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Abstract

This work introduces a 2-tier Augmented Common Factor model (2-tier ACF) and
applies it to the joint projection of United Kingdom mortality rates for two genders
and three countries (England and Wales combined, Scotland, and Northern Ireland).
The model is extended from the classic Lee-Carter (LC) model, with a common
factor for the whole UK population, a sex specific factor for males and females, and a
sex-country specific factor for each country within each gender. A Poisson
framework is used, as death counts in each gender-country subpopulation are
modelled directly. Our results show that the 2-tier ACF model improves the model
fitting against past experience compared to the independent LC model fitted to each
subpopulation of the UK. Mortality projection results also show that the 2-tier ACF
model can produce coherent results for different genders within each country and
different countries within each gender, which avoids the divergence issues in the
independent L.C projections. The 2-tier ACF is further extended to include a cohort
factor, which takes into account the cohort effect of the UK and further improves the
model fitting and randomness of residuals. The limitations of the 2-tier ACF and its

application in the insurance industry and pension funds are also discussed.
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1. Introduction

Heterogeneity of mortality within the population has long been an area of interest for
life insurance and pension companies (Su & Sherris 2012). Apart from age and
gender being the traditional rating factors for life insurance and pension products, the
social-economic differences between the three countries (England & Wales combined,
Scotland, and Northern Ireland)' have led to notably different demographic trends at
least in the short term while pertaining to the same larger population. This project
aims to introduce a model that is capable of modelling and producing the mortality
trends for all six subpopulations of the UK (two genders and three countries) jointly

and coherently, and discuss its implication for life insurers and pension funds in the
UK.

The last three decades have witnessed tremendous development in the area of
mortality modelling and projection. This includes the Lee-Carter model (LC)
proposed by Lee & Carter (1992), which is the most classic mortality forecast model
due to its simplicity and ability to produce linear montality index for many different
countries. Over time, various extensions and variants of the basic LC model have
been published (e.g. Lee & Miller 2001; Booth, Maindonald and Smith, 2002;
Renshaw & Haberman 2003). All these models have their primary focus on a single
population. When these models are used independently in modelling multiple
subpopulations with similar demographic trends, such as different genders within a
population, or different geographical areas within a population, the assumed

independence would generally lead to divergence in forecasting results.

Diverging trend over time for closely related subpopulations is not a desirable
outcome. For example, due to genetic and biological reasons, male mortality rates
have constantly been observed to be higher than females (Kalben 2002). However, if
male mortality improvements are faster than female and the two genders are projected

independently, a model may forecast male mortality rates lower than the

! Please note that England and Wales are modelled as one country in this project, because the
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corresponding female rates. As noted in Section 5.3 of working paper 15 of the
Continuous  Mortality Investigation Mortality Committe (2005), independent
projection methodologies have to be adjusted to ensure divergence does not happen.
It is also intuitively true that mortality rates of populations that are geographically
close or politically related, are driven by a common set of factors such as social-
economic conditions, health and care system, and the general environment. Therefore,
non-divergent or “coherent” models are sought to address the issue of divergence.
The augmented common factor model {(ACF) suggested by Li & Lee (20035) is an
important step to produce one model that captures both the short-term divergence and
long-term coherence among related populations (subpopulations). The ACF (or 1-tier
ACF) uses a common factor to depict the long-term common trend of the total
population, with additional factors included to capture the short-term discrepancy

from the common trend for each subpopulation.

The focus of this project is to introduce a new 2nd-tier extension (or a second
dimension) to the ACF model - a common factor is used to model trend for the
ageregated UK population, a sex specific factor to capture the discrepancy between
each gender and the total population, and a country-sex specific factor to capture the
discrepancy in mortality of a gender in a specific country from the overall trend of
that gender. This is to ensure that coherence of forecasts is achieved in both
dimensions — mortality of different genders within each country and mortality of

different countries within each gender.

The 2-tier ACF model and the independent LC model are applied to the six
subpopulations in the UK. In the LC model, the six subpopulations are modelled and
projected independently. Both models are fitted to the period from 1975 to 2000, and
various model criteria are compared. Out-of-sample forecast is performed for the
period from 2001 to 2011, and the projected monrality is compared against actual
observations to understand the level of accuracy of both models. Following the
approach of Booth et al. (2005), the prediction accuracy of the two models is
compared based on Mean Error and Mean Absolute Error in log-scale monality rates

and life expectancy.
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To understand the long-term implications of the model, both the 2-tier ACF and the
LC are then fitted to the period from 1975 to 2011, and projected for the period from
2012 to 2050, which is broadly consistent with the common approach that the length
of fitting period is similar to the projection period. The projected mortality rates by
age for the six subpopulations up to year 2050 are compared between the two models
and the superiority of the 2-tier ACF over the independent L.C forecasts is highlighted.
For a multi-population model, coherence has been defined by Hyndman et al. (2013)
as the convergence to reasonable constants of the ratios of age-specific mortality
rates between any pair of subpopulations. As discussed later on, the proposed 2-tier

ACF model satisfies this definition of coherence.

In the original construction of the models, both the original LC model and the ACF
model are estimated by applying singular value decomposition (SVD) to the
logarithms of mortality rates. In the ACF model, Li & Lee (2005) firstly apply SVD
to the aggregate data to fit the common factor, and then fit the parameters of
additional factors by applying SVD to the residuals. The SVD produces estimates in
line with the method of least squares and the only assumption necessary under this
method is that errors are normally distributed and homoscedastic. However, as
pointed out by Brouhns et al. (2002), the model does not take into account the fact
that the scarcity of number of deaths at older ages make mortality rates much more
volatile. Brouhns et al. (2002) proposed a Poisson version of the Lee-Carter model,
by specifying the death counts as Poisson variables and using maximum likelihood
estimation. Li (2012) applied this Poisson framework to the ACF model and the
Australian population with the addition of multiple sex-specific factors, and named
this model as the Poisson Common Factor Model (PCFM). The Poisson framework is
similar to the generalised linear model with a log link function; however the bilinear
terms have to be estimated by minimising the deviance of a non-linear model
structure through iterations. This technique has been developed into R packages such
as StMoMo by Villegas et al. (2015) and Iterative Lee-Carter Package (Butt &
Haberman 2009). In this project. the Poisson framework proposed by Brouhns et al.
(2002) is applied to all the models, so that they are compared like-for-like under the

robust statistical framework of the Poisson distribution.
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When applying mortality models to the UK population, the research community has
long recognised the fact that UK mortality in the past century does not only depend
on age and calendar year, but also on the year of birth, i.e. the cohort. Willets (2004)
explained the cohort effect with the prevalence of smoking, some major fatal diseases
and social-economic classes. Renshaw & Haberman (2006) introduced the cohort
extensions to the original LC model under both Gaussian and Poisson framework.
Yang et al. (2014) introduced six different possible cohort extensions to the PCEM,
which is an extension of the ACF under the Poisson framework. In this project, we
also extend both the I-tier and 2-tier ACF models by including a cohort factor to

allow for the cohort effect of the UK population.

In Section 2, the details of models and methods are described including the basic LC
model and the ACF model, and in particular the new 2-tier ACF model proposed by
this project will be introduced. In Section 3.1, we compare the 2-tier ACF and the
independent LC models when fitted to the six subpopulations in the UK during the
period between 1975 and 2000, and produce out-of-sample forecasts for the period
between 2001 and 2011. Section 3.2 further compares the long-term converging or
diverging behaviours between the 2-tier ACF and the LC by projecting mortality of
the six subpopulations up to 2050. In Section 4, cohort extensions to both the 1-tier
and 2-tier ACF models are introduced, and results are critically appraised. The final
section of this paper discusses the potential applications of the model in the UK life
insurance and pension industry and also points out some limitations of the 2-tier ACF

framework and its cohort extension.

