -0.27 ‘ —.2411231 .1822306 >
3ig .5559534 .0838837 .4136251 7472569

Figure 2.51: Parameter estimates and 95% confidence intervals for v = 4.5.

As the "South" region case, if we try to fit a model with £ = 0 the p-value
obtained for scale parameter estimate is one and AIC and BIC values for the
unrestricted model are much lower, indicating a better fit.
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However model diagnostic plots suggest model adequacy.
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Figure 2.52: Probability plot (on the top left) and Quantile plot (on the top
right), Kernel density plot (on the bottom left) and Return level plot (on the

bottom right) for u = 4.5.

2.4.3 Results comparison

With the aim to summarize results obtained in previous subsections, we recall

them in a table?.

Zone u | €& 95% C.I. Dist.Fam.
Italy 4.5 | -0.1068006 ** | [ -0.1745711 , -0.03903] Weibull
"Sea/Foreign" region | 4.6 | -0.3496852 * |-.6269934 , -.072377| Weibull
"Alps" region 4.4 | -0.1804924 * [-0.3203359 , -0.0406489] | Weibull
"Po valley" region 4.6 | -0.2025167 * [-0.3581311 , -0.0469023] | Weibull
"Centre" region 4.5 | -0.2135829 *** | [-0.3239422 , -0.1032236] | Weibull
"South" region 4.6 | -0.1068119 [-0.3716103 , 0.1579866] | Weibull
"Tslands" region 4.5 | -0.0294462 [-0.2411231 , 0.1822306] | Weibull

3one star (*) if p<0.05, two stars (**) if p<0.01, and three stars (***) if p<0.001.
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CHAPTER 3

ACTUARIAL EVALUATIONS

3.1 Introduction

Natural disasters as earthquakes pose several challenges to insurers because
they involve potentially high looses that are extremely uncertain. Before
insurance providers are willing to offer coverage against an uncertain event
two conditions are to be satisfied:

1. being able to identify and quantify, or estimate partially, the probabil-
ities that an event occurs and the extent of losses likely to be incurred;

2. being able to set premiums for each potential customer.

The first condition can be satisfied estimating probabilities of specific
events and the likely extent of looses using past data and catastrophe models
(i.e. those available in Risk Management Solutions software); the second
one can be satisfied charging premiums until better estimates of the risk are
available.

3.2 Recent catastrophic earthquakes

Every year Italian seismographs detect thousands earthquakes, fortunately
only few of them are catastrophic.

From 1900 to 2014 in the catalogue CPTT15 there are 36 earthquakes with
magnitude greater or equal to 5.64, ten of which so disastrous as to be in-
cluded in the list of "emergencies" by the Italian Civil Protection.
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Year | Place MwDef | Victims Evacuees
1908 | Messina 7.1 86000 missing value
1915 | Avezzano 7.08 30000 missing value
1930 | Vulture 6.67 1404 missing value
1968 | Belice 6.41 296 90000
1976 | Friuli 6.45 965 45000
1980 | Irpinia 6.81 2734 70000
1997 | Umbria-Marche | 5.97 11 80000
2002 | Molise 5.92 30 3000
2009 | Abruzzo 6.29 308 80000
2012 | Emilia 6.09 27 15000

Remark 3.2.1. The red row refers to the recent earthquake with epicentre
in Accumuli (Rieti) and data are not included in the catalogue CPTI15 but
were taken from the INGV site (see ING [19]).

Italian high seismic leads experts developing methods for evaluating dam-
ages and their costs: Civil Protection releases to highly qualified person forms
which allow to carry out a damage survey on the whole building heritage hit
by the seism in an homogeneous manner. Often, however, costs estimates
refer only to structural damages and not to those related to the interruption
of activities; so the Italian system is not completely adequate.

For 7 of the 10 events listed above, being concentrated in a little period of
time (1968-2014), is possible obtaining data economically comparable. See
CNT [21].

