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1 Introduction

A variable annuity (VA) is a type of life insurance contract that allows the pol-

icyholder to invest in the financial market and provides guarantees at the same

time. The premium is typically collected through a lump-sum payment and is

invested in one or several mutual funds. Later, the insurance company returns

these investment through a lump-sum payment or a series of contractually spec-

ified payments. An attractive feature of VAs is the embedded guarantees, which

serve as protection of the investment against negative market fluctuations and

mortality risk.

In this thesis, we aim to evaluate the insurance benefits of these guarantees for

a large portfolio of VA contracts. Further, we want to calculate a risk measure,

called solvency capital requirement (SCR), which specifies the amount an insur-

ance company must hold to cover unexpected losses within the next year. In

Chapter 3, we will see that the SCR calculation mainly consists of valuating the

benefits given different financial market evolutions.

Since the payoff of the guarantees is often complex and path-dependent, there is

generally no closed form solution for the valuation problem. In practice, insur-

ance companies often rely on Monte Carlo (MC) simulations. A stochastic model

is used to simulate future economic scenarios, and given one scenario a realiza-

tion of the future benefits for one VA contract is calculated. The mean of the

discounted samples is the MC estimate of the fair market value. However, using

this simulation method on a large portfolio of VA contracts, is computationally

demanding because every contract has to be projected over many scenarios for a

long time horizon.

Within this work, we follow the objective to make the calculation more efficient in

terms of runtime, while preserving the accuracy of the results as much as possible.

Similar to Gan (2013), the idea is to apply machine learning methods to speed
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1 Introduction

up the estimation: First, a small subset of VA contracts is selected from the large

portfolio, and MC simulation is performed on this set of representatives to cal-

culate the quantity of interest. Then a regression model is build based on the

representatives and their values. Lastly, this model is used to predict the fair

values for the entire portfolio.

This approach is able to significantly decrease the computational time because it

only requires a reduced number of expensive MC simulations.

The remaining of this thesis is structured as follows. Chapter 2 gives a brief

description of VA products and their basic guarantees. It proceeds with a universal

framework to determine the today’s fair value of guaranteed benefits and presents

the traditional MC simulation. Chapter 3 introduces the methodology of the SCR

and describes how it can be estimated via a nested MC simulation. Chapter 4

introduces three common machine learning algorithms. In Chapter 5, numerical

results of the application of the machine learning methods to the valuation and

determination of the SCR are presented. Chapter 6 concludes the work.
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2 Variable annuities

Variable annuities (VA) are unit-linked deferred annuities that are designed to

provide a post-retirement income. At contract inception the premium is invested

in a reference portfolio until a specific time T in the future. This period is called

accumulation or deferment phase. The composition of the portfolio reflects the

risk preferences of the policyholder. At retirement time T , also known as matu-

rity, the payout phase starts. The insured can decide whether to take the account

value of the portfolio as lump sum payment at time T or to receive it as a whole

life annuity. The latter means that, according to current market conditions, the

amount is converted into annual annuity payments that are paid until death of

the insured. A main feature of variable annuities is that one can purchase one or

more guarantees to protect the income in case of death and/or a bad fund perfor-

mance. These guarantees are often referred to as GMxB, a guaranteed minimum

benefit, where ’x’ specifies the type. For example, ’x’ can stand for death (D),

accumulation (A), income (I) and withdrawal (W).

The GMDB ensures a minimum benefit in case of death during the accumula-

tion phase. The GMAB guarantees a minimum account value at time T whereas

the GMIB is only relevant when the policyholder decides for annuitization. The

GMWB gives the possibility to withdraw money within certain limits.

To sum up, a variable annuity is a dynamic investment opportunity that can

include protection against financial risks and early death at the same time. In

this chapter, first the guarantees are explained in more detail. Next, I present

a universal pricing framework to determine the today’s value of the insurance

benefits and show how Monte Carlo simulation is used to estimate this value.

This chapter is largely based on Bauer et al. (2008).

3



2 Variable annuities

2.1 Guarantee types

The guarantees embedded in variable annuities can be classified in guaranteed min-

imum death benefits (GMDB) and guaranteed minimum living benefits (GMLB).

The GMLB options consist of the guaranteed minimum accumulation benefit

(GMAB), the guaranteed minimum withdrawal benefit (GMWB) and the guar-

anteed minimum income benefit (GMIB).

For each guarantee, we need to define a benefit base, which is used to determine the

guaranteed amount. We consider three common types of benefit bases: The most

basic one is the return of premium. The benefit base equals the invested premium

and ensures that the policyholder gets back at least the initial investment. In the

(annual) roll-up case, the benefit base is initialized with the premium and is then

compounded annually with a constant interest rate i, where i is called the roll-up

rate. Furthermore, the (annual) rachet benefit base is specified as the maximum

of the account value at all past policy anniversary dates.

The GMDB guarantees a minimum payment if the insured dies before retirement

time T . The dependants receive the greater of the current account value and the

death benefit base. If the option is not included, they receive the account value

only.

The GMAB is the simplest form of guaranteed minimum living benefits within

variable annuities. If the policyholder survives the maturity T , the insurer guar-

antees a minimum account value. Hence, at time T there are four possibilities to

choose from: The policyholder can either take or annuitize the current account

value or take or annuitize the guaranteed amount. The rate, at which the amounts

can be annuitized, is determined at retirement time T .

The option GMIB is similar to the GMAB, but the guarantee can only be taken

if its amount is annuitized at the annuitization rate that has been specified at

contract inception. A lump-sum payment of the guarantee is not possible. The

GMIB can be interpreted as a guaranteed annuity that starts at time T , where

the payments have already been specified at time 0.

Lastly, the GMWB rider gives policyholders the possibility to withdraw money

during the contract life as long as they are alive. The benefit base of the guarantee

specifies the maximum amount that can be withdrawn in total. Also the annual

withdrawal amount is limited, and its maximum is typically defined by a portion
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2 Variable annuities

of the initial premium. At each withdrawal, the account value will be reduced by

the amount of that withdrawal. If an amount higher than the current account

value is withdrawn, the account value is set to zero. That is, it may happen that

withdrawal is possible even if the account value already equals zero. At maturity

time T , the insured receives the remaining account value if there is any. It should

be noted that often there is a certain waiting period and only after that period

withdrawals are possible. However, in this thesis we follow Bauer et al. (2008) and

Milevsky and Salisbury (2006) and assume that withdrawals are possible from the

contract inception.

2.2 Valuation framework

In this section, I present a framework to determine the fair value of one single

contract according to risk-neutral valuation. Within this universal model any

combination of the guarantees introduced in Section 2.1 can be evaluated. We

consider a variable annuity contract with a finite, integer-valued maturity T and

inception at time t = 0.

It is essential to understand which part of the benefit payments will be evaluated

below. We are only interested in the part of the payment that is not covered by

the policyholder’s account, i.e. the amount that the insurance company has to

pay with its reserves. This equals zero if the account value exceeds the guaranteed

amount, otherwise it is defined as the difference between the guaranteed amount

and the account value. In the following, we will refer to this part of the benefit

as guaranteed benefit. The objective is to determine the today’s value of the

guaranteed benefits, denoted by V0.

We start with a brief introduction to the risk-neutral valuation framework followed

by assumptions and notation. The risk-neutral approach allows to determine V0

as expected discounted cash flows. In order to determine the future payments

of the guaranteed benefits, the section proceeds with a framework that projects

a contract along the development of financial markets and biometric risks until

maturity T .

5



2 Variable annuities

2.2.1 Risk-neural valuation

For variable annuities, the benefit payments depend on both biometric risks and

financial factors. Under certain assumptions regarding these two risks, a risk-

neutral pricing formula can be applied.

In this approach, we assume that mortality follows some best estimates. Given

a large portfolio of VA contracts, the mortality risk is diversified and hence it is

plausible to assume that mortality follows its expectation. Further, we suppose

that death can only happen at anniversary dates t = 1,2, . . . of the contract. Let

x0 be the age of the policyholder at inception time t = 0. The term t px0 denotes

the probability for an x0-year old to survive t years, whereas qx0+t denotes the

probability for an (x0 + t)-year old to die within the next year. Hence, t px0 ·qx0+t

is the probability that the policyholder dies at time t +1. Let further ω represent

the limiting age of the mortality table. This means that nobody can get older

than age ω .

For the financial market, we assume the existence of a probability space equipped

with a risk-neutral probability measure Q under which payment streams can be

valuated as expected discounted values. Note that the existence of such a measure

also implies the arbitrage-freeness of the financial market. Further, we suppose

that there is a bank account (Bt)t∈[0,T ] with B0 = 1, Bt = ert and constant short

rate of interest r. We choose this bank account as numéraire. The underlying

mutual fund of the variable annuity is denoted by St .

We also follow the common assumption that financial markets and biometric events

are independent. This allows us to apply risk-neutral pricing and express the

today’s value of the guaranteed benefits from a VA contract by

V0 =
ω−x0

∑
t=1

t−1 px0 ·qx0+t−1EQ
[
e−rT GBT (t)

]
(2.1)

where the expectation is taken with respect to the risk-neutral measure Q of the

financial market, and GBT (t) reflects the total maturity-value of all guaranteed

benefits for this contract when the policyholder dies at time t. That is, for each

possible time of death t, all guaranteed benefits are accumulated and compounded

until maturity T to obtain the time-T value GBT (t).

6



2 Variable annuities

In the following, we aim to create a framework, where the value GBT (t) of the

guaranteed benefits can be derived depending on a stock evolution and the occur-

rence of death at time t. In particular, the total value GBT (t) will be decomposed

into the death benefit DT (t), the withdrawal benefit WT (t) and the survival ben-

efit LT (t), which result from the guarantees GMDB, GMWB and GMAB and/or

GMIB, respectively.

2.2.2 Contract assumptions and notation

In this part, we present further assumptions regarding the insurance contract and

introduce the corresponding notation.

First, we assume a rational policyholder. That is, if there is a choice, he or she

will always take the option with the higher value. Hence, we can say that the

payment to the insured is always the maximum of all possible payment streams.

The premium P is a single, up-front payment and is solely invested in the under-

lying mutual fund St . The term At denotes the account value of the corresponding

policyholder’s individual portfolio.

For simplicity, we exclude all up-front fees. This yields A0 = P. The fee for the

guarantees, represented by ϕ , is charged proportionally to the account value and

is deducted continuously from At every year.

Next, we introduce notations to incorporate the benefit base of each guarantee.

For the GMDB option, GD
t denotes the guaranteed minimum death payment at

time t. Thus, the payment to the dependants in case of death at time t is given

by max{At ,GD
t }= At +max{0,GD

t −At}. As mentioned previously, the second part

of the decomposition equals the guaranteed benefit and is our value of interest. If

the GMDB option is included in the contract, we set GD
0 = A0, otherwise GD

0 = 0.

GA
T is the minimum account value guaranteed to the policyholder if he or she is

still alive at time T . To account for possible changes of this guarantee, e.g. in the

rachet or roll-up benefit base, we consider the development GA
t , t = 1, . . . ,T . If the

GMAB option is included, we set GA
0 = A0, otherwise GA

0 = 0.

Analogously, GI
T specifies the guaranteed amount that is annuitized at maturity T

with pre-specified conversion rate g. This yields annual annuity payments of GI
T g.

The evolution of the guaranteed value is denoted by GI
t . If the contract contains

7



2 Variable annuities

a GMIB guarantee, GI
0 = A0, otherwise GI

0 = 0.

In the GMWB option, GW
t represents the remaining total amount that can be

withdrawn after time t and is initialized with GW
0 = A0. In addition, GE denotes

the maximum amount that can be withdrawn annually and is typically set to a

portion xw ∈ (0,1) of the premium, i.e. GE = xwA0. This amount is assumed to

be constant over time. In reality, each year the insured can choose the amount,

denoted by Et , he or she wants to withdraw within the limits, and clearly this

behavior is not known to the insurance company in advance. Here, we consider a

deterministic withdrawal strategy and in particular suppose that the policyholder

takes the maximum withdrawal amount that is possible every year. If the contract

is without a GMWB, let GW
0 = GE = 0.

In order to valuate the guaranteed benefits, we define two virtual accounts Wt and

Dt , which reflect the time-t value of all guaranteed benefits paid until time t and

arising from the GMWB and GMDB option, respectively.

The withdrawal account Wt incorporates the withdrawals up to time t. Every

withdrawal benefit is credited to the account, and at every time step the account

is compounded with the risk-free interest rate r. Similarly, the death benefit

account Dt is the compounded value of a death benefit paid up to time t. Both

accounts are initialized with zero, i.e. W0 = 0 and D0 = 0.

In the end, the accumulated and compounded maturity-values WT and DT will

be used in the risk-neutral pricing formula shown in Equation (2.1). The third

one, the living or survival benefit LT , is the guaranteed amount resulting from the

options GMAB and GMIB. It is only paid in case of survival of the full contract

life and will be defined in Section 2.2.5.

A visualization of the evolution of the guaranteed benefits can be seen in Fig-

ure 2.1, where we consider two cases: death up to time T and death after time T .

Whenever a benefit value is not depicted in the time line, it equals 0. That is,

in case of death at 1, . . . ,T (see 2.1a) there is no maturity benefit LT , whereas if

death happens after T (see 2.1b) we have DT = 0.

Further, it should be mentioned that in case of death at time t∗, no new with-

drawals are credited to the withdrawal benefit account during [t∗, . . . ,T ] . The

evolution in this time interval only consists of compounding the value Wt∗−1. Sim-

ilarly, the guaranteed death benefit Dt∗ is compounded up to maturity T .

Altogether, we have introduced the variables {At ,Wt ,Dt ,GD
t ,G

A
t ,G

I
t ,G

W
t }. This set

8



2 Variable annuities

(a)

(b)

Figure 2.1: Time line for the evolution of the guaranteed benefit values with a
distinction between (a) time of death up to maturity T and (b) death
after maturity.

is also called state variables as it fully describes the evolution of the contract.

Lastly, we exclude lapses of the insurance contracts. Therefore, the only two events

that can occur during the contract life are:

� death of the policyholder

� withdrawal within a GMWB option

We assume that these events only happen at policy anniversary dates, i.e. at times

t = 1, ...T .

In order to obtain the accumulated and compounded time-T values WT , DT and LT

of the guaranteed benefits, the next two parts explain how the state variables of

the contract are projected along a development of the stock price and depending

on the time of death. We distinguish between developments during the contract

year and changes at anniversary dates. The notation (·)−t and (·)+t refers to the

values of the state variables immediately before and after a policy anniversary

date t, respectively.

2.2.3 Development between t+ and (t +1)−

For t = 0, the initial values of all variables are defined in Section 2.2.2. Now, we ex-

amine the development between two anniversary dates. That is, the development

from t+ to (t +1)− for t = 0, . . . ,T −1.

9



2 Variable annuities

The account value changes according to the evolution of the underlying fund and

is reduced proportionally by the guarantee fee. Hence, we have

A−t+1 = A+
t ·

St+1

St
· e−ϕ . (2.2)

In order to maintain time-t values of the virtual withdrawal and death benefit

accounts, we need to compound them every year with the risk-free interest rate,

i.e. W−t+1 =W+
t er and D−t+1 = D+

t er.

Further, the benefit base of each guarantee is adjusted according to

GD/A/I−
t+1 =

GD/A/I+
t , if return of premium or rachet

GD/A/I+
t · (1+ i) , if roll-up

(2.3)

Updating the return of premium and roll-up bases is intuitive. With the ratchet

type, before taking the maximum of account values, we must first consider a pos-

sible reduction of the account value due to withdrawal at the anniversary date

t+1. Hence, this benefit base will be adjusted in Section 2.2.4. If an option is not

included in the contract, we set GD/A/I−
t+1 = GD/A/I+

t .

Since withdrawals are not allowed during the contract year, the process GW
t re-

mains unchanged here, i.e. GW−
t+1 = GW+

t .

2.2.4 Transition from (t +1)− to (t +1)+

At policy anniversary dates t = 0, . . . ,T −1, we distinguish between the following

cases in order to update all state variables.

(a) Death at time t +1
The guaranteed death benefit at time t +1 is given by

D+
t+1 = max{GD−

t+1−A−t+1,0} (2.4)

In case of death there are no future benefits, and thus the account value and

all remaining benefit bases will be zero. It is not necessary to continue with

the projection framework step by step. Instead, we can directly set A+
T = 0

and GA/I/W/D
T = 0. Due to the occurrence of death, no withdrawal is possible

10



2 Variable annuities

at time t +1 and we get W+
t+1 =W−t+1.

Lastly, the benefit accounts need to be compounded until maturity T by

D+
T = D+

t+1er(T−(t+1)) and W+
T =W+

t+1er(T−(t+1)).

(b) Survival of (t, t +1] and no withdrawal

When no death or withdrawal benefits are paid, the benefit accounts do not

change. Thus, it holds D+
t+1 = D−t+1, W+

t+1 =W−t+1 and also A+
t+1 = A−t+1.

