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Abstract

This academic work contributes to the theory of dynamic risk measures. As bounded
random variables and bounded discrete-time processes serve to model the discounted value
of random future payments, it stands to reason that dynamic risk measures are commonly
defined as families of certain functionals on the space of either one of them.

Such risk measures play a decisive role in the quantification of target capital as it is
discussed within the Swiss Solvency Test. On the assessment of target capital, we provide
some useful results which seem to advise against the current proposal. For this reason, we
attempt an alternative approach towards the task of quantifying target capital by means
of dynamic expected shortfall.

We introduce a notion of a conditional quantile and define conditional value at risk as
the largest such quantile. Dynamic value at risk and dynamic expected shortfall then are
constructed by iteration of conditional value at risk and conditional expected shortfall.
This construction principle is advisable for dynamic consistency reasons. We provide
characterizations of conditional expected shortfall by means of conditional quantiles and
present similar results in the dynamic case.

v





Chapter 1

Introduction

In Europe’s struggle for a risk-based solvency standard by means of Solvency II, the sys-
tematic treatment and discussion of risk measurement experiences not only a mathematical
but also now a political and economical right of existence. Dating the latter on Herbert
Lüthy’s starting signal for the Swiss Solvency Test project in the spring of 2003, already
six years prior to this did Artzner et al. in [1, 2] successfully attempt from a mathematical
perspective the alteration of existing dogmas. In the arising dispute between many insti-
tutions and the insurance industry the academia’s influence is increasing, as is the need
for a theoretical view on this discussion.

A prominent concept of the current discussion surrounding minimum solvency require-
ments is target capital. Target capital is understood as the amount needed for an insurance
company to be sure (in a sense to be specified) that the assets at the end of a year are
sufficient to cover the liabilities. Sure means that even in an unlikely situation (say of a
1% probability) there is on average enough capital to allow the assets and liabilities to
be transferred to a third party and in addition to this, to provide a capital endowment
for that third party to cover its liabilities and future capital costs. Consequently, target
capital (TC) is given by the sum of 1-year risk capital (ES) which is the capital necessary
for the risks emanating within a one year time horizon and the risk margin (M) which is
defined as the minimal amount that allows a healthy insurer to take over the portfolio at
no additional cost. In mathematical terms,

TC := ES +M.

Within the White Paper of the Swiss Solvency Test [21] the Swiss Federal Office of Private
Insurance comes forward with a proposal of how to substantiate 1-year risk capital and
risk margin in terms of risk-bearing capital. As risk-bearing capital (C) is given by the
difference between a market consistent value of assets and a best estimate of liabilities a
reasonable definition of 1-year risk capital is

ES := ESr(C1 − C0) = C0 + ESr(C1),
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where ESr denotes the expected shortfall at level r ∈ (0, 1). The confidence level 1− r is
to be specified by the supervisor. The risk margin as well is quantified using the expected
shortfall at level r

M := α
T∑
s=2

ESr(Cs − Cs−1),

where T ≥ 2 is a finite time horizon and α > 0 designates the spread between interest
rates at which money can be borrowed and reinvested at no risk. As for the target capital,
we arrive at

TC = C0 + ESr(C1) + α
T∑
s=2

ESr(Cs − Cs−1) = C0 + Γr(C),

where

Γr(C) := ESr(C1) + α

T∑
s=2

ESr(Cs − Cs−1).

We may view Γr as a risk measure on the discrete-time process C of risk-bearing capital
and should inspect whether Γr satisfies some natural consistency properties: For instance,
it seems reasonable to ask that Ct ≥ C∗t with a 100% probability for all t ∈ {0, . . . , T}
implies Γr(C) ≤ Γr(C∗) for two processes C and C∗ of risk-bearing capital between which
an insurer is free to choose. Unfortunately, it turns out that Γr fails to satisfy this inverse
monotonicity property in general. Here is a counter-example.

Let T = 2 and consider a probabilistic model that consists only of two random future
states ω1 and ω2 which both realize themselves with a 50% probability. The trajectories
of C∗ are zero irrespectively of what scenario occurs and the trajectory of C is zero if
scenario ω1 occurs. C0(ω2) = C2(ω2) = 0, whereas C1(ω2) = 1. We have Ct(ωi) ≥ C∗t (ωi)
for i ∈ {1, 2} and t ∈ {0, 1, 2}. For arbitrary level r ∈ (0, 1) we have Γr(C∗) = 0 since
ESr(0) = 0. For all r ∈

(
0, 1

4

)
we have qC1(r) = 0 and qC2−C1(r) = −1, where qC1 and

qC2−C1 respectively designate quantile functions of the random variables C1 and C2 −C1.
The expected shortfall at level r = 1

4 of C1 is given by

ES 1
4
(C1) = − 1

1
4

∫ 1
4

0
qC1(s) ds = 0

and of C2 − C1 it is given by

ES 1
4
(C2 − C1) = − 1

1
4

∫ 1
4

0
qC2−C1(s) ds = 1.

Thus, Γ 1
4
(C) = α > 0 = Γ 1

4
(C∗).

This drawback motivated more detailed research on the risk measure Γr and on al-
ternative approaches towards a quantification of target capital. It is the objective of the
present thesis to provide a summary of the results we have collected so far and to point
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out possible directions of further research we suspect to be likely to contribute to a better
handling of this complex on a day-to-day basis.

Outline. This thesis contributes to the theory of dynamic monetary risk measures
in a discrete-time setup. As information is modeled by terms of filtration, such risk
measures should no longer be static in the sense that only the information available at
a single date is taken into account. Since risk assessments should be updated as new
information is released, we should rather demand that the output of a dynamic monetary
risk measure is to be a discrete-time process which is adapted to the underlying filtration.
This is achieved by introducing dynamic monetary risk measures as families of conditional
monetary risk measures at different times. A conditional monetary risk measure, say
at time t, consequently is a mapping which assigns to a risky object a random variable
(interpreted as the associated risk) which is measurable with respect to the information
available up to time t. For this reason, the present thesis is roughly divided into two parts.
Chapters 2, 3 and 4 discuss conditional monetary risk measures, whereas chapters 5 and
6 are devoted to dynamic monetary risk measures.

Throughout recent literature on dynamic monetary risk measures mainly two ideas
of risky objects are taken into account. On the one hand, there are bounded random
variables describing random future payments that materialize at a single future date and
on the other hand, we have bounded discrete-time processes that are meant to display the
entire evolution of an arbitrary financial position across time. Mathematically, monetary
risk measures that deal with bounded discrete-time processes are more challenging and as
such processes are capable of carrying more information about a risky object than a single
bounded random variable is, a systematic treatment of this complex seems desirable from a
sophisticated risk management viewpoint as well. This thesis contributes to both aspects,
however the focus is on conditional and dynamic monetary risk measures for bounded
random variables. It seems tempting to explore an extension of our results from bounded
random variables to bounded discrete-time processes, yet the required technical effort of
displaying this complex seems to lie beyond the scope of this thesis.

As this thesis is mainly based on literature which considers utility rather than its
negative (utility = −risk), we set forth this convention as well as the preferred use of
working with conditional and dynamic monetary utility functionals over conditional and
dynamic monetary risk measures.

In chapter 2 we provide the setup, as well as the notation and we introduce conditional
monetary utility functionals for bounded random variables and for bounded discrete-time
processes. Chapter 3 is devoted to a discussion of the above introduced risk measure Γr
on an axiomatic level. We consider functionals that satisfy the same set of axioms as Γr
does and approximate such functionals by means of conditional coherent risk measures.
We give necessary and sufficient conditions for the existence of a best (in a sense to be
specified) approximation in terms of what we call monotone hulls. As a main result we
explicitly construct the best approximation to Γr. Unfortunately, it turns out that this
approximation is not capable of assessing the riskiness evolving from inter-temporal cash-
flow streams. As we assume that this is not desirable, chapter 4 introduces the building
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blocks for our proposal of an alternative quantification of target capital in the spirit of
expected shortfall. We present our notion of a distribution invariant conditional mone-
tary utility functional and introduce conditional value at risk and conditional expected
shortfall in terms of conditional quantiles. We provide some useful results on conditional
quantiles and a generalization of the static case interaction between value at risk and ex-
pected shortfall. Chapter 5 then enters into the discussion of dynamic monetary utility
functionals. We introduce basic definitions and in particular we define what we mean by
time-consistency. We show how time-consistency relates to an iteration condition which
yields a powerful construction principle: By backwards induction an arbitrary family of
conditional monetary utility functionals serves as a construction kit for time-consistent
dynamic monetary utility functionals. A recent duality result for time-consistent dynamic
monetary utility functionals which are continuous in a mild sense is given. We introduce
a concatenation operation for probability measures that are absolutely continuous with
respect to some reference probability measure. This allows us to prove a modified ver-
sion of this recent representation result by means of concatenated probability densities.
In chapter 6 we are finally able to present dynamic value at risk and dynamic expected
shortfall as time-consistent dynamic monetary utility functionals respectively constructed
via iteration of conditional value at risk and conditional expected shortfall. We discuss
time-consistency properties and present a characterization theorem of dynamic expected
shortfall by combining the results of chapters 4 and 5.

The core of this thesis accumulates in the chapters 4 and 6. Although these chapters
are a product of collective work, the key results are the earnings of Damir Filipović and
Michael Kupper. The outlining and composition of chapter 4 mainly follows Michael
Kupper’s ideas. As apostle Paul, addressing the Romans, reminds us:

,
απóδoτε πα̃σιν τὰς

,
oϕειλάς, [...] τ ω̃

ι
τ ὴν τιµὴν τ ὴν τιµήν. ΠPOΣ PΩMAIOYΣ 13,7†

†Render therefore to all their dues: [...] honour to whom honour. Romans 13,7

4



Chapter 2

Conditional Monetary Utility
Functionals

The two main objectives of this chapter are on the one hand, to present the setup and
the notation as it is used throughout this thesis and on the other hand, to provide an
axiomatic setup for risk measurement within a multi-period framework. We start off with
a short reprise on the most striking features of stopping times and pass on to introduc-
ing one of the key notions of this thesis: a conditional monetary utility functional. In
accordance with the introduction, conditional monetary utility functionals are separately
introduced as functionals on the space of bounded random variables and on the space
of bounded discrete-time processes. We translate the Swiss Solvency Test risk measure
into our dynamic framework. By the end of this chapter we will have provided a sound
foundation to start doing the mathematics.

2.1 Introduction

As evolving financial markets constantly provide more and more information, a prudent
risk management should be equipped with a dynamic machinery that is capable of updating
risk assessments across time. On this account, the recent literature on risk measurement
comes forward with a variety of proposals to an extension of the celebrated static case
axiomatics first presented in Artzner et al. [1, 2] to a dynamic temporal setting.

In this thesis we work in a discrete-time setup with finite time horizon T . Bounded
discrete-time processes are meant to describe the evolution of discounted financial posi-
tions as time approaches T , whereas bounded random variables are to be understood as
discounted future payoffs that are realized at the final date T . We simply call the former
value processes and the latter final values. It is the aim of the present chapter to provide a
sound axiomatic setup which ensures an adequate assessment of the riskiness arising from
value processes as well as from final values.

Here and in the following, we order value processes and final values by almost sure
dominance as it is done in Artzner et al. [4], Cheridito et al. [6, 7, 8], Cheridito and
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Kupper [9] as well as in Kupper [19]. In a discrete-time setting we my always pass to
increment processes and arrive at risk measurement of cash-flow streams, yet the order of
almost sure dominance is not preserved under this transition. Riedel [20], Detlefsen and
Scandolo [13] as well as Weber [23] for instance, order cash-flow streams by almost sure
dominance and consequently propose a notion of a dynamic monetary risk measure that
is monotone in terms of cash-flow streams.

Already in the static case Föllmer and Schied [15, 16] as well as Frittelli and Rosazza
Gianin [14] established, by means of convex monetary risk measures, a more general ax-
iomatic setting than the one originally presented in the seminal works Artzner et al. [1, 2]
for finite and Delbaen [10, 11] for general probability spaces. For an excellent summary
of the static case results we recommend the textbook Föllmer and Schied [17]. The miti-
gation of merely imposing convexity rather than coherence remains just as tempting in a
dynamic temporal setting. Indeed, within a discrete-time setup it turns out that, under
adequate adjustments, the static case duality results on convex monetary risk measures
are still valid in a multi-period setting and can be proved by essentially the same tech-
niques. Such conditional representation results in the case of convexity are first given in
Detlefsen and Scandolo [13], whereas Riedel [20] follows Artzner et. al by studying dy-
namic coherent monetary risk measures. Within this thesis however we do not focus on
any one of the two concepts as our main results are in fact valid in the case of convexity
but are demonstrated by means of coherent risk measures.

The structure of this chapter is as follows: In the first section we present the setup
and notation we choose to work with throughout this thesis. We present a short collection
of some basic properties of stopping times and the associated σ-algebras. The main focus
is on measurability. As information is modeled in terms of a filtration we then introduce
in section 2.3 monetary utility functionals for bounded random variables conditioned on
the information available up to stopping times. We present a few basic properties as well.
The third section introduces our notion of a conditional monetary utility functional for
bounded discrete-time processes. We conclude with a first discussion of the Swiss Solvency
Test risk measure Γr which was introduced in chapter 1.

2.2 The Setup, Notation and Stopping Times

For the rest of this chapter, we fix a finite time horizon T ∈ N and shorten T = [0, T ]∩N.
The stochastic basis is given by a probability space (Ω,F , P ) endowed with a filtration
(Ft)t∈T such that F0 = {Ω, ∅} and F = FT . One should think of Ft as the information
available up to time t.

For t ∈ T we denote by L0(Ft) = L0(Ω,Ft, P ) the space of (equivalence classes of)
Ft-measurable random variables. For X,Y ∈ L0(FT ), X = Y , a.s. P , by convention
means that X ′ = Y ′, a.s. P , for all pairings (X ′, Y ′) ∈ X × Y . L∞(Ft) = L∞(Ω,Ft, P )
denotes the subspace of P -almost surely bounded random variables, i.e.

L∞(Ft) := {X ∈ L0(Ft) | ||X||L∞ <∞},
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where
||X||L∞ := inf {m ∈ R | |X| ≤ m, a.s. P}.

For t = T we set L0 = L0(F) = L0(FT ) as well as L∞ = L∞(F) = L∞(FT ).
By R0 we denote the space of (equivalence classes1 of) all adapted stochastic processes

(Ct)t∈T on the filtered probability space (Ω,F , (Ft)t∈T, P ). Furthermore, the subspace
R∞ of R0 is given by

R∞ := {C ∈ R0 | ||C||R∞ <∞},

where
||C||R∞ := inf {m ∈ R | sup

t∈T
|Ct| ≤ m, a.s. P}.

Recall that an F-measurable function τ : Ω → T ∪ {+∞} is called (Ft)-stopping time
if for all t ∈ T the event {τ ≤ t} is observable by time t. In other words, {τ ≤ t} ∈ Ft
for all t ∈ T. Throughout this thesis we only consider finite (Ft)-stopping times, i.e. an
(Ft)-stopping time τ is always assumed to satisfy τ(ω) ≤ T , for all ω ∈ Ω. For two (Ft)-
stopping times τ and θ such that τ(ω) ≤ θ(ω), for all ω ∈ Ω, we define the projection
πτ,θ : R0 → R0,

C 7→ πτ,θ(C)t := 1{τ≤t}Ct∧θ, t ∈ T.

Furthermore, we introduce the subspace

R∞τ,θ := πτ,θ(R∞)

of R∞.
For an (Ft)-stopping time τ we denote by Fτ the σ-algebra of events determined prior

to the stopping time τ , i.e.

Fτ := σ{A ∈ FT | A ∩ {τ ≤ t} ∈ Ft for all t ∈ T}.

L∞(Fτ ) = L∞(Ω,Fτ , P ) is given as above.
Here is a collection of a few basic properties of stopping times and their associated

σ-algebras:

• Since

Ac ∩ {τ ≤ t} =
(
Ac ∪ {τ > t}

)
∩ {τ ≤ t} =

(
A ∩ {τ ≤ t}

)c ∩ {τ ≤ t}

as well as
{τ ≤ t} ∩

⋃
n∈N

An =
⋃
n∈N

(
{τ ≤ t} ∩An

)
,

for A,An ∈ FT , n ∈ N and an (Ft)-stopping time τ , we deduce that

Fτ = {A ∈ FT | A ∩ {τ ≤ t} ∈ Ft for all t ∈ T}. (2.2.1)
1By C = D, a.s. P , for two stochastic processes C, D ∈ R0 we mean that for P -almost all ω ∈ Ω,

Ct(ω) = Dt(ω) for all t ∈ T.
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• If τ(ω) + n ≤ T , for all ω ∈ Ω, for an (Ft)-stopping time τ and n ∈ T, then
τ + n : Ω → T, ω 7→ τ(ω) + n is again an (Ft)-stopping time. To see this first note
that {τ + n ≤ t} = ∅ ∈ Ft for n > t. Then observe that for n ≤ t we have

{τ + n ≤ t} = {τ ≤ t− n} ∈ Ft−n ⊂ Ft,

which verifies the statement.

• Consider an (Ft)-stopping time τ , a process C ∈ R∞ and t ∈ T.

We have {τ = t} ∈ Fτ . Hence, τ =
∑

t∈T t1{τ=t} is Fτ -measurable.
The Ft-measurable functions 1{τ=t}Ct and 1{τ>t}Ct are Fτ -measurable. To prove
this, it suffices to show that the events {1

{τ (>)
= t}

Ct ∈ B} ∩ {τ ≤ s} belong to the

σ-algebra Fs for any Borel-set B ∈ B(R), for all s ∈ T. To this end, observe that
these events can also be written in the form((

{Ct ∈ B} ∩ {τ
(>)
= t}

)
∪
(
{0 ∈ B} ∩ {τ

(≤)

6= t}
))
∩ {τ ≤ s}. (2.2.2)

Note that all of these sets belong to either Ft or Fs. Thus, we are done if s ≥ t.
Now let s < t and consider the case where 0 /∈ B first. Then (2.2.2) reduces to

{Ct ∈ B} ∩ {τ (>)
= t} ∩ {τ ≤ s} which in both cases is the empty set and therefore

both events belong to Fs. For 0 ∈ B (2.2.2) reads {τ
(≤)

6= t}∩{τ ≤ s} = {τ ≤ s} ∈ Fs
and we are done for s < t also.
We now derive that the Ft-measurable functions

Cτ :=
∑
t∈T

1{τ=t}Ct,

as well as

Ct∧τ := 1{τ>t}Ct +
t∑

s=0

1{τ=s}Cs,

are Fτ -measurable.

• Assume that an (Ft)-stopping time τ satisfies τ(ω) = s, for all ω ∈ Ω and some
constant s ∈ T. In this case A ∩ {τ ≤ t} = A ∩ {s ≤ t} is either the empty set or A
itself. From (2.2.1) we thus deduce that Fτ and Fs coincide.

• Consider two (Ft)-stopping times τ and θ, such that τ(ω) ≤ θ(ω), for all ω ∈ Ω. We
then have {θ ≤ t} ⊂ {τ ≤ t}, t ∈ T and hence

A ∩ {θ ≤ t} = A ∩ {τ ≤ t} ∩ {θ ≤ t}.

Thus, Fτ ⊂ Fθ and in turn L∞(Fτ ) ⊂ L∞(Fθ).
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The above statements are still valid if equalities and inequalities between (Ft)-stopping
times as well as equalities and inclusions between sets are understood in the P -almost sure
sense. For instance, if τ, θ is a pair of (Ft)-stopping times such that τ ≤ θ, a.s. P , then
Fτ ⊂ Fθ up to null-sets. However, in this case an Fτ -measurable function no longer has to
be Fθ-measurable in turn. One may fix this problem by assuming that F0 already contains
all null-sets in F , yet such an approach is not attempted here.

2.3 Conditional Monetary Utility Functionals for Random
Variables

The risky objects considered in this section are random variables of the vector space
L∞(FT ). τ and θ are two (Ft)-stopping times such that τ(ω) ≤ θ(ω) for all ω ∈ Ω.

Definition 2.3.1 We call a functional φτ,θ : L∞(Fθ) → L∞(Fτ ) a conditional monetary
utility functional (on L∞(Fθ)) if it satisfies the following properties:

(n) Normalization: φτ,θ(0) = 0, a.s. P

(m) Monotonicity: φτ,θ(X) ≤ φτ,θ(Y ), a.s. P , for all X,Y ∈ L∞(Fθ) such that
X ≤ Y, a.s. P

(Fτ -ti) Fτ -Translation Invariance: φτ,θ(X + m) = φτ,θ(X) + m, a.s. P , for all X ∈
L∞(Fθ) and m ∈ L∞(Fτ ).

We call a conditional monetary utility functional φτ,θ a conditional concave utility func-
tional if it satisfies

(Fτ -c) Fτ -Concavity: φτ,θ
(
λX + (1− λ)Y

)
≥ λφτ,θ(X) + (1− λ)φτ,θ(Y ), a.s. P , for all

X,Y ∈ L∞(Fθ) and λ ∈ L∞(Fτ ) such that 0 ≤ λ ≤ 1, a.s. P .

We call a conditional concave utility functional φτ,θ a conditional coherent utility func-
tional if it satisfies

(Fτ -ph) Fτ -Positive Homogeneity: φτ,θ(λX) = λφτ,θ(X), a.s. P , for all X ∈ L∞(Fθ)
and λ ∈ L∞+ (Fτ ) := {f ∈ L∞(Fτ ) | f ≥ 0, a.s. P}.

ρτ,θ : L∞(Fθ) → L∞(Fτ ) is a conditional monetary risk measure on L∞(Fθ) if −ρτ,θ is
a conditional monetary utility functional on L∞(Fθ). ρτ,θ is a conditional convex risk mea-
sure if −ρτ,θ is a conditional concave utility functional and ρτ,θ is a conditional coherent
risk measure if −ρτ,θ is a conditional coherent utility functional.

Note that a conditional monetary utility functional (on L∞(Fθ)) is defined on equiva-
lence classes of random variables that are equal P -almost surely. In this sense, conditional
monetary utility functionals assign the same utility to random variables that coincide
P -almost surely.

Here is a standard remark:
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Remark 2.3.2 A functional φτ,θ : L∞(Fθ) → L∞(Fτ ) is a conditional coherent utility
functional if and only if it satisfies (m), (Fτ -ti) and (Fτ -ph) of the preceding definition
together with

(sa) Superadditivity: φτ,θ(X +Y ) ≥ φτ,θ(X) +φτ,θ(Y ), a.s. P , for all X,Y ∈ L∞(Fθ).

Any functional φτ,θ : L∞(Fθ) → L∞(Fτ ) that satisfies (Fτ -ph) is normalized. Thus,
necessity follows from

φτ,θ
(
λX + (1− λ)Y

)
≥ φτ,θ(λX) + φτ,θ

(
(1− λ)Y

)
= λφτ,θ(X) + (1− λ)φτ,θ(Y ), a.s. P,

for all X,Y ∈ L∞(Fθ) and λ ∈ L∞(Fτ ) such that 0 ≤ λ ≤ 1, a.s. P .
Conversely, let φτ,θ be a conditional coherent utility functional. We then have

φτ,θ(X + Y ) ≥ λφτ,θ

(
1
λ
X

)
+ (1− λ)φτ,θ

(
1

1− λ
Y

)
= φτ,θ(X) + φτ,θ(Y ), a.s. P,

for all X,Y ∈ L∞(Fθ) and λ ∈ L∞(Fτ ) such that 0 ≤ λ ≤ 1, a.s. P .

Suppose that we are given a conditional monetary utility functional φτ,θ : L∞(Fθ)
→ L∞(Fτ ) and an (Ft)-stopping time σ such that τ(ω) ≤ σ(ω) ≤ θ(ω), for all ω ∈
Ω. Recall that L∞(Fσ) ⊂ L∞(Fθ). Hence, φτ,θ induces a conditional monetary utility
functional φτ,σ (on L∞(Fσ)) via

φτ,σ(X) := φτ,θ(X), X ∈ L∞(Fσ). (2.3.3)

Example 2.3.3 Fix a discrete-time process C ∈ R∞τ,θ, a conditional monetary utility
functional φτ,θ and t ∈ T \ {0}. The Ft-measurable increment ∆Ct := Ct − Ct−1 =
Ct∧θ − C(t−1)∧θ is Fθ-measurable as the previous section tells us. Let us assume that
τ(ω) + 1 ≤ θ(ω), for all ω ∈ Ω. Again in reference to the previous section we know that
τ +1 is an (Ft)-stopping time and that Cτ+1 is Fτ+1-measurable. Keeping (2.3.3) in mind
we may thus define

Ψτ,θ(C) := φτ,τ+1(Cτ+1) + α
∑

τ+1<s≤T
φτ,θ(∆Cs), (2.3.4)

where α > 0 is some positive constant. From

∑
τ+1<s≤T

φτ,θ(∆Cs) =
∑
t∈T

1{τ=t}

 ∑
t+1<s≤T

φτ,θ(∆Cs)

 ,

we derive that Ψτ,θ(C) ∈ L∞(Fτ ).
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If τ(ω) = 0 and θ(ω) = T for all ω ∈ Ω we may choose −φ0,T as the expected shortfall
ESr at some level r ∈ (0, 1). After switching signs, (2.3.4) then reads

−Ψ0,T (C) = ESr(C1) + α
∑

1<s≤T
ESr(∆Cs).

This is precisely the Swiss Solvency Test risk measure Γr which was introduced in chapter
1 already.

2.4 Conditional Monetary Utility Functionals for Discrete-
Time Processes

The risky objects considered in this section are stochastic processes of the vector space
R∞τ,θ. As in the previous section τ and θ are two (Ft)-stopping times such that τ(ω) ≤ θ(ω)
for all ω ∈ Ω.

Definition 2.4.1 We call a functional Φτ,θ : R∞τ,θ → L∞(Fτ ) a conditional monetary
utility functional (on R∞τ,θ) if it satisfies the following properties:

(N) Normalization: Φτ,θ(0) = 0, a.s. P

(M) Monotonicity: Φτ,θ(C) ≤ Φτ,θ(D), a.s. P , for all C,D ∈ R∞τ,θ such that C ≤
D, a.s. P

(Fτ -TI) Fτ -Translation Invariance: Φτ,θ(C +m1[τ,T ]) = Φτ,θ(C) +m, a.s. P , for all
C ∈ R∞τ,θ and m ∈ L∞(Fτ ).

We call a conditional monetary utility functional Φτ,θ a conditional concave utility func-
tional if it satisfies

(Fτ -C) Fτ -Concavity: Φτ,θ

(
λC + (1 − λ)D

)
≥ λΦτ,θ(C) + (1 − λ)Φτ,θ(D), a.s. P , for

all C,D ∈ R∞τ,θ and λ ∈ L∞(Fτ ) such that 0 ≤ λ ≤ 1, a.s. P .

