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Findings of industry mortality experience studies are used by (re)insurers and regulators 
as the basis for developing liability expectations, reserve guidelines, and solvency capital 
requirements. In this paper, we introduce a logistic regression based modeling approach 
for analyzing the US insured mortality experience, including at advanced ages where 
less credible experience data are available. As a validation for applications, we create 
industry experience tables based on the model-estimated mortality and compare them 
to standard industry experience tables produced by the Society of Actuaries (SOA).  
 
Our conclusion is that a properly designed logistic modeling approach can enhance 
industry experience studies in: a) testing mortality drivers’ statistical significance 
in explaining mortality variations; b) estimating normalized mortality slopes and 
differentials such as how mortality varies by duration or between underwriting classes 
while product and age distributions are controlled; and c) addressing analytical 
challenges such as extrapolating for ultimate mortality, smoothing between select 
and ultimate estimations, and constructing multi-dimensional experience tables. 

Abstract
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1. Introduction 

There are three equally important aspects in industry mortality 
studies: 

a)	 	Mortality trend: how mortality improved or will improve 
by time 

b)	 	Mortality slope: how mortality increases by age or dura-
tion 

c)	 	Mortality differential: how mortality, mortality trend, and/
or mortality slope vary between insured segments such as 
males vs. females or preferred class vs. residual standard 
class

a) and b) are related but not duplicative. c) needs to be stud-
ied at more granular levels. Data availability is one of the key 
determining factors of what and how studies can be done. 

Due to insufficient insured experience data collection by time, 
insured mortality trends are often approximated based on 
general population’s trend studies that take advantage of the 
long term general population experience data collection. For 
example, Lee-Carter (1992) introduced a twin-model method 
for studying general population mortality: one model for fit-
ting the population’s past experiences and the other for ex-
trapolating future expectations. Eilers and Marx (1996) pro-
posed the use of p-spline regression for fitting empirical data 
and smoothing the fit. Currie, Durban, and Eilers (2004) ap-
plied the p-spline concept to projecting the U.K. insured lives 
experience. Both Lee-Carter and Currie’s studies formed the 
foundation of the insured mortality stochastic estimation tool 
developed by the U.K.’s Continuous Mortality Investigation 
Bureau (e.g., CMI 2005). Similarly, Hardy, Li, and Tan (2006) 
employed both Lee-Carte models and Currie’s p-spline to fit 
and to project Canadian general population mortality and 
then calibrated the learning to estimate Canadian insured 
mortality improvement. Their study provided supporting evi-
dence for changes in the Standards of Practice for the valua-
tion of insurance and annuity business in Canada (Canadian 
Institute of Actuaries 2010). 

Also due to scarce death claims at advanced ages and under-
writing wear-off in high policy durations (mortality becomes 
more similar between the insured and uninsured), significant 
amount of advanced age mortality research is shared by 
and applied to both insured and general populations. Since 
the introduction of Gompertz Law of Mortality (1825), the 
effort of modeling human mortality trajectory by age has 
only accelerated. Thatcher (1999) provided an excellent de-
scription and comparison of four mortality models by age.  

With some simplifications in reducing number of parameters 
and unifications of using force of mortality as the dependent 
variable, the four models are: 

(1.1) Gompertz(1825):
				     
(1.2) Weibull(1951): 
		
(1.3) Heligman and Pollard(1980):
 
(1.4) Kannisto(1992): 			    

Of the four models, only the Kannisto model assumes that 
force of mortality has a finite asymptote. Thatcher’s con-
clusion was: “when these four models are fitted to actual 
(general population) data, they are all relatively close to the 
data at ages where most of the deaths are concentrated, and 
hence relatively close to each other.” It is not surprising that 
he also confirmed with various population data (Thatcher et 
al., 1998, Thatcher 1999) that the Kannisto model fits and 
approximates old age mortality the best.

Insured mortality differential studies have to stand on their 
own ground because general population data are simply not 
suitable for analyzing the disparity of insured mortality. In 
the US, insurers’ risk selection activities (e.g., underwriting, 
pricing, marketing, product development) and insureds’ anti-
selection behaviors (e.g., policy choice, lapsesation, conver-
sion, etc.) formed numerous “insured cohorts”, or segments, 
within the insured population. These segments can be identi-
fied by variables, such as underwriting class, product type, 
policy size, etc., that are not captured in general population 
data. Mortality, trend, and slope do differ considerably among 
these segments. Companies thrive or fail by targeting some 
or all of these insured segments based on their knowledge 
and specialties.

