
Abstract
This paper addresses the problem of finding hedging strategies in an incomplete
market. We study the Föllmer-Schweizer decomposition of a life insurer’s liabilities
(involving stochastic mortality and financial profit sharing), splitting them into a
component that can be hedged on the financial market and a component that
cannot. Using Malliavin calculus tools, we obtain an explicit formula for each part,
and therefore a complete probabilistic description of both components of the lia-
bilities (the hedgeable and non-hedgeable). In addition to the optimal risk-mini-
mizing “hedging" strategy, it allows to compute various business-related
quantities, such as e.g. the risk margin (as defined in Solvency II) associated with
the balance sheet. Two different models for the financial asset available for in-
vestment are considered.
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1 Introduction

The problem of hedging the balance sheet of a financial institution has drawn the scientific commu-
nity’s interest for many decades. In very simple cases, the classical theory describes a methodol-
ogy allowing to build a dynamic portfolio of financial instruments that perfectly hedges the balance
sheet. Such a portfolio does unhappily not exist when the framework becomes a little bit more com-
plex, that is when the market is incomplete. This question is meaningful, as the pricing of financial
assets is straightforwardly linked to the existence of these hedging strategies.
The market that we consider in this paper belongs to the problematic category: we study hedging
strategies associated with the liabilities of an insurer selling life insurance contracts. There is no
hope in perfectly hedging these liabilities with financial instruments, as they generate mortality risk
(and as the mortality-linked securities market is not sufficiently liquid).
The scientific community has proposed many different methods to overcome the incompleteness
problem. Among them, we consider in this paper the Föllmer-Schweizer quadratic risk-minimization
approach. It starts with the following idea: it may not be possible to find a perfect hedging strategy,
but one can select among all imperfect strategies the less risky. Föllmer and Sondermann (in [7])
and Föllmer and Schweizer (in [6]) showed that under some assumptions, for any conditional asset
H there exists a unique risk-minimizing strategy attaining H . This very nice result is however only
an existence result, it does not give the explicit expression of this strategy.
The point of this paper is to explicitly compute the Föllmer-Schweizer optimal strategy in the case of
life insurer’s liabilities. The tool we use to achieve this goal is the Malliavin calculus. Our main result
is the explicit decomposition of the liabilities into two components, the first one being the hedgeable
part and the second one being the non-hedgeable part. Additionally to the optimal strategy, it gives
us a complete description of both parts and therefore grants us useful information about the non-
headgeable component of the liabilities. Hence we can compute, among many other quantities, the
risk margin of the insurer’s balance sheet as defined by the Solvency II directive.
This paper is structured as follows. In Section 2 we describe the liabilities we consider throughout
the analysis. We then present the mortality model and the underlying assumptions in Section 4.
Our main decomposition result comes in two distinct variants. The first one, considering stocks as
available financial instruments, is described in Section 5, while the second one, considering bonds
as available instruments, is described in Section 6. A recapitulation of the assumptions made all
along the paper is given in Section 7. In Section 8, the error generated by our main mortality
assumption is analysed. A final conclusion is given in the last section, while the Appendix contains
a satellite technical lemma.

Notations. Throughout this paper we consider a probability space (Ω,P). We will denote by
W,W 1 and W 2 standard Brownian motions on it. The space (Ω,P) is equipped with the filtration
F which is associated with the values of W 1 and W 2: Ft =σ

(
{W 1

s : s ∈ [0,1]}∪ {W 2
s : s ∈ [0,1]}

)
.

We will denote as usual the normal density and cumulative distribution functions by φ and Φ re-
spectively. The notation D1,2 stands for the set of all Malliavin-differentiable random variables, and
D,D1 and D2 are the Malliavin derivative operators along W,W 1 and W 2 respectively. More de-
tails about these definitions and more generally about the Malliavin calculus can be found in [11]
and [12].
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2 Expression of the liabilities

2.1 Pure endowments with profit sharing

We consider the liabilities of an insurance company selling life insurance contracts, or more pre-
cisely 1 year pure endowments. We consider contracts running from t = 0 to t = 1 and offering
to the insured a rate i on a capital C0. The amount payable on survival is thus C0e i = C1. The
liabilities of the insurer consist of two components: on one hand the guaranteed capital C1 paid
on survival, on the other hand the profit sharing. We consider here a profit sharing based on the
financial results of the insurer only, i.e. we do not incorporate the mortality benefits in it, assuming
that the premium paid by the insured has been fairly computed.
Let us begin by determining the amount the insured will receive at t = 1. Denoting by ℓx the
proportion of surviving insured in the portfolio with age x (that we will assume to be continuously
differentiable, the force of mortality is defined as µx = −∂ lnℓx

∂x . We consider a stochastic mortal-
ity model, meaning that the force of mortality randomly changes with time: µx+s(s) = µx+s(s, w)
(where w ∈Ω and s ∈ [0,1]). This is the actual modelled quantity, i.e. it is for µ that we shall choose
a model later on.
As the preceding definition implies

ℓx(t ) = exp

(
−

∫ t

0
µx+s(s)ds

)
,

the total number of surviving individuals in the portfolio is

Pt =
ωmax∑

x=ωmin

Nxℓx(t ) =
ωmax∑

x=ωmin

Nx exp

(
−

∫ t

0
µx+s(s)ds

)
,

denoting by Nx the number of insured with age x in the initial portfolio and by ωmin (resp. ωmax) the
age of the youngest (resp. oldest) person in the portfolio.
If our study did not include the profit sharing, the amount payable by the insurer at the end at the
year would thus be L1 = P1C0e i . However we consider a framework where the insurer shares his
profit with his clients, giving them a capital surplus, which is proportional to the difference between
the returns generated by the assets and the liabilities (when this difference is positive). The total
amount to be paid by the company at the end of the year is hence

L1 =C0e i P1

(
1+β

(
S1

S0
− P1e i

P0

)
+

)
,

where β is the PS rate, i.e. the proportion of shared benefit, and St is the market value of the
financial asset held by the insurer.

