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Abstract

A new approach to sensitivity analysis is introduced in this paper to aid

understanding of the nuances of model behavior. The main objective is to identify

the most influential inputs in a risk model and rank the inputs based on the

sensitivity levels that they exhibit. The framework is closely related to the

approach taken by Pesenti et al. (2018).

The methodology adopted consists of two steps to obtain the sensitivities of

the inputs. First, different scenarios (states of the world) are weighted using a

change of probability measure. Different sets of weights are derived from each

input, such that adverse scenarios of that input are assigned higher emphasis. In

that sense, each set of weights produces a stress to the distribution of an input.

The weights are derived using the normal transform, which has been defined in

the context of distortion risk measures. Second, the change in the distribution of

the output is quantified, for such a stress applied to each input. The sensitivity

to an input, is assessed by comparing standard tail risk measures of the output,

such as Value-at-Risk and Expected Shortfall, before and after stressing that

input. Further, Monte-Carlo simulation is used to quantify the response of the

model when the value of a certain input is varied.

The approach taken in this paper results in computational ease as the calculations

can be performed on a single set of simulated input/output scenarios. In addition,

it is a coherent approach since all inputs are varied in a consistent way. We use

the same distortion function for obtaining all the different sets of weights and

each set of weights produced exhibit similar characteristics i.e., higher valued

outcomes are given higher emphasis and lower valued outcomes, lower emphasis.

A numerical example is presented to elucidate the effectiveness of the proposed

approach.

Keywords: Sensitivity analysis, Value-at-Risk, Expected Shortfall, Distortion

Risk Measures, Normal Transform.
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1 INTRODUCTION

1 Introduction

Managing the risk that an institution faces in the short and long run is foremost

the greatest responsibility of a risk manager. As part of the solvency II require-

ments, it is mandatory for the insurance companies to keep aside enough capital

so that the largest loss can be dealt with at a 99.5% confidence level. Companies

are in charge of their own risk and solvency assessment (ORSA), rather than

following a perspective approach to risk quantification and management. De-

pending on the risk profiles of the insurance businesses, the capital requirements

would change and therefore building their own internal models to assess the risk

leads to more appropriate calculations (Ralph, 2016).

Numerous factors must be taken into account for model building. Due to the

increasing complexities that arise in running a business, complicated models are

being integrated into insurance operations. Specifically for an insurance com-

pany, all the business lines have to incorporated into the model along with factors

such as inflation, interest rate, and expected premium growth. These numerous

variables in a model makes it impossible for the analyst to base any judgments on

mere intuition and therefore reliance is placed on various simulation techniques.

By quantifying portfolio risk and by performing sensitivity analysis, it becomes

tractable to pinpoint a particular scenario or a combination of events as catas-

trophic to the company’s performance. It is therefore essential that the analysts

understand the model behavior before proposing any changes in the business

strategy.

Sensitivity analysis helps aid understanding the relationships between the in-

puts and output and is an essential component of model building. By running

the model several times, it allows us to identify the set of inputs which have

the greatest impact on the model output. The inputs which affect the output

significantly are said to be highly sensitive. It therefore allows an analyst to fo-

cus more on the highly sensitive inputs rather than on inputs which exhibit low

sensitivities. Due to process being time-consuming as well as expensive, reverse
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2 RISK MEASURES

sensitivity testing introduced by Pesenti et al. (2018) is an alternative method

as it requires only a single set of input/output scenarios.

The structure of the paper is as follows: we discuss risk measures in section

2 placing emphasis on certain risk measures such as Value-at-Risk, Expected

Shortfall and Distortion Risk Measures. In section 3, we provide an introduc-

tion to sensitivity analysis and the various methods available in the literature.

Recent methods such as reverse sensitivity analysis method is acknowledged. In

section 4, we propose a new sensitivity analysis method to analyze and compare

the sensitivities of the inputs of the model. We use the concept of distortion risk

measures to increase the severity of the assumptions considered in the model.

We then use Monte-Carlo simulation as a tool to investigate the model behavior.

Finally, we set out three variations of the model for the reader to appreciate the

usefulness of the method.

2 Risk Measures

2.1 Introduction

The term risk in a layman’s context indicates any kind of uncertainty that he/she

may be facing. Where decisions concerning money have to be taken, there is a

natural tendency to quantify the risk involved in the decision. Extending the

concept of risk to an insurance company, the process of quantifying risk that it

faces is an important task for identifying and to differentiate between business

lines which perform well against those that perform poorly. One can view risk

measures as a tool which allows companies to control and limit the amount of

risk they are willing to take (McNeil et al., 2015).

According to Denuit et al. (2005), a risk measure is a “functional ρ mapping a

risk X to a non-negative real number ρ(X), possibly infinite, representing the

extra cash which has to be added to X to make it acceptable” to an internal or

external controller.

7



2.1 Introduction 2 RISK MEASURES

The above definition implies that the interpretation and analysis of the risk in-

herent in an investment is based on a real value which is obtained as the output.

The most obvious relationship between ρ(X) and the risk is a direct relationship

ie., as ρ(X) increases, the riskiness of the portfolio under consideration increases.

In principle, we can view the underlying concept of risk measures as being anal-

ogous to the premium calculations in the insurance sector and this was studied

extensively by Bühlmann (2007) and Goovaerts et al. (2001). The basic idea of

such a comparability emerges from the viewpoint that the premium calculation

reflects the minimum amount that an insurer is willing to accept in order to bear

the risk of proceeding with an insurance contract (Tsanakas and Desli, 2003).

Therefore, the insurer would charge a higher premium if there is a higher risk

involved in the contract. As aptly put, “both insurance premium and the price

of a financial product can be regarded as a measure of risk involved in the finan-

cial transaction between the buyer of the product and the seller in the market

(Goovaerts et al., 2001). For a more comprehensive disquisition, see Denuit et al.

(2005) and Goovaerts et al. (2001)).

Quantifying financial risks plays an important role in safeguarding the interests

and to ensure smooth functioning of the company. According to Denuit et al.

(2005), there are two key approaches to decision making under risk and are as

follows:

1. Classical Expected Utility Theory, which was axiomatized by von Neumann

and Morgenstern in 1947 (for further discussion, see Kaas et al. (2008,

chapter 1)).