We call a conditional concave utility functional Φτ,θ a conditional coherent utility func-
tional if it satisfies

(Fτ -PH) Fτ -Positive Homogeneity: Φτ,θ(λC) = λΦτ,θ(C), a.s. P , for all C ∈ R∞τ,θ
and λ ∈ L∞+ (Fτ ) = {f ∈ L∞(Fτ ) | f ≥ 0, a.s. P}.

Γτ,θ : R∞τ,θ → L∞(Fτ ) is a conditional monetary risk measure on R∞τ,θ if −Γτ,θ is a
conditional monetary utility functional on R∞τ,θ. Γτ,θ is a conditional convex risk measure
if −Γτ,θ is a conditional concave utility functional and Γτ,θ is a conditional coherent risk
measure if −Γτ,θ is a conditional coherent utility functional.

Note again that a conditional monetary utility functional (on R∞τ,θ) agrees in the P -
almost sure sense on stochastic processes that are equal P -almost surely. Here and in the
following, the difference between conditional monetary utility functionals on L∞(Fθ) and
on R∞τ,θ is respectively indicated by lowercase and capital letters.

We may recast remark 2.3.2 as follows:
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Remark 2.4.2 A mapping Φτ,θ : R∞τ,θ → L∞(Fτ ) is a conditional coherent utility func-
tional if and only if it satisfies (M), (Fτ -TI) and (Fτ -PH) of the preceding definition
together with

(SA) Superadditivity: Φτ,θ(X + Y ) ≥ Φτ,θ(X) + Φτ,θ(Y ), a.s. P , for all X,Y ∈ R∞τ,θ.

This follows as in remark 2.3.2.

Again it is worth mentioning that a conditional monetary utility functional Φτ,θ :
R∞τ,θ → L∞(Fτ ) can be viewed as a conditional monetary utility functional Φτ,σ (on R∞τ,σ)
via

Φτ,σ(C) := Φτ,θ(C), C ∈ R∞τ,σ, (2.4.5)

for an (Ft)-stopping time σ such that τ(ω) ≤ σ(ω) ≤ θ(ω), for all ω ∈ Ω.

Example 2.4.3 Let us continue the discussion of the functional Ψτ,θ introduced in exam-
ple 2.3.3. In addition we assume that φτ,θ is a conditional coherent utility functional (on
L∞(Fθ)).

Chapter 1 presented an example which clarified that the Swiss Solvency Test risk mea-
sure Γr lacks monotonicity in general and so does the functional Ψτ,θ : R∞τ,θ → L∞(Fτ ),

C 7→ Ψτ,θ(C) = φτ,τ+1(Cτ+1) + α
∑

τ+1<s≤T
φτ,θ(∆Cs),

in turn. Ψτ,θ does however satisfy (Fτ -PH) since the conditional coherent utility func-
tional φτ,θ is Fτ -positive homogeneous. Furthermore, from

Ψτ,θ(C +m1[τ,T ]) = φτ,τ+1(Cτ+1 +m) + α
∑

τ+1<s≤T
φτ,θ(∆Cs)

= m+ φτ,τ+1(Cτ+1) + α
∑

τ+1<s≤T
φτ,θ(∆Cs)

= m+ Ψτ,θ(C)

and

Ψτ,θ(C +D) = φτ,τ+1(Cτ+1 +Dτ+1) + α
∑

τ+1<s≤T
φτ,θ(∆Cs + ∆Ds)

≥ φτ,τ+1(Cτ+1) + α
∑

τ+1<s≤T
φτ,θ(∆Cs)

+φτ,τ+1(Dτ+1) + α
∑

τ+1<s≤T
φτ,θ(∆Ds)

= Ψτ,θ(C) + Ψτ,θ(D)

for all C,D ∈ R∞τ,θ and m ∈ L∞(Fτ ) it follows that Ψτ,θ satisfies (Fτ -TI) and (SA).

Section 3.4 is devoted to a further discussion of the functional Ψτ,θ.
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Chapter 3

Monotone Hulls

In this chapter we provide some results on functionals Ψ : R∞τ,θ → L∞(Fτ ) which satisfy
the axioms of a conditional coherent utility functional on R∞τ,θ except for (the economi-
cally highly reasonable) monotonicity. As a main result we give necessary and sufficient
conditions for the existence of a smallest conditional monetary utility functional which
majorizes such a Ψ in terms of monotone hulls. We then explicitly construct the greatest
conditional coherent risk measure which is dominated by the Swiss Solvency Test risk
measure Γr.

3.1 Introduction

Consider an insurance company which is enforced by the supervisor to determine its capital
requirements by means of a certain risk measure, say Γ. Since Γ is exogenously specified,
it may not appropriately reflect the actual risks run by the company. Moreover, Γ may not
even satisfy the natural consistency axioms of definitions 2.3.1 and 2.4.1 of the preceding
chapter. Such a situation is existent in the case of the Swiss Solvency Test risk measure
Γr as the discussion of the two preceding chapters illustrates. There seems to be not much
sense in applying Γr and it suggests itself to rather use a reasonable substitute of the
mandatory risk measure even if it is of an in-house benefit only. As a first attempt, one
may try to construct the largest conditional monetary risk measure which is majorized by
Γr. This is precisely the objective of the present chapter.

In general, this task seems to be best approached by considering acceptance sets as
the primary object. Therefore, section 3.2 starts with a brief repetition on acceptance sets
and their beneficial features. We show how a conditional monetary utility functional can
be recovered from its acceptance set and how such a set on its part may serve already as a
notion of a conditional monetary utility functional. In section 3.3 we study the general case
of approximating functionals Ψ : R∞τ,θ → L∞(Fτ ) which satisfy the same set of axioms as
Ψτ,θ of example 2.3.3 does. The approximation is by means of conditional monetary utility
functionals which majorize the given functional Ψ. We clarify what almost sure dominance
means in terms of acceptance sets and define monotone hulls of certain sets as well as of
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certain functionals. The main result of this section is more or less a combination of the
properties of acceptance sets. It states that there exists a smallest conditional monetary
utility functional majorizing Ψ if and only if the monotone hull of Ψ is normalized. In this
case, it is given by the monotone hull itself which automatically is conditional coherent. On
the contrary, there is no (not necessarily smallest) conditional monetary utility functional
majorizing Ψ at all, if the monotone hull is not normalized. In fact, normalization of the
monotone hull is equivalent to the existence of any conditional monetary utility functional
which majorizes Ψ. The last section of this chapter is devoted to the functional Ψτ,θ of
example 2.3.3. We explicitly construct the monotone hull of the functional Ψτ,θ.

Throughout this chapter we consider the setup of section 2.2 and let τ and θ be two
(Ft)-stopping times such that τ(ω) ≤ θ(ω) for all ω ∈ Ω.

3.2 Acceptance Sets

For all of this section φτ,θ : L∞(Fθ) → L∞(Fτ ) and Φτ,θ : R∞τ,θ → L∞(Fτ ) are conditional
monetary utility functionals on L∞(Fθ) and on R∞τ,θ.

Definition 3.2.1 The acceptance sets of φτ,θ and Φτ,θ are respectively given by

Aφτ,θ = {X ∈ L∞(Fθ) | φτ,θ(X) ≥ 0, a.s. P} and

AΦ
τ,θ = {C ∈ R∞τ,θ | Φτ,θ(C) ≥ 0, a.s. P}.

Remark 3.2.2 Via the conventions (2.3.3) and (2.4.5) the sets

Aφτ,σ = {X ∈ L∞(Fσ) | φτ,σ(X) ≥ 0, a.s. P} and

AΦ
τ,σ = {C ∈ R∞τ,σ | Φτ,σ(C) ≥ 0, a.s. P}

are well defined for all (Ft)-stopping times σ with τ(ω) ≤ σ(ω) ≤ θ(ω) for all ω ∈ Ω. We
have

Aφτ,σ ⊂ Aφτ,θ and

AΦ
τ,σ ⊂ AΦ

τ,θ.

Definition 3.2.3 For arbitrary L ⊂ L∞(Fθ) and R ⊂ R∞τ,θ and for all X ∈ L∞(Fθ) and
C ∈ R∞τ,θ we define

φL(X) := ess.sup {m ∈ L∞(Fτ ) | X −m ∈ L} and

ΦR(C) := ess.sup {m ∈ L∞(Fτ ) | C −m1[τ,T ] ∈ R}

with the convention
ess.sup ∅ := −∞.
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The next three propositions demonstrate the usefulness of the concept of acceptance
sets.

Proposition 3.2.4 We have

φAφ
τ,θ

= φτ,θ and

ΦAΦ
τ,θ

= Φτ,θ.

Proof. For all X ∈ Fθ,

φAφ
τ,θ

(X) = ess.sup {m ∈ L∞(Fτ ) | X −m ∈ Aφτ,θ}

= ess.sup {m ∈ L∞(Fτ ) | φτ,θ(X −m) ≥ 0, a.s. P}
= ess.sup {m ∈ L∞(Fτ ) | φτ,θ(X) ≥ m, a.s. P}
= φτ,θ(X), a.s. P.

And for all C ∈ R∞τ,θ,

ΦAΦ
τ,θ

(C) = ess.sup {m ∈ L∞(Fτ ) | C −m1[τ,T ] ∈ AΦ
τ,θ}

= ess.sup {m ∈ L∞(Fτ ) | Φτ,θ(C −m1[τ,T ]) ≥ 0, a.s. P}
= ess.sup {m ∈ L∞(Fτ ) | Φτ,θ(C) ≥ m, a.s. P}
= Φτ,θ(C), a.s. P.

2

Proposition 3.2.5 The acceptance sets Aφτ,θ and AΦ
τ,θ have the following properties:

(n) Normalization: ess.inf {f ∈ L∞(Fτ ) | f ∈ Aφτ,θ} = 0, a.s. P
(N) Normalization: ess.inf {f ∈ L∞(Fτ ) | f1[τ,T ] ∈ AΦ

τ,θ} = 0, a.s. P

as well as

(m) Monotonicity: X ∈ Aφτ,θ, Y ∈ L∞(Fθ), X ≤ Y, a.s. P ⇒ Y ∈ Aφτ,θ
(M) Monotonicity: C ∈ AΦ

τ,θ, D ∈ R∞τ,θ, C ≤ D, a.s. P ⇒ D ∈ AΦ
τ,θ.

If φτ,θ and Φτ,θ are conditional concave utility functionals, then Aφτ,θ and AΦ
τ,θ satisfy

(Fτ -c) Fτ -Convexity: λX + (1− λ)Y ∈ Aφτ,θ for all X,Y ∈ Aφτ,θ and λ ∈ L∞(Fτ ) such
that 0 ≤ λ ≤ 1, a.s. P
(Fτ -C) Fτ -Convexity: λC + (1− λ)D ∈ AΦ

τ,θ for all C,D ∈ AΦ
τ,θ and λ ∈ L∞(Fτ ) such

that 0 ≤ λ ≤ 1, a.s. P .
If φτ,θ and Φτ,θ are conditional coherent utility functionals, then Aφτ,θ and AΦ

τ,θ satisfy

(Fτ -ph) Fτ -Positive Homogeneity: λX ∈ Aφτ,θ for all X ∈ Aφτ,θ and λ ∈ L∞+ (Fτ )
(Fτ -PH) Fτ -Positive Homogeneity: λC ∈ AΦ

τ,θ for all C ∈ AΦ
τ,θ and λ ∈ L∞+ (Fτ )

as well as
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(sa) Superadditivity: X + Y ∈ Aφτ,θ for all X,Y ∈ Aφτ,θ
(SA) Superadditivity: C +D ∈ AΦ

τ,θ for all C,D ∈ AΦ
τ,θ.

Proof. (n) and (N): From the definition of AΦ
τ,θ, (Fτ -TI) and (N) of definition 2.4.1 it

follows that

ess.inf {f ∈ L∞(Fτ ) | f1[τ,T ] ∈ AΦ
τ,θ}

= ess.inf {f ∈ L∞(Fτ ) | Φτ,θ(f1[τ,T ]) ≥ 0, a.s. P}
= ess.inf {f ∈ L∞(Fτ ) | Φτ,θ(0) + f ≥ 0, a.s. P}
= ess.inf {f ∈ L∞(Fτ ) | f ≥ 0, a.s. P} = 0, a.s. P.

In the same way we derive from the definition of Aφτ,θ, (Fτ -ti) and (n) of definition 2.3.1
that

ess.inf {f ∈ L∞(Fτ ) | f ∈ Aφτ,θ}
= ess.inf {f ∈ L∞(Fτ ) | f ≥ 0, a.s. P} = 0, a.s. P.

(m) and (M) follow from (m) of definition 2.3.1 and (M) of definition 2.4.1. The
remaining statements of the proposition also follow from the corresponding properties of
φτ,θ and Φτ,θ. 2

Proposition 3.2.6 Let L ⊂ L∞(Fθ) and R ⊂ R∞τ,θ. If L and R respectively satisfy (n),
(m) and (N), (M) of proposition 3.2.5 then φL and ΦR are conditional monetary utility
functionals (on L∞(Fθ) and on R∞τ,θ).

If L and R respectively satisfy (n), (m), (Fτ -c) and (N), (M), (Fτ -C) of proposition
3.2.5 then φL and ΦR are conditional concave utility functionals.

If L and R respectively satisfy (n), (m), (Fτ -c), (Fτ -ph) and (N), (M), (Fτ -C),
(Fτ -PH) of proposition 3.2.5 then φL and ΦR are conditional coherent utility functionals.

Proof. (n), (m) of definition 2.3.1 and (N), (M) of definition 2.4.1 respectively follow
from (n), (m) and (N), (M) of proposition 3.2.5. Normalization of L and R in particular
guarantees that φL and ΦR only take values in L∞(Fτ ). Fτ -translation invariance of φL
and ΦR in both cases follows from their definitions.
(Fτ -c) and (Fτ -C): TakeX1, X2 ∈ L∞(Fθ), C1, C2 ∈ R∞τ,θ andm1,m2,M1,M2 ∈ L∞(Fτ )
such that Xi −mi ∈ L and Ci −M i1[τ,T ] ∈ R. From (Fτ -c) and (Fτ -C) of L and R it
then follows that λ(X1−m1)+(1−λ)(X2−m2) ∈ L and λ(C1−M11[τ,T ])+(1−λ)(C2−
M21[τ,T ]) ∈ R for all λ ∈ L∞(Fτ ) such that 0 ≤ λ ≤ 1, a.s. P . By (Fτ -ti) we get

0 ≤ φL
(
λ(X1 −m1) + (1− λ)(X2 −m2)

)
= φL

(
λX1 + (1− λ)X2

)
−
(
λm1 + (1− λ)m2

)
, a.s. P,

and by (Fτ -TI)

0 ≤ ΦR
(
λ(C1 −M11[τ,T ]) + (1− λ)(C2 −M21[τ,T ])

)
= ΦR

(
λC1 + (1− λ)C2

)
−
(
λM1 + (1− λ)M2

)
, a.s. P.
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Taking the essential supremum yields (Fτ -c) and (Fτ -C).
(Fτ -ph) and (Fτ -PH): As in the proof of concavity we derive that λφL(X) ≤ φL(λX),
a.s. P , and that λΦR(C) ≤ ΦR(λC), a.s. P , for X ∈ L∞(Fθ), C ∈ R∞τ,θ and λ ∈ L∞+ (Fτ ).
To prove the reverse inequality, let m,M ∈ L∞(Fτ ) such that m > φL(X), a.s. P , and
M > ΦR(C), a.s. P , i.e. X −m /∈ L and C −M1[τ,T ] /∈ R. It follows from (Fτ -ph) of L
and (Fτ -PH) of R that λX−λm /∈ L and λC−λM1[τ,T ] /∈ R and in turn λm > φL(λX),
a.s. P , and λM > ΦR(λC), a.s. P , for λ ∈ L∞+ (Fτ ). Hence, the assertion follows. 2

Remark 3.2.7 In view of remarks 2.3.2 and 2.4.2 we may recast the last statement of
proposition 3.2.6 as follows: If L and R respectively satisfy (n), (m), (sa), (Fτ -ph) and
(N), (M), (SA), (Fτ -PH) of proposition 3.2.5 then φL and ΦR are conditional coherent
utility functionals.

Only (sa) and (SA) remain to be proved. To this end, take X1, X2 ∈ L∞(Fθ),
C1, C2 ∈ R∞τ,θ and m1,m2,M1,M2 ∈ L∞(Fτ ) such that Xi−mi ∈ L and Ci−1[τ,T ]M

i ∈ R
for i ∈ {0, 1}. From (sa) and (SA) of L and R it then follows that (X1−m1)+(X2−m2) ∈
L and (C1 − 1[τ,T ]M

1) + (C2 − 1[τ,T ]M
2) ∈ R. By (Fτ -ti) we get

0 ≤ φL
(
(X1 −m1) + (X2 −m2)

)
= φL(X1 +X2)− (m1 +m2), a.s. P,

and by (Fτ -TI)

0 ≤ ΦR
(
(C1 − 1[τ,T ]M

1) + (C2 − 1[τ,T ]M
2)
)

= ΦR(C1 + C2)− (M1 +M2), a.s. P.

Taking the essential supremum yields (sa) and (SA).

3.3 The General Case

For all of this section Ψ : R∞τ,θ → L∞(Fτ ) denotes a functional that satisfies (Fτ -TI),
(Fτ -PH) and (SA) of definition 2.4.1. As in remark 2.4.2 we derive that Ψ is normalized
and Fτ -concave. Thus, the proofs of proposition 3.2.5 and remark 3.2.7 in particular tell
us that the set

A := A(Ψ) := {C ∈ R∞τ,θ | Ψ(C) ≥ 0, a.s. P}

satisfies (N), (Fτ -C), (Fτ -PH) and (SA) of proposition 3.2.5. Moreover, A contains the
origin.

Lemma 3.3.1 For a conditional monetary utility functional Φτ,θ (on R∞τ,θ) we have

Ψ(C) ≤ Φτ,θ(C), a.s. P, for all C ∈ R∞τ,θ ⇔ A ⊂ AΦ
τ,θ
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Proof. To prove ”⇐”, note that in the proof of proposition 3.2.4 a conditional monetary
utility functional only needed to satisfy (Fτ -TI) to be recovered from its acceptance set.
Thus, we may as well recover Ψ from A by

Ψ(C) = ess.sup {m ∈ L∞(Fτ ) | C −m1[τ,T ] ∈ A}, a.s. P, for all C ∈ R∞τ,θ.

It follows that for all C ∈ R∞τ,θ

Ψ(C) = ess.sup {m ∈ L∞(Fτ ) | C −m1[τ,T ] ∈ A}
≤ ess.sup {m ∈ L∞(Fτ ) | C −m1[τ,T ] ∈ AΦ

τ,θ}
= Φτ,θ(C), a.s. P.

Since 0 ≤ Ψ(C) ≤ Φτ,θ(C), a.s. P, for all C ∈ A the reverse implication follows from the
definition of acceptance sets. 2

Remark 3.3.2 As in the above lemma we derive that for two conditional monetary utility
functionals Φ1

τ,θ and Φ2
τ,θ (on R∞τ,θ) we have

Φ1
τ,θ(C) ≤ Φ2

τ,θ(C), a.s. P, for all C ∈ R∞τ,θ ⇔ AΦ1

τ,θ ⊂ AΦ2

τ,θ (3.3.1)

Under adequate adjustments (3.3.1) is also valid for conditional monetary utility func-
tionals on L∞(Fθ).

Definition 3.3.3 The monotone hull of the subset A of R∞τ,θ is given by

AM := {D ∈ R∞τ,θ | ∃ C ∈ A : D ≥ C, a.s. P}.

Note that A ⊂ AM . In particular, AM contains the origin and is thus nonempty.
The monotone hull of the functional Ψ : R∞τ,θ → L∞(Fτ ) is given by the functional

ΦAM : R∞τ,θ → L∞(Fτ ),

C 7→ ΦAM (C) := ess.sup {m ∈ L∞(Fτ ) | C −m1[τ,T ] ∈ A
M}.

Lemma 3.3.4 The monotone hull AM of A = A(Ψ) is the smallest subset of R∞τ,θ that
contains A and satisfies (M). Moreover, AM satisfies (SA) and (Fτ -PH) of proposition
3.2.5.

Proof. First, observe that any subset of R∞τ,θ that contains A and satisfies (M) has to
contain AM . From the definition of AM it follows that AM satisfies (M) which proves the
first statement.
(SA): Let C,D ∈ AM . Then we can find C̃, D̃ ∈ A such that C̃ ≤ C, a.s. P , and
D̃ ≤ D, a.s. P , which in turn yields C̃ + D̃ ≤ C +D, a.s. P . But since C̃ + D̃ ∈ A due
to (SA) of A we deduce that AM satisfies (SA) as well.
(Fτ -PH): For C ∈ AM take C̃ ∈ A such that C̃ ≤ C, a.s. P . Since A satisfies (Fτ -PH)
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we have λC̃ ∈ A for all λ ∈ L∞+ (Fτ ). For such λ we also have λC̃ ≤ λC, a.s. P , and
(Fτ -PH) of AM follows. 2

The following theorem states that if there exists a conditional monetary utility func-
tional which dominates Ψ then there also exists a smallest such functional. In this case,
this functional is automatically conditional coherent and given by the monotone hull ΦAM

of Ψ.

Theorem 3.3.5 Assume that there exists a conditional monetary utility functional Φτ,θ :
R∞τ,θ → L∞(Fτ ) such that Ψ(C) ≤ Φτ,θ(C), a.s. P , for all C ∈ R∞τ,θ. Then ΦAM is a
conditional coherent utility functional and

Ψ(C) ≤ ΦAM (C) ≤ Φτ,θ(C),

a.s. P , for all C ∈ R∞τ,θ.

Proof. By definition A ⊂ AM . From lemma 3.3.1 it follows that A ⊂ AΦ
τ,θ. Since Φτ,θ is a

conditional monetary utility functional its acceptance set AΦ
τ,θ in particular satisfies (M)

of proposition 3.2.5. Hence, from lemma 3.3.4 it follows that AM ⊂ AΦ
τ,θ. Altogether we

have A ⊂ AM ⊂ AΦ
τ,θ and in turn for all C ∈ R∞τ,θ

ess.sup {m ∈ L∞(Fτ ) | C −m1[τ,T ] ∈ A}

≤ ess.sup {m ∈ L∞(Fτ ) | C −m1[τ,T ] ∈ A
M}

≤ ess.sup {m ∈ L∞(Fτ ) | C −m1[τ,T ] ∈ AΦ
τ,θ}, a.s. P,

i.e. Ψ(C) ≤ ΦAM (C) ≤ Φτ,θ(C), a.s. P , for all C ∈ R∞τ,θ. In particular, ΦAM takes
only values in L∞(Fτ ) and is thus well defined. Since Ψ and Φτ,θ are normalized we have
0 ≤ ΦAM (0) ≤ 0 and hence, ΦAM is normalized as well. From the definition of ΦAM we

derive that ΦAM satisfies (Fτ -TI). With lemma 3.3.4 we know that AM satisfies (M),
(SA) and (Fτ -PH). As in proposition 3.2.6 and remark 3.2.7 we derive the corresponding
properties for ΦAM . By remark 2.4.2, ΦAM is a conditional coherent utility functional .2

Remark 3.3.6 From the the proof of the above theorem we derive in particular that the
monotone hull ΦAM of Ψ is normalized if there exists a conditional monetary utility func-
tional majorizing Ψ. On the contrary, if the monotone hull ΦAM was assumed to be
normalized, then itself would be a conditional coherent (in particular monetary) utility
functional majorizing Ψ. Thus, we have equivalence between normalization of ΦAM and
the existence of a conditional monetary utility functional majorizing Ψ.

The remarkable consequence is: If ΦAM is not normalized, then there exists no condi-
tional monetary utility functional which majorizes Ψ at all since otherwise normalization
of ΦAM would follow which is impossible.
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3.4 A Constructive Example

In this section we explicitly construct the monotone hull of the functional Ψτ,T of example
2.3.3 in the case where θ(ω) = T for all ω ∈ Ω.

Lemma 3.4.1 Let φτ,T be a conditional coherent utility functional on L∞, τ(ω) ≤ T − 2
for all ω ∈ Ω (in particular T ≥ 2) and α > 0. If Φτ,T is a conditional coherent utility
functional on R∞τ,T with

Φτ,T (C) ≥ (1− α)φτ,τ+1(Cτ+1) + α
(
φτ,T−1(CT−1) + φτ,T (∆CT )

)
, a.s. P, (3.4.2)

for all C ∈ R∞τ,T , then

Φτ,T (C) ≥ (1− α)φτ,τ+1(Cτ+1) + αφτ,T (CT ), a.s. P,

for all C ∈ R∞τ,T . Note that the case where T = 2 (and in turn τ(ω) = 0 for all ω ∈ Ω) is
included.

Proof. Let C ∈ R∞τ,T . The set {τ = T − 2} belongs to the σ-algebra Fτ . Therefore,
Φτ,T (C) can also be written in the form 1{τ=T−2}Φτ,T (C) + 1{τ<T−2}Φτ,T (C). We prove
the statement on the sets {τ = T − 2} and {τ < T − 2} separately.
{τ = T − 2}: Since Φτ,T is superadditiv we deduce

1{τ=T−2}Φτ,T (C) = 1{τ=T−2}Φτ,T (C1[τ,T−2] + CT−11{T−1} + CT 1{T})

≥ 1{τ=T−2}

(
Φτ,T (C1[τ,T−2])

+Φτ,T (CT−11{T−1}) + Φτ,T (CT 1{T})
)
, a.s. P. (3.4.3)

Applying (3.4.2) to all three summands in (3.4.3) gives

1{τ=T−2}Φτ,T (C1[τ,T−2]) ≥ 0, a.s. P,
1{τ=T−2}Φτ,T (CT−11{T−1}) ≥ 1{τ=T−2}

(
(1− α)φτ,τ+1(Cτ+1)

)
+1{τ=T−2}

(
α
(
φτ,T−1(CT−1) + φτ,T (−CT−1)

))
= 1{τ=T−2}

(
(1− α)φτ,τ+1(Cτ+1)

)
, a.s. P, and

1{τ=T−2}Φτ,T (CT 1{T}) ≥ 1{τ=T−2}αφτ,T (CT ), a.s. P.

Adding up yields the assertion on {τ = T − 2}.
{τ < T − 2}: (3.4.3) is valid on {τ < T − 2} as well:

1{τ<T−2}Φτ,T (C) ≥ 1{τ<T−2}

(
Φτ,T (C1[τ,T−2])

+Φτ,T (CT−11{T−1}) + Φτ,T (CT 1{T})
)
, a.s. P. (3.4.4)
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This time we apply (3.4.2) to the first and the last summand in (3.4.4):

1{τ<T−2}Φτ,T (C1[τ,T−2]) ≥ 1{τ<T−2}
(
(1− α)φτ,τ+1(Cτ+1)

)
, a.s. P,

1{τ<T−2}Φτ,T (CT 1{T}) ≥ 1{τ<T−2}αφτ,T (CT ), a.s. P.