One way to analyze selection impact and mortality dispar-
ity in conventional insured experience studies is to sepa-
rately analyze so called ‘select mortality’ and ‘ultimate 
mortality’. Select mortality occurs in earlier policy durations 
when the industry’s risk selection activities are most effec-
tive. Ultimate mortality reflects later duration experience 
or expectation when the selection effectiveness has worn 
off and the mortality of insured and uninsured become 
closer. Oftentimes, an additional ‘graduation’ act is also 
taken to bridge the gap between the estimated select and 
ultimate mortality, depending on how the two are studied.  

 



5

SCOR inFORM - December 2013

Table 2.1: Summary of the Insured Data

2.1 	 The q in the table is defined as the number of deaths divided by exposure. In this paper, mortality, mortality rate, 
death probability, and death rate all refer to the same q, unless specified otherwise.

2.2 	 The probability of death q and the odds of death q / (1 – q) are approximately equal for nearly all age groups because 
1 – q ≈ 1. This implies that many of the odds ratio based interpretations of the logistic q model can be reasonably 
interpreted in terms of probability ratios or mortality differentials. (Appendix A)

Total Data Selected Data

Sex
Attained 

Age
Claim 
Count

Exposed 
Count

q q/(1-q)
Claim 
Count

Exposed 
Count

q q/(1-q)

Female

00-22 1,371 5,919,604 0.00023 0.00023 286 1,758,271 0.00016 0.00016

23-27 1,096 3,194,034 0.00034 0.00034 291 1,425,257 0.00020 0.00020

28-32 1926 5,493,708 0.00035 0.00035 598 3,133,315 0.00019 0.00019

33-37 3,442 8,419,013 0.00041 0.00041 1,240 5,186,770 0.00024 0.00024

38-42 6,636 10,403,257 0.00064 0.00064 2,467 6,266,131 0.00039 0.00039

43-47 11,571 11,203,952 0.00103 0.00103 3,888 6,323,438 0.00061 0.00062

48-52 17,935 10,672,817 0.00168 0.00168 5,206 5,405,578 0.00096 0.00096

53-57 24,972 9,073,003 0.00275 0.00276 5,947 3,975,759 0.00150 0.00150

58-62 32,389 6,817,009 0.00475 0.00477 5,541 2,408,077 0.00230 0.00231

63-67 39,066 4,673,083 0.00836 0.00843 4,668 1,204,946 0.00387 0.00389

68-72 50,894 3,551,700 0.01433 0.01454 4,099 642,219 0.00638 0.00642

73-77 74,868 3,116,261 0.02402 0.02462 4,552 413,902 0.01100 0.01112

78-high 299,642 4,887,952 0.06130 0.06531 14,515 482,748 0.03007 0.03100

Male

00-22 3525 6,303,991 0.00056 0.00056 768 1,827,197 0.00042 0.00042

23-27 3,105 3,304,725 0.00094 0.00094 767 1,428,309 0.00054 0.00054

28-32 4,175 5,964,346 0.00070 0.00070 1,354 3,463,059 0.00039 0.00039

33-37 7,204 10,166,729 0.00071 0.00071 2,712 6,587,593 0.00041 0.00041

38-42 13,114 13,884,778 0.00094 0.00095 5,144 8,933,857 0.00058 0.00058

43-47 22,948 16,060,846 0.00143 0.00143 8,353 9,912,149 0.00084 0.00084

48-52 36,977 16,212,737 0.00228 0.00229 12,003 9,305,648 0.00129 0.00129

53-57 54,632 14,819,343 0.00369 0.00370 14,814 7,668,238 0.00193 0.00194

58-62 73,629 12,072,373 0.00610 0.00614 16,423 5,396,172 0.00304 0.00305

63-67 89,983 8,450,035 0.01065 0.01076 14,849 3,033,903 0.00489 0.00492

68-72 109,391 5,993,105 0.01825 0.01859 12,866 1,584,710 0.00812 0.00819

73-77 146,537 4,640,211 0.03158 0.03261 11,648 840,363 0.01386 0.01406

78-high 490,630 6,539,738 0.07502 0.08111 19,897 586,764 0.03391 0.03510
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There are more challenges in industry mortality experience 
studies:

•	 	Though the amount of insured experience data can be 
large, the data usually have uneven claim credibility and 
collection consistency 

•	 	The ‘separately studying’ approach can quickly run into 
the data credibility ‘ceiling’, especially for mortality differ-
entials by multiple variables

•	 	It is difficult to control or normalize by multiple explana-
tory variables

In this paper, we modify the Kannisto mode (1.4) for model-
ing insured mortality q rather than force of mortality µ and 
expand the model to include multiple explanatory variables 
rather than just age. The adaption of a multiple variable mod-
eling approach, the availability of large amount of policyhold-
ers’ data, and the use of modern computing technology en-
able us to 