It only remains to update the ratchet type guarantee base by

GD/A/I+
t+1 =

max{GD/A/I−
t+1 ,A+

t+1} , if rachet

GD/A/I−
t+1 , if return of premium or roll-up

(2.5)

and we have GW+
t+1 = GW−

t+1 . Again, if the guarantees are not included, we set

GD/A/I+
t+1 = GD/A/I−

t+1 .

(c) Survival of (t, t +1] and withdrawal

By assumption, the withdrawal amount Et+1 at time t + 1, is given by the

maximum possible amount within the limits, which equals Et+1 =min{GE ,GW−
t+1}.

The remaining guaranteed withdrawal amount is reduced exactly by this

withdrawal, i.e. GW+
t+1 = GW−

t+1 − Et+1. The account value must also be

reduced by this amount. But if the allowed withdrawal is greater than

the account value, the account value is set to zero. This leads to A+
t+1 =

max{0,A−t+1−Et+1}.
The withdrawal benefit is credited to the withdrawal account by

W+
t+1 =W−t+1 +max{Et+1−A−t+1,0} (2.6)

while the death benefit account remains the same, i.e. D+
t+1 = D−t+1.

In order to take the withdrawal into consideration for the other guarantees,

we also need to adjust the benefit bases of the death and survival guarantees.

Usually, they are reduced by the same rate as the account value, which is

called pro rata adjustment. For the ratchet types, we additionally need to

11



2 Variable annuities

consider the maximum with respect to the current account value. We set

GD/A/I+
t+1 =


A+

t+1
A−t+1
·GD/A/I−

t+1 , if return of premium or roll-up

max{A+
t+1

A−t+1
·GD/A/I−

t+1 ,A+
t+1} , if rachtet

(2.7)

and if an option is not included, we can keep GD/A/I+
t+1 = GD/A/I−

t+1 .

If the withdrawal amount exceeded the account value, we have set A+
t+1 = 0.

This event is also known as ruin of the fund. Consequently, the pro rata

adjustment also sets the benefit bases, with the exception of the withdrawal

base, to 0. Note that GW+
t+1 can be greater than zero and thus withdrawals

are still possible in the future. Hence, to deal with an account value being

zero, we define GD/A/I+
t+1 = 0 if A−t+1 = 0.

2.2.5 Survival benefit

By projecting the contract from time 0 to T+ according to the Sections 2.2.3

and 2.2.4, we have constructed the accumulated and compounded withdrawal and

death benefits WT and DT , respectively.

Additionally, after surviving the entire contract the policyholder receives a guaran-

teed living benefit with maturity value LT . If the contract only includes a GMDB

and/or a GMWB option, simply the (remaining) account value at maturity is paid

back and hence there is no guaranteed amount. For a contract including a GMAB

or a GMIB, we now define the minimum guaranteed survival benefits.

The amount of the guaranteed benefit for a GMAB option equals max{GA+
T −

A+
T ,0} and is denoted by LA

T . Although the insured person can choose between a

lump-sum payment and a whole-life annuity, the time-T value of the guaranteed

benefit equals LA
T in both cases.

To see this, we introduce the actuarial notation äxT = ∑
ω−xT
k=0 k pxT e−rk, which indi-

cates the value of an annuity paying one unit of money every year and starting at

age xT . When the policyholder chooses to receive the annuity, the amount GA+
T

is annuitized at current rates yielding annual payments of GA+
T

1
äxT

until death.

12
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Therefore, the time-T value of the whole-life annuity is given by

ω−xT

∑
k=0

k pxT e−rkGA+
T

1
äxT

= GA+
T

1
äxT

ω−xT

∑
k=0

k pxT e−rk = GA+
T

1
äxT

äxT = GA+
T (2.8)

and coincides with the value of the lump-sum payment. Consequently, the guar-

anteed benefit in this case also equals LA
T .

With a GMIB, the policyholders can only take the guarantee if they annuitize the

guaranteed amount GI+
T at guaranteed annutization rate g, which has been speci-

fied at contract inception. In this case, the policyholder receives yearly payments

of GI+
T g as long as he or she is alive. The time-T value of these annuity payments

is then given by
ω−xT

∑
k=0

k pxT e−rkGI+
T g = GI+

T gäxT (2.9)

Typically, the rate g is chosen based on conservative assumptions and is supposed

to lead to äxT g < 1. Finally, the guaranteed income benefit is specified by LI
T =

max{GI+
T gäxT −A+

T ,0}.

When the contract contains both, GMAB and GMIB, the survival benefit is simply

set to the maximum of their guarantee values.

In total, we obtain

LT =


0 , if GMDB and/or GMWB only

max{GA+
T −A+

T ,0}=: LA
T , if GMAB included

max{GI+
T gäxT −A+

T ,0}=: LI
T , if GMIB included

max{LA
T ,L

I
T} , if GMAB and GMIB included

(2.10)

Note that in case of death before time T , the account value and guarantee bases

have been set to zero. Hence, the survival benefit LT equals zero and is well de-

fined by (2.10).

Finally, given the time of death t, the guaranteed benefits LT (t), WT (t) and DT (t)
are specified for a development of the underlying fund St .

Overall, according to Equation (2.1) the today’s value of all guaranteed benefits

13



2 Variable annuities

for one contract can be written by

V0 =
ω−x0

∑
t=1

t−1 px0qx0+t−1EQ
[
e−rT (LT (t)+WT (t)+DT (t))

]
=

T

∑
t=1

t−1 px0qx0+tEQ
[
e−rT (LT (t)+WT (t)+DT (t))

]
+ T px0EQ

[
e−rT (LT (T +1)+WT (T +1)+DT (T +1))

]
(2.11)

To understand the second equation, let us consider t ∈ {T + 1. . . . ,ω}. In this

case, the insured survived the contract, and it is clear that for different t all

the withdrawal and death benefits coincide. Hence, we have WT (t) = WT (T + 1)
and DT (t) = DT (T + 1). Due to the fact that we have deterministic mortality

probabilities, the time-T value of the survival benefit is fixed at time T and we

can also write LT (t) = LT (T +1). The probability of surviving the entire contract

is given by T px0 , and together this yields the second part of (2.11).

Note that by construction we have LT (t) = 0 ∀t ≤ T and DT (t) = 0 ∀t > T .

2.3 Monte Carlo simulation

Even though the fair value in (2.11) is deterministic, there is in general no closed-

form solution to calculate the expected value due to the complex dependency on

the underlying mutual fund. Therefore, one has to apply numerical methods.

In this section I present how Monte Carlo simulation can be used in order to

approximate the today’s value V0.

The basic idea is that, if we knew the future stock evolution during [0,T ], all

guaranteed benefits would be deterministic for each time of death t, and hence the

today’s fair value could be directly obtained. That is, after randomly generating a

large number, say J, of independent stock realizations s( j), j = 1, . . . ,J, we compute

the corresponding benefits and obtain a fair value v( j)
0 for each stock evolution s( j).

Averaging these fair value samples yields an estimate for our value of interest. This

approach is depicted in Algorithm 1.

14



2 Variable annuities

Algorithm 1: Traditional Monte Carlo Simulation

Output: fair value V0
1 Sample J risk-neutral stock paths s(1), . . . ,s(J) for the time interval [0,T ];
2 for j = 1, . . . ,J do

3 Determine v( j)
0 via Equation (2.15) w.r.t. evolution s( j);

4 end

5 V0 =
1
J ∑

J
j=1 v( j)

0 ;

2.3.1 Simulation of stock paths

In order to determine market values, we need to generate J stock paths under the

risk-neutral probability measure Q. There exist several equity models to describe

a fund evolution. As common in this context, we assume that the fund evolves

according to a geometric Brownian motion. That is, the dynamics of St is described

by

dSt = rStdt +σStdW Q
t (2.12)

where W Q
t is a Brownian motion under the risk-neutral measure Q. The drift r

and volatility σ are constants. Note that under Q-dynamics the drift of the stock

process equals the risk-free rate.

By Itô’s lemma, the closed-form solution of the differential equation is given by

St = St−1 · exp
(

r− 1
2

σ
2 +σ(W Q

t −W Q
t−1)

)
t = 1,2, . . . (2.13)

with initial value S0. Without loss of generality we assume S0 = 1.

According to the definition of a standard Brownian motion, the increments W Q
t −

W Q
t−1 are independent and standard normally distributed under measure Q.

Thus, in order to construct J realizations of the process (St)t=1,...,T , we generate

independent samples of a standard normal random variable z( j)
t for j = 1, . . . ,J and

t = 1, . . . ,T .

For each j = 1, . . . ,J, a sample path s( j) = (s( j)
0 , . . . ,s( j)

T ) is obtained by

s( j)
0 = 1

s( j)
t = s( j)

t−1 · exp
(

r− 1
2

σ
2 +σ · z( j)

t )

)
, t = 1, . . . ,T

(2.14)
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2 Variable annuities

2.3.2 Monte Carlo estimation

Given an evolution s( j), we can generate samples of the accumulated and com-

pounded maturity benefits `
( j)
T (t), w( j)

T (t) and d( j)
T (t) for one contract and all times

of death t, as described in Section 2.2.

The time zero value of the guaranteed benefits linked to path s( j) is then given by

v( j)
0 =

T

∑
t=1

t−1 px0qx0+te−rT
(
`
( j)
T (t)+w( j)

T (t)+d( j)
T (t)

)
+ T px0e−rT

(
`
( j)
T (T +1)+w( j)

T (T +1)+d( j)
T (T +1)

) (2.15)

By averaging the independent realizations v(1)0 , . . . ,v(J)0 , we obtain the Monte Carlo

estimate

V0 =
1
J

J

∑
j=1

v( j)
0 (2.16)

which is, by the law of large numbers, an approximation of (2.11).

It is important to understand that within this simulation framework, for each

contract we have to calculate the benefits

� for all times of death t = 1, . . . ,T +1 and

� for all paths s( j), j = 1, . . . ,J.

The maturity T is fixed, but characteristically quite long for a life insurance con-

tract. On the other hand, the number J of simulations is defined by the user.

Clearly, the more realizations we simulate, the better will be the estimate. So

when applying Monte Carlo simulation one has to find a balance between accu-

racy and computational costs.

The goal of this thesis is to evaluate a large portfolio of n variable annuity con-

tracts, represented by X1, . . . ,Xn. Let v0(Xi)
( j), j = 1 . . . ,J denote the corresponding

samples, which yield the MC estimate V0(Xi) .

As n is large, one could already suspect that a MC simulation on all contracts

takes quite long. Let us say we have n = 10000 contracts, J = 1000 paths and a

maturity of T = 25. The number of annual projections that have to be done for

valuation equals n ·N ·T = 2.5 · 108. Even though one can apply parallel imple-

mentation and valuate distinct contracts simultaneously, the computational time
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2 Variable annuities

is still high.

This downside encourages to make use of machine learning methods in order to

design a more efficient valuation algorithm. These methods will be presented in

Chapter 4.
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3 SCR calculation via nested

simulation

The Solvency II Directive is a regulatory framework for insurance companies

within the European Union and has been in force since January 2016. An im-

portant part of the directive is the calculation of the so-called solvency capital

requirement (SCR). It is a risk capital that the insurer must hold to cover unex-

pected losses within the next year.

To calculate the required capital, insurance companies are allowed to use a stan-

dard formula as straightforward approximation. Alternatively, they can develop

a company-specific internal model based on the market-consistent valuation of

assets and liabilities to accurately reflect their risk situation.

In the following, we aim to do the latter. Section 1 introduces a mathematical

framework, in which the SCR of one period is determined for a company offering

variable annuities. We focus solely on market risks. In Section 2, a nested approach

is described to estimate the risk capital based on Monte Carlo simulations.

This chapter is largely based on Bauer et al. (2012).

3.1 The solvency capital requirement

Under the regulatory framework Solvency II, the solvency capital requirement for

one period is defined as the amount of capital that a company needs to survive

the next year with probability of at least 99.5%.

Mathematically, this is expressed by

SCR = argmin
x
{P(AC1 ≥ 0|AC0 = x)≥ 99.5%} (3.1)
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3 SCR calculation via nested simulation

where the available capital ACt is defined by

ACt = MVAt−MV Lt , t = 0,1 (3.2)

The terms MVAt and MV Lt denote the market value of the assets and liabilities

at time t, respectively. The available capital represents the amount of available

financial resources that can serve as buffer against risks. Under Solvency II, it is

also called own funds.

The implicit definition in (3.1) is difficult to evaluate in practice. Therefore, Bauer

et al. (2012) introduce a simpler and approximately equivalent definition based on

the one-year loss function ∆, evaluated at time zero,

∆ = AC0−
AC1

1+ r
(3.3)

where r is the one-year risk-free rate.

The SCR is then given by

SCR = argmin
x
{P(∆ > x)≤ 0.05%} (3.4)

We will always use definition (3.4) in the following. Note that the SCR simply

equals the α-quantile of the loss variable ∆ at confidence level α = 99.5%. That

is, the SCR corresponds to the value of risk. The probability that the loss over

the next year exceeds the SCR is at most 0.05%.

In order to determine the SCR, the quantity of interest is the available capital

for time t = 0 and t = 1. From Equation (3.2), we see that the calculation of

the available capital requires a market consistent valuation of both assets and

liabilities. The valuation of assets is usually straightforward, whereas the valuation

of life insurance liabilities is challenging due to the complex financial structure as

we have seen previously. Thus, the difficulty in determining the SCR largely

originates in the difficulty of valuating the liabilities. Within this thesis it is not

possible to provide a realistic framework for both assets and liabilities. Therefore,

similarly to Hejazi and Jackson (2017), we assume a simple asset structure and

restrict the insurance business to the portfolio of variable annuities. For t = 0 and

t = 1, we consider the balance sheet depicted in Table 3.1.
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3 SCR calculation via nested simulation

Assets Liabilites
Mt MV Lt
At ACt
MVAt MVAt

Table 3.1: Simplified balance sheet

We assume that the insurance company does not hedge any risks and invests

the shareholders’ total money, denoted by M0 at time 0, at risk-free interest rate

r. Further, we have the initial account value of the reference portfolio from all

variable annuity contracts, denoted by A0. Note that this amount does actually

not belong to the insurer’s assets. It will be fully paid back to the policyholders.

Hence, exactly the same amount A0 also occurs on the liability side as part of

the insurance liabilities MV L0. MV L0 also consists of the time zero value of the

guaranteed benefits for the whole portfolio, denoted by V0. Therefore, we can

rewrite MV L0 = A0 +V0.

The same holds for time t = 1. The only value known at time 0 is the shareholders’

money M1 = M0(1+ r). All other time-1 market values are random at time 0.

In total, under this setting we obtain

AC0 = MVA0−MV L0 = (M0 +A0)− (A0 +V0) = M0−V0

AC1 = MVA1−MV L1 = (M1 +A1)− (A1 +V1) = M1−V1 = M0(1+ r)−V1
(3.5)

Together with (3.3) this yields

∆ = AC0−
AC1

1+ r
= (M0−V0)−

M0 · (1+ r)−V1

1+ r
=−V0 +

V1

1+ r
(3.6)

and we see that the loss does not even depend on the asset amount M0. The

randomness of the loss variable ∆ comes from the randomness of the time-1 value

of the guaranteed benefits V1.

Therefore, in order to obtain the SCR by assessing the one-year loss distribution,

we need to calculate the current market value of all guaranteed benefits and the

distribution of their market value in one year.

In the next section, it is explained how this task can be solved within the nested

simulation approach.
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3 SCR calculation via nested simulation

3.2 Nested Monte Carlo simulation

Given Equation (3.4), we can calculate the SCR by assessing the distribution of

the one-year loss ∆. Since the true loss distribution is not known, we need to rely

on its empirical distribution and construct realizations of the random variable ∆

by a nested MC simulation approach.

First, we need to set the mathematical framework. Let T be the maturity of

the longest-term policy in our portfolio. For the financial market, we assume

the existence of a complete probability space (Ω,F,P) equipped with a filtration

F = (Ft)t∈[0,T ]. Ω is the set of all possible outcomes of the financial market while

P is the real-world probability measure. Ft represents all information about the

financial market up to time t. Further, in order to perform market-consistent

valuation of the guaranteed benefits from VAs, we also follow the assumptions

introduced in Section 2.2. In particular, we assume the existence of the risk-

neutral probability measure Q to perform risk-neutral valuation.

By definition (3.4) the SCR is the 99.5%-quantile of the one-year loss distribution

with respect to probability measure P.

That is, we need to investigate the real-world distribution of the random variable

∆ : Ω→ R. For a state ω ∈Ω, Equation (3.6) yields

∆(ω) =−V0 +
V1(ω)

1+ r
(3.7)

As V0 and r are deterministic, assessing the distribution of ∆ corresponds to as-

sessing the real-world distribution of the F1-measurable random variable V1.

We will estimate this distribution via an empirical distribution, which is specified

by N real-world samples ω(1), . . . ,ω(N) for the development of the financial market

over the first year. Since we have assumed that the risk-free rate r is constant, the

uncertainty of the financial market is fully captured by the evolution (St)t∈[0,1] of

the underlying stock from the VA contracts.

