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Abstract 

 

 

A probability distribution is n-divisible if its nth convolution root exists. While modeling the 
dependence structure between several (re)insurance losses by an additive risk factor model, 
the infinite divisibility, that is the n-divisibility for all 𝑛𝑛 ∈ ℕ, is a very desirable property. 
Moreover, the capacity to compute the distribution of a piece (i.e., a convolution root) is also 
desirable. Unfortunately, if many useful distributions are infinitely divisible, computing the 
distributions of their pieces is usually a challenging task that requires heavy numerical 
computations. However, in a few selected cases, particularly the Gamma case, the extraction 
of the distribution of the pieces can be performed fully parametrically, that is with negligible 
numerical cost and zero error. We show how this neat property of Gamma distributions can be 
leveraged to approximate the pieces of other distributions, and we provide several illustrations 
of the resulting algorithms. 
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1. Introduction 
 

Insurance and reinsurance risks are classically modeled via positive random variables 
representing loss amounts, whose distributions are estimated from empirical data 
and/or specific information about the underlying process producing these losses (such 
as contract details or physical phenomena). Examples of the wide range of literature 
on modeling methods and associated tools can be found in the Reference section [1–
5] at the end of this document. We consider here the internal modeling point of view, 

where the distributions of several losses 𝑋𝑋1, . . . ,𝑋𝑋𝑑𝑑 
are supposed to be known, but the dependence 
structure between them must still be evaluated 
and taken into account to assess the variability 
and the extremal behavior of the total loss 
∑ 𝑋𝑋𝑖𝑖𝑑𝑑
𝑖𝑖=1 . 

Setting such a dependency is an important but 
complex matter. Important, since the 
diversification effect between the 𝑋𝑋𝑖𝑖’s and their 
potential tail dependencies might induce 
drastically different behaviors for the total risk, 
especially in the extremes. Complex, since the 
quality and quantity of available information is 
usually not very good. 

When there is relevant data about the joint 
behavior of the marginals, we rely on 
parametric estimations of copulas. However, 
when the quantity and/or quality of available 
data is not sufficient to produce relevant 
estimations of copulas, we must take the 
viewpoints of experts into account. Experts’ 
viewpoints might not be in a format adapted to 
deducing the parametrization of a given copula 
model, since the interpretability of a Clayton’s 
𝜃𝜃, for example, is hard to grasp. Let alone 
choosing between several parametric families. 

To handle and aggregate several of these 
experts’ viewpoints, we consider the use of an 
additive risk factor model. These models 
manage the dependencies by using latent risk 
factors, which are allowed to produce losses in 
each of the marginals. More formally, consider 

that there exist uniform random variables 
𝑈𝑈1, . . . ,𝑈𝑈𝑛𝑛, all independent of each other, such that the random variables 𝑋𝑋1, . . .𝑋𝑋𝑑𝑑 are 
each written as: 

𝑋𝑋𝑖𝑖 = �𝑄𝑄𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

�𝑈𝑈𝑗𝑗�.                                                         (1) 
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Of course, the parameter 𝑛𝑛 is very important to the model: the cases 𝑛𝑛 ≪ 𝑑𝑑 or 𝑛𝑛 ≫ 𝑑𝑑 
are evidently different regimes (the first one inducing the irregularity of the produced 
random vector 𝐗𝐗, the second one allowing, for example, full independence). 

Our notation suggests the fact that 𝑄𝑄𝑖𝑖,𝑗𝑗’s are quantile functions, although this is not 
even necessary for the model to make sense. Some 𝑄𝑄𝑖𝑖,𝑗𝑗 might be identically zero, and 
we tend to hope that many of them will be for sparsity reasons. Note that if all 𝑄𝑄𝑖𝑖,𝑗𝑗 are 
non-decreasing (or if they are all non-increasing), the 𝑗𝑗th risk factors produce losses 
�𝑄𝑄1,𝑗𝑗�𝑈𝑈𝑗𝑗�, . . . ,𝑄𝑄𝑑𝑑,𝑗𝑗�𝑈𝑈𝑗𝑗�� that are comonotone. For all these reasons, and for the 
interpretability that arises from this comonotony, we make the assumption that all 𝑄𝑄𝑖𝑖,𝑗𝑗 
are quantile functions (and thus non-decreasing). 

This model, although appealing, is clearly intractable when nothing more is supposed 
about the set �𝑄𝑄𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗. The first simplification, discussed in Section 2, is the restriction 
to convolutional roots or pieces, leveraging the infinite divisibility of the marginals. 
Another useful restriction is on the class of functions allowed for 𝑄𝑄𝑖𝑖,𝑗𝑗’s: an important 
case is the Gamma restriction, which we detail and extend in Section 3. Section 4 
discusses a few examples of applications, and Section 5 concludes. 