•	 	Train the model with model fit
•	 	Project ultimate and advanced age mortality with model 

extrapolation
•	 	Bridge between select and ultimate mortality with logistic 

link functions
•	 	Derive normalized mortality slopes and differentials be-

tween policy segments with model coefficients
•	 	Verify reliability of the study with model fit statistics
•	 	Construct multi-dimensional industry experience tables by 

using the model as a predictive model

Combining our mortality experience modeling method and 
the mortality trend study approaches such as the ones men-
tioned earlier can provide more complete solutions to serve 
the industry’s mortality projection needs. 

The rest of the paper is organized as follows: Section 2 sum-
marizes the data sources for our study; Section 3 describes 

our logistic mortality models, their advantages, and modeled 
mortality slopes and differentials for an insured sub-popu-
lation; Section 4 reviews the issue of “death censorship by 
policy lapsation” a logistic regression based solution; Section 
5 discusses the limitations and possible enhancements of us-
ing logistic regression models for industry experience studies. 

2. The Data Sources

General population data: The Human Mortality Database 
(HMD) is our source for US general population mortality expe-
rience. At the time of our study, the database covers a period 
from 1933 to 2010. 

Insured population data: Unlike the general population, there 
is no centralized experience data repository for the US insured 
population. Insured experience data usually come from insur-
ers’ ad hoc contributions and cover relatively short exposure 
periods. The insured experience data used in this study were 
collected by a major consulting company and a global rein-
surer. The data file consists of experiences from over 60 insur-
ers with exposure from 2000 to 2009. A total of 174 million 
policy exposure years and 1.6 million death claims are avail-
able for study. 

We do not expect to represent insured mortality disparity well 
with just one model or one study. In this paper we select and 
study a relatively homogeneous subset of the insured popula-
tion with:

	 Policies issued since 1950 
	 Face amount >= $50,000

The filtered subset has more relevance to recent and near fu-
ture experience. 
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The following table summarizes the total and the selected 
data. 

The following two charts compare the five-year 2003-2007 
total mortality rates of the general and the insured experi-
ences based on the data we have. Again,
•	 	The general population data source is the Human Mortal-

ity Database 
•	 	The insured population data source is our total study data
•	 	The insured data are also split into two exclusive sub-

groups: permanent and term product subgroups
•	 	These mortality rates are derived without normalizing any 

distributions such as by duration, issue year, and under-
writing class. They will be later compared to normalized 
estimations from our models

3. Model Insured Mortality With  
Logistic q Models

Our logistic mortality model has a general form of 

 (3.1) or

(3.1a)   

where 

q:	 is probability of death in an exposure year, given a policy	
	 holder survived to the beginning of the year. 
xi: 	 are explanatory variables (e.g., age, sex, duration, prod-	
	 uct).
a: 	 is intercept, to be estimated with experience data and 
	 maximum likelihood method. 
b1:	 are coefficients of the explanatory variables, to be esti-	
	 mated with experience data and maximum likelihood 	
	 method (Appendix B). 

To distinguish from the logistic force of mortality model or lo-
gistic µ model (1.4) studied by Kannisto (1992) and Thatcher 
(1999), let us call our model (3.1) logistic q model, as they 
really are. According to Thatcher’s illustration, a simplified He-
ligman and Pollard model (1.3) model with only one explana-
tory variable ‘age’ is a special form of our logistic q model. 

We chose logistic q model for our study for several reason.
•	 	It models mortality q that are directly used in business  

operation and risk management
•	 	It is flexible to configure for estimating mortality levels, 

slopes, and differentials that are key metrics used in busi-
ness practices (see Attachment A)

•	 	It performs many other analytical functions such as nor-
malization, hypothesis test, risk scoring, experience table 
construction that are difficult to do with conventional ex-
perience study methods (Harrell 2001)

•	 	It can be built with widely available commercial software 
system such as SAS, SPSS, and R 

In addition to the dependent variable q, nine observable ex-
planatory variables are selected as potential independent vari-
ables for our model development:

Gender: male and female

Duration: as continuous variable

Issue age (last 
birth):

1 through 99 as continuous 
variable 

Smoker status: smoker, nonsmoker, unknown

Product: permanent, term

Underwriting 
class:

preferred, residual standard, 
aggregate (one class)

Exposure year: 2000 through 2009 as continuous 
variable

Underwriting era: 4 eras defined by issue year 
to reflect key underwriting 
evolutions such as smoker and 
preferred ratings

Face Category: $50-$99k, $100-499k, $500k+  
(inflation adjusted)

These variables are selected for study because they have least 
missing values and are the most frequently used for pricing 
decisions, underwriting adjustments, and marketing strate-
gies. 