The claim will now follow if we can show that Φτ,T (CT−11{T−1}) ≥ 0, a.s. P . To this
end, note that C ∈ R∞τ,T is bounded. Thus, from monotonicity of Φτ,T , (3.4.2) and Fτ -
translation invariance of φτ,T we derive

Φτ,T (CT−11{T−1}) ≥ Φτ,T

(
(ess.inf CT−1)1{T−1}

)
≥ φτ,T−1(ess.inf CT−1) + φτ,T (−ess.inf CT−1)
= ess.inf CT−1 − ess.inf CT−1 = 0, a.s. P.

Hence, the assertion follows. 2

Theorem 3.4.2 Let φτ,T be a conditional coherent utility functional on L∞(Fτ ) and α >
0. As in example 2.3.3 we assume that τ(ω) + 1 ≤ θ(ω) = T for all ω ∈ Ω. If Φτ,T is a
conditional coherent utility functional on R∞τ,T with

Φτ,T (C) ≥ Ψτ,T (C) = φτ,τ+1(Cτ+1) + α
∑

τ+1<s≤T
φτ,T (∆Cs), a.s. P, (3.4.5)

for all C ∈ R∞τ,T , then

Φτ,T (C) ≥ (1− α)φτ,τ+1(Cτ+1) + αφτ,T (CT ), a.s. P, (3.4.6)

for all C ∈ R∞τ,T .

Proof. Fix C ∈ R∞τ,T . The proof is by induction on T .
T = 1: In this case, we have τ(ω) = 0 for all ω ∈ Ω. The statement now follows from the
observation that Ψ0,1(C) reduces to φ0,1(C1) = (1−α)φ0,1(C1)+αφ0,1(C1), a.s. P , which
is the righthand side of (3.4.6).
Now suppose the assertion is true for some T − 1 ≥ 1. Since {τ + 1 = T} ∈ Fτ we have
Φτ,T (C) = Φτ,T (C)1{τ+1=T} + Φτ,T (C)1{τ+1<T}. By the assumption in (3.4.5),

Φτ,T (C)1{τ+1=T} ≥

φτ,τ+1(Cτ+1) + α
∑

τ+1<s≤T
φτ,T (∆Cs)

 1{τ+1=T}

= φτ,τ+1(Cτ+1)1{τ+1=T}, a.s. P.

Furthermore, since 1{τ+1=T} is Fτ -measurable and φτ,τ+1 is Fτ -positive homogeneous, we
have in view of (2.3.3)

φτ,τ+1(Cτ+1)1{τ+1=T} = φτ,τ+1(Cτ+11{τ+1=T}) = φτ,T (CT 1{τ+1=T}) = φτ,T (CT )1{τ+1=T},
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a.s. P . Thus,(
(1− α)φτ,τ+1(Cτ+1) + αφτ,T (CT )

)
1{τ+1=T} = φτ,τ+1(Cτ+1)1{τ+1=T}, a.s. P,

and hence, the claim follows on {τ + 1 = T}.
To prove the statement on {τ+1 < T} we set A = {τ+1 < T} and consider the probability
space (Ω̃, F̃ , P̃ ) := (Ω∩A,F∩A,P |F∩A) endowed with the filtration (F̃t)t∈T := (Ft∩A)t∈T.
We denote by C̃ and τ̃ the restrictions of C and τ to (Ω̃, F̃ , P̃ ). Since τ̃ is an (F̃t)-stopping
time we may set R̃∞τ̃ ,T = R∞τ̃ ,T (Ω̃, F̃ , P̃ ). By

X 7→ φ̃τ̃ ,T (X) := φτ,T (X1{τ+1<T})|Ω̃ and

D 7→ Φ̃τ̃ ,T (D) := Φτ,T (D1{τ+1<T})|Ω̃

for all X ∈ L∞(F̃T ) and D ∈ R̃∞τ̃ ,T we obtain conditional coherent utility functionals φ̃τ̃ ,T
on L∞(F̃T ) and Φ̃τ̃ ,T on R̃∞τ̃ ,T . We may decompose C̃ = π̃τ̃ ,T−1(C̃) + ∆C̃T 1{T} and derive
from (SA) of Φ̃τ̃ ,T

Φ̃τ̃ ,T (C̃) ≥ Φ̃τ̃ ,T ◦ π̃τ̃ ,T−1(C̃) + Φ̃τ̃ ,T (∆C̃T 1{T}), a.s. P̃ . (3.4.7)

We may view Φ̃τ̃ ,T ◦ π̃τ̃ ,T−1 : R̃∞τ̃ ,T−1 → L∞(F̃τ̃ ) as a conditional coherent utility functional
on R̃∞τ̃ ,T−1. For all D ∈ R̃∞τ̃ ,T−1 we have

Φ̃τ̃ ,T ◦ π̃τ̃ ,T−1(D) = Φ̃τ̃ ,T (D) = Φτ,T (D1{τ+1<T})|Ω̃

≥

(
φτ,τ+1(Dτ+11{τ+1<T}) + α

∑
τ+1<s≤T−1

φτ,T (∆Ds1{τ+1<T})

+φτ,T
(
(DT −DT−1)1{τ+1<T}

))
|Ω̃

=

(
φτ,τ+1(Dτ+11{τ+1<T}) + α

∑
τ+1<s≤T−1

φτ,T (∆Ds1{τ+1<T})

)
|Ω̃

= φ̃τ̃ ,τ̃+1(Dτ̃+1) + α
∑

τ̃+1<s≤T−1

φ̃τ̃ ,T (∆Ds)

=: Ψ̃τ̃ ,T−1(D), a.s. P̃ ,

Hence, Φ̃τ̃ ,T ◦π̃τ̃ ,T−1 is a conditional coherent utility functional on R̃∞τ̃ ,T−1 which dominates
Ψ̃τ̃ ,T−1. Moreover, τ̃(ω) + 1 ≤ T − 1 for all ω ∈ Ω̃ and thus induction hypotheses applies
to Φ̃τ̃ ,T ◦ π̃τ̃ ,T−1, i.e

Φ̃τ̃ ,T ◦ π̃τ̃ ,T−1(C̃) ≥ (1− α)φ̃τ̃ ,τ̃+1(C̃τ̃+1) + αφ̃τ̃ ,T−1(C̃T−1), a.s. P̃ .

Plugging this into (3.4.7) yields

Φ̃τ̃ ,T (C̃) ≥ (1− α)φ̃τ̃ ,τ̃+1(C̃τ̃+1) + αφ̃τ̃ ,T−1(C̃T−1) + Φ̃τ̃ ,T (∆C̃T 1{T}), a.s. P̃ . (3.4.8)
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We may estimate the last summand in (3.4.8) by

Φ̃τ̃ ,T (∆C̃T 1{T}) = Φτ,T

(
∆C̃T 1{T}1{τ+1<T}

)
|Ω̃

≥ αφτ,T (∆C̃T 1{τ+1<T})|Ω̃ = αφ̃τ̃ ,T (∆C̃T ), a.s. P̃ ,

where the inequality follows from the assumption in (3.4.5). Plugging this into (3.4.8)
yields

Φ̃τ̃ ,T (C̃) ≥ (1− α)φ̃τ̃ ,τ̃+1(C̃τ̃+1) + αφ̃τ̃ ,T−1(C̃T−1) + αφ̃τ̃ ,T (∆C̃T ), a.s. P̃ .

But since τ̃(ω) ≤ T − 2 for all ω ∈ Ω̃ we may now apply lemma 3.4.1 to Φ̃τ̃ ,T and hence,

Φ̃τ̃ ,T (C̃) ≥ (1− α)φ̃τ̃ ,τ̃+1(C̃τ̃+1) + αφ̃τ̃ ,T (C̃T ), a.s. P̃ . (3.4.9)

Finally, observe that

Φ̃τ̃ ,T (C̃) = Φτ,T (C̃1{τ+1<T})|Ω̃
= Φτ,T (C1{τ+1<T})|Ω̃
=

(
Φτ,T (C)1{τ+1<T}

)
|Ω̃ = Φτ,T (C)|Ω̃, a.s. P̃ ,

as well as

φ̃τ̃ ,T (C̃T ) = φτ,T (C̃T 1{τ+1<T})|Ω̃
= φτ,T (CT 1{τ+1<T})|Ω̃
=

(
φτ,T (CT )1{τ+1<T}

)
|Ω̃ = φτ,T (CT )|Ω̃, a.s. P̃ , (3.4.10)

where we have used that Φτ,T and φτ,T are Fτ -positive homogeneous. Note that in (3.4.10)
we may as well replace φ̃τ̃ ,T (C̃T ) (and φτ,T (CT )) by φ̃τ̃ ,τ̃+1(C̃τ̃+1) (and φτ,τ+1(Cτ+1)). We
now conclude

Φτ,T (C)1{τ+1<T} = Φ̃τ̃ ,T (C̃)1{τ+1<T}

≥
(
(1− α)φ̃τ̃ ,τ̃+1(C̃τ̃+1) + αφ̃τ̃ ,T (C̃T )

)
1{τ+1<T}

=
(
(1− α)φτ,τ+1(Cτ+1) + αφτ,T (CT )

)
1{τ+1<T}, a.s. P,

where the inequality follows from (3.4.9). Hence, the assertion follows on {τ +1 < T} and
hence, on all of Ω. 2

Remark 3.4.3 Note that

C 7→ (1− α)φτ,τ+1(Cτ+1) + αφτ,T (CT )

is a conditional coherent utility functional on R∞τ,T . Moreover, due to (sa) of φτ,T we have

φτ,τ+1(Cτ+1) + α
∑

τ+1<s≤T
φτ,T (∆Cs)

= (1− α)φτ,τ+1(Cτ+1) + αφτ,τ+1(Cτ+1) + α
∑

τ+1<s≤T
φτ,T (∆Cs)

≤ (1− α)φτ,τ+1(Cτ+1) + αφτ,T (CT ), a.s. P,
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for all C ∈ R∞τ,T . Thus, the above theorem proves that the monotone hull Φ
A(Ψτ,T )

M of

Ψτ,T of example 2.3.3 is of the form

Φ
A(Ψτ,T )

M (C) = (1− α)φτ,τ+1(Cτ+1) + αφτ,T (CT ),

a.s. P , for all C ∈ R∞τ,T .
We may apply this result to the case where τ(ω) = 0, θ(ω) = T , for all ω ∈ Ω,

and −φ0,T = ESr at some level r ∈ (0, 1). The above theorem states that in this case
Γr

M(C) := (1 − α)ESr(C1) + αESr(CT ), C ∈ R∞0,T , is the largest conditional monetary
risk measure (on R∞0,T ) that satisfies

Γr
M(C) ≤ Γr(C) = ESr(C1) + α

∑
1<s≤T

ESr(∆Cs), a.s. P,

for all C ∈ R∞0,T , where Γr designates the Swiss Solvency Test risk measure. Note, that
Γr

M is coherent and does not depend on Ct at the dates t ∈ {2, . . . , T − 1}.
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Chapter 4

Conditional Value at Risk and
Conditional Expected Shortfall

As the aim of the remaining thesis is to explore the idea of ”how bad is bad?” within a
dynamic temporal setting, this chapter is to provide the building blocks for this task. In
fact, we propose a notion of distribution invariant conditional monetary utility functionals
as functionals defined on equivalence classes of regular conditional distributions. We then
provide a discussion of our notion of conditional quantiles which we choose as a vehicle
to enter into the world of conditional value at risk and conditional expected shortfall.
The static case results on these well-understood risk measures are translated into our
conditional framework via conditional quantiles.

4.1 Introduction

Historically, quantile-based risk measures such as value at risk have been among the most
common risk measures for practitioners. However, when Artzner et al. attempted an
axiomatic approach towards the task of risk assessment, the shortcomings of value at risk
experienced a constant increase of presence: It is well known that value at risk rather
penalizes than encourages diversification as it lacks convexity in general. In addition to
this, value at risk does not account for the size of extremely large losses. This is when
expected shortfall grew in prominence, as this risk measure, on the contrary, turns out to
be coherent and gives an idea of ”how bad is bad?”. The objective of this chapter is to
enter into a discussion of expected shortfall from a dynamic perspective, that is to present
a notion of conditional expected shortfall and to provide characterizations of it so it may
later serve as the foundation for the construction of a dynamic expected shortfall.

Value at risk and expected shortfall are to be numbered among the most extensively
discussed examples of risk measures. The financial literature provides various character-
izations of expected shortfall inter alia in terms of value at risk. Such characterizations
allow for important interpretations. In fact, only risk measures that admit meaningful in-
terpretations are of practical concern as there is no such thing as a universal risk measure
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that applies to all situations. The textbook Föllmer and Schied [17] dedicates the entire
section 4.4 and partly section 4.5 to a discussion of value at risk and expected shortfall.
In Artzner et al. [3, 4] a notion of conditional expected shortfall is introduced, there it is
called tail value at risk. They discuss dynamic consistency properties and advise caution
within the multi-period setting. A study of such properties within the range of this thesis
is postponed to chapters 5 and 6.

In section 4.2 we introduce an equivalence relation on the space of regular conditional
probabilities with respect to P -almost surely bounded random variables on a reference
probability space (Ω,Fθ, P ). The corresponding equivalence classes are constructed so that
random variables which coincide P -almost surely induce the same equivalence class. It is
then possible to introduce our notion of distribution invariant conditional monetary utility
functionals as functionals defined on equivalence classes of regular conditional probabilities.
In section 4.3 we present the key notion of this chapter: a conditional quantile. We
start off by investigating certain measurability features of such quantiles and as a main
result, we present the lemmas 4.3.5 and 4.3.7 which will play a crucial role in section 4.4.
The statements of the two lemmas are quite intuitive in the case where we additionally
impose certain structures, yet the general case requires some work. In section 4.4, we then
introduce our notion of conditional value at risk as the largest conditional quantile. Due to
lemma 4.3.7, conditional value at risk turns out to be a conditional monetary risk measure.
As the static counterpart, conditional value at risk is not convex in general. We present
conditional expected shortfall in its well-established form: we take essential supremum
over linear functionals induced by certain probability densities. It turns out that we are
able to characterize the probability measure for which the essential supremum is attained
by explicitly constructing its associated density. The techniques we use are essentially the
same as in the static case however, they require thorough preparatory work as conditional
quantiles turn out to be not as manageable as ”classical” quantile functions. We conclude
the chapter by presenting characterizations of conditional expected shortfall which transfer
the static case interpretations of the static expected shortfall into the dynamic setting.
This chapter clarifies, in particular, how conditional value at risk and conditional expected
shortfall fit into our context of distribution invariant dynamic monetary risk measures.

Throughout this chapter we consider the setup of section 2.2 and let τ and θ be two
(Ft)-stopping times such that τ(ω) ≤ θ(ω) for all ω ∈ Ω. Within this chapter we explicitly
distinguish random variables on (Ω,Fθ, P ) and the corresponding equivalence classes in
L0(Fθ). Random variables are denoted by X,Y, Z, . . . and X̃, Ỹ , Z̃, . . . respectively des-
ignate the corresponding equivalence classes. We denote by B := B(R) the σ-algebra of
Borel-sets on the real line. Furthermore, we assume that we are given a mapping

PFτ : Ω×Fθ → [0, 1]

which satisfies the following properties:

(1) PFτ (ω, .) : Fθ → [0, 1] is a probability measure for all ω ∈ Ω

(2) PFτ (., A) : (Ω,Fτ ) → [0, 1] is Fτ -measurable for all A ∈ Fθ
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(3)
∫
C P

Fτ (w,A) P (dω) = P (C ∩A) for all C ∈ Fτ and A ∈ Fθ.

Since for all A ∈ Fθ ∫
C
E[1A | Fτ ] dP =

∫
C

1A dP = P (C ∩A)

for all C ∈ Fτ we deduce from (2) and (3) that for all A ∈ Fθ

PFτ (., A) : (Ω,Fτ ) → [0, 1], ω 7→ PFτ (w,A)

is a version of E[1A | Fτ ]. Note that for A ∈ Fθ, PFτ (., A) is defined for all ω ∈ Ω, whereas
E[1A | Fτ ] is only defined up to P -almost sure equality.

Since for a nullset N ∈ Fθ we have 1N = 0, a.s. P , we derive

0 = E[1N | Fτ ] = PFτ (., N), a.s. P. (4.1.1)

In other words, for all nullsets N there exist nullsets N∗ = N∗(N) such that N is a
PFτ (ω, .)-nullset for all ω ∈ N∗c.

4.2 Definitions and Notation

Theorem 4.2.1 Under the assumption that Ω = (Ω, Td) is a polish space and that the
σ-algebra FT = σ(Td) is generated by the open sets there exists a mapping

PFτ : Ω×Fθ → [0, 1]

satisfying (1), (2) and (3).

Proof. Indeed, we may view the identity id : (Ω,FT ) → (Ω,FT ), ω 7→ id(ω) := ω as an
FT -measurable mapping taking values in the polish space Ω. Thus, 44.3 Satz in Bauer [5]
yields the existence of a mapping

PFτ : Ω×FT → [0, 1]

which, for θ(ω) = T for all ω ∈ Ω, satisfies the properties (1), (2) and (3). For general θ
we may take its restriction to Ω×Fθ. 2

Example 4.2.2 Assume that the σ-algebra Fτ is generated by a finite (I = {1, ..., n}) or
countable (I = N) partition

Ω =
⋃
i∈I

Bi,

with Bi ∈ Fθ, P (Bi) > 0 for all i ∈ I and Bi ∩Bj = ∅ for i 6= j. The probability measures
PBi : Fθ → [0, 1] on Fθ are given by

PBi(A) :=
P (A ∩Bi)
P (Bi)
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for all A ∈ Fθ and i ∈ I. Consider the mapping

P I : Ω×Fθ → [0, 1], (ω,A) 7→
∑
i∈I

PBi(A)1Bi(ω).

For all A ∈ Fθ the mapping P I(., A) : (Ω,Fτ ) → [0, 1] is Fτ -measurable . Since Bi∩Bj = ∅
for i 6= j, P I(w, .) : Fθ → [0, 1] is a probability measure on Fθ for all ω ∈ Ω. Moreover,
for all C ∈ Fτ we have∫

C
P I(w,A)P (dω) =

∑
i∈I

PBi(A)
∫
C

1Bi(ω)P (dω)

=
∑
i∈I

P (A ∩Bi)
P (Bi)

P (Bi ∩ C)

=
∑
Bi⊂C

P (A ∩Bi) = P (A ∩ C),

where the last two equalities follow from the fact that all events C ∈ Fτ are of the form
C =

⋃
j∈J Bj for a subset J of I. Hence, P I satisfies the properties (1), (2) and (3). Since

for all i ∈ I the measures PBi are absolutely continuous with respect to P all nullsets N are
P I(ω, .)-nullsets as well for all ω ∈ Ω. Note that this is much stronger than the statement
in (4.1.1).

Definition 4.2.3 For a random variable X on (Ω,Fθ, P ) we call the mapping

PX|Fτ
: Ω× B → [0, 1], (ω,B) 7→ PX|Fτ

(ω,B) := PFτ
(
w, {X ∈ B}

)
(4.2.2)

regular conditional distribution of X given Fτ . The mapping

FX|Fτ
: Ω× R → [0, 1], (ω, x) 7→ FX|Fτ

(ω, x) := PX|Fτ

(
ω, {X ≤ x}

)
(4.2.3)

is called regular conditional distribution function of X given Fτ .
For two random variables X and Y on (Ω,Fθ, P ) we say that PX|Fτ

and PY |Fτ
coincide

if there exists a nullset N such that PX|Fτ
(ω,B) = PY |Fτ

(ω,B) for all ω ∈ N c and for all
B ∈ B. In this case we write

PX|Fτ
∼ PY |Fτ

. (4.2.4)

Theorem 4.2.4 For two random variables X and Y on (Ω,Fθ, P ) such that X = Y , a.s.
P , we have PX|Fτ

∼ PY |Fτ
.

Proof. The mapping PX|Fτ
given in (4.2.2) inherits the properties

(1∗) PX|Fτ
(ω, .) : B → [0, 1] is a probability measure for all ω ∈ Ω

(2∗) PX|Fτ
(., B) : (Ω,Fτ ) → [0, 1] is Fτ -measurable for all B ∈ B

(3∗)
∫
C PX|Fτ

(w,B) P (dω) = P
(
C ∩ {X ∈ B}

)
for all C ∈ Fτ and B ∈ B
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from the corresponding ones of PFτ . (1∗) and (2∗) are also satisfied by PY |Fτ
. Moreover,

since for all B ∈ B the sets {X ∈ B} and {Y ∈ B} coincide up to a nullset we have∫
C
PY |Fτ

(w,B) P (dω) = P
(
C ∩ {Y ∈ B}

)
= P

(
C ∩ {X ∈ B}

)
for all C ∈ Fτ and B ∈ B and hence, PY |Fτ

satisfies (3∗) as well. Further, note that R
is polish, that hence its topology has a countable basis and that in turn the σ-algebra
of Borel-sets is countably generated. Thus, 44.2 Satz in Bauer [5] applies to the pairing
PX|Fτ

, PY |Fτ
yielding a nullset N such that

PX|Fτ
(ω,B) = PY |Fτ

(ω,B)

for all ω ∈ N c and for all B ∈ B. 2

Remark 4.2.5 From the properties (2∗) and (3∗) of the preceding proof we deduce as
above that for a random variable X on (Ω,Fθ, P ) and all B ∈ B

PX|Fτ
(., B) : (Ω,Fτ ) → [0, 1], ω 7→ PX|Fτ

(w,B)

is a version of E[1{X∈B} | Fτ ] which again is defined for all ω ∈ Ω.

Consider the set{
PX|Fτ

| X P -almost surely bounded random variable on (Ω,Fθ, P )
}

(4.2.5)

of regular conditional distributions with respect to P -almost surely bounded random vari-
ables. For a random variable X on (Ω,Fθ, P ) that is bounded P -almost surely there exists
a nullset N such that |X(ω)| ≤ c < +∞ for all ω ∈ N c. In reference to (4.1.1) there exists
a nullset N∗ = N∗(N) such that N is a PX|Fτ

(ω, .)-nullset for all ω ∈ N∗c. Thus, X is
PX|Fτ

(ω, .)-almost surely bounded for all ω in the complement of N∗ and hence, for all
such ω the probability measure PX|Fτ

(ω, .) has compact support on the real line.
∼ in (4.2.4) defines an equivalence relation on the space given in (4.2.5). We de-

note the space of corresponding equivalence classes by M1,c(R | Fτ ). For a P -almost
surely bounded random variable X on (Ω,Fθ, P ), P̃X|Fτ

designates the induced element
in M1,c(R | Fτ ). Theorem 4.2.4 states that the mapping

L∞(Fθ) →M1,c(R | Fτ ), X̃ 7→ P̃X|Fτ
, (4.2.6)

is well defined with respect to the choice of X ∈ X̃.
We may now present our notion of distribution invariant conditional monetary utility

functionals (resp. risk measures).

Definition 4.2.6 We call a functional φτ,θ : M1,c(R | Fτ ) → L∞(Fτ ) conditional mon-
etary (concave, coherent) utility functional on M1,c(R | Fτ ) if the induced functional
φ∗τ,θ : L∞(Fθ) → L∞(Fτ ) given by

X̃ 7→ φ∗τ,θ(X̃) := φτ,θ(P̃X|Fτ
), (4.2.7)
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is a conditional monetary (concave, coherent) utility functional on L∞(Fτ ).
A conditional monetary (convex, coherent) risk measure ρτ,θ on M1,c(R | Fθ) is a func-

tional from M1,c(R | Fτ ) to L∞(Fτ ) such that −ρτ,θ is a conditional monetary (concave,
coherent) utility functional on M1,c(R | Fτ ).

Note that the functional φ∗τ,θ given in (4.2.7) of the above definition is well defined
since the mapping given in (4.2.6) is so.

By definition, a conditional monetary utility functional (resp. risk measure) onM1,c(R
| Fτ ) induces a conditional monetary utility functional (resp. risk measure) on L∞(Fθ)
which depends on the equivalence classes in M1,c(R | Fτ ) only. In this sense, conditional
monetary utility functionals (resp. risk measures) onM1,c(R | Fτ ) admit an interpretation
as distribution invariant ”classical” conditional monetary utility functionals (resp. risk
measures).

We introduce a partial order ≤ on M1,c(R | Fτ ). P̃X|Fτ
≤ P̃Y |Fτ

by definition means
that for a pairing (PX|Fτ

, PY |Fτ
) ∈ P̃X|Fτ

× P̃Y |Fτ
there exists a nullset N such that

PX|Fτ

(
ω, (−∞, x]

)
≥ PY |Fτ

(
ω, (−∞, x]

)
for all ω ∈ N c and for all x ∈ R.

Consider a random variable X on (Ω,Fθ, P ) and a real constant c ∈ R such that
X(ω) = c for all ω ∈ N c with P (N) = 0. Then,

PX|Fτ
(ω,B) = PFτ

(
ω, {X ∈ B}

)
=

{
1 if c ∈ B
0 if c /∈ B

(4.2.8)

for all B ∈ B and for all ω in the complement of a suitable nullset N∗ = N∗(N) with
PFτ (ω,N) = 0 for all ω ∈ N∗c. Such N∗ exists due to the statement in (4.1.1). The
equivalence class in M1,c(R | Fτ ) induced by a regular conditional distribution such as in
(4.2.8) is denoted by δ̃c.

Proposition 4.2.7 Consider a functional φτ,θ : M1,c(R | Fτ ) → L∞(Fτ ) which satisfies
the following properties:

(n) Normalization: φτ,θ(δ̃0) = 0, a.s. P

(m) Monotonicity: φτ,θ(P̃X|Fτ
) ≤ φτ,θ(P̃X|Fτ

), a.s. P , for all P̃X|Fτ
, P̃Y |Fτ

∈ M1,c(R |
Fτ ) such that P̃X|Fτ

≤ P̃Y |Fτ

(Fτ -ti) Fτ -Translation Invariance: φτ,θ(P̃X+m|Fτ
) = φτ,θ(P̃X|Fτ

) + m̃, a.s. P , for all
P̃X|Fτ

∈M1,c(R | Fτ ) and m ∈ m̃ ∈ L∞(Fτ ).

Then, φτ,θ is a conditional monetary utility functional on M1,c(R | Fτ ).