 

 

2. Parametric divisibility 
 

Consider again Equation (1), and assume from now on that all 𝑄𝑄𝑖𝑖,𝑗𝑗 are quantile 
functions. Denote the resulting random variables by: 

𝑌𝑌𝑖𝑖,𝑗𝑗 = 𝑄𝑄𝑖𝑖,𝑗𝑗�𝑈𝑈𝑗𝑗�.                                                            (2) 

For any given index 𝑖𝑖, the set of random variables 𝑌𝑌𝑖𝑖,1, . . . . ,𝑌𝑌𝑖𝑖,𝑛𝑛 is clearly a set of 
independent random variables, since 𝑈𝑈1, . . . ,𝑈𝑈𝑛𝑛 are independent. The first assumption 
we will make to simplify the model is that, for all 𝑖𝑖, 𝑌𝑌𝑖𝑖,1, . . . . ,𝑌𝑌𝑖𝑖,𝑛𝑛 are all convolutional 
roots (also called pieces) of 𝑋𝑋𝑖𝑖, according to Definition 1. 

Definition 1 (𝑛𝑛th-root and 𝛽𝛽-piece). Let 𝑋𝑋 be a positive, continuous, random variable. 
The 𝑛𝑛th convolutional root of 𝑋𝑋 (also called the 1

𝑛𝑛
-piece of 𝑋𝑋), when it exists, is the 

common distributions of independent random variables 𝑌𝑌1, . . . .𝑌𝑌𝑛𝑛 such that 𝑋𝑋 = ∑ 𝑌𝑌𝑖𝑖𝑛𝑛
𝑖𝑖=1 . 

More generally, if 𝑀𝑀 denotes the moment generating function of 𝑋𝑋, that is 𝑀𝑀(𝑡𝑡) =
𝔼𝔼(𝑒𝑒𝑡𝑡𝑡𝑡), we define (when it exists) the 𝛽𝛽-piece of a random variable 𝑋𝑋 as the distribution 
having moment generating function 𝑡𝑡 ↦ 𝑀𝑀(𝑡𝑡)𝛽𝛽 . 

With a slight abuse of terminology, we make no distinction between the distribution of 
the random variable and the random variable itself when this is clear from the context. 

When the 𝑛𝑛𝑡𝑡ℎ-convolutional root exists, we say that 𝑋𝑋 is 𝑛𝑛-divisible. When any 𝛽𝛽-piece 
exists for all 𝛽𝛽 ∈]0,1], we say that 𝑋𝑋 is infinitely divisible. By convention, the 0-piece is 
the constant random variable with value 0. Again, we might speak about the divisibility 
of a random variable or of its distribution. 
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The moment generating function of a positive and infinite divisible random variable 𝑋𝑋 
can be represented canonically by 

𝑀𝑀(𝑡𝑡) = 𝔼𝔼(𝑒𝑒𝑡𝑡𝑡𝑡) = exp �𝑎𝑎𝑡𝑡 + � (𝑒𝑒𝑡𝑡𝑡𝑡 − 1)
ℝ+

𝐿𝐿(𝑑𝑑𝑑𝑑)�, 

where, according to [6], 𝑎𝑎 ≥ 0 and 𝐿𝐿, the Lévy measure, is non-negative and satisfies 
∫ minℝ+

(1,𝑑𝑑)𝐿𝐿(𝑑𝑑𝑑𝑑) ≤ ∞. The parameter 𝑎𝑎 is the left extremity of the support of the 
distribution, and the Lévy measure 𝐿𝐿 is uniquely determined. This is essentially a 
special case of the Lévy-Kitchnine representation that holds for any real infinite 
divisible distributions, already discussed in [7,8]. 

The divisibility of a distribution is sometimes a desirable property, especially in 
(re)insurance risk modeling, when we consider the distribution as a candidate model 
for aggregated losses. Indeed, standard collective risk models in insurance consider 
that, when we have 𝑛𝑛 insurers generating independent and identically distributed 
losses 𝑌𝑌1, . . . ,𝑌𝑌𝑛𝑛, the global loss is given as the convolution of these losses, 

𝑋𝑋 = �𝑌𝑌𝑖𝑖

𝑛𝑛

𝑖𝑖=1

. 

Moreover, each insurer may have several losses and therefore the 𝑌𝑌𝑖𝑖’s could also be 
expressed as sums of (more or less) independent random variables. 

Therefore, due to the very nature of the phenomena we model, insurance losses, the 
divisibility of the modeling distribution for 𝑋𝑋 is already in our hypothesis set. For this 
reason, when the time comes to model the dependence structure between several 
random variables 𝑋𝑋1, . . .𝑋𝑋𝑑𝑑, corresponding, for example, to different lines of business, 
using the divisibility property seems natural and appealing to the practitioner. 

