

BRIDGING THE LI-CARTER'S GAP A LOCALLY COHERENT MORTALITY FORECAST APPROACH

Quentin Guibert

CEREMADE, Université Paris-Dauphine Laboratoire SAF, Université Claude Bernard Lyon 1 Prim'Act Email: guibert@ceremade.dauphine.fr

3rd HMD Conference 18 November 2020, Paris, France

Joint work with S. Loisel, O. Lopez and P. Piette

This presentation is based on the following working paper:

Guibert, Q., Lopez, O., and Piette, P. (2020). Bridging the Li-Carter's gap: a locally coherent mortality forecast approach. Working Paper. [Link HAL].

OUTLINE

- 1 Introduction
- 2 LI-LEE VS. LEE-CARTER
- 3 LOCALLY COHERENT APPROACH
- 4 DYNAMIC LOCAL COHERENCE
- 5 CONCLUSION AND PERSPECTIVES
- 6 REFERENCES

MULTIPOPULATION MODELING

- Growing interest in mortality forecasting of multiple populations (e.g. Danesi et al., 2015; Bergeron-Boucher et al., 2018; Cairns et al., 2019).
- Important issue for longevity risk assessment (government, pension fund, life insurance, ...).
- Several modeling challenges

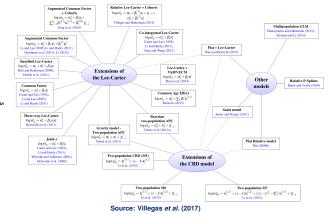
Relationships between populations	Heterogeneous exposure
Correlation of the longevity trends	Lifestyle factors (alcohol, tobacco, obesity)
Evidence supporting coherence	Socioeconomic inequalities Health system
	Environmental factors

MULTIPOPULATION MODELING

Most of models for multiple populations are based on the coherence principle (Li and Lee, 2005), i.e. for populations i and j aged x

$$|\ln m_{\mathbf{x},t+h}^{(i)} - \ln m_{\mathbf{x},t+h}^{(j)}|$$
 do not diverge when $h \to \infty$.

■ This assumption is relevant for two-populations mortality models (Villegas et al., 2017) when managing basis risk between 2 populations.



AIMS OF THE STUDY

LIMITATIONS OF THE COHERENCE PRINCIPLE

- Only suitable for specific populations and over limited time windows (Li et al., 2017).
- Not adapted for large heterogeneous longevity portfolio, e.g. global insurance or reinsurance company.
- Divergence between populations can exist → the coherence principle may distort the projections.

MAIN AIMS

- Introduce a framework for simultaneous modeling of several populations.
- Relax the mortality coherence principle → introduce a locally coherent assumption.
- Assess the impact in terms of simulated mortality dispersion for a large number of Western European populations.
- Improve risk assessment of the longevity risk SCR and longevity hedges basis risk.

SCOPE OF THE STUDY

Modeling simultaneously a large number of Western European populations.

Data from the Human Mortality Database (HMD, 2019)

- A collection \mathcal{I} of $I = 16 \times 2$ populations (gender segregating).
- Austria, Belgium, Switzerland, West Germany, Denmark, Spain, Finland, France, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Sweden and England & Wales.

AGE-PERIOD TRAINING SET

- Age: 45-90.
- Period: 1960-2014.

LI-LEE VS. LEE-CARTER FOR MULTIPLE POPULATIONS

Consider the central mortality rates for the *i*-th population $m_{x,t}^{(i)} = \frac{D_{x,t}^{(i)}}{E_{x,t}^{(i)}}$.

INDEPENDENT LEE AND CARTER (1992) MODEL

Dynamic of the *i*-th population

In
$$m_{x,t}^{(i)} = \alpha_x^{(i)} + \beta_x^{(i)} \kappa_t^{(i)} + \epsilon_{x,t}^{(i)}$$

- \bullet $\kappa_t^{(i)}$ are independent random walks with drifts.
- Estimation with SVD method for each population.

COHERENT LI AND LEE (2005) MODEL

Dynamic with a common trend $B_x^T K_t^T$ for all populations

In
$$m_{x,t}^{(i)} = \alpha_x^{(i)} + B_x^{\mathcal{I}} K_t^{\mathcal{I}} + \beta_x^{(i)} \kappa_t^{(i)} + \epsilon_{x,t}^{(i)}$$

- $K_t^{\mathcal{I}}$ is a random walk with drift.
- $\kappa_t^{(l)}$ are independent mean-reverting process (AR(1) models) \rightarrow enforce coherence.

COHERENCE PROPERTY

GAP BETWEEN THE LEE-CARTER (LC) AND THE LI-LEE (LL) MODELS

- LC model artificially may create some diversification in terms of longevity risk as no relationship between populations are taken into account.
- LL model imposes a strong coherence hypothesis for all the populations: mortality rates will not diverge in the long run, although $\kappa_t^{(i)}$ allow slight derivations.