2.2 Reference age assumption

Unhappily, the plurality of the ages contained in the portfolio raises technical problems. As will be
seen in the following, the considered mortality model will assess to ℓx(t ) a log-normal distribution.
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In the case of a portfolio containing insured with different ages, we would thus work with a sum of
several log-normally distributed stochastic processes, a framework which is very difficult to handle
(even in the case of the sum of only two log-normally distributed processes, no closed formula
exists for the distribution, and the numerical methods to overcome the difficulty are not very efficient,
see [2]).
For this reason, we assume that the effect of time is equal for every age, i.e. that we can write

µx+s(s) = κ(x)+µx̂+s(s),

where κ is a deterministic function of the age, and x̂ is a reference age chosen among the age
spectrum of the portfolio. Hence we obtain

Pt =
ωmax∑

x=ωmin

Nx exp

(
−

∫ t

0
µx+s(s)ds

)
=

ωmax∑
x=ωmin

Nx exp(−tκ(x))exp

(
−

∫ t

0
µx̂+s(s)ds

)
=G(t )exp

(
−

∫ t

0
µx̂+s(s)ds

)
,

where G is a deterministic function. The impact of the assumption on the modelling is now very
understandable: as ℓx̂(t ) is log-normally distributed, so is Pt . It is clear that if the portfolio contains
individuals with the same age, choosing κ≡ 0 and x̂ = x does the job. In the case where κ≡ 0, x̂
can really be viewed as the age with average survival index:

ωmax∑
x=ωmin

Nx exp

(
−

∫ t

0
µx+s(s)ds

)
=

ωmax∑
x=ωmin

Nx exp

(
−

∫ t

0
µx̂+s(s)ds

)
whence

exp

(
−

∫ t

0
µx̂+s(s)ds

)
=

ωmax∑
x=ωmin

Nx∑
x Nx

exp

(
−

∫ t

0
µx+s(s)ds

)
.

Let us finally mention that this assumption has never been formulated in the literature to our best
knowledge. Section 8 is devoted to the analysis of the error it introduces.

3 Liabilities decomposition

The crux of this paper is the following decomposition of the insurer’s liabilities. As explained supra,
we will apply to L1 the Föllmer-Schweizer decomposition and then compute the resulting terms
using the Malliavin calculus.
From now on, we work under a particular probability measure. More precisely, we select one of
the martingale equivalent measures (being the risk neutral measure in Section 5, and the forward
neutral measure in Section 6). The stochastic process S̃ we will handle, which is related to the
financial asset S of the insurer (in the first case it is the actualized stock price, in the second case
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it is the forward price of the bond) is therefore a martingale under this measure: there exists a
process K and a (maybe multidimensional) standard Brownian motion W S such that

S̃t = S̃0 +
∫ t

0
Ku dW S

u .

On one hand, the Föllmer-Schweizer decomposition (which actually reduces to the Kunita-Watanabe
decomposition as S̃ is a martingale, see [14]) allows to write

L1 = E [L1]+
∫ 1

0
θ̃s dS̃s + I1 = E [L1]+

∫ 1

0
θs dW S

s + I1,

where θ̃, θ and I1 are martingales enjoying the following properties: θ̃ is square-integrable with
respect to S̃, θ is square-integrable with respect to W S and I1 is square-integrable and orthogonal
to all integrals of the form

∫
θdW S . The term I1, only different from 0 when the market is incom-

plete, stands for the component of L1 which is not hedgeable on the financial markets (thanks to its
orthogonality property).
We now make a crucial hypothesis: we assume that the orthogonal term I1 lives in a Gaussian
universe, i.e. that there exists a process ξ and a (maybe multidimensional) standard Brownian
motion W I such that

I1 =
∫ 1

0
ξs dW I

s .

We thus obtain the decomposition

L1 = E [L1]+
∫ 1

0
θs dW S

s +
∫ 1

0
ξs dW I

s . (1)

On the other hand, we can consider the random variable L1 as a functional of the n-dimensional
Brownian motion W = (W 1, . . . ,W n). Assuming at this point that L1 is sufficiently regular (this fact
will be a straightforward consequence of the chosen models for S and µ, see infra), we can apply
to it one of the master results of the Malliavin calculus, the Clark-Ocone formula (see [11]):

L1 = E [L1]+
∫ 1

0
E [D t L1|Ft ] dWt = E [L1]+

n∑
i=1

∫ 1

0
E
[

D i
t L1|Ft

]
dW i

t . (2)

As the Kunita-Watanabe decomposition is unique, there exists an integer k such that, upon rela-
belling of the indices, {

W S = (W 1, . . . ,W k ),

W I = (W k+1, . . . ,W n).

The computation of the Malliavin derivatives therefore gives the explicit expression of the integrands
of the decomposition into hedgeable and non-hedgeable parts.
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4 Stochastic mortality model

Stochastic mortality models drive a lot of attention since the last decade. Among other authors
considering this topic, see [4] and [5].
We assume that the force of mortality process follows the same dynamics under the historical
probability measure as under the martingale equivalent probability measure. This means that the
mortality is not affected by the evolution of the financial market, its behaviour being the same re-
gardless the world (real, risk-neutral of forward-neutral) in which it is observed. This assumption
seems rather natural on short and midterms: the market conditions should not influence the popu-
lation’s rate of death. However it becomes much more doubtful when considering the long term.
One could indeed argue that bad economic conditions lead to bad life quality and thus bad health
care, which of course impacts the mortality. Everything is fine since we only consider here one
year contracts, but this limit should be kept in mind when trying to generalize our results to longer
contracts.
We impose now a dynamics to µ in order to explicitly compute the decomposition terms. The model
we have chosen for the force of mortality is a one factor Vasicek model (for a discussion about the
mortality models, see e.g. [4]). As x̂ has been previously chosen and won’t change, we write
µx̂+t (t ) =µt when the context is clear.

Vasicek model for the force of mortality

dµt = a(θ−µt )dt +σµ dW 2
t ,

µt =µse−a(t−s) +θ
(
1−e−a(t−s))+σµ

∫ t

s
e−a(t−u) dW 2

u ,

µt |µs ∼N

(
µse−a(t−s) +θ

(
1−e−a(t−s)) ,

σ2
µ

2a

(
1−e−2a(t−s))) ,

µ ∈D1,2 and Dsµt =σµe−a(t−s)χsÉt .

Parameters: µ0, a,θ,σµ > 0.

Remark. The Vasicek dynamics allows the modelled process to become negative. This would
result in an upward jump for the number of living individuals, which of course does not make any
sense. However the probability of such an event is rather low, and can be explicitly computed as in
the case of interest rates (see e.g. [3]). The scenarios giving rise to non-monotone populations will
thus be excluded from the numerical computations.
The force of mortality µ only appears in the decomposition through another quantity, the process
ℓt = exp

(−∫ t
0 µs ds

)
. The following result gives the probability distribution of the latter.

