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1 Introduction

During the financial crises, the interdependent nature of financial institutions was one key

reason for the severe crises (Bluhm and Krahnen, 2011; Drehmann and Tarashev, 2013).

Therefore, the evaluation of the dependence structure and its effect on the performance of

financial markets, in particular banks, became a major task of the financial sector.

One key driver of scientific research in this area is the stress test being applied by the

European Central Bank (ECB, 2013), which has aroused a lot of public interest in this

topic worldwide.

Because of the significance of this issue, this Master’s thesis was aimed to develop methods

to evaluate the behavior of financial institutions in situations of financial crises. On this

basis, one key question was to elicit which financial institutions are of systemic relevance

(Risk and Soundness, 2009). Since many academic models failed to evaluate the systemic

risk of financial institutions adequately (see Risk and Soundness, 2009), investigating this

issue became increasingly important.

Most of the currently used models apply multivariate Gaussian distributions, which deter-

mine the interdependencies of financial markets by correlation analysis. These data have,

by definition, a Gaussian copula. This approach, however, constitutes a great weakness,

as Gaussian copulas are unable to model effects like tail dependencies. For systemic risks

as described in the work of Risk and Soundness, 2009, it is not sufficient to measure the

correlation, but the more extreme effects, like tail dependencies, have to be measured. In

this study, this was achieved by including a wide range of dependence structures between

random variables which can cover these effects. Therefore, the approach of modeling

dependencies with R-vine models will be introduced, which are much more flexible than

previous models.

In order to answer the thesis question, stress tests to the financial sector will be ap-

plied. For this purpose, we use the market data on credit default swaps (CDS) of 38

financial institutions, which were kindly made available by Hendrich, 2012. With this

data set, stress situations with increasing stress level, caused by a number of systemic

banks located in different geographical regions, were simulated. Given these stress situ-

ations, it was possible to analyze the probability distributions of these financial institutions.

The following is a short overview of the chapter’s contents: In Chapter 2 and 3, the

derivation of some theoretical concepts was carried out, which are fundamental for the

understanding of simulations. The algorithms for these simulations and the theoretic

background will be developed in Chapter 4 and 5. In Chapter 6 extensive simulations
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with simulated data will be performed to validate the accuracy and the reliability of the

methods used. In Chapter 7 the empirical data will be analyzed descriptively using

regression analyses to initially examine the relationships between the financial institutions.

The final simulations with the empirical data set will be conducted in Chapter 8, where

the results are also presented and analyzed.

In Chapter 9 a new approach of regression for financial institutions with C-vine depen-

dence structures, located in different geographic regions, will be presented. This idea was

inspired by binning analyses originally used for geographical data, which will be used here

to develop similarity-based copulas. It will be shown that this method can be used for

general vines and results in good fitting models, despite its low amount of variables.
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2 Preliminaries

Throughout this thesis several basic tools will be applied repeatedly. The most important

of these recurring concepts will be presented briefly in the current chapter.

In the first section, different scaling levels will be introduced, which will be needed for the

simulations carried out in this thesis. In the second section, basic results for a conditional

density are presented.

It should be noted here, that vectors will be denoted by bold letters in this thesis.

2.1 Different scaling levels

In this thesis three different scaling levels for the random variables are used. These levels

and their different areas of application are explained in the following.

The first level is the U-Level:

U = (U1, . . . , Ud)
t ∈ [0, 1]d (2.1)

U ∼ πU(·) (2.2)

This is the level of the R-vine copula realizations. Its density is denoted by πU(·).

In some cases, we will need to work with random variables taking values in Rd. One reason

is that for certain algorithms (see Chapter 5.4) an unbounded domain will be needed.

To do this, the U variable needs to be transformed to Rd. One possible choice is the logit

transformation:

Definition 2.1 (Logit Transformation).

logit: (0, 1)d → Rd is defined as

` = logit(u) =

(
log

(
u1

1− u1

)
, . . . , log

(
ud

1− ud

))t
The inversion of the logit is:

logit−1(`) =

((
el1

1 + el1

)
, . . . ,

(
eld

1 + eld

))t
The advantage of logit is that the function and its inversion are both known in closed

form. That leads us to the following definition:
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The L-Level is the level of the logit transformed U variable.

L = logit(U) =

(
log

(
U1

1− U1

)
, . . . , log

(
Ud

1− Ud

))t
∼ πL(·) (2.3)

This level will be used for algorithms on Rd as the logit transformation has an easy closed

form, and hence is fast to evaluate numerically. Its density is denoted by πL(·).

The last level which will be used is the Z-Level, which is obtained by applying the

inverted cumulative distribution function of the normal distribution Φ−1 on the U variable.

Z =
(
Φ−1(U1), . . . ,Φ−1(Ud)

)t ∼ πZ(·) (2.4)

This level is mainly used for visualization purposes, as the shapes of many pair-copulas on

the Z-Level are well known and used for visualization as in Kurrowicka and Joe, 2011.

The problem of the Z-Level is that it does not have a closed form representation and

requires numerical integration, which is slow to evaluate (Conrad, 2005).

Comparing the L-Level and the Z-Level, we see that the L-Level values take more

extreme values than the Z-Level values. This behavior is shown in Figure 1.

Figure 1: Comparison of the transformation on the L-Level and on the Z-Level

If no specific level is selected, the real valued random variable is denoted by X. The

density is denoted by π, if no specific level was selected.



2 PRELIMINARIES 5

2.2 Proportionality of conditional densities

Closed form solutions for the simulation of conditional copulas were investigated by

Hendrich, 2012 and Brechmann et al., 2013. However, these solutions only work when

conditioning on one variable. Therefore, one aim of this thesis is to develop more general

methods, which will be done in Chapter 5.

As conditional random variables play a crucial role in this thesis, the notation for condi-

tional sets is introduced.

In general, we denote a d-dimensional random variable as:

X = (X1, . . . , Xd)
t

The set of indices wanted to condition on is denoted by D = {i1, . . . , iI} ⊂ {1, . . . , d}.
The remaining set is denoted by −D = {1, . . . , d}\D.

The question to be solved is how a random variable can be simulated, for which the vector

XD := (Xi)i∈D with |D| = I is set to fixed values. The vector (Xi)i∈−D is denoted by

X−D := (Xi)i∈−D. Thus, the density function becomes a conditional density function. The

conditional density, as seen in the calculation below, is proportional to the full density:

π(x−D|XD = uD) =
π(x−D,xD)∫

Rd−I

π(x−D,xD)dx−D

(2.5)

∝π(x−D,xD) (2.6)

The fact that the density of the conditional random variable up to a proportional constant

can be evaluated, will be used in the following chapters to simulate realizations from this

random variable with the Metropolis Hastings algorithm, which will be introduced

in Chapter 5, as described in Chib and Greenberg, 1995.
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3 R-vines

As we want to evaluate the connectedness of financial institutions we need to introduce

a statistical method to measure dependence of random variables. As we have stated

in the Introduction, most of todays models use multivariate normal distributions or

multivariate Student distributions. These models, however, only measure the dependence

among two companies by their Pearson correlation ρ. These models are clearly very limited,

and it was mentioned by Huang et al., 2009, that these limited models, which describe the

reality badly, were one reason of the financial crises.

Therefore, in this chapter we will introduce the regular-vine copulas (R-vine copu-

las), which are a flexible method to model the dependence among stochastic variables, as

used by Bedford and Cooke, 2002.

We will introduce the bivariate pair-copulas, which describe the dependence of two random

variables. We will further derive methods for the estimation of these pair-copulas and

methods to analyze their fit.

Additionally we will explain the pair-copula construction in order to analyze higher

dimensional vectors in this chapter.

3.1 Copulas

At first we will introduce the general definition of a copula which describes the dependence

of a multivariate random variable with uniform margins.

Definition 3.1 (Copula).

A d-dimensional copula C : [0, 1]d → [0, 1] is a joint d-dimensional distribution function

for a random vector U with uniform margins on the set [0, 1]:

C(u1, u2, ..., ud) := P[U1 ≤ u1, U2 ≤ u2, ..., Ud ≤ ud]

To illustrate the definition, we will show an example of a copula:
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Example 3.1 (Independence copula).

Let U1, ..., Ud be i.i.d. random variables with uniform margins on [0, 1], the copula of

U = (U1, ..., Ud) has the form

C(u1, u2, ..., ud) :=P[U1 ≤ u1, U2 ≤ u2, ..., Ud ≤ ud]

=P[U1 ≤ u1] · P[U2 ≤ u2] · ... · P[Ud ≤ ud]

=u1 · u2 · ... · ud

=
d∏
i=1

ui

As can be seen from Definition 3.1, copulas are defined as cumulative distribution func-

tions with uniform margins. This raises the question, how one can describe dependencies

of random variables witch arbitrary marginal distributions. This question is solved by

Sklar’s theorem.

Theorem 3.1 (Sklar’s Theorem).

For each distribution function F , of a d-dimensional real-valued random variable, with

marginal distribution functions F1, ..., Fd, there exists a d-dimensional copula C : [0, 1]d →
[0, 1] such that for all x ∈ Rd

F (x) = C(F1(x1), ..., Fd(xd))

If all marginal distribution functions F1, ..., Fd are continuous, then C is unique.

Sklar’s theorem gives an easy way to construct multidimensional distributions, using

the wide area of estimating one dimensional distributions. This theorem shows that the

construction of multidimensional distributions, can be decomposed into two steps:

• Estimating the appropriate marginal distributions

• Estimating the copula for the transformed multivariate random variable.

The choice of the marginal distributions was already carried out in the thesis of Hendrich,

2012, which we are kindly allowed to use. We thus can focus on the task of choosing the

appropriate copula. For this task we will introduce the R-vine copulas, which represent a

flexible and good to estimate copula family. To do this, we have to analyze 2 dimensional

copulas, the so called pair-copulas.
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3.2 Pair-copulas

At first we will introduce some two dimensional copulas, on which we will focus.

Definition 3.2 (Gaussian copula).

The copula of a two dimensional normal vector (X1, X2) with correlation matrix Σ =(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
and mean µ ∈ R2 is given by:

Cρ(u1, u2) = Φµ,Σ(Φ−1
µ1,σ1

(u1),Φ−1
µ2,σ2

(u2))

Where Φµ,σ denotes the cumulative distribution function of a Nµ,σ distributed random

variable and Φµ,Σ the cumulative distribution function of a two dimensional Gaussian

random variable.

The density of the copula is given by:

c(u1, u2) =
1√

1− ρ2
exp

(
−ρ

2((Φ−1(u1))2 + (Φ−1(u2))2)− 2ρΦ−1(u1)Φ−1(u2)

2(1− ρ2)

)

Another important pair-copula which we will need is the Student copula:

Definition 3.3 (Student copula).

The Student copula is defined as the copula of the multivariate random variable (X1, X2)

with multivariate Student distribution and parameters ν, µ and Σ :

Cρ,ν(u1, u2) = tν,µ,Σ(t−1
ν,µ1,σ1

(u1), t−1
ν,µ2,σ2

(u2))

It has the following density:

c(u1, u2)ρ,ν =
fν,Σ(t−1

ν (u1), t−1
ν (u2))

fν(t−1
ν (u1)) · fν(t−1

ν (u2))

Where fν,Σ is the density of the 2 dimensional Student distribution, and tν is the distribution

function of the one dimensional Student distribution.

An important observation is that the Gaussian copula has the parameter ρ and the Student

copula the parameters ρ and ν. The Gaussian copula and the Student copula belong to

the class of elliptical copulas.

Another important copula, is the Frank copula, which is an example of archimedean

copulas:
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Definition 3.4 (Frank copula).

The Frank copula with parameter θ is defined as:

C(u1, u2) = −1

θ
log

(
1 +

(e−θu1 − 1) · (e−θu2 − 1)

e−θ − 1

)

We will now derive the Kendall’s τ which describes the strength of dependency among

two random variables. It will thus be useful to describe the extent of dependency of a

pair-copula and make the strength of dependencies of different pair-copulas better to

compare.

Definition 3.5 (Kendall’s τ).

Let (X, Y ) be a vector of two random variables and (X?, Y ?), an independent random

variable with the same distribution. Then Kendall’s τ is defined as:

τ(X, Y ) = P[(X −X?) · (Y − Y ?) > 0]− P[(X −X?) · (Y − Y ?) < 0]

As this definition is a theoretical value, but we will work with empirical data, we also need

an empirical version of Kendall’s τ , which is given below:

Definition 3.6 (Empirical Kendall’s τ).