Although the market value V1 conditional on scenario ω(`), denoted by V (`)
1 , is

deterministic, there exists no closed-form solution to determine this value and

again we need to rely on Monte Carlo simulation. To do so, for each scenario

`= 1, . . . ,N, we estimate V (`)
1 via an MC simulation by considering J risk-neutral

paths starting at the endpoint of ω(`). Due to the nested structure of stock market
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3 SCR calculation via nested simulation

simulations this approach is called nested simulation and is illustrated in Figure

3.1.

Figure 3.1: Nested simulation approach

To avoid confusion, we will always refer to the outer (real-world) samples as sce-

narios and to the the inner (risk-neutral) samples as paths.

Altogether, the approach is summarized in Algorithm 2. In the following parts

every step is explained in detail.

Algorithm 2: Nested Monte Carlo Simulation

Output: SCR of the overall portfolio
1 Estimate V0 =V0(X1)+ · · ·+V0(Xn) using Algorithm 1;

2 Sample N real-world scenarios ω(1), . . . ,ω(N) of the underlying fund for the
time interval [0,1];

3 for `= 1, . . . ,N do
4 for i = 1, . . . ,n do

5 Estimate V1(Xi)
(`) via MC simulation given evolution ω(`) ;

6 end

7 V (`)
1 =V1(X1)

(`)+ · · ·+V1(Xn)
(`);

8 ∆(`) =−V0 +
V (`)

1
1+r ;

9 end

10 Approximate the SCR by the empirical 99.5%-quantile of ∆(`) ;
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3.2.1 Determining V0

The term V0 equals the sum of the today’s benefit values from all contracts of the

portfolio. As presented in Chapter 2, each of them is deterministic at t = 0 and

can be computed by risk-neutral valuation. In case of variable annuities, we do not

have an analytical solution of Equation (2.1) and thus have to rely on numerical

methods like MC simulation.

Via the procedure described in Algorithm 1 we approximate the today’s values

V0(X1), . . . ,V0(Xn) of all contracts, and hence we obtain the today’s liabilities of

the guaranteed benefits from the entire portfolio by V0 = ∑
n
i=1V0(Xi).

3.2.2 Generating stock scenarios

The solvency calculation aims to assess the risk of an insurance company de-

pending on future developments of the financial market. For risk management

purposes, we consider possible realistic evolutions of the market in the future, i.e.

under the real-world measure P. In our setting, the development of the underlying

stock St captures the entire uncertainty of the financial market. Hence, in order to

assess the distribution of V1, we need to generate N stock scenarios ω(1), . . . ,ω(N)

over the first year under the measure P.

In the valuation framework of variable annuities (see Section 2.2) we have assumed

that the events of death and withdrawal can only happen at policy anniversary

dates. Thus, it is sufficient to model the evolution in the interval [0,1] by one

single realization ω(`) at time t = 1.

Similar to Section 2.3.1, we assume that the dynamics of St is described by

dSt = µStdt +σStdW P
t (3.8)

but now with W P
t being a Brownian motion under real-world measure P and drift

µ being larger than the risk-free rate r. As initial value we take S0 = 1.

Analogously, we obtain N scenarios ω(`), `= 1, . . . ,N, of S1 by generating N stan-

dard normal random variables z(`), ` = 1, . . . ,N. For each ` = 1, . . . ,N, we then

set

ω
(`) = exp

(
µ− 1

2
σ

2 +σ · z(`)
)

(3.9)
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as S0 = 1 is assumed to hold.

3.2.3 Determining V (`)
1

Given scenarios of the stock value at time 1, in this section, we aim to draw

realizations of the guaranteed benefits V1.

In general, using risk-neutral pricing, the fair value at t = 1 of all future guaranteed

benefits for one single contract Xi is given by

V1(Xi) =
ω−x0

∑
t=2

t−1 px0 ·qx0+t−1EQ

[
e−r(T−1)GBT (t,Xi)|F1

]
(3.10)

Of course, F1 is not available at t = 0 and thus V1(Xi) is random from today’s

point of view.

Now, conditional on a scenario ω(`), `= 1, . . . ,N, of the stock market at time t = 1,

we obtain a realization of the fair value for contract Xi by

V (`)
1 (Xi) =

T

∑
t=2

t−1 px0 ·qx0+tEQ

[
e−r(T−1) (LT (t,Xi)+WT (t,Xi)+DT (t,Xi)) |ω(`)

]
+ T px0EQ

[
e−r(T−1) (LT (T +1,Xi)+WT (T +1,Xi)+DT (T +1,Xi)) |ω(`)

]
(3.11)

Again, there is no analytical solution for the calculation of V (`)
1 (Xi) and we need

to use Monte Carlo simulation.

Before we can perform the time-1 valuation of future guaranteed benefits, we need

to project the contracts from time t = 0 to time t = 1 along each scenario ω(`).

This process is often referred to as aging and reflects what happens actually to

the annuity contract, i.e. according to the real-world scenario.

Independent of whether real-world or risk-neutral scenarios are given, the cash flow

projection model described in Section 2.2 is valid. Therefore, for each scenario we

age each contract by projecting the state variables from time 0 to 1 according to

the presented framework and given scenario ω(`) for S1 . Now, the only adjustment

is that, because we do not want to include withdrawal and death benefits paid at

time t = 1 in the valuation of future benefits, we reset the corresponding benefit
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accounts to zero, i.e. W1 = D1 = 0.

Afterwards, we can apply MC simulation to determine the fair value at time 1
conditional on a stock scenario ω(`).

As we aim to determine a market-consistent value, for each `= 1, . . . ,N, we need to

generate risk-neutral paths of the stock evolution starting at scenario ω(`) at time

1. Thus, we set s(`)1 = ω(`) as starting value and then generate J sample paths

s(`, j), j = 1, . . . ,J for the development in t ∈ [1,T ] according to the risk-neutral

generator (see Section 2.3.1).

Now, by projecting the contracts along these risk-neutral paths, as described in

Section 2.2, we obtain maturity values for the guaranteed benefits. For each

contract i = 1, . . . ,n, for each outer scenario `= 1, . . . ,N, for each inner stock path

j = 1, . . . ,J and for each time of death t = 2, . . . ,T + 1, we get realizations of the

values L(`, j)
T (t,Xi), W (`, j)

T (t,Xi) and D(`, j)
T (t,Xi).

In total, Equation (3.11) together with the observed maturity values yields samples

v(`, j)1 (Xi) of the fair value of guaranteed benefits at time 1.

Finally, the Monte Carlo estimate for contract Xi of the time-1 value conditional

on scenario ` is given by

V (`)
1 (Xi) =

1
N

N

∑
j=1

v(`, j)1 (Xi) (3.12)

Adding up all contract values yields the desired estimate of the value for the entire

portfolio

V (`)
1 =

n

∑
i=1

V (`)
1 (Xi) (3.13)

3.2.4 Estimation of SCR

In the last step, for each scenario ω(`), we define an observation of the loss variable

by

∆
(`) =−V0 +

V (`)
1

1+ r
(3.14)

Note that the estimates V (`)
1 , ` = 1, . . .N, are independent and identically dis-

tributed as direct MC realizations and hence this also holds for ∆(`) as linear
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transformation of it. Therefore, the loss samples can be used to construct an

empirical distribution.

By definition (3.4), the SCR is the smallest x such that P(∆ > x)≤ 1−α where α

equals 99.5%. This is equivalent to P(∆≤ x)≤ α . Now, having observations of the

random variable ∆, we can estimate this probability via its empirical distribution:

P(∆≤ x)≈ |{∆
(`) : ∆(`) ≤ x}|

N
(3.15)

Choosing x minimal such that the approximated probability is at most α , results in

x being the empirical α-quantile. After ordering the N loss realizations in ascend-

ing order, yielding ∆(1) ≤ ·· · ≤ ∆(N), the empirical α-quantile of ∆ is given by the

bαNc-th element of the ordered losses. Therefore, the SCR can be approximated

by

SCR = ∆(bαNc) (3.16)

Clearly, the more observations N we have, the better will be the SCR approxima-

tion, especially because we are interested in the tail of the loss distribution. On

the other hand, increasing the number N significantly increases the running time

of the nested MC simulation. For each outer scenario, we need to project J paths

in the inner simulation due to the complex valuation of variable annuities.

If we have a large portfolio of VA contracts, the computational costs get extremely

high and an acceptably accurate estimation of the capital requirement via nested

simulation becomes impractical. Not even parallel implementation can reduce the

runtime satisfactorily.

For this reason, it is very obvious that we want to make use of machine learning

methods in order to speed up the estimation.
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4 Introduction to machine

learning methods

The downside of the Monte Carlo simulation schemes, presented in Sections 2.3

and 3.2, is the high computational time, in particular for a large number of con-

tracts. Therefore, the aim is to apply machine learning methods to speed up the

valuation and SCR determination.

The basic idea is to use the computationally expensive MC simulation only for a

subset of contracts, or in case of SCR a subset of contracts and scenarios, called

representatives. A prediction model is fit on the representatives and their MC

values, and lastly the values of the remaining samples can be estimated via the

fitted model.

In this chapter, machine learning methods are introduced that can serve as pre-

diction models in the outlined approach.

Generally, machine learning methods can be categorized into supervised and un-

supervised algorithms. In supervised learning, observations of the outcome can

be used to guide the learning process, while in unsupervised learning there is no

outcome measure, and the goal is to find patterns among input observations.

We deal with supervised methods as we can estimate the value of interest via

MC simulation. In this thesis, three very common machine learning methods are

presented: Generalized linear models, regression trees and neural networks.

Since machine learning is very popular and has many areas of application, there

exist different variants and extensions of these methods. It is not possible to give

a complete overview within this thesis, and thus we limit ourselves to one version

for each machine learning method. The methods of this chapter will be applied in

Chapter 5 on variable annuity contracts.
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In the following, we assume that we have k observations y1, . . . ,yk of the value

of interest, which is referred to as response or dependent variable. For each ob-

servation i, xi j denotes the value of the j-th variable, j = 1, . . . , p, and we write

xxxiii = (xi1, . . . ,xip). Since these p variables are used to predict the response, they

are often called predictors or explanatory variables.

Our insurance portfolio is said to be a data of mixed type. That is, we have both

numerical and categorical variables. The numerical variables consist of quanti-

tative attributes like age, premium and roll-up rate. Categorical variables, also

referred to as factors, take a fixed number of non-numerical values and there is

no logical order between the categories. Each possible value of a factor is referred

to as level or category. For example, the attribute gender is a categorical variable

and has the levels male and female.

Some machine learning algorithms cannot handle categorical variables. In this

case, these variables must be converted into binary variables, so-called dummy

variables. For each level a column is created, where the i-th entry equals 1 if the

level of observation i corresponds to the category of the column, otherwise 0.

Clearly, there is some redundancy in this dummy coding. For instance, suppose

that we have a variable gender with two levels ’male’ and ’female’. If we know

that the policyholder is female, then the policyholder is not male, and vice versa.

Hence, one column can be omitted. In general, the number of dummy-coded vari-

ables needed for one categorical variable is one less than the number of its levels.

The level that is excluded in the dummy variables is called reference or baseline.

After converting all factors into non-redundant binary variables, the total number

of variables used in our data set is denoted by p∗.

4.1 Generalized linear models

In a classical linear model, the observations are assumed to be normally distributed

around the mean that is a linear function of coefficients and explanatory variables.

A generalized linear model (GLM) extends this concept in two directions: The

random variables involved do not need be normal, and additionally a transformed

linear relationship between means and explanatory variables is possible. GLMs

were introduced by McCullagh and Nelder (1989).
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The values y1, . . . ,yk are assumed to be observations af a sequence of random vari-

ables Y1, . . . ,Yk, where the components Yi are independently distributed with means

E(Yi) = µi. Further, they are assumed to belong to the same member of the expo-

nential family. The probability distribution of the response is said to determine

the random component of the model.

The predictors need to be of numerical type and hence a conversion of cate-

gorical variables into dummy variables is necessary. The resulting columns are

summarized in the so-called design matrix XXX . It consists of the p∗ numerical

columns and a vector of ones as first column. An observation i of explanatory

variables corresponds to a row xxxiii of XXX . For a more compact notation, we also

write yyy = (y1, . . . ,yk)
T , µµµ = (µ1, . . . ,µk)

T .

The systematic component of the model describes how the explanatory variables

are related to the mean of the responses. The linear predictor ηηη = (η1, . . . ,ηk)
T is

defined by

ηi = β0 +
p∗

∑
j=1

xi jβ j (4.1)

where βββ = (β0,β1, . . . ,βp∗)
T are the regression coefficients, and β0 is particularly

called intercept. The parameters are unknown and have to be estimated from

data. Clearly, ηηη is linear in the regression coefficients.

In matrix notation, the linear predictor can be written as ηηη = XXXβββ .

The link between the random and systematic component is captured by the so-

called link function g(·). It holds

ηηη = g(µµµ) = g(E[YYY ]) (4.2)

In total, for estimates β̂ββ of the regression coefficients, a response value can be

estimated by

ŷ = g−1(β̂0 +
p∗

∑
j=1

β̂ jx j) (4.3)

given explanatory values xxx, and where g−1 is the inverse of the link function.
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4.1.1 The exponential family

In GLMs we assume that the responses come from a distribution that belongs

to the exponential family. It is a large class of distributions and includes, for

example, discrete distributions as Bernoulli, Binomial and Poisson or continuous

distributions as Normal, Gamma or Inverse Gaussian.

A distribution is a member of the exponential family if its probability mass func-

tion (if Y discrete) or its density function (if Y continuous) has the form

f (y;θ ,φ) = exp
(

yθ −b(θ)
a(φ)

+ c(y,φ)
)

(4.4)

for some specific functions a(·), b(·) and c(·). θ is called the canonical parameter,

and φ is the dispersion parameter.

For instance, the Normal distribution can be written as

f (y;θ ,φ)=
1

σ
√

2π
exp

(
−1

2

(
y−µ

σ

)2
)
= exp

(
yµ−µ2/2

σ2 − 1
2
(

y2

σ2 + log(2πσ
2))

)

so that θ = µ , φ = σ2, and a(φ) = φ , b(θ) = θ 2/2 and c(y,φ) =−1
2(

y2

φ
+ log(2πφ)).

For all members of the exponential family, it can be shown that

E(Yi) = µi = b′(θi)

Var(Yi) = b′′(θi)a(φ) =V (µi)a(φ)
(4.5)

where the variance function is defined by V (µi) = b′′(θi).

The choice of the probability distribution may be suggested by the type of the

response data or knowledge of how the variance changes with the mean.

The family of exponential distributions enables the GLMs to be fitted to a wide

range of data types, such as binary data, counts, proportions, and continuous

data.
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4.1.2 The link function

The link function relates the linear predictor ηηη to the expected value µµµ so that

g(ηηη) = µµµ , where g(·) can be any monotonic differentiable function. The canonical

link function is a special link function satisfying θθθ = g(µµµ).

Which link function should be used depends on the relationship and distribution

of the dependent variable. When both µµµ and ηηη take any value on the real line, it

might be plausible to use the identity link and simply set µµµ = ηηη . In contrast, if

we are dealing with e.g. Gamma or Poisson distribution, we must ensure µµµ > 0
while ηηη might be negative. A reasonable choice in this case could be the log link

ηηη = log(µµµ) with its inverse µµµ = eηηη .

The choice of the link function also influences the interpretation of the parameters.

For instance, with a log link function additive effects contributing to ηηη become

multiplicative effects contributing to µµµ .

4.1.3 Parameter estimation

By assuming that the distribution of Y belongs to the exponential family, maxi-

mum likelihood estimates can be derived for the regression coefficients β0,β1, . . . ,βp∗ .

The log-likelihood is defined by `(yi,θi,φ) = log f (yi,θi,φ). Since the random vari-

ables Yi are independent and belong to the exponential family, the sample log-

likelihood of vector yyy is given by

`(yyy,µµµ,φ) =
k

∑
i=1

`(yi,θi,φ) =
k

∑
i=1

yiθi−b(θi)

a(φ)
+ c(yi,φ) (4.6)

where θi is a function of µi = xxxiiiβββ .

Maximum likelihood estimates solve the score equations

U(β j) =
∂`(yyy,µµµ,φ)

∂β j
= 0, j = 1, . . . , p∗. (4.7)

In matrix notation, we write U(βββ )= 0. In general, simultaneously solving the score

equations is not trivial, and an iterative solution has to be computed numerically.
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We apply a variant of the Newton-Raphson algorithm, called Fisher scoring al-

gorithm. The Fisher information matrix is defined as the negative expectation of

the matrix of second derivatives, i.e. III(βββ ) =−E
[

∂ 2`(yyy,µµµ,φ)
∂βββ∂βββ

T

]
.

One iteration follows

βββ
(r+1) = βββ

(r)+
{

III(βββ (r))
}−1

U(βββ (r)) (4.8)

where βββ
(r) is the estimate of βββ at iteration r.

Applying the chain rule and using (4.5) yields

U(β j) =
∂`(yyy,µµµ,φ)

∂β j
=

1
a(φ)

k

∑
i=1

Wi(yi−µi)
dηi

dµi
x ji (4.9)

for j = 1, . . . , p∗, when we define W−1
i =V (µi)

(
dηi
dµi

)2
.