The project is entirely based on open-source data from the Human Mortality Database,
and it is noted that due to the high volatility of mortality rates at the very old age,
ages above 100 have been excluded from analysis. The software R is used to perform
all the analysis. In this project, the author is indebted to learning from previous
involvement in the research project where the PCEM was fitted to OECD countries
(Parr et al. 2014). In particular, when developing the new algorithms for this project,
the author is indebted to previous guidance from Jackie Li on how to fit parameters in
the PCFM.
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2. Models and Methods

2.1 The Basic Lee Carter (LC) Model

The Lee-Carter model (1992) is defined as below. Define the central rate of mortality

at age x and year  as m,.;; the LC model is represented as:

In(mee) =ay + by ke + &4, (1)

where a, represents the level of mortality at age x, k; is an index of the mortality
level at time 7, b, represents the relative speed of mortality decrease at age X, and &,

represents an error term that is Gaussian distributed with mean zero and variance o 2.

Two constraints ¥, b, = 1 and %, k, = 0 are imposed to ensure the identifiability of
the model. Under these constraints, a, can be calculated as the average of In(m,)
over different /. Lee and Carter originally proposed to use Singular Value
Decomposition (SVD) to estimate b, and k;, and there is a second stage estimation to
re-fit k, in order to reconcile total observed death at time f. The term k; is then

extrapolated using a random walk time series.

ktzkt_]+d+€t. (2)
where d is the drift term representing the annual change in k, and e, are uncorrelated
normally distributed terms. Apart from its simplicity, the LC model is popular also
because when ks are fitted to historical data of many different countries, an obvious
linear trend can be observed.

2.2 The Augmented Conumon Factor Model

The augmented common factor (ACF) model, also known as 1-tier ACF in this study,

proposed by Li & Lee (2005) is described below:
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In(my, ) =ay; + By Ko+ byjbos + Exps . (3)

where m,, ; is the central mortality rate in year ! at age x for gender i, B, K; is the
common factor for the aggregated population including both genders, b, ; k;; is the
sex-specific factor for gender i, and £, ,; is the normally distributed error term. The
term K is designed to capture the overall trend of the aggregated population over
time, and B, measures the sensitivity to decrease in mortality at age x. The fact that
subpopulations share the same component B, K, forms a necessary and sufficient
condition to avoid divergence in central forecast of subpopulations (Debdn et al.
2011). Similarly, k¢ ; is the mortality time index of a specific gender, and b, ; is the
age sensitivity factor. The component b, ; k;; hence captures the trend in mortality of

the specific gender i on top of the overall trend of the aggre gated population.

The constraints Y. B, = 1, X, K, = 0, ¥ b, = Land ¥, k, ; = 0 for each i are used
to ensure the identifiability of the model, and a,; are calculated by averaging
In(m, ;) over time. In the original model proposed by Li and Lee, the estimation is
done in a similar fashion to the LC model. SVD is applied to the total population to

estimate B, and K, and then b, ; and k,; are estimated by applying SVD to the

residuals {In(my,;) — (ax;i + By Kp)}.

For the common factor time index K;, a random walk time series is fitted to the

model and used to extrapolate future forecasts similar to the LC model as below

Kr=Kr_1+d+et. (4)

For ke, ;, independent auto-regressive AR(1) models are fitted to the two genders.
When a, ; below has absolute value less than 1, the process is weakly stationary, and
kg ; will converge. In this case the expected value of male-to-female death ratio will
converge to a constant over time. The term z ; is the normally distributed error term
for the AR(1) process, which is independent of &.,; and e, above, and also

independent of other z, ; when j # i,
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kei = oo+ @y ke 1+ 2 - ()

Li (2012} further extends the ACF model (3) so that multiple sex-specific factors
by ; ki can be included. It was also proposed that k; can be fitted by AR(p).
However, for simplicity purpose, such possibility is not explored in this project. In
some situations, it is impossible to fit a stationary AR(1) model, so k,; should be
extrapolated as a random walk without drift, which takes the form of (4) but with d

equals 0 (Li & Lee 2005).

2.3 The Poisson Framework

As suggested earlier on, the original Lee-Carter (1992) and Li & Lee (2005) models
share a major drawback - they assume the error terms are normally distributed and
homoscedastic, which is unrealistic as the volatility of mortality is much higher at
older ages. The Poisson framework introduced by Brouhns et al. (2002) does not
model the logarithms of mortality rates directly, but models the number of deaths as a
Poisson variable instead. As pointed out by Brouhns et al. (2002), Li (2012), and
various others, the Poisson choice provides a solid statistical framework where the
estimates can be based on maximum likelihood methods and information criteria can

also be allowed.

Assuming constant force of mortality g, ;¢4 for0 =u,s <1, we can model

number of deaths at age x, time {, subpopulation 7, D, ;; as:

Dy~ Poisson (ExpiMyyi) . (6)
where £, ,; is the exposure corresponding to the same age, period and subpopulation.
The algorithm of iteratively updating parameters under a Poisson Lee-Carter model is

clearly illustrated by Brouhns et al. (2002) while Li (2012) applied the algorithm to

the ACF model. For both models, iterations are performed until deviance is
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minimised. The deviance for the Poisson Lee-Carter model was given by Renshaw &

Haberman (2003) and was extended to the ACF by Li (2012) as below:
deviance = 3, ., 2 [dx_:.ifn (%) —dyei+del. Y

where d, ¢ ; is the observed number of deaths, and &LM is the fitted number of deaths.

To compare like-for-like, this project uses a Poisson framework for all models to
compare various fitting criteria of models under the robust statistical framework of
Poisson distribution. The results produced by the LC model can be validated using
the SthvoMo R package, which automates the fitting and forecasting of the LC model

under Poisson framework.
2.4 The 2-Tier Augmented Common Factor Model

In this section, we introduce a new second-tier extension to the above ACF model (2-
tier ACF) to include a second additional factor for each specific country within each
gender, so that a two dimensional framework is achieved when modelling

subpopulations of different sex and countries jointly. The Poisson framework is used:
Dyyij~ Poisson (Eypij Mypij) (8
En(mx.t.i.j) = ax.i.j + Bx Kt + bx,I kt.i + bx,I,j kt,i,}' ¥ (9

where Dy p; ;. Exppjand my,; ; represent the death counts, exposure and central
mortality rates respectively at age x, time f, for the i" gender and ;" country. The term
B, K; describes the general trend and random fluctuation for the whole population,
and the term b, ; k;; depicts the trend of each gender departing away from the total
population. The meaning of B,, K;, b, ;. and k, ; is the same as in Section 2.2 above.
The extended factor k; ; captures the mortality index of in country ; gender i on top

of the trends allowed for by K, and k. ;; by ; ; is the sensitivity to k. ; at age x in the
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subpopulation. Therefore, by ; Ky ; is used to capture the trend and random
fluctuation specific to the subpopulation (gender i and country j) on top of overall

trends for that gender.

Another way to look at this model is that when we only consider the mortality of one
country, that is, when ; is fixed in (9), the 2-tier ACF model reduces to the ACF
model. The third bilinear term can be left out, as there is no idiosyncratic country-
specific trend when the scope of modelling is only one country. Hence the original 1-

tier ACF model can be viewed as a special case of the 2-tier ACF model.

To ensure the identifiability of the model, apart from the constraints of the ACF

model, we also have to restrict X, b, ; ; = 1 and X k¢ ; ; = 0 for each i and j.

For the extrapolation of common factor K; and gender specific factor k, ;. (4) and (5)
above are used. For the extrapolation of ky; ;, there is no reason to exclude the
possibility of fitting higher order ARIMA models, but for simplicity purpose, this
project still uses weakly stationary AR(1) model or random walk without drift. The

terms @y ;. @ ;7 and zp; j represent the intercept, slope and error term of the AR(1)
model of k; ; respectively,

beeirj=top;+ @rpjRe-vij+ Zeij - (10)

Also for simplicity purpose, the morality indices in (9) are all assumed to be

independent and separately extrapolated in our projection.