The empirical estimate of Kendall’s τ , τ̂(x,y), for x = (xi){i=1,...,n},y = (yi){i=1,...,n} is

defined as:

C := #{i ∈ {1, . . . , n}, j ∈ {1, . . . , n}|xi < xj and yi < yj}

D := #{i ∈ {1, . . . , n}, j ∈ {1, . . . , n}|xi < xj and yi > yj}

Tx := #{i ∈ {1, . . . , n}, j ∈ {1, . . . , n}|xi = xj and yi 6= yj}

Ty := #{i ∈ {1, . . . , n}, j ∈ {1, . . . , n}|xi 6= xj and yi = yj}

τ̂(x,y) :=
C −D√

(C +D + Tx) · (C +D + Ty)

Kendall’s τ measures the strength of the co-movement of two random variables as the

Pearson correlation ρ does. The relation of ρ and τ for Student copulas is answered by

Demarta and McNeil, 2005:
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Lemma 3.1 (Pearson correlation and Kendall’s τ of Student copula).

The Pearson correlation is a function of τ given by:

ρ(τ) = sin
(
τ · π

2

)
One advantage of the definition of Kendall’s τ compared to the classical Pearson correlation

is, that its value is not changed by strictly monotone increasing transformations:

Lemma 3.2 (Invariance of Kendall’s τ to strictly monotone increasing transformations).

Let t be a strictly monotone increasing function. If we apply the transformation to X, Y ,

the value of τ does not change.

Proof. As t is a strictly monotone increasing function, we have:

t(x) > t(y)⇔ x > y (3.1)

τ(t(X), t(Y )) =P[(t(X)− t(X?)) · (t(Y )− t(Y ?)) > 0]

−P[(t(X)− t(X?)) · (t(Y )− t(Y ?)) < 0]

=P[(t(X) > t(X?), t(Y ) > t(Y ?)) ∪ (t(X) < t(X?), t(Y ) < t(Y ?))]

−P[(t(X) > t(X?), t(Y ) > t(Y ?)) ∪ (t(X) < t(X?), t(Y ) < t(Y ?))]

(3.1)
= P[(X > X?, Y > Y ?) ∪ (X < X?, Y < Y ?)]

−P[(X > X?, Y > Y ?) ∪ (X < X?, Y < Y ?)]

=τ(X, Y )

One important conclusion of Lemma 3.2 is that the variables on the U-Level and

the original variables with arbitrary margins have the same Kendall’s τ values, as the

distribution functions are always monotonously increasing.

Furthermore, Lemma 3.2 shows that the Kendall’s τ value of U1,U2 and their Z-

transformations Z1,Z2 are the same, as the Z-transformation is strictly increasing. Thus,

we will use the Kendall’s τ value to measure association of two random variables, as we

can now switch between the U-Level and the Z-Level, without changes in the Kendall’s

τ value.
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The reasons above show that the Kendall’s τ values are appropriately used in order

to describe the dependency among two random variables in our setting, as monotone

increasing transformations are frequently applied.

A definition, which is important for the analysis of pair-copulas, is the symmetry:

Definition 3.7 (Symmetric pair-copulas).

We call pair-copulas symmetric, if they are symmetric in their parameters:

C(u, v) = C(v, u)

While Kendall’s τ measures the average dependence between two random variables, we also

want to define a measure for the dependence in the ”extremes”. Therefore, we introduce

the upper and lower tail dependence.

Definition 3.8 (Upper and Lower Tail dependence).

Let U1, U2 be two random variables with uniform marginal distributions. We define the

upper tail dependence as:

λupper = lim
t↗1

P[U1 > t|U2 > t]

We define the lower tail dependence as:

λlower = lim
t↘0

P[U1 ≤ t|U2 ≤ t]

For symmetric copulas, as we use them in this thesis, the value of the lower and the upper

tail dependence does not change if we interchange the order of U1 and U2. Gaussian,

Student and Frank copulas are important examples for symmetric copulas.

In our setting the upper-tail dependence is of interest, as we will simulate random variables

with positive dependencies and conditioning variables set to high quantiles.

One can interpret the upper-tail dependence as a measure of the extremeness of the

pair-copula, as it denotes the limit of the conditional probability of U1 lying over a high

quantile, given that U2 is over that high quantile. In other words, given that U2 is very

extreme, how high is the probability that U1 is also very extreme.

We will now discuss the tail dependence of the copulas introduced in this chapter:
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Lemma 3.3 (Tail dependence of Gaussian copula and Frank copula).

Random variables with Gaussian copula or Frank copula have an upper and lower tail

dependence of 0.

Thus, Lemma 3.3 shows, that Gaussian and Frank copulas do not cover extreme depen-

dencies. However, the Student copula has a tail dependence and thus covers extremer

dependencies.

Lemma 3.4 (Tail dependence of Student copula). The upper and lower tail dependence

for a Student copula with parameters ρ, ν is given by:

λ = 2tν+1

(
− (
√
ν + 1) ·

√
1− ρ
1 + ρ

)

As the Student copula has two parameters, we want to study both of the parameters in

order to be able to interpret the resulting copula better.

If we analyse, for a fixed value of ρ, the tail dependence of a Student copula, we get the

following result:

Lemma 3.5 (Tail dependence of Student copula). For fixed values of ρ ∈ (−1, 1), the

upper and lower tail dependence is given by:

λ = 2tν+1

(
− (
√
ν + 1) ·

√
1− ρ
1 + ρ

)

is a strictly decreasing function in ν.

Proof. As it has been shown in Demarta and McNeil, 2005, in Theorem 4.3, the tail

dependence of two random variables with Student copula can be written as:

λ(ν) =

∫ π/2
(π/2−arcsin(ρi,j))/2

cosν(t)dt∫ π/2
0

cosν(t)dt
(3.2)

where ψ := (π/2− arcsin(ρi,j))/2 ∈ [0, π/2].

We now want to show that λ is a monotonously decreasing function in ν. This is equivalent

to

λ(ν) > λ(ν + ε) ∀ε > 0, ν > 2 (3.3)
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We will proof inequality (3.3) using equation (3.2).

λ(ν) > λ(ν + ε)

⇔
∫ π/2
ψ

cosν(t)dt∫ π/2
0

cosν(t)dt
>

∫ π/2
ψ

cosν+ε(t)dt∫ π/2
0

cosν+ε(t)dt

⇔
∫ π/2

0
cosν+ε(t)dt∫ π/2

ψ
cosν+ε(t)dt

>

∫ π/2
0

cosν(t)dt∫ π/2
ψ

cosν(t)dt

⇔ 1 +

∫ ψ
0
cosν+ε(t)dt∫ π/2

ψ
cosν+ε(t)dt

> 1 +

∫ ψ
0
cosν(t)dt∫ π/2

ψ
cosν(t)dt

⇔
∫ ψ

0

cosν+ε(t)dt ·
∫ π/2

ψ

cosν(t)dt >

∫ ψ

0

cosν(t)dt ·
∫ π/2

ψ

cosν+ε(t)dt (3.4)

It is thus sufficient to proof inequality (3.4).

To proof this inequality we note:

cosε(ψ) =mint∈[0,ψ](cos
ε(t)) (3.5)

cosε(ψ) =maxt∈[ψ,π/2](cos
ε(t)) (3.6)

Thus, we can proof inequality (3.4) as follows:∫ ψ

0

cosν+ε(t)dt ·
∫ π/2

ψ

cosν(t)dt =

∫ ψ

0

cosν(t) · cosε(t)dt ·
∫ π/2

ψ

cosν(t)dt

(3.5)
>

∫ ψ

0

cosν(t) · cosε(ψ)dt ·
∫ π/2

ψ

cosν(t)dt

=

∫ ψ

0

cosν(t)dt ·
∫ π/2

ψ

cosν(t) · cosε(ψ)dt

(3.6)
>

∫ ψ

0

cosν(t)dt ·
∫ π/2

ψ

cosν(t) · cosε(t)dt

=

∫ ψ

0

cosν(t)dt ·
∫ π/2

ψ

cosν+ε(t)dt

This theorem gives us an interpretation of the role of the parameter ν in the Student

copula: The lower the value of ν, the stronger the tail dependence and thus extreme

co-movements occur more often. The result of Lemma 3.5 will be used in Section 9.4
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to analyse the results.

The complete list of pair-copulas used in this thesis is given in Table 1:

Name Number of pa-

rameters

Gaussian 1

Student t 2

Clayton (with 90◦,180◦,270◦ rotations) 1

Gumbel (with 90◦,180◦,270◦ rotations) 1

Joe (with 90◦,180◦,270◦ rotations) 1

Frank 1

Clayton-Gumbel (with 90◦,180◦,270◦ rotations) 2

Joe-Gumbel (with 90◦,180◦,270◦ rotations) 2

Joe-Clayton (with 90◦,180◦,270◦ rotations) 2

Joe-Frank (with 90◦,180◦,270◦ rotations) 2

BB1 (with 90◦,180◦,270◦ rotations) 2

BB7 (with 90◦,180◦,270◦ rotations) 2

BB8 (with 90◦,180◦,270◦ rotations) 2

Table 1: List of pair-copulas used in this thesis

The total number of copulas used is 36.

3.3 Pair-Copula Constructions

In this section we will show a method to construct multidimensional copulas out of pair-

copulas. For more details we refer to Bedford and Cooke, 2002, Aas et al., 2009 and

Kurrowicka and Joe, 2011.

It is a well known fact that in case of independence of a d-dimensional vector we

can write its density as the product of its marginal densities:

π(x) =
d∏

k=1

πk(xk) (3.7)

As we have seen in Theorem 3.1 and Example 3.1 the independence of variables and

the associated independence copula is only a special form of the general copula setting.
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Thus, in this chapter we will show a generalized method to decompose densities in to

products similar to equation (3.7).

At first we observe that we can rewrite the density as follows:

π(u) =
π(u1, ..., ud)

π(u1, ..., ud−1)
· π(u1, ..., ud−1)

= π(ud|u1, ..., ud−1) · π(u1, ..., ud−1)

If one iterates this procedure, the following general decomposition can be obtained:

π(u1, ..., ud) =

[
d∏
r=2

π(ur|u1, ...ur−1)

]
· π(u1) (3.8)

One can note, that the decomposition in (3.8) is not unique, but other orders of condition-

ing are possible, too.

As a second component to construct general R-vines, we need to apply Sklar’s Theorem.

As the cumulative distribution function of uniform variables is the identity function, we

get:

π(u1, u2) = c1,2(u1, u2)

and thus we get the following result:

π(u2|u1) =
c1,2(u1, u2)

π(u1)
= c1,2(u1, u2)

In three dimensions we get:

π(u3|u1, u2) =
π(u1, u2, u3)

π(u1, u2)

=
π(u2, u3|u1)

π(u2|u1)

=
c2,3;1(F2|1(u2|u1), F3|1(u3|u1))π(u2|u1)π(u3|u1)

π(u2|u1)

= c2,3;1(F2|1(u2|u1), F3|1(u3|u1))c1,2(u1, u2)

The general form of conditional densities is thus:

π(v|u) = cv,uj ;u−j(F (v|u−j), F (uj|u−j)) · π(v|u−j) (3.9)
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Equations (3.9) and (3.8) lead to the topic of pair-copula constructions. As this theory

is very complicated, we cannot develop the whole theory in this chapter. However, we

state the definitions and the construction of regular vines, as we will need this in the

following chapters.

At first we give the formal definition of a regular vine which we will use in this thesis.

Definition 3.9 (Regular Vine Tree Sequence). A regular vine tree sequence is a set of

trees T1, ..., Td−1 on d elements with nodes Ni and edges Ei for i = 1, ..., d− 1 with:

1. T1 has nodes N1 = {1, ..., d} and edges E1

2. For i = 2, ..., d− 1 the trees Ti has nodes Ni = Ei−1 and edge set Ei

3. (proximity condition) For i = 2, ..., d− 1 If two edges in tree Ti are to be joined by

an edge in tree Ti+1 they must share a common node:

{a, b} ∈ Ei with a = {a1, a2} and b = {b1, b2} it must hold that #(a ∩ b) = 1

Definition 3.10 (Regular Vine Copula). A regular vine copula RV = (V ,B(V),θ(B(V)))

on d variables is a copula with uniform margins, such that:

1. V is a regular vine on d elements as defined in Definition 3.9

2. B(V) = {Ci(e),j(e)|D(e)|e ∈ Em,m = 1, ..., d− 1} is a set of d(d− 1)/2 copula families

identifying the conditional distribution of Ui(e), Uj(e)|UD(e)

3. θ(B(V)) = {θi(e),j(e)|D(e)|e ∈ Em,m = 1, ..., d − 1} is the set of parameter vectors,

corresponding to the copulas in B(V).