Year | Place MwDef Cost
(billion Euro)

1968 | Belice 6.41 9.179(*)
1976 | Friuli 6.45 18.54(*)
1980 | Irpinia 6.81 52.026 (%)
1997 | Umbria-Marche | 5.97 13.463(*)
2002 | Molise 5.92 1.4(%)
2009 | Abruzzo 6.29 13.7
2012 | Emilia 6.09 13.3

Discounted cost (*) 2014 (**) 2008. Costs are based on public funding
except for Abruzzo and Emilia, which costs are expenditure forecasts.
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3.3 Insurer’s loss due to catastrophic events

Let us assume that an insurer insures for seismic risk the totality of Italian
residential buildings and in particular he insures only the maximum event
recorded in a year.

As we know from the previous chapter, the Moment Magnitude scale is
defined by

2
Mw = g(lOgloMo - 603)
where My is the seismic moment at the focus measured in N - m, in practice
an energy; thus we will use the symbol E to denote it instead of M.
The energy released from an earthquake is strictly related with its destroying
power, so we can assume that energy is directly proportional to the damage

and in particular to the extent of loss, that is
L = kE = k102Mw+603, (3.1)

The magnitude (m,,) and cost (1) values of the 7 recent catastrophic earth-
quakes can be used to find an approximate value for the proportionality
constant k:

7
_ 1 _ —6 —6
= Z 102%#6 — =5.449-10° ~ 107",

Using equation (3.1), we infer the extent of loss for all annual block maxima.
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Figure 3.1: Loss (million FEuro) against magnitude for all block maxima.
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So in our context L is a random variable depending on value of annual
block maxima M,,.

In the second chapter (Section 2.3.1) we found that the distribution of
Italian annual block maxima is well represented by the Gumbel distribution,
which estimated parameters are the following.

]
-1
=]

ML fit of generalized extreme wvalue distribution Number of cks
Wald chi2 (0)

Log likelihood = -233.97668 Prab > chi2
{ 1) [#1] cons = 0
blockmaxima Coef. 5td. Err. z Ex|z| [95% Conf. Intervall]
mu
_cons 5.362347 .0318642 165.29 0.000 5.2998595 5.4245
lnsig
_cons -. 7003485 .0471259 -14.848 0.000 -.7927135 -.6079534
xi
_cons 0 ({omitted)
sig .49541273 .0233939 .452815 .5444477

Figure 3.2: Parameter estimates for annual block maxima with constraint £ = 0.

Substituting estimates in the GEV distribution function formula

Ho.o(x) = exp {—6_(1;H)}

and subtracting the found value from 1, we obtain the exceedance probabil-
ity for a specified value of magnitude. Its inverse is the relative return period.

The expected annual maximum value of magnitude for the estimated
Gumbel distribution is

E[X] = 1+ ~v6 = 5.362347 + 0.57722 - 0.4964123 = 5.6488861

and its standard deviation is

5 0.4964123
StDev = \/Var(X) = W—\/% =T e = 063635074

leading to the upper bound value E[X]| 4 1 - StDev = 6.2852367.
For definitions and formulas see Section 1.4.
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For the expected annual maximum value of magnitude found above, that
is 5.6488861, we have loss equal to 318.66117 million Euro, exceedance prob-
ability equal to 0.42962268 and return period of 2.3276239 years, which has
to be interpreted as the minimum amount of time necessary for exceeding
the magnitude value 5.6488861.

These values are coherent with those calculated by the software for a mag-
nitude value very close to the expected annual maximum:

blockm-a probde -~y lmaxmi~n exprob retper

5.85 .04 44785 319.8896 .42338048 2.331521

Figure 3.3: Probability density, loss (million Euro), exceedance probability and
return period (years) for magnitude 5.65.

The median can be found substituting p = 0.5 in the quantile function
for Gumbel distribution (equation (1.4))

Zo5 = fi — & In(— In(0.5)) = 5.5442885

with a probability density value 0.69815674 and loss 222.04078 million Euro.