To fit the 2-tier ACF model, we update our parameters using the Newton-Raphson
method

s g a8 (1
g*=4 FETETEN
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where / is the log likelihood and 8 represents any parameter to be fitted. Let dy ;; ; be
the observed number of death for age x, year #, sex i and country j, and ﬂx,t,u is the

corresponding fitted number of deaths
dutij = Expijexp (@eij+ By Ko + bojfes + Doy keij) . (12)

(13)

_ ditij A
L= Ex,t,t',j[ dx,t,l,j In (3“_”) - ‘ix.t.i.j‘l'd:c,t,t',j] i

Adapting Brouhns et al. (2002) and Li (2012), parameters in (9) above are updated by

the steps I to X1 as follows,

Step I: Initialise parameter values @, ; ; as the mean of In(my; ;) K, = EM =
keij =0 and B, = b,y = b,;;=1/101

Step I: Update @, ;" = 8yj + Ze(dyrij = deri)/Ze Ay forallx, i and j,
and recalculate &x.t.&j:

Step III: Update K,” = K, + ZTaij(dueij — Aueij) Be/Zyijdxe,j BE foralls,
adjusted by the constraint ¥, K, = 0 and recalculate fi'x_t_,-_j;

Step IV: Update B, = B, + Teii(detij — dueij) Re/ZTeijdurij KE forall x,
adjusted by the constraint ¥, B, = 1, and recalculate :ix,,,,-rj;

Step V: Repeat Step IT to IV till deviance converges®;

Step VI: Update ky; = Ky + T j(dutij = Guig) Beif T j duriy BE; foralls
and #, adjusted by the constraint £, k,; = 0, and recalculate d,; jr

Step VII: Update b,; = b, + Yo i(dueij— Qerif) keifTejdrei; ki forallx
and i, adjusted by the constraint ¥, b, ; = 1, and recalculate c?x,m-. ji

Step VIII: Repeat step VI to VII till deviance converges;

* The author used “repeat” function in R to iterate the parameter updating steps, and break the
loop if the difference in deviance from the previous iteration is less than 107" as the condition
of convergence, Matrix operations are used in the “repeat” loop when updating parameters to
improve efficiency of the codes.
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Step IX: Update krj; = keij + Zu(dyeij — Queig) Beij/Zxdssiy b2 forall s,
i and j, adjusted by the constraint X, K, ; j = 0. and recalculate &x,t.l'.j;

Step X: Update by j = byij + Ze(dueij — Gueif) ke jf e dxei Erz,i.j for all x,

i and j, adjusted by the constraint ¥, b, ; ; = 1, and recalculate &x,t,I,j:

Step XI: Repeat step IX and X till the deviance converges.
Similar to (7)., the deviance for the 2-tier ACF model is given by

; da i 9
deviance = Exutuid‘z [dx.t.-l'.jin (&i(:lr) - dxutuiuj + dx|t|i|j .

(14)

Step II to XTI can be thought of as three major stages as below:

* Fitd,;;+ ﬁ‘x Et. corresponding to Steps II to V;

+ Conditional on that, fit Ex,; I';,,-. which corresponds to Steps VI to VIII;

+ Conditional on above two stages, fit 5“-. & Et.i. j» which corresponds to Steps

IX to XL

The algorithm is designed in three stages so that for each bilinear component, the
mortality time index and age sensitivities are fitted in a way that best explain the
overall trend of an aggregated population, leaving any trends particular to a
subpopulation to the next stage of model fitting. This also ensures the identifiability

and convergence of the model under the constraints above.
In the later sections, this 2-tier ACF model is applied to model the six subpopulations

of the UK (two genders and three countries within each gender). Section 4 also

introduces the cohort extensions to the above ACF and the 2-tier ACF models.
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3. Comparison between 2-tier ACF and Independent L.C

3.1 Model Fitting and Short-Term Forecast Evaluation

In this section, we focus on the comparison of model-fitting and short-term forecast
accuracy between the following two models when fitted to the six subpopulations of

the UK:

* The 2-tier ACF with a common factor for the total UK population, a gender

specific factor, and a gender-country specific factor

* The Lee-Carter model for each gender and each country separately.

Both models are fitted to the period between 1975 and 2000, and statistical measures,
including BIC, AIC, Mean Absolute Percentage Error (MAPE), and Explanation
Ratios” are examined for the two models (Table 1). The smaller BIC, AIC, MAPE are,
the higher the explanation ratio, the better a model fits the past experience. From
Table 1, it is clear that the 2-tier ACF outperforms the LC model by all statistical
measures. While the differences are slight, it can be concluded that the 2-tier ACF fits
the past data better than the LC model. All numbers in the tables are exact values

rather than percentages,

It should be noted that both models fit better to the mortality experience in England &
Wales, less so to Scotland, and fit least well to Northem Ireland. This is due to the
fact that populations with larger exposures have more stable historical mortality

patterns hence easier to fit using simplified mathematical models. England & Wales

*BIC = 21 () + n,yln (n,) based on Schwarz (1978);
AIC = =21 () + 2 n, based on Akaike (1974);

T s pldupsj=exeepexpliie )
Tr flderij=exnirexp(ag )

dupij=deris

1
MAPE =%,

| and Explanation Ratio =1 =
dy i

similar to Li (2012), where 1, is the number of parameters netted of number of constraints
and ny is the number of actual observations. The term i, ; is the fitted mortality rate, and
() is the log-likelihood with all the fitted parameters.
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is largest population among the three countries; therefore the model best fits its

experience, followed by Scotland and then Northern Ireland.

Table 1: BIC, AIC, MAPE & Explanatory Ratio of 2-tier ACF and L.C

1975-2000 fitted model 2-tier ACF Lee-Carter

BIC 145227 146205

AlC 131959 135811

Female England &Wales 0.0446 0.0506

Female Scotland 0.1371 0.1394

Female Northern Ireland 0.2678 0.2706

MAPE Male England & Wales 0.0394 0.0437
Male Scotland 0.1131 0.1149

Male Northern Ireland 0.2013 02018

Overall 0.1339 0.1368

Female England &Wales 0.9674 0.9493

Female Scotland 0.8472 0.8152

Female Northern Ireland 0.7502 0.7490

Explanation Ratio Male England & Wales 0.9727 0.9682
Male Scotland 0.9017 0.8990

Male Northern Ireland 0.8027 0.8021

Overall 0.9697 0.9601

The second part of this section is to compare how well the model predicts when we
use the two models to project mortality experience during the forecast period from
2001 to 2011. Adopting Booth et al. (2005), Mean Error (forecast-observed) and
Mean Absolute Error (lforecast — observedl) of log-scale mortality rates were
computed to measure the predictive accuracy of models. The Mean Absolute Errors
of log mortality rates are compared in Table 2. The 2-tier ACF is marginally better on
average in forecasting the mortality rates during this period. The 2-tier ACF model is
at least as accurate as if not better than the separate LC model for forecasting the

mortality experience of the six subpopulations in the UK.
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Table 2: Mean Absolute Error (log-mx) of 2-tier ACFC vs. L.C

Forecast Period 2001-2011 2-tier ACF Lee-Carter
Female England &Wales 0.1074 0.0977
Female Scotland 0.1638 0.1849
Mean Absolute Error Female Northern Ireland 0.2342 0.2535
(log-mx), mean across all ~ Male England & Wales (0.1185 0.1221
ages and years Male Scotland 0.1719 0.1999
Male Northern Ireland 0.2199 0.2773
Overall 0.1693 0.1892

