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Abstract

In this dissertation, we investigate the theory of order statistics and extreme value

theory to construct confidence intervals for high quantile estimates. In an extensive

series of simulation experiments, we compare both methods in terms of coverage prop-

erties, that is, the average length of computed confidence intervals, and the proportion

of them which contain the true quantile.
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1 Introduction

Financial institutions are subject to various requirements by regulatory frameworks such as
Basel III in banking or Solvency II in insurance. Their primary concern is to strengthen
companies’ capital requirements in order to reduce the risk of insolvency. The exact way
these requirements are calculated di↵ers from one regulator to the other, and depends on
the measure of risk which is used.

There are a variety of ways to define risk such as variance (or standard deviation), semi-
variance or expected shortfall. The most widely used measure is the Value-at-Risk (VaR). For
instance, under Solvency II, insurers must calculate a solvency capital requirement (SCR).
The SCR is the amount of capital an insurer must hold to meet its obligations to policy
holders over a one year time horizon with probability larger than 99.5%. Hence, SCR is
based on VaR. If L represents the loss over a one year period, then this translates into
finding the amount x0.995 such that

P (L  x0.995) = 0.995,

which is the definition of VaR0.995. In other words, it ensures that the chance of failure is no
more than a 1 in 200 years event.

In probabilistic terms, the VaR is an ↵�quantile of the loss distribution, defined as
follows.

Definition 1.0.1. (Value-at-Risk). The Value-at-Risk of a distribution function (df) F is
given by

VaR
↵

(F ) = inf{x 2 R : F (x) � ↵}, 0 < ↵ < 1.

The main disadvantage of using VaR as a risk measure is the uncertainty about the
severity of the losses occuring with probability higher than ↵. It is therefore advised to
compute VaR for di↵erent levels ↵: 0.95, 0.975, 0.99, 0.995.

As with any other statistical quantity, there is uncertainty in the estimation of VaR. We
are therefore interested in constructing a confidence interval (CI) for each calculated VaR.
Rather than computing a point estimate for x̂

↵

, which does not inform on the uncertainty
of the estimate, we want to find a, b 2 R such that

P
�
x̂
↵

2 (a, b)
�
= P,

for some confidence level P . We emphasise that in our problem there are two distinct
confidence levels. We have

• the confidence level ↵, which determines x
↵

, and

• the confidence level P , which determines the confidence interval for x̂
↵

.

Our goal is to construct a confidence interval at level P for an extreme quantile at level
↵, e.g. a 95%CI for x̂0.99.

We start with an example to illustrate the Value-at-Risk and motivate the use of order
statistics (OS) to estimate it. Let x1, ..., x100 be simulated observations of an insurance
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Figure 1: Simulated insurance losses (top) and the corresponding ordered sample (bottom)
of a sample of 100 standard exponential random variables. x̂0.95 is shown in red.

company’s claim sizes. VaR0.95 is the claim size value x0.95 such that 95% of the claim sizes
are below x0.95, that is

P (X  x0.95) = 0.95.

If we rearrange the data in ascending order (see Figure 1), it is easier to identify VaR0.95.
In the case of a sample of size 100, x̂0.95 can be given by the 95-th smallest (or 6-th largest)
value. Indeed, VaR is an order statistic itself. Therefore, by studying the distribution of
order statistics, we can construct confidence intervals for extreme quantiles.
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Figure 2: Distribution of order statistics of the Student’s t distribution with ⌫ = 4 (left) and
its standard error (right). See Appendix C.1 for the code provided by Prof. McNeil.

This is the simplest version of the OS estimation as it is based on a single order statistic.
However, if 0.95 · sample size is not an integer, then it is not straightforward which OS
should be used. For example, if the sample size is 272, then 272 · 0.95 = 258.4. Therefore,
the estimator of VaR0.95 could be x(258) or x(259) or a combination of the two.

A more complex estimator is constructed by interpolating between two order statistics.
We present two types of estimation based on OS in the next section. However, such estimators
have high variability in the tails, as we can see in Figure 2. As we show in the simulation
study (Section 4), this becomes problematic for very high quantiles (↵ � 0.99). We therefore
investigate extreme value theory as an alternative.

This method was developed by hydrologists under the name Peaks Over Threshold
(POT), and can be applied to flood estimation. Excesses over high thresholds are modelled
with the generalised Pareto distribution (GPD), which is closely related to the behaviour of
normalised maxima. We use the maximum likelihood (ML) approach to estimate the pa-
rameters of the GPD. The VaR estimator is then computed based on a tail approximation.
Finally, we obtain confidence intervals by inverting the likelihood ratio test. This method is
presented in Section 3.

In the last section, we compare both methods in an extensive series of simulations. Know-
ing the value of the true quantile, we can measure the performance of each method. The
main research question we are interested in is:

does the EVT method outperform the empirical method in terms of coverage properties?

To answer this, we conduct a simulation study and compare

7



• the number of CIs that contain the true quantile, and

• the average lengths of the CIs.

We perform this experiment for di↵erent classes of distributions and draw conclusions on
the performance of each method for various values of the confidence level P , the VaR level
↵, and the sample size.
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2 Confidence intervals using order statistics

After introducing fundamentals on the theory of order statistics, we examine two types of
quantile estimation. We then use the distribution of these point estimates to construct
confidence intervals. This section mainly builds upon David and Nagaraja [1] and Reiss [12].

2.1 Order statistics

Let X1, X2, X3, ... be a sequence of iid random variables with continuous df F .

Definition 2.1.1. The ordered sample is

X(1)  ...  X(n),

with X(1) = min(X1, ..., Xn

) and X(n) = max(X1, ..., Xn

). The random variable (rv) X(k)

is called the k-th lower order statistic. Similarly we can define upper order statistics as
X

n,n

 ...  X1,n. Note that X
k,n

= X(n�k+1).

We want to derive an expression for the distribution function of X(m) (m = 1, ..., n), in
order to construct a confidence interval for its estimator. First, we introduce the empirical
distribution function.

Definition 2.1.2. The empirical df is defined as

F
n

(x) =
1

n

nX

i=1

{Xix}, x 2 R.

Notice that

X(m)  x ()
nX

i=1

{Xix} � m

() 1

n

nX

i=1

{Xix} �
m

n

() F
n

(x) � m

n

Therefore,

P (X(m)  x) = P (F
n

(x) � m

n
),

which implies that F 
n

(t) = X(m), for
m�1
n

< t  m

n

and m = 1, ..., n.
Next we calculate the df of the m-th lower order statistic.

Proposition 2.1.1. Distribution of the m-th lower order statistic. For m = 1, ..., n let G
m

denote the df of X(m). Then

G
m

(x) =
nX

j=m

✓
n

j

◆
[1� F (x)]n�j[F (x)]j = F

m,n�m+1

�
F (x)

�
,

where F
m,n�m+1 denotes the beta df.

9



Proof. Define B
n

=
P

n

i=1 {Xix}. Then B
n

is a sum of iid Bernoulli variables with success
probability F (x). That is, B

n

⇠ Bin(n, F (x)).

G(m)(x) = P (B
n

� m)

=
nX

j=m

P (B
n

= j)

=
nX

j=m

✓
n

j

◆
[1� F (x)]n�j[F (x)]j.

As we will see in the next section, some estimators are based on two order statistics, e.g.
(1 � �)X(m) + �X(m+1), � 2 [0, 1]. Therefore, we are interested in the df of a convex linear
combination between two consecutive OS. Since we need their joint distribution to calculate
it, we first look at the joint pdf g

r,s

of (X(r), X(s)), for arbitrary r and s. A detailed proof of
the following result can be found in David and Nagaraja [1], p.10.

Proposition 2.1.2. Let r < s 2 {1, ..., n}. The joint pdf of (X(r), X(s)) is given by

g
r,s

(x, y) =
n!

(r � 1)!(s� r � 1)!(n� s)!
[F (x)]r�1[F (y)� F (x)]s�r�1[1� F (y)]n�sf(x)f(y),

with x, y 2 R, x  y.