Unlike in general population mortality studies, we chose issue 
age and policy duration instead of attained age and calen-
dar year to represent age and time, because the chosen pair 
better reflect insured characteristics and have direct links to 
pricing tables. 

Recall that our logistic q model has the general form of 

(3.1a)   

The right hand side of the model has three components: the 
intercept a, the main effect component that is the weighted 
sum of individual explanatory variables, and the interaction 
component that is the sum of products of two or more ex-
planatory variables. 
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When interaction terms are omitted from model (3.1) or 
(3.1a), 

(3.2)   
 

(3.2a)   

The model coefficients a and b1 can deliver estimations for 
mortality level, slope, ratios, depending on how the corre-
sponding variable is coded. Appendix A provides more details 
on this topic.

Adding the interaction component to a model has the po-
tential to improve model fit. It also adds complexity to inter-
preting the model coefficients. From our tests, we found that 
adding interaction term improves our model fit slightly. For 
simple interpretation, in this paper we only present sample 
model (3.2) without interactions.

For a better matched comparison with SOA studies, we split 
the selected study data into four subsets and fit each subset 
with its own model (3.2). The four subsets are male smokers, 
male non-smokers, female smokers, and female non-smok-
ers. This separate model design allows each model’s coeffi-
cients to be estimated independently from the other three 
models, which means that each of the four policy groups can 
have its own mortality level, slopes, and differential factors 
completely different from the other three groups. 

SAS software is used for our data preparation and model de-
velopment. In the following, we highlight learning from the 
interpretations of three SAS modeling process outputs. 

3.1 “Analysis of Effects” for mortality driver significance 
test: 

Of the nine explanatory variables, gender and smoker-status 
are used to split the study data and seven are left to be in-
cluded in the models. The following Table 3.1 summarizes 
the p-values of the significance tests of the seven explanatory 
variables on each of the four data sets. 

3.2 “Odds Ratio Estimate” for mortality slopes and dif-
ferentials

Of the nine studied explanatory variables, three (issue age, 
duration, and study year) are treated as continuous for three 
reasons: 1) to estimate smoothed relationships between q 
and these variables, 2) to allow the coefficients b of these 
variables to be transformed as mortality ‘slopes’, 3) to enable 
model based mortality extrapolation for older ages and later 
durations where sparse or no experience data are available. 
The modeled extrapolation can be used as ultimate mortality 
estimate. 

Table 3.1: Analysis of Effects

As expected, insured mortality varies statistically signifi-
cantly by duration, issue age, underwriting class, under-
writing era (Issue Year), and face band for all four sub-
groups. This confirms that these variables are among the 
most reliable mortality predictors.

Study Year, or exposure year, is included as a placeholder 
for mortality improvement in the ten-year period covered 
by the study data. The corresponding p-values from the 
four models imply that, after factoring out what have 
been explained by the other eight explanatory variables 
(including sex and smoking status), mortality variation ex-
plained by exposure year (or improvement) is statistically 
significant at a = 0.05 only for male smokers. This may im-
ply that more male smokers ceased smoking and resulted 
in more mortality improvement during the studied period.

Mortality differentiation by product (between permanent 
and term policyholders) is only statistically significant for 
female nonsmokers and male smokers, after controlling 
the other eight explanatory variables.

At 95% confidence level, all seven tested variables have 
statistical significance in explaining mortality variation in 
at least one of the four policy groups. We decide to in-
clude them in all four logistic q models. Vinsonhaler et al 
(2001) analyzed private pension plan experience data with 
similar logistic q models and only found one significant 
explanatory variable. Since mortality and longevity are the 
two sides of the same death related ‘risk coin’, our finding 
may suggest that more potential longevity risk drivers are 
yet to be confirmed.