Proof. We have to show that φ∗τ,θ : L∞(Fθ) → L∞(Fτ ),

X̃ 7→ φ∗τ,θ(X̃) := φτ,θ(P̃X|Fτ
), (4.2.9)
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is a conditional monetary utility functional on L∞(Fτ ).
(n): Take X̃ ∈ Fθ such that X = 0, a.s. P . As in (4.2.8) we derive P̃X|Fτ

= δ̃0 and hence,
φ∗τ,θ(0) = φτ,θ(δ̃0) = 0, a.s. P .
(m): Take X̃, Ỹ ∈ Fθ such that X ≤ Y , a.s. P , for (X,Y ) ∈ X̃ × Ỹ and let N be a
nullset such that X(ω) ≤ Y (ω) for all ω ∈ N c. Further, let N∗ = N∗(N) be a nullset such
that PFτ (ω,N) = 0 for all ω ∈ N∗c which exists due to the statement in (4.1.1). Then,
{Y ≤ x} \N ⊂ {X ≤ x} \N for all x ∈ R and hence,

PX|Fτ

(
ω, (−∞, x]

)
= PFτ

(
ω, {X ≤ x}

)
= PFτ

(
ω, {X ≤ x} \N

)
≥ PFτ

(
ω, {Y ≤ x} \N

)
...
= PY |Fτ

(
ω, (−∞, x]

)
for all x ∈ R and for all ω ∈ N∗c, i.e. P̃X|Fτ

≤ P̃Y |Fτ
. Thus,

φ∗τ,θ(X̃) = φτ,θ(P̃X|Fτ
) ≤ φτ,θ(P̃Y |Fτ

) = φ∗τ,θ(Ỹ ), a.s. P.

(Fτ -ti): For all X ∈ X̃ ∈ L∞(Fθ) and for all m ∈ m̃ ∈ L∞(Fτ ),

φ∗τ,θ(X̃ + m̃) = φτ,θ(P̃X+m|Fτ
) = φτ,θ(P̃X|Fτ

) + m̃ = φ∗τ,θ(X̃) + m̃, a.s. P.

2

4.3 Conditional Quantiles

Definition 4.3.1 For a random variable X on (Ω,Fθ, P ) we consider the mapping FX|Fτ
:

Ω× R → [0, 1] given in (4.2.3). We call a mapping

qX|Fτ
: Ω× (0, 1) → R, (ω, r) 7→ qX|Fτ

(ω, r),

conditional quantile (of X given Fτ ) if for all ω ∈ Ω the mapping

qX|Fτ
(ω, .) : (0, 1) → R, r 7→ qX|Fτ

(ω, r),

is an inverse function of FX|Fτ
(ω, .) : R → [0, 1]. That is, qX|Fτ

(ω, .) is a function with

FX|Fτ

(
ω, qX|Fτ

(ω, r)−
)
≤ r ≤ FX|Fτ

(
ω, qX|Fτ

(ω, r)
)

for all ω ∈ Ω and all r ∈ (0, 1), where qX|Fτ
(ω, r)− = lima↗r qX|Fτ

(ω, a).
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For a random variable X on (Ω,Fθ, P ) and for all ω ∈ Ω the functions

q+X|Fτ
(ω, .) : (0, 1) → R, r 7→ q+X|Fτ

(ω, r) := inf {x | PX|Fτ

(
ω, {X ≤ x}

)
> r}, and

q−X|Fτ
(ω, .) : (0, 1) → R, r 7→ q−X|Fτ

(ω, r) := sup {x | PX|Fτ

(
ω, {X < x}

)
< r},

are right-continuous and left-continuous inverse functions of FX|Fτ
(ω, .) : R → [0, 1]. As a

good reference on inverse functions we refer to the appendix A.3 of the textbook Föllmer
and Schied [17].

Proposition 4.3.2 Let qX|Fτ
be a conditional quantile of a random variable X on (Ω,Fθ,

P ) given Fτ . For r ∈ (0, 1) the mapping

qX|Fτ
(., r) : (Ω,Fτ ) → R, ω 7→ qX|Fτ

(ω, r)

is Fτ -measurable.

Proof. Let us fix r ∈ (0, 1). Recall that for a mapping Y : Ω → R and G ⊂ B we have
σ
(
Y −1(G)

)
= Y −1

(
σ(G)

)
. Thus, it suffices to show that for all η ∈ R

qX|Fτ
(., r)−1(−∞, η] ∈ Fτ , (4.3.10)

since
{
(−∞, η] | η ∈ R

}
generates B. To prove the statement in (4.3.10) let us fix η ∈ R.

We have

qX|Fτ
(., r)−1(−∞, η] = {ω ∈ Ω | qX|Fτ

(ω, r) ≤ η} = {ω ∈ Ω | FX|Fτ
(ω, η) ≥ r}.

By definition, FX|Fτ
(., η) : (Ω,Fτ ) → [0, 1] is Fτ -measurable and hence, the set {ω ∈ Ω |

FX|Fτ
(ω, η) ≥ r} ∈ Fτ . Thus, (4.3.10) follows. 2

For simplification we introduce the following notation. Consider a conditional quantile
qX|Fτ

of a random variable X on (Ω,Fθ, P ). For r ∈ (0, 1) we shorten

qX|Fτ
(r) : Ω → R, ω 7→ qX|Fτ

(r)(ω) := qX|Fτ
(ω, r).

We call qX|Fτ
(r) conditional r-quantile (of X given Fτ ). In particular, q±X|Fτ

(r) denote
the conditional r-quantiles

q±X|Fτ
(r) : Ω → R, ω 7→ q±X|Fτ

(r)(ω) := q±X|Fτ
(ω, r).

Consider two random variables X and Y on (Ω,Fθ, P ) such that X = Y , a.s. P . By
theorem 4.2.4 there exists a nullset N such that PX|Fτ

(ω,B) = PY |Fτ
(ω,B) for all ω ∈ N c

and for all B ∈ B. In turn, this means that FX|Fτ
(ω, x) = FY |Fτ

(ω, x) for all ω ∈ N c and
for all x ∈ R. Hence,

qX|Fτ
(ω, .) = qY |Fτ

(ω, .), a.s. λ1, (4.3.11)

for all ω ∈ N c, where λ1 designates the Lebesgue-measure. In particular,

q±X|Fτ
(ω, r) = q±Y |Fτ

(ω, r) (4.3.12)
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for all ω ∈ N c and for all r ∈ (0, 1). For a fixed r ∈ (0, 1) and the conditional r-quantiles
q±X|Fτ

(r) we denote the corresponding equivalence classes in L0(Fτ ) by q̃±X|Fτ
(r). The

statement in (4.3.12) tells us that for all r ∈ (0, 1), q̃±X|Fτ
(r) and q̃±Y |Fτ

(r) are the same
elements in L0(Fτ ).

Proposition 4.3.3 For a random variable X on (Ω,Fθ, P ) the mappings

PFτ
(
., {X ≤ .}

)
: (Ω× R,Fτ ⊗ B) → [0, 1], (ω, x) 7→ PFτ

(
ω, {X ≤ x}

)
, and

PFτ
(
., {X < .}

)
: (Ω× R,Fτ ⊗ B) → [0, 1], (ω, x) 7→ PFτ

(
ω, {X < x}

)
,

are Fτ ⊗ B-measurable.

Proof. Since PFτ (ω, .) : Fθ → [0, 1] is a probability measure for all ω ∈ Ω the function
PFτ

(
ω, {X ≤ .}

)
: R → [0, 1] is right-continuous for all ω ∈ Ω. Thus, for all (ω, x) ∈ Ω×R

we have∑
k∈Z

PFτ

(
ω,

{
X ≤ k + 1

N

})
1( k

N
, k+1

N ](x) −→ PFτ
(
ω, {X ≤ x}

)
, (4.3.13)

as N tends to +∞. For all N ∈ N the left-hand side of (4.3.13) is Ft ⊗ B-measurable
in (ω, x) since, by definition, PFτ

(
.,
{
Y ≤ k+1

N

})
is Fτ -measurable and 1( k

N
, k+1

N ] is B-

measurable. Hence, its point wise limit PFτ
(
., {X ≤ .}

)
is Fτ ⊗ B-measurable as well.

From the fact that PFτ (ω, .) : Fθ → [0, 1] is a probability measure for all ω ∈ Ω we
derive that PFτ

(
ω, {X < .}

)
: R → [0, 1] is left-continuous for all ω ∈ Ω. Thus, for all

(ω, x) ∈ Ω× R we have∑
k∈Z

PFτ

(
ω,

{
X <

k

N

})
1( k

N
, k+1

N ](x) −→ PFτ
(
ω, {X < x}

)
,

as N tends to +∞, and Fτ ⊗ B-measurability of PFτ
(
., {X < .}

)
follows as above. 2

Remark 4.3.4 From proposition 4.3.3 it follows that for two random variables X,Y on
(Ω,Fθ, P ) the mappings

PFτ
(
., {X ≤ Y (.)}

)
: (Ω,Fτ ) → [0, 1], ω 7→ PFτ

(
ω, {X ≤ Y (ω)}

)
, and

PFτ
(
., {X < Y (.)}

)
: (Ω,Fτ ) → [0, 1], ω 7→ PFτ

(
ω, {X < Y (ω)}

)
,

are Fθ-measurable.
In particular, for an Fτ -measurable conditional r-quantile qX|Fτ

(r), r ∈ (0, 1), of a
random variable X on (Ω,Fθ, P ) the mapping PFτ

(
., {X < qX|Fτ

(r)(.)}
)

is Fτ -measurable.
By definition of an inverse function we have

PFτ
(
ω, {X < qX|Fτ

(r)(ω)}
)
≤ r ≤ PFτ

(
ω, {X ≤ qX|Fτ

(r)(ω)}
)
,

for all ω ∈ Ω.
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Lemma 4.3.5 Fix r ∈ (0, 1). For a conditional r-quantile qX|Fτ
(r) of a P -almost surely

bounded random variable X on (Ω,Fθ, P ) we consider the sets
{
X ≤ qX|Fτ

(r)
}
,
{
X <

qX|Fτ
(r)
}
∈ Fθ. For the Fτ -measurable mappings

PFτ
(
., {X ≤ qX|Fτ

(r)}
)

: (Ω,Fτ ) → [0, 1], ω 7→ PFτ
(
ω, {X ≤ qX|Fτ

(r)}
)
, and

PFτ
(
., {X < qX|Fτ

(r)}
)

: (Ω,Fτ ) → [0, 1], ω 7→ PFτ
(
ω, {X < qX|Fτ

(r)}
)
,

we have

PFτ
(
., {X < qX|Fτ

(r)}
)
≤ r ≤ PFτ

(
., {X ≤ qX|Fτ

(r)}
)
, a.s. P.

Proof. For all of this proof we fix r ∈ (0, 1).
In a first step we assume that X is of the form X =

∑n
i=1 αi1Ai , αi ∈ R, Ai ∈ Fθ such

that Ai ∩ Aj = ∅ for i 6= j and n ∈ N. For such X the set
{
X ≤ qX|Fτ

(r)
}

can also be
written in the form

{
X ≤ qX|Fτ

(r)
}

=
n⋃
i=1

(
{αi ≤ qX|Fτ

(r)} ∩Ai
)

Thus, we derive from (1) that for all ω ∈ Ω we have

PFτ
(
ω, {X ≤ qX|Fτ

(r)}
)

=
n∑
i=1

PFτ
(
ω, {αi ≤ qX|Fτ

(r)} ∩Ai
)
.

There exists a null-set N1 such that

n∑
i=1

PFτ
(
ω, {αi ≤ qX|Fτ

(r)} ∩Ai
)

=
n∑
i=1

E
[
1{αi≤qX|Fτ (r)}1Ai | Fτ

]
(ω)

for all ω ∈ N c
1 . Since qX|Fτ

(r) is Fτ -measurable so is 1{αi≤qX|Fτ (r)} and hence, we find a
set N2 of P -measure zero such that

n∑
i=1

E
[
1{αi≤qX|Fτ (r)}1Ai | Fτ

]
(ω) =

n∑
i=1

1{αi≤qX|Fτ (r)(ω)}E[1Ai | Fτ ](ω)

for all ω ∈ N c
2 . And finally, for all ω ∈ N c

3 we have

n∑
i=1

1{αi≤qX|Fτ (r)(ω)}E[1Ai | Fτ ](ω) =
n∑
i=1

1{αi≤qX|Fτ (r)(ω)}P
Fτ (ω,Ai),

where again P (N3) = 0. For all ω ∈ (N1 ∪N2 ∪N3)c it follows that

PFτ
(
ω, {X ≤ qX|Fτ

(r)}
)

=
n∑
i=1

1{αi≤qX|Fτ (r)(ω)}P
Fτ (ω,Ai).
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Take ω0 ∈ (N1 ∪N2 ∪N3)c. Then, by definition, qX|Fτ
(r)(ω0) is an r-quantile of X with

respect to the probability measure PFτ
(
ω0, .) and hence

n∑
i=1

1{αi≤qX|Fτ (r)(ω0)}P
Fτ (ω0, Ai) =

∑
i:αi≤qX|Fτ (r)(ω0)

PFτ (ω0, Ai) ≥ r.

In the same way as above we find a null-set N such that

PFτ
(
ω, {X < qX|Fτ

(r)}
)

=
n∑
i=1

1{αi<qX|Fτ (r)(ω)}P
Fτ (ω,Ai).

for all ω ∈ N c and in turn
n∑
i=1

1{αi<qX|Fτ (r)(ω)}P
Fτ (ω,Ai) =

∑
i:αi<qX|Fτ (r)(ω)

PFτ (ω,Ai) ≤ r

for all ω ∈ N c. Hence, the assertion follows for X =
∑n

i=1 αi1Ai .
For general P -almost surely bounded X there exist Fθ-measurable step functions

(Xn)n∈N and a null-set N1 such that Xn(ω) ↘ X(ω) for all ω ∈ N c
1 . Then {Xn ≤

x} \N1 ⊂ {X ≤ x} \N1 for all x ∈ R and for all n ∈ N. By the statement in (4.1.1) there
exists a null set N2 = N2(N1) such that

PFτ
(
ω,N1) = 0

for all ω ∈ N c
2 and hence,

PFτ
(
ω, {Xn ≤ x}

)
= PFτ

(
ω, {Xn ≤ x} \N1

)
≤ PFτ

(
ω, {X ≤ x} \N1

)
= PFτ

(
ω, {X ≤ x}

)
for all ω ∈ N c

2 , for all x ∈ R and for all n ∈ N. In turn we get

q+Xn|Fτ
(r)(ω) ≥ qX|Fτ

(r)(ω)

for all ω ∈ N c
2 and for all n ∈ N. From this we derive{

Xn < qX|Fτ
(r)
}
\N2 ⊂

{
Xn < q+Xn|Fτ

(r)
}
\N2

for all n ∈ N. Again, by (4.1.1) there exists N3 = N3(N2) with P (N3) = 0 such that

PFτ
(
ω, {Xn < qX|Fτ

(r)}
)

= PFτ
(
ω, {Xn < qX|Fτ

(r)} \N2

)
≤ PFτ

(
ω,
{
Xn < q+Xn|Fτ

(r)
}
\N2

)
= PFτ

(
ω,
{
Xn < q+Xn|Fτ

(r)
})

≤ r (4.3.14)
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for all ω ∈ N c
3 and for all n ∈ N, where the inequality in (4.3.14) follows from the first

part of the proof. But now we deduce

PFτ
(
ω, {X < qX|Fτ

(r)}
)

= PFτ
(
ω, {X < qX|Fτ

(r)} \N1

)
= PFτ

(
ω,
⋃
n∈N

{Xn < qX|Fτ
(r)} \N1

)
= lim

n→∞
PFτ

(
ω, {Xn < qX|Fτ

(r)} \N1

)
= lim

n→∞
PFτ

(
ω, {Xn < qX|Fτ

(r)}
)
≤ r,

for all ω ∈ (N2 ∪N3)c.
To prove the upper inequality we take Fθ-measurable step functions (Xn)n∈N and a null-
set N1 such that Xn(ω) ↗ X(ω) for all ω ∈ N c

1 . This time we find a null-set N2 = N2(N1)
such that

q−Xn|Fτ
(r)(ω) ≤ qX|Fτ

(r)(ω)

for all ω ∈ N c
2 and for all n ∈ N. As above there exists N3 = N3(N2) with P (N3) = 0 such

that
r ≤ PFτ

(
ω,
{
Xn ≤ q−Xn|Fτ

(r)
})

≤ PFτ
(
ω, {Xn ≤ qX|Fτ

(r)}
)
,

for all ω ∈ N c
3 and for all n ∈ N. We may let n→∞ and obtain

PFτ
(
ω, {X ≤ qX|Fτ

(r)}
)

= PFτ

(
ω,
⋂
n∈N

{Xn ≤ qX|Fτ
(r)}

)
= lim

n→∞
PFτ

(
ω, {Xn ≤ qX|Fτ

(r)}
)
≥ r

for all ω ∈ (N2 ∪N3)c. 2

An intuition of the above result is given in the following example.

Example 4.3.6 Consider the mapping

P I : Ω×Fθ → [0, 1], (ω,A) 7→
∑
i∈I

PBi(A)1Bi(ω)

introduced in example 4.2.2 and a P -almost surely bounded random variable X on (Ω,Fθ,
P ). In accordance with (4.2.2) and (4.2.3) we introduce the mappings

PX|I : Ω× B → [0, 1], (ω,B) 7→
∑
i∈I

PBi{X ∈ B}1Bi(ω)

and
FX|I : Ω× R → [0, 1], (ω, x) 7→

∑
i∈I

PBi{X ≤ x}1Bi(ω)

36



for a P -almost surely bounded random variable X on (Ω,Fθ, P ). The conditional quantiles
(of X given Fτ ) are of the form

qX|I : Ω× (0, 1) → R, (ω, r) 7→
∑
i∈I

qi(r)1Bi(ω),

where qi : (0, 1) → R, r 7→ qi(r) are inverse functions of PBi{X ≤ .} : R → [0, 1],
x 7→ PBi{X ≤ x} for all i ∈ I. For ω ∈ Bi and r ∈ (0, 1) we have

P I
(
ω,
{
X

(<)

≤ qX|I(r)
})

= PBi

{
X

(<)

≤ qX|I(r)
}

= PBi

{
X

(<)

≤ qi(r)
}

and hence, the statement of lemma 4.3.5 follows from the definition of qi as an inverse
function of PBi{X ≤ .}.

Lemma 4.3.7 For a P -almost surely bounded random variable m on (Ω,Fτ , P ) (i.e. m
is Fτ -measurable) the mapping PFτ

(
., {m = m(.)}

)
: (Ω,Fτ ) → [0, 1],

ω 7→ PFτ
(
ω, {m = m(ω)}

)
is Fτ -measurable. Moreover,

PFτ
(
., {m = m(.)}

)
= 1, a.s. P. (4.3.15)

Proof. In remark 4.3.4 we may choose X(ω) = Y (ω) = m(ω) for all ω ∈ Ω and deduce
that the mappings

PFτ
(
., {m ≤ m(.)}

)
: (Ω,Fτ ) → [0, 1], ω 7→ PFτ

(
ω, {m ≤ m(ω)}

)
, and

PFτ
(
., {m < m(.)}

)
: (Ω,Fτ ) → [0, 1], ω 7→ PFτ

(
ω, {m < m(ω)}

)
,

are Fτ -measurable. Since for all ω ∈ Ω we have

PFτ
(
ω, {m ≤ m(ω)}

)
− PFτ

(
ω, {m < m(ω)}

)
= PFτ

(
ω, {m = m(ω)}

)
the first statement is proved.

We prove the second statement by contradiction. Assume that (4.3.15) is wrong. We
then have

P
{
PFτ

(
., {m = m(.)}

)
< 1

}
︸ ︷︷ ︸

:=N

> 0

since PFτ takes only values in [0, 1].
Next, we show that

N =
{
PFτ

(
., {m 6= m(.)}

)
> 0

}
. (4.3.16)

To this end, we shorten Z(ω) = PFτ
(
ω, {m = m(ω)}

)
for all ω ∈ Ω. Then, 0 ≤ Z(ω) ≤ 1

for all ω ∈ Ω and hence, N = {Z < 1} = {1 − Z > 0}. (4.3.16) now follows from the
observation that

1− Z(ω) = PFτ
(
ω, {m 6= m(ω)}

)
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for all ω ∈ Ω.
For all n ∈ N and for all ω ∈ Ω we have{

m ≤ m(ω)− 1
n

}
∪
{
m ≥ m(ω) +

1
n

}
=

{
m /∈

(
m(ω)− 1

n
, m(ω) +

1
n

)}
and we may therefore derive that for all n ∈ N the mappings

ω 7→ PFτ

(
ω,

{
m /∈

(
m(ω)− 1

n
, m(ω) +

1
n

)})

are Fτ -measurable. Thus, for all n ∈ N the events

Nn :=

{
PFτ

(
.,

{
m /∈

(
m(.)− 1

n
, m(.) +

1
n

)})
≥ 1

n

}

belong to the σ-algebra Fτ . In view of (4.3.16) we have N =
⋃
n∈NNn and since Nn ⊂

Nn+1 we deduce,

0 < P (N) = P

(⋃
n∈N

Nn

)
= lim

n→∞
P (Nn).

Thus, there exits n0 such that P (Nn0) > 0. For ε := 1
n0

we now have for all ω ∈ Nn0

PFτ

(
ω,
{
m /∈

(
m(ω)− ε , m(ω) + ε

)})
≥ ε. (4.3.17)

Next we show that there exists ω∗ ∈ Nn0 and N∗
n0
⊂ Nn0 with N∗

n0
∈ Fτ and P (N∗

n0
) >

0 such that for all ω ∈ N∗
n0

we have

|m(ω)−m(ω∗)| ≤ ε

4
.

To this end, recall that m is bounded P -almost surely and hence, |m(ω)| ≤ c < +∞ for
all ω ∈M c for a suitable nullset M . Since P (Nn0 \M c) = P (Nn0) > 0 and since (4.3.17)
is still valid for all ω ∈ Nn0 \M c we may update Nn0 := Nn0 \M c. But now we can find
a finite subset I ⊂ Nn0 such that

Nn0 =
⋃
ω∈I

({
|m−m(ω)| ≤ ε

}
∩Nn0

)
.

Since P (Nn0) > 0 there exists ω1 ∈ I such that the set
{
|m−m(ω1)| ≤ ε

}
∩ Nn0 has

positive P -measure. For this ω1 we define the following subset of Nn0

N1 :=
{
|m−m(ω1)| ≤

ε

4

}
∩Nn0 .
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If P (N1) > 0 we set N∗
n0

= N1 and ω∗ = ω1 and we are done. If not, take

ω2 ∈
({
|m−m(ω1)| ≤ ε

}
∩Nn0

)
\N1

and define
N2 :=

{
|m−m(ω2)| ≤

ε

4

}
∩Nn0 .

Since this way we subsequently cover the whole set
{
|m−m(ω1)| ≤ ε

}
∩Nn0 (which has

positive P -measure) in finitely many steps, we have to end up with some ωi and a set

Ni :=
{
|m−m(ωi)| ≤

ε

4

}
∩Nn0

such that P (Ni) > 0. N∗
n0

:= Ni and ω∗ := ωi have the desired properties.
Finally, we deduce that

0 <

∫
N∗

n0

PFτ

(
ω,
{
m /∈

(
m(ω)− ε , m(ω) + ε

)})
P (dω)

≤
∫
N∗

n0

PFτ

(
ω,
{
m /∈

(
m(ω∗)− ε

2
, m(ω∗) +

ε

2

)})
P (dω)

=
∫
N∗

n0

E
[
1{m/∈(m(ω∗)− ε

2
, m(ω∗)+ ε

2)} | Fτ
]
(ω) P (dω)

= P

({
m /∈

(
m(ω∗)− ε

2
, m(ω∗) +

ε

2

)}
∩ N∗

n0

)
= 0

which is a contradiction. 2

Remark 4.3.8 Lemma 4.3.7 yields an alternative proof of lemma 4.3.5 as follows.
For r ∈ (0, 1) consider a conditional r-quantile qX|Fτ

(r) of a P -almost surely bounded
random variable X on (Ω,Fθ, P ). Say N is a null set such that |X(ω)| ≤ c < +∞ for
all ω ∈ N c. The statement in (4.1.1) implies the existence of a nullset N∗ = N∗(N) such
that N is a PFτ (ω, .)-nullset for all ω ∈ N∗c. Thus, X is PFτ (ω, .)-almost surely bounded
by c for all ω ∈ N∗c where it is to be considered that the constant c is independent from
ω. Hence, for x ≤ c we have FX|Fτ

(ω, x) = 0 and for x ≥ c we have FX|Fτ
(ω, x) = 1 for

all ω ∈ N∗c. Thus,
∣∣qX|Fτ

(r)(ω)
∣∣ ≤ c < +∞ for all ω ∈ N∗c, i.e. qX|Fτ

(r) is bounded
P -almost surely. Since qX|Fτ

(r) is Fτ -measurable we may replace m in lemma 4.3.7 with
qX|Fτ

(r) and hence, (4.3.15) reads

PFτ
(
., {qX|Fτ

(r) = qX|Fτ
(r)(.)}

)
= 1, a.s. P.

We deduce

PFτ
(
ω, {X ≤ qX|Fτ

(r)}
)

= PFτ
(
ω, {X ≤ qX|Fτ

(r)} ∩ {qX|Fτ
(r) = qX|Fτ

(r)(ω)}
)

= PFτ
(
ω, {X ≤ qX|Fτ

(r)(ω)}
)
≥ r
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for P -almost all ω ∈ Ω and

PFτ
(
ω, {X < qX|Fτ

(r)}
)

= PFτ
(
ω, {X < qX|Fτ

(r)} ∩ {qX|Fτ
(r) = qX|Fτ

(r)(ω)}
)

= PFτ
(
ω, {X < qX|Fτ

(r)(ω)}
)
≤ r

for P -almost all ω ∈ Ω.

Remark 4.3.9 Taking P -conditional expectation (given Fτ ) can be viewed as integrating
with respect to the random measure PFτ in the following sense: For the Fτ -measurable
mapping

ω 7→
∫

Ω
X(ω∗) PFτ (ω, dω∗) (4.3.18)

we have
E[X | Fτ ](.) =

∫
Ω
X(ω∗) PFτ (., dω∗), a.s. P, (4.3.19)

where X is a P -almost surely bounded random variable on (Ω,Fθ, P ).
For X = 1A, A ∈ Fθ the Fτ -measurability of (4.3.18) follows from (2) and the equality

in (4.3.19) follows from the fact that PFτ (., A) = E[1A | Fτ ], a.s. P . Thus, the statements
follow for X =

∑n
i=1 αi1Ai, αi ∈ R, Ai ∈ Fθ such that Ai ∩ Aj = ∅ for i 6= j and n ∈ N.

By monotone convergence the statement now follows for general X as well, where once
more we have to use the statement in (4.1.1).