Proof. Let x  y. The event x < X(r) < x+ �x, y < X(s) < y + �y. By continuity, there are
almost surely no ties and therefore,

r � 1 observations are less than x,

1 observation is in (x, x+ �x),

s� r � 1 observations are in (x+ �x, y),

1 observation is in (y, y + �y),

n� s observations are above y + �y.

Corollary 2.1.1. The joint pdf of two consecutive OS (X(k), X(k+1)) is given by

g
k,k+1(x, y) =

n!

(m� 1)!(n�m� 1)!
[F (x)]k�1[1� F (y)]n�k�1f(x)f(y), x < y.

Proof. Apply Proposition 2.1.2 to two consecutive OS.

Before obtaining the density of (1 � �)X(m) + �X(m+1), we need to find the joint pdf of�
(1� �)X(m), �X(m+1)

�
.

Corollary 2.1.2. The joint p.d.f of (X, Y ) = ((1� �)X(m), �X(m+1)) is given by

f
X,Y

(x, y) = g
m,m+1

⇣ x

1� �
,
y

�

⌘
· ��1(1� �)�1.

10



Proof. Let X and Y be two dependent rvs. By definition, the joint density can be written
as

f
X,Y

(x, y) = f
Y |X(y|x)fX(x).

Assume X = (1� �)X(m) and Y = �X(m+1), then

f
X,Y

(x, y) = f
Y |X(y|x) · fX(x)

= f
Y |X

⇣
�X(m+1) = y

���(1� �)X(m) = x
⌘
· ��1 · f

X(m)

�
x/(1� �)

�
· (1� �)�1

= f
X(m+1)|X(m)

⇣
X(m+1) =

y

�
|X(m) =

x

(1� �)

⌘
· ��1 · g

m

(x/(1� �)) · (1� �)�1

= g
m,m+1

⇣ x

1� �
,
y

�

⌘
· ��1 · (1� �)�1.

Recall that for two independent rvs, the density of their sum is the convolution of their
densities. However, OS are not independent, even if the original rvs are. For instance, for
k < j and x > y we have that P (X(k) = x|X(j) = y) = 0, but P (X(k) = x) ·P (X(j) = y) 6= 0.

The following result and its proof can be found in Grimmett [6].

Theorem 2.1.1. If X and Y have joint density function f , then Z = X + Y has density
function

f
Z

(z) =

1Z

�1

f(x, z � x) dx.

The df is

F
Z

(z) =

1Z

x=�1

zZ

y=�1

f(x, y � x) dy dx.

We now have all the tools we need to find the df of a linear combination of two OS.

Corollary 2.1.3. The df of (1� �)X(m) + �X(m+1) denoted by G
�,m

is given by

G
�,m

(z) =
⇣ 1

1� �
· 1
�

⌘ +1Z

x=�1

zZ

y=�1

g
m,m+1

⇣ x

1� �
,
y � x

�

⌘
dydx.

Proof. Apply Theorem 2.1.1 and Corollary 2.1.2 to the linear combination.

Note that we do not obtain an explicit formula for G
�,m

, since this double integral is
usually analytically intractable. Furthermore, in order to find lower and upper limits of a
confidence interval, one only needs to solve it numerically, that is, find z such that

G
�,m

(z) = �,

for a given �. However, we have an explicit formula for the df of any order statistic. The
next step is to define the sample quantile and the df will follow from our calculations.

11



2.2 Sample quantile

As mentioned in the introduction, there are several ways to define the sample quantile.
Hyndman and Fan [9] discuss the most widely used sample quantile definitions and their
properties. We present two of them. The first is based on a single order statistic, defined as
the inverse of the empirical df. Then, we investigate linear interpolation between two order
statistics. The second is the default definition in the R function quantile.

2.2.1 Sample quantile using one order statistic

This is the definition we used in the first example.

Definition 2.2.1. (Type 1). Let X1, ..., Xn

be rvs and X(1), ..., X(n) the ordered sample.
Then the ↵�th quantile can be estimated by

Q̂1(↵) :=

⇢
X(np), if [np] = np,

X([np]+1), if [np] < np.

where [y] denotes the greatest integer no greater than y.

Recall the example in the introduction. Let x1, ..., x100 be iid rvs from an exponential df.
We want to estimate VaR0.95. By the latter, we obtain Q̂1(0.95) = x(95).

The obvious drawback of this definition is the discontinuity of Q̂1.

2.2.2 Sample quantile using linear interpolation between two order statistics

The next definition is the default method used in the software R.

Definition 2.2.2. (Type 2).

Q̂2(↵) = (1� �)X(j) + �X(j+1)

with � = ↵(n� 1)� [↵(n� 1)] and j = [n↵ + 1� ↵].

Example 2.2.1. For n = 100 and ↵ = 0.95 we obtain Q̂2(↵) = 0.95X(95) + 0.05X(96). For
some values, there is quite a di↵erence between the two estimators. For n = 252 and ↵ = 0.99
for instance, Q̂1(↵) = X(249) and Q̂2(↵) = 0.51X(249) + 0.49X(250).

2.3 Confidence invervals

2.3.1 Introduction

Let x
↵

be the ↵�th quantile. To construct a confidence interval for x̂
↵

, we first study CIs of
the form [X(r), X(s)], for r < s, and calculate the confidence level. First note that the event,

{X(r)  x
↵

} = {X(r)  x
↵

}
\

{X(s) � x
↵

}
[

{X(r)  x
↵

}
\

{X(s) < x
↵

}.

Also,
X(s) < x

↵

) X(r)  x
↵

.

12



Thus, P (X(r)  x
↵

) = P (X(r)  x
↵

 X(s)) + P (X(s) < x
↵

), which implies that

P (X(r)  x
↵

 X(s)) = P (X(r)  x
↵

)� P (X(s) < x
↵

)

=
s�1X

i=r

✓
n

i

◆
↵i(1� ↵)n�i

However, we do not obtain a CI for a given confidence level. Instead, we use the df of the
order statistic, or the linear combination of two, depending on the choice of sample quantile
estimator.

2.3.2 Confidence interval of type 1

If the VaR point estimate is of type 1, then the estimator is an exact OS as defined in
Definition 2.2.1. Recall that

G
m

(x) =
nX

j=m

✓
n

j

◆
[1� F (x)]n�j[F (x)]j = F

m,n�m+1

�
F (x)

�
.

Therefore, we can easily find the percentile points and thus construct a confidence interval.
Indeed, a quantile is an order statistic and we need to invert the df G

m

(x).
Suppose we wish to estimate a 100P%CI for an ↵�th quantile. First we find the values

of F (x) for which

G
m

(x) =
1� P

2
, and

G
m

(x) =
1 + P

2
.

We then find the lower and upper bounds of the CI by taking the inverse of the underlying
df F or the empirical df F

n

.

Remark 2.3.1. The exact df is of the form G
m

(x) = F
m,n�m+1

�
F (x)

�
. However, in practice,

F is usually unknown. For instance, it could be the loss distribution of an insurance portfolio.
Therefore, one should use the empirical df when computing CIs.

Example 2.3.1. Let x1, ..., x1000 be observations from a standard normal distribution. Sup-
pose we want to find a 90%CI for the VaR0.95. Following Definition 2.2.1, point estimation is
given by X(950) with distribution G950. We use the incomplete beta distribution to find the
5th and 95th percentile points of the binomial. This gives us values of 0.9371 and 0.9599 for
F (x). Now, we use the inverse of the normal distribution function to find the bounds of the
CI. F (x) = 0.9371 ) x = F�1(0.9371) = ��1(0.9371) = 1.5312. Similarly the upper bound
is 1.7501.

Remark 2.3.2. Some percentile points of the df of the OS can be found in Table 1. Note
that these do not depend on the underlying df F but only on the quantile level, the confidence
level and the sample size. Therefore, the values in the table are always the same, no matter
what the df F is. We say that this method is distribution-free.
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Quantile Sample size 2.5�th percentile 97.5�th percentile

0.99 100 0.9455 0.9976
500 0.9768 0.9956
1000 0.9817 0.9945

0.95 100 0.8872 0.9777
500 0.9271 0.9658
1000 0.9346 0.9618

0.975 100 0.9148 0.9890
500 0.9559 0.9846
1000 0.9633 0.9829

Table 1: Percentile points of a beta distribution for di↵erent quantiles and sample sizes.