Lemma 1. One has, for every 0 É v É t

ℓt = ℓv exp

(
µ0 −θ

a
(e−at −e−av )−θ(t − v)

)
exp

(
−σµ

∫ t

v

1−e−a(t−u)

a
dW 2

u

)
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and therefore

ℓt

ℓv

∣∣∣ℓv ∼ logN

(
µ0 −θ

a
(e−at −e−av )−θ(t − v),

∫ t

v

σ2
µ

a2

(
1−e−a(t−u))2

du

)
.

Moreover ℓ ∈D1,2 and
Dsℓt = ℓt

σµ

a
(e−a(t−s) −1)χsÉt .

Proof. One can write

ℓt = exp

(
−

∫ t

0
µs ds

)
= ℓv exp

(
−

∫ t

v
µs ds

)
= ℓv exp

(
−

∫ t

v

(
µ0e−as +θ

(
1−e−as)) ds

)
·exp

(
−σµ

∫ t

v

∫ s

0
e−a(s−u) dW 2

u ds

)
.

The multi-dimensional Ito formula for the product of two processes applied to
∫ s

0 eau dW 2
u and − e−as

a
gives

−e−at

a

∫ t

0
eau dW 2

u =−e−av

a

∫ v

0
eau dW 2

u +
∫ t

v

∫ s

0
eau dW 2

u d

(
−e−as

a

)
−

∫ t

v

e−as

a
d

(∫ s

0
eau dW 2

u

)
=

∫ t

v

∫ s

0
e−a(s−u) dW 2

u ds −
∫ t

v

e−as

a
eas dW 2

s .

Hence one obtains∫ t

v

∫ s

0
e−a(s−u) dW 2

u ds =
∫ t

v

1−e−a(t−u)

a
dW 2

u = 1

a

(
Wt −Wv −

∫ t

v
e−a(t−u) dW 2

u

)
which allows to write

ℓt = ℓv exp

(
µ0 −θ

a
(e−at −e−av )−θ(t − v)

)
exp

(
−σµ

∫ t

v

1−e−a(t−u)

a
dW 2

u

)
.

We thus know the distribution of ℓt /ℓv conditionally to ℓv at every instant t Ê v :

ℓt

ℓv

∣∣∣ℓv ∼ logN

(
µ0 −θ

a
(e−at −e−av )−θ(t − v),

∫ t

v

σ2
µ

a2

(
1−e−a(t−u)2

)
du

)
.

The Malliavin derivative gives:

D2
s

(∫ t

0
(1−e−a(t−u))dW 2

u

)
= D2

s Wt −e−at D2
s

∫ t

0
eau dW 2

u

=χsÉt −e−at easχsÉt ,

whence the result follows using the chain rule (see e.g. [11] for details about Malliavin calculus
results).
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5 First model: the asset is a stock

5.1 Model specification

In this section, we only work under the risk-neutral measure. We assume that the insurer’s financial
asset is a stock modelled by a geometric Brownian motion.

GBM model for the financial asset (in the risk-neutral world)

dSt = r St dt +σSSt dW 1
t ,

St = Ss exp

(
(r − 1

2
σ2

S)(t − s)+σS(W 1
t −W 1

s )

)
,

St

Ss

∣∣∣Ss ∼ logN

(
(r − 1

2
σ2

S)(t − s),σ2
S(t − s)

)
,

S ∈D1,2 and DsSt =σSStχsÉt .

Parameters: S0,r,σS > 0.

As the asset S itself is not a martingale, the quantity of interest in the following will be the actual-
ization of S:

Tt = e−r t St .

It is straightforward to check that

dTt =σSSt dW 1
t , T0 = S0,

Tt = Ts exp

(
−1

2
σ2

S(t − s)+σS(W 1
t −W 1

s )

)
,

Tt

Ts

∣∣∣Ts ∼ logN

(
−1

2
σ2

S(t − s),σ2
S(t − s)

)
,

T ∈D1,2, DsTt =σSTtχsÉt .

The insurer’s liabilities can then be rewritten as

C0e i P1

(
1+β

(
er T1

S0
− P1e i

P0

)
+

)
.

It is easy to show that L1 ∈D1,2.

5.2 Explicit decomposition

The following decomposition is rather technical. Corollary 3 shows the practical benefits of it. In the
following, we denote by E the expectation under the risk-neutral probability P∗.

Theorem 2. The Föllmer-Schweizer decomposition of L1 is given by

L1 = E [L1]+
∫ 1

0
E
[
D1

s L1|Fs
]

dW 1
s +

∫ 1

0
E
[
D2

s L1|Fs
]

dW 2
s
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=C0e i G(1)

(
exp

(
ν0 + 1

2
τ2

0

)

+βer exp

(
−ν0 − 1

2
τ2

0

)
Φ

β0 +α0(ν0 +τ2
0)√

1+2α2
0τ

2
0


−βe i exp

(−2ν0 −2τ2
0

)
Φ

β0 +2α0(2ν0 +4τ2
0)√

1+32α2
0τ

2
0

)

+

∫
1

0

[
C0βσSe i+r G(1)Tsℓs

S0

·exp

(
−νs − 1

2
τ2

s

)
Φ

βs +αs(νs +τ2
s )√

1+2α2
sτ

2
s

]
dW 1

s

+

∫
1

0

[
C0e i G(1)σµ(e−a(1−s) −1)

a

(
ℓs exp

(
νs + 1

2
τ2

s

)

+ βer Tsℓs

S0
exp

(
−νs − 1

2
τ2

s

)
Φ

βs +αs(νs +τ2
s )√

1+2α2
sτ

2
s


−2βe iℓ2

s exp
(−2νs −2τ2

s

)
·Φ

βs +2αs(2νs +4τ2
s )√

1+32α2
sτ

2
s

)]
dW 2

s ,

where

αs = −1

σS
p

1− s
,

βs =
ln Ts

S0ei−r G(1)ℓs
+ σ2

S
2 (1− s)

σS
p

1− s
,

νs = µ0 −θ

a
(e−a −e−as)−θ(1− s),

τ2
s =

∫ 1

s

σ2
µ

a2

(
1−e−a(1−u))2

du.