The modal value instead could be obtained equating to zero the estimated
Gumbel density function derivative

Hopo(z)e” "3 [—1+ e 5]
h{),ﬂ,é’(l‘) = = 5_2 9

obtaining
Timodal = L = H.362347

associated to a probability density value 0.7410764, a loss of 117.4898 mil-
lion Euro, an exceedance probability of 0.63212056 and a return period of
1.5819767 years, all coherent with values computed by the software

blockm-a probde~y lmaxmi~n exprob retper

5.36 7410681 117.4898 . 8338601 1.577635

Figure 3.4: Probability density, loss (million Euro), exceedance probability and
return period (years) for magnitude 5.36.

Obviously, return period increases increasing the magnitude:
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Figure 3.5: Estimated return periods against magnitude for all block maxima.

Place MwDef Exceedance probability | Return period
(magnitude) | 1 —p 1/(1 — p) (years)
Messina 7.1 0.0297336 33.63195
Avezzano 7.08 0.0309369 32.32383
Irpinia 6.81 0.052698 18.97603
Vulture 6.67 0.0692605 14.43824
Friuli 6.45 0.1057786 9.453704
Belice 6.41 0.1141287 8.762035
Abruzzo 6.29 0.143004 6.992813
Emilia 6.09 0.2061715 4.850332
Umbria-Marche | 5.97 0.2547427 3.92553
Molise 5.92 0.2776051 3.602239

Is important underlying that the distribution of L isn’t the same of the

annual maximum magnitude, but its transformation.

In fact, having the annual block maxima Mw distribution function H0;5.362347,0.49641237

L has distribution function

P(L < \) = P(k102Mwt603 < ))
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21 A
= Ho;5.362347,0.4964123 3 0810 k106-03 |-

Looking to frequencies we can think that L’s distribution is well repre-
sented by the Fréchet distribution.

150 200 250

Frequency

100

0 20000 40000 60000 80000 100000
Imaxmillion

Figure 3.6: Frequencies of loss L (million Euro).

Trying to fit a GEV model we obtain the table below, where we can see
that estimates are all highly significant and é = 1.678477 > 0, confirming
that Fréchet distribution represents data well.

Remember that for £ > 1 the expected value for the GEV distribution is
infinity, and for £ > 1/2 also its variance.

Anyway in practice the loss has an upward limit: in fact reconstruction costs
of the whole Italian building heritage, composed by 27 million housing units,
amount of 3900 billion Euro (see ANI [22] ).

70



Pk
-1
L=

ML fit of generalized extreme walue distribution Number of obs =
Wald chi2 {0} =

Log likelihood = -2120.0434 Brob > chi2 =
Imaxmillion Coef. Std. Err. z B>z [95% Conf. Interwval]
mu

_cons 120.508 13.87 93.69828 147.3177

lnsig
_cons 5.3194394 .1313234 40.51 5.062105 5.5TREE3

o

a7

[=5)
=)
=

xi
_cons 1.678477 .1035159 16.21

Figure 3.7: Parameter estimates for loss values (million Euro).
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Figure 3.8: Probability plot and Quantile plot (on the top), Kernel density plot
and Return level plot (on the bottom) for the fitted model.

Diagnostic plots seems to confirm model adequacy.
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Since the loss distribution function is the Fréchet, given by

Hepo () = exp {_ {1 +¢ (%)] —1/5}

where & = 1.678477, = 120.508 and o = 204.2805, we can now calculate
exceedance probability and return period for each value of loss.

After that we can plot exceedance probabilities against their loss values ob-
taining a graph called exceedance probability curve.

Pr(>Imaxmillion)

W 00 P

0 20000 40000 60000 80000 100000
Imaxmillion

Figure 3.9: Exceedance probability curve.