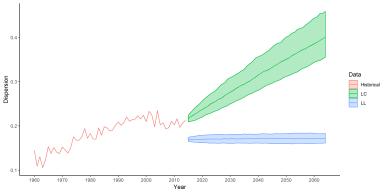
MEASURING DISPERSION

■ Let introduce a metric to measure the divergence at age x of the mortality rates from a collection \mathcal{I} of I populations

$$\delta_{x,t}^{\mathcal{I}} = \sqrt{\frac{1}{I-1} \sum_{i \in \mathcal{I}} \left(\ln m_{x,t}^{(i)} - \overline{\ln m_{x,t}} \right)^2}$$

where $\overline{\ln m_{x,t}} = \frac{1}{I} \sum_{i \in \mathcal{I}} \ln m_{x,t}^{(i)}$.

Dispersion at age 85 in the western European populations (l = 32)



- Median projections by LC and LL models with the corresponding 95% prediction intervals (500 Monte-Carlo simulations).
- Both the LC and LL models present drawbacks:
- Artificial diversification vs. high concentration.
- Need to consider some intermediate scenarios → bridge the gap!

LOCAL COHERENCE

KEY IDEA

- Populations are coherent by homogeneous sub-groups, and not all together at the same time.
- Local version in the populations space dimension of the coherence property.

INTERMEDIATE MODEL

- Assume the existence of coherent sub-groups of populations.
- Denote \mathcal{J} a partition of the populations collection \mathcal{I} in J distinct sub-groups.
- Let $\phi: \mathcal{I} \to \mathcal{J}$ a function returning the label of the assigned sub-group.
- Dynamic of the *i*-th population

$$\ln \ m_{\mathrm{x},t}^{(i)} = \alpha_{\mathrm{x}}^{(i)} + \underbrace{B_{\mathrm{x}}^{\phi(i)} K_{t}^{\phi(i)}}_{\text{common trend of the sub-group } \phi(i)} + \underbrace{B_{\mathrm{x}}^{(i)} \kappa_{t}^{(i)}}_{\text{independant AR(1)}} + \epsilon_{\mathrm{x}}^{(i)}$$

VAR MODEL FOR COMMON TRENDS

- Let $K_t = \left(K_t^j\right)_{j \in \mathcal{J}}$ the vector of dominent trends related to sub-groups.
- Consider a VAR model with a lag p for capturing relationships between sub-groups

$$\Delta \mathbf{K}_t = \mathbf{C} + \sum_{k=1}^{p} \mathbf{A}_k \Delta \mathbf{K}_{t-k} + \mathbf{E}_t,$$

where $\Delta K_t^j = K_t^j - K_{t-1}^j$ is the common mortality improvement of a cluster.

- A_k , k = 1, ..., p, are $J \times J$ -autoregressive matrices which capture the long–run relationships of mortality improvements between coherent sub-groups.
- C is a J-dimensional vector of drifts.
- **E** $_t$ is a J-dimensional Gaussian white noise.

BORDER CASES

The LC and LL models are included in this specification.

LC model	LL model		
Single sub-groups: $\phi(i) = \{i\}$	Only one group: $\phi(i) = \mathcal{I}$		
Lag p = 0	Lag $p=0$		
$V(\boldsymbol{E}_t)$ diagonal	Var-covar of the $\left(\kappa_t^{(i)}\right)_i$ diagonal		

VAR ELASTIC-NET - A FLEXIBLE ESTIMATION PROCESS

- The number of sub-groups can be large or small.
- Estimation based on VAR Elastic–Net specification (Guibert et al., 2019).
- Consider T observations and minimize the criterion

$$L(\boldsymbol{C}, \boldsymbol{A}_1, \dots, \boldsymbol{A}_p) = \frac{1}{T - p} \sum_{p}^{T} \|\Delta \boldsymbol{K}_t - \boldsymbol{C} - \sum_{k=1}^{p} \boldsymbol{A}_k \Delta \boldsymbol{K}_{t-k}\|_2^2$$
$$- \frac{\alpha \lambda}{2} \sum_{k=1}^{p} \|\boldsymbol{A}_k\|_1 - \frac{(1 - \alpha) \lambda}{2} \sum_{k=1}^{p} \|\boldsymbol{A}_k\|_2^2,$$

- ullet $\lambda > 0$ is the strength of the penalization o 10-folds cross-validation method.
- $\alpha \in [0,1]$ represents the mix between ridge ($\alpha = 0$) and LASSO ($\alpha = 1$) penalties.
- Hereafter, we fix $\alpha = 0.9$ and p = 4, which allow to have good fits.