Proof. Let us compute successively every term of the decomposition. The liabilities L1 can be
viewed as a functional of the two Brownian motions W 1 and W 2, so that we will consider Malliavin
derivatives in two different “directions".
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Derivative along W1. As the function x 7→ (x−K )+ is Lipschitz, the chain rule allows to compute

D1
s L1 = D1

s

(
C0e i P1

(
1+β

(
er T1

S0
− P1e i

P0

)
+

))
=C0e i P1βD1

s

(
er T1

S0
− P1e i

P0

)
+

= C0e i P1βer

S0
χM D1

s T1

= C0e i P1βer

S0
χMσST1χsÉ1

denoting by M the set {x ∈ Ω : T1(x) Ê S0P1(x)e i−r }. Let s É 1. The derivative appears in the
Clark-Ocone formula through its conditional expectation:

E
[
D1

s L1|Fs
]= C0e iβσSG(1)er

S0
E
[
ℓ1S1χM |Fs

]
. (3)

In order to treat successively the two sources of randomness, let us define

F̃(s,1) =σ
(
{W 1

t : t ∈ [0, s]}∪ {W 2
t : t ∈ [0,1]}

)
.

This new σ-algebra stands for the information available about W 1 until the instant t = s and the
information available about W 2 until the instant t = 1. By the law of iterated expectations, we have,
as Fs ⊂ F̃(s,1),

E
[
D1

s L1|Fs
]= E

[
E
[
D1

s L1
∣∣F̃(s,1)

]∣∣Fs
]

. (4)

We therefore first consider the expectation with respect to the new filtration. The crucial point is of
course that P1 is F̃(s,1)-measurable:

E
[
D1

s L1
∣∣F̃(s,1)

]= E

[
C0e i P1β

S0
χMσSer T1

∣∣F̃(s,1)

]
= C0e i P1βσSer

S0
E
[
χM T1

∣∣F̃(s,1)
]

. (5)

As in the classical derivation of the Black-Scholes formula (see e.g. [10, Theorem 3.1.1]), we define
an auxiliary measure on (Ω,F ) with the help of the Radon-Nikodym density: dP̃

dP∗ = λ1, where the
process λ is given by

λs = exp

(
−σ2

S

2
s +σSW 1

s

)
.

By Girsanov Theorem, the process W̃ 1
t =W 1

t −σS t is a standard Brownian motion under the new
measure P̃. Note that the asset’s dynamics is now

dTt = Tt
(
σ2

S dt +σS dW̃ 1
t

)
,

or

Tt = Ts exp

(
σ2

S

2
(t − s)+σS(W̃ 1

t −W̃ 1
s )

)
. (6)

SCOR Paper no30 - Decomposition of life insurance liabilities 10



We can now compute the conditional expectation:

E
[
T1χM |F̃(s,1)

]= E

[
Ts exp

(
−σ2

S

2
(1− s)+σS(W 1

1 −W 1
s )

)
χM

∣∣∣F̃(s,1)

]

= TsE

[
exp

(
−σ2

S

2
(1− s)+σSW 1

1−s

)
χM

∣∣∣F̃(s,1)

]
= TsE

[
λ1λ

−1
s χM

∣∣∣F̃(s,1)

]
= TsEP̃

[
χM

∣∣F̃(s,1)
]

= TsP̃
[

T1 Ê S0P1e i−r |Ts ,P1

]
. (7)

as the Bayes Theorem implies (see e.g. [10, Lemma 9.6.2])

EP∗
[
λ1λ

−1
s χM

∣∣F̃(s,1)
]= EP∗

[
χMλ1

∣∣F̃(s,1)
]

EP∗
[
λ1

∣∣F̃(s,1)
] = EP̃

[
χM

∣∣F̃(s,1)
]

.

We now use the dynamics of T under P̃ given by (6):

P̃
[

T1 Ê S0P1e i−r |Ts ,P1

]
= P̃

[
Ts exp

(
σ2

S

2
(1− s)+σS(W̃ 1

1 −W̃ 1
s )

)
Ê S0P1e i−r

∣∣∣Ts ,P1

]

= P̃

 W̃ 1
1−sp

1− s
Ê

ln S0P1ei−r

Ts
− σ2

S
2 (1− s)

σS
p

1− s

∣∣∣∣Ts ,P1


= 1−Φ

 ln S0P1ei−r

Ts
− σ2

S
2 (1− s)

σS
p

1− s


=Φ

 ln Ts

S0P1ei−r + σ2
S

2 (1− s)

σS
p

1− s

 ,

as W̃1 is a standard Brownian motion under P̃. Gathering (5), (7) and the last equation, we obtain

E
[
D1

s L1
∣∣F̃(s,1)

]= C0e i P1βσSTser

S0
Φ

 ln Ts

S0P1ei−r + σ2
S

2 (1− s)

σS
p

1− s

 .

Let us come back to the conditional expectation with respect to Fs by recalling (4):

E
[
D1

s L1
∣∣Fs

]= E

C0e i P1βσSTser

S0
Φ

 ln Ts

S0P1ei−r + σ2
S

2 (1− s)

σS
p

1− s

∣∣∣∣Fs
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= C0e iβσSTser

S0
E

P1Φ

 ln Ts

S0P1ei−r + σ2
S

2 (1− s)

σS
p

1− s

∣∣∣∣Fs

 .

We can rewrite this expectation as

E

P1Φ

 ln Ts

S0P1ei−r + σ2
S

2 (1− s)

σS
p

1− s

∣∣∣∣Fs


=G(1)ℓsE

ℓ1

ℓs
Φ

 −1

σS
p

1− s
ln

(
ℓ1

ℓs

)
+

ln Ts

S0ei−r G(1)ℓs
+ σ2

S
2 (1− s)

σS
p

1− s

∣∣∣∣Fs

 .

Lemma 1 (see the Appendix) ensures that ℓ1/ℓs is log-normally distributed conditionally to ℓs . We
thus have to compute an expression looking like

E
[
RΦ(α lnR +β)

]
, (8)

where R is log-normally distributed and α,β > 0. Lemma 9 allows to obtain a closed formula for
this expectation. Gathering all the factors, we obtain

E
[
D1

s L1
∣∣Fs

]= C0e iβσSer G(1)Tsℓs

S0
·exp

(
−νs − 1

2
τ2

s

)
Φ

βs +αs(νs +τ2
s )√

1+2α2
sτ

2
s

 . (9)

Derivative along W2. As the function x 7→ (K −x)+ is Lipschitz, the chain rule implies

D2
s L1 =C0e i D2

s

(
P1

(
1+β

(
er T1

S0
− P1e i

P0

)
+

))
=C0e i

(
D2

s (P1)

(
1+β

(
er T1

S0
− P1e i

P0

)
+

)
− P1βe i D2

s (P1)χM

P0

)

=C0e i D2
s (P1)