2.3.3 Confidence interval of type 2

With definitions of type 2, we do not have an explicit formula for the df. Consequently we
cannot use the same approach as before. Indeed, we need to solve a double integral. This
is di�cult to do analytically. Hence, we use the R package cubature to solve the double
integral numerically. To obtain a 100P%CI we then use uniroot to solve

G
�,m

(z1) =
1� P

2
, and

G
�,m

(z2) =
1 + P

2
.

The 100P%CI is then given by [z1, z2].

2.4 Concluding notes

We presented two types of sample quantiles and how to construct their corresponding con-
fidence intervals. In the simulation study (Section 4), we use the definition of type 1. One
way to deal with the case where n↵ is not an integer is to use a bisection algorithm, which
is suggested by Dowd [2]. Consider the df of an order statistic, that is,

G
m

(x) =
nX

j=m

✓
n

j

◆
[1� F (x)]n�j[F (x)]j.

We use the bisection algorithm in Appendix C.2 to determine the percentile points of G
m

(x).
As we will see in Section 4, the confidence intervals obtained with the algorithm are more
accurate than with the beta df, for the case where n↵ is not an integer. However, for very
high quantiles, we obtain better results with the EVT method, which we introduce in the
next section.
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3 Confidence intervals using extreme value theory

Classical extreme value theory (EVT) is interested in the fluctuations of the maximum of a
sample of rvs. In this section, we summarise the main results from EVT. We then explore
more precisely the generalised Pareto sistribution (GPD), which is used to model excesses
over a high threshold. We fit this distribution to Peaks Over Threshold (POT) and use the
profile likelihood to obtain point estimates as well as confidence intervals for high quantiles.
This sections follows mainly Embrechts, Klüpperlberg and Mikosch (EKM) [4] and McNeil,
Frey and Embrechts (MFE) [10].

3.1 Theoretical background

We begin by presenting the limit laws for normalised maxima of iid rvs. The crucial result is
that the non-degenerate limits can only be of three types. We then provide a one-parameter
representation known as the Generalised Extreme Value distribution (GEV), which leads to
the GPD.

3.1.1 The generalised extreme value distribution

Let X1, ..., Xn

be a sequence of iid non-degenerate rvs with df F . We are interested in
the behaviour of the rv M

n

= max(X1, ..., Xn

) or X(n) using the OS notation. The exact
distribution of the maximum is given by

P (M
n

< x) = P (X1 < x, ..., X
n

< x)

= P (X1 < x) · ... · P (X
n

< x), by independence

= F n(x).

F is a df and therefore, as n ! 1, F
n

(x) ! {0, 1}. The tipping point is called the right
endpoint of F and is defined as

x
F

= sup{x 2 R : F (x) < 1}.

Hence, 8x < x
F

,
F n(x) ! 0, n ! 1

and if x
F

is finite,
F n(x) = 1, for x > x

F

.

By definition (see Appendix A) M
n

P�! x
F

.

Example 3.1.1. The Weibull distribution has a finite right endpoint whereas x
F

= 1 for
the Fréchet and the Gumbel distributions (see Figure 3).

The main result in classical EVT is similar to the Central Limit Theorem (CLT) for the
sum of rvs. Suppose X1, ..., Xn

⇠ F and S
n

:=
P

n

1 Xi

. The General Central Limit problem
consists in finding a

n

> 0, b
n

2 R such that

S
n

� a
n

b
n
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Figure 3: Distribution function of the GEV for di↵erent parameters ⇠ and µ = 0, � = 1. The
solid line represents the Gumbel (⇠ = 0); the dotted line represents the Fréchet (⇠ = 0.5);
the dashed line represents the Weibull (⇠ = �0.5).

converges to some non-degenerate rv Z. The CLT tells us that if F has a finite second
moment, then Z ⇠ N (0, 1).

Similarly, we want to find c
n

> 0, d
n

2 R such that

M
n

� c
n

d
n

converges to some non-degenerate rv H. The following result is the foundation of EVT. A
detailed proof can be found in Resnick [13].

Theorem 3.1.1. (The Fisher-Tippett theorem). If there exist c
n

> 0, d
n

2 R and some
non-degenerate df H such that

M
n

� c
n

d
n

d�! H, (1)
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then H is one of the three following dfs:

Fréchet: �
↵

(x) =

⇢
0, x  0

exp{�x�↵}, x > 0,
↵ > 0,

Weibull:  
↵

(x) =

⇢
exp{�x�↵}, x  0

1, x > 0
↵ > 0.

Gumbel: ⇤(x) = exp{�e�x}, x 2 R.

Definition 3.1.1. We say that a rv X belongs to the maximum domain of attraction of the
distribution H (X 2 MDA(H)) if Equation (1) holds.

A very practical representation of the three previous dfs is given by the Jenkinson-von
Mises representation. It combines all three dfs in a one-parameter definition.

Definition 3.1.2. (Jenkinson-von Mises representation). The generalised extreme value
distribution is defined as

H
⇠

(x) =

⇢
exp{�(1 + ⇠x)�1/⇠} if ⇠ 6= 0,

exp{� exp{�x}} if ⇠ = 0,

where 1 + ⇠x > 0.
H

⇠

gives either the Fréchet, Weibull or Gumbel df depending on the value of the parameter
⇠:

⇠ > 0 represents the Fréchet,

⇠ = 0 represents the Gumbel,

⇠ < 0 represents the Weibull.

The quantity 1/⇠ is known as the tail index. We say that a df F is heavy-tailed if its
(right) tail is not exponentially bounded, that is,

lim
x!1

e�xF̄ (x) = 1,

for all � > 0, and F̄ (x) = 1 � F (x). Gnedenko [5] showed that if this is the case, then
F 2 MDA(H

⇠

) for ⇠ > 0. This class of distributions includes the Pareto, Cauchy and
Student’s-t distributions. The maximum domain of attraction of H0 includes the lognormal
and the normal distributions. These are called medium-tailed distributions. These two
classes are the center of interest of the simulation study. Distributions in MDA(H

⇠

) with
⇠ < 0 are called short-tailed distributions. The larger the parameter ⇠, the heavier the tail.

Definition 3.1.3. (Excess distribution function). Let X be a rv with df F . Then, the excess
df over the threshold u < x

F

is given by

F
u

(x) = P (X � u  x|X > u) =
F (x+ u)� F (u)

1� F (u)
, x � 0.
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⇠ Distribution
⇠ > 0 Pareto
⇠ = 0 Exponential
⇠ < 0 Pareto Type II

Table 2: Special cases of the generalised Pareto distributions given the paramater ⇠.

The mean excess function of X is

e(u) = E(X � u|X > u).

Remark 3.1.1. F
u

is referred to as the excess-of-loss df in the context of reinsurance.

The relation in Definition 3.1.3 can also be written as

F̄ (u)F̄
u

(x) = F̄ (u+ x) (2)

Theorem 3.1.2. (Characterisation of MDA(H
⇠

)). The following are equivalent:

F 2 MDA(H
⇠

) ()

lim
u!xF

F̄
�
u+ xa(u)

�

F̄ (u)
=

⇢
(1 + ⇠x)�1/⇠, if ⇠ 6= 0,

e�x, if ⇠ = 0.
(3)

Proof. A sketch of the proof can be found in Embrechts, Kluppelberg and Mikosch [4],
Theorem 3.4.5.

This theorem is crucial for the modelling of excesses over a threshold. We can rewrite
the LHS of Equation 3 as

lim
u!xF

P
⇣X � u

a(u)
� u

��X > u
⌘
.

Therefore, we obtain a limit of excess distribution over a threshold. This is the motivation
for the generalised Pareto distribution, which we introduce in the next section.

3.1.2 The generalised Pareto gistribution

This definition is prompted by the limiting behaviour of excesses over a threshold (see RHS
of Equation 3).