Figure 1 plots the Mean Error in logarithm of mortality rates (mean over all years in
the forecast period) for each subpopulation against age. For both modelss, the scale of
mean errors are within a reasonable range (mostly between -0.5 and 0.5). Neither of
the models systematically over or under estimates mortality experience, suggesting
the time indices &'s have captured mortality improvement sufficiently well. Both
models underestimate morality at very young ages and overestimate mortality for
young adults and those aged between 60 and 80. As explained by Booth et al. (2005),
this issue is due to the fact that the age sensitivity terms fitted do not adequately
capture the age pattern changes in the forecast period. However, for most of ages, the
forecast is sufficiently close to actual observations. As the fitting period is relatively
short, there is no consistent underestimation of mortality rate across all different ages
such as what was observed by Booth et al. (2005). The errors in projection shown in
Figure 1 also include the jump-off bias as the jump-off point in this project is chosen
to be the fitted value at the end of fitting period instead of the actual observation. This
is based on the fact that when the fitting period is relatively short, the predictive
accuracy is better when jumping off from fitted value for the final year in the base
period, as features specific to the jump-off year would otherwise be extrapolated

{Booth et al. 2006).
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Figure 1: Mean Error (log-mx) by age (mean over all years) for the six subpopulations
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Table 3 also compares the two models using the Mean Absolute Error (life
expectancy”) that represents the average of (/forecast — observedl) life expectancy.
The 2-tier ACF is much more accurate when estimating female and male Scotland
life expectancy, and is slightly weaker when estimating male England & Wales and

male Northern Ireland. Overall, The 2-tier ACF is more accurate than independent

*Life expectancy always refers to period life expectancy in this work.
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projection using the LC. As both models produce Mean Absolute Error of life
expectancy less than 0.7 year, we can conclude that both models perform reasonably
well in terms of their short-term predictive accuracy, and the 2-tier ACF performs

better than the independent L.C forecast in this analysis.

Table 3: Mean Absolute Error (Life Expectancy) of 2-tier ACFC vs, LC

Forecast Period 2001-2011 2-tier ACF Lee-Carter
Female England &Wales 0.1169 0.3497
Female Scotland 0.0981 0.4862
Mean Absolute Error
Female Northern Ireland 0.1757 0.2984
life expectancy (in years),
Male England & Wales 0.6306 0.5291
mean across all ages and
Male Scotland 0.3589 0.4935
years
Male Northern Ireland 0.6049 (0.5247
Overall 0.3308 0.4469

3.2, Long-term Projection

In this section, the long-term projection behaviours of the models are studied to
highlight the various merits of the 2-tier ACF when producing long-term projections
over the independent LC model. In particular, the 2-tier ACF is more capable in
producing coherent and smooth mortality projections. The 2-tier ACF and the
independent LC are fitted to the past data of six subpopulations of the UK between

1975 and 2011, and then projected to 2050.

Figure 2 is the central estimates for log mortality rates by age in year 2050 by the 2-
tier ACF and the independent LC. Firstly, the 2-tier ACF produces forecast much
smoother from age to age as compared to the LC. In Figure 2, the LC projection for
Scotland male even shows decreasing mortality by age at around age 40. Lack of
cross-age smoothness of the LC model has long been highlighted in research (Cairns
et al. 2007), as it uses only one age modulator b, to measure the age sensitivity to
mortality improvement for the specific subpopulation and assumes that it remains
constant. Over time, small differences between nearby b, causes leads to large

discrepancy of mortality forecasts between nearby ages, causing lack of smoothness.
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However, in the 2-tier ACF model, for each subpopulation, the morality
improvement trend is decomposed into three components — the common trend of total
population, the trend of a specific gender, and the trend of the specific subpopulation.
In the 2-tier ACF (9). By, by, and by ; ; captures the sensitivity of each age to the
three different trends separately. Jointly, they create an age pattern that does not jump
between nearby ages as age sensitivities are captured more finely from the historical

data. thereby displaying smoother cross-age mortality improvement.

Secondly, Figure 2 shows that the LC model produces much larger differences among
countries within each gender, and between different genders within each country,
especially for the age range between 20 and 60. This is consistent with our
expectation that independent extrapolations of different subpopulations under the LC
model produce divergent monality rates for related populations, whereas the ACF
framework avoids such issue. As pointed out by Caims et al. (2011), under the ACF
framework, the global improvement trend will dominate over time, due to the fact
that the subpopulation-specific components are mean reverting. The 2-tier ACF
further extends the ACF model, so that the projections for different countries are
dominated by the trend of the same gender. In other words, this extension ensures that
the ratios of different subpopulations of the same gender converge over time, because
the trend of the gender as a whole dominates over the trend in the specific

subpopulation.

For subpopulations in country j and & of the same gender i, the difference of age

specific montality (log scale) are given by:

In(mye; ) — (M) = @i — Qi) + (beij keij— beik keiw) - (19)
As k¢ ;jand kg ;. are mean reverting process, it is clear that the difference in log-
scale mortalities is a mean-reverting process too. Hence the differences in mortality

rates between countries are more constrained in the 2-tier ACF projection compared

to the LC.
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Figure 2: Projected Year 2050 log-mx by 2-tier ACF vs. LC
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The extension also ensures the expected male-female ratios of different countries
converge over lime in a similar trend. Let f represents the female population and m
represents the male population, then for country j, the male-female mortality ratio on

a log scale is:

!n(m:.r.m.jfm:.t.f.j) = (a.r.m.j - a:.,r'.j) #* (bx,m kt.m - bx.f' ke.,r'} + (bx.m.j kt.m.,r - (16)

by keg)-

From (16), it can be seen that, the male-female ratio for all countries will share the
common component by, K¢ — by g ky g, which is reverting to a positive mean, and
this component captures the overall trend in gender differences for the whole UK.
Although the component by ., : Ky ; — by ¢ j K¢ p j 18 specific to each country and

could possibly revert to a non-zero mean, but after fitting the overall trend and gender
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trends, ko j and ky ¢ ; are normally best fitted by AR(1) process with zero long-term

mean - the results actually show that the trend in male-female ratio of each country

are dominated by the male-female ratio of the whole UK.

Figure 3: Projected Life Expectancy at Birth by 2-tier ACF vs. LC
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Figure 3 shows the projected life expectancy at birth for all six subpopulations, using
the 2-tier ACF and LC. Under the 2-tier ACF framework, the life expectancy
forecasts are more constrained, whereas for the independent LC model, life
expectancy forecasts are diverging. Under the 2-tier ACF framework, subpopulations
of the same gender show a similar trend over time, and both genders converge to the
common overall trend. With the LC projection, there is an increasing gap in life
expectancy between Scotland and the rest of the UK for both genders. As suggested
by Mccartney et al. (2011), before 1980, the higher mortality experienced by

Scotland is most likely contributed by the deprivation and poverty linked to the
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industrial employment patterns. Since 1980, the higher mortality in Scotland is most
likely due to community disruption caused by deindustrialisation, which affected the
West of Scotland more than the rest of UK. These essential historical factors may
continue to cause higher mortality in Scotland compared to the rest of the UK.
However, it is difficult to justify an increasingly widening gap in mortality between
countries in four decade’s time, when the countries are related in terms of politics,
economics and healthcare. Scotland is the only country so far providing free personal
social care for those aged 65 or above (COSLA & The Scottish Government n.d.),
and has a level of health funding per head much above England (Bevan et al. 2014),
Latest research has also shown that gap of health system performance indicators has
narrowed between Scotland and rest of UK due to dramatic improvement in Scotland
since 2010 (Bevan et al. 2014). Greater regional equality across the UK is an
objective underlying all the public policies and the 2-tier ACF framework allows both

the short-term disparities among countries and a more reasonable future outlook.

In the remaining part of this section, the coherence of projection results are examined
against the definition of coherence, proposed by Hyndman et al. (2013), that is the
expected ratios of age-specific mortality rates of any two subpopulations should
converge to some appropriate constants over time. In particular, projected male-
female ratio in death rates (on a square-root scale, as in Hyndman et al. 2013) are
examined for each country and compared between the two models. In Figure 4, the
sex ratios in the projected years are plotted against age for a selection of years in the

projection period.