(
1+β

(
er T1

S0
− P1e i

P0

)
+
− P1βe iχM

P0

)
=C0e i D2

s (P1)

(
1+β

(
er T1

S0
− P1e i

P0

)
+
− P1βe iχM

P0

)
= C0e i G(1)σµ(e−a(1−s) −1)

a
ℓ1

(
1+β

(
er T1

S0
−2ℓ1e i

)
χM

)
= C0e i G(1)σµ(e−a(1−s) −1)

a

(
ℓ1 +erℓ1T1

β

S0
χM −2βe iℓ2

1χM

)
= C0e i G(1)σµ(e−a(1−s) −1)

a
(A+B −C ) .
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Let us successively compute the conditional expectation of the three non-deterministic terms A, B
and C .
The first one is not a problem, since it simply is the expectation of a log-normal random variable:

E [A|Fs] = ℓsE

[
ℓ1

ℓs

∣∣∣Fs

]
= ℓs exp

(
νs + 1

2
τ2

s

)
.

The second one brings back to the computation performed for the derivative along W 1 (see Equa-
tion (3)):

E
[
B

∣∣Fs
]= βer

S0
E
[
ℓ1T1χM |Fs

]= βer Tsℓs

S0
exp

(
−νs − 1

2
τ2

s

)
Φ

βs +αs(νs +τ2
s )√

1+2α2
sτ

2
s

 .

The third one can be treated in a way similar to the derivative along W 1, i.e. using the law of
iterated expectations and the technical lemma of the appendix. We write

E [C |Fs] = 2βe iℓ2
sE

[(
ℓ1

ℓs

)2

χM

∣∣∣∣Fs

]
= 2βe iℓ2

sE

[
E

[(
ℓ1

ℓs

)2

χM

∣∣∣∣F̃(s,1)

]∣∣∣∣Fs

]
.

Considering the expectation with respect to the “partial" σ-algebra F̃(s,1):

E

[(
ℓ1

ℓs

)2

χM

∣∣∣∣F̃(s,1)

]
=

(
ℓ1

ℓs

)2

E

[
χM

∣∣∣∣F̃(s,1)

]
=

(
ℓ1

ℓs

)2

P
[

T1 Ê S0e i−r P1|Ts ,P1

]

=
(
ℓ1

ℓs

)2

P

 W 1
1−sp

1− s
Ê

ln S0P1ei−r

Ts
+ σ2

S
2 (1− s)

σS
p

1− s

∣∣∣∣Ts ,P1


=

(
ℓ1

ℓs

)2

Φ

 ln Ts

S0P1ei−r − σ2
S

2 (1− s)

σS
p

1− s

 .

Hence the expectation with respect to Fs gives

E

[
E

[(
ℓ1

ℓs

)2

χM

∣∣∣∣F̃(s,1)

]∣∣∣∣Fs

]

= E

(
ℓ1

ℓs

)2

Φ

 ln Ts

S0P1ei−r − σ2
S

2 (1− s)

σS
p

1− s

∣∣∣∣Fs


= E

(
ℓ1

ℓs

)2

Φ

 −1

2σS
p

1− s
ln

(
ℓ1

ℓs

)2

+
ln Ts

S0ei−r G(1)ℓs
− σ2

S
2 (1− s)

σS
p

1− s

∣∣∣∣Fs

 .
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As ℓ1/ℓs is log-normally distributed, so is (ℓ1/ℓs)2 (with mean 2νs and variance 4τ2
s ). This expres-

sion is thus of the form of (8), and we can apply Lemma 9:

E

[
E

[(
ℓ1

ℓs

)2

χM

∣∣∣∣F̃(s,1)

]∣∣∣∣Fs

]
= exp

(−2νs −2τ2
s

)
Φ

βs +2αs(2νs +4τ2
s )√

1+32α2
sτ

2
s

 (10)

with the same notations as previously.
Gathering the conditional expectations of the three terms A, B and C , we obtain the conditional
expectation of the Malliavin derivative:

E
[
D2

s L1|Fs
]= C0e i G(1)σµ(e−a(1−s) −1)

a

{
ℓs exp

(
νs + 1

2
τ2

s

)

+ βer Tsℓs

S0
exp

(
−νs − 1

2
τ2

s

)
Φ

βs +αs(νs +τ2
s )√

1+2α2
sτ

2
s


+2βe iℓ2

s exp
(−2νs −2τ2

s

)
Φ

βs +2αs(2νs +4τ2
s )√

1+32α2
sτ

2
s

}
.

Expectation. Remark first that combining (9) and (3), we have proved that

E
[
ℓ1T1χM

∣∣Fs
]= Tsℓs exp

(
−νs − 1

2
τ2

s

)
Φ

βs +αs(νs +τ2
s )√

1+2α2
sτ

2
s

 . (11)

Compute the expectation of L1:

E [L1] = E

[
C0e i P1

(
1+β

(
er T1

S0
− P1e i

P0

)
+

)]
=C0e i G(1)E

[
ℓ1

(
1+β

(
er T1

S0
−ℓ1e i

)
+

)]
=C0e i G(1)

(
E [ℓ1]+ βer

S0
E
[
ℓ1T1χM

]−βe iE
[
ℓ2

1χM
])

.

The first expectation is easy to compute: it is the expectation of a log-normally distributed random
variable. The processing of the second and third expectations consists only in taking s = 0 in (11)
and (10) respectively. Hence we obtain

E [L1] =C0e i G(1)

(
exp

(
ν0 + 1

2
τ2

0

)

+ β

S0
er S0 exp

(
−ν0 − 1

2
τ2

0

)
Φ

β0 +α0(ν0 +τ2
0)√

1+2α2
0τ

2
0
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−βe i exp
(−2ν0 −2τ2

0

)
Φ

β0 +2α0(2ν0 +4τ2
0)√

1+32α2
0τ

2
0

)
.

5.3 Optimal strategy

The preceding result being rather technical, it is necessary to underline its practical interests. The
strategies are given here as 2-dimensional processes φ = (θ,η). In such a strategy, θt describes
the number of units of risky asset held at instant t , and ηt is the amount invested in risk-free asset
at time t .

Corollary 3. Let g = g (W 1,W 2) and h = h(W 1,W 2) be the two integrands of the preceding
theorem, i.e. the previous decomposition of L1 can be expressed as

L1 = E [L1]+
∫ 1

0
gs dW 1

s +
∫ 1

0
hs dW 2

s .