The insurer can use this graph to determine how large a loss will occur
at a given probability level: the value obtained is called probable maxi-
mum loss. Often the PML is associated to its return period instead of its
exceedance probability.

The exceedance probability curve can also be used to distribute loss: an
example is an homeowner having deductible on his insurance policy such that
he had to cover the first part of the loss, an insurer covers the middle portion
and a reinsurer handles the loss above a certain amount.

3.4 Premium and equilibrium reserve

In the past section we saw that annual maximum magnitude M, and loss
L distribution are related thus, for simplicity, from now on we will refer to
M,’s distribution.
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To begin can be useful give a look to annual maximum magnitude quan-
tiles, given by

A

T,=p—ocln(—1Inp) if £=0
where i = 5.362347 and ¢ = 0.4964123, and their return periods (in years).
Thus we have

Zo01 = ft — 0 In(—1n0.01) = 4.6042362 return period = 1.010101

Zoo5 = ft — 0 In(—1n0.05) = 4.817689 return period = 1.0526316
Zo10 =t — 0 In(—1n0.10) = 4.948323 return period = 1.1111111
Zoo5 = ft — 0 In(—1n 0.25) = 5.2002017 return period = 1.3333333
Tos0 = [t — 0 In(—1n0.50) = 5.5442885 return period = 2
Tozs = ft — 0 In(—1n0.75) = 5.9808267 return period =4
Zoo0 = ft — 0 In(—1n0.90) = 6.479457 return period = 10
Zoos = ft — 0 In(—1n 0.95) = 6.8367885 return period = 20
Tog9 = ft — 0 In(—1n0.99) = 7.6459177 return period = 100

which are pretty close to empirical quantiles, confirming another time
appropriateness of the estimated Gumbel distribution.
Also the empirical mean is very similar to the expected annual maximum
value estimated in Section 3.3.

blockmaxima

Percentiles Smallest

1% 4.58 4.4

5% 4.81 4.51
10% 2.01 4.5%8 Okbs 270
25% 2.1%8 4.683 Sum of Wgt. 270
50% 5.501 Mean 5.643778
Largest Std. Devw. 8010701

75% 6.03 7.1
90% 6.525 7.12 Variance 3612853
95% 6.75 7.18 Skewness .5972236
993 7.12 T.32 Kurtosis 2.766683

Figure 3.10: Empirical quantiles for annual maximum magnitude value.
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Furthermore, to each quantile value we can associate its loss

MwDef Energy Loss Exeedance Prob. | Return Period
(magnitude) | (N -m) (million Euro) (1—p) (years)
4.6042362 8.637e+12 8.6368286 0.99 1.010101
4.817689 1.805e+13 18.05234 0.95 1.0526316
4.948323 2.835e+13 28.345525 0.90 11111111
5.2002017 6.766e+13 67.655413 0.75 1.3333333
5.5442885 2.220e+14 222.04078 0.50 2
5.9808267 1.003e-+15 1002.8594 0.25 4
6.479457 0.613e+15 5612.8767 0.10 10
6.8367885 1.928e+16 19283.362 0.05 20
7.6459177 3.154e+17 315410.79 0.01 100

an then calculate the expected annual loss

9

=1

EAL =) (1-p;)L; = 5143.2516 million Euro.

Keeping in mind that in the whole Italian territory there are 27 million
housing units with an overall reconstruction cost of 3900 billion Euro, we
can calculate the premium assuming an obligatory and solidarity insurance

system:

EFAL

51432516 - 106

num.

of housing units

27 - 106

for a house of 3900 - 10?/27 - 10° ~ 144444 Euro.
Thus, for an housing unit with a reconstruction value of 100000 Euro we

obtain

premium ~ 131.88 FEuro.