Definition 3.1.4. (GPD). The df of the generalised Pareto distribution is given by

G
⇠,�

(x) =

⇢
1� (1 + ⇠x/�)�1/⇠, if ⇠ 6= 0,

1� exp (�x/�), if ⇠ = 0,

where ⇢
x � 0 if ⇠ � 0, and

0  x  ��/⇠ if ⇠ < 0.

and � > 0.
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Figure 4: Distribution function of the GPD for di↵erent parameters ⇠ and � = 1. The solid
line is the exponential (⇠ = 0); the dotted line is the Pareto (⇠ = 0.5); the dashed line is the
Pareto type II (⇠ = �0.5).

This df is generalised because, like the GEV distribution, it contains special cases (see
Table 2 and Figure 4).

If ⇠ < 1, the expectation of X ⇠ GPD
⇠,�

is given by

E[X] =
�

1� ⇠
.

For ⇠ > 0, E[Xr] = 1, for r � 1/⇠.
The following theorem by Pickands, Balkema and de Haan essentially states that the

GPD appears as the natural distribution for modelling excess losses over high thresholds.

Theorem 3.1.3. F 2 MDA(H
⇠

), ⇠ 2 R if and only if

lim
u!xF

sup
0<x<xF�u

|F
u

(x)�G
⇠,�(u)(x)| = 0

for some positive and measurable function �(·).
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Proof. Recall Theorem 3.1.2. Together with Equation (2), the theorem becomes

lim
u!xF

|F̄
u

(x)� Ḡ
⇠,�(u)(x)| = lim

u!xF

|F
u

(x)�G
⇠,�(u)(x)| = 0,

with a(u) = �(u). The GPD is continuous and therefore, the convergence is uniform.

Proposition 3.1.1. If X follows a GPD with ⇠ < 1. Then, for u < x
F

,

e(u) = E[X � u|X > u] =
� + ⇠u

1� ⇠
, � + u⇠ > 0.

Proof. Using the definitions of the mean excess function and the expectation of a rv, we
have,

e(u) =
1

F̄ (u)

Z
xF

u

(x� u)dF (x)

=
1

F̄ (u)

Z
xF

u

F̄ (x)dx, 0 < u < x
F

.

The last proposition implies that the mean excess function is linear in u, the threshold.
This is a very useful property. The choice of threshold is an important problem in fitting a
GPD. A threshold too high (with few exceedances) results in a high variance. Conversely a
threshold too low produces a biased estimator. One way to choose an suitable threshold is
to look at the Mean-Excess plot (ME plot) and identify one (or various) threshold for which
e(x) is approximately linear for x > u. This is presented in the next section when we fit the
GPD.

3.2 Modelling excesses over a threshold

In the previous section, we showed that the GPD appears as the natural distribution for
excesses over a high threshold. We now show how to fit this distribution to a data set and
how to derive a confidence interval for VaR using the maximum likelihood approach.

3.2.1 Fitting the generalised Pareto distribution

Suppose we have a sequence of iid rvsX1, ..., Xn

from an unknown df F . We want to fit a GPD
to the data to model excesses over a high threshold. To make the theoretical calculations,
we assume that for some threshold u we have F

u

(x) = G
⇠,�

(x) for 0  x < x
F

� u and some
⇠ 2 R and � > 0.

First, we need to find an appropriate threshold u. Denote by N
u

:= #{i|X
i

> u}, the
number of exceedances of the sample above u (see Figure 5).

Recall that the excess df is given by

F
u

(y) = P (X � u  y|X > u), y � 0.
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Figure 5: Data X1, ..., X100 and the excesses over the threshold u = 4.5.

First, we can get a formula for tail probabilities, that is, for x � u,

F̄ (x) = P (X > u)P (X > x|X > u)

= F̄ (u)P (X � u > x� u|X > u)

= F̄ (u)F̄
u

(x� u)

= F̄ (u)
�
1 + ⇠

x� u

�

��1/⇠
.

We then invert this formula to obtain a high quantile of F ,

x
↵

= u+
�

⇠

✓⇣1� ↵

F̄ (u)

⌘�⇠
� 1

◆
, (4)

and replace the unknown quantities by their estimates. For F̄ (u) we take Nu
n

. Finally, we
get the following estimator, first proposed by Smith [16],

ˆ̄F (u) =
N

u

n

✓
1 + ⇠̂

x� u

�̂

◆�1/⇠̂
, (5)
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for x � u.
In Proposition 3.1.1 we have shown that the mean-excess function is asymptotically linear

in u. Therefore, we plot the mean-excess function and graphically identify a threshold such
that the function is approximately linear (see Figure 6).

3.2.2 Maximum likelihood estimation

Assume X = (X1, ..., Xn

) is the data and that G
⇠,�

is a GPD with parameters ⇠ and �. The
density g

⇠,�

, is given by

g
⇠,�

(x) =
⇠

�

�
1 + ⇠

x

�

��1� 1
⇠ , x 2 D(⇠, �).

where

D(⇠, �) =

⇢
[0,1) if ⇠ � 0, and
(0,��/⇠) if ⇠ < 0.

Therefore, the log-likelihood is

l(⇠, �;x) = �n ln � � (
1

⇠
+ 1)

nX

i=1

ln(1 +
⇠

�
x
i

).

We can solve this numerically and obtain the MLE ⇠̂ and �̂. Smith [14] shows that this
method works well for ⇠ > �1/2. In fact,

p
n
⇣
⇠̂ � ⇠,

�̂

�
� 1

⌘
d�! N (0,M�1),

where

M�1 = (1 + ⇠)

✓
1 + ⇠ 1
1 2

◆
,

and N (µ,⌃) stands for the bivariate normal distribution with mean vector µ and covariance
matrix ⌃. The standard properties of consistency and asymptotic e�ciency hold. However,
Smith [15] states that for ⇠  �1/2, “the problem is nonregular and special procedures are
needed.”

We wish to construct a confidence interval for a high quantile, or VaR. However, we need
to reparametrise the GPD in terms of the VaR (x

↵

), i.e.

(⇠, �) ! (⇠, x
↵

).

Recall Equation 4,

x
↵

= u+
�

⇠

✓⇣1� p

F̄ (u)

⌘�⇠
� 1

◆
,

which allows us to write � in terms of the parameters (⇠, x
↵

):

�(⇠, x
↵

) = ⇠(x
↵

� u)
⇣� 1� p

N
u

/n

��⇠ � 1
⌘�1
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Figure 6: 1,000 generated data points from a Student’s t distribution with 4 degrees of
freedom (top); the corresponding ME plot with a potential choice of threshold u1 = 1.3
(bottom left); the empirical distribution of excesses and the fitted GPD with estimated
parameters based on ML approach ⇠̂ = 0.35 and �̂ = 0.78 (bottom right).

and therefore obtain the log-likelihood

lnL(⇠, �(⇠, x
↵

);y) =
NuX

i=1

ln g
⇠,�(⇠,x↵)(yi)

= �N
u

ln(�(⇠, x
↵

))�
⇣1
⇠
+ 1

⌘ NuX

i=1

ln
⇣
1 + ⇠

y
i

�(⇠, x
↵

)

⌘
.

This is what is done in ML.HO.GPD (see appendix C).
In the simulation study, we use only the ML approach. Hosking and Wallis [8] present
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two other methods of parameters estimation and compare them to the ML method. They
establish that the method of moments gives a reliable alternative except for ⇠ � 0.2. Fur-
thermore, they advocate the use of the method of probability-weighted-moments (PWM) in
the case ⇠ � 0. However, the CIs we construct in the next section are based on the profile
log-likelihood function, which is why we focus on the ML approach.

3.3 Confidence intervals

In this section, we show how we can use the generalised Pareto distribution to construct
confidence intervals for high quantiles. The CIs are based on the Likelihood Ratio Test (see
appendix D). In the previous section, we showed how we can fit a GPD to a data set. For
simplicity, assume we want to construct a 95%CI for 99%VaR.