The index i of the specific tree in the tree sequence (Ti)i=1,...,d−1 will be called the levels

in the R-vine.

The triplet RV = (V ,B(V),θ(B(V))) specifies the regular vine copula (R-vine). We

thus need to focus on the selection and estimation of each element of the triplet.

To derive the vine-copula model properly we further need the definition of h-functions:

Definition 3.11 (h-functions).

The h-functions are defined as:

h(u|v,θ) := F (u|v) =
∂Cuvj |v−j(F (u|v−j), F (vj|v−j)|θ)

∂F (vj|v−j)
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With this definitions we can now write the general form of the decomposition of multivariate

densities on the U-Level:

π(u) =
d−1∏
j=1

∏
e∈Ej

cae,be|De(Fae|De(uae|uDe), Fbe|De(ube|uDe)) (3.10)

A special case of the R-vine is the C-vine:

Definition 3.12 (C-vine).

As C-vines we define the set of R-vines whose trees are stars (for definition of stars see

Tutte, 1984). Its density is given by:

π(x) =
d−1∏
j=1

d−j∏
i=1

cj,j+i|1:(j−1)(F (uj|u1, ..., uj−1), F (uj+i|u1, ..., uj−1)|θj,i+j|1:(j−1))

An important conclusion from this decomposition is that the density of a copula is

uniquely determined by its pair-copulas. We can thus construct much more flexible copulas

by pair-copula constructions.

3.4 Model selection

In this section we will develop methods to construct R-vine copulas.

One theoretic possibility to choose the R-vine copula would be to apply the maximum

likelihood estimation directly, as the density is available in a closed form solution. Thus,

one could choose the R-vine copula.

This is, however, very slow in higher dimensions.

Therefore, we can divide the R-vine copula specification into 3 parts, which we will cover

in this section:

• Selecting of the R-vine structure

• Choosing the bivariate copula families for each pair in the R-vine structure

• Estimating the corresponding parameters for each copula
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3.5 Parameter estimation

To specify the pair-copulas, we need to choose the pair-copula families and their parameters.

At first we show how the parameters for a pair-copula is estimated. We will use two

different methods:

Definition 3.13 (Maximum likelihood estimation).

The Maximum likelihood estimation of the parameter θ of a pair-copula, given two vectors

u = (ui)i=1,...,d,v = (vi)i=1,...,d, is defined as:

θ̂ := argmaxθ∈Θ

d∑
i=1

log(c(ui, vi|θ))

Definition 3.14 (Inversion of Kendall’s τ).

The estimation of θ by inversion of Kendall’s τ of a pair-copula, for two vectors u and v

is only well defined, if θ can be written as a function of τ . It is defined as:

θ̂ := θ(τ̂(u,v))

The advantage of the inversion of Kendall’s τ is that this method is much faster, as it does

not require a numerical optimization and the values of Kendall’s τ are already given by

the Dissmann algorithm.

Given the parameters θ̂ we can now evaluate the AIC for each of the parametric pair-copula

families as explained in Dissmann et al., 2013. Following Akaike, 1998, we define the AIC

for a pair-copula as:

Definition 3.15 (AIC criterion for pair-copulas).

Given the two vectors u,v and their copula c(·, ·|θ), we define the AIC as:

AIC = −2
d∑
i=1

ln[c(ui, vi|θ)] + 2|θ|

According to the AIC criterion, the pair-copula with the lowest value is chosen.

3.6 Sequential estimates

We have so far focused on the estimation of pair-copulas. We will now estimate entire

R-vines.

The direct maximum likelihood estimation of the R-vine copula is possible, however the

vector of parameters has too many parameters to be easily numerically calculable. Thus,
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we apply tree-wise algorithms which work successively on the levels of the R-vine: On each

level the tree is chosen first. The second step is to choose the pair-copulas as described

above. After this, the algorithm proceeds with the transformed variables satisfying the

conditions in Definition 3.9.

A common choice for the procedure to choose the tree sequence is Algorithm 1, the

Dissmann algorithm as proposed in Dissmann et al., 2013. This algorithm requires a

functional measure to quantify the strength of dependence between two random variables.

The usual function which is used in this context is the Kendall’s τ value.

Algorithm 1 Dissmann algorithm

Choose an R-vine model structure based on Kendall’s τ

Require: Set of vectors{ui,uj},1 ≤ i < j ≤ d with ui ∈ Rn uniformly distributed, set of

proposed pair-copulas C
1: for i← 1 to d do

2: for j ← 1 to d do

3: Calculate the empirical Kendall’s τ̂i,j = τ(ui,uj)

4: end for

5: end for

6: Select the spanning tree that maximizes the sum of absolute empirical Kendall’s τ :

Tk = argmax
∑

e={i,j}∈Tk

|τ̂i,j|

7: For all pairs of neighbouring variables in the tree, estimate the parameters for the

proposed pair-copulas and select a copula according to the AIC criterion.

8: Transform the observations using the h-functions of the chosen pair-copula and pa-

rameter from Step 7 to obtain the transformed values.

9: Use these transformed observations to calculate the empirical Kendall’s τ for all pairs

fulfilling the proximity condition.

10: Proceed with Step 6 until the R-vine is fully specified.

For more details about the algorithm see Dissmann et al., 2013.

3.7 Interpretation of pair plots

As we will use different plots for visualization and for validation of our algorithms, we will

show examples of contour plots on the Z-Level in this section, such that the results can

be interpreted more easily, as it can be compared with these plots.
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(a1) Z-Level contour plot: Gaussian copula
(τ = 0.5)

(a2) Z-Level contour plot: Student copula
(τ = 0.5, df=4)

(b1) Z-Level contour plot: Gumbel copula
(τ = 0.5)

(b2) Z-Level contour plot: Joe copula
(τ = 0.5)

(c1) Z-Level contour plot: Frank copula
(τ = 0.5)

(c2) Z-Level contour plot: Clayton copula
(τ = 0.5)

Figure 2: Summary of Z-Level contour plots for different pair-copulas
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One can see in Figure 2 that very different shapes can result from the choices of different

copulas with the same value of Kendall’s τ .

The Clayton copula will be used to show the rotations of copulas. These rotations

allow us to fit a bigger scale of different dependencies, as shown in Figure 3:

(a1) Z-Level contour plot
Clayton copula (τ = 0.5)

(a2) Z-Level contour plot: 90◦ rotated
Clayton copula (τ = −0.5)

(b1) Z-Level contour plot: 180◦ rotated
Clayton copula (τ = 0.5)

(b2) Z-Level contour plot: 270◦ rotated
Clayton copula (τ = −0.5)

Figure 3: Summary of Z-Level contour plots for rotated Clayton copulas
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4 Monte Carlo methods

In this chapter, we will introduce Monte Carlo methods, a widely used class of stochastic

algorithms. These algorithms approximate functions by stochastic simulations, often with

Markov chains, which we will therefore introduce in the first section of this chapter, before

we cover Monte Carlo methods in the second part.

The main area of application of Monte Carlo methods are problems, where no closed form

solution is available, as described in Gilks et al., 1998. For this reason, we will apply

Monte Carlo methods to perform the stress tests, as closed form solutions will be not

available here.

For further details we refer to Roberts et al., 2004.

4.1 Markov Chains

We first want to define discrete Markov Chains as follows:

Definition 4.1. (Time discrete Markov chain)

A stochastic process (Xr)r∈N with values in Rd is called a (time discrete) Markov chain, if

for all (Lebesgue) measurable sets A ⊂ Rd and all r ∈ N the following equation holds:

P[Xr+1 ∈ A|X0, ...,Xr] = P[Xr+1 ∈ A|Xr]

This equation denotes that for a Markov chain, given the present, the future and the past

of the process are conditionally independent.

Definition 4.2. (Irreducible stationary distribution)

A Markov chain (Xn)n≥1 has a stationary distribution π if for all r ≥ 1:

Xr ∼ π ⇒ Xr+1 ∼ π

The Markov chain is further irreducible w.r.t. π if:

P[∃n ∈ N : Xn ∈ A|X0 = x] > 0 for all x ∈ Rd

For all A ⊂ Rd such that π(A) > 0

A further rather technical definition is the aperiodicity of Markov chains:
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Definition 4.3. (Aperiodic Markov chains)

A Markov chain (Xn)n≥1 is aperiodic, if for all sequences {E0, ..., Em−1}, such that

for all j = i+ 1 mod m with P[Xi+1 ∈ Ei+1|X0 = x] = 1 ∀x ∈ Ei it holds:

The length of the sequence m is 1.

A problem that we will face in Chapter 5 is that the simulation of random variables is

not directly possible, but we can construct a Markov chain, which converges in distribution

towards a process with the desired distribution. To quantify the difference between the

desired distribution and the distribution of the realizations, we need to introduce a distance

on the space of distributions:

Definition 4.4. (Total variation)

Let µ be a probability measure on (Rd, B(Rd)). The total variation is defined as:

||µ||TV = sup
A∈B(Rd)

µ(A)

where B(Rd) denotes the Borel algebra on Rd

The following theorem denotes the limiting properties of a great class of Markov chains:

Theorem 4.1. (Convergence of Markov chains)

For an irreducible and aperiodic Markov chain (Xn)n≥1 with stationary distribution π and

values in Rd, it holds that:

lim
n→∞

||π(·)− P[Xn ∈ ·|X0 = x]||TV = 0

for π- almost all x.

Theorem 4.1 implies, that: limn→∞ P[Xn ∈ A|X0 = x] = π(A) for all measurable sets

A ⊂ Rd.

We will thus approximate the distribution π as follows:

π(A) ≈ P[Xn ∈ A|X0 = x]

As the convergence is only valid as a limit, we need a sufficiently big values of n.
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4.2 Monte Carlo methods

Monte Carlo methods, which make use of Markov chains, approximate expectation values,

that are not possible to evaluate in closed form, in the following way:

Definition 4.5. (Monte Carlo method)

Let X1, ...,XR be random variables in Rd with distribution π, and let h : Rd → R be a

measurable function. We approximate Eπ[h(X)] as follows:

1

R

R∑
r=1

h(Xr) = hR ≈ Eπ[h(X)]

One example is the estimation of a distribution function by:

F̂R(x) =
1

R

R∑
r=1

I{Xr≤x}

If we assume, that the random variables (Xr)r∈N are stochastically independent, the

convergence of the average follows from the strong law of large numbers. However, in our

framework the random variables are usually not independent, but are realizations of a

Markov chain (see Gilks et al., 1998). In this case, proofs of the convergence can be found

for a wide class of Markov chains, as described in Atchad et al., 2009.

Furthermore, the Markov chain is not distributed according to π, but converges to-

wards it. If the distribution of the first B realizations of the Markov chain is too far away

from the stationary distribution, we delete this values from the sample for which we apply

the Monte Carlo approximation. This procedure is called Markov chain Monte Carlo

method with burn-in:

Definition 4.6. (Markov chain Monte Carlo method with burn-in)

Let X1, ...,XR be realizations of a Markov chain with stationary distribution π with values

in Rd. Let h : Rd → R be a measurable function and burn-in B ∈ {0, ..., R − 1}. We

approximate Eπ[h(X)] as follows:

1

R−B

R∑
r=1+B

h(Xr) ≈ Eπ[h(X)]

Higher values of B and R−B improve the convergence, but it has to be decided which

values should be chosen.
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Two essential questions arise from this approach:

- How long does the burn-in B have to be, such that the Markov chain is sufficiently

close to the limiting distribution?

- How long does the length R − B of the simulations after burn-in have to be to

achieve a sufficient convergence of the estimate?

These questions are not solved in general, as we will see in Section 5.3. It is not possible

to proof this question in general, however some theoretical results which can be used will

be derived. Because of the lack of theoretical proofs of the convergence, other methods

were developed to evaluate the convergence by statistical tests, which we describe in the

following section.

4.3 Full convergence diagnostics

In this section, we will summarize some methods to validate the convergence of the Monte

Carlo algorithm, as in our case, it is not possible to prove the convergence theoretically.