From Figure 4, it can be seen that for the LC projection, as also found by Hyndman et
al. (2013), at the very young and old ages, when the number of deaths is very small,
undesirable projection outcomes of sex ratios less than 1 may occur. However, the
projection under the 2-tier ACF does not have such issues. The sex ratios remain
quite stable and constrained over time under the 2-tier ACF, whereas the independent
LC produces very large sex ratios (as high as 2.5) in some years, showing the
undesirable feature of a divergent projection model. The 2-tier ACF also produces

smoother cross-age sex ratios, and the results are in line with the understanding that
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sex differences in mortality is mainly contributed by the high mortality of very young

and middle aged males (Kalben 2002).

It is concluded from above amalyses that the 2-tier ACF model shows strong

coherence property for long-term projections with reasonable forecasts for different

countries within each gender and stable sex ratios within each country, and is superior

to the independent L.C in this aspect.

Figure 4: Sex Ratio of Death Rates: sqrt(M/F) over 39 Years of Projection
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4. Cohort Extension of ACF (1-tier and 2-tier)

The previous sections have demonstrated the desirable coherence property of the 2-
tier ACF model as compared to the independent LC. However, the models introduced
so far have not taken into account the cohort effect of mortality — the mortality
experience does not only depend on the year 7. but also relate to the year of birth 7-x.
For people born in the same year, we refer them as a cohort. In the UK, the cohort
effect has a more narrowed meaning referring to the more rapid improvement and
lower death rates in mortality for the golden generation born between 1925 and 1945
(Willets, 2004). Such pattern can be observed while plotting residuals against cohorts,
According to Renshaw & Haberman (2003) and Li (2012), because the model fitting

uses over-dispersed Poisson distributions, the standard deviance residual is given by

EAAN] T 17

Sgn(dx.t.:‘.j - &x.t.t}j)J{z [dx.t,i',jiﬂ (gx:”) - dx.t.i.j + &x.t.i.j]f@"} - e
where

¢ = deviance/(ng —n,). (18)

where n, is the number of observations and ny, is the effective number of parameters
- the number of parameters netted off the number of constraints. It is noted that, the

index factor j representing country should be left out for the 1-tier ACFE.

The purpose of this section is to introduce cohort extensions into the 2-tier ACF
framework in a simple and reasonable way. However, since the original 1-tier ACF
(Li & Lee, 2005) does not consider the cohort effect either, the first step is to
introduce a cohort factor to the 1-tier ACF in Section 4. 1, before extending the cohort

component to the 2-tier ACF in Section 4.2,
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4.1 Cohort Extension of 1-tier ACF

From Figure 5 below, the cohort effect can be observed when the 1-tier ACF is fitted
to the mortality experience of total females and males in the UK from 1975 to 2000,
particularly apparent for the female population. This shows a limitation of the
original ACF model proposed by Li & Lee (2005) that it only captures trends in
mortality via relations with age x and period ¢, but not cohort t-x. Yang et al. (2014)
also highlighted this issue, and they introduced six possible variants of cohort

extensions to the PCEFM (Li 2012).

From Figure 5, it is also clear that cohort effect differs between the two genders. For
females, the cohort effect is more prominent for the golden generation (1925-1945),
while for males cohort pattemn is more volatile and seem to present in a few different

generations.

Figure 5: Standard Deviance Residuals by Cohort, Fitted by ACF

Female (left) and Male (right) of the Total UK Population, Fitted by ACF (1975-2000 fitting period)
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In this project, we introduce one simple cohort extensions to the original ACF:

In(myei) =ay;+ By Ke + byjkei + Ge_xi - (19)
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All the definitions above are the same as in Section 2.2, but a new cohort parameter
Gr-x; 15 introduced for each gender i, which is based on the observation that the
cohort patterns are fairly dissimilar between the two genders. The uniqueness of the

cohort factor is guaranteed by Xjp-¢_, gr; = 0 for each gender i.

To ensure convergence between the two genders over time, a sufficient and necessary
condition is that g¢_,; should be extrapolated as mean-reverting time series.
Although Yang et al. (2014) suggested to use an AR(p) model, for simplicity purpose,
Ge—x; are extrapolated as independent AR(1) process similar to ky ;. such that the sex

ratio between the two genders is a mean-reverting process on its own:

N {2 = (@ — Af) + (Bem Kem = brg kef) + Geoxm — Ge-xf) - 20

Mxt.f

Yang et al. (2014)’s approach is to fit the original ACF model first and fit g,_, ; to
the residuals to ensure consistency with the ACF model. However, this approach is
fundamentally different from Renshaw & Haberman (2006) when they [first
introduced the cohort extension to the LC model. Renshaw & Haberman (2006) used
a two-step fitting process, where the static age effect a, is specified first as the
average of log scale mortality rates (same as the SVD method), conditional on which
the cohort factors are fitted simultaneously with the period factor k; and the age
modulating indices, i.e. b, in the basic LC model. Using Yang et al. (2014) approach,
the cohort factor fitted turn out to be much more erratic than the Renshaw and
Haberman (2006) approach, and this will be discussed later in Section 4.3 when the
cohort extension is critically appraised. For now, the model given by (20) is still fitted
to the UK female and male population using Yang et al. (2014)°s approach, for fitting
period 1975 to 2000, age 0 to 100, and residual plots by cohorts are given by Figure 6
below. Moreover, it should be noted that because Yang et al. (2014)’s approach
ensures a coherent framework by fitting residuals of the ACF, so the cohort factor is a
stationary process. Comparing Figure 6 to Figure 5, it can be seen that the
randomness of residuals is dramatically improved by including the cohort factor, and

there is no identifiable systematic pattern in Figure 6.
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We then compare the various statistical measures of model fitting between the ACF
and the ACF with Cohort Extension (ACFC) below in Table 4. It is clear that the
ACFC outperforms the ACF, when measured by BIC and AIC after penalising the

increase in parameters.

Figure 6: Standard Deviance Residuals by Cohort, Fitted by ACFC

Female (left) and male (right) of the Total UK Population, fitted by ACF with cohort factor g,_,;
(1975-2000 fitting period)
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Table 4: BIC, AIC, MAPE, & Explanation Ratio of ACFC vs. ACF

Fitting MAPE Explanation Ratio

Period BIC  AIC  Female Male Overall Female Male Overall
1975-2000

ACF 65738 61949 0.0460 0.0394 0.0427 0.9469 09711 0.9621
ACFC 61750 56320 0.0429 0.0360 0.0394 0.9717 09899 0.9831

Similar to Section 3.1, the results of back testing for the out-of-sample period from
2001 to 2011 are shown in Table 5 and 6. It can be seen that the ACFC gives
marginally smaller mean absolute error of log scale mortality rates than the ACFE. As
for mean absolute life expectancy, the ACFC gives slightly larger error for females,
but predicts better for males. Hence it can be concluded that the ACFC model

improves the model fitting of the ACF, maintains the coherence property, and
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performs reasonably well in the out-of-sample tests for log-scale mortality and life

expectancy.