Lemma 4.3.10 Fix ω0 ∈ Ω. Assume that U is a random variable on (Ω,Fθ, P ) which is
PFτ (ω0, .)-uniformly distributed on [0, 1], i.e. for all r ∈ [0, 1] we have

PFτ
(
ω0, {U ≤ r}

)
= r.

Then, for a conditional quantile qX|Fτ
of a random variable X on (Ω,Fθ, P ), the Fθ-

measurable mapping

qX|Fτ

(
ω0, U(.)

)
: (Ω,Fθ) → R, ω 7→ qX|Fτ

(
ω0, U(ω)

)
has distribution function FX|Fτ

(ω0, .).

Proof. The proof of this lemma requires some technical preparation which is why we refer
to lemma A.19 in Föllmer and Schied [17]. 2

Remark 4.3.11 From remark 4.3.9 and lemma 4.3.10 we derive

E[X | Fτ ](.) =
∫

Ω
X(ω∗) PFτ (., dω∗) =

∫ 1

0
qX|Fτ

(., r) λ1(dr), a.s. P,

for a conditional quantile qX|Fτ
of a P -almost surely bounded random variable X on

(Ω,Fθ, P ).
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4.4 Examples

4.4.1 Conditional Value at Risk

Definition 4.4.1 Take r ∈ (0, 1). We call the mapping V aRτ,θ;r : M1,c(R | Fτ ) →
L∞(Fτ ),

P̃X|Fτ
7→ V aRτ,θ;r(P̃X|Fτ

) := −q̃+X|Fτ
(r),

conditional value at risk at level r given Fτ .
Due to the statement in (4.3.12), V aRτ,θ;r is well defined for all r ∈ (0, 1).

Remark 4.4.2 Conditional value at risk at a level r ∈ (0, 1) is a conditional monetary
risk measure on M1,c(R | Fτ ). The induced conditional monetary risk measure on L∞(Fθ)
is denoted by

V aR∗τ,θ;r : L∞(Fθ) → L∞(Fτ ), X̃ 7→ V aR∗τ,θ;r(X̃) := V aRτ,θ;r(P̃X|Fτ
).

We have to verify (n), (m) and (Fτ -ti) of proposition 4.2.7 for the mapping V aRτ,θ;r at
arbitrary level r ∈ (0, 1).
(n): Take a P -almost surely bounded random variable X on (Ω,Fθ, P ) such that PX|Fτ

∈
δ̃0. Then there exists a nullset N such that PX|Fτ

(ω, .) are Dirac-measures concentrated
in {0} for all ω ∈ N c. Hence, −q+X|Fτ

(r)(ω) = 0 for all r ∈ (0, 1) and for all ω ∈ N c.

(m): Let P̃X|Fτ
, P̃Y |Fτ

∈M1,c(R | Fτ ) such that P̃X|Fτ
≤ P̃Y |Fτ

. Then, for (PX|Fτ
, PY |Fτ

)
∈ P̃X|Fτ

× P̃Y |Fτ
, there exists a nullset N such that FX|Fτ

(ω, x) ≥ FY |Fτ
(ω, x) for all

ω ∈ N c and for all x ∈ R. But this means that −q+X|Fτ
(r)(ω) ≥ −q+Y |Fτ

(r)(ω) for all
r ∈ (0, 1) and for all ω ∈ N c.
(Fτ -ti): Consider X̃ ∈ L∞(Fθ), its associated equivalence class P̃X|Fτ

in M1,c(R | Fτ )
and m̃ ∈ L∞(Fτ ). Further, take arbitrary m ∈ m̃ and a nullset N such that

PFτ
(
ω, {m = m(ω)}

)
= 1

for all ω ∈ N c. Such N exists due to lemma 4.3.7. For X ∈ X̃ we derive,

FX+m|Fτ
(ω, x) = PFτ

(
ω, {X +m ≤ x}

)
= PFτ

(
ω, {X +m ≤ x} ∩ {m = m(ω)}

)
= PFτ

(
ω, {X +m(ω) ≤ x}

)
= FX|Fτ

(
ω, x−m(ω)

)
for all ω ∈ N c and for all x ∈ R. Hence,

−q+X+m|Fτ
(r)(ω) = −

(
q+X|Fτ

(r)(ω) +m(ω)
)

= −q+X|Fτ
(r)(ω)−m(ω)

for all ω ∈ N c and for all r ∈ (0, 1).
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Recall that F0 is assumed to be of the form {Ω, ∅}. Now, assume that τ(ω) = 0 for all
ω ∈ Ω and let A ∈ Fθ. Then it follows from property (2) of PF0 that PF0(ω,A) = c ∈ [0, 1]
for all ω ∈ Ω. Since Ω ∈ F0 we may further derive from property (3) of PF0 ,

PF0(ω,A) =
∫

Ω
PF0(ω∗, A) P (dω∗) = P (Ω ∩A) = P (A)

for all ω ∈ Ω. Since A was arbitrary we arrive at

PF0(ω,A) = P (A)

for all ω ∈ Ω and for all A ∈ Fθ.
Consider two regular conditional probabilities PX|F0

and PY |F0
for P -almost surely

bounded random variables X and Y on (Ω,Fθ, P ). Since ∅ is the only nullset in F0 we
have PX|F0

∼ PY |F0
if and only if PX|F0

(ω,B) = PY |F0
(ω,B) for all ω ∈ Ω and for all

B ∈ B. In this sense, equivalence classes in M1,c(R | F0) consist of one element only.
Moreover, since regular conditional probabilities given F0 are independent from ω ∈ Ω,
we may view M1,c(R | Fτ ) as a subset of M1,c(R), where the latter denotes the set of all
probability measures on the real line with compact support.

Remark 4.4.3 If (Ω,Fθ, P ) is an atomless probability space we may even identify M1,c(R
| F0) and M1,c(R):
Indeed, if (Ω,Fθ, P ) is atomless there exists a random variable X on (Ω,Fθ, P ) with con-
tinuous P -distribution function FX and hence, Z : Ω → [0, 1], ω 7→ Z(ω) := FX

(
X(ω)

)
is P -uniformly distributed on [0, 1]. Thus, for arbitrary µ ∈M1,c(R) the random variable
qµ(Z) : Ω → R, ω 7→ qµ

(
Z(ω)

)
has P -distribution µ, where qµ is an arbitrary inverse

function of the function x 7→ µ(−∞, x] from R to [0, 1]. µ has compact support and hence,
qµ(Z) is bounded a.s. P . Further, since PF0(ω,A) = P (A) for all ω ∈ Ω and for all
A ∈ Fθ, we deduce

Pqµ(Z)|F0
(ω,B) = PF0

(
ω, {qµ(Z) ∈ B}

)
= P{qµ(Z) ∈ B} = µ(B)

for all ω ∈ Ω and for all B ∈ B.

For a P -almost surely bounded random variable X on (Ω,Fθ, P ) and a level r ∈ (0, 1)
take q+X|F0

(r) ∈ V aR0,θ;r(P̃X|F0
). In view of the above discussion and by definition of

conditional quantiles we have

q+X|F0
(r)(ω) = −inf

{
x | µ(−∞, x] > r

}
,

for all ω ∈ Ω, where µ is the P -distribution of X. The good definition of the ”classical”
value at risk at level r ∈ (0, 1) as a functional from M1,c(R) to R reads

µ 7→ V aRr(µ) := −inf
{
x | µ(−∞, x] > r

}
.
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In this sense, V aR0,θ;r and V aRr essentially are the same if one identifies their domains
M1,c(R | F0) and M1,c(R). Due to remark 4.4.3 this is possible if (Ω,Fθ, P ) is atomless.
In particular, we obtain that conditional value at risk is not convex in general.

Let us consider arbitrary τ again. For a P -almost surely bounded random variable X
on (Ω,Fθ, P ) the measures PX|Fτ

(ω, .), ω ∈ N c, have compact support on the real line,
where N is a suitable nullset whose existence is guaranteed by the statement in (4.1.1).
For such X we have, by definition of conditional quantiles,

−q+X|Fτ
(r)(ω) = V aRr

(
PX|Fτ

(ω, .)
)

for all ω ∈ N c and for all r ∈ (0, 1). In particular, for all r ∈ (0, 1) the mapping
ω 7→ V aRr

(
PX|Fτ

(ω, .)
)

is P -almost everywhere well defined and Fτ -measurable. Hence,
for all r ∈ (0, 1),

ω 7→ V aRr
(
PX|Fτ

(ω, .)
)
∈ V aRτ,θ;r(P̃X|Fτ

) (4.4.20)

for all PX|Fτ
∈ P̃X|Fτ

∈M1,c(R | Fτ ).
The next example demonstrates the statement in (4.4.20)

Example 4.4.4 Given the same situation as in example 4.3.6 we may define the right-
continuous inverse functions

q+i : (0, 1) → R, r 7→ q+i (r) := inf
{
x | PBi{X ≤ x} > r

}
for all i ∈ I. As in example 4.3.6,∑

i∈I
−q+i (r)1Bi ∈ −q̃+X|Fτ

(r)

for all r ∈ (0, 1). Hence, for all r ∈ (0, 1),

ω 7→
∑
i∈I

V aRr
(
PBi{X ∈ .}

)
1Bi(ω) =

∑
i∈I

−q+i (r)1Bi(ω)

is an element of V aRτ,θ;r(P̃X|I), where P̃X|I designates the equivalence class in M1,c(R |
Fτ ) induced by PX|I .

4.4.2 Conditional Expected Shortfall

Definition 4.4.5 Take r ∈ (0, 1). For a conditional r-quantile qX|Fτ
(r) of a P -almost

surely bounded random variable X on (Ω,Fθ, P ) we define the mappings IX|Fτ
(r) : Ω → R,

ω 7→ IX|Fτ
(r)(ω) :=

1
r

(
1{X<qX|Fτ (r)}(ω) + κX|Fτ

(ω)1{X=qX|Fτ (r)}(ω)
)

and κX|Fτ
: Ω → R,

ω 7→ κX|Fτ
(ω) :=


0 on

{
PFτ

(
.,
{
X = qX|Fτ

(r)
})

= 0
}

r−PFτ
(
ω,{X<qX|Fτ (r)}

)
PFτ

(
ω,{X=qX|Fτ (r)}

) on
{
PFτ

(
.,
{
X = qX|Fτ

(r)
})

> 0
} .
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Note that for r, X and qX|Fτ
(r) as in the above definition the mappings IX|Fτ

(r) :
(Ω,Fτ ) → R and κX|Fτ

: (Ω,Fτ ) → R are Fτ -measurable.

Lemma 4.4.6 For r ∈ (0, 1) take a conditional r-quantile qX|Fτ
(r) of a P -almost surely

bounded random variable X on (Ω,Fθ, P ). For the associated mapping IX|Fτ
(r) we have

E
[
IX|Fτ

(r) | Fτ
]

= 1, a.s. P.

Moreover, κX|Fτ
takes only values between zero and one P -almost surely.

Proof. The sets
{
PFτ

(
., {X = qX|Fτ

(r)}
)

= 0
}

and
{
PFτ

(
., {X = qX|Fτ

(r)}
)
> 0
}

belong
to the σ-algebra Fτ . Thus, we may prove the first claim on each of them separately.
On

{
PFτ

(
., {X = qX|Fτ

(r)}
)
> 0
}

we have

κX|Fτ
(.) =

r − PFτ
(
.,
{
X < qX|Fτ

(r)
})

PFτ
(
.,
{
X = qX|Fτ

(r)
})

and hence, the claim follows from the fact that PFτ (., A) = E[1A | Fτ ], a.s. P , for all
A ∈ Fθ.
For ω ∈

{
PFτ

(
., {X = qX|Fτ

(r)}
)

= 0
}

we have κX|Fτ
(ω) = 0. We deduce

E[IX|Fτ
(r) | Fτ ] =

1
r
E
[
1{X<qX|Fτ (r)} | Fτ

]
=

1
r
PFτ

(
., {X < qX|Fτ

(r)}
)
≤ 1, a.s. P,

as well as

E[IX|Fτ
(r) | Fτ ] =

1
r

(
PFτ

(
., {X < qX|Fτ

(r)}
)

+ PFτ
(
., {X = qX|Fτ

(r)}
))

=
1
r
PFτ

(
., {X ≤ qX|Fτ

(r)}
)
≥ 1, a.s. P,

on
{
PFτ

(
., {X = qX|Fτ

(r)}
)

= 0
}
, where each of the last inequalities follow from lemma

4.3.5. This proves the first assertion.
The second one follows from the observation

0 ≤ r − PFτ
(
., {X < qX|Fτ

(r)}
)

≤ PFτ
(
., {X ≤ qX|Fτ

(r)}
)
− PFτ

(
., {X < qX|Fτ

(r)}
)

= PFτ
(
., {X = qX|Fτ

(r)}
)
, a.s. P,

where the first two inequalities are again consequences of lemma 4.3.5. 2

Definition 4.4.7 Take r ∈ (0, 1). We call the mapping ES∗τ,θ;r : L∞(Fθ) → L∞(Fτ ),

X̃ 7→ ES∗τ,θ;r(X̃) := ess.sup
Q∈Qτ (r)

EQ[−X̃ | Fτ ],

conditional expected shortfall at level r given Fτ , where Qτ (r) is given by the subset

Qτ (r) :=
{
Q� P | ϕ

E[ϕ | Fτ ]
≤ 1
r
, a.s. P, ϕ :=

dQ

dP

}
of all probability measures that are absolutely continuous with respect to P .
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Remark 4.4.8 For X̃ ∈ L∞(Fθ), ess.supQ∈Qτ (r) EQ[−X̃ | Fτ ] is understood as the
equivalence class of all Fτ -measurable random variables that are P -almost surely equal to
ess.supQ∈Qτ (r) EQ[−X | Fτ ] for arbitrary X ∈ X̃. Therefore, one should inspect that
ess.supQ∈Qτ (r) EQ[−X̃ | Fτ ] is well defined with respect to the choice of X. To this end,
take Y ∈ X̃. Then, EQ[−X | Fτ ] = EQ[−Y | Fτ ], a.s. P , for all Q ∈ Qτ (r). Hence,

ess.sup
Q∈Qτ (r)

EQ[−X | Fτ ] ≥ ES [−X | Fτ ] = ES [−Y | Fτ ], a.s. P,

for all S ∈ Qτ (r). Thus, by uniqueness of the essential supremum we have

ess.sup
Q∈Qτ (r)

EQ[−X | Fτ ] ≥ ess.sup
Q∈Qτ (r)

EQ[−Y | Fτ ], a.s. P.

In the same way we derive,

ess.sup
Q∈Qτ (r)

EQ[−Y | Fτ ] ≥ ess.sup
Q∈Qτ (r)

EQ[−X | Fτ ], a.s. P.

Hence, ess.supQ∈Qτ (r) EQ[−Y | Fτ ] = ess.supQ∈Qτ (r) EQ[−X | Fτ ], a.s. P , and it follows
that ess.supQ∈Qτ (r) EQ[−X̃ | Fτ ] is well defined.

For all levels r ∈ (0, 1) we deduce from the properties of conditional expectation that
ES∗τ,θ;r : L∞(Fθ) → L∞(Fτ ) is a conditional coherent risk measure on L∞(Fθ).

Remark 4.4.9 Take r ∈ (0, 1) and consider the mapping IX|Fτ
(r) for a conditional r-

quantile qX|Fτ
(r) of a P -almost surely bounded random variable X on (Ω,Fθ, P ). Then

the probability measure P ∗ with density dP ∗

dP := ϕ := IX|Fτ
(r) is an element of set Qτ (r).

Indeed, from lemma 4.4.6 we derive

E[ϕ] = E[IX|Fτ
(r)] = E

[
E[IX|Fτ

(r) | Fτ ]
]

= 1.

Moreover, as a consequence of lemma 4.4.6 and of the definition of IX|Fτ
(r) we have

ϕ
E[ϕ|Fτ ] ≤

1
r , a.s. P .

Theorem 4.4.10 For r ∈ (0, 1) take a conditional r-quantile qX|Fτ
(r) of a P -almost

surely bounded random variable X on (Ω,Fθ, P ) and consider the associated measure P ∗

of remark 4.4.9. Then,

ess.sup
Q∈Qτ (r)

EQ[−X | Fτ ] = EP ∗ [−X | Fτ ] = E[−XIX|Fτ
(r) | Fτ ], a.s. P. (4.4.21)

In particular,
E[−XIX|Fτ

(r) | Fτ ] ∈ ES∗τ,θ;r(X̃), (4.4.22)

where X̃ denotes the equivalence class in L∞(Fθ) induced by X.
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Proof. We have

EP ∗ [−X | Fτ ] =
E[−XIX|Fτ

(r) | Fτ ]
E[IX|Fτ

(r) | Fτ ]
= E[−XIX|Fτ

(r) | Fτ ], a.s. P,

which proves the second equality in (4.4.21). To verify the other one we first deduce from
remark 4.4.9,

ess.sup
Q∈Qτ (r)

EQ[−X | Fτ ] ≥ EP ∗ [−X | Fτ ], a.s. P,

and hence, only the reverse inequality ess.supQ∈Qτ (r) EQ[−X | Fτ ] ≤ EP ∗ [−X | Fτ ], a.s.
P , remains to be proved. To this end, let Q ∈ Qτ (r) and observe that

E

 dQ
dP

E
[
dQ
dP | Fτ

] − IX|Fτ
(r) | Fτ

 = 0, a.s. P,

on
{
E
[
dQ
dP | Fτ

]
> 0
}

. Hence, on the same set we have

EP ∗ [−X | Fτ ]− EQ[−X | Fτ ] = E

 dQ
dP

E
[
dQ
dP | Fτ

] − IX|Fτ
(r)

X | Fτ


= E

 dQ
dP

E
[
dQ
dP | Fτ

] − IX|Fτ
r)

(X − qX|Fτ
(r)
)
| Fτ


≥ 0, a.s. P.

In the above computation we may replace
dQ
dP

E[ dQ
dP
|Fτ ]

with 0 yielding the same result on{
E
[
dQ
dP | Fτ

]
= 0
}

. Since the set
{
E
[
dQ
dP | Fτ

]
< 0
}

has P -measure zero anyway the
reverse inequality is proved for P -almost all ω ∈ Ω. 2

Corollary 4.4.11 For r ∈ (0, 1) take a conditional r-quantile qX|Fτ
(r) of a P -almost

surely bounded random variable X on (Ω,Fθ, P ). For the Fτ -measurable mappings

ω 7→ 1
r
E
[(
qX|Fτ

(r)−X
)+ | Fτ] (ω)− qX|Fτ

(r)(ω) and

ω 7→ −1
r

∫ r

0
qX|Fτ

(s)(ω) λ1(ds)

we have

E
[
−XIX|Fτ

(r) | Fτ
]
(.) =

1
r
E
[(
qX|Fτ

(r)−X
)+ | Fτ] (.)− qX|Fτ

(r)(.)(4.4.23)

= −1
r

∫ r

0
qX|Fτ

(s)(.) λ1(ds), a.s. P. (4.4.24)
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In particular,
1
r

∫ r

0
−q+X|Fτ

(s)(.) λ1(ds) ∈ ES∗τ,θ;r(X̃) (4.4.25)

for all levels r ∈ (0, 1), where X̃ denotes the equivalence class in L∞(Fθ) induced by X.

Proof. We have

1
r
E
[(
qX|Fτ

(r)−X
)+ | Fτ]− qX|Fτ

(r)

=
1
r

(
E
[(
qX|Fτ

(r)−X
)
1{X<qX|Fτ (r)} | Fτ

]
− rqX|Fτ

(r)
)

=
1
r

(
E
[
−X1{X<qX|Fτ (r)} | Fτ

]
+ qX|Fτ

(r)E
[
1{X<qX|Fτ (r)} | Fτ

]
− rqX|Fτ

(r)
)

=
1
r

(
E
[
−X1{X<qX|Fτ (r)} | Fτ

]
+ qX|Fτ

(r)PFτ
(
., {X < qX|Fτ

(r)}
)
− rqX|Fτ

(r)
)
,

(4.4.26)

a.s. P . On the set
{
PFτ

(
., {X = qX|Fτ

(r)}
)

= 0
}

(4.4.26) can be written in the form

1
r

(
E
[
−X1{X<qX|Fτ (r)} | Fτ

]
+ qX|Fτ

(r)PFτ
(
., {X ≤ qX|Fτ

(r)}
)
− rqX|Fτ

(r)
)

=
1
r
E
[
−X1{X<qX|Fτ (r)} | Fτ

]
, a.s. P,

where the last equality follows from lemma 4.3.5. This yields the equality in (4.4.23) for P -
almost all ω ∈

{
PFτ

(
., {X = qX|Fτ

(r)}
)

= 0
}
. On the set

{
PFτ

(
., {X = qX|Fτ

(r)}
)
> 0
}

we have

qX|Fτ
(r)PFτ

(
., {X < qX|Fτ

(r)}
)
− rqX|Fτ

(r)

=

(
qX|Fτ

(r)PFτ
(
., {X < qX|Fτ

(r)}
)
− rqX|Fτ

(r)
)
E
[
1{X=qX|Fτ (r)} | Fτ

]
PFτ

(
., {X = qX|Fτ

(r)}
)

=
E
[(
qX|Fτ

(r)PFτ
(
., {X < qX|Fτ

(r)}
)
− rqX|Fτ

(r)
)
1{X=qX|Fτ (r)} | Fτ

]
PFτ

(
., {X = qX|Fτ

(r)}
)

= E

[
−qX|Fτ

(r)
r − PFτ

(
., {X < qX|Fτ

(r)}
)

PFτ
(
., {X = qX|Fτ

(r)}
) 1{X=qX|Fτ (r)} | Fτ

]
= E

[
−XκX|Fτ

1{X=qX|Fτ (r)} | Fτ
]
, a.s. P.

Plugging this into (4.4.26) yields the equality in (4.4.23) for P -almost all ω ∈
{
PFτ

(
., {X =

qX|Fτ
(r)}

)
> 0
}
.

By remark 4.3.9 there exists a null-set N1 such that

E
[(
qX|Fτ

(r)−X
)+ | Fτ] (ω) =

∫
Ω

(
qX|Fτ

(r)(ω̃)−X(ω̃)
)+

PFτ (ω, dω̃)
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for all ω ∈ N c
1 and in turn

1
r
E
[(
qX|Fτ

(r)−X
)+ | Fτ] (ω)− qX|Fτ

(r)(ω)

=
1
r

∫
Ω

(
qX|Fτ

(r)(ω̃)−X(ω̃)
)+

PFτ (ω, dω̃)− qX|Fτ
(r)(ω) (4.4.27)

for all ω ∈ N c
1 . Further, by lemma 4.3.7 there exits a null-set N2 such that

PFτ
(
ω, {qX|Fτ

(r) 6= qX|Fτ
(r)(ω)}

)
= 0

for all ω ∈ N c
2 . Thus, (4.4.27) reads

1
r

∫
Ω

(
qX|Fτ

(r)(ω)−X(ω̃)
)+

PFτ (ω, dω̃)− qX|Fτ
(r)(ω) (4.4.28)

for all ω ∈ (N1 ∪N2)c. In view of remark 4.3.11, we may write (4.4.28) in the form

1
r

∫ 1

0

(
qX|Fτ

(r)(ω)− qX|Fτ
(s)(ω)

)+
λ1(ds)− qX|Fτ

(r)(ω)

for all ω ∈ (N1 ∪N2)c (note that N1 is the null-set of remark 4.3.11). We finally observe
that for all ω ∈ Ω (and in particular for all ω ∈ (N1 ∪N2)c),

1
r

∫ 1

0

(
qX|Fτ

(r)(ω)− qX|Fτ
(s)(ω)

)+
λ1(ds)− qX|Fτ

(r)(ω) = −1
r

∫ r

0
qX|Fτ

(s)(ω) λ1(ds),

which proves the equality in (4.4.24). 2

The statement in (4.4.25) reveals that conditional expected shortfall is a distribution
invariant conditional monetary risk measure on L∞(Fθ), i.e. for all X̃, Ỹ ∈ L∞(Fθ) and
for all r ∈ (0, 1) we have

ES∗τ,θ;r(X̃) = ES∗τ,θ;r(Ỹ ), a.s. P,

whenever the corresponding equivalence classes P̃X|Fτ
and P̃Y |Fτ

are the same. Thus, for
all r ∈ (0, 1) the functional ESτ,θ;r from M1,c(R | Fτ ) to L∞(Fτ ) given by

P̃X|Fτ
7→ ESτ,θ;r(P̃X|Fτ

) := ES∗τ,θ;r(X̃),

is well defined. By definition, ESτ,θ;r induces ES∗τ,θ;r and hence, ESτ,θ;r is a conditional
coherent risk measure on M1,c(R | Fτ ) for all r ∈ (0, 1). We call ESτ,θ;r conditional
expected shortfall at level r ∈ (0, 1) as well.

Consider a P -almost surely bounded random variable X on (Ω,Fθ, P ) and a level
r ∈ (0, 1). We have

1
r

∫ r

0
−q+X|F0

(s)(ω) λ1(ds) ∈ ES0,θ;r(P̃X|F0
)
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Here τ(ω) = 0 for all ω ∈ Ω. In view of the discussion of the preceding subsection we have

1
r

∫ r

0
−q+X|F0

(s)(ω) λ1(ds) =
1
r

∫ r

0
V aRs(µ) λ1(ds),

for all ω ∈ Ω, where µ is the P -distribution of X. Since the ”classical” expected shortfall
ESr : M1,c(R) → R at level r ∈ (0, 1) is given by

µ 7→ ESr(µ) :=
1
r

∫ r

0
V aRs(µ) λ1(ds),

again ES0,θ;r and ESr essentially are the same if one identifies their domains M1,c(R | F0)
and M1,c(R). Recall that remark 4.4.3 clarifies this situation.

We consider general τ again. For a P -almost surely bounded random variable X on
(Ω,Fθ, P ) there exists a nullset N = N(X) such that PX|Fτ

(ω, .) ∈M1,c(R) for all ω ∈ N c

(i.e. the probability measures PX|Fτ
(ω, .), ω ∈ N c, have compact support on the real line).

By definition,
V aRr

(
PX|Fτ

(ω, .)
)

= −q+X|Fτ
(r)(ω)

for all ω ∈ N c and all levels r ∈ (0, 1). Note that the nullset N indeed depends on X
however it is independent from the levels r ∈ (0, 1). We derive

ESr
(
PX|Fτ

(ω, .)
)

=
1
r

∫ r

0
V aRs

(
PX|Fτ

(ω, .)
)
λ1(ds) =

1
r

∫ r

0
−q+X|Fτ

(s)(ω) λ1(ds)

for all ω ∈ N c and for all r ∈ (0, 1). In particular, the mapping ω 7→ ESr
(
PX|Fτ

(ω, .)
)

is
P -almost everywhere well defined, Fτ -measurable and hence,

ω 7→ ESr
(
PX|Fτ

(ω, .)
)
∈ ESτ,θ;r(P̃X|Fτ

)

for all PX|Fτ
∈ P̃X|Fτ

∈M1,c(R | Fτ ).
Again this statement is illustrated in the next example.