As a statistical test for the length of the burn-in for the Markov chain we apply the

Heidelberger and Welch stationarity test (for further details see Geyer, 2012). For

the test we require the definition of stationarity:

Definition 4.7 (Stationary processes).

A process (Xr)r∈N with values in Rd is strictly stationary, if for all r, t, s ∈ N, (x1, ...,xt+1)

with xi ∈ Rd:

FXr,...,Xr+t(x1, ...,xt+1) = FXr+s,...,Xr+s+t(x1, ...,xt+1)

The null hypothesis of the test is that the Markov chain is a realization of a stationary

process, which would be the case if the Markov chain would have converged. If the null

hypothesis is rejected, the first 1% of the chain are deleted as a burn-in and the test is

repeated. We perform the Heidelberger- Welch test, with a confidence level of 99% (see

Cowles and Carlin, 1996).

This test will be applied to all margins and the burn-in is taken as the maximum of all

proposed burn-in values. This leads to multiple testing, which is a conservative approach,

as it leads to higher burn-in values.

Another problem, which we will cover in this chapter, is the possibility of very high

correlation within the simulated Markov chain. To measure these effects, we introduce the
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following approach:

Assuming that we want to estimate a function h of the first R elements in our pro-

cess (Xr)1≤r≤R, we can use the ergodic average.

hR =
1

R

R∑
r=1

h(Xr)

To analyze the ergodic average, we define the autocorrelation of a process at different time

points.

Definition 4.8 (Autocorrelation).

The autocorrelation of a process (Xr)r≥1 with values in Rd is measured by

ρ : N× N→ [−1, 1]d:

ρ(t, s) =
E[(Xt − µt) · (Xs − µs)]√

E[(Xt − µt)2] · E[(Xs − µs)2]

Definition 4.9 (White noise).

A stochastic process is called white noise if its autocorrelation function satisfies:

ρ(t, s) =

1 if t = s

0 if t 6= s

As the autocorrelation measures the inter time dependence of a process, one sees that the

white noise has no time correlation.

To measure the convergence of the ergodic average, we want to get a formula for the

variance of hR. We follow the approach of Burke, 2012, who uses the assumption, that the

Markov chain Xr is an AR(1) process :

Definition 4.10 (AR(1) processes).

An AR(1) process is a stochastic process (Xr)r∈N in Rd with constants

c ∈ R, φ ∈ (−1, 1):

Xr = c+ φXr−1 + εr

Where εr is a white noise process with constant variance.
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This assumption is not generally true for Markov chains, as our increments are not white

noise. However, this can be used as an approximation.

In the case of a one dimensional stationary AR(1) process, the autocorrelation has the

following easy form:

Theorem 4.2. The auto covariance of a one dimensional stationary AR(1) process has

the following form:

ρ(t, s) = ρ|t−s|

with ρ ∈ (−1, 1)

This theorem shows that the autocorrelation of a one dimensional stationary AR(1) process

drops exponentially with t for fixed values of s as shown in Figure 4. One can see that

for higher values of ρ the cross-correlation decreases more slowly.

Figure 4: Visualization of ρ(t, 0) for different values of ρ

If we assume our Markov chain to be a stationary AR(1) process, the variance of our

estimator satisfies the following equation.

V ar
(
hR
)

=
1 + ρ

1− ρ
1

R
V ar(h(X1)) (4.1)

Formula (4.1) leads to the definition of effective sample size, as described in Burke, 2012.

If we divide V ar(h(X1)) by V ar
(
hR
)
, we get the ratio that measures by how much the
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individual variance is larger than the variance of the ergodic average:

V ar(h(X1))

V ar
(
hR
) = R · 1− ρ

1 + ρ

This leads to the definition of the effective sample size:

Definition 4.11 (Effective sample size).

The effective sample size of a sample (Xr)r∈{1,...,R} is defined as

ESS = R · 1− ρ
1 + ρ

where ρ denotes the autocorrelation coefficient in the AR(1) process.

The effective sample size of a sample denotes the number of independent random variables

with the same distribution, which contain the same amount of information as the sample

has.

High correlation in the sample generated can reduce the amount of information which is

contained in the chains.

As an estimate for ESS, we use the empirical version:

Definition 4.12 (Empirical effective sample size).

The empirical effective sample size is defined as:

ÊSS = R · 1− ρ̂
1 + ρ̂

Where ρ̂ is the empirical estimate of ρ.

For an upper bound of the confidence interval, we apply Chebyshev’s inequality:

Theorem 4.3 (Chebyshev’s inequality).

For a random variable X ∈ Rd with mean µ and finite variance σ2 and all ε > 0 it holds:

P [|X− µ| ≥ ε] ≤ σ2

ε2

Applying Chebyshev’s inequality and assuming, that the process is approximately an
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AR(1) process, we get the following inequality:

P
[
|hR − µ| ≥ ε

]
≤V ar(hR)

ε2

=
1 + ρ

1− ρ
1

R
V ar(h(X1)) · 1

ε2

=
1

ESS
V ar(h(X1)) · 1

ε2

Thus, we get the following equation for a significance level α:

1

ESS
V ar(h(X1)) · 1

ε2
= α

⇔ε =

√
1

ESS
V ar(h(X1)) · 1

α

If we plug in the empirical values, we get an approximate confidence interval to the

significance level α: [
hR + σ̂

√
1

ÊSS
· 1

α
; hR − σ̂

√
1

ÊSS
· 1

α

]
(4.2)

Equation (4.2) shows that high values of ÊSS lead to smaller confidence intervals. Thus,

ÊSS can be used as a measure of the information contained in a sample.

If we regard R as fixed, ÊSS is a decreasing function of ρ̂ and can be interpreted as

follows: A high autocorrelation effects the effective sample size negatively, as the earlier

entries have a strong effect upon the later entries and thus the amount of newly gained

information is highly limited.

Thus, a big sample which has a small ÊSS is not useful, as it requires a lot of storage

space, but only gives a limited amount of information. The ÊSS will therefore be stated

for the specific simulations.
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5 Metropolis Hastings algorithm

In the last chapter we introduced Monte Carlo methods, which work with Markov chains.

In this chapter we will introduce the Metropolis Hastings algorithm, which generates

specific Markov chains, which we will use in this thesis.

A common situation when applying Monte Carlo methods is that direct simulation

of a d-dimensional random variable is not possible and its density π(·) is only known up

to a normalizing constant. The most important case of such a situation is the conditional

distribution, as explained in Section 2.2.

The Metropolis Hastings algorithm (abbreviation MH) is a commonly used algorithm to

get samples from random variables, with a density only known up to a multiplicative

constant, as described in Chib and Greenberg, 1995.

In this thesis, we will focus on the simulation of random variables with an R-vine depen-

dence structure.

Our specific aim is to sample conditional realizations of a random variable with an

R-vine dependence structure, where some entries are set to a fixed value. As we derived in

Chapter 3, the density of random variables with R-vine dependence structures can be

evaluated in closed form, thus their conditional density is known up to a multiplicative

constant as shown in equation (2.5). Because direct simulation of these conditional random

variables is not possible, we will apply the Metropolis Hastings algorithm.

The key idea of this MH algorithm is to construct a Markov chain (Ur)r≥1, the distribution

of which converges to its stationary distribution with density πU(·). The realizations of

this Markov chain are then chosen as random samples of the stationary distribution with

density πU(·).

Example 5.1.

In this example we derive a conditional distribution for which direct simulation is not

possible. In Example 5.3 we will show that the methods which we derive in this chapter

enable us to carry out simulations using this distribution.

As a copula, we use a mixture of two copulas with the following C-vine structures:

C(u) = 0.5 · C∗(u) + 0.5 · C ′(u)



5 METROPOLIS HASTINGS ALGORITHM 31

Family τ Family τ Family τ

Level 1

C∗1,2 Student

df = 5

0.3 C∗1,3 Student

df = 5

0.1 C∗1,4 Student

df = 5

0.5

Level 2

C∗2,3|1 Student

df = 5

0.3 C∗2,4|1 Student

df = 5

0.5

Level 3

C∗3,4|1,2 Student

df = 5

0.3

List of pair-copulas of C∗

Family τ Family τ Family τ

Tree 1

C
′

1,2 Student

df = 5

0 C
′

1,3 Student

df = 5

0 C
′

1,4 Student

df = 5

-0.9

Tree 2

C
′

2,3|1 Student

df = 5

0 C
′

2,4|1 Student

df = 5

0

Tree 3

C
′

3,4|1,2 Student

df = 5

0

List of pair-copulas of C
′

Table 2: List of pair-copulas of C∗ and C
′

The density becomes a mixture of π∗ and π
′
:

πU(u) = 0.5 · π∗(u) + 0.5 · π′(u)

We denote the density of the Student pair-copula by st, the density of the Student

distribution by f and the cumulative distribution function of the Student distribution by t.

This density πU has no closed form solution as one can see from the following calculation:

πU(u4|u1 = 0.1, u2 = 0.1, u3 = 0.1) =
πU(u4, 0.1, 0.1, 0.1)∫

[0,1]

πU(u4, 0.1, 0.1, 0.1)du4
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To evaluate this expression, we need to evaluate the integral in the denominator:∫
[0,1]

πU(u4, 0.1, 0.1, 0.1)du4

= 0.5 ·
∫

[0,1]

π∗(u4, 0.1, 0.1, 0.1)du4 + 0.5 ·
∫

[0,1]

π
′
(u4, 0.1, 0.1, 0.1)du4

= 0.5 ·
∫

[0,1]

stν=5, τ=0.3(u, 0.1) · stν=5, τ=0.1(u, 0.1) · stν=5, τ=0.3(u, 0.1)du · const

+ 0.5 ·
∫

[0,1]

stν=5, τ=−0.9(u, 0.1)du

= 0.5 ·
∫

[0,1]

[
fν=5,τ=0.3(t−1

ν=5(u), t−1
ν=5(0.1))

fν=5(t−1
ν=5(u)) · fν=5(t−1

ν=5(0.1))
· fν=5,τ=0.1(t−1

ν=5(u), t−1
ν=5(0.1))

fν=5(t−1
ν=5(u)) · fν=5(t−1

ν=5(0.1))

· fν=5,τ=0.3(t−1
ν=5(u), t−1

ν=5(0.1))

fν=5(t−1
ν=5(u)) · fν=5(t−1

ν=5(0.1))

]
du · const

+ 0.5 ·
∫

[0,1]

fν=5,τ=−0.9(t−1
ν=5(u), t−1

ν=5(0.1))

fν=5(t−1
ν=5(u)) · fν=5(t−1

ν=5(0.1))
du

This integral has no closed form solution. As it is one dimensional, one could integrate it

numerically, however this would not be possible in higher dimensions.

As a consequence, there is no closed form expression for the distribution function and the

density function. Thus, standard simulation procedures are not applicable and the MH

algorithm has to be applied.

Summed up ,the conditional density πU(u4|u1, u2, u3) is not known in closed form. It is

also not possible to simulate this random variable in closed form.

5.1 Nonadaptive Metropolis Hastings algorithm

One specific version of the MH algorithm, as described in Chib and Greenberg, 1995,

is the nonadaptive MH algorithm. This algorithm has the advantages of being easy to

understand and easy to implement.

This algorithm requires a d-dimensional transition density of the proposal kernel

qU(·, ·) : [0, 1]d × [0, 1]d → R+. According to the last state ur−1, a proposed update u∗r

is sampled in each time step from the conditional proposal distribution with density

qU(ur−1, ·). The acceptance probability α(ur−1,u
∗
r) of the proposal is given as:

α(ur−1,u
∗
r) = max

(
1,

πU(u∗r)

πU(ur−1)

qU(u∗r,ur−1)

qU(ur−1,u∗r)

)
.
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Algorithm 2 Nonadaptive Metropolis Hastings algorithm

Simulate u1≤r≤R, ur ∈ [0, 1]d

with πU(·) as the approximate density of ur

Require: Starting value u0, d-dimensional transition density of the proposal kernel

qU(·, ·) : [0, 1]d × [0, 1]d → R+, number of runs R

1: for r ← 1 to R do

2: u∗r ∼ qU(ur−1, ·)

3: α =
πU(u∗r)

πU(ur−1)

qU(u∗r,ur−1)

qU(ur−1,u∗r)
4: v ∼ Unif[0,1]

5: if v < α then

6: ur ← u∗r

7: else

8: ur ← ur−1

9: end if

10: end for

Example 5.2. (Nonadaptive Metropolis Hastings algorithm with independence proposal)

The easiest way to implement the MH algorithm, explained in Chib and Greenberg, 1995,

is to use a proposal density independent of ur−1, called the independence proposal. This

is illustrated in Figure 5:

Figure 5: Visualization of an update proposal in one dimension, with independence
proposal

Figure 5 illustrates the acceptance rule of Algorithm 2 with a proposal density

qU(ur−1,u
∗
r), independent of ur−1. Hence, the value of α becomes

πU(u∗r)

πU(ur−1)

qU(ur−1)

qU(u∗r)
.
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For the next iteration, the algorithm works the following way:

A proposal u∗r from the conditional proposal density is drawn and accepted if v < α, which

happens with probability max

(
1,

πU(u∗r)

πU(ur−1)

qU(ur−1)

qU(u∗r)

)
.