=190.49 FEwuro

Premiums collected every year by the insurer are needed for covering the
expected annual loss; obviously the real annual loss is a priori unknown and
its extent could be greater or less than the expected.
This implies that, in years in which the real loss is less than the expected
one, the insurer sets aside part of collected premiums earmarking them to the
coverage of future losses greater than the expected one. This reserve is called
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equilibrium reserve: it can be established when the loss ratio, given by
the ratio between real loss and collected premiums, is much less then 1 and
can be used when the ratio is greater then 1.

Being a reserve and not a profit for the insurer, this amount of money should
be not taxed.

Remark 3.4.1. Countries which adopted this measure first are Germany (1952)
and Finland (1953); in Italy the equilibrium reserve for natural disasters
should be established for all non-life branches, excluding the Credit and Bail
branch which has a different kind of reserve (see Donati and Putzolu [23]).

3.5 Premium diversification among zones

Let us suppose now that housing units distribution over the Italian territory
is homogeneous and we take in consideration only populated zones, that is
excluding the Sea/Foreign region.
Under this hypothesis there are 5 zones each with 5.4 million housing units
with an overall reconstruction value of 780 billion Euro.

Using the quantile formula (1.4)

o l(=lp) = 1e /6 it £ 0
P lia—6In(—Inp) if €= 0

we calculate quantiles and losses for each zone and then their respective
premiums!.

o Alps region: & =0, i = 4.592146, & = 0.4222104

MwDef Loss Exeedance Prob. | Return Period
(magnitude) | (million Euro) (1-p) (years)
3.9473549 0.89337203 0.99 1.010101
4.1289015 1.6724466 0.95 1.0526316
4.2400088 2.4547835 0.90 1.1111111
4.4542376 5.1446567 0.75 1.3333333
4.7468916 14.136354 0.50 %
0.1181777 50.964357 0.25 4
0.5422745 220.5016 0.10 10
5.8461933 629.9266 0.05 20
6.5343768 6785.2398 0.01 100

!Parameter values used are obtained fitting a GEV model with the constraint ¢ = 0,
except for the Centre region whose estimates are those found in Subsection 2.3.4.
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The expected annual loss is

9
EAL = (1—p)L; = 149.74921 million Euro.

i=1

Dividing this value for the 5.4 million housing units in the region and
relating it to an house value of 100000 Euro we obtain

premium ~ 19.20 Furo

e Po walley region: £ =0, i = 4.760912, & = 0.4672812

MwDef Loss Exeedance Prob. | Return Period
(magnitude) | (million Euro) (1-p) (years)
4.0472897 1.2616374 0.99 1.010101
4.2482163 2.5253667 0.95 1.0526316
4.3711843 3.8616815 0.90 1.1111111
4.608282 8.7583642 0.75 1.3333333
4.9321766 26.80803 0.50 2
5.3430973 110.8271 0.25 4
0.8124663 560.65984 0.10 10
6.1488284 1791.6064 0.05 20
6.9104753 24872.128 0.01 100

The expected annual loss is

9
EAL =) (1-p;)L; = 449.17078 million Euro.

=1

Dividing this value for the 5.4 million housing units in the region and
relating it to an house value of 100000 Euro we obtain

premium ~ 57.59 FEuro

e (entre region: éz —0.1371585, 1 = 4.966685, 6 = 0.5771983
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MwDef Loss Exeedance Prob. | Return Period
(magnitude) | (million Euro) (1—p) (years)
3.9860809 1.0212248 0.99 1.010101
4.2832546 2.8502431 0.95 1.0526316
4.4566673 5.1880117 0.90 1.1111111
4.7738653 15.516649 0.75 1.3333333
5.1730063 61.589893 0.50 2
5.6277268 296.20351 0.25 4
6.0842609 1433.479 0.10 10
6.3748257 3910.5564 0.05 20
6.9357863 27144.35 0.01 100

The expected annual loss is

9

EAL = (1—p;)L; =735.19049 million Euro.