Indeed, under Equations (1) and (2), the dependence structure of the random vector 
𝐗𝐗 = (𝑋𝑋1, . . .𝑋𝑋𝑑𝑑) can be fully described by the knowledge of all the 𝑄𝑄𝑖𝑖,𝑗𝑗 functions, that is 
all the distributions of 𝑌𝑌𝑖𝑖,𝑗𝑗’s. Typically, Ferriero [7,8] proposes to parametrize the 
problem by a set of constants 𝛽𝛽𝑖𝑖,𝑗𝑗 such that the following assumption holds for all 𝑖𝑖 ∈
1, . . . ,𝑑𝑑: 

𝑌𝑌𝑖𝑖,𝑗𝑗 is the 𝛽𝛽𝑖𝑖,𝑗𝑗-piece of 𝑋𝑋𝑖𝑖.                                                    (3) 

This directly implies that all 𝛽𝛽𝑖𝑖,𝑗𝑗 are in [0,1] (with 𝛽𝛽𝑖𝑖,𝑗𝑗 = 0 inducing 𝑌𝑌𝑖𝑖,𝑗𝑗 ≡ 0), and that 

∀𝑖𝑖 ∈ 1, . . . , 𝑑𝑑, �𝛽𝛽𝑖𝑖,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

= 1. 

The class of available dependence structures in this model is still wide, since the 
number 𝑛𝑛 of pieces can always be increased, and pieces of different sizes can be 
constructed. The model contains many interesting behaviors for the final random 
vector 𝐗𝐗: asymmetric dependence structures, tail dependencies, conditional 
independence, etc. See [7] for a broad review of potential models covered by this 
setting. 
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A prerequisite of this dependency construct is that we already have known distributions 
for the losses. Due to the real nature of objects we are modeling, and due to previous 
considerations, it makes sense to choose for 𝑋𝑋1, . . .𝑋𝑋𝑑𝑑 distributions that are infinitely 
divisible. This is the line of reasoning taken by Thorin in 1977. 

Thorin was an actuary who noted that common practice, especially in reinsurance, 
often modeled losses with heavy tailed distributions such as the log-Normal and the 
Pareto distributions. But these distributions were not known at the time to be infinitely 
divisible, or even divisible at all. Proving such a fact was a hard problem, which Thorin 
tackled in two founding articles [9,10], using a purposely made-up class of 
distributions, the so-called generalized Gamma convolutions, which are (briefly) 
defined as weak limits of convolutions of Gamma distributions. We will see that this 
class plays a particular role inside the (wider) class of infinitely divisible positive random 
variables. 

Consider again a positive and infinitely divisible random variable 𝑋𝑋. Recall that the 𝛽𝛽-
piece of 𝑋𝑋 is characterized as follows: 

Remark 2 (Characterization of the 𝛽𝛽-piece). For 𝑋𝑋 a positive and infinitely divisible 
random variable with moment generating function 𝑀𝑀(𝑡𝑡), for 𝛽𝛽 ∈ [0,1], the 𝛽𝛽-piece of 𝑋𝑋 
has moment generating function 𝑀𝑀𝛽𝛽(𝑡𝑡) such that 

 𝑀𝑀(𝑡𝑡) = 𝑀𝑀𝛽𝛽(𝑡𝑡)𝛽𝛽 .                                                            (4) 

Equation (4) must hold for all 𝑡𝑡 ∈ ℂ where 𝑀𝑀(𝑡𝑡) is defined. The construction of a piece 
is therefore closely related to deconvolutional problems. Since 𝑀𝑀 is essentially a 
complex function, and since 𝛽𝛽 ∈ [0,1], the first branch of the 𝛽𝛽-power of 𝑀𝑀(𝑡𝑡) can be 
taken. 

For our purposes of modeling insurance risks with an additive risk factor model based 
on infinite divisibility, it would be interesting to identify distributions whose pieces are 
easily identifiable through a parametric model. Indeed, one of the most important 
operations we might need to do is sample these pieces, and the cost of this sampling 
must be controlled as much as possible. The sampling algorithm is described in 
Algorithm 1. 
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Let us consider a few examples of known parametric families for which sampling the 
pieces will be easy, since the pieces are also from known parametric families. We start 
with the most important one, the Gamma distribution. 

Definition 3 (Gamma distribution). A positive, absolutely continuous random variable 
𝑋𝑋 is said to be Gamma distributed with shape 𝛼𝛼 ≥ 0 and scale 𝑠𝑠 ≥ 0, which we denote 
𝑋𝑋 ∼ 𝒢𝒢(𝛼𝛼, 𝑠𝑠), if it has the density 𝑓𝑓(𝑥𝑥) = 𝛤𝛤(𝛼𝛼)−1𝑠𝑠−𝛼𝛼𝑒𝑒−

𝑥𝑥
𝑠𝑠𝑥𝑥𝛼𝛼−1, where the normalizing 

constant, the Gamma function 𝛤𝛤(𝛼𝛼), is given as 𝛤𝛤(𝛼𝛼) = ∫ 𝑑𝑑𝛼𝛼−1∞
0 𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑. 

This distribution has mean 𝛼𝛼𝑠𝑠 and variance 𝛼𝛼𝑠𝑠2. Its pieces can be computed easily as 
described in Property 4. 

Property 4 (Pieces of Gamma distributions).  The 𝛽𝛽-piece of the 𝒢𝒢(𝛼𝛼, 𝑠𝑠) distribution is 
𝒢𝒢(𝛽𝛽𝛼𝛼, 𝑠𝑠) distributed. 