In this formula, we can see that there are two sources which influence the acceptance

probability. The first part of the fraction
πU(u∗r)

πU(ur−1)
implies, that proposal values with

a higher likelihood under the limiting distribution are more likely to be accepted. The

second part
qU(ur−1)

qU(u∗r)
of the proposal implies, that proposal values with lower likelihood

under the proposal distribution are more likely accepted.

In this example, the proposal distribution is badly chosen, as its density is not simi-

lar to the limiting distribution. This will be discussed in more detail in the following

section.

5.2 Metropolis Hastings algorithm with symmetric random-walk

increments

The classical approach for the proposal distribution of the MH algorithm, as it is introduced

by Atchad et al., 2009, is the symmetric-increment random walk method (SRWM). This

approach is applied to simulate a random variable in Rd.

The proposal realization X∗r is simulated by adding a random walk increment εr ∈ Rn

with density f , to the current random variable Xr.

X∗r = Xr + εr (5.1)

The distribution of the increments εr is chosen to be symmetric around zero. This means

that the density f evaluated at ε and −ε has the same value:

f(ε) = f(−ε) (5.2)
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With the use of the indicator function I we see that its mean is zero:

E(ε) = E(εi)i=1,...,d

= E(εi · Iεi>0)i=1,...,d + E(εi · Iεi<0)i=1,...,d

= E(εi · Iεi>0)i=1,...,d − E(εi · Iεi>0)i=1,...,d

= 0

Thus, the conditional mean of X∗r given Xr is:

E(X∗r|Xr) = Xr

Note that this implies that the transition density of the proposal kernel is a function of

εr = x∗r − xr:

q(xr,x
∗
r) = f(x∗r − xr) (5.3)

The advantage of this algorithm is that the acceptance probability has an easy evaluable

form, as it does not depend on the specific density of the increments (see Atchad et al.,

2009). With equations (5.2) and (5.3) the acceptance probability becomes:

α =
πx(x

∗
r)

πx(xr)

q(x∗r,xr)

q(xr,x∗r)

=
πx(x

∗
r)

πx(xr)

f(x∗r − xr)

f(−(xr − x∗r))

=
πx(x

∗
r)

πx(xr)

Essential for a fast convergence of the algorithm is the choice of distribution for the

increments εr, as we will show in the following section.

If the standard deviance of the increments εr is too small, the chain moves too slowly. If

the standard deviance is too large, to many proposals are rejected. In Rosenthal, 2010, it

is shown that both of the two cases must be avoided. As wrong choices lead to very slow

convergence, and finding a good proposal distribution manually can take a lot of time, the

class of adapted MH algorithms were developed. These algorithms are explained in the

next chapter.
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5.3 Convergence of the Metropolis Hastings algorithm under

the assumption of lighter-than-exponential tails

One major question is the choice of the d-dimensional proposal density qU(·, ·). Different

choices of the proposal density can result in very different convergence speeds of the

simulation.

The theoretical explanation for the rates of convergence of this approach are given in

Holden, 1998.

Holden, 1998 derives an upper bound for the speed of convergence of the random variable,

which is simulated by R runs of Algorithm 2 towards its limiting distribution. This

result requires specific conditions, which are explained in this chapter.

To study the speed of convergence, we introduce some new notation. We denote the

density of Ur in Algorithm 2 by pr.

In the algorithm the transition kernel can change in each time step. We denote the

d-dimensional transition density of the proposal kernel in step r by qrU(·, ·).
To measure the speed of convergence, we introduce a measure for the distance between

the distribution of the simulated random variables and the desired distribution, which we

call the supreme relative error.

Definition 5.1 (Supreme relative error).

Let πU(u) > 0 for u ∈ [0, 1]d

Rr
M := sup

u∈(0,1)d

{∣∣∣∣ pr(u)

πU(u)
− 1

∣∣∣∣}
Holden (1998) states, that if a constant cr exists, such that in iteration r

qrU(u,u∗) ≥ cr · πU(u∗) ∀u, u∗ ∈ (0, 1)d (5.4)

an upper bound for Rr+1
M is given by:

Rr+1
M ≤ (1− cr)Rr

M (5.5)

Property (5.4) is a strong condition, as it says that qrU(u, ·)/cr is an envelope for πU(·).
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If we iterate inequality (5.5), we get the following upper bound for Rr+1
M :

Rr+1
M ≤

[
r∏
i=1

(1− ci)

]
R0
M (5.6)

Hence it shows that, if
r∏
i=1

(1 − ci) converges to 0 as r → ∞ and R0
M is finite, then Rr

M

converges to 0 as r →∞.

If ci is bounded from below by a positive constant c, we get geometrical convergence:

Rr+1
M ≤

[
r∏
i=1

(1− ci)

]
R0
M ≤ (1− c)rR0

M

So the order of convergence depends on the coefficients cr, which depend on qrU . We want

to maximize cr as this speeds up the convergence of our algorithm. For this, we need to

find densities qrU which are envelopes for πU and lead to values of cr that are close to 1.

A specific example, which can easily be evaluated in closed form, is obtained when

the proposal distribution is chosen as the uniform distribution. The conditional density

becomes qrU (u, ·) ≡ 1 and cr = c. Hence, to satisfy (5.4), πU (u∗) has to be bounded by the

constant 1/c. This shows that all bounded densities can be simulated fast by using the

uniform density as a proposal.

As a consequence, the result suggests the use of different transition densities in each

step: As Rr
M is non increasing and bounded from above by R0

M , it will converge to 0 as

long as the coefficients cr are bounded by a positive coefficient from below.

The convergence of this algorithms does not follow from the convergence of the usual

version of the MH algorithm.

The convergence of this special case follows from Bai et al., 2011b.

The proof of the convergence can be shown under different conditions. One of these

conditions is explained as follows:
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Definition 5.2 (Lighter-than-exponentially tailed densities).

The density πL(·) on Rn is lighter-than-exponentially tailed if it is positive and has a

continuous first derivative

lim sup
|x|→∞

〈
x

||x||
,∇ ln(πL(x))

〉
= −∞ (5.7)

We cite an important result from Bai et al., 2011b:

Theorem 5.1.

If the density πL(·) on Rn is lighter-than-exponentially tailed, the MH algorithm converges

towards its stationary distribution.

The assumption for πL(·) to be lighter-than-exponentially tailed is a strong assumption,

which is difficult to prove theoretically.

Thus, we will have to use methods as explained in Section 4.3 indicating whether our

algorithm has converged.

5.4 Adaptive Metropolis Hastings algorithm for the L-Level

Influenced by equation (5.6) in Chapter 5.3, we want to introduce an algorithm working

on the L-Level, which changes its transition probability in each step in order to speed up

the convergence of the algorithm.

The class of adapted MH algorithms modifies its proposal density qr according to the first

r − 1 elements of the Markov chain. Hence, the algorithm does not depend upon the right

guess for the proposal distribution, but chooses an appropriate distribution on its own.

Their major advantage is the good convergence properties and their flexibility.

In general, we define adaptive Markov chains as in Rosenthal, 2010:

We have a set of time homogeneous transition kernels {Pγ : γ ∈ Rd×d}, each having

the same distribution π(·) as its stationary distribution.

At time step 0 we begin with starting values x0,γ0, then X1 is simulated from Pγ0(x0, ·)
and Γ1 is calculated from X1 and γ0.



5 METROPOLIS HASTINGS ALGORITHM 39

Then at each step r ≥ 1, we perform the following two steps:

1. Simulate Xr+1 from PΓr(Xr, ·)

2. Calculate Γr+1 deterministically from Γr and Xr+1, and thus change the transition

probability.

With the filtration (Gr)r≥1 = (σ(X1, . . . ,Xr,Γ1, . . . ,Γr))r≥1, which is generated by the

process Xr and the process Γr, we can now define adaptive Markov chains in general:

Definition 5.3 (adaptive Markov chain).

An adaptive Markov chain Z = {(Xr,Γr) : r ≥ 1} with its natural filtration

(Gr)r≥1 = (σ(X1, . . . ,Xr,Γ1, . . . ,Γr))r≥1 satisfies the following equation:

Px1,γ1(Xr+1 ∈ A|Gr) = Px1,γ1(Xr+1 ∈ A|Xr,Γr) = PΓr(Xr, A), (5.8)

Where Γr is a σ(Xr−1,Γr−1) measurable random variable.

The name ”adapted” comes from the property, that the transition kernel adapts to the

past of the chain. In our case, this can be seen as a learning procedure: The Markov chain

learns from its past by changing the transition kernel.

We want to derive some further properties of adapted Markov chains.

A special case of adapted Markov chains are the ones which are independent of Γr:

Px1,γ1(Xr+1 ∈ A|Xr,Γr) = P (Xr, A)

A further property of adapted Markov chains is that random mixes of adapted Markov

chains stay adapted Markov chains.

Definition 5.4 (Random mixture of two adapted Markov chains).

Let {Pγ : γ ∈ Y} and {P ∗ζ : ζ ∈ Z} be two sets of time homogeneous transition kernels

with the same stationary distribution π(·). We define a random mixture with mixture

parameter β ∈ [0, 1] and filtration (Gmixr )r≥1 = (σ(X1, . . . ,Xr,Γ1, . . . ,Γr,Z1, . . . ,Zr))r≥1

as Markov chain satisfying the following equation:

Px1,γ1,ζ1(Xr+1 ∈ A|Gmixr ) =β · Px1,γ1(Xr+1 ∈ A|Xr,Γr) + (1− β) · Px1,ζ1(Xr+1 ∈ A|Xr,Zr)

=β · PΓr(Xr, A) + (1− β) · P ∗Zr(Xr, A)
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The following theorem will be needed in the next chapter.

Theorem 5.2. A random mixture of two adapted Markov chains is again an adapted

Markov chain.

Proof. Set Y ′ = Y × Z, Γ
′
r = (Γr,Zr) and γ

′
1 = (γ1, ζ1).

We can now see that the new Markov chain is again adapted:

Px1,γ
′
1
(Xr+1 ∈ A|Gmixr ) = β · Px1,γ1(Xr+1 ∈ A|Gmixr ) + (1− β) · Px1,ζ1(Xr+1 ∈ A|Gmixr )

5.5 Adaptive Metropolis Hastings algorithm with Gaussian in-

crements

After we studied adapted Markov chains in general, we now focus on adapted MH

algorithms, which generate adapted Markov chains.

A special case of adapted Markov chains is the adapted random walk with Gaussian

increments.

We work on the L− Level with the random variables (`r)r≥0, because this algorithm

requires values in Rd.

The r + 1th proposal has the same form as in equation (5.1):

`∗r+1 = `r + εr

Where εr ∼ Nd(0,Σr). The transition proposal density fulfils property (5.2), which is

required for the algorithm.