i=1

Dividing this value for the 5.4 million housing units in the region and

relating it to an house value of 100000 Euro we obtain

premium =~ 94.26 FEuro

e South region: £ =0, i = 4.889862, 6 = 0.6290228

MwDef Loss Exeedance Prob. | Return Period
(magnitude) | (million Euro) (1-p) (years)
3.9292312 0.83916391 0.99 1.010101
4.1997053 2.1357871 0.95 1.0526316
4.3652366 3.7831617 0.90 1.1111111
4.6844016 11.392064 0.75 1.3333333
5.120407 51.358283 0.50 2
5.6735611 347.00973 0.25 4
6.3053944 3076.7457 0.10 10
6.7581825 14698.525 0.05 20
7.7834607 507213.79 0.01 100
The expected annual loss is
FEuro.

9
EAL =) (1-p;)L; = 6241.9789 million
=1

77




Dividing this value for the 5.4 million housing units in the region and

relating it to an house value of 100000 Euro we obtain

premium ~ 800.26 FEuro

e Islands region: & =0, i = 4.66749, 6 = 0.4133187

MwDef Loss Exeedance Prob. | Return Period
(magnitude) | (million Euro) (1-p) (years)
4.0362781 1.2145549 0.99 1.010101
4.2140014 2.2438928 0.95 1.0526316
4.3227688 3.2670306 0.90 1.1111111
4.532486 6.7410725 0.75 1.3333333
4.8189766 18.132801 0.50 2
5.1824435 63.630487 0.25 4
5.5976089 266.93981 0.10 10
5.8951272 745.91751 0.05 20
6.5688177 7642.3434 0.01 100

The expected annual loss is

9
EAL = Z(l — pi)L; = 176.71755  million  Euro.

=1

Dividing this value for the 5.4 million housing units in the region and

relating it to an house value of 100000 Euro we obtain

premium =~ 22.66 FEuro.

Also in this case, since the extent of the real annual loss could be greater

or less than the expected, we can establish an equilibrium reserve with the
purpose of compensating the fluctuations in time of the loss.
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CONCLUSIONS

In this thesis we addressed the extreme value theory focusing on the distri-
bution of maxima.

The most important result is the Fisher-Tippet theorem, which identifies
three possible distribution functions families for the normalised maxima, that
is the Gumbel, the Fréchet and the Weibull distribution function.

The theory described in the first chapter was then applied to Italian earth-
quakes data available in the Parametric Catalogue of Italian Earthquakes
(CPTI15), taking into account maxima values of the recorded moment mag-
nitude.

From the analysis we obtained maximum likelihood estimates of the distri-
bution function parameters, first for the whole Italian territory and then for
each seismic macro-zone; the adequacy of each fitted model was than checked
using probability plots, quantile plots, return level plots and kernel density
plots.

Information on the most suitable distribution function for the maxima let
us doing some actuarial evaluations: we calculated the insurer’s expected
annual loss and then the premium that people have to pay if they want to
insure homes from seismic risk.

In particular we saw that the extent of premium differs region by region de-
pending on zone seismic. This difference open the way for two possibilities:
set a single premium for all zones or differentiate it depending on the taken
risk.

Actually in Italy there isn’t the obligation of insurance coverage against natu-
ral disasters, even if there’s the possibility of extending fire policies to natural
disaster damages. This fact leads to an high anti-selected request that does
not allow insurers to offer the same price on the whole Italian territory: in
fact citizens more sensitive to the insurance coverage are probably those who
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live in most risky zones.

In this case the only way could be making compulsory the coverage, raising
however the problem of the high capital requirements needed to ensure the
solvency of the insurance company. In such situation becomes necessary in-
troducing overdrawn and/or deductibles or a public reinsurer.

Instead, if the insurer provides a zone differentiated premium probably many
more citizens insure their homes, but those who need it most should pay a
too high premium: in this case could be useful introducing tax incentives and
exempting from tax payment (in Italy equal to 22.25%, one of the highest in
Europe), especially if the coverage is not compulsory.
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