Table 5: Mean Absolute Error (log-mx) of ACFC vs. ACF

Forecast Period 2001-2011 Mean Absolute Error log-mx

(mean across all ages and years)

Female Male
ACF 0.10586 0.11250
ACFC 0.10351 0.11038

Table 6: Mean Absolute Error (Life Expectancy) of ACFC vs, ACF

Forecast Period 2001-2011 Mean Absolute Error life expectancy (Y ear)
(mean across all ages and years)
Female Male
ACF 0.1988 0.5858
ACFC 0.2003 0.5549

4.2 Cohort Extension of 2-tier ACF

The 2-tier ACF introduced in Section 2.4 has not considered the cohort effect when
modelling the mortality of the six subpopulations in the UK, which is an issue
particularly for the England and Wales population that displays the most significant
cohort trends among the three countries considered. Figure 7 shows the plots of
standard deviance residuals after fitted by the 2-tier ACF against cohort for all six

subpopulations of the UK.
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Figure 7: Standard Deviance Residuals by Cohort, Fitted by 2-tier ACF
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The first finding from Figure 7 is that the cohort effect is most prominent in England
& Wales, and least in Northern Ireland. This is not surprising as England & Wales
population has the largest exposures and therefore the greatest weighting under a
Poisson framework when death counts are modelled directly. Hence the major source

of cohort effect of the UK should be contributed by England & Wales.
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When comparing Figure 7 to Figure 3, it is also obvious that the cohort effect of each
individual country is less significant when compared to the aggregated UK
population. Firstly, England and Wales has the largest exposures, so their cohort
effect will naturally drive the aggregated population. Secondly, this could be
explained by the fact that if the cohort effect of each individual country coincides and
reinforces each other, then on an aggregate level the cohort effect becomes more
prominent. Lastly but most importantly, in the 2-tier ACF model, there are three
bilinear components for each subpopulation; the simple fact that cohort is merely
time period minus age means that most of the cohort effect for each subpopulation
may already be captured by the 2-tier ACF model internally without an explicit
cohort factor, and Figure 7 shows what is left as the residual cohort effect. It should
be emphasized that Figure 5 shows the residual plots of the I-tier ACF, so it is
reasonably expected that residual cohort effect is more prominent, because the 1-tier

ACF is simpler and consists only two bilinear components.

The above findings suggest the possibility of fitting a cohort factor g, _, ; in the 2-tier
model for each gender on a national level to capture the overall cohort effect of all
three countries. Therefore, we introduce the 2-tier ACF model with cohort extension

(2-tier ACFC) below:

En(mx.t.i.j) = Ayt By Kp + by beri + byjjReij+ Ge-xi 21

where all other parameters have the same meaning as in the 2-tier ACF model defined
in Section 2.4. As the same cohort factor is fitted for population of the same gender in
all three countries, there is no issue of divergence among countries. For the same
reason explained by (20), this 2-tier ACFC model also implies the gender differences

within each country is a mean-reverting stochastic process.

As Section 2.4 suggests, when fitting the 2-tier ACF model, we estimate each bilinear
component in steps and ensure deviance is minimised when fitting each component.
This is intended to set priorities among all the different bilinear terms reflecting the

idea that common trends are prioritised in model fitting relatively to trends of a
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particular subpopulation. However, when the cohort term g,_,.; is included, there is

a choice between:

*  g¢—xishould be fitted after fitting the whole 2-tier ACF model and taking all
parameters as given to ensure consistency between the 2-tier ACFC and the 2-tier
ACF

*  Or gy-y,; should be fitted prior to fitting by ; ; k¢ ; ;. but after fitting B, K, because

G¢—x; is part of the common trend of gender i at the aggre gated national level.

Although the first approach might be more in line with Yang et al. (2014), the second
method is chosen for this project as it aligns better with the principle that common
factor is prioritised to ensure convergence. before fitting any subpopulation specific
factors. In the Steps I to XI in Section 2.4, we insert after step VIII the updating step

for gy_; given by:

Step VIII a:

Update Gr;" = Gni + D tt-x=hjWrt(@xtij — Dutij) Latt-x=nj Wt dxeij for

all h and i, adjusted by the constraints ¥, —,_, gy ; = 0 for each i,

where w,., = 0 for the first the last five cohorts of the fitting peried population due to

the scarcity of data in those cohorts. All other definitions are the same as Section 2.4
and (21). This single step is repeated till deviance converges, and then we continue

with Step IX in Section 2.4.
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Figure 8: Standard Deviance Residuals by Cohort, Fitted by 2-tier ACFC
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Again the 2-tier ACFC is fitted to the period between 1975 and 2000 and back-tested
for the period from 2001 to 2011. From Figure 8, it can be seen that after including
one cohort factor for each gender on an aggregated national level, the cohort effect
can no longer be observed in residual plots for England & Wales, and Scotland.
Residuals by cohort year are randomly distributed within a desirable range and

display no systematic pattern.
The statistical model-fitting measures of the 2-tier ACF and the 2-tier ACFC are then

compared in Table 7 below. The results are consistent with our expectation that the 2-

tier ACFC fits better than the 2-tier ACF by every standard.
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Table 7: BIC, AIC, MAPE, & Explanation Ratio of 2-tier ACFC vs. 2-tier ACF

1975-2000 fitted model 2-tier ACF 2-tier ACFC

BIC 145227 142600

AlC 131959 127417

Female England &Wales 0.0446 0.0423

Female Scotland 0.1371 0.1354

Female Northern Ireland 0.2678 0.2662

MAPE Male England & Wales 0.0394 0.0361

Male Scotland 0.1131 0.1115

Male Northern Ireland 0.2013 0.2009

Overall 0.1339 0.1321

Female England &Wales 0.9674 0.9853

Female Scotland 0.8472 0.8617

Female Northern Ireland 0.7502 0.7548

Explanation Ratio Male England & Wales 0.9727 0.9903

Male Scotland 0.9017 0.9175

Male Northemn Ireland 0.8027 0.8040

Overall 0.9697 0.9873

Table 8: Mean Absolute Error (log-mx) of 2-tier ACFC vs. 2-tier ACF

Forecast Period 2001-2011 2-tier ACF  2-tier ACFC

Female England &Wales 0.1074 0.1074

Female Scotland 0.1638 0.1619

Mean Absolute Error Female Northern Ireland 0.2342 0.2340

(log-mx), mean across all ~ Male England & Wales 0.1185 0.1162

ages and years Male Scotland 0.1719 0.1738

Male Northern Ireland 0.2199 0.2189

Overall 0.1693 0.1687
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Table 8 and Table 9 compare the out-of-sample forecast results between the 2-tier

ACF and the 2-tier ACFC. It can be seen that in terms of both mean absolute error of

log mortality and mean absolute error life expectancy, the 2-tier ACEC perform better

than the 2-tier ACF on an overall basis, but the difference is slight. However, because

the out-of-sample tests are only carried out for a period as short as 11 years, for

longer-term forecast, the cohort factor might contribute significantly to the overall

predictive power of the model.

Table 9: Mean Absolute Error (Life Expectancy) of 2-tier ACFC vs. 2-tier ACF

Forecast Period 2001-2011 2-tier ACF  2-tier ACFC
Female England &Wales 0.1169 0.1212
Female Scotland 0.0981 0.0875
Mean Absolute Error
Female Northern Ireland 0.1757 0.1989
Life Expectancy (in Years),
Male England & Wales 0.6306 0.5974
mean across all ages and
Male Scotland .3589 0.3701
years
Male Northern Ireland 0.6049 0.5674
Overall 0.3308 0.3237
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Figure 9: Plots of 2-tier ACFC Parameters

Plots of 2-tier ACFC fitted to period between 1975 and 2000 for the UK dataset, and

parameter plots are shown for the England & Wales only (i=for m; j=ew in (21)).
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4.3 Critical Appraisal of the Coliort Extension to 2-tier ACF maodel

As discussed earlier, this project chooses to fit the cohort factor to residuals after
fitting the term ay;; + By Ky + by ke but before fitting by ; Ky j in the 2-tier
ACFC model. The method is analogous to Yang et al. (2014)s approach to fit cohornt
extensions to PCEM (Li 2012). As stated earlier, the approach taken is fundamentally
different from the method proposed by Renshaw & Haberman (2006) when
introducing the cohort extension to the LC model, where they fitted the cohort factor
simultaneously with other parameters. However, Renshaw & Haberman (2006)
approach cannot be readily applied into the ACF framework, as the multiple bilinear
components of the ACF are arranged in hierarchy so that common trends are fitted
prior to fitting individual subpopulation trends. Therefore, g._,; would have to be
placed within this hierarchy, and for the model to make sense, g;_,; should be
specified aflter litting a,; ; + By K; and before fitting by j Keij. AS gp—x; is part of
the common trend of the aggregated population of the same gender, which comes
after the common trend of the entire population, but before the trend of each country
within the gender. This is another key feature of the 2-tier ACFC model that
including g;_,; would still give raise to a coherent forecast in terms of differences in
mortality among subpopulations, because the common trend of the entire population
is prioritised while g,_, ; is modelled as stationary auto-regressive process. It may be
argued that a common cohort factor g,_, can be fitted together with B, K; and
coherence property can still be maintained. However, the residual plots from the 1-
tier ACF suggests that cohort patterns do differ between different genders, which is

consistent with the findings by Willets (20044).