2. Yaari’s (1987) Dual Theory for Choice under risk.

Yaari’s Dual Theory of Choice was proposed as a complementary approach to

the Expected Utility Theory in 1987. There were two main reasons behind the

motivation for the Dual Theory. The first being that under the utility theory, risk

aversion and diminishing marginal utility of wealth are in many respects alike.

Risk aversion is the basic characteristic exhibited by an agent. Here, an agent

8



2.1 Introduction 2 RISK MEASURES

would tend to avoid those deals which involves greater uncertainty. Diminishing

marginal utility implies that the agents’ total wealth relates directly to the size

of the losses he is willing to accept. Therefore, higher the amount of wealth that

an agent possesses, the higher the level of risk that he is willing to accept. The

second reason behind the motivation as stated by Yaari is that certain behav-

ior patterns that are inconsistent, such as those observed in Allais (1953) and

Kahneman-Tversky (1979) can be explained by the dual theory. Allais questions

the “independence axiom” and from experimental evidence, we note that some

people prefer certain choices of investment which do not seem rational when Ex-

pected Utility theory is considered. Kahneman-Tversky in their seminal paper

Prospect Theory: An analysis of Decision under Risk argue that people tend to

change their behavior patterns depending on how the problem is presented to

them. For instance, if there is a greater emphasis on “gains”, individuals are

“risk averse” but when emphasis is placed on “losses”, individuals tend to be

more risk-seeking. Further, individuals prefer to choose those situations where

an outcome is certain as opposed to those where a probability is attached to the

outcome amount, even if the latter is an equally good or a better deal (Kahne-

man and Tversky, 2013). Hence, the inconsistencies that arise while considering

Expected Utility Theory are enormous and therefore Dual Theory might be a

good alternative.

Dual theory itself generates certain paradoxes which can be resolved by the utlity

theory. Thus according to Yaari, the two theories resolve each others paradoxes.

Attempts have been made by Tsanakas and Desli (2003) to combine the afore-

mentioned theories to obtain a new risk measure, Distorted Exponential Premium

Principle, which possesses properties from both theories.

9



2.2 Properties of Risk Measures 2 RISK MEASURES

2.2 Properties of Risk Measures

There are a few fundamental and important properties of risk measures that

are useful to know, but there exists no such set of properties that an ideal risk

measure should satisfy under all circumstances. It should be left to the discretion

of the analyst to decide whether a particular metric which they would like to

apply, must satisfy a particular property or not depending on the situation.

A few properties are mentioned below and some of them are simple and self-

explanatory.

Let X, Y be the random variables (r.v. for short) denoting the losses.

1. No-Ripoff

For bounded r.v. X, ρ(X) ≤ max(X) = F−1X (1) (1)

The no-ripoff property implies that it is inefficient for an institution to hold

more money than the maximum possible loss as this would guarantee 100%

solvency. Holding more capital than what is required is uneconomical as

this can be invested in other instruments such as bonds and shares to obtain

a higher value.

2. Non-Negative Loading

ρ(X) ≥ E(X) (2)

The least amount of capital that must be kept aside by an institution must

be equal to at least the loss expected to incur during a given time period.

This is because we assume that the rough estimate of the predictive loss is

equal to the mean of the past losses.

3. Translation Invariance

ρ(X + c) = ρ(X) + c (3)

As we have defined X to be a random variable representing the losses, this

implies that if the precise amount of a loss c is known in advance then

10
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it is equivalent to adding the deterministic cash amount c to the position

in order to comply with the definition of a risk measure mentioned above

(Denuit et al., 2005).

4. Constancy

ρ(c) = c (4)

We had specified c to be a deterministic loss and hence for a company to

remain solvent, we would need to set aside an amount c. This is not the

case that we generally expect to observe in the real world situations but,

if we broaden X to denote liabilities, then we can expect to have some

deterministic liabilities in the future (Denuit et al., 2005). This property

does not take into consideration the interest rate.

5. Sub-additivity

ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all r.v.s X and Y (5)

The central idea of sub-additivity was summed up by Artzner et al. (1999)

that a merger does not create extra risk. This introduces the effect of diver-

sification and for sub-additive risk measures, the resultant effect is positive

(Denuit et al., 2005). Diversification effect is defined by McNeil et al. (2015)

as the “difference between the sum of the risk measures of stand-alone risks

and the risk measure of all risks taken together.”

Sub-additivity is a much debated concept in respect to the necessity of a

risk measure satisfying the property as we will see further on that Value-at-

Risk, which is a commonly used risk measure, does not satisfy the property.

However, there have been attempts to justify its necessity as according to

McNeil et al. (2015), a financial institution can reduce its capital require-

ments by breaking it up into various subsidiaries if a non-subadditive risk

measure is used. Artzner et al. (1999) and Wang et al. (1997) also claim

that risk measures would satisfy sub-additivity for any dependence struc-
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ture, as risks that exhibit positive dependence also provide diversification

to a certain level (Tsanakas and Desli, 2003).

6. Co-monotonic Additivity

Firstly, co-monotonicity is defined as the following by Denuit et al. (2005):

A random vector X is co-monotonic if and only if there exist a r.v. Z and

non-decreasing functions t1, t2, ..., tn, such that :

X =d (t1(Z), t2(Z), ..., tn(Z))t (6)

(Xc
1, X

c
2, ..., X

c
n) denotes a co-monotonic random vector and for any two

r.v.s X and Y if FX ≡ FY , then X =d Y (Denuit et al., 2005).

Co-monotonic r.v.s are also referred to as undiversifiable r.v.s. It implies

that the variables are increasing functions of one another. A more precise

definition can be found in McNeil et al. (2015).

The property is stated as follows :

ρ(X + Y ) = ρ(X) + ρ(Y ) for all r.v.s X and Y (7)

From the above, we can notice that the combined risk can never decrease

with respect to their stand-alone risks. This can be viewed as a special case

of the sub-additivity property where there is no effect of diversification.

Therefore, it is a no-hedge condition (Denuit et al., 2005).

7. Positive Homogeneity

ρ(cX) = cρ(X), for all random variables X and c ∈ R+ (8)

This is a similar concept to the one seen above and it was proposed by

Artzner et al. (1999). From the equation, it is clear that if we increase the

portfolio size, then the capital requirements would also increase proportion-

ally. However, it does fail to take into consideration the extra increase in

the liquidity risk that the agent would face if he increases his portfolio size.