Example 4.4.12 Let us fix a level r ∈ (0, 1) and consider once more the situation as in
example 4.3.6. We have

E[−XIX|Fτ
(r) | Fτ ] =

∑
i∈I

EBi [−XIX|Fτ
(r)]1Bi , a.s. P,

where
EBi [−XIX|Fτ

(r)] :=
∫

Ω
−XIX|Fτ

(r) dPBi .

Due to example 4.3.6 we may choose a conditional r-quantile qX|Fτ
(r) (for which IX|Fτ

(r)
is defined) of the form

ω 7→
∑
i∈I

qi(r)1Bi(ω),
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where qi : (0, 1) → R designate suitable inverse functions for all i ∈ I. Then,

EBi

[
−XIX|Fτ

(r)
]

=
∫

Ω
−X(ω)

1
r

(
1{X<qX|Fτ (r)}(ω) + κX|Fτ

(ω)1{X=qX|Fτ (r)}(ω)
)
PBi(dω)

=
∫

Ω
−X(ω)

1
r

(
1{X<qi(r)}(ω) + κi(ω)1{X=qi(r)}(ω)

)
PBi(dω),

where κi : Ω → R is given by

ω 7→ κi(ω) :=

{
0 if PBi{X = qi(r)} = 0
r−PBi

{X<qi(r)}
PBi

{X=qi(r)} if PBi{X = qi(r)} > 0
.

From remark 4.48 in Föllmer and Schied [17] we can therefore deduce

EBi [−XIτ (r)] = ESr
(
PBi{X ∈ .}

)
.

Hence, by theorem 4.4.10 we have

ω 7→
∑
i∈I

ESr
(
PBi{X ∈ .}

)
1Bi(ω) ∈ ESτ,θ;r(P̃X|I),

where P̃X|I designates the equivalence class in M1,c(R | Fτ ) induced by PX|I .
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Chapter 5

Dynamic Monetary Utility
Functionals

This chapter mainly provides a brief collection of a few results on dynamic monetary utility
functionals as they are found throughout the recent literature. We focus on dynamic
consistency properties and its consequences for dynamic monetary utility functionals. In
fact, we discuss a basic construction principle for time-consistent dynamic monetary utility
functionals and provide recent representation results. In the last subsection we present,
as a main result, a representation theorem in terms of concatenated probability densities.

5.1 Introduction

In chapter 2 we introduced conditional monetary utility functionals which depend on
bounded random variables and on bounded discrete-time processes. Here, we present
dynamic monetary utility functionals as families of conditional monetary utility functionals
for bounded random variables at different times. An extension of the results presented in
sections 5.2 and 5.3 to bounded discrete-time processes has already been established in
Cheridito et al. [8] and Cheridito and Kupper [9]. However, a corresponding generalization
of section 5.4 still is subject of ongoing research and therefore, the remainder of this thesis
is devoted to the case of bounded random variables.

When risk assessments of final values are updated as new information is released,
the associated capital requirements should not contradict one another across time. It is
common sense to impose dynamic consistency conditions upon dynamic monetary utility
functionals, cf. Wang [22], Delbaen [12], Artzner et al. [3, 4]. Characterizations and
examples of dynamic monetary risk measures which are dynamic consistent are given in
Riedel [20], Detlefsen and Scandolo [13] as well as in Weber [23]. The two latter address
risk assessment of final values and Weber additionally focuses on distribution invariant
dynamic risk measures. In [8], Cheridito et al. study a notion of dynamic consistency
which can be characterized by means of a decomposition property of acceptance sets. As
to my information, Delbaen first presented this useful characterization in [12] for coher-
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ent dynamic utility functionals that are defined for bounded random variables. In [9],
Cheridito and Kupper work with the same concept of dynamic consistency and provide
dual representations for dynamic consistent dynamic monetary concave utility functionals
which are continuous in a mild sense and are defined for either bounded random variables
or bounded discrete-time processes. As the results of the remaining thesis are strongly
based on the ones given in [8] and [9] we follow their rather strong notion of dynamic
consistency.

In section 5.2 we introduce dynamic monetary utility functionals for bounded random
variables and present the notion of dynamic consistency which we choose to work with.
We call it time-consistency and show how this concept relates to an iteration condition.
More precisely, time-consistency means that the risk of a final value may be calculated
directly, say at time t, or iteratively at time t+1 and then at time t. We show how this al-
lows us to construct time-consistent dynamic monetary utility functionals out of arbitrary
families of conditional monetary utility functionals. Section 5.3 provides a brief collection
of a few recent duality results in the context of time-consistent dynamic monetary utility
functionals. Time-consistent dynamic concave utility functionals which are continuous in
a mild sense admit a representation in terms of what we call dynamic penalty function,
where we take essential infimum over certain duals. As a main result, we provide in sec-
tion 5.4 a characterization of those elements for which the essential infimum is attained.
More precisely, if a time-consistent dynamic monetary utility functional is constructed via
an arbitrary family of conditional monetary utility functionals and if for each of those
conditional monetary utility functionals we know at which element the essential infimum
is attained then we also know the element at which the essential infimum representing the
time-consistent dynamic monetary utility functional is attained.

Throughout this chapter we consider the setup of section 2.2 and let τ and θ be two
(Ft)-stopping times such that τ(ω) ≤ θ(ω) for all ω ∈ Ω. We denote by P the set of
probability measures that are absolutely continuous with respect to P . For convenience,
we again identify random variables that are equal P -almost surely as it was done in
chapters 2 and 3.

5.2 Definitions and Time Consistency

Definition 5.2.1 Assume that for each t ∈ T we are given a conditional monetary (con-
cave, coherent) utility functional φt,T (on L∞(FT )) with corresponding acceptance set Aφt,T .
We call the family (φt,T )t∈T a dynamic monetary (concave, coherent) utility functional (on
L∞(FT )) and (Aφt,T )t∈T the family of corresponding acceptance sets.

A dynamic monetary (convex, coherent) risk measure (on L∞(FT )) is given by a family
(ρt,T )t∈T of conditional monetary (convex, coherent) risk measures (on L∞(FT )).

Remark 5.2.2 For a dynamic monetary utility functional (φt,T )t∈T we derive from (n)
and (FT -ti) of φT,T that for all X ∈ L∞(FT ),

φT,T (X) = X, a.s. P.
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In particular, AφT,T = L∞+ (FT ).

For a dynamic monetary (concave, coherent) utility functional (φt,T )t∈T we define the
mapping φτ,θ : L∞(Fθ) → L∞(Fτ ),

X 7→ φτ,θ(X) :=
∑
t∈T

φt,T (X)1{τ=t}. (5.2.1)

The functional φτ,θ inherits the the properties (n), (m) and (sa) from the corresponding
ones of φt,T , t ∈ T. To obtain (Fτ -ti), (Fτ -c) and (Fτ -ph) consider the decomposition{

λ1{τ=t} ∈ B
}

=
(
{λ ∈ B} ∩ {τ = t}

)
∪
(
{0 ∈ B} ∩ {τ 6= t}

)
=

(
{λ ∈ B} ∩ {τ = t} ∩ {τ ≤ t}

)
∪
(
{0 ∈ B} ∩ {τ 6= t}

)
∈ Ft

valid for all t ∈ T, for all λ ∈ L∞(Fτ ) and for all B ∈ B(R). Thus, λ1{τ=t} is Ft-measurable
for all t ∈ T and for all λ ∈ L∞(Fτ ) and the remaining properties are as well inherited
from φt,T , t ∈ T.

The notion of dynamic consistency we work with in this thesis is given in the following
definition.

Definition 5.2.3 A dynamic monetary (concave, coherent) utility functional (φt,T )t∈T
(on L∞(FT )) is called time-consistent if for all X,Y ∈ L∞(FT ),

φt+1,T (X) ≥ φt+1,T (Y ), a.s. P, implies φt,T (X) ≥ φt,T (Y ), a.s. P,

for all t ∈ {0, . . . , T − 1}. We call the family (φt,t+1)t∈{0,...,T−1} the one-step transitions
of (φt,T )t∈T, where φt,t+1 denotes the restriction of φt,T to L∞(Ft+1), t ∈ {0, . . . , T − 1}.

A dynamic monetary (convex, coherent) risk measure (ρt,T )t∈T (on L∞(FT )) is time-
consistent if (−ρt,T )t∈T is a time-consistent dynamic monetary (concave, coherent) utility
functional.

Proposition 5.2.4 For a dynamic monetary utility functional (φt,T )t∈T the following two
conditions are equivalent:

(1) (φt,T )t∈T is time-consistent

(2) φt,T (X) = φt,T
(
φt+1,T (X)

)
, a.s. P , for all X ∈ L∞(FT ) and t ∈ {0, . . . , T − 1}.

Proof. Fix t ∈ {0, . . . , T − 1}.
(1)⇒(2): For X ∈ L∞(FT ) define Y := φt+1,T (X). Then φt+1,T (X) = φt+1,T (Y ), a.s. P .
Thus, φt,T (X) ≤ φt,T (Y ), a.s. P , as well as φt,T (X) ≥ φt,T (Y ), a.s. P , and hence,

φt,T (X) = φt,T (Y ) = φt,T
(
φt+1,T (X)

)
, a.s. P.

(2)⇒(1): Let X,Y ∈ L∞(FT ) such that φt+1,T (X) ≥ φt+1,T (Y ), a.s. P . Then

φt,T (X) = φt,T
(
φt+1,T (X)

)
≥ φt,T

(
φt+1,T (Y )

)
= φt,T (Y ), a.s. P.
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2

As a consequence of the preceding proposition, a time-consistent dynamic mone-
tary utility functional (φt,T )t∈T is already fully determined by its one-step transitions
(φt,t+1)t∈{0,...,T−1}. Indeed, given the one step transitions of (φt,T )t∈T we may recover φt,T
via

φt,T (X) = φt,t+1

(
· · ·φT−2,T−1

(
φT−1,T (X)

)
· · ·
)
, a.s. P,

for all X ∈ L∞(FT ) and for all t ∈ {0, . . . , T − 1}. For t = T we have φT,T (X) = X, a.s.
P .

Moreover, we may even start with arbitrary conditional monetary utility function-
als φt,t+1 on L∞(Ft+1) for all t ∈ {0, . . . , T − 1}. For X ∈ L∞(FT ) we then define by
backwards induction:

ψT,T (X) := X

ψt,T (X) := φt,t+1

(
ψt+1,T (X)

)
for all t ∈ {0, . . . , T − 1} (5.2.2)

This yields a time-consistent dynamic monetary utility functional (ψt,T )t∈T.
Time-consistency of a dynamic monetary utility functional (φt,T )t∈T on L∞(FT ) in

particular captures the following intuition. If a position X ∈ L∞(FT ) is accepted at date
t+1, t ∈ {0, . . . , T−1}, then it will be accepted at time t as well. This statement formalizes

φt+1,T (X) ≥ 0, a.s. P, implies φt,T (X) ≥ 0, a.s. P, (5.2.3)

for all X ∈ L∞(FT ) and for all t ∈ {0, . . . , T−1}. (5.2.3) is a consequence of the inequality

φt,T (X) = φt,T
(
φt+1,T (X)

)
≥ φt,T (0) ≥ 0, a.s. P,

which is valid for all X ∈ L∞(FT ) with φt+1,T (X) ≥ 0, a.s. P , t ∈ {0, . . . , T −1}, provided
that (φt,T )t∈T is time-consistent. The discussion of subsection 6.2.1 in particular yields
the insight that acceptance-consistency in the sense of (5.2.3) is indeed a weaker condition
than time-consistency in the sense of definition 5.2.3.

5.3 Duality

For every t ∈ {1, . . . , T}, we introduce the set of one-step transition densities

Dt :=
{
ξ ∈ L1

+(Ft) | E[ξ | Ft−1] = 1
}
.

Every sequence (ξt+1, . . . , ξT ) ∈ Dt+1 × · · · × DT induces a P -martingale (M ξ
r )r∈T by

M ξ
r :=

{
1 for r ∈ {0, . . . , t}

ξt+1 · · · · · ξr for r ∈ {t+ 1, . . . , T}

54



and a probability measure Qξ in P with density

dQξ

dP
= M ξ

T .

Indeed, for r ∈ {0, . . . , t} we have E
[
M ξ
r+1 | Fr

]
= 1 = M ξ

r , a.s.P , and for r ∈ {t +
1, . . . , T − 1},

E
[
M ξ
r+1 | Fr

]
= ξt+1 · · · · · ξr E [ξr+1 | Fr] = ξt+1 · · · · · ξr = M ξ

r , a.s. P.

On the other hand, every probability measure Q in P induces a non-negative martingale

MQ
t := E

[
dQ

dP
| Ft

]
, t ∈ {0, . . . , T},

and since for 1 ≤ t ≤ T ,

E
[
MQ
t+11{MQ

t =0}

]
= E

[
E
[
MQ
t+1 | Ft

]
1{MQ

t =0}

]
= E

[
MQ
t 1{MQ

t =0}

]
= 0,

we have {
MQ
t−1 = 0

}
⊂
{
MQ
t = 0

}
for all 1 ≤ t ≤ T. (5.3.4)

The inclusion in (5.3.4) is understood in the P -almost sure sense. The sequence

ξQt :=


MQ

t

MQ
t−1

on
{
MQ
t−1 > 0

}
1 on

{
MQ
t−1 = 0

} for t = 1, . . . , T ,

is an element in D1 × · · · × DT that induces the measure Q. Indeed, on
{
MQ
T−1 = 0

}
we

have ξQ1 · · · · · ξ
Q
T = ξQ1 · · · · · ξ

Q
T−1 = 0 = MQ

T , a.s. P , and on
{
MQ
T−1 > 0

}
,

MQ
1

1
MQ

2

MQ
1

· · · · ·
MQ
T

MQ
T−1

= MQ
T , a.s. P.

For all X ∈ L∞(FT ) and t ∈ {0, . . . T − 1},

EQ[X | Ft] =
E
[
ξQ1 · · · · · ξ

Q
T X | Ft

]
E
[
ξQ1 · · · · · ξ

Q
T | Ft

] =
ξQ1 · · · · · ξ

Q
t E

[
ξQt+1 · · · · · ξ

Q
T X | Ft

]
ξQ1 · · · · · ξ

Q
t E

[
ξQt+1 · · · · · ξ

Q
T | Ft

]
=

ξQ1 · · · · · ξ
Q
t E

[
ξQt+1 · · · · · ξ

Q
T X | Ft

]
ξQ1 · · · · · ξ

Q
t

, a.s. P. (5.3.5)

Since by (5.3.4) we have
{
ξQ1 · · · · · ξ

Q
t = 0

}
⊂
{
ξQt+1 · · · · · ξ

Q
T = 0

}
, (5.3.5) reads

E
[
ξQt+1 · · · · · ξ

Q
T X | Ft

]
.
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Thus, we may and will work with the convention

EQ[X | Ft] := E[ξQt+1 · · · · · ξ
Q
T X | Ft] , X ∈ L∞(FT ) , t ∈ {0, . . . T − 1}, (5.3.6)

and E[ξQt+1 · · · · · ξ
Q
T X | Ft] is a version of EQ[X | Ft] that is defined up to P -almost sure

equality, whereas EQ[X | Ft] is only defined up to Q-almost sure equality.
The conditional expectation of a random variable X from Ω to [0,∞] is, as usual,

understood as
E [X | Ft] := lim

n→∞
E [X ∧ n | Ft] . (5.3.7)

Definition 5.3.1 Let t ∈ T. We call a conditional monetary utility functional φt,T (on
L∞(FT )) continuous from above if

φt,T (Xn) → φt,T (X), a.s. P,

for every sequence (Xn)n∈N in L∞(FT ) that decreases P -almost surely to X ∈ L∞(FT ).
A dynamic monetary utility functional (φt,T )t∈T is called continuous from above if all

φt,T , t ∈ T, are so.

Definition 5.3.2 Let 0 ≤ t < s ≤ T . For a conditional concave utility functional φt,s (on
L∞(Fs)) that is continuous from above we define for all Q ∈ P,

ϕφt,s(Q) := ess.sup
X∈L∞(Fs)

{
EQ[−X | Ft] + φt,s(X)

}
and call ϕφt,s the conditional penalty function of φt,s.

For a time-consistent dynamic concave utility functional (φt,T )t∈T we call the family
(ϕφt,t+1)t∈{0,...,T−1} the dynamic penalty function of (φt,T )t∈T.

Lemma 5.3.3 Let 0 ≤ t < s ≤ T . A conditional concave utility functional φt,s (on
L∞(Fs)) that is continuous from above admits a representation

φt,s(X) = ess.inf
Q∈P

{
EQ[X | Ft] + ϕφt,s(Q)

}
, a.s. P, (5.3.8)

in terms of its conditional penalty function ϕφt,s.

Proof. Let us consider the conditional convex risk measure ρt,s := −φt,s. The statement
in (5.3.8) now reads

ρt,s(X) = − ess.inf
Q∈P

{
EQ[X | Ft] + ϕφt,s(Q)

}
= ess.sup

Q∈P

{
EQ[−X | Ft]− ϕφt,s(Q)

}
, a.s. P, (5.3.9)

and the conditional penalty function ϕφt,s can be written in the form

ϕφt,s(Q) = ess.sup
X∈L∞(Fs)

{
EQ[−X | Ft]− ρt,s(X)

}
, a.s. P.
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Now the statement in (5.3.9) can be viewed as a generalization of the static case duality
result, a proof of which is given in Detlefsen and Scandolo [13], theorem 3.2. 2

Lemma 5.3.4 Let t ∈ {0, . . . , T − 1}. The conditional penalty function ϕφt,t+1 of a con-
ditional concave utility functional φt,t+1 (on L∞(Ft+1)) that is continuous from above
satisfies

ϕφt,t+1(1Aξ + 1Acξ′) = 1Aϕ
φ
t,t+1(ξ) + 1Acϕφt,t+1(ξ

′), a.s. P,

for all ξ, ξ′ ∈ Dt+1 and A ∈ Ft, with the convention

ϕφt,t+1

(
dQ

dP

)
:= ϕφt,t+1(Q).

Proof. By convention we have

ϕφt,t+1(1Aξ + 1Acξ′) = ess.sup
X∈L∞(Ft+1)

{
EQ[(−X) | Ft] + φt,s(X)

}
,

where Q is given by dQ
dP := 1Aξ + 1Acξ′. Note that E[1Aξ + 1Acξ′] = E

[
E[1Aξ + 1Acξ′ |

Ft]
]

= 1, a.s. P . Thus,

ϕφt,t+1(1Aξ + 1Acξ′) = ess.sup
X∈L∞(Ft+1)

{
E[(1Aξ + 1Acξ′)(−X) | Ft] + φt,s(X)

}
, (5.3.10)

a.s. P , where we have in mind that E[1Aξ + 1Acξ′ | Ft] = 1, a.s. P . Since A ∈ Ft we may
rewrite (5.3.10) in the form

ess.sup
X∈L∞(Ft+1)

{
1A
(
E[ξ(−X) | Ft] + φt,s(X)

)
+ 1Ac

(
E[ξ′(−X) | Ft] + φt,s(X)

)}
= ess.sup

X,Y ∈L∞(Ft+1)

{
1A
(
E[ξ(−X) | Ft] + φt,s(X)

)
+ 1Ac

(
E[ξ′(−Y ) | Ft] + φt,s(Y )

)}
= 1A ess.sup

X∈L∞(Ft+1)

{
E[ξ(−X) | Ft] + φt,s(X)

}
+1Ac ess.sup

X∈L∞(Ft+1)

{
E[ξ′(−X) | Ft] + φt,s(X)

}
= 1Aϕ

φ
t,t+1(ξ) + 1Acϕφt,t+1(ξ

′), a.s. P.

2

Theorem 5.3.5 Let (φt,T )t∈T be a time-consistent dynamic concave utility functional that
is continuous from above. Then

φt,s(X) = ess.inf
Q∈P

EQ

X +
s∑

j=t+1

ϕφj−1,j(Q) | Ft

 , a.s. P,

for all 0 ≤ t < s ≤ T and X ∈ L∞(Fs).
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Proof. Let 0 ≤ t < s ≤ T and define

Vt,s(X) = ess.inf
Q∈P

EQ

X +
s∑

j=t+1

ϕφj−1,j(Q) | Ft


for all X ∈ L∞(Fs). The proof is by induction over s. If s = t+1, then we obtain directly
from (5.3.8) that

φt,t+1(X) = ess.inf
Q∈P

EQ[X + ϕt,t+1(Q) | Ft] = Vt,t+1(X), a.s. P,

for all X ∈ L∞(Ft+1). Now, assume s ≥ t + 2 and φt,s(Y ) = Vt,s(Y ), a.s. P, for all
Y ∈ L∞(Fs−1). If X ∈ L∞(Fs), then φs−1,s(X) ∈ L∞(Fs−1), and we obtain by time
consistency φt,s(X) = φt,s

(
φs−1,s(X)

)
= Vt,s

(
φs−1,s(X)

)
. Further,

Vt,s
(
φs−1,s(X)

)
= ess.inf

Q∈P
EQ

φs−1,s(X) +
s∑

j=t+1

ϕφj−1,j(Q) | Ft


= ess.inf

(ξt+1,...,ξT )∈Dt+1×···×DT

E

(ξt+1 · · · · · ξT )

φs−1,s(X) +
s−1∑
j=t+1

ϕj−1,j(ξj)

 | Ft


= ess.inf

(ξt+1,...,ξs−1)∈Dt+1×···×Ds−1

E [(ξt+1 · · · · · ξs−1)ess.inf
ξs∈Ds

E
[
ξs
(
X + ϕs−1,s(ξs)

)
| Fs−1

]
+

s−1∑
j=t+1

ϕj−1,j(ξj)

 | Ft

 , (5.3.11)

a.s. P . The family
E[ξsX | Fs−1] + ϕs−1,s(ξs), ξs ∈ Ds

is directed downwards. Indeed, take ξs, ξ′s ∈ Ds and A ∈ Fs−1 such that

E[ξsX | Fs−1] + ϕs−1,s(ξs) ∧ E[ξ′sX | Fs−1] + ϕs−1,s(ξ′s)

= 1A
(
E[ξsX | Fs−1] + ϕs−1,s(ξs)

)
+ 1Ac

(
E[ξ′sX | Fs−1] + ϕs−1,s(ξ′s)

)
= E[(1Aξs + 1Ac)X | Fs−1] + 1Aϕs−1,s(ξs) + 1Acϕs−1,s(ξ′s), a.s. P.

Lemma 5.3.4 now yields the assertion. But from this we derive that there exists a decreas-
ing sequence

(ϕn)n∈N ⊂
{
E[ξsX | Fs−1] + ϕs−1,s(ξs) | ξs ∈ Ds

}
such that

ess.inf
ξs∈Ds

(
E[ξsX | Fs−1] + ϕs−1,s(ξs)

)
= lim

n→∞
ϕn, a.s. P.

Therefore, since

E
[
ξs
(
X + ϕs−1,s(ξs)

)
| Fs−1

]
= E [ξsX | Fs−1] + E [ξsϕs−1,s(ξs) | Fs−1]
= E [ξsX | Fs−1] + ϕs−1,s(ξs), a.s. P,
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we can take, by monotone convergence, the essential infimum in (5.3.11) outside the con-
ditional expectation and arrive at

ess.inf
(ξt+1,...,ξs−1)∈Dt+1×···×Ds−1

ess.inf
ξs∈Ds

E

(ξt+1 · · · · · ξs−1)

E[ξs
(
X + ϕs−1,s(ξs)

)
| Fs−1] +

s−1∑
j=t+1

ϕj−1,j(ξj)

 | Ft


= ess.inf

(ξt+1,...,ξs)∈Dt+1×···×Ds

E
[
(ξt+1 · · · · · ξs−1)

(
E[ξs

(
X + ϕs−1,s(ξs)

)
| Fs−1]

+E

ξs s−1∑
j=t+1

ϕj−1,j(ξj) | Fs−1

 | Ft


= ess.inf

(ξt+1,...,ξs)∈Dt+1×···×Ds

E

(ξt+1 · · · · · ξs−1)E

ξs
X + ϕs−1,s(ξs) +

s−1∑
j=t+1

ϕj−1,j(ξj)

 | Fs−1

 | Ft


= ess.inf
(ξt+1,...,ξs)∈Dt+1×···×Ds

E

(ξt+1 · · · · · ξs)

X +
s∑

j=t+1

ϕj−1(ξj)

 | Ft

 = Vt,s(X),

a.s. P , which concludes the proof. 2

Corollary 5.3.6 Let (φt,T )t∈T be a time-consistent dynamic concave utility functional
that is continuous from above. Then

φt,s(X) = ess.inf
Q∈P

EQ

X +
s∑
j=1

ϕφj−1,j(Q) | Ft

 , a.s. P,

for all 0 ≤ t < s ≤ T and X ∈ L∞(Fs).

Proof. By theorem 5.3.5 it suffices to show that

ess.inf
Q∈P

EQ

X +
s∑
j=1

ϕφj−1,j(Q) | Ft

 = ess.inf
Q∈P

EQ

X +
s∑

j=t+1

ϕφj−1,j(Q) | Ft

 , a.s. P,

for all 0 ≤ t < s ≤ T and X ∈ L∞(Fs). To this end, observe that normalization of φj−1,j ,
j ∈ {1, . . . , T}, implies

0 = φj−1,j(0) = ess.inf
Q∈P

{
EQ[0 | Fj−1] + ϕφj−1,j(Q)

}
= ess.inf

Q∈P
ϕφj−1,j(Q), a.s. P,
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where the second equality follows from the fact that ϕφj−1,j represents φj−1,j as in lemma
5.3.3. Moreover, for all Q ∈ P we have

ϕφj−1,j(Q) = ess.sup
X∈L∞(Fj)

{EQ[−X | Fj−1] + φj−1,j(X)}

= ess.sup
X∈L∞(Fj)

{
E
[
ξQj · · · · · ξ

Q
T (−X) | Fj−1

]
+ φj−1,j(X)

}
= ess.sup

X∈L∞(Fj)

{
E
[
ξQj (−X) | Fj−1

]
+ φj−1,j(X)

}
, a.s. P,

and hence,
ess.inf
ξ∈Dj

ϕφj−1,j(ξ) = ess.inf
Q∈P

ϕφj−1,j(Q) = 0, a.s. P, (5.3.12)

for all j ∈ {1, . . . , T}. Now, let us fix 0 ≤ t < s ≤ T , X ∈ L∞(Fs). We have

ess.inf
Q∈P

EQ

X +
s∑
j=1

ϕφj−1,j(Q) | Ft


= ess.inf

(ξ1,...,ξT )∈D1×···×DT

E

ξt+1 · · · · · ξT

X +
s∑
j=1

ϕφj−1,j(ξj)

 | Ft


= ess.inf

(ξ1,...,ξT )∈D1×···×DT

E

ξt+1 · · · · · ξT

X +
t∑

j=1

ϕφj−1,j(ξj) +
s∑

j=t+1

ϕφj−1,j(ξj)

 | Ft


= ess.inf

(ξ1,...,ξT )∈D1×···×DT

E
ξt+1 · · · · · ξT

t∑
j=1

ϕφj−1,j(ξj) | Ft


+E

ξt+1 · · · · · ξT

X +
s∑

j=t+1

ϕφj−1,j(ξj)

 | Ft


= ess.inf

(ξ1,...,ξT )∈D1×···×DT

(5.3.13)
t∑

j=1

ϕφj−1,j(ξj) + E

ξt+1 · · · · · ξT

X +
s∑

j=t+1

ϕφj−1,j(ξj)

 | Ft


= ess.inf

(ξ1,...,ξt)∈D1×···×Dt

t∑
j=1

ϕφj−1,j(ξj) (5.3.14)

+ ess.inf
(ξt+1,...,ξT )∈Dt+1×···×DT

E

ξt+1 · · · · · ξT

X +
s∑

j=t+1

ϕφj−1,j(ξj)

 | Ft

 , a.s. P.