The unique risk minimizing strategy (attaining L1) φ∗ = (θ∗,η∗) is given by

θ∗t = e2r t g t

σSSt
,

η∗t = e−r t (
Vt (φ∗)−θ∗t St

)
,

where the value process Vt writes

Vt (φ∗) = E [L1]+
∫ t

0
gs dW 1

s +
∫ t

0
hs dW 2

s .

Moreover the residual risk associated to φ∗ is

J =V

[∫ 1

0
hs dW 2

s

]
= E

[∫ 1

0
(hs)2 ds

]
.

Proof. The only detail that is not a straightforward consequence of the Föllmer-Sondermann theo-
rem and Theorem 2 and that is left to prove is the expression for θ∗. Recall that we have applied
the decomposition to the actualization of the asset process, i.e. Tt = e−r t St . Using T ’s dynamics,
we have thus ∫ 1

0
gs dW 1

s =
∫ 1

0

gs

TsσS
dTs .

The quantity of the asset T that the insurer should hold at instant s is therefore

gs

σSTs
= er s gs

σSSs
, i.e.

e2r s gs

σSSs

in terms of S numeraire.

Remark that, as we have an explicit expression for the non-hedgeable component of the liabilities,
it is straightforward to compute various business-related quantities, as e.g. the risk margin defined
by the Solvency II directive: it suffices to compute the quantiles of this component by Monte-Carlo
simulations, asses the solvency capital (SCR) and finally compute the cost of capital.
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5.4 Numerical verification

We have run numerical verifications of the equality of Theorem 2 with the statistical software R. The
chosen parameters are those of Table 1.

Contract parameters Asset parameters Mortality parameters

C0 100 r 0.05 µ0 0.000797
β 0.75 σS 0.1 θ 0
i 0.06 S0 1 a -0.051085

G1 1 σµ 0.001343

Table 1: Parameters used in numerical computations

The parameters for the force of mortality µ come from [13, p. 20], where the authors calibrate a
Vasicek model for the force of mortality using Italian life insurance premiums. The integrals have
been computed with discretization steps of 0.01.
We first present the result of two simulations (i.e. a couple of trajectories of (W 1,W 2)), the first one
involving no insurer’s profit, the second involving positive profit sharing. The computation of the two
sides of the equality is given in Table 2.

Simulated quantity Simulation 1 Simulation 2

Left hand side (direct computation of L1 ) 106.0980414 107.3920
Right hand side (decomposition of L1) 104.2494689 109.4549
ℓ1 0.9991937 0.9985033
S1 0.9465239 1.077441∫

. . . dW 1 -2.9243965 2.314875∫

. . . dW 2 -0.0862554 -0.1200882
SP = (1+β(. . . )+) 0.00000000 0.01289534

Table 2: Results of numerical computations for two chosen simulations
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Next we show the evolution of the optimal strategy φ∗ = (θ∗,η∗) across time in the case of Simula-
tion 2. The results are given in Figure 1, showing the trajectories of the stock price, of the mortality
and of the value process Vt .
Finally we present the result of 100 simulations. The R software gives 107.2601 for the right hand
side expectation, while it gives 107.0981 for the average value of the left hand side. The empiric
mean of the two Ito integrals is, as expected, very close to 0. Remark that approximations are
made in the computation of both sides of the equality: stochastic integrals are indeed also present
in the left hand side, as one needs to compute ℓ1. The results, simulation by simulation, are given
in Figure 2.

Figure 1: One simulation of the modelled quantities and the evolution of the optimal strategy
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Figure 2: Hundred simulations of the modelled quantities in the first model

6 Second model: the asset is a bond

6.1 Model specification

We now assume that the risked asset available for investment is a zero-coupon bond, and that the
interest rate follows a one factor Hull-White dynamics.
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Hull-White model for the interest rate (in the risk-neutral
world)

drt = b(ξ(t )− rt )dt +σr dW 1
t ,

rt = rse−b(t−s) +b
∫ t

0
ξue−b(t−u) du +σr

∫ t

0
e−b(t−u) dW 1

u ,

rt

∣∣∣rs ∼N

(
rse−b(t−s) +b

∫ t

0
ξue−b(t−u) du,σ2

r

∫ t

0
e−2b(t−u) du

)
,

Parameters: r0,b,σr > 0 and ξ, a function allowing a calibration
fitting perfectly to the initial yield curve (see e.g. [3]).

As the quantity bearing interest for us is the bond price, we recall its distribution as it can be driven
from the dynamics of the interest rate (see e.g. [3, p. 76]).

Lemma 4. Under the Hull-White model, the price of the zero-coupon bond at instant t is equal to

St (M) = exp(A(t , M)−C (t , M)rt ) ,

where

C (t , M) = 1

b

(
1−e−b(M−t )

)
,

A(t , M) = ln
P m(0, M)

P m(0, t )
−C (t , M)

∂ lnP m(0, t )

∂t
− σ2

r

4b
C 2(t , M)(1−e−2bt ).

Note that the bond that we consider as an investment opportunity for the insurer matures after the
end of the insurance contract, i.e. that 1 < M .
In order to properly apply the Kunita-Watanabe decomposition, it is necessary to handle a martin-
gale, so that we will consider the forward price (with respect to date t = 1) of the bond:

Ft (M ,1) = St (M)

St (1)

under the forward-neutral measure P̄ defined by the Radon-Nikodym density

dP̄

dP∗ = exp

(
−σr

∫ 1

0
C (u,1)dW 1

u − 1

2
σ2

r

∫ 1

0
C (u,1)2 du

)
as shown in the following result, namely Lemma 11.3.1 of [10].

Lemma 5. The process

W̄ 1
t =W 1

t +σr

∫ t

0
C (u,1)du
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is a standard Brownian motion under the forward-neutral measure. Moreover, the forward price
then follows the dynamics

dFt (M ,1) = Ft (M ,1)γ(t , M ,1)dW̄ 1
t ,

where
γ(t , M ,1) =σr (C (t ,1)−C (t , M)) ,

hence

F1(M ,1) = Fs(M ,1)exp

(
−

∫ 1

s
γ(u, M ,1)dW̄ 1

u − 1

2

∫ 1

s
γ(u, M ,1)2 du

)
.

As M is fixed, we will simply write Ft = Ft (M ,1) and γ(t ) = γ(t , M ,1) when the context is clear.

6.2 Explicit decomposition

In the following, the Malliavin derivative D1 has to be understood as a derivative along W̄ 1, i.e. we
leave the risk-neutral world to enter the forward-neutral world. We will write E for the expectation
under the forward-neutral measure P̄.