12
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By increasing the magnitude of the portfolio, the agent is now faced with

a higher risk of experiencing larger losses which in turn makes it harder to

cope up with the losses (Tsanakas and Desli, 2003).

8. Monotonicity

If X ≤ Y almost surely⇒ ρ(X) ≤ ρ(Y ) (9)

If loss Y is at least equal to or greater than loss X in most cases, then

it is rational to allocate proportionally more capital for Y than X to deal

with the losses appropriately. In other words, the greater the returns of a

portfolio, the less risky it is considered to be.

9. Law of Invariance / Objectivity

X =d Y ⇒ ρ(X) = ρ(Y ) (10)

This property implies that a risk measure is ‘objective’ if ρ(X) depends on

X only through its cumulative distribution function FX(x).

Objectivity plays an important role for the applicability of a risk measure.

If a measure is observed to satisfy this property, then the risk measure can

be estimated using the empirical data (Denuit et al., 2005). Therefore, it is

a desirable property as the riskiness of X can be measured through FX(x).

10. Convexity

Convexity is a more general property and we see below that the risk measure

is sub-additive when the property of convexity is combined with positive

homogeneity.

ρ(λX + (1− λ)Y ≤ λρ(X) + (1− λ)ρ(Y ) (11)

Further, a risk measure is classified as a coherent risk measure if it ex-

hibits four properties: translation invariance, positive homogeneous, sub-

additivity and monotonicity (Artzner et al., 1999). However according to

13
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Danielsson et al. (2005), coherence is not an appealing mathematical prop-

erty from a financial point because it is a restrictive condition and alter-

native risk measures which are coherent can not be widely applied due to

the complexities that arise while back-testing. Priority must be given to

economic justification rather than mathematical tractability (Dhaene et al.,

2003).

2.3 Some Important Risk Measures

Risk Measures can be classified and studied in a number of ways and we

note that the classification need not be exclusive. In other words, there

may be instances where a risk measure may be classified under more than

one category. Without dwelling deep into the different classifications that

exist, we would like to specifically look at Value-at-Risk, Expected Shortfall,

Distortion Risk Measures and their important properties.

2.3.1 Value at Risk

According to Denuit et al. (2005),

VaRp(X) = F−1X (p), (12)

for a given risk X and p ∈ (0, 1) and where,

F−1X (p) = inf{x ∈ R|FX(x) ≥ p} (13)

p is also referred to as the confidence level.

The origins of VaR can be traced back to the early twentieth century where

actuaries used the concept of VaR implicitly for calculating the initial re-

serve in classical ruin problems. The measure was used by the financial

institutions as a means of forecasting and aggregating risks but, as firms

started performing more complex operations, it became increasingly more

important to understand the interactions between various variables in con-

text (Dowd and Blake, 2006). The interpretation of VaR as given in McNeil

14
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et al. (2015) is that it is the “maximum loss that is not exceeded with a

given high probability.” It is clear from the definition, that VaR does not

take into account the tail of the distribution. In other words, it is blind to

the shape of the distribution beyond the value p and therefore it is indiffer-

ent to the magnitude of the damage beyond the agreed threshold p. Hence,

it is advantageous to use a measure which can cope with dependencies and

also takes into account the tail of the distribution (Goovaerts et al., 2001).

One such measure which takes into account the tail of the distribution is the

Expected Shortfall (also called as the Tail Value-at-Risk) which is discussed

in section 2.3.2. Furthermore, as VaR is a quantile based risk measure, the

user must be aware of the existent discontinuities and intervals in the dis-

tribution function as this can have a significant effect on the output.

According to Acerbi and Tasche (2002), VaR is in fact not suitable to be la-

beled as a risk measure as it does not satisfy the property of sub-additivity.

They place a more stringent emphasis on the need for a measure to be

coherent and even though there may exist alternative means of defining

coherence, they stress on the importance of sub-additivity as a mandatory

requirement. They argue that it is easy to show that different portfolios

with varying levels of risk can have the same VaR. One such example can

be found in Danielsson et al. (2005). To summarize the flaws of VaR, we

state the two reasons from Artzner et al. (1999) to reject VaR as a measure

of risk :

(a) value at risk does not behave nicely with respect to the addition of risks,

even independent ones, thereby creating severe aggregation problems.

(b) the use of value at risk does not encourage and, indeed, sometimes pro-

hibits diversification because value at risk does not take into account

the economic consequences of the events, the probabilities of which it

controls.
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Despite its limitations and weaknesses, VaR is the most commonly used risk

metric today by banks and regulators and its importance in Basel II and Solvency

II is likely to remain unchanged. This may be because it is a convenient measure

to estimate and implement and also according to Danielsson et al. (2005), sub-

additivity violations are a serious concern only if the tail of the distribution is

super fat (ie., 1st moment does not exist). We note here for the benefit of the

reader that the tail index measures the thickness of the tail and for most asset

classes, the tail index is observed to be between 3 and 5 (Danielsson et al., 2005),

which is not considered as super fat. Another important practical advantage of

VaR is that back-testing VaR estimates are easier than other types of estimates.

2.3.2 Expected Shortfall

The definition given by Denuit et al. (2005) is as follows :

ESp(X) =
1

1− p

∫ 1

p
VaRp(X)dq, (14)

for a given risk X and a probability level p ∈ (0, 1).

Corresponding changes in the formula can be made if we consider a discrete loss

distribution rather than a continuous one.

The interpretation given by Denuit et al. (2005) for the expected shortfall (ES

for short) is that it is the “average loss in the worst 100(1−p)% cases” or simply

the average of the losses exceeding the VaR at the confidence level p.

An alternative representation of ES when FX(x) is continuous is as follows:

ESp(X) = E(X|X > VaRp(X)) (15)

ES is also referred to as the tail conditional expectation, worst conditional expec-

tation, conditional VaR and so on in other literature papers. These inconsisten-

cies arise as different authors use different terminology for the same definition or

otherwise the definitions vary slightly. However, all the mathematical formulas

of the various alternatives lead to same results if a continuous loss distribution is
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considered, while differences emerge when we either use a discrete loss distribu-

tion or a distribution that has discontinuities (Acerbi and Tasche (2002); Dowd

and Blake (2006); McNeil et al. (2015)).