(5.3.15)
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As a consequence of (5.3.12) the essential infimum in (5.3.14) equals zero and hence,
(5.3.15) reduces to

ess.inf
(ξt+1,...,ξT )∈Dt+1×···×DT

E

ξt+1 · · · · · ξT

X +
s∑

j=t+1

ϕφj−1,j(ξj)

 | Ft


= ess.inf

Q∈P
EQ

X +
s∑

j=t+1

ϕφj−1,j(Q) | Ft

 , a.s. P,

which concludes the proof. 2

5.4 Concatenation

Consider the densities q and s of two probability measures Q and S in P. For t ∈
{1, . . . , T − 1} we define

q ⊗t s :=

{
q on {E[s | Ft] = 0}
E[q | Ft] s

E[s|Ft]
on {E[s | Ft] > 0}

. (5.4.16)

Since

E[q ⊗t s] = E

[
E[q | Ft]

s

E[s | Ft]
1{E[s|Ft]>0} + q1{E[s|Ft]=0}

]
= E

[
E

[
E[q | Ft]

s

E[s | Ft]
1{E[s|Ft]>0} | Ft

]
+ E

[
q1{E[s|Ft]=0} | Ft

]]
= E

[
E[q | Ft]

E[s | Ft]
E[s | Ft]

1{E[s|Ft]>0} + E
[
q1{E[s|Ft]=0} | Ft

]]
= E

[
E[q | Ft]

]
= 1

and q ⊗t s ≥ 0, a.s. P , q ⊗t s induces a probability measure in P. We denote it Q ⊗t S
and call it concatenation of the measures Q and S.

For all of this section, we assume that we are given a dynamic concave utility functional
(φt,T )t∈T that is continuous from above. By lemma 5.3.3, we have for all 0 ≤ t < s ≤ T

φt,s(X) = ess.inf
Q∈P

{
EQ[X | Ft] + ϕφt,s(Q)

}
, a.s. P, (5.4.17)

for all X ∈ L∞(Fs). The one-step transitions (φt,t+1)t∈{0,...,T−1} of (φt,T )t∈T are concave
and continuous from above. Thus, the time-consistent dynamic monetary utility functional
(ψt,T )t∈T given as in (5.2.2) is concave and continuous from above in turn. By theorem
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5.3.5, (ψt,T )t∈T admits for all X ∈ FT a representation

ψt,T (X) = ess.inf
Q∈P

EQ

X +
T∑

j=t+1

ϕψj−1,j(Q) | Ft


= ess.inf

Q∈P
EQ

X +
T∑

j=t+1

ϕφj−1,j(Q) | Ft

 , a.s. P, (5.4.18)

in terms of the dynamic penalty function (ϕφt,t+1)t∈{0,...,T−1} of (φt,T )t∈T. Note that by
construction, the dynamic penalty functions (ϕψt,t+1)t∈{0,...,T−1} and (ϕφt,t+1)t∈{0,...,T−1} co-
incide P -almost surely.

Let us assume that for all t ∈ {0, . . . , T−1} and X ∈ L∞(FT ) there exists a probability
measure St = St(ψt+1,T (X)) ∈ P such that the essential infimum in (5.4.17) is attained
for the one-step transitions of (φt,T )t∈T, i.e.

φt,t+1(ψt+1,T (X)) = ESt [ψt+1,T (X) | Ft] + ϕφt,t+1(St), a.s. P, (5.4.19)

for all t ∈ {0, . . . , T − 1}. From this we derive for all t ∈ {0, . . . , T − 1},

ψt,t+1(ψt+1,T (X)) = φt,t+1(ψt+1,T (X)) = ESt [ψt+1,T (X) | Ft] + ϕφt,t+1(St), a.s. P.
(5.4.20)

For t ∈ {0, . . . , T − 1} we will show that, under a technical assumption, the essen-
tial infimum in (5.4.18) is attained by the concatenation of the probability measures
(Ss)s∈{t,...,T−1} in (5.4.20). To this end, we set st = dSt

dP for all t ∈ {0, . . . , T − 1} and
denote the induced non-negative martingales

MSt
s := E[st | Fs], s ∈ T,

for all t ∈ {0, . . . , T − 1}. As in section 5.3 the corresponding sequences

ξSt
s :=


M

St
s

M
St
s−1

on
{
MSt
s−1 > 0

}
1 on

{
MSt
s−1 = 0

} , s ∈ {1, . . . , T},

are elements in D1 × · · · × DT for all t ∈ {0, . . . , T − 1}.

Remark 5.4.1 Take t ∈ {0, . . . , T −1} and assume (this is the above mentioned technical
assumption) that

MSs
s = E[ss | Fs] > 0, a.s. P, for all s ∈ {t, . . . , T − 1}. (5.4.21)

Then, by the definition in (5.4.16), the density

st ⊗t+1 · · · ⊗T−1 sT−1
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is of the form

E[st | Ft+1]
E[st+1 | Ft+2]
E[st+1 | Ft+1]

· · · · · E[sT−2 | FT−1]
E[sT−2 | FT−2]

sT−1

E[sT−1 | FT−1]

= E[st | Ft+1] ξ
St+1

t+2 · · · · · ξST−2

T−1 ξ
ST−1

T , a.s. P. (5.4.22)

Thus,

E
[
st ⊗t+1 · · · ⊗T−1 sT−1 | Ft

]
= E

[
E[st | Ft+1] ξ

St+1

t+2 · · · · · ξST−2

T−1 ξ
ST−1

T | Ft
]

= E [E[st | Ft+1] | Ft] = E[st | Ft], a.s. P,

where we have in mind that ξSs
s+1 is Fs+1-measurable and that E[ξSs

s+1 | Fs] = 1, a.s. P ,
for all s ∈ {t, . . . , T − 1}. From this we derive

ESt⊗t+1···⊗T−1ST−1

[
Y | Ft

]
=

E
[
E[st | Ft+1] ξ

St+1

t+2 · · · · · ξST−2

T−1 ξ
ST−1

T Y | Ft
]

E[st | Ft]

= E
[
ξSt
t+1ξ

St+1

t+2 · · · · · ξST−2

T−1 ξ
ST−1

T Y | Ft
]
, (5.4.23)

a.s. P , for all Y ∈ L1(FT ).

Lemma 5.4.2 Let t ≤ s ≤ T − 1. Given that the assumption in (5.4.21) holds, we have

ϕφs,s+1(St ⊗t+1 · · · ⊗T−1 ST−1) = ϕφs,s+1(Ss), a.s. P,

on the set
{
ξSt
t+1 · · · · · ξ

Ss−1
s > 0

}
∈ Fs.

Proof. By the assumption in (5.4.21) we have{
ξSt
t+1 · · · · · ξ

Ss−1
s > 0

}
=
{
E[st | Ft+1] ξ

St+1

t+2 · · · · · ξSs−1
s > 0

}
(5.4.24)

up to a null-set. By the definition of the dynamic penalty function it suffices to show that
for all Y ∈ L∞(Fs+1),

ESt⊗t+1···⊗T−1ST−1
[Y | Fs] = ESs [Y | Fs], a.s. P.

To this end, let Y ∈ L∞(Fs+1). We have

ESt⊗t+1···⊗T−1ST−1
[Y | Fs] =

E
[
E[st | Ft+1] · · · · · ξSs−1

s ξSs
s+1 · · · · · ξ

ST−1

T Y | Fs
]

E
[
E[st | Ft+1] · · · · · ξSs−1

s ξSs
s+1 · · · · · ξ

ST−1

T | Fs
]

=
E[st | Ft+1] · · · · · ξSs−1

s E
[
ξSs
s+1 · · · · · ξ

ST−1

T Y | Fs
]

E[st | Ft+1] · · · · · ξSs−1
s E

[
ξSs
s+1 · · · · · ξ

ST−1

T | Fs
] ,

(5.4.25)
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a.s. P, where the first equality follows from (5.4.22). In view of (5.4.24), (5.4.25) reads

E
[
ξSs
s+1 · · · · · ξ

ST−1

T Y | Fs
]

E
[
ξSs
s+1 · · · · · ξ

ST−1

T | Fs
] = E

[
ξSs
s+1 Y | Fs

]
= ESs [Y | Fs], a.s. P,

where the first equality follows from the fact that Y is Fs+1-measurable and that E[ξSr
r+1 |

Fr] = 1, a.s. P , for all r ∈ {s, . . . , T − 1}. 2

Theorem 5.4.3 Let t ∈ {0, . . . , T − 1}. Given that the assumption in (5.4.21) holds, we
have

ess.inf
Q∈P

EQ

X +
T∑

j=t+1

ϕφj−1,j(Q) | Ft


= ESt⊗t+1···⊗T−1ST−1

X +
T∑

j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1) | Ft

 , a.s. P,

for all X ∈ L∞(FT ), where the Ss = Ss
(
ψs+1,T (X)

)
∈ P are given as in (5.4.19) for all

s ∈ {t, . . . , T − 1}.

Proof. Take X ∈ L∞(FT ) and let us compute:

ESt⊗t+1···⊗T−1ST−1

X +
T∑

j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1) | Ft


= E

ξSt
t+1 · · · · · ξ

ST−2

T−1 ξ
ST−1

T

X +
T∑

j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1)

 | Ft


= E

[
ξSt
t+1 · · · · · ξ

ST−2

T−1

E

ξST−1

T

X +
T∑

j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1)

 | FT−1

 | Ft
 , (5.4.26)
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a.s. P , where the first equality follows from (5.4.23). Further,

E

ξST−1

T

X +
T∑

j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1)

 | FT−1


= E

[
ξ
ST−1

T

(
X + ϕφT−1,T (St ⊗t+1 · · · ⊗T−1 ST−1)

)
+ξST−1

T

T−1∑
j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1) | FT−1

]

= E
[
ξ
ST−1

T

(
X + ϕφT−1,T (St ⊗t+1 · · · ⊗T−1 ST−1)

)
| FT−1

]
+

T−1∑
j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1), a.s.P,

where the last equality follows from the fact that E
[
ξ
ST−1

T | FT−1

]
= 1, a.s. P . Plugging

this into (5.4.26) yields

E
[
ξSt
t+1 · · · · · ξ

ST−2

T−1

(
E
[
ξ
ST−1

T

(
X + ϕφT−1,T (St ⊗t+1 · · · ⊗T−1 ST−1)

)
| FT−1

]
+

T−1∑
j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1)

 | Ft

 , (5.4.27)

a.s. P . We have

ξSt
t+1 · · · · · ξ

ST−2

T−1 E
[
ξ
ST−1

T

(
X + ϕφT−1,T (St ⊗t+1 · · · ⊗T−1 ST−1)

)
| FT−1

]
= ξSt

t+1 · · · · · ξ
ST−2

T−1

(
EST−1

[X | FT−1] + ϕφT−1,T (St ⊗t+1 · · · ⊗T−1 ST−1)
)

= ξSt
t+1 · · · · · ξ

ST−2

T−1

(
EST−1

[X | FT−1] + ϕφT−1,T (ST−1)
)

(5.4.28)

= ξSt
t+1 · · · · · ξ

ST−2

T−1 φT−1,T (X), a.s. P,

where the equality in (5.4.28) is evident on the set
{
ξSt
t+1 · · · · · ξ

ST−2

T−1 = 0
}
∈ FT−1 and on{

ξSt
t+1 · · · · · ξ

ST−2

T−1 > 0
}

it follows from lemma 5.4.2. Thus, we may write (5.4.27) in the
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form

E

ξSt
t+1 · · · · · ξ

ST−2

T−1

φT−1,T (X) +
T−1∑
j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1)

 | Ft


= E

[
ξSt
t+1 · · · ·

· · · · E

ξST−2

T−1

φT−1,T (X) +
T−1∑
j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1)

 | FT−2

 | Ft


...
= E

[
ξSt
t+1 · · · ·

· · · · ξST−2

T−1

φT−2,T−1

(
φT−1,T (X)

)
+

T−2∑
j=t+1

ϕφj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1)

 | Ft


...
= φt,t+1

(
· · · φT−2,T−1

(
φT−1,T (X)

)
· · ·

)
, a.s. P.

But now we conclude

φt,t+1

(
· · · φT−2,T−1

(
φT−1,T (X)

)
· · ·

)
= ψt,t+1

(
· · · ψT−2,T−1

(
ψT−1,T (X)

)
· · ·

)
= ψt,T (X), a.s. P,

where the last equality follows from time-consistency of (ψt,T )t∈T. 2
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Chapter 6

Dynamic Value at Risk and
Dynamic Expected Shortfall

This chapter is understood as an application of the results of chapter 5 to conditional
value at risk and conditional expected shortfall: We define dynamic value at risk and
dynamic expected shortfall by backwards induction, where conditional value at risk and
conditional expected shortfall serve as corresponding one step transitions. We discuss
time-consistency properties and present a characterization theorem of dynamic expected
shortfall in terms of concatenated probability densities.

6.1 Introduction

In this chapter we finally propose a notion of dynamic value at risk and dynamic expected
shortfall. The construction of these two dynamic monetary risk measures is performed
by backwards induction as in (5.2.2) and therefore, dynamic value at risk and dynamic
expected shortfall will be time-consistent. As a test of conditional value at risk and condi-
tional expected shortfall at different times on time-consistency reveals severe drawbacks,
such a construction seems advisable. To my information, this idea was first brought up in
Cheridito and Kupper [9] in the context of expected shortfall, as Artzner et al. cautioned
against the use of conditional expected shortfall at different times already in [3, 4].

In the following section we observe a useful martingale property. We then directly
enter into the discussion of conditional value at risk at different times in subsection 6.2.1.
This dynamic monetary risk measure turns out to be not time-consistent as counter-
example 6.2.3 indicates. However, we are still able prove a weaker dynamic consistency
property via the above mentioned martingale property. On the contrary, conditional
expected shortfall at different times does not even satisfy this weaker dynamic consistency
condition as the discussion in subsection 6.2.2 exemplifies. We therefore present a notion
of a time-consistent dynamic expected shortfall by iterating one-step conditional expected
shortfalls. A combination of the two theorems 5.3.5 and 5.4.3 yields a characterization of
dynamic expected shortfall: As in the conditional case, we are able to explicitly construct
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the probability density for which the essential supremum which represents the dynamic
expected shortfall is attained. Further, we compute the representing dynamic penalty
function and arrive at a characterization of dynamic expected shortfall as an essential
supremum over certain probability densities, similar to the definition 4.4.7 of conditional
expected shortfall.

Throughout this chapter, we consider the setup of section 2.2 and let τ and θ be two
(Ft)-stopping times such that τ(ω) ≤ θ(ω) for all ω ∈ Ω. We denote by P the set of all
probability measures that are absolutely continuous with respect to P . Within this chap-
ter we again explicitly distinguish random variables on (Ω,Fθ, P ) and the corresponding
equivalence classes in L0(Fθ). As in chapter 4 random variables are denoted by X,Y, Z, . . .
and X̃, Ỹ , Z̃, . . . respectively designate the corresponding equivalence classes. B := B(R)
denotes the σ-algebra of Borel-sets on the reals.

For each t ∈ T we assume that we are given a mapping

PFt : Ω×FT → [0, 1]

which satisfies the well-known properties:

(1) PFt(ω, .) : FT → [0, 1] is a probability measure for all ω ∈ Ω

(2) PFt(., A) : (Ω,Ft) → [0, 1] is Ft-measurable for all A ∈ FT
(3)

∫
C P

Ft(w,A) P (dω) = P (C ∩A) for all C ∈ Ft and A ∈ FT .

The discussion of subsection 4.4.1 clarified that

PF0(ω,A) = P (A)

for all ω ∈ Ω and for all A ∈ FT . Theorem 4.2.1 states that we can count on the existence
of the family (

PFt
)
t∈T

if Ω is endowed with a complete metric inducing a separable topology which generates the
Borel σ-algebra FT .

6.2 Examples

Here is the martingale property which we gave notice of before:

Proposition 6.2.1 For A ∈ FT the discrete-time process
(
PFt(., A)

)
t∈T is a martingale.

Proof. Integrability follows from the fact that for all t ∈ T, PFt takes values in [0, 1].
Thus, for a fixed t ∈ {0, . . . , T − 1} it remains to show that

E
[
PFt+1(., A) | Ft

]
= PFt(., A), a.s. P.
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But since for all s ∈ T, PFs(., A) = E [1A | Fs], a.s. P , we deduce,

E
[
PFt+1(., A) | Ft

]
= E [E [1A | Ft+1] | Ft]
= E [1A | Ft] = PFt(., A), a.s. P.

2

As an immediate consequence of the preceding proposition we derive that for a fixed
random variable X on (Ω,FT , P ), for all B ∈ B and for all x ∈ R the discrete-time
processes (

PX|Ft
(., B)

)
t∈T and

(
FX|Ft

(., x)
)
t∈T

are martingales as well. As the following example states, this property is not inherited by
conditional quantiles.

Example 6.2.2 Let T = 1, Ω = {ω1, ω2}, P uniform on Ω (, i.e P (ωi) = 1
2 , i ∈ {1, 2}),

and F1 the power set. Consider the random variable X : Ω → R, ωi 7→ X(ωi) := i. For
level r = 1

2 , example 4.3.6 tells us that

qX|F0

(
1
2

)
(ω1) = qX|F0

(
1
2

)
(ω2) ∈ [1, 2],

arbitrary, whereas

E[X] =
3
2

and qX|F1

(
1
2

)
(ω) = X(ω) for all ω ∈ Ω.

6.2.1 Dynamic Value at Risk

Let us fix r ∈ (0, 1) and consider the dynamic monetary risk measure

(V aR∗t,T ;r)t∈T (6.2.1)

on L∞(FT ). For the conditional monetary risk measure
∑

t∈T V aR
∗
t,T ;r1{τ=t} on L∞(Fθ)

we have ∑
t∈T

V aR∗t,T ;r(X̃)1{τ=t} = V aR∗τ,θ;r(X̃), a.s. P, (6.2.2)

for all X̃ ∈ L∞(Fθ). To verify the statement in (6.2.2) it suffices to show that for a P -
almost surely bounded random variable X on (Ω,Fθ, P ) there exists a nullset N = N(X)
such that ∑

t∈T
FX|Ft

(ω, x)1{τ=t} = FX|Fτ
(ω, x) (6.2.3)

for all ω ∈ N c and for all x ∈ R. Then,∑
t∈T

q+X|Ft
(ω, s)1{τ=t} = q+X|Fτ

(ω, s)
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for all ω ∈ N c and for all s ∈ (0, 1). Hence, for r the equivalence classes in L∞(Fτ )
induced by

∑
t∈T q

+
X|Ft

(., r)1{τ=t} and q+X|Fτ
(., r) coincide, i.e. (6.2.2) is valid. In order to

prove (6.2.3), fix a P -almost surely bounded random variable X on (Ω,Fθ, P ) and t ∈ T.
We show that there exists a nullset Nt = Nt(X) such that

FX|Ft
(ω, x)1{τ=t} = FX|Fτ

(ω, x)1{τ=t}

for all ω ∈ N c
t and for all x ∈ R. (6.2.3) will then follow as we set N =

⋃
t∈TNt. We claim

that for a P -almost surely bounded random variable Y on (Ω,FT , P ) we have

E[Y | Ft]1{τ=t} = E[Y | Fτ ]1{τ=t}, a.s. P. (6.2.4)

We have already shown that the Ft-measurable mapping E[Y | Ft]1{τ=t} is also Fτ -
measurable since the decomposition in (2.2.2) is as well valid for E[Y | Ft]. Thus, the
assertion in (6.2.4) follows from the observation that for all events C ∈ Fτ we have
{τ = t} ∩ C ∈ Ft and hence,

E
[
E[Y | Ft]1{τ=t}1C

]
= E

[
E[Y | Ft]1{τ=t}∩C

]
= E

[
Y 1{τ=t}∩C

]
= E

[
Y 1{τ=t}1C

]
.

For all x ∈ R we may therefore derive

FX|Ft
(., x)1{τ=t} = PFt

(
., {X ≤ x}

)
1{τ=t}

= E
[
1{X≤x} | Ft

]
1{τ=t}

= E
[
1{X≤x} | Fτ

]
1{τ=t}

= PFτ
(
., {X ≤ x}

)
1{τ=t}

= FX|Fτ
(., x)1{τ=t}, a.s P,

which yields the existence of Nt and in turn verifies (6.2.2).
At first glance, the dynamic monetary risk measure (V aR∗t,T ;r)t∈T on L∞(FT ) for r ∈

(0, 1) seems to project the idea of the ”classical” value at risk into our dynamic framework
in a reasonable way as the identity given in (6.2.2) may suggest. However, a major
drawback of (V aR∗t,T ;r)t∈T is that we do not find the iteration condition of proposition
5.2.4 (and equivalently time-consistency) to be satisfied as the following example states.

Example 6.2.3 Let T = 2, Ω = {ω1, . . . , ω4}, P uniform on Ω (, i.e P (ωi) = 1
4 , i ∈

{1, . . . , 4}), F2 the power set and F1 generated by {B1, B2}, where B1 = {ω1, ω2} and
B2 = {ω3, ω4}. Consider the random variable X : Ω → R, ωi 7→ X(ωi) := i. We fix
the level r = 1

2 .In the notation of example 4.3.6 the probability measures PB1 and PB2 are
given by

PB1(ω1) = PB1(ω2) =
1
2
, PB1(ω3) = PB1(ω4) = 0, and

PB2(ω1) = PB2(ω2) = 0, PB2(ω3) = PB2(ω4) =
1
2
.
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Example 4.3.6 further tells us that

q+X|F1

(
1
2

)
= 21B1 + 41B2 . (6.2.5)

Since ∅ is the only nullset, q̃+X|F1
consists of the element given in (6.2.5) only. We have

q+
q+
X|F1

( 1
2)|F0

(
1
2

)
= 4,

whereas

q+X|F0

(
1
2

)
= 3.

The preceding example clarifies that (V aR∗t,T ;r)t∈T, r ∈ (0, 1), is not time-consistent
in general, yet it turns out that (V aR∗t,T ;r)t∈T does satisfy a weaker dynamic consistency
condition.

Lemma 6.2.4 For all r ∈ (0, 1), (V aR∗t,T ;r)t∈T is acceptance-consistent in the sense of
(5.2.3), i.e.

V aR∗t+1,T ;r(X̃) ≥ 0, a.s. P, implies V aR∗t,T ;r(X̃) ≥ 0, a.s. P, (6.2.6)

for all X̃ ∈ L∞(FT ) and for all t ∈ {0, . . . , T − 1}.

Proof. For all of this proof we fix X̃ ∈ L∞(FT ) and t ∈ {0, . . . , T − 1}.
In a first step we assume that there exists X ∈ X̃ of the form X =

∑n
i=1 αi1Ai , αi ∈ R,

Ai ∈ FT such that Ai ∩Aj = ∅ for i 6= j and n ∈ N. We may assume that α1 < . . . < αn.
From the definition of q+X|Ft

(r),

q+X|Ft
(r)(ω) = inf

{
x | PX|Ft

(
ω, {X ≤ x}

)
> r
}

= min
{
αi | FX|Ft

(ω, αi) > r
}

for all ω ∈ Ω, we obtain

q+X|Ft
(r) =

n∑
i=1

αi1{FX|Ft
(.,αi−1)≤r<FX|Ft

(.,αi)}.

Since we have already established that for all x ∈ R,
(
FX|Ft

(., x)
)
t∈T is a martingale, we

may further derive

q+X|Ft
(r) =

n∑
i=1

αi1n
E

h
FX|Ft+1

(.,αi−1)|Ft

i
≤r<E

h
FX|Ft+1

(.,αi)|Ft

io, a.s. P.
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Next, we show for arbitrary j ∈ {1, . . . , n} that if q+X|Ft
(r) takes value αj with positive

probability, then
{
q+X|Ft+1

(r) ≤ αj

}
has positive P -measure. From this we deduce

q+X|Ft
(r) ≥ ess.inf q+X|Ft+1

(r), a.s. P,

which yields the assertion for finite step functions X. Let us fix j ∈ {1, . . . , n} and assume
that

P
{
E
[
FX|Ft+1

(., αj−1) | Ft
]
≤ r < E

[
FX|Ft+1

(., αj) | Ft
]}

> 0,

i.e. q+X|Ft
(r) takes value αj with positive probability. In this case we have in particular

P
{
r < E

[
FX|Ft+1

(., αj) | Ft
]}

> 0, (6.2.7)

and obtain
P
{
r < FX|Ft+1

(., αj)
}
> 0,

since otherwise FX|Ft+1
(., αj) ≤ r, a.s. P , would imply that E[FX|Ft+1

(., αj) | Ft] ≤ r,
a.s. P , which in turn would contradict (6.2.7). Finally, for all ω ∈

{
r < FX|Ft+1

(., αj)
}

we have
q+X|Ft+1

(r)(ω) = min
{
αi | FX|Ft+1

(ω, αi) > r
}
≤ αj

and hence,
{
q+X|Ft+1

(r) ≤ αj

}
has positive P -measure.

As for general P -almost surely bounded X, we may assume in the usual manner that
N := {X > ||X||L∞} is a PFt(ω, .)-nullset for all ω in the complement of a suitable nullset
N∗ = N∗(N) and for all t ∈ T. Note that indeed we may choose N∗ independently from
the fixed t ∈ T since there are only finitely many such t. We will show that

q+X|Ft
(r) ≥ ess.inf q+X|Ft+1

(r), a.s. P.