Pr > ChiSq 
(p-value)

DF Female Male

Non-
Smoker

Smoker Non-
Smoker

Smoker

Duration 1 <.0001 <.0001 <.0001 <.0001

Issue Age 1 <.0001 <.0001 <.0001 <.0001

Study Year 1 0.1714 0.4597 0.1719 0.0017

Face Band 2 0.0051 0.004 <.0001 <.0001

Product 1 0.0157 0.9533 0.1363 <.0001

Issue Year 2 <.0001 0.0003 <.0001 <.0001

Class 2 <.0001 <.0001 <.0001 <.0001
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Table 3.2: Odds Ratio Estimates

Male Non Smoker Male Smoker Female Non Smoker Female Smoker

Effect Point 
Estimate

95% Wald 
Confidence Limits

Point 
Estimate

95% Wald 
Confidence Limits

Point 
Estimate

95% Wald 
Confidence Limits

Point 
Estimate

95% Wald 
Confidence Limits

Duration 1.1411 1.139 1.143 1.118 1.114 1.122 1.157 1.153 1.160 1.133 1.126 1.139

Issue Age 1.1011 1.100 1.102 1.093 1.092 1.094 1.105 1.104 1.105 1.098 1.096 1.099

Study Year 0.9982 0.995 1.001 1.009 1.003 1.014 0.997 0.992 1.001 1.004 0.994 1.013

Face 
100k-499k 
vs 500k+

1.1153 1.096 1.135 1.203 1.143 1.265 1.000 0.971 1.030 0.926 0.855 1.002

Face 
50k-99k vs

500k+
1.2843 1.258 1.311 1.407 1.335 1.484 1.037 1.003 1.071 0.988 0.911 1.072

UnderW 
Med vs

Non-med
0.9204 0.902 0.939 1.018 0.986 1.050 0.950 0.921 0.981 1.044 0.992 1.099

Product 
Perm vs

Term
1.0135 0.996 1.030 0.923 0.890 0.958 1.033 1.006 1.060 0.998 0.939 1.061

Class One-
Class

vs Standard
1.0426 1.027 1.057 0.930 0.893 0.967 1.038 1.014 1.062 0.938 0.881 0.999

Class 
Preferred

vs Standard
0.7306 0.719 0.741 0.748 0.717 0.781 0.740 0.722 0.758 0.767 0.715 0.823

The values of the other six explanatory variables are catego-
rized based on data credibility and recoded as binary variables 
as described in Appendix A. Therefore, mortality differentials 
are obtained for these variables. 

Table 3.2 below contains the odds ratio estimations (point Es-
timate columns) and their 95% confidence intervals. For the 
three continuous variables, the odds ratios estimate average 
mortality increase per unit increase in the corresponding vari-
ables. For the categorized variables, odds ratios represent the 
mortality ratios as defined in the “Effect” column. The 95% 
confidence intervals provide a means to verify the credibility 
of the corresponding slope or differential estimate. 

As described in Appendix A, odds(death)= q/(1-q) ≈ q because 
q is usually very small. Therefore, odds ratios can be viewed as 
mortality ratios in this table. Also explained in Appendix A is 
that logistic q model coefficients are estimated assuming the 
values of all other the explanatory variables are the same (nor-

malized). Therefore, they approximate normalized mortality 
differentials that may or may not appear to be consistent with 
results obtained from actual mortality studies. Let’s take male 
non-smokers model as an example and interpret some of the 
odds ratios:

1.	 	Duration and age slopes: If everything else were equal, 
on average mortality increases about 14% per duration 
and about 10% per issue age (Odds ratio=1.14 and 1.10 
respectively). The 10% per issue age increase is known to 
be also true to the general population (Thatcher 1999).

2.	 	If everything else were equal, there is a statistically insig-
nificant 0.2% annual mortality improvement (odds ra-
tio=0.998, the 95% confidence interval including 1). This 
finding may seem to be inconsistent with the common 
thought of higher mortality improvement. There are three 
possible explanations for this. First, due to the short time 
period and inconsistent data contributions from insurers, 
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in Section 2. Keep in mind that the descriptive measures 
in Charts 2.1 and 2.2 are obtained without controlling 
any other variables. Most of the differences displayed in 
Charts 2.1 and 2.2 may be caused by unmatched dura-
tion, issue year, and underwriting class distributions. Lo-
gistic mortality model provides an effective means to per-
form normalization. 

6.	 	If everything else were equal, the mortality of preferred 
class would be about 27% lower than that of the residual 
standard class while mortality of the aggregate class (one 
class plus unknown) is about 4% higher (odds ratio=0.73 
and 1.041). 

As mentioned before, normalized mortality information is 
essential in identifying underlying causes and avoiding mis-
counting of the mortality differentiation values when setting 
pricing factors. Findings of this analysis can also be useful in 
validating industry tables that are split from an aggregated 
table, like the 2001 CSO preferred class structure tables. 

3.3 “Model Fit” for overall reliability test

Compared to health or property & casualty insurance claims, 
mortality claims occur at a much lower frequency and with a 
much more stable pattern. Relatively scarce claim count and 
more consistent claim patterns led us to use all available data 
for model building, without setting aside data for over-fit veri-
fication. 