ES at p can also be understood as an adjusted value of VaR at a confidence level

greater than p. From the above, it is clear that ES is at least equal to or greater

than VaR (Rockafellar et al., 2000). Hence, ES is better suited to measure the

tail as compared to VaR and unlike VaR, it is always sub-additive. We note here

that ES is a coherent risk measure as it satisfies all the four required properties

needed for it to be classified as a coherent risk measure whereas, VaR is not

coherent in general as it fails to fulfill sub-additivity in some cases.

A table is presented below which shows the properties satisfied by the two risk

measures - VaR and ES. We use check marks to denote if a particular property

is satisfied, whereas a cross denotes that the particular property is not satisfied

by the corresponding risk measure at all times.

Property Value-at-Risk Expected Shortfall

No-Ripoff 3 3

Non-Negative Loading 7 3

Translation Invariance 3 3

Constancy 3 3

Sub-additivity 7 3

Co-monotonic Additivity 3 3

Positive Homogeneity 3 3

Monotonicity 3 3

Objectivity 3 3

Convexity 7 3
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2.4 Distortion Risk Measures

We have earlier seen the motivation behind the dual theory of choice under risk.

In Yaari (1987), he mentions that his proposed theory requires independence

with respect to direct mixing of payments of risky prospects and not the inde-

pendence with respect to probability mixtures of risky prospects.

Distortion risk measures (DRM for short) are widely applied for calculating in-

surance premiums, risk management and in importance sampling for the Monte

Carlo simulations (McLeish and Reesor, 2003). ES for example is a coherent

DRM while VaR is a DRM but not coherent.

2.4.1 Definition and Interpretation

Dowd and Blake (2006) define distortion risk measure as the expected loss under

a transformation of the cumulative distribution function.

ρg(X) = −
∫ 0

−∞
(1− g(FX(x)))dx+

∫ ∞
0

g(FX(x))dx (16)

When X ≥ 0, we get

ρg(X) =

∫ ∞
0

g(FX(x))dx, (17)

where, FX(x) = P (X > x) and g is a distribution function such that

g : [0,1] → [0,1] satisfying g(0) = 0 and g(1) = 1. g must be increasing and

right-continuous (McLeish and Reesor, 2003).

FX(x) is a tail function and for g as defined above, g(FX(x)) is also a tail func-

tion.

ρg is thus the expectation with respect to the distorted tail function g(FX) and

in particular if g(s) = s, ρg(Y ) = E(Y ).

g is referred to as the distortion function as it distorts FX(x) before the gener-

alized expected value is calculated (Denuit et al., 2005).

The above function ρ possesses the following properties: no-ripoff, positive ho-

mogeneity, translation invariance, monotonicity, co-monotonic additivity.

18



2.4 Distortion Risk Measures 2 RISK MEASURES

ρ is coherent if and only if g is concave (refer to the appendix for the proof).

If g is differentiable,

ρg(X) =

∫ ∞
0

g(FX(x))dx

= [xg(FX(x)]∞0 −
∫ ∞
0

xg′(FX(x))
d

dx
FX(x)dx

=

∫ ∞
0

xg′(FX(x))dFX(x)

= E[Xg′(FX(X))]

= E[F−1X (U)g′(1− U)] where, U ∼ U(0, 1).

We notice that g′(FX(x)) is a re-weighting of the loss distribution and for con-

cave g, higher weights are assigned to larger values of X (Tsanakas and Desli,

2003). Therefore, the distorted risk measure is in fact a weighted average of

percentiles.

We can understand the inherent nature of the agent in terms of the risk he is

willing to accept by observing the behavior of the distortion and this is done by

looking at the difference between the original and the distorted preferences. A

risk averse agent would tend to be more cautious while estimating the probabili-

ties to take as little risk as possible. In such a case, it is natural and prudent for

the agent to overestimate the extreme events and therefore the tail probabilities.

According to Denuit et al. (2005), for a risk averse agent the following would

always hold:

g(q) ≥ q =⇒ g(FX(x)) ≥ FX(x) , x ε R.

From the above, we can say that ρg(X) ≥ E(X).

For a risk neutral agent, the distortion and the original preferences would match

at each point and therefore, g(q) = q =⇒ ρg(X) = E(X).
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2.4.2 Examples

1. We now demonstrate that ES is a DRM:

ES is obtained as a DRM using the distortion function

g(q) =


q−α
1−α , if q ≥ α

0, if q < α

ES is coherent since g(q) is concave.

The distortion of ES is obtained by adjusting one parameter and therefore,

they are also referred to as the “one parameter distortion functions.” ES

is also used in Basel III for determining minimum capital requirements to

ensure capital adequacy (Schumacher, 2018).

2. Normal Transform Risk Measure:

A very important concept is the Normal Transform risk measure introduced

by Wang (2000), which will be used in later sections of this paper as well.

The distortion function is given by

g(q) = Φ(Φ−1(q) + λ) (18)

Φ represents the cumulative distribution function of a standard normal

distribution and q ∈ [0, 1]. We refer to the risk measures derived from the

given distortion function as normal transform risk measures (Denuit et al.,

2005).

As noted in section 2.3.1, VaR is just a point on the distribution whereas,

ES considers the tail of the distribution beyond VaR. The normal transform

on the other hand from equation (18), takes into consideration the entire

distribution of the porftolio and in that sense, it may be regarded as a

superior measure to ES and VaR (Dowd and Blake, 2006).

3. VaR can be obtained using the piecewise function :

g(q) =


1 if q ≥ α

0 if q < α

VaR is not coherent as g(q) is not concave.
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3 Sensitivity Analysis

3.1 Literature Review

3.1.1 Why Sensitivity Analysis is used?

Saltelli (2002) defines sensitivity analysis as the study of how the uncertainty in

the output of a model (numerical or otherwise) can be apportioned to different

sources of uncertainty in its inputs. An insurance company needs to take a rig-

orous approach before amending its existing business strategy, as any change has

to be validated to confirm that it enhances the value of the business. Sensitivity

analysis is an important tool for substantiating such changes. Another reason for

the extensive use of sensitivity analysis by the insurance companies is because

an analyst can not foresee the variations in the outputs by mere intuition as the

models used are complicated (Borgonovo and Plischke, 2016).