Proof. The distribution has moment generating function given by: 
𝑀𝑀(𝑡𝑡) = 𝔼𝔼(𝑒𝑒𝑡𝑡𝑡𝑡) = ∫ 𝑒𝑒𝑡𝑡𝑡𝑡∞

0 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥

= 𝛤𝛤(𝛼𝛼)−1𝑠𝑠−𝛼𝛼 ∫ 𝑒𝑒−𝑡𝑡
1−𝑡𝑡𝑠𝑠
𝑠𝑠

∞
0 𝑥𝑥𝛼𝛼−1𝑑𝑑𝑥𝑥

= 𝛤𝛤(𝛼𝛼)−1𝑠𝑠−𝛼𝛼 ∫ 𝑒𝑒−𝑡𝑡∞
0 𝑑𝑑𝛼𝛼−1 �1−𝑡𝑡𝑡𝑡

𝑡𝑡
�
−𝛼𝛼
𝑑𝑑𝑑𝑑

= 𝛤𝛤(𝛼𝛼)−1𝑠𝑠−𝛼𝛼 �1−𝑡𝑡𝑡𝑡
𝑡𝑡
�
−𝛼𝛼
∫ 𝑒𝑒−𝑡𝑡∞
0 𝑑𝑑𝛼𝛼−1𝑑𝑑𝑑𝑑

= (1 − 𝑡𝑡𝑠𝑠)−𝛼𝛼.

 

Therefore, Equation (4) gives 𝑀𝑀(𝑡𝑡)𝛽𝛽 = (1 − 𝑡𝑡𝑠𝑠)−𝛼𝛼𝛽𝛽 which concludes the proof. ◻ 

From the very structure of its moment generating function 𝑀𝑀(𝑡𝑡) = (1 − 𝑡𝑡𝑠𝑠)−𝛼𝛼, we can 
already see that the Gamma distribution will be easy to divide. Indeed, the shape 
parameter 𝛼𝛼, which can be any positive real value, is already in the exponent according 
to Equation (4). This structure also tells us that convolutions of Gamma distributions 
with same scales are still Gamma distributed (only the shape parameter will differ), as 
Property 4 clearly shows. 

There is another distribution class that divides easily, the Gaussian class. 

Definition 5 (Gaussian distribution). The random variable 𝑋𝑋 is said to be Gaussian 
with mean 𝜇𝜇 and variance 𝜎𝜎2, which we denote 𝑋𝑋 ∼ 𝒩𝒩(𝜇𝜇,𝜎𝜎2), if and only if it has 

moment generating function 𝑀𝑀(𝑡𝑡) = 𝑒𝑒𝜇𝜇𝑡𝑡+
𝜎𝜎2𝑡𝑡2

2 . 

Property 6 (Pieces of gaussian distribution). The 𝛽𝛽-piece of the 𝒩𝒩(𝜇𝜇,𝜎𝜎2) distribution 
is 𝒩𝒩(𝛽𝛽𝜇𝜇,𝛽𝛽𝜎𝜎2) distributed. 

Proof. Again, simply compute 𝑀𝑀(𝑡𝑡)𝛽𝛽 = 𝑒𝑒𝛽𝛽𝜇𝜇𝑡𝑡+
𝛽𝛽𝜎𝜎2𝑡𝑡2

2 . The same exponent remark applies 
here. ◻ 

Another interesting example in the discrete case is the Poisson distribution, and most 
importantly compound Poisson processes. 

Definition 7 (Poisson distribution).  The random variable 𝑁𝑁 has a Poisson distribution 
with rate 𝜆𝜆 > 0, denoted 𝑁𝑁 ∼ 𝒫𝒫(𝜆𝜆), if and only if ℙ(𝑁𝑁 = 𝑥𝑥) = 𝑒𝑒−𝜆𝜆 𝜆𝜆

𝑥𝑥

𝑡𝑡!
𝟙𝟙𝑡𝑡∈ℕ. Its moment 

generating function is written as 𝑀𝑀(𝑡𝑡) = 𝑒𝑒𝜆𝜆�𝑒𝑒𝑡𝑡−1�. 
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Definition 8 (Compound Poisson processes).  Let 𝑌𝑌1,𝑌𝑌2, . .. be i.i.d. random variables 
with distribution 𝒟𝒟, and let 𝑁𝑁 ∼ 𝒫𝒫(𝜆𝜆). The random variable 𝑋𝑋 = ∑ 𝑌𝑌𝑖𝑖𝑁𝑁

𝑖𝑖=1  is a compound 
Poisson process, which we denote 𝑋𝑋 ∼ 𝒞𝒞𝒫𝒫(𝜆𝜆,𝒟𝒟). 

Property 9 (Pieces of compound Poisson processes).  The 𝛽𝛽-piece of the 𝒞𝒞𝒫𝒫(𝜆𝜆,𝒟𝒟) 
distribution is 𝒞𝒞𝒫𝒫(𝛽𝛽𝜆𝜆,𝒟𝒟) distributed. 