One commonly used model fit measuring statistic is c-statis-
tic, or area under the Receiver Operating Characteristic. Table 
3.3 below displays the overall c-statistics for the four models. 

the study data may have not captured the true insured 
mortality improvement. Second, in the past decade or 
so, US population mortality improvement has been level-
ing off as shown in the chart (data are from the Human 
Mortality Database; the age range reflects the most com-
monly insured ages). This may also be true to the insured 
population. Third, insurance underwriting has specifically 
targeted high death rate causes, such as cardiovascu-
lar diseases and smoking, and excluded or discouraged 
these risks being insured, which may have resulted in less 
benefits of insureds from the advancement in medicine, 
treatment, and public education. Fourth, unlike a univari-
ate analysis that attributes all the mortality variation to 
the single study variable, a large portion of the insured 
mortality improvement over the studied years has been 
attributed by the model to other variables such as (the 
introduction of) preferred classes, term products, and flat-
tened age or duration slopes that do explain much more 
mortality variations. 

3.	 	If everything else were equal, compared to large poli-
cies with face amount at least $500k, the polices sized 
between $50-99k and $100-499k would have 28% and 
12% higher mortality, respectively (odds ratio=1.28 and 
1.115). 

4.	 	If everything else were equal, mortality of policies that 
had medical exams at issue is about 8% lower than that 
of those without (odds ratio=0.92, significant). 

5.	 	If everything else were equal, permanent policy mortal-
ity would be about 1.3% higher than that of term poli-
cies (odds ratio=1.013, insignificant). This may appear 
inconsistent with what is shown in Charts 2.1 and 2.2 

Table 3.3: Model Fit

Association of Predicted Probabilities 
and Observed Responses

Female Male

Non-Smoker Smoker Non-Smoker Smoker

0.682 0.753 0.679 0.747

Vinsonhaler et al (2001) analyzed private pension plan experience data with similar but simpler logistic q model (only one 
explanatory variable). Their model had c-statistics in the range of 0.51 - 0.59 for most of the age groups. Though we are not 
measuring c-statistic by age group, the comparison still gives a sense that our four models have reasonably high c-statistics 
and fit the corresponding data sets well. 

An interesting observation is that the two non-smoker models have lower c-statistics than the two smoker models. If c-statistic 
is used as a predictability measure, the predictability by the same set of explanatory variables for smokers is about 10% higher 
than for non-smokers. This 10% gain in death predictability is likely from knowing smoking status. 
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4. Impact of Death Censorship By 
Policy Lapsation 

The adaption of a statistical model for insured mortality study 
brings a new issue that the conventional methods do not 
need to deal with: “death censorship by lapsation”. 
Think of a group of 100 current policyholders. If 10 died in the 
next 12 months but only 5 generated claims and the other 5 
died after termination of their coverage, the death rate of the 
group would 10% but claim rate would be only 5%. Insured 
mortality, or claim rate, is conditioned on policy inforce and 
only reflects claim risk. It is not equivalent to general popu-
lation mortality. When models like those in (1.1) – (1.4) or 
our logistic q model are used for estimating insured mortal-
ity, or claim rate, they do not recognize or discount policy 
lapse and tend to overestimate claim rate. This overestimation 
may not be a material issue for mortality differential study 
because differential is usually measured in aggregate and by 
ratios. If overestimation occurs to both the numerator and 
the denominator by a same factor, the ratio will cancel out 
the overestimation and remains relatively accurate. However, 
when the model is used for individual policy or policy group 
mortality extrapolation, such as in experience table develop-
ment, the overestimation can be significant. One solution to 
address the issue is to discount possible future policy lapse 
from contributing claim by the model default. 

Censoring Based Adjustment: Let’s reserve q for death rate 
and assume that each insured policy has three observable 
statuses (and corresponding probabilities) at the end of an 
exposure year: lapse (ql), claim (qc), and Inforce (qi) so that
 
ql+qc+ qi=100%

With the same explanatory variables xi as used in (3.2), we 
can use multinomial logistic model to model the three prob-
abilities as follows (see Chapter 8 of Hosmer et al. 2013 for 
more descriptions):

 

(4.1)  

Let us call this model logistic q_c model. The added lapse 
component q_l in (4.1) plays a role of estimating the to-be-
lapsed portion of exposures and excluding them from contrib-
uting deaths to claim rate q_c estimation. 