Sensitivity analysis is a flexible approach where each input in the model can

be altered and by performing simulations, the corresponding output can be ob-

tained. Therefore, the user is able to detect the response of the model in terms

of magnitude of the impact and the direction of the change (Borgonovo and Plis-

chke, 2016). Consequently, comparisons of the output obtained before and after

the change in the value of an input can be used as a litmus test before taking a

decision (Pritchard et al., 2014). Altering other parameter values one at a time

in a similar way would result in many outputs and the procedure can be repeated

for each input in the model. Referred to as the One-at-a-time (OAT) method, it

is the simplest method that can be applied on a model. Various analyses can be

performed on the different outputs obtained to understand the vulnerability of

the model and conclusions can be made by ranking the degree of the influence

of each input (Tsanakas and Millossovich, 2016).

Sensitivity analysis is thus used when the values of the input parameters are

uncertain and using VaR and ES when carrying out sensitivity analysis is par-

ticularly helpful for decision making (Tsanakas and Millossovich, 2016). Though
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sensitivity analysis can be applied for both quantitative and qualitative assess-

ments (Pritchard et al., 2014), in this paper we will focus on the quantitative

assessments.

3.1.2 Local and Global Measures

Sensitivity analysis methods can be broadly classified into local and global meth-

ods (Borgonovo and Plischke, 2016). Local methods are put into practice when

probability distributions are not specified to the inputs (deterministic framework)

and when the user is required to make analysis around “a point of interest in the

model input space” (Borgonovo and Plischke, 2016). The local includes methods

such as Tornado diagrams, One-way sensitivity functions, Differentiation-based

methods and Scenario decomposition through finite change sensitivity indices

while methods such as sequential bifurcation, Morris method, Variance-based,

Moment-Independent are examples of global measures.

A global measure “reflects the model behavior over the whole of the input range”

(Tsanakas and Millossovich, 2016). ” Both local and global measures are useful

depending on the information available to the analyst. Variance-Based methods

are used for apportioning the uncertainty of an output to different inputs and the

interactions between them (Marzban, 2013). Here, the output variance is split

up into two parts as the ‘explained variance’ resulting from the dependence on

the inputs and the ‘residual variance’ (Borgonovo and Plischke, 2016). Moment-

Independent methods can be used where the model inputs are allowed to vary

thus making it possible to obtain the unconditional output densities. By using

this method, the sensitivities can be assessed by considering entire distribution

(Borgonovo and Plischke, 2016). For further discussion about the different types

of sensitivity methods, refer to Borgonovo and Plischke (2016).
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3.1.3 Reverse Sensitivity Testing

In addition to the existing local and global methods, Pesenti et al. (2018) have

introduced a new sensitivity analysis method, referred to as the Reverse Sensitiv-

ity Testing, in an attempt to determine the most influential factor which drives

the model, as it could be the basis under which a model can fall apart. It is a

global measure as it is used when probability distributions of inputs are known.

The application of reverse sensitivity testing can bring about a few advantages.

Firstly, it is computationally less arduous, as Monte-Carlo simulations can be

performed on a single set of input/output scenarios. Secondly, factor prioritisa-

tion, which is the process of identifying and ranking the most influential factors,

is based on the changes in the output distribution rather than considering an

output state. Furthermore, an input is proclaimed to be highly sensitive from

the changes observed in its distribution. Therefore, the one with the most no-

ticeable change is termed to be the most sensitive. The user should be able to

decide whether the highly sensitive input(s) can ‘break the model’.

We state the three steps required in order to perform the analysis presented by

Pesenti et al. (2018).

1. An output stress is specified, corresponding to an increase in the risk mea-

sure(s) of the output.

The objective of deriving the stresses is to intensify the problem faced by

the agent and therefore obtaining larger losses. The risk measure VaR was

used to obtain the stress and by doing so there may arise a situation where

there are inadequate resources to meet the regulatory requirements. This

would allow to test the model under a more severe set of conditions.

2. A stressed probability measure is derived by minimizing the Kullback-

Leibler divergence with respect to the baseline probability, under con-

straints generated by the stress on the output risk measure.

23



3.2 A New Sensitivity Analysis Method 3 SENSITIVITY ANALYSIS

Due to the manner in which the stresses are derived, they have obtained

a constant weight which is applied to claims below a certain value and a

larger weight which is applied to claims above a certain value to derive the

distortion probability distributions.

3. changes in the distributions of input factors are evaluated under the stressed

conditions to assess the sensitivities. An input is said to be highly sensi-

tive if there is a considerable change in its distribution under the stressed

conditions.

3.2 A New Sensitivity Analysis Method

3.2.1 Motivation

A modified approach of the reverse sensitivity testing is presented in this paper.

Pesenti et al. (2018) focused on distorting the output in order to observe the

changes in the inputs. However, in this paper, importance is given to the input

to output relationship. In other words, we distort the inputs to observe changes

in the output. As a consequence of the methodology, distorting one input would

lead to the distortion of other correlated inputs of the model.

For the steps mentioned in section 3.1.3, we use different techniques for our

modified version.

In the first step, instead of minimizing the Kullback-Leibler divergence, we use

the normal transform risk measure to obtain the stresses on the inputs. Pesenti

et al. (2018) derived a Radon-Nikodym density corresponding to weights on par-

ticular states of the world. The weights obtained are piecewise constant and

therefore, a low value is used to stress the low values of Y and a higher empha-

sis is applied to higher values of Y . However, by using a normal transform, we

obtain a continuously increasing weights to distort the output Y . This perhaps

is more suitable as it is effective to obtain greater distortions for Y .
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For the second step, we use the risk measures VaR and ES as a means of compar-

ison between the baseline and the stressed models. We calculate the percentage

increase in VaR and ES for the stressed models with respect to the baseline to

analyze the sensitivity levels of the input factors.

Another possibility is to alternatively use mean and standard deviation to get a

quick glance of the model behavior.

3.2.2 Setup and Notation

Let X1, X2,..., Xn denote n random variables representing the input factors of

the model under consideration and we indicate these n input factors by a vector

X = (X1, X2, . . . Xn). Let ψ be the aggregation function that maps the inputs

to an output. We write, ψ : Rn → R. We apply the function ψ on the inputs to

obtain the one-dimensional random output Y = ψ(X).