First, we compute the partial log-likelihood in terms of the parameters (⇠, x
↵

). We obtain
the limits of the confidence intervals by finding the points of intersection between the partial
log-likelihood curve and the horizontal line h = 0.95 (see Figure 7).

We use the R function ML.H0.GPD to maximise the negative partial log-likelihood for
values of ⇠. We then use the function uniroot to find the roots of the equation given by the
likelihood ratio test (Equation 6 in Appendix D)

lnL(x0
↵

, ⇠̂0;y)� lnL(↵̂
p

, ⇠̂,y) + 0.5c1,0.95 = 0,

where c1,0.95 is the 95th quantile of the �2
1 distribution, lnL(↵̂p

, ⇠̂,y) is the global maximum
and lnL(x0

↵

, ⇠̂0;y) is the partial log-likelihood function.
The solutions of the previous equation define the lower and upper bounds of the confidence

interval for x̂
↵

.

Remark 3.3.1. We need to specify a search interval for uniroot. Therefore, one might
not always find the roots of the LRT equation either because the interval is too wide (and
contains both roots) or too narrow (and contains none). To minimise this issue, we restrict
the search intervals to (0.25↵̂

p

, ↵̂
p

) and (↵̂
p

, 4↵̂
p

). Another solution is to use ExtendInt within
the function uniroot, which extends the search interval if no solution is found. However,
this increases the computing time considerably.

Remark 3.3.2. Note that in general, the CI is asymmetric, that is, the distance between
the MLE and the lower and upper bounds are di↵erent.
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4 Simulation study

We now present the methodology, and analyse the results of the simulation study. Our goal
is to compare the empirical method, based on order statistics and the EVT method, based
on the generalised Pareto distribution. The performance of each method is measured by the
percentage of CIs that contain the true quantile, and the average length of the CIs. We also
record the percentage of simulation runs producing errors.

4.1 Simulation procedure

Data is generated from a known distribution function F . Therefore, we deduce the values
of the true quantiles. Confidence intervals are then constructed for each method using the
function doOne (see Appendix C.5). The function returns two values: lengthCI, the length of
each CI, and inCI, a logical value verifying if the true quantile is in the CI. These results are
stored in the variable res, along with error and warning indicators as well as the simulation
time in ms. We compare the methods for di↵erent

• distributions F,

• sample sizes n,

• VaR levels alpha, and

• confidence levels P.

We summarise the variables and their type within Table 3 (see Hofert and Maechler [7]
for more details on the types and the package simsalapar). The variable of type N defines
the number of simulation replications (here, N=10000). The variables of type grid produce a
data frame. Each row contains a unique combination of all those variables. The simulation
iterates N times over all rows.

Variable Expression Type Value

n.sim N N 10000
n n grid 100, 500, 1000
P P grid 0.90, 0.95, 0.99
alpha ↵ grid 0.950, 0.990, 0.995
method Method grid GPD, OS
Df Df grid Logormal, Normal, Pareto, Student’s t

Table 3: Variables which determine the simulation study.

As summarised in Table 3, we are interested in several confidence levels for di↵erent
VaRs. But for a given data set this can be computed simultaneously. This is done using the
R package simsalapar (see Appendix C for the code).

In the simulation study, we consider the distribution functions with di↵erent indexes,
that is, medium and heavy-tailed distributions, as suggested by McNeil and Saladin [11] (see
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MDA(H0) MDA(H0.5) MDA(H1)

Standard Lognormal Pareto (↵ = 2, x
m

= 1) Pareto (↵ = 1, x
m

= 1)
Standard Normal Student’s t (⌫ = 2) Student’s t (⌫ = 1)

Table 4: Summary of distributions used in simulation study.

Table 4). The standard normal and lognormal dfs are in the maximum domain of attraction
of the Gumbel (MDA(H0). The Pareto and the Student’s-t distributions are in the maximum
domain of attraction of the Fréchet (MDA(H0.5) or MDA(H1) depending on the parameters).
These are popular choices for loss distributions among insurers.

In an individual analysis, one would plot the mean-excess function in order to choose a
suitable threshold. But for a simulation study, this cannot be done manually every time.
Therefore, we fix the number of exceedances as N

u

= sample size
4 . We show in Table 7 the

success rates of the simulation runs for N
u

= sample size
10 . The rates are higher for the normal,

but this is a special case, as the lognormal (and the other dfs) has lower success rates than
for a greater value of N

u

.
It is important to mention that the underlying distribution function F is treated as

unknown in the construction of CIs. We only use that information to compute the true
quantile. The aim is to assess how well the methods perform with limited information on
the data. The additional assumption we make is that the generated rvs are iid, which is
standard practice in insurance.

4.2 Error handling

The package simsalapar allows to record the percentage of failure in a code. Clearly, the
OS method never fails but the EVT one is likely to fail for distributions such as the standard
normal because convergence of the GPD is very slow, as we will see in Section 4.3.1. It is
therefore important to report the percentage of success.

As we see in Table 5 (which only displays statistics for successful attempts) the EVT
method performs well for a normal distribution. Although, the GPD converges in so little
occurrences that the results are not relevant to the study (see Table 6). One could argue
that the normal distribution is a poor choice for an insurance loss distribution. Nevertheless,
this information needs to be taken into account when comparing methods.

4.3 Results

We want to compare the lengths of the confidence intervals because for a given confidence
level, a wider CI means a loss in precision. Additionally, we are interested in the percentage
of CIs that contain the true quantile. If we are constructing a 95%CI, say, then in theory,
95% of the CIs should contain the true quantile. But recall that we are considering the
underlying df F as unknown. We evaluate the performance of both methods under that
assumption. Overall, no method is perfect, that is, no method produces CIs that contain
the true quantile systematically 100P% of the time. We say that the method performs well
if the proportion is close to the desired level P . This also means that a proportion higher
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than P is not satisfactory. Indeed, it would suggest that the CI is larger than what is needed
to reach the wanted outcome.

The results of the simulation study for distributions in MDA(H0), MDA(H0.5) and
MDA(H1) are shown in Tables 5, 8 and 10, respectively.

For both method, the size of the CIs increases with the value of ↵ and decreases as the
sample size grows. This holds regardless of the type of distribution or confidence level P.

The EVT method is more a↵ected by a change in the sample size than the OS method.
For a given confidence level, the size can be reduced by a factor of three between a large and
small sample, whereas the empirical method remains stable. As a result, for a large sample,
we obtain smaller CIs irrespective of the underlying distribution or the VaR level.

4.3.1 Distributions in MDA(H0)

This class of distributions includes the normal and the lognormal dfs. They both have
medium-sized tails but the lognormal has a longer tail than that of a normal distribution.
As a result, the EVT method fails very often for the latter (around 95% of the time). This
is mostly due to the convergence of the GPD. With a tail like that of a normal, the MLE
is likely to produce a negative estimate of the parameter ⇠. As discussed in Section 3.2.2,
for these values of ⇠, the convergence is likely to fail. One way to deal with this problem is
to increase the threshold (see Table 7), but this reduces the success rates of the lognormal.
Nevertheless, this is an isolated issue, as it is not the case for heavier tails. Finally, when
the method does not fail, it performs well, both in terms of CI length and of proportion of
CIs containing the true quantile.

Because of the longer tail, the lognormal distribution provides good results with the
EVT method. The success rate is over 90%. For very extreme quantiles such as VaR0.99, the
empirical method gives smaller CIs but isn’t as accurate as the EVT method.

Therefore, for this class of distributions, we would suggest the use of the EVT method (if
it works) over the OS method. The conclusion is not as obvious for heavy-tailed distributions,
which we examine in the final two sections.

4.3.2 Distributions in MDA(H0.5)

In this section we consider the Pareto (↵ = 2, x
m

= 1) and the Student’s-t distribution with
2 degrees of freedom.