Proof. We have: 𝔼𝔼(𝑒𝑒𝑡𝑡𝑡𝑡) = 𝔼𝔼(∏ 𝑒𝑒𝑡𝑡𝑌𝑌𝑖𝑖𝑁𝑁
𝑖𝑖=1 ) = 𝔼𝔼(𝑀𝑀𝒟𝒟(𝑡𝑡)𝑁𝑁) = 𝑒𝑒𝜆𝜆(𝑀𝑀𝒟𝒟(𝑡𝑡)−1) Hence, 𝜆𝜆 can be 

seen as a power on the m.g.f. and the same reasoning as before applies. ◻ 

Obviously, if 𝑌𝑌1,𝑌𝑌2, . .. are all equal to 1, we recover the known fact that the Poisson 
random variable 𝑁𝑁 is infinitely divisible, with Poisson distributed pieces. Interestingly, 
the distribution 𝒟𝒟 of the losses does not matter: since they are i.i.d., thinning the point 
process is enough to obtain a piece. In fact, the proof applies a little more generally to 
non-homogeneous Poisson processes: only the independence of increments of the 
process is needed. 

The same proof applies with Negative binomial distributions instead of Poisson 
distributions: it can be shown that Geometric distributions are infinitely divisible, with 
negative binomial pieces, which are infinitely divisible with negative binomial pieces 
themselves. 

The next example, the log-Normal distribution, is very important as this distribution is 
often used in (re)insurance to model losses. 

Definition 10 (Log-Normal distributions). The random variable 𝑋𝑋 is said to be log-
Normally distributed, which we denote 𝑋𝑋 ∼ ℒ𝒩𝒩(𝜇𝜇,𝜎𝜎2), if ln𝑋𝑋 ∼ 𝒩𝒩(𝜇𝜇,𝜎𝜎2). 

Thorin [10] shows that the log-Normal distribution is infinitely divisible, but does not 
provide the distribution of the pieces, and ends up with the following result: 

Property 11 (Existence of a Thorin measure in the log-Normal case [10]). The log-
Normal distribution is infinitely divisible. Moreover, it can be expressed as a weak limit 
of Gamma convolutions: there exists a measure 𝜈𝜈 such that 

𝑀𝑀(𝑡𝑡) = exp �−� ln
ℝ+

(1 − 𝑠𝑠𝑡𝑡)𝜈𝜈(∂𝑠𝑠)�. 

Unfortunately, the measure 𝜈𝜈, called the Thorin measure, is not explicit in the log-
Normal case1. Therefore, the log-Normal distributions are not parametrically divisible, 
and obtaining the distributions of the pieces of a log-Normal is a complicated matter. 

The same representation can be constructed for Pareto distributions (see [9]), which 
are also generalized Gamma convolutions with the continuous Thorin measure 𝜈𝜈, and 
therefore not parametrically divisible. Note that the Thorin measure 𝜈𝜈 plays the same 
role as the shape parameter of the Gamma distribution: this representation gives a 
‘non-parametric’ divisibility, where the parameter is a measure 𝜈𝜈, not explicitly known, 
in an infinite-dimensional space, which is not practical. 

 
1 We still know some things about this measure, e.g., that it has infinite total mass. See 
Bondesson [11] for numerical approximation that allows to plot its density. 
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In the next section, we propose to approximate this measure 𝜈𝜈 by an atomic measure, 
or even a simple Dirac (which yields a Gamma distribution). Indeed, a finitely atomic 
Thorin measure describes a finite convolution of Gamma distribution, which is clearly 
parametrically divisible with easy-to-sample pieces. 

 
 

3. Approximation schemes 
 

We propose here two of the main parametrically divisible approximations of positive 
distributions that might be used in additive risk factor model related problems. The first 
one is a trivial Gamma approximation, while the second one, more involved, is an 
approximation by a convolution of several Gamma distributions. 

 

3-a. The Gamma Approximation 

Suppose we have a positive random variable 𝑋𝑋, whose distribution is infinitely divisible 
but whose pieces are not easy to sample from. Our goal is to approximate the 
distributions of pieces of 𝑋𝑋 with an approximation that can be easily sampled from. The 
global strategy is to use an approximating distribution that is parametrically divisible, 
e.g., a Gamma distribution, to approximate 𝑋𝑋 directly. Indeed, if we have an 
approximation of 𝑋𝑋 that is Gamma distributed, the pieces can be approximated 
parametrically through the pieces of this Gamma distribution. Another potential 
strategy would be to compute the Laplace transform of the distribution and use 
numerical schemes to sample from an (approximated) Laplace transform, e.g., using 
a saddle point approximation, as was proposed in [8].  
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We will try to estimate the Gamma distribution by standard maximum likelihood. To do 
this, recall that the Gamma log-likelihood is given by: 

𝑙𝑙(𝛼𝛼, 𝑠𝑠, 𝑥𝑥) = −ln𝛤𝛤(𝛼𝛼) − 𝛼𝛼ln(𝑠𝑠) + (𝛼𝛼 − 1)ln(𝑥𝑥) −
𝑥𝑥
𝑠𝑠

. 

Hence, for a random variable 𝑋𝑋 such that 𝔼𝔼(𝑋𝑋) and 𝔼𝔼(ln𝑋𝑋) exist, this equation makes 
it possible to project the distribution of 𝑋𝑋 onto the Gamma class by maximum likelihood. 