Let Xi follow a distribution function denoted by Fi, Xi ∼ Fi, and let Y follow a

distribution denoted by H, Y ∼ H.

Let P denote the set of all the probability measures on a measurable space

(Ω,A). We denote the baseline model as (X, ψ, P ) with baseline probability

measure P ∈ P.

Define the random variable Wi by Wi = g′(1 − Ui), where Ui ∼ Uniform(0, 1)

such that Wi is co-monotonic to Xi. g is the normal transform given by

g(q) = Φ(Φ−1(q) + λ).

Define a new measure Qi by dQi

dP = Wi. This is the Radon-Nikodym density that

operates as weights on different scenarios. Thus, we can write the expectation

of a random variable, Z, under the new probability measure Qi as follows:

EQi(Z) = E(WiZ)

The main objective of this paper is to observe the distortions caused to the dis-

tribution Y using the stresses obtained from the normal transform risk measure.

Therefore, in the plots and tables that we produce in section 4.1.2, we aim to
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compare the distribution function and risk measures (VaR and ES) of the output

Y under the baseline model (P ) with the distribution function and risk measures

under the new probability measure Qi. Hence, a significant change in the output

distribution under the new measure Qi would indicate that the output is partic-

ularly sensitive to the input Xi.

We derive g′(q) as follows:

g′(q) =
d

dq
Φ(Φ−1(q) + λ)

= Φ′(Φ−1(q) + λ)
d

dq
(Φ−1(q) + λ)

= Φ′(Φ−1(q) + λ)
d

dq
(Φ−1(q))

= Φ′(Φ−1(q) + λ)
1

Φ′(Φ−1(q))

Evaluating it at (1−Ui), we arrive at the following which is used in our example

to generate the weights for the distortion.

Wi = g′p(1− Ui) = Φ′(Φ−1(1− Ui) + λ)
1

Φ′(Φ−1(1− Ui))
; i = 1, 2, ..., n (19)

We denote Y ∼ HQi under the new measure Qi. Any distribution function can

be written as an expectation using the indicator function, we can write the new

distorted distributions obtained under Qi as follows:

HQi(t) = Qi(Y ≤ t) = EQi(1{Y≤t}) = E(1{Y≤t}Wi)

It holds that: VaRQi
p (Y ) is the inverse of HQi at p, that is, the value such that

HQi(VaRQi
p (Y )) = p.

Thus, a change in the measure is a simple method to put different weights for

different outcomes.
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For Expected Shortfall we have:

ESQi
p (Y ) = EQi(Y |Y > VaRQi

p (Y ))

=
1

Qi(Y > VaRQi
p (Y ))

EQi

(
Y · 1{Y >VaR

Qi
p (Y )}

)

=
1

1− p
E
(
Wi · Y · 1{Y >VaR

Qi
p (Y )}

)
(20)

Percentage increase in VaR and ES for each input is calculated for each distor-

tion case with respect to the baseline model. This value is assigned to be the

sensitivity of the input.

3.2.3 Implementation in a Monte-Carlo Setting

As mentioned above, H is the distribution of Y under P and HQi is the distri-

bution of Y under measure Qi, where Wi = dQi

dP . Let us for simplicity assume

that both distributions H and HQi are continuous. Assume that we have an

iid simulated sample from Y obtained under P (in other words, drawn from the

distribution H) and denote that sample by y(1), . . . , y(m), where m is the number

of simulations performed. Furthermore, we have corresponding samples from the

Radon-Nikodym density Wi; these are denoted by w
(1)
i , . . . , w

(m)
i . We are inter-

ested in calculating VaRQi
p (Y ) and ESQi

p (Y ) from that simulated sample.

We can estimate HQi and VaRQi
p (Y )) by

ĤQi(t) =
1

m

m∑
k=1

w
(k)
i 1{y(k)≤t}

V̂aRQi
p (Y ) = inf{t ∈ R : HQi(t) ≥ p}

The above expression for V̂aRQi
p (Y ) reflects the fact that the empirical distribu-

tion ĤQi(t) is actually discrete. Now, turning attention to the Expected Short-

fall, we can estimate equation (20) by

ÊSQi
p (Y ) =

1

m(1− p)

m∑
k=1

w
(k)
i y(k)1

{y(k)> ̂
V aR

Qi
p (Y )}
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4 Examples

4.1 Benchmark Model

4.1.1 Model Specification

Consider an insurance portfolio consisting of the input factors X1, X2, X3 and

X4 with the same specifications as in Pesenti et al. (2018). X1 represents a

set of claims that follow a Log-normal distribution with mean 150 and standard

deviation 35 andX2 represents the set of claims that follow a Gamma distribution

with mean 200 and standard deviation 20. We do not in this paper discuss the

validity of making such assumptions.

Define L = X1X3 + X2X3, where X3 is the inflation factor and it follows a

Log-normal distribution with mean 1.05 and standard deviation 0.02. We make

a further assumption that X1, X2 and X3 are independent random variables.

The model takes into consideration the reinsurance. Let X4 model the proportion

of the amount that is lost by the insurer due to the failure of payment by the re-

insurer. Assume that X4 follows a Beta distribution with mean 0.1 and standard

deviation 0.2. We assume that X4 is related to L through a Gaussian copula and

has a correlation of 0.6.

We can now represent the total liability (Y ) as

Y = L− (1−X4) min{(L− d)+, l} (21)

where, d is the deductible and l is the limit. Assign d = 380 and l = 30.

4.1.2 Analysis and Results

As discussed in section 3.2.1, the weights derived from the normal transform risk

measure are used to obtain the stressed models. We assume three different values

for λ thus, generating three sets of weights or three sets of distorted probability

measures for each random variable separately in the model considered.

We use the values: λ = 0.5, 1.0 and 1.5.
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In figure 1, we plot samples of the random variables W1,. . . ,W4 against X1,. . . ,X4

respectively.

Figure 1: Samples of W1, W2, W3, W4 against X1, X2, X3, X4 respectively,

for λ = 0.5, 1, 1.5.