Further, it holds that the Fisher scoring matrix has elements

I js(βββ ) =−E
[

∂ 2`(yyy,µµµ,φ)
∂β j∂βs

]
=− 1

a(φ)

k

∑
i=1

x jixsi

V (µi)(dηi/dµi)2 =− 1
a(φ)

k

∑
i=1

Wix jixsi.

(4.10)

In total, we have U(βββ ) = 1
a(φ)XXX

TWWWMMM(yyy− µµµ) and III(βββ ) = 1
a(φ)XXX

TWWWXXX , where WWW is

the diagonal matrix of Wi and MMM is the diagonal matrix of link derivatives dηi
dµi

.

Hence, we can write (4.8) as

βββ
(r+1) = βββ

(r)+(XXXTWWWXXX)−1XXXTWWWMMM(yyy−µµµ) (4.11)

where all quantities at the right hand side are evaluated at βββ
(r).

Note that a(φ) cancels out in (4.11), and hence φ does not need to be known in

order to estimate βββ .

It can be shown that each iteration step of the Fisher scoring algorithm equals the

result of a weighted least squares regression of an adjusted dependent variable zi

on explanatory variables xi j. For zzz = µµµ +MMM(yyy−µµµ), iteration (4.11) is equivalent

to

βββ
(r+1) = (XXXTWWWXXX)−1XXXTWWWzzz. (4.12)

Therefore, the procedure is also called iteratively re-weighted least squares (IRLS)
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algorithm because in each iteration the weight matrix is updated.

Furthermore, a positive aspect of the algorithm is that the weights and adjusted

responses depend on the coefficients only via the fitted values µi. Since the ob-

jective of the model fitting is to produce µ̂i that are as close as possible to the

original yi, it is natural to start with the initial value µµµ(0) = yyy.

The algorithm stops when the parameter estimates do not change significantly

anymore. The final estimate is denoted by β̂ββ .

4.1.4 Statistical inference

Considering a statistical model such as the GLM allows for statistical inference,

see Dunn and Smyth (2018). Here, we introduce the Wald test.

This inference method tests the null hypothesis H0 : β j = β 0
j for any j = 0, . . . , p∗,

where β 0
j is some specific value. One can show that the regression coefficients β̂ j

are approximately normally distributed for a sufficiently large size of the training

sample. Furthermore, the standard error of the estimated parameters can be

directly calculated from the inverse of the information matrix. It holds se(β̂ j) =√
φv j, where v j are the square-root diagonal element of (XTWX)−1.

Hence, if H0 is true, the test statistic Z =
β̂ j−β 0

j

se(β̂ j)
is approximately standard normally

distributed. One should reject H0 at significance level α if |Z|> zα/2, where zα/2

denotes the α/2-quantile of the standard normal distribution.

When φ is unknown, an estimator s2 of φ must be used to compute the standard

errors se(β̂ j) = sv j. For details of s2, see Dunn and Smyth (2018). The Wald

statistic is then defined by T =
β̂ j−β 0

j

se(β̂ j)
. And now, as the estimate s2 is used, T

follows approximately a t-distribution with k− (p∗+1) degrees of freedom under

H0. The hypothesis should be rejected at significance level α if |T |> tα/2,k−p∗−1.

4.1.5 Extensions

The GLM is already a generalization of the classical linear model. Nevertheless,

various extensions exist that are not considered in this thesis, but are worth men-

tioning.

For instance, a model could include
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� Interaction terms: Sometimes two factors, or a factor and a numerical, have

an interaction effect. For example, when gender and age are explanatory

variables, but the age effect for males and females is different. Gender and

age can then be combined into one variable that describes the combined

effect of these variables and is called their interaction.

� Semi-parametric components: E.g. generalized additive models (GAMs)

are able to handle non-parametric components in the linear predictor η by

smooth functions of the explanatory variables.

4.2 Regression trees

We follow the classification and regression tree (CART) methodology introduced

by Breiman et al. (1984), and that is also presented in James et al. (2013). Clas-

sification trees are used to predict categorical response, whereas regression trees

deal with continuous responses. We focus on regression trees only.

The idea of tree-based methods is to divide the space of explanatory variables

into non-overlapping regions that are homogeneous with respect to the response

values.

A tree can be easily visualized in a tree chart. Starting at the root, an observation

is passed down the tree through multiple splits, called internal nodes, where rule-

based decisions are made until it reaches a terminal node or region.

In regression trees, the prediction for each region is a constant that equals the

sample mean of the response values within the region. That is, given regions

R1, . . . ,RH and an observation xxx of explanatory variables, the prediction is given

by

ŷ = f (xxx) =
H

∑
m=1

µm1xxx∈Rm (4.13)

where µm denotes the mean of response values in region Rm.

An exemplary regression tree is shown in Figure 4.1. For each node, the sample

mean and the proportion of observations in the corresponding subtree is depicted.

The tree consists of eight terminal nodes and hence the number of distinct pre-

diction values is restricted to eight.
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Figure 4.1: A single regression tree build on the Boston Housing data. The value
of interest is the price of built houses in 1000 USD. The prediction is
based on the average number of rooms per dwelling (rm), the percent-
age of lower status of the population (lstat), the per capita crime rate
by town (crim), and the weighted distances to five Boston employment
centers (dis).

Note that trees can easily handle categorical predictors without converting them

into dummy variables.

4.2.1 Tree construction

The goal is to find an appropriate number H and regions R1, . . . ,RH that minimize

the sum of squared errors (SSE) when an observation in region Rm is predicted by

the region’s mean µm. The SSE is defined by

SSE =
H

∑
m=1

∑
xi∈Rm

(yi−µm)
2 (4.14)

It is infeasible to consider every possible partition of the predictor space, and

typically a recursive binary splitting is used to find an approximately optimal

division. Binary refers to the fact that each parent node is always split into two

child nodes. Recursive implies that the predictor space is split successively and

partitions do not change based on later partitions in the tree.
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The fitting process starts with the entire data set and selects a predictor and a cut

point to partition the data into two groups such that the resulting split minimizes

the sum of squared errors. At each further step, the parent node, the predictor

and the split point have to be found such that this additional split leads to the

greatest reduction in the SSE.

For continuous predictors the process of finding the optimal location of the split is

straightforward since the data can be ordered in a natural way. However, when a

variable has more than two categories, the search becomes more complex because

there are multiple possibilities to combine the categories in two subgroups.

The splitting process is repeated until a certain stopping criteria. Typically, the

minimum number of samples in a terminal node and/or the maximum tree depth

are specified.

4.2.2 Pruning

A fully grown tree is often quite large and could have single observations in the

terminal nodes. This could cause overfitting and poor prediction performance on

new data sets. On the other hand, if the training process is stopped too early,

the constructed tree might be too small and not be able to capture the existing

relationship.

A widely used strategy, called pruning, is to grow a very large tree T0 and then

prune it back to a subtree of appropriate size. Intuitively, the optimal subtree is

the one with minimum test error. Given a subtree, one can estimate its test error

using cross-validation. However, estimating the cross-validation error for every

possible subtree is computationally expensive.

Instead, we follow a process called cost-complexity tuning. The complexity pa-

rameter α > 0 penalizes the tree size, which is defined as the number of terminal

nodes. Given a large tree T0 and fixed parameter α , an optimal subtree Tα of T0

is found as

Tα = arg min
T⊂T0

{
|T |

∑
m=1

∑
xi∈Rm

(yi−µm)
2 +α|T |

}
(4.15)

where |T | denotes the number of terminal nodes in T . For a range of parameters

α , a sequence of optimal subtrees Tα can be determined via (4.15).
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In the next step, we aim to find the best subtree within this sequence with respect

to the test error. The K-fold cross-validation consists of the following steps:

1. Divide the data into K folds.

2. For each k = 1, . . . ,K and for each α : Use all but the k-th fold to grow a

large tree and apply cost-complexity tuning with parameter α . Given this

tree, determine the mean squared error (MSE) on the k-th fold.

3. Average the error for each α over all K folds, yielding MSEα .

4. Take α∗ with minimum MSEα .

Lastly, we find Tα∗ as optimal subtree according to (4.15).

4.2.3 Ensemble methods

Although pruning is applied in the tree construction, single regression trees still

suffer from high variance and appear very unstable to small changes in the data.

By aggregating many regression trees, the predictive performance can be substan-

tially improved. This approach is called ensemble technique. Of course, ensembles

can be helpful in any other prediction method as well. However, since the tech-

nique is particularly powerful for tree models, we introduce it in this section.

Bootstrap aggregation (bagging), proposed by Breiman (1996), is one method to

create ensembles. The basic idea is that averaging multiple predictions that are

based on independent data sets reduces the variance. In practice, we generally

do not have multiple separate data samples and instead we need to rely on boot-

strapping. A bootstrap sample is drawn by randomly taking observations from

the data with replacement until the sample has the same size as the original data

set. With replacement means that the same observation can occur multiple times

in the bootstrap data set.

Therefore, the first step is to generate a number, say B, of bootstrap samples in-

dependently from the data set. For each bootstrap sample b = 1, . . . ,B, we then

grow a single, unpruned tree yielding the prediction f b(xxx).
The overall prediction value is given by the average of the individual predictions:

ŷ = fbag(xxx) =
1
B

B

∑
b=1

f b(xxx) (4.16)
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Note that each (unpruned) tree has high variance, but low bias. Averaging these

B trees reduces the overall prediction variance.

One drawback of bagging is that we cannot fully exploit variance reduction since

the single trees are not completely independent. As all predictors are considered

at any time in all trees, the grown trees may have very similar structures due

to the underlying relationship. This is called tree correlation. We now want to

de-correlate the trees by adding randomness to the construction process.

Breiman (2001) suggested an algorithm called random forests. It works very sim-

ilar to bagging and we also make use of bootstrap samples. But when the trees

are built, only a limited number m≤ p of explanatory variables are considered at

random as candidates to find the best split. Each time a split is constructed, an-

other subset of predictors is selected randomly. Again, the trees are left unpruned

and the individual predictions are averaged equivalently to (4.16) to give the final

prediction.

In summary, random forests de-correlate trees by forcing each split to consider only

a subset of the explanatory variables. Clearly, if a random forest is built based on

m = p predictors in each steps, the method simply corresponds to bagging.

There exist also other ensemble methods that are not covered in this thesis. For

instance:

� Boosting: Boosting is similar to bagging and differs only in the way the

data is resampled. In bagging all observations have the same probability

of being selected into the next bootstrap sample. Whereas in boosting,

observations that have been frequently misclassified in previous trees have a

higher probability to be drawn.

� Stochastic Gradient Boosting: Many small regression trees are built sequen-

tially based on the residuals from the previous tree. In each step, a shrunk

version of the prediction term from the current tree is added to the model.
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4.3 Neural networks

Artificial neural networks, or simply neural networks, are a non-linear regression

technique inspired by models of the human brain. Here, we present a single-layer

feed-forward network and follow Kuhn and Johnson (2013).

The architecture of a neural network can be visualized by a diagram as depicted in

Figure 4.2. It contains nodes, so-called neurons, and one-way connections between

them. The input layer consists of all explanatory variables, where the categorical

ones have been replaced by dummy variables. The elements of the hidden layer

are referred to as hidden units since they are not directly observable from the data

sample. H denotes the number of hidden units. The output neuron produces the

value of interest.

Figure 4.2: A single-layer neural net with three hidden units

Each hidden unit receives a linear combination of the predictors transformed by a

non-linear function g(·), which is called activation function. Usually, the logistic

function g(u) = 1
1+e−u is used.

Given an input xxx with p∗ explanatory variables x1, . . . ,xp∗ , the value of the m-th

hidden unit can be expressed by

hm(xxx) = g

(
βm0 +

p∗

∑
j=1

x jβm j

)
, m = 1, . . . ,H (4.17)
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The outcome of the network is then calculated as linear combination of all hidden

units:

f (xxx) = γ0 +
H

∑
m=1

γmhm(x) (4.18)

In total, we obtain the predicted value by

ŷ = f (xxx) = γ0 +
H

∑
m=1

γm g

(
β0m +

p∗

∑
j=1

x jβm j

)
(4.19)

4.3.1 Training process

In Equation (4.19), we need to estimate H(p∗+1)+H +1 unknown parameters.

Often the parameters are also called weights since they form a weighted average of

values from the previous layer. The intercepts γ0,β10, . . . ,βH0 can be interpreted

as bias to the neurons.

As measure of fit, the sum of squared errors (SSE) is chosen to be minimized. It

is given by

SSE =
k

∑
i=1

(yi− f (xxxiii))
2 (4.20)

Since there are no constraints on the parameters, optimization is challenging.

Usually, the parameters are initialized randomly around zero and then a numerical

algorithm is applied to iteratively update the weights.

We present the back-propagation algorithm that uses gradient descent for min-

imization (see Hastie et al. (2009)). The name comes from the fact that the

gradient is derived by traversing the network forwards and backwards.

The weights are updated in the opposite direction of the gradients and estimates

of iteration r+1 are given by

γ
(r+1)
m = γ

(r)
m −η

∂SSE

∂γ
(r)
m

β
(r+1)
m j = β

(r)
m j −η

∂SSE

∂β
(r)
m j

(4.21)

where η is the learning rate. Therefore, we need to compute the partial derivative
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of SSE with respect to each weight in the network.

First, we write SSE = ∑
k
i=1 SSEi where SSEi is the error arising from observation i.

Clearly, the partial derivative of SSE equals the sum of partial derivatives of SSEi.

We exploit the structure of the neural network to obtain alternative expressions

of these partial derivatives.

Applying the chain rule, yields

∂SSEi

∂γm
=−2(yi− f (xxxiii))hm(xxxiii)

∂SSEi

∂βm j
=−2(yi− f (xxxiii))γm g′

(
β0m +

p∗

∑
j=1

xi jβm j

)
xi j

(4.22)

for m = 1, . . . ,M and j = 1, . . . , p∗. When we set h0(xxxiii) = 1 and xxxi0 = 0, the above

equations also hold for m = 0 and j = 0.

Now, we define

δi =−2(yi− f (xxxiii))

εmi =−2(yi− f (xxxiii))γm g′
(

β0m +
p∗

∑
j=1

xi jβm j

)
(4.23)

and hence we can write (4.22) as ∂SSEi
∂γm

= δihm(xxxiii) and ∂SSEi
∂βm j

= εmixi j.

The quantities δi and εmi can be interpreted as errors for the current model and

observation i at the output unit and the hidden units, respectively.

Plugging δi into the definition of εmi, results in

εmi = δiγmg′(β0m +
p∗

∑
j=1

x jβm j) (4.24)

This is often called back-propagation equations as it shows how the errors can be

computed in backwards direction. Hence, we first compute δi =−2(yi− f (xxxiii)) and

then obtain εmi via Equation (4.24).
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Overall, following (4.21), we can update the weights according to

γ
(r+1)
m = γ

(r)
m −η

k

∑
i=1

δ
(r)
i hm(xxxiii)

(r)

β
(r+1)
m j = β

(r)
m j −η

k

∑
i=1

ε
(r)
mi xi j

(4.25)

In summary, the process to update the weights consists of two main steps: In the

forward process, the predicted outputs are calculated given the current weights.

In the backward pass, we compute the partial derivatives in terms of the values δi

and εmi and update the weights accordingly.

The algorithm stops if the fitting criterion does not change significantly anymore.

One issue of this optimization is that due to the non-convexity of the error function,

it cannot be ensured that a global optimum is found. That is, for different initial

parameters the training could lead to different parameter estimates and might

result in a local optimum. To obtain a more stable model, one could initialize

the weights with multiple distinct starting values and pick the best fit according

to an error function or use all resulting networks and take the average output as

prediction value.

4.3.2 Weight decay

Since we have a lot of parameters, the model is extremely flexible but at the same

time it also easily leads to overfitting.

One way to regularize the model is the method of weight decay. Here, a penalty

for large regression coefficients is added to the error function. This can be written

as

SSE +λ

(
H

∑
m=0

γ
2
k +

H

∑
m=1

p∗

∑
j=0

β
2
m j

)
(4.26)

for a given value of weight decay λ . Larger λ will shrink to weights towards 0.

To ensure that all inputs are treated equally in the regulation process, it makes

sense to scale all inputs to the same range [0,1].
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5 Numerical results

In the last part, we apply the machine learning techniques from Chapter 4 to a

large portfolio of variable annuity contracts in order to speed up the determination

of the today’s value and of the solvency capital requirement.

First, we need to generate the portfolio of VA contracts. Then we predict the

today’s value of the guaranteed benefits applying machine learning methods. As

described in Chapter 3, the main task in calculating the SCR consists of generating

the empirical distribution of the fair values at time 1. Therefore, we dedicate an

extra section to the estimation of V1, and finally the SCR is estimated.

All codes are written in the programming language R.

5.1 Synthetic portfolio and parameter setting

Unfortunately, we have no real data records of variable annuity contracts, and

hence we need to work with a synthetic dataset. The portfolio is drawn uni-

formly by randomly sampling values for each attribute from the ranges specified

in Table 5.1. We generate n = 10000 contracts.

Although the framework in Chapter 2 allows for the evaluation of any combination

of guarantees, we restrict the synthetic portfolio to the possibilities indicated in

Table 5.1. If we have a death guarantee in addition to one of the guarantees

GMWB, GMAB or GMIB, denoted by GMWBwD, GMABwD or GMIBwD, we

suppose that the guaranteed death benefit is specified as return of premium.