On the other hand, if either 𝔼𝔼(𝑋𝑋) or 𝔼𝔼(ln𝑋𝑋) does not exist, which might happen with 
heavy-tailed distributions such as the Pareto distribution (which we will discuss in the 
next section), and which is quite common in the (re)insurance field, this maximum 
likelihood approach will not work. 

Instead, we propose to match shifted moments, i.e., the Taylor coefficients of the 
moment generating function, but around −1 rather than 0. When 𝑋𝑋 is positive, the 
moment generating function of 𝑋𝑋, defined by 

𝑀𝑀(𝑡𝑡) = 𝔼𝔼(𝑒𝑒−𝑡𝑡𝑡𝑡), 

is analytic in the negative half of the complex plane, and therefore is infinitely derivable 
in, e.g., −1 and has bounded derivatives. 

Moreover, if 𝑋𝑋 ∼ 𝒢𝒢(𝛼𝛼, 𝑠𝑠), the zeroth and first derivative of 𝑀𝑀 are: 

𝜇𝜇0 = 𝑀𝑀(−1) = (1 + 𝑠𝑠)−𝛼𝛼

𝜇𝜇1 = 𝑀𝑀′(−1) = 𝛼𝛼𝑠𝑠(1 + 𝑠𝑠)−𝛼𝛼−1 

The shifted moments 𝜇𝜇0 = 𝔼𝔼(𝑒𝑒−𝑡𝑡) and 𝜇𝜇1 = 𝔼𝔼(𝑋𝑋𝑒𝑒−𝑡𝑡) could easily be approximated 
from a sample of the random variable 𝑋𝑋. The set of equations we obtained can then 
be solved numerically for 𝛼𝛼, 𝑠𝑠, hence providing an estimator that matches the first two 
moments of the Escher transform. 

Unfortunately, since we only have two parameters 𝛼𝛼, 𝑠𝑠 we cannot exactly match more 
than two moments. This is a huge restriction since, as we will illustrate later, the 
approximation of a log-Normal or a Pareto distribution by a simple Gamma distribution 
is usually bad. However, by using convolutions of Gamma distributions, it is possible 
to match more moments and to obtain significantly better approximations, while 
keeping the parametric divisibility of the estimator. We discuss these possibilities in the 
next subsection. 

 
3-b. Matching more moments with a wider class of distributions 

Note that the moment generating function of an independent convolution 𝑌𝑌1+. . . +𝑌𝑌𝑛𝑛 is 
the product of the moment generating functions of the convoluted random variables. 
Therefore, if 𝑌𝑌1, . . . ,𝑌𝑌𝑛𝑛 all have 𝛽𝛽-pieces given by 𝑌𝑌1

(𝛽𝛽), . . . ,𝑌𝑌𝑛𝑛
(𝛽𝛽), then  𝑌𝑌1

(𝛽𝛽)+. . . +𝑌𝑌𝑛𝑛
(𝛽𝛽) is a 

𝛽𝛽-piece of 𝑌𝑌1+. . . +𝑌𝑌𝑛𝑛. 

Hence, a potentially better estimator than the simple Gamma distribution can be found 
as a convolution of parametrically divisible distributions. The case that will be of interest 
to us here is the case of convolutions 𝑛𝑛 ≥ 2 Gamma distributions. Indeed, we already 
know from Thorin’s work that the log-Normal and Pareto distributions can be seen as 
limiting cases of convolutions of a finite number of Gamma distributions. Hence, for a 
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certain number of parameters, that is for a certain number of Gammas, we have good 
reason to hope that the approximation of these distributions by a convolution of 
Gamma distributions will be almost perfect. 

We therefore work with the class of generalized Gamma convolutions. 

Definition 12 (Generalized Gamma convolution [6]). A random variable 𝑋𝑋 is said to be 
a generalized Gamma convolution with Thorin measure 𝜈𝜈, denoted 𝑋𝑋 ∼ 𝒢𝒢(𝜈𝜈), if it has 
a moment generating function 

𝑀𝑀(𝑡𝑡) = exp �−� ln
ℝ+

(1 − 𝑠𝑠𝑡𝑡)𝜈𝜈(∂𝑠𝑠)�. 

Moreover, any measure 𝜈𝜈 such that ∫ |[1,∞) ln𝑠𝑠|𝜈𝜈(∂𝑠𝑠)𝑙𝑙 ≤ ∞ and ∫ 𝑠𝑠(0,1) 𝜈𝜈(∂𝑠𝑠) ≤ ∞ 
generates a valid generalized Gamma convolution. 

We refer to [12–15] for details about the problems involved when estimating such 
Gamma convolutions and for details about the algorithms that we will use in the next 
section to estimate them. Note that, of course, finitely atomic measure 𝜈𝜈 fulfills the 
integration conditions of Definition 12. Moreover, for 

𝜈𝜈 = �𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝛿𝛿𝑡𝑡𝑖𝑖 , 

we have 

𝑀𝑀(𝑡𝑡) = �(1 − 𝑠𝑠𝑖𝑖𝑡𝑡)−𝛼𝛼𝑖𝑖
𝑛𝑛

𝑖𝑖=1

, 

which shows that the corresponding 𝑋𝑋 is indeed a convolution of 𝑛𝑛 Gamma 
distributions, with respective parameters (𝛼𝛼1, 𝑠𝑠1), . . . , (𝛼𝛼𝑛𝑛, 𝑠𝑠𝑛𝑛). 