Asymptotically, by comparing Model (3.2) and Model (4.1), 
we have

(4.2)  

which implies that Model (4.2) asymptotically splits the total 
death rate into a claimed portion and a lapsed portion. As to 
the asymptote of the claimed portion, 

(4.3)
   

For projection purpose, al and ac are usually related to ini-
tial lapse and clam levels; ßl1 and ßc1 are related to lapse and 
claim slopes. A highly simplified interpretation of (4.3) is that, 
depending on if the death rate asymptotically increases faster 
than, slower than, or equal to the lapse rate of a portfolio, the 
portfolio’s claim rate will approaching 100%, 0%, or some-
thing in between.

It is understood that insured lapse rates are driven by many 
long and short term factors and do not necessarily have as a 
regular relationship with duration as claim rate or death rate 
has. The lapse component of model (4.1) may not have an as 
good fit to insured lapse experience. However, it is reasonable 
to view the lapse component of model (4.1) as an empirical 
data driven adjustment for the unknown portion of the non-
claim generating exposures. No matter which of the three 
asymptotes in (4.3) occurs, the overall effect of (4.1) on qc is 
to flatten the modeled qc slope by duration and to result in 
lower modeled qc than modeled q by Model (3.2), especially 
for advanced ages or later durations. Model (4.1) allows qc 
not to approach 100%, which is not achievable with model 
(1.1) – (1.4) mentioned in Section 1. 

Due to a data usage agreement issue, we do not have ac-
cess to the lapse information for this study and unable to 
demonstrate a real example of model (4.1) that is especially 
useful for estimating ultimate mortality. A follow up study is 
planned. 
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As an alternative, we did apply some industry expert opinions 
on insured ultimate mortality to create a simplified version of 
the model (4.1), used the model to produce model-estimated 
industry experience tables, and compared the tables with 
SOA’s 2001 and 2008 VBTs (Valuation Basic Table). The result 
is very positive. Because this alternative involves various sub-
jective assumptions, it is not presented in detail here.

5. Constraints and Possible 
Enhancements

Among others, three types of biases can occur in a insured 
mortality experience study: parameter bias, sampling bias, 
and data bias. A parameter bias is a systemic bias that reflects 
technical limitations of a study method (e.g., using a linear 
model to fit U shaped experience). A sampling bias happens 
when a substitute dataset is used to represent a target popu-
lation but the substitute does not have the same character-
istics of the target (e.g., using a small sample to represent a 
large population, or using past experience to approximate fu-
ture outcomes). A data bias is the discrepancy between data 
and actuality (e.g., misreported ages of deaths or unrecorded 
lapse). 

Some of logistic models’ parameter bias (e.g., a logistic q 
model overestimates claim rate qc) and sampling bias (e.g., 
uncontrolled company contributions causing inconsistent rep-
resentation of the industry) have been discussed in the previ-
ous sections. As in any other large database, insured experi-
ence data have plenty of data biases such as missing data and 
inconsistent data coding among companies that may com-
promise the quality of logistic modeling or other experience 
studies. The following are a few more constraints of using 
logistic regression for insured experience studies. 

1.	 	Logistic q or qc models may not fit infant and pre-marriage 
attained age experience well (parameter bias). Mortality is 
usually high in these ages due to causes such as accidents 
and suicides. As the excess causes level off with age, mor-
tality regresses back to a more normal pattern that fits 
better with logistic q function. The main strengths of lo-
gistic models are in aggregated mortality slope/differential 
estimation and model extrapolation. To improve fit, a pos-
sible solution could be to further customize logistic q or qc 
model with some spline or localized regression methods 
to fit the ages that have less regular mortality patterns.

2.	 	When scarce experience data are available such as at very 
old issue ages or later durations (data bias), logistic regres-
sion will be the primary driver for estimating modeled q or 

qc. For more accurate estimations, calibrations with expert 
knowledge are usually necessary.

3.	 	Shock lapse and shock mortality that occurs at the end 
of the level premium period or during rare events like 
pandemics cannot be fit or reflected well by a continuous 
function based model (parameter bias). At a more granu-
lar level, modeling issues such as quantifying the end of 
level period effect for a specific portfolio will need more 
than logistic mortality model. However, at an industry 
aggregated level and for constructing insured mortality 
tables, our study shows that logistic models deliver rea-
sonable results.

4.	 	The current lack of a consistently collected long term 
insured experience data are limiting the optimization of 
any modeling efforts including logistic mortality models 
(sampling and data biases). For example, not all compa-
nies and not all product information are consistently or 
proportionally presented in an ad hoc industry experience 
data collection. Special cares are necessary in interpret-
ing model outputs that implicitly assume the consistency. 
As data process technology and analytical methodology 
advance, it is our hope that the industry will establish a 
mechanism to consistently collect comprehensive experi-
ence data for in-depth experience studies. 