The other attributes correspond to the variables as defined in Section 2.2.2. Note

that the premium P always refers to the up-front investment of the VA contract

and hence specifies the initial account value. We do not expect that the premium

equals the today’s fair value of the contract.
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Attribute Values
Guarantee type GMDB, GMWB, GMWBwD, GMAB, GMABwD,

GMIB, GMIBwD
Product type returnP, rollup, ratchet
Withdrawal rate xw 0.04,0.05,0.06,0.06,0.08
Income ratio g · äT 0.75,0.8,0.85,0.9,0.95
Roll-up rate i 0.01,0.02,0.03,0.04,0.05
Premium P [10000,500000]
Maturity T N∩ [10,25]
Age x0 N∩ [20,60]
Gender Male, Female

Table 5.1: Possible values for generation of the synthetic portfolio

The age x0 of the policyholder at contract inception and the gender are necessary

to identify the associated best estimate mortality rates. We follow the mortality

tables of the German society of actuaries (DAV 2004 R).

We exclude all guarantee fees and set ϕ = 0. Clearly, this is not a realistic as-

sumption. However, since we are looking at a portfolio with various products, it

is not possible to determine fair guarantee fees for all these contracts. In practice,

the fee should be listed as additional attribute.

Further, it should be emphasized that all contracts in the portfolio have inception

date t = 0 and hence are concluded at current time point. We do not take into

account any old policies or future business.

To get an insight into the generated portfolio, a few contracts are printed here:

guarantee p.type maturity gender age premium w.rate i.rate

9995 GMAB rollup 25 Female 29 364023.28 NA NA

9996 GMDB ratchet 16 Male 44 16182.02 NA NA

9997 GMWBwD <NA> 25 Male 43 240424.51 0.05 NA

9998 GMAB returnP 18 Male 49 116690.42 NA NA

9999 GMIBwD ratchet 10 Male 49 232991.91 NA 0.8

10000 GMABwD ratchet 20 Female 59 335231.74 NA NA

rollup.rate

9995 0.04

9996 NA

9997 NA
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9998 NA

9999 NA

10000 NA

To obtain risk-neutral paths of the stock evolution for the MC simulation of V0,

the scenario generator in Section 2.3.1 is applied with risk-free rate r = 0.03 and

volatility σ = 0.15. We consider J = 1000 risk-neutral paths in the simulation.

Furthermore, for the nested simulation approach in the case of SCR estimation, we

also need realizations of the real-world development during the first year. Here, we

use the algorithm in 3.2.2 with drift µ = 0.07 and volatility σ = 0.15 to generate

N = 1000 real-world scenarios.

5.2 Today’s fair value

In this section, we aim to calculate the value V0. We start with the results of the

traditional MC simulation. In addition, we want to use machine learning methods

to determine the fair value more efficiently.

Remember that the approach consists of the following basic steps:

1. Choose a set of contracts as representatives.

2. Evaluate the representatives via MC simulation.

3. Fit a prediction model based on the representatives and their calculated fair

values.

4. Estimate the fair values of the remaining contracts via the prediction model.

The section proceeds with a suggestion how to select the representatives. Then,

after a small adjustment of the data, the machine learning algorithms from Chap-

ter 4 are applied. At first, we consider the results of each method individually and

then conclude the section with a comparison of the accuracy and risk drivers for

V0 of the models.
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5.2.1 Results from traditional MC simulation

The Monte Carlo estimation of the fair value at time 0 according to Section 2.2

with n = 10000 contracts and J = 1000 risk-neutral stock paths took 525.13 sec-

onds, i.e. roughly 8 minutes, using my computer and two cores in parallel.

A histogram of the calculated V0 is depicted in Figure 5.1 and a summary of the

values is given by

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.4 3515.3 12322.2 24540.5 28450.7 326703.3

V_0
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40
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Figure 5.1: Histogram of today’s fair value calculated via traditional MC.

We conclude that our value of interest is positive and right-skewed.

Further, to get a first impression of the relation between the fair value and all

explanatory variables, the univariate impact of each variable on the today’s value

is plotted in Figure 5.2.

From the univariate perspective, we observe the following dependencies within our

synthetic portfolio:

� The guarantee clearly has a great influence on the value as it determines

the type of contract. The highest guaranteed benefits are observed for
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Figure 5.2: Univariate impact of explanatory variables on the fair value V0.

the GMAB options followed by contracts including a GMIB. Remember

that the guaranteed accumulation and income benefits are defined by LA
T =

max{GA+
T −A+

T ,0} and LI
T = max{GI+

T gäxT −A+
T ,0}, respectively. Since the

ratio gäxT is smaller than 1 within our portfolio, it is reasonable that a GMIB

yields smaller V0. The GMWB provides the lowest fair values. This is plau-

sible since you profit from the guarantee only, if the fund performs poorly

and if the maturity is long enough to withdrawal (nearly) the entire benefit

base within the annual limits. Also, for the GMDB we observe relatively

low V0 because it is rather unlikely to die during the contract. As expected,

a death benefit on top of other guarantees increases the fair value slightly.
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� The attribute p.type specifies the evolution of the guaranteed benefit base.

Compounding the benefit base every year by the roll-up rate yields the high-

est values. Of course, the benefit of premium return is smaller because re-

turning the initial investment corresponds to compounding it with rate 0. In

the ratchet type, the maximum of annual account values is taken as benefit

base and this clearly equals at least the initial investment.

� For different maturity values, the majority of the V0 are at the same height.

However, we see that with longer durations the maximum fair values become

higher. This is presumably due to contracts inclduing a GMAB or GMIB

with a roll-up benefit base, where a long maturity implies that the initial

investment is compounded many times. It is also expected that in the case

of a GMWB, the V0 generally increases with maturity because longer terms

allow for a larger number of withdrawals and hence a possibly higher value.

However, the GMWB fair values are so small that the influence cannot be

seen here.

� The attributes gender and age seem to have hardly any influence on the fair

value since they only affect the death probabilities. Most contracts have a

retirement age of at most 70 years, and the best estimates do not vary much

by gender and age within the interval [20,70].

� Furthermore, it seems that there is a strong positive correlation between V0

and the premium. It is absolutely plausible that the larger the investment,

the higher the corresponding guarantees.

� Lastly, increasing w.rate, i.rate and rollup.rate yields an increasing

fair value since the rates specify the evolution of the benefit bases directly.

Particularly the roll-up rate, which annually compounds the benefit base,

has a large impact.

5.2.2 Data preparation and sampling

The printed contracts in Section 5.1 have NA entries. In particular, NA occurs

within the columns p.type, w.rate, i.rate and rollup.rate due to distinct

contract specifications for different guarantees. For example, in contracts without

a GMWB no withdrawal rates are specified, and in general every contract has at
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least one NA entry at some point. Since machine learning methods cannot work

with data that contains NA values in each row, the portfolio must be adjusted in

a way to get rid of these values.

One possibility would be to split the data according to the basic four types of

guarantees. For each of the datasets we then could fit a machine learning method

and combine the resulting models for prediction. However, the goal of this thesis

is to apply a single prediction model for the entire data set. Therefore, we now

have to prepare the data accordingly.

To deal with the unspecified entries in the column p.type, we combine the columns

guarantee and p.type into one column named product.

> levels(df$product)

[1] "GMAB ratchet" "GMAB returnP" "GMAB rollup" "GMABwD ratchet"

[5] "GMABwD returnP" "GMABwD rollup" "GMDB ratchet" "GMDB returnP"

[9] "GMDB rollup" "GMIB ratchet" "GMIB returnP" "GMIB rollup"

[13] "GMIBwD ratchet" "GMIBwD returnP" "GMIBwD rollup" "GMWBwD"

[17] "GMWB"

For the rates w.rate, i.rate and rollup.rate, we replace NA entries by 0. This

is the most reasonable choice when we need to define a specific number.

In the next step, we need to select a subset Z of the portfolio as representative

contracts that are fed into the machine learning methods. Since we use a uniformly

generated portfolio, it is sufficient to randomly select the representatives in this

setting. In practice, given a heterogeneous portfolio, methods like clustering and

Latin Hypercube sampling are recommended in order to span the predictor space

most appropriately.

An important question is how to choose the number of representatives. Clearly,

this depends on the prediction model and the data. Loeppky et al. (2009) suggests

to start with k = 10p∗ as a rule of thumb, where p∗ is the number of explanatory

variables counting dummies. For our dataset, we have p∗ = 23 and hence k = 230
might be an appropriate choice.

In order to investigate the model performance, we will compare predicted values

with their MC estimates. Here, all contracts that are not used for the model fitting

serve as test set.

> k <- 230

> ind <- sample(nrow(df), k)
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> Z <- df[ind, ]

> test <- df[-ind,]

Now, different machine learning methods can be applied to explain the variation

of V0 by the explanatory variables, which specify each contract. In the remaining

part of the section, we always aim to model the behavior of the fair value based

on the training set Z. The resulting predictions should be as accurate as possible.

5.2.3 Generalized linear models

We start with two GLMs to predict the today’s fair value. Since the response

values are positive and continuous, the Gamma and the Gaussian distributions are

reasonable choices. To ensure that positive values are obtained in the prediction,

a log link function is applied in both cases.

In R, the models are fit on the set of representatives Z by

> glm.1 <- glm(v0 ~ ., data=Z, family=Gamma(link = "log"))

> glm.2 <- glm(v0 ~ ., data=Z, family=gaussian(link = "log"))

where the term v0 ~ . indicates that all explanatory variables are included in the

model.

R automatically converts all categorical variables into dummies, and for each factor

the alphabetically first level is set as reference level. The predictor product uses

the baseline GMAB ratchet, while Female serves as reference for gender. For the

baselines, the height of V0 is captured by the intercept β0.

Exemplarily, the summary of the estimated coefficients from glm.2 is given by:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.097e+00 1.054e-01 86.302 < 2e-16 ***

productGMAB returnP -1.337e+00 1.244e-01 -10.743 < 2e-16 ***

productGMAB rollup -1.128e+00 8.953e-02 -12.601 < 2e-16 ***

productGMABwD ratchet 9.288e-02 6.165e-02 1.506 0.133

productGMABwD returnP -1.401e+00 2.071e-01 -6.764 1.36e-10 ***

productGMABwD rollup -1.109e+00 7.323e-02 -15.149 < 2e-16 ***

productGMDB ratchet -3.389e+00 6.467e-01 -5.241 3.95e-07 ***

productGMDB returnP -4.654e+00 4.533e+00 -1.027 0.306

productGMDB rollup -4.230e+00 5.695e-01 -7.426 2.90e-12 ***

productGMIB ratchet -3.102e+00 3.209e-01 -9.667 < 2e-16 ***
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productGMIB returnP -4.170e+00 4.463e-01 -9.345 < 2e-16 ***

productGMIB rollup -3.953e+00 3.305e-01 -11.958 < 2e-16 ***

productGMIBwD ratchet -3.079e+00 3.390e-01 -9.082 < 2e-16 ***

productGMIBwD returnP -4.494e+00 3.721e-01 -12.076 < 2e-16 ***

productGMIBwD rollup -3.935e+00 3.481e-01 -11.304 < 2e-16 ***

productGMWB -3.567e+00 3.726e-01 -9.571 < 2e-16 ***

productGMWBwD -3.484e+00 3.880e-01 -8.979 < 2e-16 ***

maturity 3.924e-02 3.468e-03 11.316 < 2e-16 ***

genderMale 5.915e-02 2.724e-02 2.172 0.031 *

age -1.298e-03 1.268e-03 -1.023 0.307

premium 3.903e-06 1.232e-07 31.667 < 2e-16 ***

w.rate 2.922e+01 5.176e+00 5.646 5.41e-08 ***

i.rate 2.857e+00 3.713e-01 7.695 5.78e-13 ***

rollup.rate 3.929e+01 1.832e+00 21.449 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

In the column ’Estimate’ the maximum likelikhood estimates are printed. Ad-

ditionally, the summary also shows the ’t value’, which is the Wald statistic to

test the null hypothesis H0 : β j = 0 for each coefficient. Large absolute t-values

indiciate statistical significance. Given the Gaussian glm.2, the evidence suggests

that e.g. the premium parameter is non-zero whereas no evidence exists to reject

βage = 0. Similarly to the univariate impact, we conclude that the variables age

and gender do not have a great influence on the fair value at time 0.

Since we keep the data in original scale, it is not possible to directly see how heav-

ily a predictor influences the expected fair value compared to others. However,

one can generally say that a positive coefficient increases the predicted value with

increasing explanatory value. Except from age, all numerical attributes have an

increasing effect. This corresponds to the results in the univariate analysis.

Moreover, the structure of a GLM allows to assess the relative impact of one

explanatory variable when all other variables remain unchanged. Recall, that ac-

cording to (4.3), given the explanatory values x1, . . . ,xp∗ , the response is predicted

by ŷ = exp(β̂0 +∑
p∗
j=1 β̂ jx j).

Therefore, exp(β̂ j) gives the relative change in y when x j is increased by 1, i.e.

replaced by x j +1, for j = 1, . . . , p∗. More generally, exp(h · β̂ j) denotes the relative

change in y when x j is increased by h ∈ R.

This allows us to interprete the impact of numerical variables. We have:
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> exp(glm.2$coefficients['premium'] * 10000)

1.039798

> exp(glm.2$coefficients['rollup.rate'] * 0.01)

1.481235

> exp(glm.2$coefficients['maturity'] * 1)

1.04002226

Hence, when we look at two policies, where one has a premium that is 10000 higher

than the other one and which are otherwise identical, the today’s value for the

policy with higher initial investment is expected to be 4% larger. For instance, let

us consider two identical policies but one has a initial investment of 10000 and the

other contract invests a premium of 20000. Intuitively, we would expect to double

the payoff when doubling the investment for exactly the same contract. Since

we assume a log link between the linear predictor and the expected response, the

model fails to represent the true relation and expects to increase the benefits only

by 4% instead of 100%. So we see that the structure of the GLM offers helpful

and direct interpretations, but the assumptions also limit the model very much.

Further, for two identical contracts which only differ in the rollup.rate by 0.01,

the contract with higher roll-up rate is expected to have a 48% higher value. This

suggests a huge importance of the predictor.

When one increases the maturity of any contract by one year, the predicted fair

value is expected to increase by 4%

Similarly, we can interpret the relative impact of categorical variables with respect

to their baseline level. Remember that the levels were encoded by 0-1 entries,

where 1 indicates the occurrence of the level. Hence, for factors, exp(β̂ j) reflects

the relative change in y when level x j occurs compared to the same contract but

with the baseline level.

In Figure 5.3, we see the relative impact of the product levels with their 95%
confidence interval with respect to the baseline GMAB ratchet.

It indicates, that the baseline and GMABwD ratchet have a similar impact, whereas

GMAB returnP, GMABwD returnP, GMAB ratchet and GMABwD ratchet are ex-

pected to have a significantly lower fair value of medium size. All remaining levels
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lead to a relatively low fair value when all other predictors remain the same. This

is not intuitive and an explanation for this behavior will be given in Section 5.2.6.
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Figure 5.3: Relative impact of product levels in the Gaussian model glm.2 with
baseline GMAB ratchet.

To predict response values for the test data set, we call

> pred.1 <- predict(glm.1, test, type = "response")

> pred.2 <- predict(glm.2, test, type = "response")

In Figure 5.4 these predicted fair values are plotted against their Monte Carlo

estimates. You can see a scatter plot (left) and a QQ plot (right). The line

represents a coincidence of the predicted values with the MC values. At the top,

we see that the Gamma model substantially overestimates the today’s fair value,

particularly in the higher range of the value. In contrast, assuming a Gaussian

distribution provides a better fit.

The poor prediction quality of the Gamma model could be caused by a violation

of the assumption that the response data follows a Gamma distribution.

To check this, one can examine the quantile residuals of the model (for details,

see Dunn and Smyth (2018)). If the correct distribution of the exponential family

is chosen, the quantile residuals should be normally distributed. In Figure 5.5 the

quantile residuals of both models are plotted against the theoretical quantiles of
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Figure 5.4: Prediction accuracy on test data for (top) Gamma glm.1 and (bottom)
Gaussian glm.2.

the normal distribution. The residuals of the Gamma model glm.1 show a higher

deviation from the diagonal than the Gaussian model glm.2.

All together, one can say that the second model, which assumes a Gaussian dis-

tribution with a log link, seems to be the better choice in this context.
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Figure 5.5: Quantile residuals from models glm.1 and glm.2 vs. theoretical nor-

mal quantiles.

5.2.4 Regression trees

Single trees

To predict V0 with a single regression tree, we use the package rpart in R. A

model with default setting is fit by

> single.tree <- rpart(v0 ~ ., Z, method = "anova")

The resulting tree is visualized in Figure 5.6. The top split is made by product,

and in intermediate splits product and premium occur multiple time. This in-

dicates that these two variables have a large impact on the response value and

therefore are often referred to as strong predictors. Additionally, one split is de-

fined by the w.rate.