To this end, take FT -measurable step functions (Xn)n∈N such that Xn(ω) ↘ X(ω) for all
ω ∈ N c. Then {Xn ≤ x} \N ⊂ {X ≤ x} \N for all x ∈ R, for all n ∈ N and hence,

FXn|Ft
(ω, x) = PFt

(
ω, {Xn ≤ x} \N

)
↗ PFt

(
ω, {X ≤ x} \N

)
= FX|Ft

(ω, x) (6.2.8)

for all ω ∈ N∗c and for all x ∈ R. Since in (6.2.8) we may exchange t with t+1 we deduce

q+Xn|Ft
(r)(ω) ↘ q+X|Ft

(r)(ω) as well as (6.2.9)

q+Xn|Ft+1
(r)(ω) ↘ q+X|Ft+1

(r)(ω) (6.2.10)

for all ω ∈ N∗c. From the first part of the proof we know that

q+Xn|Ft
(r) ≥ ess.inf q+Xn|Ft+1

(r), a.s. P,

for all n ∈ N and hence, we derive from (6.2.10)

q+Xn|Ft
(r) ≥ ess.inf q+X|Ft+1

(r), a.s. P,
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for all n ∈ N. Since the same is true for the limit given in (6.2.9) we conclude

q+X|Ft
(r) ≥ ess.inf q+X|Ft+1

(r), a.s. P.

2

Definition 6.2.5 For every t ∈ {0, . . . , T − 1} let rt ∈ (0, 1). As in (5.2.2) the one-step
transitions

φt,t+1(X̃) := q̃+X|Ft
(rt),

X̃ ∈ L∞(Ft+1), t ∈ {0, . . . , T − 1}, induce a time-consistent dynamic monetary utility
functional (ψt,T )t∈T. For all t ∈ {0, . . . , T − 1}, −φt,t+1 is a conditional value at risk
at level rt and consequently we call (−ψt,T )t∈T dynamic value at risk at dynamic level
(r0, . . . , rT−1).

6.2.2 Dynamic Expected Shortfall

Let us fix r ∈ (0, 1) and consider the dynamic coherent risk measure

(ES∗t,T ;r)t∈T (6.2.11)

on L∞(FT ). For the conditional coherent risk measure
∑

t∈TES
∗
t,T ;r1{τ=t} on L∞(Fθ) we

have for all P -almost surely bounded random variables X on (Ω,Fθ, P ) and corresponding
equivalence class X̃ in L∞(Fθ)∑

t∈T
E[−XIX|Ft

(r) | Ft]1{τ=t} ∈
∑
t∈T

ES∗t,T ;r(X̃)1{τ=t}, as well as∑
t∈T

E[−XIX|Ft
(r) | Ft]1{τ=t} ∈ ES∗τ,θ;r(X̃), (6.2.12)

in other words, ∑
t∈T

ES∗t,T ;r(X̃)1{τ=t} = ES∗τ,θ;r(X̃), a.s. P, (6.2.13)

for all X̃ ∈ L∞(Fθ). In view of (4.4.22) only the statement in (6.2.12) is to be verified.
To this end, fix a P -almost surely bounded random variable X on (Ω,Fθ, P ) and t ∈ T.
It suffices to show that,

E[−XIX|Ft
(r) | Fτ ]1{τ=t} = E[−XIX|Fτ

(r) | Fτ ]1{τ=t}, a.s. P, (6.2.14)

since then we derive from (6.2.4)∑
t∈T

E[−XIX|Ft
(r) | Ft]1{τ=t} =

∑
t∈T

E[−XIX|Ft
(r) | Fτ ]1{τ=t}

=
∑
t∈T

E[−XIX|Fτ
(r) | Fτ ]1{τ=t}

= E[−XIX|Fτ
(r) | Fτ ], a.s. P,

73



which again in view of (4.4.22) yields the statement in (6.2.12). We may assume that
IX|Ft

(r) and IX|Fτ
(r) are constructed with respect to the conditional quantiles q+X|Ft

(., r)
and q+X|Fτ

(., r). Take a null-set N = N(X) such that

FX|Ft
(ω, x) = FX|Fτ

(ω, x)

for all ω ∈ N c ∩ {τ = t} and for all x ∈ R. Such N exists due to the statement in (6.2.3).
From this we may deduce q+X|Ft

(ω, r) = q+X|Fτ
(ω, r) for all ω ∈ N c ∩ {τ = t} and in turn

IX|Ft
(r)1{τ=t} = IX|Fτ

(r)1{τ=t}, a.s. P,

which eventually yields (6.2.14).
Again, the identity given in (6.2.13) may at first glance support the viewpoint that

the dynamic coherent risk measure (ES∗t,T ;r)t∈T, r ∈ (0, 1), provides a reasonable idea of
”how bad is bad?” within our dynamic temporal setting. However, care must be taken in
general as (ES∗t,T ;r)t∈T fails to even satisfy acceptance-consistency in the sense of (5.2.3).
Here is the counterexample taken from Artzner et al. [4]:

Example 6.2.6 Let T = 2, Ω = {ω1, . . . , ω6}, P uniform on Ω (, i.e P (ωi) = 1
6 , i ∈

{1, . . . , 6}), F2 the power set and F1 generated by {B1, B2}, where B1 = {ω1, ω2, ω3} and
B2 = {ω4, ω5, ω6}. Consider the random variable X : Ω → R, X(ω1) := −10, X(ω2) := 12,
X(ω3) := 14, X(ω4) := −20, X(ω5) := 22, X(ω6) := 22. We compute ES∗

0,2; 2
3

(X̃) and

ES∗
1,2; 2

3

(X̃). Note, that equivalence classes in L∞(Ft), t ∈ {0, 1, 2} consist of one element

only since ∅ is the only nullset occurring in this setup. In the notation of example 4.3.6
the probability measures PB1 and PB2 are given by

PB1(ω1) = PB1(ω2) = PB1(ω3) =
1
3
, PB1(ω4) = PB1(ω5) = PB1(ω6) = 0, and

PB2(ω1) = PB2(ω2) = PB2(ω3) = 0, PB2(ω4) = PB2(ω5) = PB2(ω6) =
1
3
.

Example 4.3.6 further tells us that

q+X|F1
(s) = −101B1 +−201B2 .

for all s ∈ (0, 1
3) and

q+X|F1
(s) = 121B1 + 221B2 .

for all s ∈ [13 ,
2
3). Thus, by example 4.4.12

−3
2

∫ 2
3

0
q+X|F1

(s)(.) λ1(ds) = −3
2

(
1
3
(−10 + 12)1B1 +

1
3
(−20 + 22)1B2

)
= −1Ω
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is the only element in ES∗
1,2; 2

3

(X̃), whereas

q+X|F0
(s) = −20, for all s ∈

(
0,

1
6

)
, q+X|F0

(s) = −10, for all s ∈
[
1
6
,
2
6

)
q+X|F0

(s) = 12, for all s ∈
[
2
6
,
3
6

)
, q+X|F0

(s) = 14, for all s ∈
[
3
6
,
4
6

)
implies that

−3
2

∫ 2
3

0
q+X|F0

(s)(.) λ1(ds) = −3
2

(
1
6
(−20− 10 + 12 + 14)1Ω

)
= 1Ω

is the only element in ES∗
0,2; 2

3

(X̃). To sum up, X̃ is accepted at time t = 1, yet rejected
at date 0.

For every t ∈ {0, . . . , T − 1} we let rt ∈ (0, 1) and shorten r = (r0, . . . , rT−1). Consider
the one-step transitions

φt,t+1(X̃) := ess.inf
Q∈Qt(rt)

EQ[X̃ | Ft]

for all X̃ ∈ L∞(Ft+1). Then, for all t ∈ {0, . . . , T − 1}, −φt,t+1 is a conditional ex-
pected shortfall ES∗t,t+1;rt on L∞(Ft+1) at level rt. As in (5.2.2) the one-step transitions
(φt,t+1)t∈{0,...,T−1} induce a time-consistent dynamic coherent utility functional (ψt,T )t∈T.

Lemma 6.2.7 In the above notation we have

ψt,T (X̃) = ess.inf
Q∈P

EQ

X̃ +
T∑
j=1

ϕψj−1,j(Q) | Ft

 (6.2.15)

= ess.inf
Q∈P

EQ

X̃ +
T∑
j=t

ϕψj−1,j(Q) | Ft

 (6.2.16)

= ESt⊗t+1···⊗T−1ST−1

X̃ +
T∑
j=t

ϕψj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1) | Ft

 , a.s. P,

(6.2.17)

for all t ∈ {0, . . . , T − 1} and for all X̃ ∈ L∞(FT ), where the probability measures St,
t ∈ {0, . . . , T − 1}, are given by the densities IXt|Ft

(rt) of definition 4.4.5 and

Xt := ψt+1,T (X) for t ∈ {0, . . . , T − 1}.

Proof. (6.2.15) and (6.2.16) are immediate consequences of theorem 5.3.5 and its corollary
5.3.6. (6.2.17) follows from theorem 5.4.3 together with theorem 4.4.10. 2
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Theorem 6.2.8 In the notation of the above lemma 6.2.7 we have for all t ∈ {0, . . . , T−1}
and for all X̃ ∈ L∞(FT ),

ESt⊗t+1···⊗T−1ST−1

X̃ +
T∑
j=t

ϕψj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1) | Ft


= E

[
E
[
IXt|Ft

(rt) | Ft+1

]
E
[
IXt+1|Ft+1

(rt+1) | Ft+2

]
· · · ·

· · · · E
[
IXT−2|FT−2

(rT−2) | FT−1

]
IXT−1|FT−1

(rT−1)X̃ | Ft
]
(6.2.18)

= ess.inf
Q∈Q(r)

EQ

[
X̃ | Ft

]
, a.s. P, (6.2.19)

where
Q(r) :=

{
Q ∈ P | Q ∈ Qs(rs) for all s ∈ {t, . . . , T − 1}

}
and the Qs(rs), s ∈ {t, . . . , T −1}, are given as in definition 4.4.7. Note that Q(r) depends
on t.

For the proof of theorem 6.2.8 we will need the following lemma

Lemma 6.2.9 In the notation of the above theorem 6.2.8 we have for all t ∈ {0, . . . , T−1}
and for all X̃ ∈ L∞(FT )

St ⊗t+1 · · · ⊗T−1 ST−1 ∈ Q(r). (6.2.20)

Recall that Q(r) depends on t and that the measure St ⊗t+1 · · · ⊗T−1 ST−1 depends on X̃.

Proof. For all of this proof, we fix t ∈ {0, . . . , T − 1} and X̃ ∈ L∞(FT ). For Q /∈ Q(r)
there exists s ∈ {t, . . . , T − 1} such that Q /∈ Qs(rs). We show that for such s there exists
M ∈ Fs with P (A) > 0 such that

ϕψs,s+1(Q) = +∞ (6.2.21)

P -almost surely on M .
To this end, let us consider arbitrary Q /∈ Q(r) and s ∈ {t, . . . , T−1} such that Q /∈ Qs(rs).
We set

ξ =


dQ
dP

E[ dQ
dP
|Fs]

on
{
E
[
dQ
dP | Fs

]
> 0
}

1 else

and claim that for r′ ∈ (0, rs),

PFs

(
.,

{
ξ ≥ 1

r′

})
= E

[
1{ξ≥ 1

r′ } | Fs
]
≤ 1
r′
, a.s. P. (6.2.22)
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Let us assume that (6.2.22) is wrong. Then there exists A ∈ Fs with P (A) > 0 such that

E
[
1{ξ≥ 1

r′ } | Fs
]
>

1
r′

P -almost surely on A. Thus,

E
[
ξ1{ξ≥ 1

r′ } | Fs
]
≥ E

[
1
r′

1{ξ≥ 1
r′ } | Fs

]
=

1
r′
E
[
1{ξ≥ 1

r′ } | Fs
]

> r′
1
r′

= 1

P -almost surely on A. But now we derive

1 = E[ξ | Fs] = E
[
ξ1{ξ≥ 1

r′ } | Fs
]

︸ ︷︷ ︸
> 1, a.s. P on A

+E
[
ξ1{ξ< 1

r′ } | Fs
]

︸ ︷︷ ︸
≥ 0, a.s. P

, a.s. P,

which is a contradiction and hence, the statement in (6.2.22) is valid. Next, we define for
real constants c, k > 0 and for r′ ∈ (0, rs) the P -almost surely bounded random variable

X(c) := −c(ξ ∧ k)1{ξ≥ 1
r′ }

and derive from the statement in (6.2.22), from that fact that 1
r′ <

1
rs

and the observation{
X(c) < 0

}
=
{
ξ ≥ 1

r′

}
that

q+
X(c)|Fs

(rs) = 0, a.s. P.

Hence, the statement in (4.4.23) of corollary 4.4.11 yields

− c

rs
E
[
(ξ ∧ k)1{ξ≥ 1

r′ } | Fs
]
∈ φs,s+1(X̃(c)),

where X̃(c) denotes the equivalence class in L∞(Ft+1) induced by X(c). Further,

EQ

[
−X(c) | Fs

]
= c E

[
ξ(ξ ∧ k)1{ξ≥ 1

r′ } | Fs
]
≥ c

r′
E
[
(ξ ∧ k)1{ξ≥ 1

r′ } | Fs
]

a.s. P.

Since Q /∈ Qs(rs) there exist r′ ∈ (0, rs) and a real constant k such that

P

(
(ξ ∧ k) ≥ 1

r′

)
> 0. (6.2.23)

From this we derive that

M :=
{
E
[
(ξ ∧ k)1{ξ≥ 1

r′ } | Fs
]
> 0
}
∈ Fs (6.2.24)
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has positive P -measure since otherwise

0 = E
[
E
[
(ξ ∧ k)1{ξ≥ 1

r′ } | Fs
]]

= E
[
(ξ ∧ k)1{ξ≥ 1

r′ }
]

would contradict the statement in (6.2.23). But now we derive that the difference

E
[
(ξ ∧ k)1{ξ≥ 1

r′ } | Fs
]
c

(
1
r′
− 1
rs

)
∈ EQ[−X̃ | Ft] + φt,t+1(X̃)

becomes arbitrarily large P -almost surely on M as c tends to infinity. Hence,

ϕψs,s+1(Q) = ess.supeX∈L∞(Fs+1)

{
EQ[−X̃ | Fs] + φs,s+1(X̃)

}
= +∞

P -almost surely on M and the statement in (6.2.21) is obtained.
We conclude as follows: If we assumed that St ⊗t+1 · · · ⊗T−1 ST−1 /∈ Q(r) then there

would exist s ∈ {t, . . . , T − 1} and M ∈ Fs with P (M) > 0 such that

ϕψs,s+1(St ⊗t+1 · · · ⊗T−1 ST−1) = +∞

P -almost surely on M . But this would imply

T∑
j=t

ϕψj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1) = +∞

P -almost surely on M which in turn would contradict the fact that

L∞(Ft) 3 ess.inf
Q∈P

EQ

X̃ +
T∑
j=t

ϕψj−1,j(Q) | Ft


= ESt⊗t+1···⊗T−1ST−1

X̃ +
T∑
j=t

ϕψj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1) | Ft

 , a.s. P,

where we have in mind the convention in (5.3.7) and where it remains to show that
St ⊗t+1 · · · ⊗T−1 ST−1(M) > 0. But this follows as{

E
[
(ξ ∧ k)1{ξ≥ 1

r′ } | Fs
]

= 0
}
⊂
{

(ξ ∧ k)1{ξ≥ 1
r′ } = 0

}
except for a P -nullset and hence, by construction of M in (6.2.24) we have

M ⊃
{

(ξ ∧ k)1{ξ≥ 1
r′ } > 0

}
except for a P -nullset, where this time ξ is given by

ξ =


dSt⊗t+1···⊗T−1ST−1

dP

E
h

dSt⊗t+1···⊗T−1ST−1
dP

|Fs

i on
{
E
[
dSt⊗t+1···⊗T−1ST−1

dP | Fs
]
> 0
}

1 else
.
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2

Here is the proof of theorem 6.2.8:

Proof. We first show that dSt⊗t+1···⊗T−1ST−1

dP P -almost surely equals

E
[
IXt|Ft

(rt) | Ft+1

]
E
[
IXt+1|Ft+1

(rt+1) | Ft+2

]
· · · ·

· · · · E
[
IXT−2|FT−2

(rT−2) | FT−1

]
IXT−1|FT−1

(rT−1). (6.2.25)

Recall, that by the definition in (5.4.16) dSt⊗t+1···⊗T−1ST−1

dP P -almost surely equals

E
[
IXt|Ft

(rt) | Ft+1

] E [IXt+1|Ft+1
(rt+1) | Ft+2

]
E
[
IXt+1|Ft+1

(rt+1) | Ft+1

] · · · ·
· · · ·

E
[
IXT−2|FT−2

(rT−2) | FT−1

]
E
[
IXT−2|FT−2

(rT−2) | FT−2

] IXT−1|FT−1
(rT−1)

E
[
IXT−1|FT−1

(rT−1) | FT−1

] .
By lemma 4.4.6 we have for all s ∈ {t+ 1, . . . , T − 1}

E
[
IXs|Fs

(rs) | Fs
]

= 1, a.s. P, (6.2.26)

and hence, the statement in (6.2.25) follows. (6.2.26) also yields

E

[
E
[
IXt|Ft

(rt) | Ft+1

]
E
[
IXt+1|Ft+1

(rt+1) | Ft+2

]
· · · ·

· · · · E
[
IXT−2|FT−2

(rT−2) | FT−1

]
IXT−1|FT−1

(rT−1) | Ft
]

= 1, a.s. P,

and hence, the identity in (6.2.18) follows if we can show that

T∑
j=t

ϕψj−1,j(St ⊗t+1 · · · ⊗T−1 ST−1) = 0, a.s. P. (6.2.27)

Since by lemma 6.2.9 St⊗t+1 · · ·⊗T−1ST−1 ∈ Q(r), it suffices to show that for all Q ∈ Q(r)

T∑
j=t

ϕψj−1,j(Q) = 0, a.s. P. (6.2.28)

To this end, recall, that for s ∈ {t, . . . , T − 1} we have by definition

ϕψs,s+1(Q) = ess.supeX∈L∞(Fs+1)

{
EQ[−X̃ | Fs] + ψs,s+1(X̃)

}
= ess.supeX∈L∞(Fs+1)

{
EQ[−X̃ | Fs] + φs,s+1(X̃)

}
, a.s. P.

79



Let us consider s ∈ {t, . . . , T−1} and Q ∈ Q(r). Then, Q ∈ Qs(rs) and for X̃ ∈ L∞(Fs+1)
we have

EQ[−X̃ | Fs] + φs,s+1(X̃) = ess.inf
S∈Qs(st)

ES [X̃ | Fs]− EQ[X̃ | Fs]

≤ 0, a.s. P, (6.2.29)

and hence,

ϕψs,s+1(Q) = ess.supeX∈L∞(Fs+1)

{
EQ[−X̃ | Fs] + φs,s+1(X̃)

}
= ess.supeX∈L∞(Fs+1)

{
EQ[−X̃ | Fs] + ess.inf

S∈Qs(rs)
ES [X̃ | Fs]

}
= 0, a.s. P,

where the last equality follows from (6.2.29) together with the fact that 0 ∈ L∞(Fs+1).
Hence, the statement in (6.2.28) is verified and the identity given in (6.2.18) is proved in
turn.
It remains to prove the equality given in (6.2.19). But lemma 6.2.7 states that the essential
infimum

ess.inf
Q∈P

EQ

X̃ +
T∑
j=t

ϕψj−1,j(Q) | Ft


is attained by the measure St⊗t+1 · · · ⊗T−1 ST−1 and since St⊗t+1 · · · ⊗T−1 ST−1 ∈ Q(r),
it suffices to take the essential infimum over all Q in Q(r). Thus, we arrive at

ess.inf
Q∈P

EQ

X̃ +
T∑
j=t

ϕψj−1,j(Q) | Ft


= ess.inf

Q∈Q(r)
EQ

X̃ +
T∑
j=t

ϕψj−1,j(Q) | Ft

 = ess.inf
Q∈Q(r)

EQ

[
X̃ | Ft

]
, (6.2.30)

a.s. P , where the second identity in (6.2.30) follows from the statement in (6.2.28) and
the proof is concluded. 2

Definition 6.2.10 For every t ∈ {0, . . . , T − 1} we take rt ∈ (0, 1), shorten r = (r0,
. . . , rT−1) and consider the the mappings DES∗t,T ;r : L∞(FT ) → L∞(Ft),

X̃ 7→ DES∗t,T ;r(X̃) := ess.sup
Q∈Q(r)

EQ

[
−X̃ | Ft

]
,

where again we call attention to the fact that Q(r) depends on t. We call(
DES∗t,T ;r

)
t∈T

dynamic expected shortfall at dynamic level r = (r0, . . . , rT−1), where DES∗T,T ;r is as usual
understood as the identity on L∞(FT ).
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Chapter 7

Outlook

Coming to the end of this thesis, we see at least two major fields of possible further research
which we outline in the following.

As to the first one, we have to admit that we rather presented results on conditional
and dynamic monetary risk measures for bounded random variables than for bounded
discrete-time processes, although the latter would certainly be richer in mathematical
ideas as well as of more practical concern. When we explicitly constructed the monotone
hull of the Swiss Solvency Test risk measure Γr and found it not to be capable of taking
into account the riskiness evolving from inter-temporal cash-flow streams, we attempted
to come forward with an alternative way of quantifying target capital. It was our aim
to construct a time-consistent dynamic monetary risk measure which translates the idea
of expected shortfall, that is ”how bad is bad?”, into our dynamic temporal setting. We
presented dynamic expected shortfall as such a risk measure and, indeed, it seems to be
capable of being a possible substitute for Γr. However, dynamic expected shortfall is up
to date defined as a functional on the space of bounded random variables, whereas Γr
depends on bounded discrete-time processes.

Time-consistency and the equivalent iteration condition given in proposition 5.2.4 have
already been established by Cheridito et al. in the context of dynamic monetary utility
functionals for bounded discrete-time processes, cf. definition 4.2 together with propo-
sition 4.4. in [8]. Theorems 3.16 and 3.18 in [8] generalize the duality result of lemma
5.3.3 by providing representations of dynamic concave and coherent utility functionals for
bounded discrete-time processes that are continuous in a mild sense. Moreover, in [9],
Cheridito and Kupper prove a representation for such utility functionals which is similar
to the representations of theorem 5.3.5 and corollary 5.3.6. This theoretical background
seems encouraging for further research on a construction of a time-consistent dynamic
expected shortfall that depends on bounded discrete-time processes by means of a condi-
tional expected shortfall which, in turn should depend on bounded discrete-time processes
as well.

It seems suggestive to attempt a generalization of the results of chapter 4 yielding a
notion of a conditional expected shortfall for bounded discrete-time processes. Within this
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generalized setting, the probability measures over which the essential supremum is taken
in theorem 4.4.10 are likely to be replaced by adapted increasing processes of integrable
variation as dual representations in the form of theorems 3.16 and 3.18 in [8] are based
on linear functionals induced by such processes. The boundedness conditions of defini-
tion 4.4.7 imposed upon probability densities may in turn by translated into boundedness
conditions for adapted increasing processes of integrable variation. This might yield the
desired notion of conditional expected shortfall for bounded discrete-time processes by
taking essential supremum over adapted increasing processes of integrable variation which
satisfy the boundedness conditions. Moreover, one may even hope to to be able to provide
a result similar to the one of theorem 4.4.10 as one might be able to construct an adapted
increasing process of integrable variation for which the essential supremum is attained.
As soon as conditional expected shortfall for bounded discrete-time processes is well un-
derstood, one may define dynamic expected shortfall for bounded discrete-time processes
again by backwards induction. We shall then be able to generalize the results of chapter
6 as well.

Above, we briefly outlined how we believe that further research is likely to blossom
into a notion of dynamic expected shortfall for bounded discrete-time processes which
may serve as a possible substitute for the Swiss Solvency Test risk measure Γr. However,
such a dynamic risk measure will be of practitioners concern only if it admits reasonable
interpretations as well as efficient computation algorithms. Characterizations and repre-
sentation theorems may contribute to this and we therefore present the following as our
second proposed field of further research.

Recall the representations

ω 7→ V aRrt
(
PX|Ft

(ω, .)
)
∈ V aRt,T ;rt(P̃X|Ft

) for all t ∈ T

and
ω 7→ ESrt

(
PX|Ft

(ω, .)
)
∈ ESt,T ;rt(P̃X|Ft

) for all t ∈ T
in terms of the static risk measures V aRrt and ESrt which were derived in subsections 4.4.1
and 4.4.2. In a slightly different context, Weber proves such a representation for general
distribution invariant dynamic risk measures in terms of static risk measures in his recent
paper [23]. Moreover, if the distribution invariant dynamic risk measure satisfies certain
dynamic consistency properties, then the representing static risk measures are independent
from date t ∈ T. We suspect that such a representation is valid in our context as well,
however we propose a different approach to the task of a proof. By means of conditional
quantiles we believe that we are able to generalize the static case representation results for
distribution invariant convex risk measures that are continuous in a mild sense, as they
are presented by Föllmer and Schied in section 4.5 of [17]. In particular, this would yield
a characterization of the represented distribution invariant dynamic risk measure in terms
of conditional expected shortfall. More precisely, the conjecture is a representation of the
form

ω 7→ sup
µ∈M1(0,1)

(∫
(0,1)

ESs
(
PX|Ft

(ω, .)
)
µ(ds)− βt(µ)

)
∈ ρt,T (P̃X|Ft

) for all t ∈ T
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for an arbitrary distribution invariant dynamic convex risk measure (ρt,T )t∈T that is con-
tinuous in a mild sense in terms of suitable penalty functions βt, t ∈ T, where M1(0, 1)
denotes the space of all probability measures on (0, 1). It stands to reason that time-
consistency of the distribution invariant dynamic convex risk measure has strong conse-
quences on the representing static risk measures

sup
µ∈M1(0,1)

(∫
(0,1)

ESs(.) µ(ds)− βt(µ)

)
, t ∈ T.

However, since Weber is working with different dynamic consistency properties than we
are, it is not clear whether the representing static risk measures will be independent from
t ∈ T if the represented dynamic convex risk measure is time-consistent. Still, one may
hope for a strong representation result for distribution invariant dynamic convex risk
measures that are continuous in a mild sense.

And then, when such representations are established for bounded random variables,
it seems positively challenging to explore corresponding results in the context of dynamic
monetary utility functionals for bounded discrete-time processes.
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for bounded càdlàg processes, Stoch. Proc. Appl. 112(1), 1–22.

[7] Cheridito, P., Delbaen F., Kupper M. (2004b). Coherent and convex risk measures
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