However, the approach used in this project also fits b, ; k,; prior to fitting g, _, ;.
This predetermines the priority of time period factors over cohort factors, that is, it
follows the assumption that mortality is more dependent on the time of death (period)
than the time of birth (cohort) when fitting the idiosyncratic trend for each gender.
Some research findings, however, disagrees with this assumption. Richards et al.
(2006) suggested that when fitting morality rates of the elderly population in the UK,

the cohort effects are more prominent than the period effects. This may suggest
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alternative orders in fitting the different components of the ACFC model - one might
choose to fit the cohort factor g,_, ; prior to fitting any b, ; k, ; terms or at least fit
them in one step when minimising the deviance function. Haberman & Renshaw
(2009) also suggests that the order of model fitting in age-period-cohort models make
a substantial difference to parameter shapes. Further research may therefore be able
to identify more elegant way of including the cohort extensions within the 2-tier ACF

hierarchy.

It should also be noted that it only makes sense to extrapolate g,_,; as stationary
process if a,;;+ By K + by k;; is prioritised in the model fitting process, as it is
the residuals after fitting these components that is driving g,_, ;. The plots of cohort
factors produced by Yang et al. (2014) are much more erratic compared to Renshaw
& Haberman (2006). This is primarily because the PCEFM model (Li 2012) used by
Yang et al. has up to five sex-specific bilinear terms to capture the trends of a gender
departing from the overall combined population, and if the whole PCFM model is
fitted prior to fitting any cohort extension, the residuals used to fit the cohort
extension are already very erratic. However, since we impose that only ay; ;. By K,
and b, ; k. ; are fitted before fitting g;_, ;. and b, ; ; k., ; is fitted after g,_, ;. the
cohort factor turns out to be less erratic (Figure 9) and easily interpretable. One can
easily observe from the g,_,. ; plots in Figure 9 the golden period from 1925 to 1945,
especially for females, the g¢_. ; terms are negative, indicating lower mortality than
expected from the age-period model, i.e. the 2-tier ACEF. Moreover, for the period
around 1931, the slope of g, _,; terms is negative for both genders, suggesting a
faster pace of improvement, which is consistent with Willets (2004). Another merit of
the current approach is that it avoids the issues in the 2-step method adopted by
Renshaw & Haberman (2006} that the model may not converge for certain age period
combinations of data and varying parameter patterns under different identifiability
constraints, which makes the cohort factor harder to interpret, as is pointed out by

Hunt & Villegas (2015).

The cohort factor is conventionally considered as a non-stationary process, as by

definition it should capture the structural changes in mortality patterns by cohort.
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However, because the approach taken here prioritises the model fitting of certain age
and period terms, some cohort patterns may already be implicitly captured before
fitting gy—y ;. due to the simple fact that cohort is merely age x netted off time period
f, and the cohort terms are intrinsically related to the prioritised age and period terms.
Nevertheless, whether the residual cohort effect represented by g, ; in the ACFC
models really represents structure trends in monality and should be extrapolated into
the future using AR(1) process are areas involving a lot of subjective judgements.
What we can conclude from the above analysis is the cohort factors fitted under this
method display reasonable trends over time and can be easily interpreted, although
the pattern gets more erratic in later cohorts (after 1975s); the cohort factors can also

improve the fitting of the model, evidenced by the lower BIC and AIC.

4.4 Application: Projecting UK Population to 2050 Using 2-tier ACFC

In previous sections, evidences were found that the 2-tier ACFC is a model that can
produce both coherent forecasts between different subpopulations of the UK and
capture the cohort effect that the 2-tier ACF fails to account for. Now, the 2-tier
ACFC is fitted to the period between 1975 and 2011 (latest observations on HMD),
and projected to year 2050,

Figure 10 shows the male-female mortality ratios projected for the three countries by
the 2-tier ACFC for a selection of years. Although projecting the cohort factor of
each gender independently introduces some variants over the forecast years for the 2-
tier ACFC compared to the 2-tier ACF in Figure 4, the sex ratios for each country
produced by the 2-tier ACFC still remain constrained in a stable and reasonable range.
There is no crossover between male mortality and female mortality at any age in the
projections and it is also reasonable that most gender differences in mortality fall
within the age range 20-40. The forecasted sex ratios are higher in Northern Ireland
and Scotland as compared to England & Wales. As suggested by Longevity Science
Advisory Panel (2012), narrowing gender gap in mortality rates are attributed by
strong downward trends in lifestyle factors such as tobacco and alcohol consumptions,
which affects men more severely. However it may also signals other concerning

social trends such as obesity, which affects females more than males. It is reasonable
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to assume that these factors are more significant in countries with overall better
economic development such as England & Wales, as compared to Scotland and

Northern Ireland.

Figure 10: Sex Ratios of Death Rates: sqrt(N/F) over 39 Years of Projection by 2-tier
ACFC
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Figure 11 shows the projected life expectancy by the 2-tier ACFC for the six
subpopulations of the UK at different ages. At all ages, female life expectancy is
consistently higher than male life expectancy, and within each gender, those from
England & Wales have highest life expectancy, followed by Northern Ireland and
then Scotland (Figure 11a — 11d). At the very old ages, there is some overlapping
among male mortality of different countries (Figure 11f). As reflected in the shape of
the curves in Figure 11, life expectancy increases, and the trends are inevitably
similar among all six subpopulations, since they are primarily dominated by the
common factor B, K;. All subpopulations are also governed by the common trend of
each gender, as subpopulations of the same gender is dominated by both mortality
improvement trend b, ; k,; and cohort factor g,_,.;. It is also visible from Figure 11
that, except for the oldest ages, there is a converging trend between the two genders
and also among three countries of the same gender. Therefore, the 2-tier ACFC not
only factors in the cohort effect of the UK elegantly, as evidenced in Section 5.2, but

also maintains the 2-tier ACF’s property to produce coherent long-term forecasts.
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Figure 11: 2-tier ACFC Projected Life Expectancy
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Table 10 below compares the projected life expectancy at birth of the 2-tier ACFC to
the published ONS projection for year 2037 (Office for National Statistics 2013). It
can be seen that the results are fairly similar between the two, although the 2-tier
ACFC projects slightly higher life expectancy for Scotland and lower life expectancy
for Northern Ireland. The forecasted life expectancy for England & Wales combined
by the 2-tier ACFC is halfway between the ONS estimates for England and Wales.
Considering the 2-tier ACFC implicitly gives higher weighting to England than
Wales, the 2-tier ACFC estimates for England & Wales are actually lower than the
weighted average of ONS estimates. This again shows that the 2-tier ACFC produces
a set of reasonable mortality rates while emphasizes more on narrowing regional

inequalities in mortality as compared to other official projection methods.

Table 10: Comparison to ONS Life Expectancy Projections

2037 Life Expectancy at Birth (in Years)

ONS 2-tier ACFC

Females

England 87.6 873
Wales 87.0 873
Northern Ireland 86.9 86.7
Scotland 85.5 86.1
Males

England 844 839
Wales 83.6 83.9
Northern Ireland 833 83.0
Scotland 82.0 82.1
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5. Further Discussion and Conclusion Remarks

5.1 General Application in Pension Funds and Life Insurance Industry

Mortality/longevity risk has long been an area of concern for pension funds and life
insurers. Underestimating mortality leads to greater than expected liabilities for
annuity business and defined-benefit pension funds, while overestimating mortality

leads to overstating the solvency position in life insurers’ protection books.