For all numeric variables, the sample mean of the response is always larger on the

right-hand side of the split, i.e. in the regions above the cut point. That is, the

higher e.g. the premium the higher the predicted fair value.

In summary, based on a small set of representatives, the highest response values

in the model are obtained by the products GMAB ratchet, GMABwD ratchet, GMAB

rollup, GMABwD rollup, GMIBwD ratchet and GMIB rollup with a large premium

and a high rollup.rate. Note that the last split rollup.rate >= 0.035 partic-

ularly excludes contracts with zero roll-up rate, i.e. the ratchet type products.
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product = GMAB returnP,GMABwD returnP,GMDB ratchet,GMDB returnP,GMDB rollup,GMIB ratchet,GMIB returnP,GMIBwD returnP,GMIBwD rollup,GMWB,GMWBwD

product = GMAB returnP,GMABwD returnP,GMDB ratchet,GMDB returnP,GMDB rollup,GMIB returnP,GMIBwD returnP,GMWB,GMWBwD

premium < 248e+3

w.rate < 0.055

premium < 253e+3

premium < 222e+3

rollup.rate < 0.035

product = GMAB rollup,GMABwD rollup,GMIB rollup,GMIBwD ratchet
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Figure 5.6: Tree chart of model single.tree.

As explained in Section 4.2.2, the single tree is obtained by pruning a large tree.

The package rpart automatically performs cost-complexity tuning for a range

of parameters α , which penalize the SSE for the number of terminal nodes, see

(4.15). 10-fold cross-validation is used to compare the error for each α-value.

For the model single.tree the results are illustrated in Figure 5.7. The y-axis

depicts the relative cross-validation error averaged over the 10 folds. The lower x-

axis is the cost-complexity parameter α , while the upper x-axis shows the number

of terminal nodes |Tα | of the optimal subtree obtained from pruning with the

corresponding α-value. Intuitively, large values of α result in less complex models

and hence smaller trees Tα , and vice versa for smaller values of α . You can also

see that the larger the tree, the smaller the test error. This is reasonable because

the tree model tries to reflect complex dependencies of variable annuity contracts.

The result of the tuning is an optimal tree size of |T |= 9.

Additionally, there is a dashed line that passes above the point |T | = 5. This

represents the so-called 1-SE rule from Breiman et al. (1984), which suggests that

instead one could choose the smallest tree within 1 standard error (SE) of the

minimum cross-validation error.

Fair values for the test data are predicted by

> pred.st <- predict(single.tree, test)

For each data point, the algorithm finds the corresponding terminal node in the
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Figure 5.7: Cross-validation results of cost-complexity tuning.

tree model and takes the constant value of this region as prediction. Clearly, as

we only have nine terminal nodes, there are only nine distinct possible response

values, and consequently the predictive performance is very poor. The results are

shown in Figure 5.8.
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Figure 5.8: Prediction accuracy on test data via model single.tree.

In the default model single.tree, the control parameter minsplit, which spec-

ifies the minimum number of observations that must exist in a node for a split, is
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set to 20. As we only have k = 230 observations in the training set, it is reason-

able to reduce minsplit to e.g. 5. However, given the same set of representatives,

calling rpart with minsplit = 5 and leaving everything else unchanged, results

in exactly the same pruned tree.

Bagging

In this section, we use the package ipred to work with bagged trees. A model is

obtained by

> bag.tree <- bagging(v0 ~., data = Z, control = list(minsplit=2, cp=0))

To fit each tree in the ensemble, bagging calls the function rpart. To ensure that

the trees are unpruned, we have to set control = list(minsplit=2, cp=0).

Here, by default nbagg = 25 trees are aggregated.

By averaging the predictions of several trees, we aim to get a more stable predic-

tion, but at the same time we lose the ability to interpret the results. It is no

longer possible to visualize the bagged model like the single tree before.

Response values are predicted by

> pred.bag <- predict(bag.tree, test)

and the result is depicted in Figure 5.9.

Large MC values are extremely underestimated by the bagged tree model. The

maximum fair value of the chosen representatives equals 200932.39. By construc-

tion of the model, the maximum possible predicted response is 200932.39 as well.

Hence, tree models are not able to perform extrapolation to obtain larger values.

In addition, the property that the fair values are positively skewed means that it

is very unlikely that extremely large MC values occur within only a small subset

of the portfolio. This explains the poor prediction accuracy.

Note that an alternative sampling method is not necessarily helpful because the

selection is based on the explanatory variables and at this time the MC values are

not yet known.

Now, we also want to investigate the effect of the number of bagged trees on

the model quality. To measure the performance for different values of nbagg, we
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Figure 5.9: Prediction accuracy on test data via model bag.tree.

determine the root mean squared error (RMSE) of the fitted and observed values

from the test set. The RMSE is defined by

RMSE =

√
1
n

n

∑
i=1

(ŷi− yi)2

and can be calculated by the function rmse(), which is provided in the pack-

age caret. Increasing the number of bagged trees, see Figure 5.10, makes the

prediction slighlty more stable. A suitable choice might be nbagg = 200. Note

that a large number of trees does not lead to overfitting, it only increases the

computational time needed for model fitting.

Random forests

We use the package randomForest to model V0 via random forests. A default

model is fit by

> rf <- randomForest(v0 ~., Z, nodesize = 1)

where nodesize specifies the minimum size of a terminal node, and setting nodesize

= 1 ensures that unpruned trees are obtained in the ensemble.

The predicted values

> pred.rf <- predict(rf, test)
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Figure 5.10: Test error vs. number of bagged trees.

are displayed in Figure 5.11.
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Figure 5.11: Prediction accuracy on test data via model rf.

Again, we are confronted with the issue that this model underestimates large

values. As in bagging, this comes from the fact that tree models do not have the

ability to extrapolate large values.

Furthermore, the number of variables to be considered in each splits, denoted by

mtry, is set to b p
3c= b

8
3c= 2 by default. If so few candidates are randomly selected

at each split, it is likely that no relevant predictor is taken, and therefore the split

will contribute very little to improve the fit.

To find a suitable choice for the model parameter mtry, we examine its impact
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on the test error simultaneously with the impact of the number of trees, which

is defined by ntree = 500 in the default setting. The result can be seen in Fig-

ure 5.12.
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Figure 5.12: Test error vs. number of trees by number of variables considered in
each split.

We see that the more variables we consider, the lower is the test error, and seven

or eight predictors yield the best result. This means that we do not benefit from

the randomness added at the tree construction, which indicates the existence of

very few strong predictors. The number of aggregated trees has no strong impact,

but again we do not have to worry about overfitting. In conclusion, an appropriate

choice could be mtry = 7 and ntree = 300.

5.2.5 Neural networks

Lastly, we implement a neural network using the package nnet to model V0.

Before we can apply this method, min-max normalization is necessary to scale the

numerical variables of the training data to the interval [0,1]:

> is.num <- sapply(df, is.numeric)

> min.Z <- apply(Z[,is.num], 2, min)

> max.Z <- apply(Z[,is.num], 2, max)

> Z.nn <- Z
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> Z.nn[,is.num] <- t(apply(Z.nn[,is.num], 1,

function(x) {(x-min.Z)/(max.Z-min.Z)}))

A model is fit by

> net1 <- nnet(v0 ~ ., data = Z.nn, size = 1, decay = 5e-4, maxit = 1000,

linout = T)

where size denotes the number of hidden units, decay is the weight decay param-

eter used for regularization, maxit is the maximum number of iterations in the

training process, and lineout = T is always needed for a continuous response.

The function automatically converts categorical variables into binary dummies

and selects the same reference levels as the GLM, i.e. GMAB ratchet and Female.

The fitted neural net is visualized in Figure 5.13. Black connections represent

positive weights whereas gray connections represent negative weights. The thicker

the line the larger is the absolute value of the fitted parameter.
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Figure 5.13: The neural network from model net1.
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With only one hidden unit in the network, the architecture allows us to under-

stand the impact of the predictors. Since the logistic function g(u) = 1
1+e−u , which

transforms the weighted average of the input, is an increasing function and the

weight from H1 to O1 is positive, increasing predictors with positive weights to the

hidden unit leads to a larger output of the network. If we increase the variables

with outgoing negative weights, the response value decreases. So a network with

only one neuron shows similarity to a GLM. However, since we do not assume any

distribution, the parameter estimates are not restricted.

Furthermore, since we work with a scaled input, we can infer directly from the

absolute value of the weights, i.e. from the thickness of the lines, how strongly the

predictors influence the response variable.

We observe that most of the product weights are relatively large and hence in-

dicate a high influence on the predicted value. Moreover, all product parameters

except the one of GMABwD ratchet have a negative weight and thus yield a lower

fair value than the baseline GMAB ratchet. Generally, the signs of all predictor

coefficients coincide exactly with the ones in the Gaussian GLM glm.2. That is,

except for age, all numerical predictors increase the output of the neural net with

increasing explanatory value. The weights of gender and age are nearly 0 and

hence they have hardly any impact on the prediction. In contrast, the variables

premium, w.rate, i.rate and rollup.rate have large parameters implying a

great influence on the fair value within the model.

For prediction, the test data also needs to be scaled and afterwards we rescale the

estimated responses to the original scale:

> test.nn <- test

> test.nn[,is.num] <- t(apply(test.nn[,is.num], 1,

function(x) {(x-min.Z)/(max.Z-min.Z)}))

> pred.nn <- predict(net1, testdf.nn)

> pred <- pred.nn * (max.Z['v0'] - min.Z['v0']) + min.Z['v0']

The results are plotted in Figure 5.14. We see that large MC values are slightly

underestimated by the model net1.

So far we have used only one neuron in the hidden layer, and now we examine if

it is possible to improve the prediction quality with more hidden units.

Figure 5.15 shows that increasing the number first reduces the test error, but using

more than four hidden units results in worse predictive accuracy. Remember that,
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Figure 5.14: Prediction accuracy on test data via model net1.

given H hidden units, the number of parameters to be estimated is given by

H(p∗+1)+H +1. With p∗ = 23, we have

H 1 2 3 4 5 6 7 8 9 10
parameters 26 51 76 101 126 151 176 201 226 251

With only k = 230 observations in the training set, it is reasonable that models

with at least 126 parameters perform worse than the simplest model with only

one hidden unit.
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Figure 5.15: Test error vs. number of hidden units.
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Therefore, with multiple (but not too many) neurons in the hidden layer it is

possible to improve the model. Unfortunately, with a more complex network, it

is no longer possible to interpret the influence of the individual parameters.

Next, we want to analyze the effect of the parameter decay, which is used for

weight regularization. A larger decay parameter forces the fitting process to pro-

duce a less complex model. In Figure 5.16, we simultaneously tune size and

decay.
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Figure 5.16: Test error vs. weight decay by number of hidden units.

In general, the test error increases with increasing decay, and hence a very small de-

cay value is recommended. Further, we observe that the test error is more volatile

for lager networks. This comes from the random initialization of the weights and

the fact that we do not have many training samples compared to the number of

parameters that have to be estimated. Hence, the fitting process converges to

different weight estimates. Although the network of size four leads to the lowest

test error, an appropriate choice could be size=3 because this model seems to be

more stable.

Note that if we increased the number of samples in the training set, larger networks

might also be able to improve the prediction accuracy.
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5.2.6 Comparison

In this part, we directly compare the previous methods to model V0 by examining

the predictive accuracy on a test set. Furthermore, we summarize the impact of

the explanatory variables on the fair value.

Predictive performance

For a comprehensive analysis of the prediction quality, we do not limit the number

of representatives to k = 230 anymore, but also consider sets with k = 460 and

k = 920 contracts. Further, for each k we draw ten sets of representatives, so that

we do not rely on model performances that are based on one single dataset only.

For validation reasons, half of the entire portfolio is randomly taken as test set

and from the other half the representatives are selected.

In total, we fit each of the following models to 30 sets of representatives Z[[m]],

for m = 1, . . . ,30:

> Gam.glm[[m]] <- glm(v0 ~ ., data = Z[[m]],

family = Gamma(link = "log"))

> Gauss.glm[[m]] <- glm(v0 ~ ., data = Z[[m]],

family = gaussian(link = "log"))

> single.tree[[m]] <- rpart(v0 ~ ., data = Z[[m]], method = "anova",

control = list(minsplit = 5))

> bag.tree[[m]] <- bagging(v0 ~ ., data = Z[[m]], nbagg = 200,

control = list(minsplit = 2, cp = 0))

> rand.forest[[m]] <- randomForest(v0 ~ ., data = Z[[m]], mtry = 7,

ntree = 300, nodesize = 1)

> H3.net[[m]] <- nnet(v0 ~ ., data = Z.nn[[m]], size = 3, decay = 1e-05,

maxit = 1000, linout = T)

> H6.net[[m]] <- nnet(v0 ~ ., data = Z.nn[[m]], size = 6, decay = 1e-05,

maxit = 1000, linout = T)

where Z.nn denotes the scaled version of the representatives.

To examine the performances, the root mean squared error (RMSE) on the test

data is averaged for each model and each k. The result is depicted in Figure 5.17.
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Figure 5.17: Average of RMSE over multiple sets of representatives for each model
and each number of representatives.

The tree models appear to have the worst prediction accuracy, but get better for

larger k. As seen before, they probably underestimate high fair values, and a

larger set of representatives helps to cover a wider range of the response values.

The errors of the Gamma GLM are only slightly lower than those of the single tree,

while the Gaussian GLM shows a much better performance. It is also interesting

that the accuracy of the GLMs seems not to depend on the size of the training

set. That is, apparently k = 230 representatives are already sufficient to fit the

GLMs. The best results are achieved by the two neural networks, especially with

at least k = 460 representatives and six hidden units.

We are not only interested in the averaged errors, but also in examining how

volatile the model performance is due to different training sets. This can be

visualized by a boxplot, see Figure 5.18.

Again, one can see that the Gaussian GLM is very stable for all k. In contrast, the

nets have more volatile test errors, particularly for k = 230. Of course, the single

tree turns out to be the worst method. But remembering that the model can only

use a few single values as predicted responses, it has a surprisingly acceptable

quality and is remarkably stable, especially for k = 920.

Generally, we can say that the more representatives we have, the less volatile is

the resulting prediction error with respect to distinct data sets.

In the next Figure 5.19, the percentage error (PE) of each model and each k is
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Figure 5.18: Boxplot of RMSE based on multiple sets of representatives

depicted. The percentage error for estimates ŷ1, . . . , ŷn with actual response values

y1, . . . ,yn is given by

PE =
n

∑
i=1

ŷi− yi

∑
n
i=1 yi

Clearly, the PE is not a measure of fit for single observations because over- and

underestimated values cancel each other out. However, it is useful if we are inter-

ested in the sum of the today’s fair values over all contracts, as in the solvency

calculation. The error can thus be interpreted as a measure of fit on the portfolio

level.

The diagram shows that with a Gamma GLM the fair values are on average ex-

tremely overestimated and it therefore fails to predict V0. For k = 230 and k = 920,

the test errors on the portfolio level of the remaining methods are very close to

0. Only in case of 460 representatives, all tree models underestimate the value on

average. Although we have already drawn several sets of representatives, it may

be the case that the maxima of fair values of the sets with k = 460 observations

are lower than corresponding maxima of the sets for other k. This would explain

the larger negative PE of the tree models for k = 460.

Lastly, we would like to consider how stable the methods are with respect to

randomness during the fitting process. This behavior is examined by fitting the

models multiple times on the same set of representatives, but using different seeds

for the random processes. The function set.seed() specifies the starting number,
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Figure 5.19: Average of PE over multiple sets of representatives for each model
and each number of representatives.

which is used to generate a sequence of random numbers, and ensures reproducible

results when you start with that seed each time you run the same process. The

RMSE results are visualized in a boxplot, see Figure 5.20.
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Figure 5.20: Boxplot of RMSE based on distinct seeds specifying the random pro-
cesses during fitting.

It is obvious that the test errors of neural networks are quite unstable, especially for

small k. This is plausible because the starting parameters are chosen randomly in

this method. Therefore, distinct initializations could lead to different prediction
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results. However, more samples help to reduce this effect. All other methods

appear to be very stable. GLMs and single trees do not contain any randomness

in their fitting. In bagging only the choice of boosting samples is random, and in

random forests additionally the splitting candidates are selected at random.

To get an impression of the time, which is needed for model training, Table 5.2

shows the average runtime to fit one model for a given k. The single tree and the

GLMs are extremely fast. But even the bagged tree, which is the slowest of all

models, only takes a few seconds.

Model k=230 k=460 k=920

single.tree 0.005 0.007 0.009
Gauss.glm 0.006 0.007 0.009
Gam.glm 0.009 0.010 0.016
H3.net 0.163 0.286 0.502
rand.forest 0.271 0.736 2.272
H6.net 0.340 0.606 1.253
bag.tree 1.188 2.065 3.950

Table 5.2: Average runtime for model training in seconds.

In summary, if we are restricted to only k = 230 representatives, the Gaussian

GLM is recommended within this framework because it leads to very stable and

good results. Otherwise one should use k = 920 and the neural net with six hidden

units as this methods yields the best predictive accuracy within this comparison.