HOW GROUPING POPULATIONS?

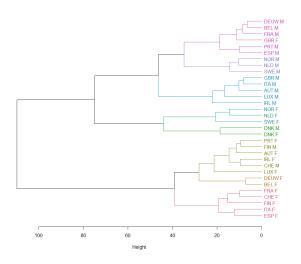
- Very difficult tasks based on 2 approaches: pure data-driven approach (see e.g. Hatzopoulos and Haberman, 2013) or expert judgments approach.
- Apply expert judgments (trends in data, economical, social, environmental, ... criteria).
- For instance, we can consider 16 sub-groups by grouping males and females of the same country → coherence by country.
- Clustering analysis based on times-series.

BASIC TIME SERIES CLUSTERING EXAMPLE

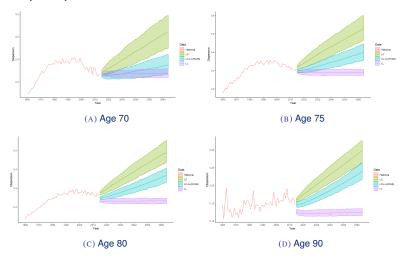
- \blacksquare Consider the time series $\left(\kappa_t^{(i)}\right)_{t>0}$ derived from the LC fitting.
- Apply an unsupervised hierarchical cluster analysis (HCA) method with the Euclidean metric and Ward's criterion.
- Gender indicator is one of the major splitting criteria (except Denmark).

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
DEUW M	NOR M	GBR M	NOR F	DNK M	PRT F	DEUW F	FRA F
BEL M	NLD M	ITA M	NLD F	DNK F	FIN M	BEL F	CHE F
FRA M	SWEM	AUT M	SWE F		AUT F		FIN F
GBR F		LUX M			IRL F		ITA F
PRT M		IRL M			CHE M		ESP F
ESP M					LUX F		

Dendrogram associated with the HCA applied on the LC's κ_t



Dispersion in the western European populations with LC, LL and LC–LL(HCA8) models



APPLICATION: SOLVENCY II IMPACT

ASSESSING THE LONGEVITY RISK OF A GLOBAL PORTFOLIO

- Global portfolio with pensions to be paid between ages 60 to 90 with 32 populations equally distributed.
- Annuity of 100 per year end of the year.
- One cohort aged 59 in 2014.
- Discount rate 1%.
- SCR calculated at the Value at Risk (VaR) at a 99.5% level of the best estimate provision (2,000 Monte-Carlo scenarios).
- Compare two clustering approaches: by gender (MF) and using HCA (HCA8).

	LC	LL	LC-LL(MF)	LC-LL(HCA8)
BE provisions (mean)	67,513	67,577	67,675	67,485
VaR 99.5 %	68,059	69,591	68,999	68,954
SCR (VaR - mean)	547	2,014	1,323	1,469

TREND SWITCHING MODEL

- Now, assume that the classification function $\phi_t : \mathcal{I} \to \mathcal{J}$ may change over time.
- Consider the following dynamics for the central mortality rates

$$\text{In } m_{x,t}^{(i)} = \alpha_x^{(i)} + \mathcal{B}_x^{\phi_t(i)} \mathcal{K}_t^{\phi_t(i)} + \beta_x^{(i)} \kappa_t^{(i)} + \operatorname{ad}_{x,t}^{(i)} + \epsilon_{x,t}^{(i)}$$

a $ad_{t,x}^{(i)}$ are adjustment mortality levels to avoid abrupt jumps each time a population changes of dominant trend

$$\operatorname{ad}_{x,t}^{(i)} = \sum_{s=t, +1}^{t} B_{x}^{\phi_{s-1}(i)} K_{s}^{\phi_{s-1}(i)} - B_{x}^{\phi_{s}(i)} K_{s}^{\phi_{s}(i)}$$

where t_0 is a time such as $ad_{x,t_0}^{(i)} = 0$ for all ages x.

APPLICATION: LONGEVITY RISK OF THE EUROPEAN LDIV

- Consider the Longevity Divergence Index Value (LDIV) similar to the Swiss Re Kortis bond (Hunt and Blake, 2015).
- We construct an illustrative European LDIV for:
- Longevity risk of the Swiss female population, aged between $x_1^{\text{(CHE F)}} = 75$ and $x_2^{\text{(CHE F)}} = 85$.
- Mortality risk of the French female population, aged between $x_1^{(FRA F)} = 55$ and $x_1^{(FRA F)} = 65$.
- A risk period n of 8 years, which ends at year t = 2024.
- At $t_0 = 2014$, the collection of populations follows the LC-LL(HCA8). FRA F and CHE F belong to Group 8.
- The LDIV at time *t* is obtained by

$$LDIV(t) = Index(t, CHE F) - Index(t, FRA F)$$

The averaged improvement index is computed as

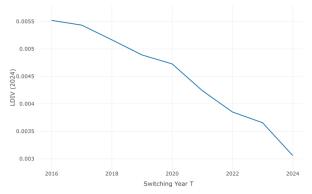
Index
$$(t,i) = \frac{1}{1 + x_2^{(i)} - x_1^{(i)}} \sum_{x = x_1^{(i)}}^{x_2^{(i)}} 1 - \left[\frac{m_{x,t}^{(i)}}{m_{x,t-n}^{(i)}} \right]^{\frac{1}{n}}$$