While the industry is developing hedging tools such as index-linked longevity swaps,
trying to hedge mortality/longevity risk, basis risk still exists because individual
funds’ mortality experience differs from the population mortality index on which the
derivatives are based. Recent research have developed tools and methodologies to
model the extent of basis risk by two-populations models such as “M7-M5" and
“CAE + cohorts” (Haberman et al. 2014). The research carried out by Li & Hardy
(2011) has proved that the ACF framework performs better in modelling related
populations and basis risk in longevity swaps over independent LC models and a
couple of other LC variations. However, the potential of ACF framework in basis risk
modelling may be limited for small populations due to lack of data to estimate the

bilinear terms (Haberman et al. 2014,

As suggested by Hyndman et al. (2013) when introducing their product-ratio method,
which can be seen as a generalization of the ACF model, if mortality ratios of
subpopulations to an aggregated population can be established with confidence, then
applying these ratios to a standard table of the aggregated population may be useful in
setting assumptions for a subpopulation with missing data. Lack of data is a practical
issue faced by actuaries, and applying high-level adjustments to standard tables has
long been a tradition. The high-level adjustments are often set in a broad-brushed way,
such as taking the ratio of latest mortality rates of a subpopulation to a total
population, and then adjust all projected future mortality rates by this constant ratio.
Such approach is intuitively flawed, as it fails to take into account the trends of ratios

into the future. For example, if the ratio of a subpopulation to a total population is
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actually decreasing in an annuity portfolio, neglecting the trends will cause
underestimation of liabilities. The 2-tier ACF/ACFC framework provides a very
simple way of creating more reasonable ratios in projecting mortality, as is

demonstrated via the example below.

Suppose a start-up life insurance company plans to focus its sales in country J, and
they are setting their mortality assumptions. The external standard table for insured
lives is usually for the UK as a whole, split by gender, such as tables produced by
CMI. We can possibly use the 2-tier ACFC framework to project ratios based on the
population data, then apply these ratios to the projection based on standard tables of
insured lives for the entire population (e.g. CMI tables). If we assume the mortality of
the whole population with gender ¢ follows (19) and the mortality of all lives with
gender i in country ; follows (21), we end up with (22), where all the definitions are

as in Section 2:

My f

~r = exp [(axij — axi) + beij Keijl. (22)
If we assume the ratio in (22) approximates the ratio of insured lives in country j to
insured lives in the whole population, both with gender i, then the ratio can be applied
to the standard mortality tables after adjustments are made to reflect time period 7 in
the future. In this way we can estimate the insured lives mortality experience in
country j, with trends in the differences between subpopulation in country j and the
total population extrapolated. Meanwhile, this ratio above also provides some
insights when insurers set their country loadings in their prices. Any flat price
loadings should take into account the future period when the price will be offered,
and the ratios above converges to some constant in the long term. Insurers should
take into account both this long-term mean and short-term behaviours of k¢ ; in
setting their country loadings. Simplicity of the ACF may make assumption setting a

more intuitive exercise.
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Furthermore, another merit of applying the 2-tier ACFC model is that the cohort
adjustment is specified at the UK level for each gender. Companies are more likely to
have sufficient data to fit and extrapolate the cohort factors aggregately rather than
fitting cohort factors to each individual country. The CMI database, for example, is
sufficient to fit cohort factors for each gender, but not further split down to different
countries. Moreover, because cohort factors are fitted at an aggregated level, so (22)
above does not have a cohort component, which further simplifies the ratios of a

specific country to the total population under the 2-tier ACFC framework.,

Another potential application of the ACF (ACFC) models is to understand the gender
gap in mortality. As discussed earlier on, the ACF and the ACFC models, both 1-tier
and 2-tier, have emphasized on the mean-reverting property of male-female
differences in mortality. The design of all four models mandates that the projected
mean differences in log-scale mortality to converge to a reasonably small positive
constant to make sure there is no crossover between the two genders. The long-term
mean of this difference may be useful in setting assumptions; especially after gender
price discrimination was banned in 2012 (European Commission 2012). Knowing the
long-term mean difference between genders implies that insurers only need sufficient
information on gender mix in the policies sold after 2012 to set the unisex pricing

assumptions confidently, especially for long-term policies.

5.2 Limitations of ACFIACFC maodels

In this section, some drawbacks of the ACF/ ACFC models are discussed. No model
could form a perfect reflection of real-life experience. While these models generate
coherent and relatively accurate predictions of future mortality experience, they are

still guesses with limitations.

Firstly, the method fundamentally belongs to the class of models described as
“extrapolative”, so it can only capture trends well embedded in the historical data and
lack the ability to project more up-to-date information such as medical factors,
environmental factors and social-economic changes. For example, a new treatment

for cancer or the increasing female workforce participation (Hudson 2007).
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Secondly, all the ACFHACFC models are extensions or modifications of the LC
model, of which a major issue is that it neglects the age-time interaction. The LC
model assumes rate of mortality change by, by ;, and b, ; ; all remain constant over
time, whereas substantial age-time interactions have been identified in actual
experience (Lee & Miller 2001). This results in the fact that the models tend to
underestimate life expectancy. Carter & Prskawetz (2001) proposed a possible
extension to the LC model to account for the changing age sensitivity to mortality
improvement by applying the LC model to successive subsamples of the fitting

period to account for structural changes in b, ’s.

Another issue of the ACF framework is that it assumes homogeneity at different
levels. When B, K; is fitted, homogeneity is assumed for all lives aged x in year ¢, but
when b, ; k, ; is estimated, homogeneity is assumed for all lives aged x in year ¢ with
the same gender, and the assumption is further relaxed when the model is extended to
the country dimension. It should be noted that homogeneity assumptions were
embedded in the basic LC model, and methods to allow heterogeneity into the

framework has been suggested by Li et al. (2009).

Throughout the project, we propose to fit AR(1) or random walk to all the mortality
time index k's instead of other higher order ARIMA model for simplicity purpose,
which may exclude models that may fit better to past experience. Moreover, the
mortality indices in the model have been extrapolated independently. Despite the fact
that k;; and k;; ; may be correlated statistically and a vector approach may further
improve the model fitting (Hyndman et al. 2013), they are extrapolated inde pendently
to avoid overly complicating the model. Moreover, if a vector approach is taken,
correlations among time indices would have to be estimated, compromising
simplicity of the model. Similarly, AR(1) was chosen to fit cohort factors in the
ACFC models, and the cohort models of the two genders are extrapolated
independently. Although historically, females and males show different cohort
patterns in their mortality improvements, there could be interactions between the

cohort effects of two genders, since females and males born in the same year are
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inevitably exposed to similar social-economic context and healthcare facilities.
Therefore, it may make more sense to fit and extrapolate the cohort factors using a

vector approach.

Most of the results generated in this project are point estimates for future mortality
rates. Further research should look into the statistical emrors of estimates, which are

primarily driven by standard errors of parameters in fitting the mortality time indices.

5.3 Conclusions

We have extended the ACF model by Li and Lee (2005) to a 2-tier structure in order
to model subpopulations of different genders and countries jointly and coherently. A
Poisson structure similar to Li (2012) is applied to introduce a robust statistical
framework to evaluate the accuracy of model fitting. Results show that the 2-tier ACF
model is superior to the independent L.C model in terms of model fitting, short-term
prediction accuracy, and the coherence property in long-term mortality forecasts. A
cohort extension is further added to the 2-tier ACF to construct the 2-tier ACFC,
which improves the model fitting and short-term prediction accuracy, maintains the
coherent property, and removes systematic patterns displayed in the residual plots
against cohort for the 2-tier ACE. The 2-tier ACFC model has great potential in
forming mortality assumptions for pension funds and insurance companies focusing

sales in a specific country or setting uni-sex prices for life insurance products.
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