Risk drivers for V0

First of all, it should be remembered that the calculation of the (estimated) fair

values is actually possible via MC simulation, but only computationally expensive.

This means that the actual dependencies are known. Thus, we also know the

parameters that determine the value V0 and our data set contains exactly these

explanatory variables. So in the following analysis we only examine how strongly

the predictors influence the response value.

The explanatory variable product seems to have the biggest influence on V0 in

all considered models. In both the Gaussian GLM and the neural net with one

hidden unit, we have seen the following effect (see Figure 5.3): GMAB ratchet and
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GMABwD ratchet yield the highest values, while medium large values are obtained

by GMAB returnP, GMABwD returnP, GMAB ratchet and GMABwD ratchet. All

remaining products lead to a relatively low fair value, and we generally see that

within each guarantee the ratchet type yields the highest values, followed by the

roll-up benefit base and the lowest is the return of premium.

The model fits are based on a limited number of representatives and hence small

deviations to our expectation are possible. However, it makes absolutely no sense

that e.g. the values of the roll-up benefits are always lower than the values of the

ratchet benefit bases. This is due to the fact that the parametric models consider

the influence of all weights simultaneously and that NA entries in the rates are

replaced with 0 during data preparation.

Exemplarily, we explain the consequences of setting rollup.rate = 0. Originally,

the policies with a roll-up benefit base have been created with roll-up rates in the

range [0.01,0.05]. Further, we have seen that all previous models show a great

influence of the roll-up rate on V0. Hence, if we consider e.g. a ratchet type

policy, the large impact of the roll-up rate and rollup.rate = 0 cause the fair

value to be predicted extremely low in the parametric models. To compensate for

this effect, the models increase the coefficients for ratchet type and premium back

products. Since the guaranteed benefits of ratchet type contracts are larger than

the guaranteed part of the repayment of the initial investment, the ratchet type

products appear to have the highest fair values within each guarantee.

Similarly, setting i.rate = 0 causes all products without a GMIB to have much

higher values compared to GMIB levels than actually expected. Therefore, the

GMAB options are the levels with the highest fair values in the parametric models.

The same applies to w.rate = 0, even though we do not see a strong effect here.

In summary, this effect does not make the models bad. Only the interpretation of

the individual product levels becomes more difficult.

Additionally to the rollup.rate, the premium is also a strong driver for the

today’s fair value. This is absolutely plausible, since both of the predictors directly

determine the benefit bases. In the parametric models, also i.rate and w.rate

appear to be important. The income rate directly affects the survival benefit,

while a large withdrawal rate enables to withdraw larger amounts every year and

hence contributes to benefit from the guarantee. As expected, all of these four

numerical predictors increase V0 with increasing explanatory values.
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The variables gender and age have hardly any influence on the today’s value of

guaranteed benefits.

5.3 Fair value at time 1

To determine the SCR as a quantile of the loss distribution, we first need to create

the empirical distribution of the fair values at time 1 under the real-world measure

P. That is, for a variety of real-world stock scenarios at time 1, the corresponding

time-1 values of the entire portfolio have to be calculated. Although we are only

interested in the aggregated values over the whole portfolio, we must first calculate

the values for each contract individually, as it is not possible to directly determine

the total value.

We start with some results of the nested Monte Carlo simulation and continue

with the application of machine learning methods to make the calculation feasible

for a large portfolio in terms of time. In the last part of this section, a comparison

of the model performance and the influence of the predictors is provided.

5.3.1 Results from nested MC simulation

First of all, the scenarios for the stock value at time 1 are sampled via the real-

world generator in Section 3.2.2. Figure 5.21 shows the histogram of the resulting

N = 1000 scenarios. By construction, the scenarios are log-normally distributed.

Now, in the nested MC approach, for each of these scenarios and each contract the

corresponding fair values at time 1 have to be calculated. For n = 10000 contracts

and N = 1000 scenarios this adds up to 10 million combinations, where each has

to be evaluated via an inner risk-neutral simulation. It is not possible to run this

nested simulation on my computer.

Nevertheless, we would like to see some results, and therefore we apply the sim-

ulation only on the first 100 contracts and reduce the number of inner paths to

100. This took approximately 24 minutes. Note that for the entire portfolio and

J = 1000 inner paths, the simulation is expected to take 1000 times longer, which

equals 394 hours.
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Figure 5.21: Histogram of generated scenarios at time 1.

In Figure 5.22, for each stock scenario the resulting time-1 value aggregated over

the 100 contracts is plotted against its scenario value.
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Figure 5.22: The stock scenarios at time 1 vs. the total fair values for 100 contracts
simulated with a reduced number of inner paths.

We see that the value decreases for increasing stock values and then remains on

the same level from a certain point on. This is absolutely plausible because the

insurance company must pay guaranteed benefits if the account value is low, and

the account value is directly affected by the stock values. According to (2.2), the
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account value at time 1 before a possible withdrawal is given by A−1 = A0
S1
S0

= P ·S1

in our setting since we have A0 = P, S0 = 1, and no guarantee fees that reduce the

account value.

Of course, a low account value at time 1 does not necessarily imply a low value at

the time of the guarantee payment, but it does make it more likely.

5.3.2 Data preparation and sampling

The data preparation for the insurance portfolio is conducted equivalently to 5.2.2.

Additionally, we now have the set of stock scenarios at time 1, and therefore we

create a combined data set comb, which consists of the combinations of all contracts

and all scenarios, i.e. has 10 million observations.

Next, we need to select a subset of the combinations that will serve as input to

the machine learning methods.

This time, we do not randomly choose the representatives because the scenar-

ios are not uniformly distributed, see Figure 5.21. In particular, we know that by

construction they are log-normally distributed. Hence, if we selected the represen-

tatives randomly from comb, we would get many scenarios of average stock value

but hardly any extreme values. On the other hand, calculating the SCR means

that we are interested in extreme quantiles of the one-year losses. Figure 5.22

suggests that we will have higher losses for very low scenarios and therefore, the

goal is to estimate the fair value well even at the tails of the scenario distribution.

For this reason, we would like to select the representatives in such a way that the

included scenarios are equidistantly spread over the range of possible scenarios

and hence also contain extreme values.

The strategy is to separately choose from the set of contracts and scenarios. As

before, a subset of contracts is randomly drawn from the entire portfolio. To

obtain scenario samples, we define equidistant points on the range of the given

scenarios and then select the scenarios that are closest to these points. Again, we

take k = 10p∗ as number of representatives, but now p∗ equals 24 as the stock

value at time 1 is also considered as an explanatory variable now.

> k <- 240

> Z.Policies <- df[sample(nrow(df), k),]

> equ.points <-seq(min(scenarios),max(scenarios),
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(max(scenarios)-min(scenarios))/(k-1))

> Z.scenarios <- sapply(equ.points,

function(x) { scenarios[which.min(abs(scenarios-x))] } )

> Z <- cbind(Z.Policies, S1 = Z.scenarios)

To check the model performance we also need a test set. We randomly select 5000

samples from all combinations by

> test <- comb[sample(nrow(comb), 5000),]

In the following, we apply the machine learning methods to predict the fair value

at time 1 for each scenario and each contract. In all methods, the time-1 values

are modeled by the contract attributes and the stock scenario at time 1, using the

representative subset Z.

For the contract-specific explanatory variables, we expect an influence on V1 similar

to the one on V0. Therefore, in the following we will focus more on the relation of

V1 with respect to scenario values S1.

5.3.3 Generalized linear models

Again, we start with one Gamma GLM and one Gaussian GLM, both with a log

link function. At t = 1 it could happen that the fair value of one contract at a

certain (high) scenario already equals 0. To prevent that the algorithm has to deal

with zeros, we slightly shift the response values in positive direction. However,

since we generally have very large values, this small shift has no effect on the

prediction.

> glm.1 <- glm(v1 + 1e-03 ~ ., data=Z, family=Gamma(link = "log"))

> glm.2 <- glm(v1 + 1e-03 ~ ., data=Z, family=gaussian(link = "log"))

Exemplarily, the summary of the coefficients from glm.2 is given by:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.009e+01 1.894e-01 53.251 < 2e-16 ***

productGMAB returnP -1.910e+00 3.552e-01 -5.378 1.96e-07 ***

productGMAB rollup -2.444e+00 2.262e-01 -10.807 < 2e-16 ***

productGMABwD ratchet -1.737e-01 9.696e-02 -1.791 0.074640 .

productGMABwD returnP -1.509e+00 2.266e-01 -6.661 2.24e-10 ***

productGMABwD rollup -2.237e+00 2.081e-01 -10.753 < 2e-16 ***
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productGMDB ratchet -2.675e+00 8.124e-01 -3.293 0.001159 **

productGMDB returnP -4.918e+00 6.483e+00 -0.758 0.448986

productGMDB rollup -6.469e+00 2.344e+00 -2.760 0.006272 **

productGMIB ratchet -5.771e+00 7.331e-01 -7.872 1.69e-13 ***

productGMIB returnP -6.905e+00 8.935e-01 -7.727 4.15e-13 ***

productGMIB rollup -7.827e+00 8.058e-01 -9.713 < 2e-16 ***

productGMIBwD ratchet -5.089e+00 7.314e-01 -6.957 4.12e-11 ***

productGMIBwD returnP -7.778e+00 1.549e+00 -5.022 1.07e-06 ***

productGMIBwD rollup -7.541e+00 7.917e-01 -9.525 < 2e-16 ***

productGMWB -4.064e+00 1.264e+00 -3.215 0.001505 **

productGMWBwD -3.683e+00 1.097e+00 -3.358 0.000928 ***

maturity 4.239e-02 6.457e-03 6.565 3.84e-10 ***

genderMale 1.463e-01 5.566e-02 2.628 0.009219 **

age -9.102e-03 2.341e-03 -3.888 0.000135 ***

premium 3.695e-06 2.521e-07 14.657 < 2e-16 ***

w.rate 2.852e+01 1.654e+01 1.725 0.086006 .

i.rate 5.470e+00 8.031e-01 6.811 9.55e-11 ***

rollup.rate 6.186e+01 4.658e+00 13.280 < 2e-16 ***

S1 -4.201e-01 8.046e-02 -5.222 4.17e-07 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

As expected, the product levels have an influence similar to the one of the previous

Gaussian GLM for V0. Small deviations are natural since the fit is based on only a

small number of representatives. The same holds for most of the other coefficients.

Only gender and age now appear to be significant within this model, and in

addition age has a stronger negative impact on the fair value. There seems to

be no explanation for this, which could indicate that the model has problems to

reflect the true relationships.

The estimated coefficient of S1 is negative and hence the response is expected to

decrease with increasing stock value. According to the model, the relative impact

of the scenario at time 1 is given by

> exp(glm.2$coefficients['S1'] * 0.1)

0.9588565

This implies that if we consider the same contract at two time-1 scenarios, which
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differ by 0.1, the fair value at the higher stock value is expected to be 4.1% lower.

Moreover, when we know the time-1 value of one contract for a certain scenario,

this relative impact allows us to directly determine the fair values for all other

scenarios. This is a nice property, but it also means that the shape of the V1-

distribution is solely determined by the coefficient βS1 .

In Figure 5.23, predictions for the test data are plotted against their Monte Carlo

estimates. The Gamma model extremely overestimates the response values, even

for small MC values. We conclude that this model fails to predict the true rela-

tionship. The Gaussian distribution yields a better fit, but the predicted values

still differ in the higher range.

This again encourages the presumption that a GLM struggles to capture the true

behavior of V1 with respect to different scenario values.

5.3.4 Regression trees

Single trees

An implementation of a single tree to model the value V1 is given by

> single.tree <- rpart(v1 ~ ., Z, method = "anova",

control = list(minsplit = 5))

Figure 5.24 visualizes the resulting tree, which consists of eight terminal nodes.

Again, the product and the premium are important predictors and also the roll-up

rate defines a split. Now, additionally the stock value at time 1 is used twice for

splitting. We notice that regions above the cutting points of S1 always have lower

response values. In contrast, higher realizations of both the premium and roll-up

rate lead to higher fair values.

The region with the highest predicted response contains samples of the products

GMAB ratchet, GMABwD ratchet, GMAB rollup, GMABwD rollup, GMIBwD ratchet

and GMIBwD rollup with large premium and relatively low stock scenario S1.

In Figure 5.25, we face again a poor predictive performance because the single

tree only uses eight discrete response values for prediction.
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Figure 5.23: Prediction accuracy on test data for (top) Gamma glm.1 and (bot-
tom) Gaussian glm.2.

Bagging

We obtain the bagged model to explain the variation of V1 by

> bag.tree <- bagging(v1 ~., data = Z, nbagg = 200,

control = list(minsplit=2, cp=0))

and the corresponding prediction is shown in Figure 5.26.

As before, the model significantly underestimates large MC values, as it cannot

perform extrapolation and the maximum response value of the set of representa-

tives is much lower than the maximum value of the test set.
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product = GMAB returnP,GMABwD returnP,GMDB ratchet,GMDB returnP,GMDB rollup,GMIB ratchet,GMIB returnP,GMIB rollup,GMIBwD returnP,GMWB,GMWBwD

S1 >= 1 premium < 349e+3

rollup.rate < 0.035

premium < 235e+3

S1 >= 1.1

product = GMAB rollup,GMABwD rollup,GMIBwD ratchet

25e+3
100%

9024
66%

4559
45%

18e+3
21%

57e+3
34%

40e+3
25%

31e+3
20%

22e+3
11%

42e+3
9%

75e+3
5%

101e+3
10%

83e+3
7%

60e+3
4%

114e+3
3%

140e+3
3%

no

Figure 5.24: Tree chart of model single.tree
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Figure 5.25: Prediction accuracy on test data via model single.tree.

To check if the number of bagged trees is sufficient, we examine the test error for

different values of nbagg. According to Figure 5.27, we see that nbagg = 200 has

already been a suitable choice.

Random forests

Next, we consider a model of random forests. It is given by

> rf <- randomForest(v1 ~., Z, nodesize = 1)
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Figure 5.26: Prediction accuracy on test data via model bag.tree.
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Figure 5.27: Test error vs number of bagged trees.

where the default number of candidates at each split, denoted by mtry, now equals

b p
3c= b

9
3c= 3.

The prediction is displayed in Figure 5.28, and we face the same problem of under-

estimating large responses due to the incapability of the model to predict response

values outside the range of the representatives.

To make a proper choice of the parameters mtry and ntree, we simultaneously

consider their impact on the test error, see Figure 5.29.

The results are quite stable for different numbers of trees and one could say that

ntree = 300 is sufficient. On the other hand, the choice of mtry makes a sig-
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Figure 5.28: Prediction accuracy on test data via model rf.

nificant difference. Randomly taking one predictor at each split yields the worst

results. However, considering all or all but one variables in each split does not

lead to the best model performances either. The lowest test error is obtained by

mtry = 5. That is, in this setting we indeed profit from the randomness within

random forests, and the quality of the prediction can be improved by de-correlated

trees.
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Figure 5.29: Test error vs. number of trees by number of variable candidates at
each split.
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5.3.5 Neural networks

Lastly, we fit a neural network with one hidden unit on the scaled dataset Z.nn

by

> net1 <- net1 <- nnet(v1 ~ ., data = Z.nn, size = 1, decay = 5e-4,

maxit = 1000, linout = T)

and again GMAB ratchet and Female are automatically chosen as baseline levels.

The trained net is shown in Figure 5.30. The structure of the neural net with only

one neuron in the hidden layer again allows for an interpretation of the weight co-

efficients. The predictor S1 has a light negative weight. That is, by the model, the

fair value decreases with increasing stock scenarios. We also see that the product

levels have a large influence of the prediction. In contrast, gender and age have

weights close to 0 and hence hardly have any impact.

It is interesting that in this network the premium and w.rate are not that im-

portant anymore compared to the neural net model of V0. This could be due to

the fact that we are working with a different set of representative contracts, or it

could mean that the neural network with one hidden unit also has difficulties to

reflect the dependencies of V1 because of the additional variation due to distinct

scenario values.

The predicted response values are plotted in Figure 5.31, and we conclude that the

model net1 with only one hidden neuron is able to indeed reproduce the behavior

quite well.

To check whether we can make the model even better, we simultaneously analyze

the impact of the parameters size and decay in Figure 5.32. In general, you can

see that for small weight decays the prediction seems a bit unstable. For suffi-

ciently large decay, the test error is first decreasing with the size until size = 4

and then increasing again. Further, for a size of least six the test error is very

volatile. This is absolutely reasonable because for a net with six hidden units we

need to estimate 175 parameters.

Overall, one can say that setting decay = 3e-04 and size = 4 is appropriate,

given the current set of representatives. If we increase the number of representa-

tives, more hidden units might help to learn the relationship better.
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Figure 5.30: The neural network from model net1.

0 100000 200000 300000

0
10

00
00

25
00

00

MC value

P
re

di
ct

io
n

0 100000 200000 300000

0
10

00
00

25
00

00

MC value

P
re

di
ct

io
n

Figure 5.31: Prediction accuracy on test data via model net1.
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Figure 5.32: Test error vs weight decay by number of hidden units.