The recursive definition of the covariance matrix Σr and the vector µr, which is only

needed for the normalization for the proposal density, and is proposed in Haario et al.,

2001, are given by:

µr+1 = µr +
1

r + 1
(`r+1 − µr) (5.9)

Σr+1 = Σr +
1

r + 1

(
(`r+1 − µr) · (`r+1 − µr)t − Σr

)
(5.10)

with the initial values µ1 = (0, . . . , 0), and Σ1 = diag(1).
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In this case Γr = (Γ∗r,Γ
′
r) with Γ∗r ∈ Rd, Γ

′
r ∈ Rd×d is given by:

Γr = (Γ∗r,Γ
′

r) =(µr,Σr)

The recursive formula for Γr+1 is in our case given by:

Γr+1 =(Γ∗r+1,Γ
′

r+1)

=(Γ∗r +
1

r + 1
(`r+1 − Γ∗r),Γ

′

r +
1

r + 1

(
(`r+1 − Γ∗r) · (`r+1 − Γ∗r)

t − Γ
′

r

)
)

Algorithm 3 Joint adaptive Metropolis Hastings algorithm with Gaussian increments

Simulate u1≤r≤R, ur ∈ [0, 1]d

with πU(·) as the approximate density of ur

Require: Starting value `1, initial values µ1, Σ1, number of runs R

1: for r ← 1 to R do

2: εr ∼ Nd(0r,Σr)

3: `∗r+1 = `r + εr

4: α =
πL(`∗r+1)

πL(`r)
5: v ∼ Unif[0,1]

6: if v < α then

7: `r+1 ← `∗r+1

8: else

9: `r+1 ← `r

10: end if

11: µr+1 = µr +
1

r + 1
(`r+1 − µr)

12: Σr+1 = Σr +
1

r + 1
((`r+1 − µr) · (`r+1 − µr)t − Σr)

13: end for

Our new Markov chain is the process ˜̀
r = (`r,Σr,µr), as `r is no longer a Markov chain.

The reason is that the realizations of (`k)1≤k≤(r−1) influence the value of Σr and µr and

thus the transition probabilities, which makes the process no longer independent of the past.

If we rewrite equations (5.9) and (5.10), we can see that Algorithm 3 is a special version
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of the Covariance Matrix Adaption Evolution Strategy. This method was originally

developed for the stochastic maximization of real valued functions as described in Mueller

and Sbalzarini, 2010, and in Hoshimura, 2007. Both methods are similar, as they search

for the area with the highest values. The difference is that optimization only requires a

single point, the global maximum, while the MH algorithm needs the whole area with high

likelihood, as most random variables have to be drawn from this area.

The more general form of equations (5.9) and (5.10) is a linear combination of the current

value and the preceding value:

µr+1 = (1− γr)µr + γr`r+1

Σr+1 = (1− γr) Σr + γr(`r+1 − µr)(`r+1 − µr)t

With γr :=
1

r + 1

In this context, other choices of γr are also possible. The choice of γr weights the influence

of the new values on the distribution. Other choices can result in other convergence

properties of the algorithm. If we choose γr =
1

r2 + 1
, the values of µr+1 and Σr+1

are much less influenced by the current value `r. If we choose γr =
1√
r + 1

, the influ-

ence of the value of `r on µr+1 and Σr+1 is much stronger (see Mueller and Sbalzarini, 2010).

One other possibility to reduce the computation time would be to perform the update

only every k’th step and to apply the non adaptive MH algorithm from this step on.

One shortfall of the adaptive Gaussian increments is that if the initial distribution is

far away from the target density, the convergence of the adapted MH is slow. This can

be caused by a starting value far away from the stationary distribution, which strongly

influences the convergence of Σr and µr.

In Figure 6 we see a trajectory with a starting value which is simulated from a random

distribution, which is different from the stationary distribution. This starting value has

a low likelihood in the stationary distribution. Additionally, we see a trajectory with a

starting value simulated from the stationary distribution.

All increments of the random walk, starting in its stationary distribution, are there-

fore realizations of the stationary distribution.

However, the random walk not starting in its stationary distribution moves fast towards

the area with a high likelihood under its stationary distribution. This, however, slows

down the convergence of Σr and µr, as the direction and shape of the first random walk
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increments are different from the increments in the stationary case. Thus, the first steps

of the Markov chain L̃r slow down the convergence of Lr.

Figure 6: Trajectories generated by the Metropolis Hastings algorithm starting in equilib-
rium and not in equilibrium.

Thus, to avoid the effect of badly chosen starting values, we restart the adapted MH

algorithm after a certain number of steps (e.g. 5000) at its current value by setting r = 1.

This improves the convergence of µr and Σr, because the first simulations can be far away

from the stationary distribution and thus slow down the convergence.

As in most simulations high burn-in times are required, this procedure has the further

advantage that it can reduce the burn-in.

5.6 Metropolis Hastings with univariate Beta distributions

One big theoretical problem which arises from the use of Gaussian increments is that the

proposal realizations are not heavy tailed. If the target density has more than one local

maximum, the Gaussian Markov chain will likely concentrate around one local maximum

and rarely move to another local maximum. A second shortfall of the use of adapted

Gaussian increments is the slow convergence at the boundaries of [0, 1]d. Therefore, Lk

has to converge to ∞, which takes a lot of time and makes later jumps to other regions

extremely unlikely.

To overcome these problems and to speed up the convergence, we propose a second proposal

rule which works on the U-Level.

Our approach is to define a one dimensional transition probability, which leads to a faster

convergence of the Markov chain. For this we choose the beta distribution defined on [0,1].
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Definition 5.5 (Beta distribution).

The beta distribution is defined for 0 < y < 1, a > 0, b > 0 through the following density

f(y|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
ya−1(1− y)b−1 (5.11)

We want to investigate the convergence behavior of the density at the limit of its definition

range. Depending on its parameters, the density has the following limiting values:

lim
y→0

f(y|a, b) =


b if a = 1

∞ if a < 1

0 if a > 1

lim
y→1

f(y|a, b) =


a if b = 1

∞ if b < 1

0 if b > 1

If we neglect the cases in which either b or a is equal to 1, we have 4 different cases which

are illustrated in Figure 7:

Figure 7: Densities of beta distributions with different parameters

Since we want the one dimensional distribution to be centered around the current value
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ui, this leads to equations (5.12) and (5.13).

E[Y ] = ui =
a

a+ b
(5.12)

⇔ b = a
1− ui
ui

(5.13)

We can clearly exclude the case when a < 1, b < 1, as in this case u has a high probability

of either being close to 0 or close to 1. This is rarely observed in our case and thus the

convergence would possibly be slowed down.

In the case that our fixed values are quite high (e.g. 0.99) and an upper tail dependence

or lower tail dependence is present, it is reasonable to choose b or a smaller than 1,

respectively.

Our proposal is to choose a random distribution for a. The value of b is then defined by

equation (5.12).

The first case which we want to look at is where the density f(y) is 0 for y ∈ {0; 1},
which results in the following inequalities:

a > 1 and b = a · 1− ui
ui

> 1

⇒ a >
ui

1− ui
⇒ a > max(1;

ui
1− ui

)

The second case is where the density f converges to 0 at one limit, and to ∞ at the

other. In the case, where limy→1 f(y) = ∞ and limy→0 f(y) = 0, we have to choose the

constants in the following way:

a > 1 and b = a · 1− ui
ui

< 1

⇒ a <
ui

1− ui
⇒ ui

1− ui
> a > 1

This is only applicable if:

ui
1− ui

> 1

⇔ ui > 0.5
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This satisfies limy→1 f(y) =∞ for the proposal density, which is a natural assumption for

large values of ui.

In the case where limy→1 f(y) = 0 and limy→0 f(y) =∞, we have to choose the constants

in the following way:

a < 1 and b = a · 1− ui
ui

> 1

⇒ a >
ui

1− ui
⇒ 1 > a >

u

1− ui

This case only applies if:

1 >
ui

1− ui
⇔ ui < 0.5

This again satisfies our assumption where limy→0 f(y) =∞, as ui has a low value.

As we want both cases to happen often and at the same time, the simulation should be

fast. We propose the following distribution for a:

We choose a large constant c ∈ R+ to ensure, that the upper limit lupper is bounded. Then

we define:

lupper = max

(
1,min

(
ui

1− ui
, c

))
llower = min

(
1,

ui
1− ui

)
a ∼Unif [llower, lupper]

To get the proposal density, we have to integrate over the set of possible values of a.

κ(ui, u
∗
i ) =

1

lupper − llower

lupper∫
llower

Γ(a · (1 + 1−ui
ui

))

Γ(a)Γ(a · 1−ui
ui

)
u∗i

a−1(1− u∗i )
a· 1−ui

ui
−1

da
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κ(u∗i , ui) =
1

lupper − llower

lupper∫
llower

Γ(a · (1 +
1−u∗i
u∗i

))

Γ(a)Γ(a · 1−u∗i
u∗i

)
ui
a−1(1− ui)

a· 1−u
∗
i

u∗
i
−1

da

These integrals can only be evaluated numerically, which is one of the major reasons for

the long computation time needed in each update step.

The acceptance probability thus becomes:

α =
πU(u∗)

πU(u)

∏
i∈D

I(u∗i , ui)

I(ui, u∗i )
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5.7 Mixture of Metropolis Hastings algorithms

In this chapter we have shown that both, the adapted Gaussian approach on the L-Level

and the beta approach on the U-Level, have strengths and weaknesses. Hence, we propose

a mixture off both algorithms to overcome their weaknesses.

The major advantage of Algorithm 3 is its high convergence speed when the area

with high likelihood is reached. The reason for this is that due to its adeptness, the

algorithm uses the past values to ”learn” the shape of the stationary density.

However, it works on the L-Level and Gaussian increments are not heavy tailed. If it

starts far away from the stationary distribution, it can take some time to reach the area

with high likelihood. It also converges badly for distributions with multi-modal densities.

Algorithm 4 overcomes these problems, as it works on the U-Level and allows for

big jumps. Distributions with bimodal densities, for example, are not a big problem for

this algorithm.

However, the algorithm does not change its transition probabilities according to the past.

This fact together with the large number of big jumps makes the acceptance rate rather

low.

The property of the algorithm not to change its transition probabilities according to the

past for big jumps is a good property, because the aim of big jumps is to move to areas

which have not been reached yet. As these areas have not been reached, an algorithm

which changes its transition probabilities according to the past would not be appropriate.

To overcome these problems, we propose a mixture of both algorithms as follows:

We choose a value of β ∈ (0, 1), where β is the probability with which an update with

univariate Beta distributions, like in Section 5.6, is applied. With probability 1− β an

update with adaptive Gaussian increments, like in Section 5.5, is applied.

To illustrate a case where our new algorithm has better convergence, we conducted a

simulation in Example 5.3.

Notice that in the algorithm, the MH algorithm with adapted Gaussian increments

works on the L-Level and the MH algorithm with univariate Beta distributions

works on the U-Level.
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Algorithm 4 Metropolis Hastings algorithm with mixture of adapted Gaussian increments
and univariate Beta distributions
Simulate u1≤r≤R, ur ∈ [0, 1]d

with πU(·) as the approximate density of ur

Require: Starting value `1, initial values µ1, Σ1, probability of beta updates β, number
of runs R, big constant c ∈ R+

1: for r ← 1 to R do
2: w ∼ Unif[0,1]
3: if w < β then
4: u = logit−1(lr)
5: α = 1
6: for i← 1 to d do
7: lupper = max

(
1,min

(
ui

1−ui , c
))

8: llower = min
(

1, ui
1−ui

)
9: a ∼ Unif[llower, lupper]

10: b = a · 1−ui
ui

11: ui ∼ beta(a, b)

12: κ(ui, u
∗
i ) = 1

lupper−llower
·
lupper∫
llower

Γ(a·(1+
1−ui
ui

))

Γ(a)Γ(a· 1−ui
ui

)
u∗i

a−1(1− u∗i )
a· 1−ui

ui
−1

da

13: κ(u∗i , ui) = 1
lupper−llower

·
lupper∫
llower

Γ(a·(1+
1−u∗i
u∗
i

))

Γ(a)Γ(a·
1−u∗

i
u∗
i

)
ui
a−1(1− ui)

a· 1−u
∗
i

u∗
i
−1

da

14: α = α ∗ I(u
∗
i ,ui)

I(ui,u∗i )

15: end for
16: v ∼ Unif[0,1]
17: if v < α then
18: `r+1 ← logit(u∗)
19: else
20: `r+1 ← `r
21: end if
22: else
23: εr ∼ Nd(0,Σr)
24: `∗r+1 = `r + εr

25: α =
πL(logit(`∗r+1))

πL(logit(`r))
26: v ∼ Unif[0,1]
27: if v < α then
28: `r+1 ← `∗r+1

29: else
30: `r+1 ← `r
31: end if

32: µr+1 = µr +
1

r + 1
(`r+1 − µr)

33: Σr+1 = Σr +
1

r + 1
((`r+1 − µr) · (`r+1 − µr)t − Σr)

34: end if
35: end for
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A theoretical question which we still have to solve is whether Algorithm 4 is a valid

adaptive MH algorithm. This is proven in Theorem 5.2 for which we have to ensure that

both of our algorithms are adapted. The Gaussian increments Algorithm is adapted

and the beta increments Algorithm is adapted, as our family of transition kernels is

chosen to be constant Pγ ≡ P .