Theorem 6. The Föllmer-Schweizer decomposition of L1 is given by

L1 = E [L1]+
∫ 1

0
E
[
D1

s L1|Fs
]

dW̄ 1
s +

∫ 1

0
E
[
D2

s L1|Fs
]

dW 2
s

=C0e i G(1)

(
exp

(
ν0 + 1

2
τ2

0

)

+ β

S0(1)
exp

(
−ν0 − 1

2
τ2

0

)
Φ

β0 +α0(ν0 +τ2
0)√

1+2α2
0τ

2
0


−βe i exp

(−2ν0 −2τ2
0

)
Φ

β0 +2α0(2ν0 +4τ2
0)√

1+32α2
0τ

2
0

)

−

∫
1

0

[
C0e i G(1)γ(s)Ss(M)ℓsβ

S0(M)Ss(1)

·exp

(
−νs − 1

2
τ2

s

)
Φ

βs +αs(νs +τ2
s )√

1+2α2
sτ

2
s

]
dW̄ 1

s

+

∫
1

0

[
C0e i G(1)σµ(e−a(1−s) −1)

a

(
ℓs exp

(
νs + 1

2
τ2

s

)

+ βSs(M)ℓs

S0(M)Ss(1)
exp

(
−νs − 1

2
τ2

s

)
Φ

βs +αs(νs +τ2
s )√

1+2α2
sτ

2
s
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−2βe iℓ2
s exp

(−2νs −2τ2
s

)
·Φ

βs +2αs(2νs +4τ2
s )√

1+32α2
sτ

2
s

)]
dW 2

s ,

where

αs = −1√∫ 1
s (γ(u))2 du

,

βs =
ln Ss (M)

S0(M)ei G(1)ℓs Ss (1)
+ 1

2

∫ 1
s (γ(u))2 du√∫ 1

s (γ(u))2 du
,

γs =σr (C (s,1)−C (s, M)),

νs = µ0 −θ

a
(e−a −e−as)−θ(1− s),

τ2
s =

∫ 1

s

σ2
µ

a2

(
1−e−a(1−u))2

du.

The proof of this second decomposition theorem is similar to the one of Theorem 2, so we omit it.

6.3 Optimal strategy

As in the first model, the practical interest of the preceding theorem has to be emphasized.

Corollary 7. Let g = g (W 1,W 2) and h = h(W 1,W 2) be the two integrands of the preceding
theorem, i.e. the decomposition of l1 can be expressed as

L1 = E [L1]+
∫ 1

0
gs dW 1

s +
∫ 1

0
hs dW 2

s .

The unique admissible and risk minimizing strategy φ∗ = (θ∗,η∗) is given by

θ∗t = S2
t (1)g t

σr St (M)(C (t ,1)−C (t , M))
,

η∗t = e−r t
(
Vt (φ∗)−θ∗t

St (M)

St (1)

)
,

Vt (φ∗) = E [L1]+
∫ t

0
gs dW 1

s +
∫ t

0
hs dW 2

s .

Moreover the residual risk associated to φ∗ is

J =V

[∫ 1

0
hs dW 2

s

]
= E

[∫ 1

0
(hs)2 ds

]
.
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7 Summary of our assumptions

We recall here all the assumptions we have made throughout our modelling methodology:

(H1) The considered contract is a 1 year pure endowment with purely financial profit sharing,

(H2) The mortality index of the whole insured portfolio can be represented by an “average age"
mortality index,

(H3) The non-hedgeable part of the liabilities is normally distributed,

(H4) The force of mortality follows the same Vasicek model in the real, risk-neutral and forward-
neutral worlds (i.e. its dynamics is not affected by the changes of measure),

(H5a) The financial risky asset is a stock, and its price follows a geometric Brownian motion in the
risk-neutral word,

(H5b) The financial risky asset is a zero-coupon bond, the interest rate following a Hull-White model
in the risk-neutral world.

8 Succinct analysis of the mortality model error

We present in this section a succinct analysis of the error generated by Assumption (H2).

8.1 Numerical assessment of the error

We consider a portfolio containing three insured individuals, respectively aged 20, 40 and 60 years.
In [13], the authors give parameters for the three associated forces of mortality, as shown in Table
3.

Age µ0 θ a σµ

20 0.000797 0 −0.051085 0.001343
40 0.001217 0 −0.106695 0.000199
60 0.010054 0 −0.095001 0.001071

Table 3: Parameters of the force of mortality for the three consid-
ered ages
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With these parameters, we compare the two following variables: on one hand the real number of
surviving insured after one year (i.e. not using the approximation)

P̃1 =
∑

x=20,40,60
exp

(
−

∫ 1

0
µx+s(s)ds

)
and on the other hand the approximated number of surviving individuals

P1 = 3exp

(
−

∫ 1

0
µ40+s(s)ds

)
,

meaning that we have chosen x̂ = 40. Figure 3 shows the comparison of 1000 simulations. The
error seems, in the very simple case, to be rather reasonable. The two first empirical moments of
the difference between the approximated and non-approximated quantities are equal to

µ̂
(
P̃1 −P1

)=−0.008355366 and σ̂
(
P̃1 −P1

)= 0.00383535004.

Table 4 gives the average number of surviving persons from an initial portfolio of 30.000 insured
that is uniformly distributed to the three ages, i.e. composed of 10.000 individuals of each age
class.

Age class Surviving insured Deceased insured

20 years 9991 9
40 years 9987 13
60 years 9894 106
Non approximated total 29872 128
Approximated total 29961 39

Table 4: Average number of surviving individuals in a portfolio of 30.000 contracts

8.2 Upper bound on the error

Here we present a theoretical upper bound on the mortality error considered above. As we will
see,this result can be used to optimally calibrate the mortality parameters.
We write

P̃1 =
ωmax∑

x=ωmi n

Nx exp

(
−

∫ 1

0
µx+s(s)ds

)
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Figure 3: Error due to Assumption (H2) on 1000 simulations

for the real mortality (where Nx is the number of insured with age x in the portfolio at the beginning
of the contract) and

P1 =
ωmax∑

x=ωmi n

Nx exp

(
−

∫ 1

0
µx̂+s(s)ds

)
= N exp

(
−

∫ 1

0
µx̂+s(s)ds

)
for the approximated mortality (where N is the total size of the portfolio, regardless the ages).