From figure 1(a), we note that for claims below 200 units the weights, W1, do

not vary significantly for different λ values. However, for claims greater than 200

units, heavier weights are assigned as λ increases. Similar observations can be

made from figure 1(b), 1(c) and 1(d). Hence, it is reasonable to say that a higher

λ focuses more on the higher valued claims rather than lower valued claims. By

increasing the λ, we are intensifying the severity of the conditions assumed and

hence, we can presume that a highly risk averse agent would prefer assigning a

higher λ value to carry out the sensitivity analysis.
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(a) Distortions of Y obtained using W1 (b) Distortions of Y obtained using W2

(c) Distortions of Y obtained using W3 (d) Distortions of Y obtained using W4

Figure 2: Distorted probability distributions of Y obtained using W1, W2, W3, W4 for

λ = 0.5, 1.0, 1.5

Figure 2 shows HQi(Y ) using Wi, i =1,2,3,4 for the λ values alongside the

baseline probability distribution, H. As the distortions for each λ value in figure

2(a) and 2(d) are more pronounced than in figures 2(b) and 2(c), X1 and X4

are the most sensitive inputs for Y . This is validated from the values obtained

in Tables 1-4 as the tables show the percentage increase in VaR and ES with

respect to the VaR calculated for the benchmark model for Y at different confi-

dence intervals.
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The r.v.s X1 and X2 are the claims modeled by a Log-normal and a Gamma

distribution respectively. As Log-normal is heavier tailed than a Gamma distri-

bution, the percentage increase in VaR and ES of Y obtained for different values

of λ in Tables 1 and 2 vary substantially. For instance in Table 1, the percentage

increase in VaR at p = 0.99 for λ = 1.5 is 24.08 whereas, the corresponding value

in Table 2 is only 8.38. Further, the percentage increase in VaR and ES at each

confidence level in Table 2 is lower than the corresponding value in Table 1. This

is attributable to the fact that a higher λ impacts the Log-normal to a greater

extent than the Gamma distribution. Hence, we say that X1 is more sensitive

than X2. Comparing the tables in a similar manner results in the ordering of

inputs’ sensitivities as X1, X4, X2 and X3.

Table 1: Percentage increase in VaRp and ESp for HQ1 with respect to the baseline

model, H.

% increase in VaRp % increase in ESp

p =0.75 p=0.85 p= 0.95 p=0.99 p =0.75 p=0.85 p= 0.95 p=0.99

λ = 0.5 3.06 6.35 6.94 7.51 6.15 6.92 7.11 7.68

λ = 1.0 10.11 13.75 14.46 15.48 13.72 14.63 15.31 16.59

λ = 1.5 17.92 21.74 23.56 24.08 22.06 23.23 23.92 25.05

Table 2: Percentage increase in VaRp and ESp for HQ2 with respect to the baseline

model, H.

% increase in VaRp % increase in ESp

p =0.75 p=0.85 p= 0.95 p=0.99 p =0.75 p=0.85 p= 0.95 p=0.99

λ = 0.5 0.90 2.87 3.10 2.73 2.63 3.04 2.88 2.53

λ = 1.0 3.28 6.34 6.33 5.43 5.78 6.25 5.84 5.03

λ = 1.5 6.86 9.71 9.64 8.38 9.19 9.56 8.78 7.23
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Table 3: Percentage increase in VaRp and ESp for HQ3 with respect to the baseline

model, H.

% increase in VaRp % increase in ESp

p =0.75 p=0.85 p= 0.95 p=0.99 p =0.75 p=0.85 p= 0.95 p=0.99

λ = 0.5 0.15 0.88 1.07 1.04 0.86 1.06 1.11 0.93

λ = 1.0 0.42 1.85 2.07 2.01 1.74 2.08 2.08 1.77

λ = 1.5 0.88 2.68 2.97 2.93 2.57 2.99 2.93 2.28

Table 4: Percentage increase in VaRp and ESp for HQ4 with respect to the baseline

model, H.

% increase in VaRp % increase in ESp

p =0.75 p=0.85 p= 0.95 p=0.99 p =0.75 p=0.85 p= 0.95 p=0.99

λ = 0.5 2.19 4.94 5.58 5.43 4.77 5.44 5.42 5.46

λ = 1.0 7.23 10.85 11.10 10.75 10.46 11.16 11.10 12.57

λ = 1.5 13.13 16.66 16.43 18.02 16.35 17.03 17.53 23.43

While our emphasis is on demonstrating how a stress in Xi affects the distri-

bution of Y , it is also the case that a stress on Xi modifies the distributions of

other inputs, if these are correlated with Xi. We exhibit these distorted prob-

ability distributions of the input factors obtained when H is stressed by W1 in

figure 3. The probability distributions for X2 and X3 do not change with λ as

X1, X2 and X3 are assumed to be independent in section 4.1.1. We do however

see distortions in X1 and X4, as a change in X1 has a cascading effect on X4.

Therefore, the distortions of the output (Y ) shown in figure 2 occur due to the

changes observed in X1 and X4 in figure 3.
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(a) (b)

(c) (d)

Figure 3: Distorted probability distributions for X1, X2, X3, X4 obtained using W1 for

λ = 0.5, 1.0, 1.5

Similar distortions can be derived when weights W2 and W3 are used. Since,

the inferences drawn are analogous to the inferences made when weights W1 were

used, we do not provide any more details on this.

In Figure 4, we show the stressed distributions of the input factors obtained

when weights W4 are used. As X4 is related to L, it affects all the probability

distributions of all the other inputs. The cascading effect on the inputs due to

the stress in X4 is seen clearly here.
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(a) (b)

(c) (d)

Figure 4: Distorted probability distributions for X1, X2, X3, X4 obtained using W4 for

λ = 0.5, 1.0, 1.5

4.2 Variations of the example

In this section, we vary one of the factors of the model and observe the changes

in the model behavior. We are particularly interested in inspecting the changes

in the order of the sensitivities of the inputs. We look at three specific variations:

1. When correlation between X1, X2, X3 and X4 is varied between 0 and 1.

2. When d is varied between 300 and 600.

3. (a) When claims modeled by X2 follow an Inverse Gamma distribution.

(b) We also vary the standard deviation of X2 from 10 to 100 units.