5.3.6 Comparison

Lastly, we compare the results of the previously introduced machine learning meth-

ods, which attempt to model the behavior of V1 using the insurance attributes and

the stock scenarios as explanatory variables. We analyze both the quality of the

models in terms of predictive accuracy and the impact of the individual predictors.

Predictive performance

Again, we examine the predictive accuracy of the models based on multiple sets

of representatives of different sizes. According to the description in 5.3.2, we

randomly draw a test set of size 5000 and for each k = 240, 480, 960 we create ten

sets of representatives.

For every set m = 1, . . . ,30 of representatives, we fit the following models:

> Gam.glm[[m]] <- glm(v1 + 1e-03 ~ ., data = Z[[m]],

family = Gamma(link = "log"))

> Gauss.glm[[m]] <- glm(v1 + 1e-03 ~ ., data = Z[[m]],

family = gaussian(link = "log"))

> single.tree[[m]] <- rpart(v1 ~ ., data = Z[[m]], method = "anova",

control = list(minsplit = 5))
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> bag.tree[[m]] <- bagging(v1 ~ ., data = Z[[m]], nbagg = 200,

control = list(minsplit = 2, cp = 0))

> rand.forest[[m]] <- randomForest(v1 ~ ., data = Z[[m]], mtry = 5,

ntree = 300, nodesize = 1)

> H4.net[[m]] <- nnet(v1 ~ ., data = Z.nn[[m]], size = 4, decay = 3e-04,

maxit = 1000, linout = T, trace = F)

> H6.net[[m]] <- nnet(v1 ~ ., data = Z.nn[[m]], size = 6, decay = 3e-04,

maxit = 1000, linout = T, trace = F)

The Gamma GLM does not converge for one training sample, and as the results

of this method are generally very poor, we exclude the Gamma GLM in further

analysis. It is not recommended to apply the model in this context.

The averaged RMSE on the test data for each method and each number of repre-

sentatives are depicted in Figure 5.33. The tree models provide the highest test

errors, especially the single regression tree. But also the Gaussian GLM seems

to perform only a little bit better. The best prediction accuracy is achieved by

the neural networks. This is plausible and reflects the impressions that we have

gained in the previous parts of this section.

For all methods the model quality improves with increasing size of the training

data. In this context, it is recommended to select at least 480 representatives.
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Figure 5.33: Average of RMSE over multiple sets of representatives for each model
and each number of representatives.

The corresponding boxplot of the previous graph is shown in Figure 5.34. For all
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methods the RSME gets less volatile when the size of the training set is increased.

The most stable results with respect to the choice of representatives is achieved

by the neural nets at k = 980.
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Figure 5.34: Boxplot of RMSE based on multiple sets of representatives

When we consider the averaged percentage errors in Figure 5.35, we see that the

Gaussian GLM predicts responses which are on average too large, whereas tree

models generally underestimate the values, particularly for smaller k. Only the

neural nets generally achieve percentage errors close to zero and on average slightly

overestimate the MC values.

Exactly as depicted previously in Figure 5.20 for the estimation of V0, also here

the neural nets have volatile test errors depending on random initialization of the

parameters when we use only 240 representatives. Otherwise, the methods are

very stable.

In conclusion, a neural net with six hidden units and a set of k = 980 representa-

tives is recommended to predict the behavior of the time-1 value in this context.

Risk drivers for V1

In all models, we have plausibly seen a large impact of the product on the fair

value. And again, we face the difficulty of interpreting the influence of the individ-

ual product levels in the parametric models due to the modification of the roll-up,
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Figure 5.35: Average of PE over multiple sets of representatives for each model
and each number of representatives.

withdrawal and income rate. Additionally, the predictor rollup.rate appears to

be a strong driver for V1.

The single tree model suggests that both the premium and the scenario value S1

also have a decisive role in the prediction of V1. Similarly, the Gaussian GLM

considers both parameters to be significant within the model. In contrast, the

neural net with one hidden unit does not weight the inputs of the premium and

the stock value that much. However, in all models we have an increasing effect of

the premium and a decreasing effect of the scenario on the fair value V1.

Overall, one might conclude that due to the additional variation of the fair value

with respect to the time-1 scenarios, the models that allow for interpretation,

might have small difficulties in reproducing the dependencies on the contract at-

tributes. Note that only within the simplest models - the GLM, the single tree

and the neural net with one hidden unit - the impact of the predictors can be

interpreted. Since the neural networks with four and six neurons provide good

predictions on the test data, these two more complex models seem to be affected

only slightly or not at all by this issue.
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5.4 Estimation of SCR

Finally, we can put all parts together and estimate the SCR according to the

framework presented in Chapter 3. Remember that the approach consists of the

following basic steps

1. Estimate V0 for the entire portfolio.

2. Estimate V (`)
1 for the entire portfolio given scenario samples, `= 1, . . . ,N.

3. Calculate the losses ∆(`) =−V0 +
V (`)

1
1+r .

4. Estimate the SCR by the empirical 99.5%-quantile of the losses.

Note that here the terms V0 and V (`)
1 always refer to the aggregated fair values over

all contracts. We speed up the nested simulation by applying machine learning

methods that predict the fair values for both times based on a small number of

representatives.

We use the Gaussian GLM, the random forest and the neural net of size six from

5.2.6 with k = 920 and the corresponding models from 5.3.6 with k = 960 because

they achieve the most promising results under each of the fundamental machine

learning methods, respectively.

First, the today’s fair value of the whole portfolio is estimated. The partial steps

and their runtimes are listed in Table 5.3. The time for selecting the representative

contracts and for the MC simulation is of course the same within all three methods.

Note that the fitting step also includes data preparation and, in case of a neural

net, scaling. For the neural net we also have to re-scale the values in the prediction

step.

Model GLM Random forest Neural net
Select representatives 0.12 0.12 0.12
MC simulation 41.93 41.93 41.93
Model fitting 0.54 2.97 2.17
Prediction 0.08 0.39 0.29
Total 42.67 45.41 44.51

Table 5.3: Runtimes for the V0 estimation in seconds.

The runtimes do not differ significantly and in total all models need about 45
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seconds. Remember, that the traditional MC simulation took 525 seconds, which

is more than ten times as long.

When we consider the results of the predicted V0 in Table 5.4, we see that the

estimates are very similar. The fair value that was obtained by the traditional

MC simulation is given by V0 = 245404851. Hence, for all models the deviation

from the MC value is quite small, particularly for the prediction via the neural

net. Of course, the MC result is also just an estimate of the true today’s value.

It is indeed surprising that the tree model does not underestimate V0. Apparently,

among the selected representatives there is at least one contract with a very high

response value, so that the model works well without extrapolation.

Model GLM Random forest Neural net
V0 estimate 251 256 473 250 031 683 245 122 825
Relative error wrt. MC value 2.384 % 1.885 % -0.115 %

Table 5.4: Estimated V0 and relative error.

It can be seen as a success that within such a short time a value, whose actual

determination is very complex, can be predicted with such a good quality.

The next step is to create the empirical distribution of V1. Therefore, we first need

to generate real-world realizations of the stock value at time 1. The remaining

steps are similar as before, see Table 5.5. Now, we have 10 million combinations

of contracts and scenarios, which must be predicted via the fitted models. The

GLM is very fast and even the neural network, in spite of the required scaling, can

cope well with the prediction of this large amount of data. Only the random forest

needs roughly four minutes for the prediction. However, considering that with the

nested MC simulation it was not even possible to determine the fair values at time

1 given multiple scenarios for such a large portfolio, a total runtime of a bit more

than five minutes is still very fast.

Ultimately, the one-year losses ∆(`) are calculated very quickly as linear transfor-

mation of V (`)
1 . The resulting empirical distribution is shown on the left side of

Figure 5.36. A negative loss naturally corresponds to a profit.

We see three different shapes of the distribution: The GLM yields a symmetric

loss distribution with both few small and few large losses. In contrast, the losses

of the random forest are nearly equally distributed until a loss of approximatly
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Model GLM Random forest Neural net
Sample scenarios 0.27 0.27 0.27
Select representatives 0.28 0.28 0.28
MC simulation 57.92 57.92 57.92
Model fitting 0.90 3.84 2.83
Prediction 7.05 263.25 24.77
Total 66.42 325.56 86.07

Table 5.5: Runtimes for the estimation of all V (`)
1 in seconds.

x = 2e+07. Above this point there are only very few observations spread over a

large range. Lastly, the neural net seems to produce a smoothed version of the

losses from the random forest. All three models have in common that there are

very few extremely high losses and that the support of the distributions is about

the same.

From the empirical loss distribution the SCR is estimated as 99.5%-quantile. That

is, given N = 1000 scenarios, the SCR equals the 995-th element of the losses sorted

in ascending order.

In Figure 5.36, the estimated SCR is marked with a red dot. The numerical results

are depicted in Table 5.6. The outcomes of the individual methods are all on the

same scale, but differ a bit. The GLM predicts the lowest SCR, the neural net

the highest one.

Model GLM Random forest Neural net
SCR 49 335 616 84 619 970 102 560 755

Table 5.6: Estimated SCR from machine learning methods

As the estimates of the today’s fair values V0 of all three models are approximately

equivalent, the difference in the SCR must arise from the prediction of V (`)
1 . On

the right hand side of Figure 5.36, the estimated time-1 values are plotted versus

their stock scenarios at time 1. In all models we see a decreasing curve, i.e. low

scenarios lead to large fair values and vice versa.

The GLM shows almost a straight line for the dependence of V1 on the given sce-

narios. The structure of the GLM allows for a direct interpretation of the impact

of the stock scenarios. If we know that, for instance, the predicted fair value for

scenario S̃1 = 1.0326392 is given by Ṽ1 = 266675233, then the value for any other
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Figure 5.36: (left) Empirical loss distribution.
(right) Predicted time-1 values vs the given stock scenarios at time 1
for each model.

scenario S1 can be obtained by V1 = Ṽ1 ·exp(β̂S1(S1− S̃1)), where the stock param-

eter β̂S1 equals −0.5595 in the fitted GLM. This holds due to the assumed model

relationship with a log link, and because we only consider the fair values aggregated

over all contracts. That means that we have a log-linear relationship between the

fair value and the scenario values, expressed by log(V1) = log(Ṽ1)+ β̂S1(S1− S̃1).

It is important to understand that when we apply a GLM with a log link func-

tion, we assume exactly this relationship in this context. This expression might
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be useful, but at the same time it is a very strong assumption and it is doubtful

whether this relation is valid. Hence, the model is not very flexible and eventually

fails to describe the shape of V1 and hence also of the loss distribution.

Note that the remaining model parameters, which specify the impact of the con-

tract attributes, have no influence on the behavior of the aggregated fair values

V1, but only serve to determine the base level, i.e. can be considered as intercept.

Random forests are non-parametric algorithms and are based on simple yes-or-

no rules that create non-smooth response regions. Hence, by construction of the

model, the impact of the stock scenario at time 1 can only be captured by splitting

a set of observations into two subgroups, where a certain scenario value is used

as a cut point. Aggregating over multiple unpruned trees helps to smooth out

the prediction surface. The performance of trees is limited because they cannot

extrapolate. However, since they do not have any parametric assumptions, they

are flexible and are able to reflect even complex relationships.

Figure 5.36 shows that the predicted time-1 values decrease rapidly at the be-

ginning and then at a scenario value of approximatly 0.85 a kink appears. Pre-

sumably, in multiple trees of the ensemble an important split is made with this

scenario value as cutpoint.

Neural nets are parametric models, but because of multiple hidden neurons they

are much more flexible than GLMs and allow for a more complex relationship

between scenario values and responses. When we now consider the behavior of

the time-1 values produced by the neural network, we see that the the curve is

actually a smoothed version of the random forest. We know that within tree

models no assumptions are taken on any relation, and therefore they are free to

model the fair value. So if we see a similar shape for the neural net, this suggests

that the net can reproduce the true behavior of V1 well, at least for the set of

representatives. Additionally, the neural net has the ability to extrapolate the

responses into areas outside the values seen within the representatives.

Since no reference SCR is available from the nested MC simulation for the entire

portfolio, it is difficult to judge which of the three estimated SCRs clearly gives

the best prediction. In the previous Section 5.3.6, we have seen that the neural

network is very promising and yields the smallest test errors. Since we use exactly

the same models, we can expect that this still applies.

Further, in Figure 5.37, we compare the MC values V1 of the representatives, which
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serve as input for the training, with the fitted values of the models. Note that the

these values are no aggregated fair values, but the ones arising from one sample

of a single contract and a single scenario.
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Figure 5.37: Fitted fair values vs. MC values of the representatives.

We see that the neural net provides the best fit on the set of representatives. An

overfit of the data is not expected since the neural network is regularized by weight

decay and the model also achieves a good fit on the test data in Section 5.3.6.

In summary, it seems that under this framework the neural network offers the best

chance to estimate the SCR as well as possible.
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Variable annuities are insurance products that contain complex guarantees. The

fair market value of the guaranteed benefits cannot generally be determined in

a closed form and hence insurance companies often rely on Monte Carlo simu-

lation. However, MC simulation is computationally expensive when applied to a

large portfolio of variable annuity contracts. An approach to address this runtime-

related problem involves machine learning techniques and makes the calculation

more efficient by reducing the number of required MC simulations.

In this thesis, we empirically investigated the performance of three machine learn-

ing methods on a synthetic dataset with respect to estimating the today’s fair

value and determining the SCR.

Tree-based methods are considered as non-parametric models and they can be

applied to fit complex non-linear problems. However, tree models are unable to

discover trends and hence the models fail to perform extrapolation of the response

value outside the range of the training data. Here, trees tend to underestimate

values when applied to extrapolation domains.

The generalized linear models are parametric models that assume a transformed

linear relationship. This allows for an intuitive interpretation of the relationship,

but at the same time makes the model quite inflexible. When calculating the time-

1 values for different scenarios, it seems that the GLM cannot capture the behavior

of the distribution with respect to the stock values correctly. In future research,

one might consider transformations of explanatory variables or include interaction

terms between multiple variables in order to possibly improve the model.

The neural net seems to be a very promising technique in this context. Due to

its many parameters the model is more flexible than a GLM and is also able to

perform extrapolation. Overfitting can be prevented by applying weight decay

for regularization. Depending on the random initialization of the parameters, the

training process could converge in different local maxima. To make the model
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more stable, ensemble techniques could be incorporated in future.

In addition, we have seen that the data adjustments make the interpretation of the

product influence difficult within parametric models. Alternatively, one could split

the portfolio into four sets by the guarantee and build a separate model for each

part. This would avoid the interpretation issue and might even provide a better

prediction accuracy since the influence of attributes can be specified differently

for distinct guarantees.

In conclusion, the numerical results have demonstrated that in terms of predictive

accuracy the neural net performs best among the methods considered in this con-

text. With a sufficient number of neurons, it is capable of very precisely predicting

the behavior of the today’s values and the values at time 1. All methods were able

to drastically reduce the runtime.

Within this thesis many assumptions and simplifications are made to create a

feasible valuation framework and therefore the results are only valid within this

context. The projection onto realistic circumstances and real data sets must be

carried out very carefully.

95



Bibliography

Bauer, Daniel, Alexander Kling, and Jochen Russ (2008). “A universal pricing

framework for guaranteed minimum benefits in variable annuities”. In: ASTIN

Bulletin: The Journal of the IAA 38(2), pp. 621–651.

Bauer, Daniel, Andreas Reuss, and Daniela Singer (2012). “On the calculation

of the solvency capital requirement based on nested simulations”. In: ASTIN

Bulletin: The Journal of the IAA 42(2), pp. 453–499.

Breiman, Leo (1996). “Bagging predictors”. In: Machine learning 24(2), pp. 123–

140.

Breiman, Leo (2001). “Random forests”. In: Machine learning 45(1), pp. 5–32.

Breiman, Leo et al. (1984). Classification and regression trees. CRC press.

Dunn, Peter K and Gordon K Smyth (2018). Generalized linear models with ex-

amples in R. Springer.

Gan, Guojun (2013). “Application of data clustering and machine learning in

variable annuity valuation”. In: Insurance: Mathematics and Economics 53(3),

pp. 795–801.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The elements of

statistical learning: data mining, inference, and prediction. Springer Science &

Business Media.

Hejazi, Seyed Amir and Kenneth R Jackson (2017).“Efficient valuation of SCR via

a neural network approach”. In: Journal of Computational and Applied Mathe-

matics 313, pp. 427–439.

James, Gareth et al. (2013). An introduction to statistical learning. Vol. 112.

Springer.

Kuhn, Max, Kjell Johnson, et al. (2013). Applied predictive modeling. Vol. 26.

Springer.

96



Bibliography

Loeppky, Jason L, Jerome Sacks, and William J Welch (2009). “Choosing the

sample size of a computer experiment: A practical guide”. In: Technometrics

51(4), pp. 366–376.

McCullagh, Peter and John A Nelder (1989). Generalized linear models. 2nd ed.

Vol. 37. Chapman and Hall, London.

Milevsky, Moshe A and Thomas S Salisbury (2006).“Financial valuation of guaran-

teed minimum withdrawal benefits”. In: Insurance: Mathematics and Economics

38(1), pp. 21–38.

97



Name: Stefanie Burkart Matrikelnummer: 868233

Erklärung
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