Proposition 8. Assume that the integral of the force of mortality (i.e. the quantity − lnℓs) is always
positive. Then one has

V
[
L1(P̃1,S1)−L1(P1,S1)

]ÉC 2
0 e2i

ωmax∑
x=ωmi n

N 2
x

(
V

[
β

S1

S0

]
V [|mx −m|]+V

[
β

S1

S0

]
E [|mx −m|]2

+E

[
1+β

S1

S0

]2

V [|mx −m|]
)1/2

,
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where

mx =
∫ 1

0
µx+s(s)ds and m =

∫ 1

0
µx̂+s(s)ds.

Proof. First remark that for every y,m,m̃ Ê 0,

x̃
(
1+ (

y − x̃
)
+
)−x

(
1+ (

y −x
)
+
)É (1+ y) |x̃ −x| .

Indeed, applying the mean value Theorem to the function x 7→ x
(
1+ (

y −x
)
+
)= L(x, y), we obtain

x̃
(
1+ (

y − x̃
)
+
)−x

(
1+ (

y −x
)
+
)= ∂L

∂x
(z, y) |x̃ −x| É (1+ y) |x̃ −x|

where z is between x̃ and x.
Getting back to the liabilities, we thus have

V

[
C0e i P̃1

(
1+β

(
S1

S0
−e i P̃1

)
+

)
−C0e i P1

(
1+β

(
S1

S0
−e i P1

)
+

)]
=C 2

0 e2iV

[
P̃1

(
1+β

(
S1

S0
−e i P̃1

)
+

)
−P1

(
1+β

(
S1

S0
−e i P1

)
+

)]
ÉC 2

0 e2iV

[(
1+β

S1

S0

)∣∣P̃1 −P1
∣∣]

ÉC 2
0 e2iV

[
ωmax∑

x=ωmi n

Nx

(
1+β

S1

S0

)∣∣e−mx −e−m
∣∣]

ÉC 2
0 e2iV

[
ωmax∑

x=ωmi n

Nx

(
1+β

S1

S0

)
|mx −m|

]

applying the mean value Theorem again (to x 7→ e−x ). The result of the proposition is then obtained
by applying the two following classical equalities from the theory of probability:

• for random variables X1, X2, . . . , Xn one has

V

[
n∑

i=1
Xi

]
É

(
n∑

i=1
V [Xi ]1/2

)2

;

• for two independent random variables X1, X2, one has

V [X1X2] =V [X1]V [X2]+V [X1]E [X2]2 +V [X2]E [X1]2 .

This upper bound on the error possesses an interest from the theoretical point of view, but also
allows to perform an “optimal" calibration. Indeed, in order to minimize the error made with the
approximation (H2), it is possible to choose the parameters for the force of mortality µx̂ used in
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the previous sections’ computations so that the preceding bound is as small as possible. We do
not present this computation here, because it is very heavy to write down but very easy on a
conceptual point of view. Remark that, as the force of mortality follows a Vasicek model, mx −
m is normally distributed, and thus |mx −m| is folded-normally distributed. The folded-normal
distribution’s moments are known in closed form (but their expression is rather heavy), so that the
determination of the optimal set of parameters should be an easy exercise.

9 Conclusion and prospects

In this paper we have shown how to blend Malliavin calculus with the Föllmer-Schweizer decompo-
sition to obtain explicit results about evaluation and hedging in an incomplete market framework. In
particular, we have applied these techniques to the liabilities of a life insurer.
We have used this methodology in two different modelling frameworks. It is clear that they are
only examples of what could be made. Other models could clearly be considered. Notice that
our proof can be straightforwardly extended to any model such that the asset price process X is
adapted, log-normally distributed and with deterministic logarithmic Mallaivin derivative (i.e. such
that D ln X = D X /X is a deterministic function).
Similarly, it should be possible to use different models for the force of mortality. We conjecture
that it is feasible for models of the affine term structure class, i.e. for models involving a survival
probability function which has the form exp(aµ+b), where a,b are real constants and µ is the
force of mortality (as the Vasicek model we have chosen in this paper). For example, it should be
possible to apply our methodology to the Cox-Ingersoll-Ross model, even if the resulting Malliavin
derivative is rather complex (see [1]).
It is also possible to extend our results by adding a random factor, e.g. by putting randomness in the
interest rate or in the asset’s volatility. Our attempts in this direction have given results technically
heavy and thus difficult to handle, but not infeasible.
In another direction, it is possible to generalize our theorem with the treatment of more complex
insurance contracts. This will certainly lead to heavier expressions, so that obtaining closed formula
as we did would only result from a miracle. Remark that the Föllmer-Schweizer decomposition, and
thus our entire approach, is only valid for conditional assets H paying only once, at the terminal
date of the contract. A generalization to more general financial cash-flows could perhaps be driven
from the results of [9], where the author treats insurance contracts having a more complex payment
structure.
One can also turn from the life insurance domain and apply these techniques to other incomplete
markets, such as damage insurance, handling e.g. inflation and IBNR amounts.
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Appendix

A Technical result

Lemma 9. Let N ∼N (µ,σ2). Then one has, for every α,β ∈R,

E
[
exp(N )Φ(αN +β)

]= exp

(
−µ− 1

2
σ2

)
Φ

(
β+α(µ+σ2)p

1+2α2σ2

)
.

The proof of this technical lemma is based on the following result given in [8, p. 891]: for every
p > 0 and a,b ∈R, ∫

R
e−px2

Φ(a +bx)dx =
√

π

p
Φ

(
a
p

p√
b2 +p

)
. (12)

Proof. We compute

E
[
exp(N )Φ(αN +β)

]= 1

σ
p

2π

∫
R

exΦ(αx +β)e
−(x−µ)2

2σ2 dx

= 1

σ
p

2π

∫
R
Φ(αx +β)e

−x2−2(µ+σ2)x+µ2

2σ2 dx

= e
(µ+σ2)2−µ2

2σ2

σ
p

2π

∫
R
Φ(αx +β)e

−(x−(µ+σ2))2

2σ2 dx

= e
(µ+σ2)2−µ2

2σ2

σ
p

2π

∫
R
Φ

(
αy +β+α(µ+σ2)

)
e

−y2

2σ2 dx

= e
(µ+σ2)2−µ2

2σ2

σ
p

2π

√
2πσ2Φ

(
(β+α(µ+σ2))(2σ2)−1√

α2 + (2σ2)−1

)

= e−µ− 1
2σ

2
Φ

(
β+α(µ+σ2)p

1+2α2σ2

)
using the change of variables y = x − (µ+σ2) and then Equation (12).
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