To show that the new mixed Algorithm 4 has better convergence properties for bi-

modal distributions, we compare Algorithm 4, with β = 0.5, with Algorithm 3 in the

following example.

Example 5.3.

As an example where Algorithm 3 converges very slowly, we introduce a conditional

R-vine copula density, which has a bimodal density.

We used a C-vine, where we conditioned on 3 variables, and simulated the 4th variable.

Analog to the similarity-based approach in Chapter 9, we apply a mixture of two different

pair-copula families. For both pair-copula families we choose Student copulas, however

with different values of Kendall’s τ . The density has its maximum at 0.1, but it has a

second local maximum at 0.9.

The Markov chain simulation is generated by Algorithm 3, which moves fast towards

the area of the maximum at 0.1. In this case, however, the Markov chain does not move

to the area at 0.9 where the density has a local maximum, as the Gaussian increments are

not heavy tailed enough to cross the area with low likelihood between these two areas.

We will discuss this effect in more detail:

Moving from the area around 0.1 towards the are of 0.9 is theoretically very unlikely, as

the area between these two points has very low likelihood. The reason is that moving from

a point with high likelihood to a point with much lower likelihood is an unlikely event due

to the construction of the chain via the MH algorithm (Compare Figure 5). As Gaussian

increments are not heavy tailed, several steps through the area with low likelihood have to

be made in order to reach the local maximum.

However, Algorithm 4 allows for big jumps. Thus, it is not surprising that in this case it

leads to much faster convergence.
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The distribution we used for the example, is a linear mixture of copulas, which will

appear in Chapter 9. The copula we use is a mixture of two copulas with the following

C-vine structure:

C(u) = 0.5 · C∗(u) + 0.5 · C ′(u)

The density thus becomes a mixture of π∗ and π
′
:

πU(u) = 0.5 · π∗(u) + 0.5 · π′(u)

We simulate the conditional density πU (u4|u1, u2, u3), where we set (u1, u2, u3) = (0.1, 0.1, 0.1).
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(a) The stationary density πU(u4|u1, u2, u3),
where we set (u1, u2, u3) = (0.1, 0.1, 0.1)

.

(b) The trajectory generated by Algorithm 3

(c) The trajectory generated by Algorithm 4
with β = 0.5

Figure 8: Summary of plots validating better convergence of Algorithm 4 in example 5.3
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5.8 Further possible methods to improve speed of convergence

Given that the MH algorithms with Gaussian increments for distributions with a bimodal

density may not converge (as seen in Example 5.3), there are other methods proposed to

solve this problem.

One possible solution can be to adopt a regional adaptive algorithm with online

recursion (RAPTOR), as described in Bai et al., 2011a. This method, however, is not a

straight forward method, as it requires knowledge of the regions where the different modes

are located. Afterwards, the set [0, 1]d has to be divided into disjoint subsets manually

with only one mode in each subset. Since we want our algorithm to run fully automatically

for different situations, this represents no sensible method in our case.

Another approach to overcome this problems is to use mixtures of adaptive MH al-

gorithms with Gaussian increments (see Luengo and Martino, 2013). This procedure has

been proven to converge in simulations of multi modal densities. This, however, does not

overcome the problem of Gaussian increments not having big jumps.
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6 Simulation study with simulated data

In this chapter we will carry out simulation studies in two settings in order to validate

the convergence of the MH algorithm specified in Algorithm 4 for the purposes of R-vines.

At first we will perform simulation studies in a low number of dimensions, where we

simulate from a 4-dimensional C-vine and condition on 2 random variables. One advantage

in this case is that the random variable is 2-dimensional and thus we can graphically

validate its distribution.

For this low-dimensional setting we will perform 8 different scenarios, which are explained

in more detail in Section 6.2. We will also compare the distribution of the simulated

random variables with the theoretical distribution in this part of the chapter. Additionally

we will analyze the pair-copula of the conditional random variable.

To validate the convergence in higher dimension, we will perform a high-dimensional

example in the second part of the chapter. We will use a 10 dimensional C-vine, where we

condition on 5 random variables. A graphical validation of the resulting 5-dimensional

distribution is not possible, therefore we evaluate the marginal distributions.

We will perform 4 different scenarios in this high-dimensional setting, which are described

in Section 6.4.

Before we get to those topics described above, we will first explain the methods, which we

will further use in an introductory example in Section 6.1. This example will exemplify,

how we evaluate the theoretical distributions later on and which plots we use to validate

the convergence.

6.1 Introductory example

We simulate the conditional value of a 4 dimensional R-vine. All 4 dimensional R-vines

are either equivalent to a C-vine or a D-vine (see Kurrowicka and Joe, 2011 p. 142). In

our case, we choose the C-vine (see Definition 3.12).

We conducted several scenarios (see Table 5), of which we want to explain the first

scenario in more detail to illustrate the methods applied to validate the convergence.

For the low-dimensional simulations we consider the following families of pair-copulas:

Gaussian, Student, Gumbel (and rotations). In this introductory example we only con-

sidered the first two of these. For the high-dimensional simulations we will additionally
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consider Frank and Joe pair-copulas.

C1,2 Student

df = 5

τ = −0.8

C1,3 Student

df = 8

τ = 0.4

C1,4 Student

τ = 0.3

C2,4|1 Gaussian

τ = 0.5

C2,3|1 Gaussian

τ = 0.5

C3,4|1,2 Gaussian

τ = 0.7

Table 3: Summary of pair-copulas used in the introductory example

In this example, we condition on the random variables u1 and u2, which we set to

(u1, u2) = (0.95, 0.95).

We simulated 10000 runs with a burn-in of 2000 simulations. The burn-in test by

Heidelberger and Welch with confidence level of 0.99 indicated no need for a further

burn-in.

Figure 9 below shows that the random variables are moderately autocorrelated, whereas

the autocorrelation function looks similar to an AR(1) process, which encourages the use

of ÊSS (compare Section 4.3).

Figure 9: Sample autocorrelation of the Markov chain in the example

The effective sample size ÊSS of the margins of the Markov chain are 1015 and 1132.

These values are regarded as large enough to approximate the theoretical distribution



6 SIMULATION STUDY WITH SIMULATED DATA 56

adequately.

As our random variable is 2 dimensional, it is possible to plot its whole theoretic distribution,

and compare it with the realizations of the MH algorithm.

We evaluated the density on an equidistant grid numerically, to draw the heat-map figures.

These theoretical values are compared to the empirical scatter plot of the simulated values.

(a1) Heat map plot of (u3, u4) (U-Level) (a2) Simulated pair-plot of (u3, u4) (U-Level)

(b1) Heat map plot of (u3, u4) (Z-Level) (b2) Simulated pair-plot of (u3, u4) (Z-Level)

Figure 10: Example of a heat-maps for the density

To quantify how good the convergence is we evaluate the plots in Figure 10. The plots

on the left side ((a1) and (b1)) show the density heat map of the theoretical distribution.

In this picture regions with bright color indicate high values of the density, whereas areas

with low density are indicated by dark red color. These plots are evaluated by numerical

integration of the density. The plots on the right side ((a2) and (b2)) show the results of

the simulation study. In (b2) the bisector is drawn as well, to give a better orientation in

the plot.

To evaluate whether the algorithm has converged, we can compare the pairs of plots. If

the plots on the left and the right side look similar, meaning that the points on the right

side are located in the same area where the density has high values, then the algorithm
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has converged.

Thus, the plots in Figure 10 would indicate good convergence, as the plots have the

same shapes.

We additionally plotted the theoretical and the empirical marginal density functions

to make it easier to see the regions of bad convergence.

To analyze the marginal densities, we integrate numerically the density evaluated on an

equidistant grid, using the trapezoidal rule. These marginal densities are again integrated

numerically to receive the cumulative distribution functions.

(a1) Empirical and theoretical
cumulative distribution function of u3

(a2) Empirical and theoretical density func-
tion of u3

(b1) Empirical and theoretical
cumulative distribution function of u4

(b2) Empirical and theoretical density func-
tion of u4

Figure 11: Example of a summary for marginal distribution

To evaluate whether the algorithm has converged we further evaluate the marginal distri-

butions, shown in Figure 11. We compare the empirical cumulative distribution function

and the empirical density function with the numerically evaluated theoretical cumulative

distribution function and the theoretical density function. If these functions have the same

shape, this indicates that the algorithm has converged, as is the case in this example.
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6.2 Low-dimensional simulation study

To validate the convergence of Algorithm 4, which we introduced in Section 5.7, we first

conducted a low-dimensional simulation study. The results of this study are summarized

in this section.

We simulated conditional random variables of a 4 dimensional C-vine copula, where

we conditioned on 2 variables. The advantage of this approach is that the random variables

are 2 dimensional.

Furthermore, we choose β, the proportion of multidimensional beta updates, to be 10%.

Thus, the probability of updates via adapted Gaussian increments was 90%.

To validate the algorithm in different settings, 8 different scenarios were applied, which

are summarized in Table 5. The results of the different scenarios can be seen in Figures

12-20.



6
S
IM

U
L
A
T
IO

N
S
T
U
D
Y

W
IT

H
S
IM

U
L
A
T
E
D

D
A
T
A

59

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8
C1,2 Student Student Student Student Student Student Student Student

df = 5 df = 5 df = 5 df = 5 df = 3 df = 3 df = 3 df = 3
τ = −0.8 τ = 0.5 τ = −0.8 τ = 0.5 τ = −0.8 τ = 0.5 τ = −0.8 τ = 0.5

C1,3 Student
df = 8

Student
df = 8

Student
df = 8

Student
df = 8

Gumbel Gumbel Gumbel Gumbel

τ = 0.4 τ = 0.1 τ = 0.4 τ = 0.1 τ = 0.4 τ = 0.1 τ = 0.4 τ = 0.1
C1,4 Student

df = 3
Student
df = 3

Student
df = 3

Student
df = 3

180◦ rotated
Gumbel

90◦ rotated
Gumbel

180◦ rotated
Gumbel

90◦ rotated
Gumbel

τ = 0.3 τ = −0.8 τ = 0.3 τ = −0.8 τ = 0.3 τ = −0.8 τ = 0.3 τ = −0.8
C2,3|1 Gaussian Gaussian Gaussian Gaussian Student Student Student Student

df = 5 df = 5 df = 5 df = 5
τ = 0.7 τ = 0.1 τ = 0.7 τ = 0.1 τ = 0.7 τ = 0.1 τ = 0.7 τ = 0.1

C2,4|1 Gaussian Gaussian Gaussian Gaussian Gumbel Gumbel Gumbel Gumbel
τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2 τ = 0.5 τ = 0.2

C3,4|1,2 Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian
τ = 0.7 τ = 0 τ = 0.7 τ = 0 τ = 0.7 τ = 0 τ = 0.7 τ = 0

Conditional
values

(u1, u2) =
(0.95, 0.95)

(u1, u2) =
(0.95, 0.95)

(u1, u3) =
(0.95, 0.95)

(u1, u3) =
(0.95, 0.95)

(u1, u2) =
(0.95, 0.95)

(u1, u2) =
(0.95, 0.95)

(u1, u3) =
(0.95, 0.95)

(u1, u3) =
(0.95, 0.95)

Dependence high low high low high low high low
Symmetry symmetric symmetric symmetric symmetric asymmetric asymmetric asymmetric asymmetric
Burn-in 2000 2000 2000 2000 2000 2000 2000 2000
Simulation size
(after burn-in)

10000 10000 10000 10000 10000 10000 10000 10000

ÊSS of ran-
dom variables
(min,max)

(1015,1132) (630,731) (642, 834) (369,995) (378,390) (631,747) (463,722) (915,968)

Table 4: Overview of scenarios in the low-dimensional simulation study
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(a1) Heat map plot of (u3, u4) (U-Level) (a2) Simulated pair-plot of (u3, u4) (U-Level)

(b1) Heat map plot of (u3, u4) (Z-Level) (b2) Simulated pair-plot of (u3, u4) (Z-Level)