For small samples (n = 100), the EVT method is more accurate. Even though the OS
method produces smaller CIs, the precision is unsatisfactory. Indeed, less than 62% of CIs
contain the true quantile. We recommend to use the former, especially for high quantiles
such as ↵ = 0.99. For these quantiles the OS method should not be considered, regardless
of the sample size, unless the GPD does not converge. The success rate of the EVT is less
than 10% for n = 100 and ↵ = 0.99 (see Table 9)

However, for ↵ = 0.95, 0.975 and n = 500, 1000, no method stands out as the results are
very close. The empirical method seems to produce more accurate CIs whereas the EVT
method generates smaller CIs, but both methods perform well overall. Therefore, the choice
should be made according to the particular analysis one is trying to achieve.
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4.3.3 Distributions in MDA(H1)

Finally, we investigate the Pareto (↵ = 1, x
m

= 1) and the Cauchy distributions. These have
heavier tails than the previous distributions, which explains why we obtain such large CIs.
With a low index, we need a large sample to obtain precise results, which is confirmed by
the study.

Indeed, for large samples (n = 500 and n = 1000), we obtain very satisfactory results
with both methods. A similar trend to the previous distributions can be observed, that is,
the EVT method gets more accurate as ↵ increases and conversely for the OS method. But
the latter produces larger CIs, apart for some rare occurrences (↵ = 0.99, n = 500, P = 0.90
and 0.95, for the Pareto distribution).

For small samples, notice that the success rate of the GPD is quite low (see Table 11)
except for ↵ = 0.95. Thus, the results obtained by that method are not relevant. For the
Pareto distribution, the CIs obtained by the OS method are substantial (more than 10 times
the size we obtain with a larger sample), it does not seem pertinent to use them. For the
Cauchy however, we recommend to use the empirical method.

4.4 Concluding notes

We have conducted this experiment for di↵erent classes of dfs and various values of the
variables. Both methods can be improved on an individual basis. The choice of threshold
plays an important role for the EVT method. A di↵erent definition of the sample quantile
might yield better results for the empirical method. Furthermore, we can see in Table 12
that we obtain better results when using a bisection algorithm in the case where n↵ is not
an integer. Note that when n↵ is an integer, the results are the same. Therefore, an “expert
judgement” is needed to evaluate the relevance of the results.
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Method GPD OS

Df n P | ↵ 0.950 0.975 0.990 0.950 0.975 0.990

Lognormal 100 0.90 0.833 0.837 0.723 1 1 1
0.95 0.833 0.826 0.539 1 1 1
0.99 0.830 0.621 0.108 1 1 1

500 0.90 0.998 0.999 0.993 1 1 1
0.95 0.998 0.999 0.993 1 1 1
0.99 0.998 0.999 0.993 1 1 1

1000 0.90 1 1 0.999 1 1 1
0.95 1 1 0.999 1 1 1
0.99 1 1 0.999 1 1 1

Normal 100 0.90 0.128 0.148 0.138 1 1 1
0.95 0.128 0.148 0.136 1 1 1
0.99 0.128 0.146 0.091 1 1 1

500 0.90 0.023 0.040 0.053 1 1 1
0.95 0.023 0.040 0.053 1 1 1
0.99 0.023 0.040 0.053 1 1 1

1000 0.90 0.003 0.007 0.013 1 1 1
0.95 0.003 0.007 0.013 1 1 1
0.99 0.003 0.007 0.013 1 1 1

Table 6: Success rates for distributions in MDA(H0) with N
u

= n

4 . Rates below 0.60 are
shown in orange; rates below 0.20 are shown in red.
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Method GPD OS

Df n P | ↵ 0.950 0.975 0.990 0.950 0.975 0.990

Lognormal 100 0.90 0.437 0.540 0.368 1 1 1
0.95 0.448 0.515 0.174 1 1 1
0.99 0.354 0.260 0.001 1 1 1

500 0.90 0.939 0.917 0.947 1 1 1
0.95 0.939 0.917 0.947 1 1 1
0.99 0.939 0.917 0.947 1 1 1

1000 0.90 0.992 0.983 0.992 1 1 1
0.95 0.992 0.983 0.992 1 1 1
0.99 0.992 0.983 0.992 1 1 1

Normal 100 0.90 0.119 0.179 0.153 1 1 1
0.95 0.129 0.178 0.116 1 1 1
0.99 0.072 0.143 0.006 1 1 1

500 0.90 0.126 0.226 0.114 1 1 1
0.95 0.126 0.226 0.114 1 1 1
0.99 0.126 0.226 0.114 1 1 1

1000 0.90 0.066 0.200 0.062 1 1 1
0.95 0.066 0.200 0.062 1 1 1
0.99 0.066 0.200 0.062 1 1 1

Table 7: Success rates for distributions in MDA(H0) with N
u

= n

10 . Rates below 0.60 are
shown in orange; rates below 0.20 are shown in red.
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Method GPD OS

Df Sample size P | ↵ 0.950 0.975 0.990 0.950 0.975 0.990

Pareto 100 0.90 0.923 0.925 0.703 1 1 1
(↵ = 2, xm = 1) 0.95 0.923 0.871 0.438 1 1 1

0.99 0.902 0.505 0.081 1 1 1

500 0.90 1 1 1 1 1 1
0.95 1 1 1 1 1 1
0.99 1 1 1 1 1 1

1000 0.90 1 1 1 1 1 1
0.95 1 1 1 1 1 1
0.99 1 1 1 1 1 1

Student’s t 100 0.90 0.860 0.827 0.685 1 1 1
(⌫ = 2) 0.95 0.860 0.793 0.452 1 1 1

0.99 0.841 0.481 0.046 1 1 1

500 0.90 0.999 0.997 0.997 1 1 1
0.95 0.999 0.997 0.997 1 1 1
0.99 0.999 0.997 0.997 1 1 1

1000 0.90 1 1 1 1 1 1
0.95 1 1 1 1 1 1
0.99 1 1 1 1 1 1

Table 9: Success rates for distributions in MDA(H0.5). Rates below 0.60 are shown in orange;
rates below 0.20 are shown in red.
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Method GPD OS

Df Sample size P | ↵ 0.950 0.975 0.990 0.950 0.975 0.990

Pareto 100 0.90 0.980 0.707 0.211 1 1 1
(↵ = 1, xm = 1) 0.95 0.919 0.412 0.073 1 1 1

0.99 0.503 0.079 0.003 1 1 1

500 0.90 1 1 1 1 1 1
0.95 1 1 1 1 1 1
0.99 1 1 0.860 1 1 1

1000 0.90 1 1 1 1 1 1
0.95 1 1 1 1 1 1
0.99 1 1 1 1 1 1

Student’s t 100 0.90 0.972 0.760 0.265 1 1 1
(⌫ = 2) 0.95 0.921 0.471 0.099 1 1 1

0.99 0.540 0.101 0.003 1 1 1

500 0.90 1 1 1 1 1 1
0.95 1 1 1 1 1 1
0.99 1 1 0.926 1 1 1

1000 0.90 1 1 1 1 1 1
0.95 1 1 1 1 1 1
0.99 1 1 1 1 1 1

Table 11: Success rates for distributions in MDA(H1). Rates below 0.60 are shown in orange;
rates below 0.20 are shown in red.

36



Df Sample size P | ↵ 0.950 0.975 0.990

Lognormal 100 0.90 3.094 80.74% 4.197 64.82% 6.710 54.95%
0.95 3.693 85.76% 4.919 70.10% 7.588 58.20%
0.99 5.022 93.59% 7.001 84.13% 8.832 61.58%

500 0.90 1.554 88.01% 2.550 83.96% 4.838 80.62%
0.95 1.859 93.18% 3.053 89.68% 5.774 85.91%
0.99 2.463 97.97% 4.059 95.97% 7.821 93.73%

1000 0.90 1.120 88.70% 1.917 87.90% 3.673 84.61%
0.95 1.338 94.01% 2.289 93.02% 4.415 90.46%
0.99 1.764 98.53% 3.031 97.95% 5.893 96.25%

Normal 100 0.90 0.612 80.39% 0.669 64.07% 0.749 53.25%
0.95 0.725 85.64% 0.784 69.98% 0.860 56.89%
0.99 0.951 93.44% 1.036 82.93% 1.041 61.23%

500 0.90 0.301 88.00% 0.368 83.91% 0.481 80.20%
0.95 0.360 93.18% 0.438 89.64% 0.570 85.78%
0.99 0.473 97.97% 0.575 95.95% 0.749 93.58%

1000 0.90 0.217 88.70% 0.271 87.89% 0.362 84.57%
0.95 0.258 94.01% 0.323 93.02% 0.432 90.38%
0.99 0.339 98.53% 0.424 97.95% 0.568 96.24%

Table 12: Simulation results of the OS method for distributions in MDA(H0) using a bisection
algorithm to find percentile points of G

m

.
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5 Conclusion

The estimation of VaR has many applications in finance and insurance. A point estimate
might be enough, but if we wish to take into account the uncertainty in the estimation,
we can construct confidence intervals. Several methods can achieve this and as we have
discussed in the simulation study, there is no method that stands out over all criteria.