APPLICATION: LONGEVITY RISK OF THE EUROPEAN LDIV

■ Suppose at a time $T > t_0$, the FRA F population (Group 8) switches to the trend of the BEL F population (Group 7), i.e for $t > t_0$,

$$\phi_t\left(i\right) = \left\{ \begin{array}{ll} \phi_{t_0}\left(i\right) & \text{if } i \neq \mathsf{FRA} \; \mathsf{F} \; , \\ \phi_{t_0}\left(\mathsf{FRA} \; \mathsf{F}\right) & \text{if } i = \mathsf{FRA} \; \mathsf{F} \; \mathsf{and} \; t < T, \\ \phi_{t_0}\left(\mathsf{BEL} \; \mathsf{F}\right) & \text{if } i = \mathsf{FRA} \; \mathsf{F} \; \mathsf{and} \; t \geq T. \end{array} \right.$$

Median European LDIV(2024) according to the switching time T



CONCLUSION AND FUTURE WORK

MAIN RESULTS

- Fully independent (LC model): artificial diversification.
- Fully coherent (LL model): exaggerated concentration.
- A locally coherent model to forecast populations with homogeneous mortality profiles.
- Relationship between dominant trend modeling through a VAR model without any coherence constraints.
- Allow intermediate situations over 32 European populations in terms of dispersion.
- Major impact in terms of SCR for the longevity risk and when pricing LDIV solution under a dynamic framework.

CONCLUSION AND FUTURE WORK

FUTURE WORK

- Improve population clustering via time series clustering techniques.
- Future works are needed for empirically identifying coherent groups.
- The dynamic version of the model is not easy to calibrate → Backward analysis for detecting jumps in dominant trend are required.
- Assess the out-of-sample performances of our approach.

REFERENCES I

- Bergeron-Boucher, M.-P., Simonacci, V., Oeppen, J., and Gallo, M. (2018). Coherent Modeling and Forecasting of Mortality Patterns for Subpopulations Using Multiway Analysis of Compositions: An Application to Canadian Provinces and Territories. *North American Actuarial Journal*, **22**(1), 92–118.
- Cairns, A. J. G., Kallestrup-Lamb, M., Rosenskjold, C., Blake, D., and Dowd, K. (2019). Modelling Socio-Economic Differences in Mortality Using a New Affluence Index. ASTIN Bulletin: The Journal of the IAA, 49(3), 555–590.
- Danesi, I. L., Haberman, S., and Millossovich, P. (2015). Forecasting mortality in subpopulations using Lee–Carter type models: A comparison. *Insurance: Mathematics and Economics*, 62, 151–161.
- Guibert, Q., Lopez, O., and Piette, P. (2019). Forecasting mortality rate improvements with a high-dimensional VAR. *Insurance: Mathematics and Economics*, **88**, 255–272.
- Hatzopoulos, P. and Haberman, S. (2013). Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data. *Insurance: Mathematics and Economics*, 52(2), 320–337.
- HMD (2019). Human mortality database. university of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). Available at www.mortality.org (data downloaded on 2019-07-08).
- Hunt, A. and Blake, D. (2015). Modelling longevity bonds: Analysing the Swiss Re Kortis bond. *Insurance: Mathematics and Economics*, **63**, 12–29.

REFERENCES II

- Lee, R. D. and Carter, L. R. (1992). Modeling and Forecasting U. S. Mortality. *Journal of the American Statistical Association*, **87**(419), 659–671.
- Li, J. S.-H., Chan, W.-S., and Zhou, R. (2017). Semicoherent Multipopulation Mortality Modeling: The Impact on Longevity Risk Securitization. *Journal of Risk and Insurance*, **84**(3), 1025–1065.
- Li, N. and Lee, R. (2005). Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. *Demography*, **42**(3), 575–594.
- Villegas, A. M., Haberman, S., Kaishev, V. K., and Millossovich, P. (2017). A comparive study of two-population models for the assessment of basis risk in longevity hedges. *ASTIN Bulletin: The Journal of the IAA*, **47**(3), 631–679.