Using Monte-Carlo simulation, we measure the percentage increase in the ES

when the distribution of Y is distorted using λ = 1, with respect to the ES
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calculated for the benchmark model. The percentage increase in ES is taken to

be the sensitivity of the input. The sensitivities of the inputs are ordered for

p = 0.95.

Variation 1

We vary the correlation between the inputs from the smallest plausible value (0)

to the highest possible value (1). When the correlation is 0, we notice that X1 has

the highest sensitivity followed by X2. X3 and X4 exhibit very little sensitivities.

As the correlation increases, X1, X2 and X3 show almost no variation in their

sensitivity levels. X4 is the only input whose sensitivity changes as the correlation

changes. The sensitivity of X4 increases as the correlation between the inputs

increases and its sensitivity level is approximately that of X1 for high values of

correlation.

Figure 5 shows the sensitivity level of the inputs when the correlation between

X1, X2, X3 and X4 increases from 0 to 1. From figure 5, we observe that X4

starts to become more prevalent than X2 when the correlation is greater than

0.2 approximately.

Figure 5: Sensitivity levels of X1, X2, X3, X4 when the correlation between inputs

change from 0 to 1 for p = 0.95.
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Variation 2

We vary the value of d from 300 to 600 units to examine the behavior of the

sensitivities of the inputs. Figure 6 implies that at all times, X1 exhibits the

highest sensitivity level followed by X4, X2 and X3. The sensitivities show

almost no variation as d increases from 300 to 425 units. The sensitivity levels

of X1 and X4 drop a few points upto about 475 units after which they seem to

remain roughly constant. The sensitivities of X2 and X3 on the other hand do

not seem to change much.

Hence, a change in d does not impact the order of the sensitivities of the inputs.

Figure 6: Sensitivity levels of X1, X2, X3, X4 when d changes from 300 to 600 units

for p = 0.95.

Variation 3

In this variation, we have two parts. For the first part, the claims represented by

X2 is modeled using an Inverse Gamma distribution with mean 200 and standard

deviation 20. As expected, X1 and X4 exhibit a higher sensitivity than X2 and

X3. We obtain the same order for the sensitivities of the inputs as the benchmark

model.
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It is in our interest to examine the behavioral change of the sensitivities when

the standard deviation is now varied from 10 to 100 units and this is shown in

figure 7. At the lowest standard deviation considered (10 units), the order of the

sensitivities are as follows: X1, X4, X2 and X3. As the standard deviation of

X2 increases, the sensitivity of X1 decreases whereas, X2 and X4 increase. The

sensitivity level of X3 remains roughly at the same level.

There is a steep increase in the change of the sensitivity level of X2 as the

standard deviation increases and this is expected. X2 has more than a 60%

sensitivity level and X4 has a 40% approximately when standard deviation is

100 for part 3(b), due to the increased volatility of the claim size.

Figure 7: Sensitivity levels of X1, X2, X3, X4 when the standard deviation of X2

changes from 10 to 100 units for p = 0.95.
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4.3 Comments

The benchmark model indicates that the output has a higher sensitivity to X1

followed by X4, X2 and X3. We obtain consistent results with Pesenti et al.

(2018) as they also report a higher sensitivity to X1 and X4 for the same model.

Therefore, it is reasonable to state that X1 and X4 are the most influential fac-

tors of the model.

A few aspects in the way the sensitivities were specified to the model inputs

were noted. The first being that the percentage increase in VaR and ES pro-

duced in Tables 1-4 contained inconsistent trends as the value of p was altered.

For instance in Table 1, we see that the sensitivity levels for each distortion

increases as p increases. However, in Tables 2-4, the sensitivity levels for each

distortion increases till p = 0.95 and then decreases at p = 0.99.

Further, VaR and ES are used to rank the inputs based on comparing the sensitiv-

ity levels at each p value for the distortions. If an input A has higher percentage

increases for all the corresponding values than input B, then input A exhibits a

greater sensitivity than input B. We might have instances where all the percent-

age increases in VaR and ES for one input are not higher or lower than another

input. So the ranking may not be very obvious and hence, depending on the

purpose for which the sensitivity analysis is used, different values of p may be

more important.
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The proposed framework was effective for understanding the relationships be-

tween inputs and the output. We had used distortion risk measures to stress

the probability distributions and also employed VaR and ES for examining the

behavioral changes in the model. The methodology adopted in this paper leads

to consistent results with other sensitivity methods such as those obtained by

Pesenti et al. (2018).

In addition to this, we were able to examine the cascading effects on other inputs

while one input was altered. As a result, we were able to point out those aspects

of the model which needed the most attention. In such a case, it is possible

to spot unexpected relationships between inputs and outputs from running the

model. Other factors such as GDP, interest rates, returns from assets, claims

from adjacent underwriting years can be included in the model for a more re-

alistic application. Nevertheless, the framework would remain unaltered even if

other inputs are being integrated into the model.
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6 Appendix

According to Denuit et al. (2005), ρg(X) is coherent if, and only if, g is concave.

We provide a simpler proof which is more intuitive.

Let us suppose that ρg(X) = E(g′(1−U)F−1X (U)), U is any uniform distribution.

This naturally satisfies positive homogeneity, translation invariance, monotonic-

ity. For ρg(X) to be coherent, it has to satisfy the property of sub-additivity.

We know that concavity and sub-additivity are concomitant.

Let us choose the uniform to be UX such that it is co-monotonic to X.

Hence,

ρg(X) = E(g′(1− UX)X) since F−1X (UX) = X

Now, let

ρg(X + Y ) = E[g′(1− UX+Y )(X + Y )]

= E[g′(1− UX+Y )X] + E[g′(1− UX+Y )Y ]

≤ E[g′(1− UX)X] + E[g′(1− UY )Y ]

= ρg(X) + ρg(Y )

The inequality follows from the result that E[A.B] ≤ E[A∗.B∗] if A∗ and B∗ are

co-monotonic and have the same marginal distributions as A and B, for any two

random variables A and B (Kaas et al., 2002).

Hence, as X and UX are co-monotonic, E[g′(1 − UX)X] ≥ E[g′(1 − UX+Y )X].

Similarly as Y and UY are co-monotonic, E[g′(1− UY )Y ] ≥ E[g′(1− UX+Y )Y ].

Further, g′(1− UX) can only be increasing in UX if g is concave.

Hence, ρg is sub-additive and therefore coherent.
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