In sections 2 and 3, we established the necessary theory for the construction of confidence
intervals using the theory of order statistics and extreme value theory, respectively. The
empirical method produces CIs based on the df of a single OS or a convex linear combination
between two OS. We then defined the generalised Pareto distribution, which is the natural
distribution for excesses over a high threshold. The parameters are computed by the ML
approach, which gives us a formula for a high quantile. The last step consists in inverting
the likelihood ratio test to obtain a CI for the estimator of a high VaR.

Finally, in Section 4, we presented the results of the simulation study and provided
the scope in which each method performs better. The experiment distinguished medium
and heavy-tailed distributions. The empirical method is straightforward, fast, and easy to
implement. For very high quantiles, however, the results are unsatisfactory, as mentioned in
the introduction. We could improve upon it by using an alternative definition of the sample
quantile as described in Section 2.2. The EVT method works well for certain distribution
functions, but the GPD does not always converge, especially for the normal distribution. For
very high quantiles (↵ � 0.99), the EVT method seems to outperform the empirical one. In
the context of insurance, this is a convenient choice, since under Solvency II, one needs to
compute VaR0.995.

The main challenge with the POT method is the choice of a suitable threshold. For an
individual study, we have given a graphical method using the Mean-Excess plot. Clearly
this is not possible in this experiment with 10,000 replications. Consequently, we can expect
improved results when the threshold is chosen manually for a specific data set.

In our tail approximation (Equation (5)), we have taken the ML approach to estimate
the parameters ⇠ and �. Yet, we used an empirical estimator to evaluate the probability
of exceeding the threshold. McNeil, Frey and Embrechts [10] state that “it is quite easy
to give confidence intervals that take into account the uncertainty in ⇠̂ and �̂, but neglect
the uncertainty in N

u

/n as an estimator of F̄ (u).” We therefore assume our sample is
large enough to estimate F̄ (u) accurately. Advancements can be made on this estimator by
allowing for this uncertainty. Further research could focus on measuring how far the true
quantile is from the closest bound of the CI when the latter does not contain the true value.

The EVT method provides a good estimation of the uncertainty in risk measures evalua-
tion. For small samples, we might obtain larger CIs, but they are more likely to contain the
true quantile. Furthermore, distributions such as the lognormal, the Pareto or the Student’s-t
distributions are popular choices for loss distributions.
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A Modes of convergence

The following definitions can be found in Durrett [3]. Let X,X1, X2, ..., be random variables.
i) X

n

converges to X almost surely, denoted X
n

! X a.s., if

P ( lim
n!1

X
n

= X) = 1.

ii) X
n

converges to X in mean Lr, r � 1, denoted X
n

L

r

�! X, if

E[|Xr

n

|] < 1, 8n and lim
n!1

E[|X
n

�X|r] = 0.

iii) X
n

converges to X in probability, denoted X
n

P�! X, if

lim
n!1

P (|X
n

�X| > ✏) = 0, 8✏ > 0.

iv) X
n

converges to X in distribution, denoted X
n

d�! X, if

lim
n!1

F
n

(x) = F (x), 8F -continuity points x,

where F
n

and F are the distribution functions of X
n

and X respectively.

B Probability distributions

B.1 Exponential

The exponential distribution F
�

has probability density function

f
�

(x) = �x��x,

where � > 0 is the rate and x > 0.

B.2 Beta

The beta distribution F
↵,�

has probability density function

f
↵,�

(x) =
1

B(↵, �)
x↵�1(1� x)��1,

with x 2 [0, 1],↵, � > 0, and B is the beta function

B(x, y) =

Z 1

0

tx�1(1� t)y�1dt.
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B.3 Student’s-t

The Student’s-t distribution F
⌫

has probability density function

f
⌫

(x) /
⇣
1 +

x2

⌫

⌘� ⌫+1
2
,

where ⌫ is known as the degrees of freedom.

B.4 Pareto

The Pareto distribution F
↵,xm has cumulative distribution function

F
↵,xm = 1�

⇣x
m

x

⌘
↵

,

where x
m

,↵ > 0 are the shape and scale parameters, respectively, and x � x
m

.

B.5 Pareto type II

The Pareto type II distribution F
↵,xm,µ

(x) has cumulative distribution function

F
↵,xm,µ

(x) = 1�
⇣
1 +

x� µ

x
m

⌘�↵
,

where x > µ, µ 2 R.

B.6 Lognormal

If the rv X is lognormally distributed, then Y = ln(X) has a normal distribution. Just like
for the normal distribution, the parameters are the location µ 2 R and the scale � > 0.

C R functions

C.1 Distribution of order statistics

plot ( t rue . t , q50 . t , type=”n” , yl im=range ( q975 . t , q025 . t ) , x lab=”True quan t i l e ” , y lab=”D i s t r i bu t i on o f e s t imator ” )
axis (3 , at=qst ( qs , df=nu , scale=TRUE) , labels=qs )
abline ( v=qst ( qs , df=nu , scale=TRUE) , col=” l i g h t g r a y ” )
l ines ( t rue . t , t rue . t )
l ines ( t rue . t , q50 . t , col=4)
l ines ( t rue . t , q10 . t , col=3)
l ines ( t rue . t , q90 . t , col=3)
l ines ( t rue . t , q025 . t , col=2)
l ines ( t rue . t , q975 . t , col=2)
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plot ( t rue . t , q50 . t�t rue . t , type=”n” , yl im=range ( q975 . t�t rue . t , q025 . t�t rue . t ) , x lab=”True quan t i l e ” , y lab=”Error ” )
axis (3 , at=qst ( qs , df=nu , scale=TRUE) , labels=qs )
abline ( v=qst ( qs , df=nu , scale=TRUE) , col=” l i g h t g r a y ” )
abline (h=0)
l ines ( t rue . t , q50 . t�t rue . t , col=4)
l ines ( t rue . t , q10 . t�t rue . t , col=3)
l ines ( t rue . t , q90 . t�t rue . t , col=3)
l ines ( t rue . t , q025 . t�t rue . t , col=2)
l ines ( t rue . t , q975 . t�t rue . t , col=2)

C.2 Bisection algorithm

## Bisec t i on Algorithm re turn ing a p e r c e n t i l e po in t o f b inomia l
BiAlgo <� function (n , p e r c en t i l e , alpha ){
# n i s the sample s i z e , p e r c en t i l e , a lpha i s the q u an t i l e
a=0
b=1
ga=�1
gb=+1
r=n⇤alpha
eps=.Machine$double . eps

while (b�a > eps⇤b){
x=(a+b)/2
gx = 1�pe r c en t i l e�pbinom( r�1,n , x )
i f ( sign ( gx)==sign ( ga ) ){

a=x
ga = gx

}
else {

b=x
gb=gx

}
}
return ( x )

}

C.3 Confidence intervals based on order statistics

## Per c en t i l e po in t s o f a be ta d i s t r i b u t i o n
beta .PP <� function (x , p ,P){

# x i s the sample ; p i s the q u an t i l e ; P i s the con f idence l e v e l
n <� length ( x )
m <� cei l ing (n⇤p)
return (c (qbeta((1�P)/2 ,m, n�m+1) ,qbeta((1+P)/2 ,m, n�m+1)))
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}