Finally, the shape of 𝑀𝑀(𝑡𝑡) show that the parametric division of a convolution of Gamma 
distributions will be quite easy, using the same exponent trick as before. 

Property 13 (Pieces of generalized Gamma convolutions). The 𝛽𝛽-piece of a 
generalized Gamma convolution 𝑋𝑋 ∼ 𝒢𝒢(𝜈𝜈) is also a generalized Gamma convolution 
with Thorin measure 𝛽𝛽𝜈𝜈. 

 

 

4. Illustrative examples 
We propose a quick illustration of the potential applications of an additive risk factor 
model as defined by Equations (1), (2) and (3), to be able to show the dependency that 
can arise from such a model, and to assess the performance of the proposed Gamma 
approximation. We start with the description of a simple division of a distribution, and 
we end with the sampling from a genuine additive risk factor model using previously 
discussed parametric approximations. 
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4-a. Division of the Pareto distribution 

The Pareto distribution is used in (re)insurance loss modeling due to its heavy tail. It 
also has the advantage of being an extreme value distribution, and is therefore well 
suited for losses that are defined as the maximum of other random variables. 

Definition 14 (Pareto distribution). We say that the random variable 𝑋𝑋 with support ℝ+ 
is Pareto distributed with shape 𝛼𝛼 ∈ ℝ+ if it has the density 

𝑓𝑓(𝑥𝑥) = 𝛼𝛼(𝑥𝑥 + 1)−𝛼𝛼−1. 

Recall that the shape parameter influences the integrability of the distribution: the 
variance is finite if and only if 𝛼𝛼 > 2, the expectation is finite if and only if 𝛼𝛼 > 1, and 
the density is square integrable if and only if 𝛼𝛼 > 1

2
. Indeed, the smaller the value of 𝛼𝛼, 

the heavier the tail of the distribution. 

The Pareto distribution is infinitely divisible, as shown by Thorin in [9]. Unfortunately, 
there is no parametric form for the 𝛽𝛽-piece of a Pareto distribution. On the other hand, 
Thorin shows that the Pareto distributions belong to the wider class of generalized 
Gamma convolutions, and can therefore be approximated arbitrarily well by a finite 
convolution of Gamma distributions, which we can easily take pieces of to sample from. 

Our goal is to divide the Pareto distribution into pieces. For that, we propose two 
approximations. The easiest approximation that we will discuss is the Gamma 
approximation. We will also consider the convolution of 𝑛𝑛 Gammas, 𝑛𝑛 ≥ 2. According 
to the previous section, both these constructions are parametrically divisible. 

As our example, we consider the random variable 𝑋𝑋 as having a Pareto distribution 
with parameter 𝛼𝛼 = 3

4
. This distribution has no expectation or variance, and is not 

parametrically divisible. However, it can be approximated by a parametrically divisible 
model, either a simple Gamma distribution, or a convolution of, for example, 𝑛𝑛 = 20 
Gamma distributions. The first approximation is obtained using a maximum likelihood 
principle on a large sample, and the second one is obtained according to the method 
from [12]. 

The two following graphs describe the quality of both these parametrically divisible 
approximations of 𝑋𝑋. 

 

Figure 1: (a) Density plots of the Pareto density (via a sample and a kernel estimation), 
its projection into the Gamma class and into the GGC class with 𝑛𝑛 = 20. The x-axis is 
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log-scaled. (b) Quantile-Quantile plots of the Gamma approximation and the GGC 
approximation (convolution of 𝑛𝑛 = 20 Gammas) against the true Pareto distribution. 

We see from the density plot on Figure 1(a) and the quantile-quantile plot on 
Figure 1(b) that the quality of the convolution of 𝑛𝑛 = 20 Gamma is almost perfect, 
reproducing the Pareto distribution completely up to very high quantiles. Conversely, 
the Gamma approximation struggles. Note that a good approximation of the distribution 
itself will induce well-approximated pieces. 

To better understand the difference between the two approximations and the impact it 
will have on a dependence structure built through a risk-factor model with Pareto 
margins, we propose in the next section to sample from a multivariate model with a 
dependence structure given as an additive risk factor model, using this pareto 
distribution as one of the marginals. 

 

 
4-b. Approximate sampling from a risk factor model 
 

Consider that we furthermore observe a second random variable 𝑌𝑌, distributed as a 
log-Normal distribution with log-mean 𝜇𝜇 = 0 and log-standard deviation 𝜎𝜎 = 2. This 
distribution also belongs to the Thorin class of generalized Gamma convolutions 
(see [10]), and therefore we can estimate it as a Gamma distribution or as a 
convolution of 𝑛𝑛 = 20 Gamma distributions in the same way we did for 𝑋𝑋. The result of 
these approximations is given in Figure 2. 