In summary, logistic regression models have many strengths 
and potentials for insured mortality experience studies: 

•	 	Test for statistically significant mortality drivers in explain-
ing mortality variations with “Effect Analysis”

•	 	Generate normalized mortality metrics such as slopes and 
differentials with “Odds Ratio Analysis”

•	 	Extrapolate for advanced age or ultimate mortality with 
“Modeled Estimation”

•	 	Quantify overall study reliability with “Model Fit Statis-
tics”

•	 	Help construct multi-dimensional experience tables 
through using the model as a “Predictive Model”

•	 	Be implementable with widely available software systems. 
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Appendix A: Logistic q model 
coefficient interpretation

Consider a logistic q model 

(A.1) 
	

with two explanatory variables: x1=age as continuous and 
x2=sex as a binary variable having male and female two value 
categories. For the categorical variable sex, there could be 
many different ways to code the variable for analysis. The 
most commonly used coding scheme is Reference coding:  
Code one category as 1 and the other as 0 and call the cat-
egory 0 the reference category (e.g. 1 for female and 0 for 
male and male is the reference category). Reference coding is 
useful when the primary goal of a study is to compare mortal-
ity between two segments of policies. 

Under this coding scheme, we can calculate the difference 
of log of odds between females and males for the same age 
(controlling age), 

or 

(A.2)  

	

which is the odds ratio of death between females and males. 
For the continuous variable age, if we take the difference of 
log of odds between any age x and x+1 for the same sex 
(controlling sex), we can derive:

(A.3)  

This is the odds ratio of death when age increases by 1 unit. 
If we set age=0 and sex=0 (or male) and consider this as the 
overall reference group, we have

(A.4)  

In summary, (A.2), (A.3), and (A.4) illustrate how the coef-
ficients of a logistic q model can be interpreted as odds ratios 
under the reference coding:
•	 The exponential of a binary variable’s coefficient repre-

sents the odds ratio of the non-reference category vs. the 
reference category.

•	 The exponential of a continuous variable’s coefficient rep-
resents the odds ratio when the variable value increases 
by 1 unit.

•	 The exponential of the intercept represent the odds of the 
overall reference subset that have value 0 for all the ex-
planatory variables. In this case the males of age 0. 

•	 Through variable transformation and recoding, we may 
choose any category as the reference.  

In a more general situation, if a categorical variable has k cat-
egories of values and k>2, we can replace it with a set of k-1 
binary variables and retain the reference coding advantages. 
For example, if in model (A.1) sex has three values: fe-
male, male, and unknown, we can replace sex with 
3-1=2 binary variables y1 and y2. And the three sex cat-
egories can be represented by the paired (y1, y2) as: 

y1 y2

female 1 0

male 0 1

unknown 0 0

This means that y1 serves as female indicator, y2  as male in-
dicator, and the pair of (0,0) as the reference. Model (A.1) is 
reformatted as:

(A.2)  

This model has only continuous and binary explanatory vari-
ables. Its coefficients can be interpreted as summarized be-
fore. 

There are also other useful coding schemes for categorical 
variables, under which the model coefficients can be inter-
preted differently. For example, the ‘deviation from means 
coding’ codes the binary variables with values of 1 and -1 
instead of 1 and 0. With this coding, the reference category 
is always the total controlled mean and the coefficient of a 
binary variable estimates the odds ratio between the repre-
sented variable category and the overall mean. This coding 
scheme is very useful in comparing the mortality of a segment 
relative to the overall means. See Chapter 3 of Hosmer et al 
(2013) for more discussions. 
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Appendix B: Logistic q model 
coefficient estimation

Consider logistic q model, 

(B.1)  

Let y be the death indicator, with value 1 for death and 0 for 
inforce, X denote the vector of explanatory variable X ={ x1, x2 

,…,xk}, and b ={ b1,…, bk} are the coefficients. Then, 

q=Prob(y=1|X). 

is a function of b when a sample value of X is given. Suppose 
we have a sample of n independent observation pairs (yi, Xi), 
i=1, …, n. Since the likelihood of one observed yi given Xi is  
  
      

the joint likelihood of all n observations is the product of 
these likelihoods:

(B.2)  

To solve for the b that maximize the likelihood function (B.2), 
it is equivalent and easier to solve for b that maximizes the 
log likelihood

(B.3) 

Unfortunately, the maximum likelihood estimate of b cannot 
be written explicitly. A Newton-Raphson method is usually 
used to solve iteratively for the value of b that maximize (B.3). 
One may consult McCullagh and Nelder(1989) for discussions 
of the methods commonly used by statistical modeling com-
puter software. 
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