## PE and CI o f a q u an t i l e us ing one OS
q .OS <� function (x , p ,P){

# x i s the sample ; p i s the q u an t i l e ; P i s the con f idence l e v e l
n <� length ( x )
m <� cei l ing (n⇤p)
pp <� beta .PP(x , p ,P)
CI <� as .numeric (c ( quantile (x , pp [ 1 ] ) , quantile (x , pp [ 2 ] ) ) )
return (c (CI [ 1 ] , sort ( x ) [m] , CI [ 2 ] ) )

}

C.4 Confidence intervals based on extreme value theory

ML.H0 .GPD <� function (xVaR, data , u , k , x i ){
p a r l o g l i k <� function ( xi , xVaR, u , k , data ){

beta <� x i ⇤ (xVaR�u)/ ( kˆ�xi�1)
i f (beta<=0)

out <� 1e+19
else

out <� �sum(dGPD(data�u , xi , beta , log=TRUE) )
out

}
op t im f i t <� optim( xi , fn=pa r l o g l i k , xVaR, u , k , data , method=”BFGS” )
x i . e s t <� op t im f i t$par
l lmax <� �p a r l o g l i k ( x i . est , xVaR, u , k , data )
l i s t ( x i=x i . est ,VaR=xVaR, l lmax=llmax , conv=opt im f i t$convergence )

}

roo t func <� function (xVaR, exceedances , u , k , xi , g l oba l .max,P){
ML.H0 .GPD(xVaR, exceedances , u , k , x i )$ l lmax � g l oba l .max
+ qchisq(1�P, df=1)/2

}

q .GPD <� function (x ,VaR, exceedances , u , k , xi , g l oba l .max,P){
lower <� uniroot ( f=root func , i n t e r v a l=c (VaR/4 ,VaR) ,

exceedances , u , k , xi , g l oba l .max,P)
VaR. lower <� lower$ root
upper <� uniroot ( f=root func , i n t e r v a l=c (VaR,4⇤VaR) ,

exceedances , u , k , xi , g l oba l .max,P)
VaR.upper <� upper$ root
return (c (VaR. lower ,VaR,VaR.upper ) )

}

C.5 Simulation study
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## Var iab l e s which determine the s imu la t i on s tudy
va rL i s t <�

v a r l i s t (
# Rep l i c a t i on s
n . sim = l i s t ( type=”N” , expr=quote (N) , va lue =10000) ,
# Sample s i z e
n = l i s t ( type=” gr id ” , va lue = c (100 ,500 ,1000) ) ,
# Confidence l e v e l s
P = l i s t ( type=” gr id ” , va lue = c ( 0 . 9 0 , 0 . 9 5 , 0 . 9 9 ) ) ,
# Quant i l e l e v e l s
alpha = l i s t ( type=” gr id ” , va lue = c ( 0 . 9 5 , 0 . 9 7 5 , 0 . 9 9 ) ) ,
# Method
method = l i s t ( type=” gr id ” , expr=quote (Method ) , va lue=c ( ”GPD” , ”OS” ) ) ,
# Di s t r i b u t i o n
Df = l i s t ( type=” gr id ” , expr=quote (Df ) , va lue=c ( ”Pareto11 ” , ” t1 ” ,

”Pareto21 ” , ” t2 ” ,
”Lognormal” , ”Normal” ) ) )

doOne <� function (Df , n , alpha ,P, method ){
data <� switch (Df ,

Normal = rnorm(n ) ,
Lognormal = rlnorm (n ) ,
Pareto21 = rpare to (n , 1 , 2 ) ,
Pareto11 = rpare to (n , 1 , 1 ) ,
t1 = rt (n , df=1) ,
t2 = rt (n , df=2))

trueq <� switch (Df ,
Normal = qnorm( alpha ) ,
Lognormal = qlnorm( alpha ) ,
Pareto21 = qpareto ( alpha , 1 , 2 ) ,
Pareto11 = qpareto ( alpha , 1 , 1 ) ,
t1 = qt ( alpha , df=1) ,
t2 = qt ( alpha , df=2))

#method . func <� e va l ( parse ( t e x t=method ))
i f (method==”GPD” ){
Nu <� n/4 #Number o f exceendances
u <� f i n d th r e s ho l d (data ,Nu) #Threshold
mod1 <� f i t .GPD(data , t h r e sho ld=u) #GPD f i t
g l oba l .max <� mod1$ l l .max
x i <� as .numeric (mod1$par . e s t s [ 1 ] )
beta <� as .numeric (mod1$par . e s t s [ 2 ] )
k <� (1�alpha )/ (Nu/n)
VaR <� u+ beta⇤( kˆ(�x i )�1)/x i
exceedances <� mod1$data
CI <� q .GPD(data ,VaR, exceedances , u , k , xi , g l oba l .max,1�P)
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}
else {CI <� q .OS(data , alpha ,P)}
inCI <� as .numeric ( ( trueq>CI [ 1 ] )&( trueq<CI [ 3 ] ) )
lengthCI <� CI [3]�CI [ 1 ]
return (c ( lengthCI , inCI ) )

}

D Profile likelihood method and the likelihood ratio

test

Let X = (X1, ..., Xn

) be a random vector with joint pdf fX(x;✓) with ✓ = (✓1, ..., ✓p).
For realisations x, we can use the maximum likelihood method to estimate an unknown
parameter ✓.

The likelihood function for ✓ is

L(✓;X) = fX(X;✓).

The maximum likelihood estimator (MLE), ✓
MLE

, is the value of ✓ which maximises the
likelihood function.

In practice, some elements of ✓ might be more relevant to the study in question than
others. Therefore we divide ✓ into ( ,�). We say that  is the vector of parameters of
interest and that � is the vector of nuisance parameters. For instance, we might want to
construct a confidence interval for  . Even though the value of � is irrelevant, we cannot
exclude it from the model. But by profiling out the parameter �, one can avoid constructing
a confidence interval for � too.

Two models are said to be nested if one model reduces to the other when certain param-
eter values are constrained. We use the likelihood ratio test (LRT) to compare two nested
models.

Assume we want to test the hypothesis

H0 : ✓ 2 ⇥0 v H1 : ✓ 2 ⇥c

0,

with ⇥0 ⇢ ⇥. The Likelihood Ratio Test statistic is

⇤(X) =
sup

✓2⇥0
L(✓;X)

sup
✓2⇥ L(✓;X)

.

Under the null hypothesis, �2 ln⇤(X) ⇠ �2
⌫

, for n ! 1, where the degrees of freedom
are given by ⌫ = #{free parameters specified by ⇥} �#{free parameters specified by ⇥0}.
Suppose ✓ = ( ,�) and we want to test H0 :  =  0 against H1 :  6=  0. Then, the
likelihood ratio test statistic satisfies

�2 ln⇤(X) = �2
⇣
lnL( 0, �̂0;X)� lnL( ̂, �̂;X)

⌘
⇠ �2

q

where �̂0 is the MLE of � under H0, and  ̂, �̂ are the unconstrained MLEs. We would
reject H0 if

�2 ln⇤(X) > c
q,1�↵,

44



where c
q,1�↵ is the (1� ↵)-quantile of the �2

q

distribution.
Now, suppose we want to construct a confidence interval for  (for instance the parameter

⇠ of a GPD G
⇠,�

). We need to invert the likelihood ratio test, and therefore, a 100(1� ↵)%
confidence interval is given by the values for which H0 is not rejected, i.e.

{ 0 |� 2 ln⇤(X) � c
q,1�↵},

() { 0 | lnL( 0, �̂0;X) � lnL( ̂, �̂;X)� 0.5c
q,1�↵}.

In the case of the GPD, we have q = 1 and we test H0 : ⇠ = ⇠0 against H1 : ⇠ 6= ⇠0. A
95%CI is therefore given by

{⇠0 : lnL(⇠0, �̂0;x) � lnL(⇠̂, �̂,x)� 0.5 c1,0.95| {z }
=3.84

}. (6)

The curve (⇠0, lnL(⇠0, �̂0;x) is referred to as the profile log-likelihood curve.
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