 

Figure 2: (a) Density plots of the log-Normal density (via a sample and a kernel 
estimation), its projection into the Gamma class and into the GGC class with 𝑛𝑛 = 20. 
The x-axis is log-scaled. (b) Quantile-Quantile plots of the Gamma approximation and 
the GGC approximation (convolution of 𝑛𝑛 = 20 Gammas) against the true log-Normal 
distribution. 

We observe, as for the Pareto distribution, that the Gamma approximation is not 
satisfactory, while the convolution of 20 Gammas is essentially perfect at this level of 
detail (the quantile-quantile plot has 10 000 points, hence our approximation seems 
accurate up to the 99.99% quantile). Since the Gamma convolution approximations of 
the log-Normal and Pareto distributions are almost perfect, we will benchmark the 
results obtained by the Gamma approximation against them. 
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We consider a dependency between 𝑋𝑋 and 𝑌𝑌 that is given by a risk factor model as 
follows: we consider 𝑋𝑋0.2,𝑋𝑋0.8,𝑌𝑌0.2 and 𝑌𝑌0.8 the 20% and 80%-pieces of 𝑋𝑋 and 𝑌𝑌, and 
we suppose that 𝑋𝑋0.8 and 𝑌𝑌0.2 are comonotone. Our goal is to approximately sample 
from the obtained random vector (𝑋𝑋,𝑌𝑌). More precisely, the model has the following 
structure: 

𝑋𝑋 =  𝑋𝑋0.2 + 𝑋𝑋0.8
𝑌𝑌 =  𝑌𝑌0.8 + 𝑌𝑌0.2

 𝑋𝑋0.2,𝑌𝑌0.8 and (𝑋𝑋0.8,𝑌𝑌0.2) are mutually independent
 𝑋𝑋0.8 and 𝑌𝑌0.2 are comonotone

 

Note that this specifies completely the distribution of the random vector (𝑋𝑋,𝑌𝑌).  

Since the Gamma approximation and the GGC approximation are parametrically 
divisible, constructing approximated distributions for their pieces is quite easy. Then, 
after sampling the four pieces, we reorder the samples so that 𝑋𝑋0.8 and 𝑌𝑌0.2 samples 
have the same ranks, and we sum back to obtain 𝑋𝑋 and 𝑌𝑌. The obtained dependence 
structures, on a copula-scale, can be seen  in Figure 3. 

 

Figure 3: On the left, a sample from the Gamma approximation, while on the right is a 
sample from the convolution of Gamma approximation given as a benchmark. The top 
row presents the samples on the copula scale (pseudo-observations), while the bottom 
row presents them on the log scale. 

We note that the dependence structure produced by the Gamma approximation is 
clearly not the right one. From these obtained empirical ranks, we use the quantile 
functions of the initial Pareto and log-Normal distributions to produce a sample, whose 
scatter plot is visible on the bottom row of Figure 3. Surprisingly, we observe very little 
difference between the scatter plots on the marginals scale. Indeed, the dependence 
structure error is quite small. This is moreover confirmed by a kernel density estimation 
on 𝑋𝑋 + 𝑌𝑌, shown in Figure 4. 
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Figure 4: Density of the sum 𝑋𝑋 + 𝑌𝑌 obtained from both approximations. 

Figure 4 shows that, at least in this particular example, the use of a bad approximation 
to produce the pieces does not affect the produced dependence structure enough to 
alter the distribution of the total sum: the error seems negligible with respect to the 
sampling noise. 

If we consider the convolution of Gamma approximation to be the ground truth, which 
is credible because it approximates our distributions very well (see [12] for detailed 
experiments), we can conclude that, at least in this simple case, the dependence 
structure obtained from the Gamma approximation is close enough to the truth to allow 
the production of meaningful samples of the random vector when paired with the true 
marginals. 

 
 

5. Conclusion 
A risk factor model is a useful dependency structure in (re)insurance internal modeling 
because its interpretability facilitates the calibration of the dependence structures in 
those cases lacking data. However, sampling such a model, which is often necessary 
to derive explicit quantities useful to capital management, such as the upper quantiles 
of the total risk, can be really difficult. 

This difficulty comes almost directly from the challenges involved in sampling a given 
piece of a given divisible distribution. Therefore, some kind of approximation must be 
used to allow for practical implementations. Such approximation will perform correctly 
if it is parametrically divisible, that is if its pieces have a known parametric distribution, 
or at least can easily be sampled from.  

From the two approximations we proposed here, the most precise is of course the 
expansion into the Thorin class of generalized Gamma convolutions. The Thorin class 
does not contain all infinitely divisible distributions, but it does contain a lot of common 
shapes, including the heavy tailed distributions that are so useful in insurance 
applications. However, this expansion can be numerically challenging (as observed 
back in 2019 by [16], and developed largely in [12-14]). On the other hand, the simpler 
Gamma approximation is easy to implement and still provides a dependence structure 
that is quite close to the one fixed in the original risk factor model. The closer our 
distributions are to Gamma distributions, the closer the approximated dependence 
structure will be to the truth. 
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