(c1) Empirical and theoretical cumulative
distribution function of u3

(c2) Empirical and theoretical density func-
tion of u3

(d1) Empirical and theoretical cumulative
distribution function of u4

(d2) Empirical and theoretical density func-
tion of u4

Figure 12: Summary of low-dimensional scenario 1
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(a1) Heat map plot of (u3, u4) (U-Level) (a2) Simulated pair-plot of (u3, u4) (U-Level)

(b1) Heat map plot of (u3, u4) (Z-Level) (b2) Simulated pair-plot of (u3, u4) (Z-Level)

(c1) Empirical and theoretical cumulative
distribution function of u3

(c2) Empirical and theoretical density func-
tion of u3

(d1) Empirical and theoretical cumulative
distribution function of u4

(d2) Empirical and theoretical density func-
tion of u4

Figure 13: Summary of low-dimensional scenario 2
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(a2) Heat map plot of (u2, u4) (U-Level) (a2) Simulated pair-plot of (u2, u4) (U-Level)

(b1) Heat map plot of (u2, u4) (Z-Level) (b2) Simulated pair-plot of (u2, u4) (Z-Level)

(c1) Empirical and theoretical cumulative
distribution function of u2

(c2) Empirical and theoretical density func-
tion of u2

(d1) Empirical and theoretical cumulative
distribution function of u4

(d2) Empirical and theoretical density func-
tion of u4

Figure 14: Summary of low-dimensional scenario 3
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(a1) Heat map plot of (u2, u4) (U-Level) (a2) Simulated pair-plot of (u2, u4) (U-Level)

(b1) Heat map plot of (u2, u4) (Z-Level) (b2) Simulated pair-plot of (u2, u4) (Z-Level)

(c1) Empirical and theoretical cumulative
distribution function of u2

(c2) Empirical and theoretical density func-
tion of u3

(d1) Empirical and theoretical cumula-
tivedistribution function of u4

(d2) Empirical and theoretical density func-
tion of u4

Figure 15: Summary of low-dimensional scenario 4
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(a1) Heat map plot of (u3, u4) (U-Level) (a2) Simulated pair-plot of (u3, u4) (U-Level)

(b1) Heat map plot of (u3, u4) (Z-Level) (b2) Simulated pair-plot of (u3, u4) (Z-Level)

(c1) Empirical and theoretical cumulative
distribution function of u3

(c2) Empirical and theoretical density func-
tion of u3

(d1) Empirical and theoretical cumulative
distribution function of u4

(d2) Empirical and theoretical density func-
tion of u4

Figure 16: Summary of low-dimensional scenario 5
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(a1) Heat map plot of (u3, u4) (U-Level) (a2) Simulated pair-plot of (u3, u4) (U-Level)

(b1) Heat map plot of (u3, u4) (Z-Level) (b2) Simulated pair-plot of (u3, u4) (Z-Level)

(c1) Empirical and theoretical cumulative
distribution function of u3

(c2) Empirical and theoretical density func-
tion of u3

(d1) Empirical and theoretical cumulative
distribution function of u4

(d2) Empirical and theoretical density func-
tion of u4

Figure 17: Summary of low-dimensional scenario 6



6 SIMULATION STUDY WITH SIMULATED DATA 66

(a1) Heat map plot of (u2, u4) (U-Level) (a2) Simulated pair-plot of (u2, u4) (U-Level)

(b1) Heat map plot of (u2, u4) (Z-Level) (b2) Simulated pair-plot of (u2, u4) (Z-Level)

(c1) Empirical and theoretical cumulative
distribution function of u2

(c2) Empirical and theoretical density func-
tion of u2

(d1) Empirical and theoretical cumulative
distribution function of u4

(d2) Empirical and theoretical density func-
tion of u4

Figure 18: Summary of low-dimensional scenario 7
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(a1) Heat map plot of (u2, u4) (U-Level) (a2) Simulated pair-plot of (u2, u4) (U-Level)

(b1) Heat map plot of (u2, u4) (Z-Level) (b2) Simulated pair-plot of (u2, u4) (Z-Level)

(c1) Empirical and theoretical cumulative
distribution function of u2

(c2) Empirical and theoretical density func-
tion of u2

(d1) Empirical and theoretical cumulative
distribution function of u4

(d2) Empirical and theoretical density func-
tion of u4

Figure 19: Summary of low-dimensional scenario 8
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6.3 Analysis of the resulting copulas

In this section we will analyze the pair-copulas of the resulting two dimensional vectors,

given by the 2 conventional variables generated in Section 6.2.

To analyze the resulting dependence we performed an R-vine analysis of the result-

ing two dimensional vector.

At first we need to transform the entries of the vector so that the margins are uniformly

distributed. For this we introduce several stochastic distributions.

At first we introduce a distribution which has as its support the interval [0, 1] in which

our simulations are (U-Level).

Definition 6.1 (Generalized Beta distribution). The generalized beta distribution with

parameters (shape1= a, shape2= b,shape3= c ) is defined as a random distribution with

density:

f(x) =


Γ(a+ b)

Γ(a) · Γ(b)
· c · (x

ac) · (1− xc)(b−1)

x
if x ∈ [0, 1]

0 else

A further distribution which we fit to the reciprocal variable 1/Ui the Gamma distribution:

Definition 6.2 (Gamma distribution). The Gamma distribution with parameters (shape=

a, rate= r) is defined as the distribution with density:

f(x) =


ra

Γ(a)
xa−1e−x·r if x ≥ 0

0 else

Additionally we fitted the non-standardized Student distribution to the L-Level variables.
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Definition 6.3 (Non-standardized Student distribution). The scale family Student distri-

bution with parameters (m, s, ν) is defined as the distribution of X:

X = m+ Y · s

where Y has Student distribution with ν degrees of freedom, meaning that its density has

the form:

fY (x) =
Γ(ν+1

2
)

√
νπ · Γ(ν

2
)

(
1 +

x2

ν

)−ν + 1

2

where Γ is the Gamma function.

For each variable the adequate distribution was chosen so that the transformed random

variable had uniform margins.

The variables of the fitted distributions and the chosen pair-copulas for the transformed

variables, are summarized in Table 5. In Figure 20 we additionally evaluate the Z-Level

plots of the transformed variables.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8
Pair-copula
family

Clayton Student Gaussian Gumbel 90◦ rotated
BB7

270◦ rotated
BB7

Gaussian BB8

Kendall’s τ im-
plied by cop-
ula parameter

.0647 -0.6981 -0.7622 0.3777 -0.3361 -0.6495 -0.6933 0.3275

Second param-
eter of copula

- 2.837 - - -0.7392 -1.3934 0.9688

Marginal
transforma-
tion of u2 resp.
u3

generalized
beta
(shape1=2.3535,

shape2=0.8345,

shape3=2.0625)

non-
standardized
Student on
logit scale
(m=-1.8665,

s=1.4237,

df=6.6715)

generalized
beta
(shape1=2.8258,

shape2=0.8696,

shape3=0.7358 )

generalized
beta
(shape1=0.2867,

shape2=0.5679,

shape3=3.3163)

non-
standardized
Student on
logit scale
(m=3.6293,

s=0.922,

µ=3.9012)

non-
standardized
Student on
logit scale
(m=-1.8155,

s=1.3424,

µ=8.4499)

non-
standardized
Student on
logit scale
(m=1.9809,

s=0.5888,

µ=4.9847)

generalized
beta
(shape1=0.2405,

shape2=0.5845,

shape3=4.0227)

Marginal
transforma-
tion of u4

generalized
beta
(shape1=14.2489,

shape2=82.4604,

shape3=1.1091)

non-
standardized
Student on
logit scale
(m=2.3787,

s=1.2758,

µ=12.503)

reciprocal
gamma
(shape=4.5632,

rate=0.4535)

non-
standardized
Student on
logit scale
(m=-2.5686,

s=0.4951,

µ=4.8203)

non-
standardized
Student on
logit scale
(m=-1.3781,

s=0.2429,

µ=3.0707)

non-
standardized
Student on
logit scale
(m=2.5079,

s=1.0592,

µ=4.832)

reciprocal
gamma
(shape=6.0525,

rate=0.7251)

generalized
beta
(shape1=8.8175,

shape2=27.8739,

shape3=0.5513)

Symmetry of
original copula

symmetric symmetric symmetric symmetric asymmetric asymmetric asymmetric asymmetric

Dependence of
original copula

high low high low high low high low

ÊSS of ran-
dom variables
(min,max)

(1015,1132) (630,731) (642, 834) (369,995) (378,390) (631,747) (463,722) (915,968)

Table 5: Overview of scenarios in the low-dimensional simulation study
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(a1) Z-Level contour plot of transformed
(u3, u4) (Scenario 1)

(a2) Z-Level contour plot of transformed
(u3, u4) (Scenario 2)

(b1) Z-Level contour plot of transformed
(u2, u4) (Scenario 3)

(b2) Z-Level contour plot of transformed
(u2, u4) (Scenario 4)

(c1) Z-Level contour plot of transformed
(u3, u4) (Scenario 5)

(c2) Z-Level contour plot of transformed
(u3, u4) (Scenario 6)

(d1) Z-Level contour plot of transformed
(u2, u4) (Scenario 7)

(d2) Z-Level contour plot of transformed
(u2, u4) (Scenario 8)

Figure 20: Z-Level contour plots for the low-dimensional simulation studies
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These results from Figure 20 underline the need to evaluate the resulting distributions

in more detail. Even copulas with low dependence can result in dependent copulas with

high correlation. Thus, predicting the resulting dependent copula by only observing the

underling copulas is not possible. This is one reason why the analysis of these resulting

copulas is of great interest.
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6.4 High-dimensional simulation study

The second simulation study, that we conducted is implemented in higher dimensions. In

contrast to the low-dimensional case, it is no longer possible to visualize the whole distri-

bution by a single plot. We thus focus on the marginal distribution of the random variables.

In our example we will condition in a 10-dimensional C-vine on the variable (u1, u2, u3, u4, u5).

This random variable has again a C-vine structure, thus we can numerical evaluate the

density of the conditional random variable (u6, u7, u8, u9, u10|u1, u2, u3, u4, u5).

We evaluated the marginal density (u6|u1, u2, u3, u4, u5) in closed form, as it is given by the

C-vine construction. Thus for this density integration was not needed. For the remaining

set of variables e.g., (u10|u1, u2, u3, u4, u5), the density of (u6, u7, u8, u9, u10|u1, u2, u3, u4, u5)

was numerically integrated over the variable (u6, u7, u8, u9) using the adaptive integration

implemented R package cubature (see Berntsen et al., 1991). To ensure that the inte-

gration converged, we applied successive integration, in which the number of iterations

was gradually increased. If the total difference of the successive values for the integration

differed more than 5%, indicating not enough iterations, the integration was repeated. In

the following integration, the number of iterations was increased by the factor 5 until a

limit of 1000000 iterations was reached, as otherwise the computational effort would be to

high. This limit was reached in several cases, which is one major reason for the insufficient

convergence indicated by jagged curves as seen in the high-dimensional densities (e2) and

(f2) in Figures 21-24. From the density functions we received the cumulative distribution

function by numerical integration with the trapezoidal rule.

The integration took a long time and showed that even in 5 dimension evaluating densities

numerically is no longer easily possible. The results thus underlined the need to apply

MH algorithms, as these needed much less computation time.
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We analyzed 4 different scenarios with several pair-copulas used in the pair-copula con-

struction which are summarized in Table 6.

As the detailed list of used pair-copulas is too long, we give a more detailed list in front of

each of the evaluated scenarios.

Scenario 1 2 3 4
Used pair-
copulas

Student Student Student, Clayton,
Gumbel, Frank, Joe

Student, Clayton,
Gumbel, Frank ,Joe
(and rotations of all
copulas)

Set of values
for τ

{0.4} {0.4,−0.4} {0.4} {0.4,−0.4}

Conditional
set

(u1, u2, u3, u4, u5) =
(0.9, 0.9, 0.9, 0.9, 0.9)

(u1, u2, u3, u4, u5) =
(0.9, 0.9, 0.9, 0.9, 0.9)

(u1, u2, u3, u4, u5) =
(0.9, 0.9, 0.9, 0.9, 0.9)

(u1, u2, u3, u4, u5) =
(0.9, 0.9, 0.9, 0.9, 0.9)

Effective
sample

size ÊSS
(min,max)

(4305, 4588) (3251, 4303) (300, 756) (356, 1095)

Burn-in 2000 2000 2000 2000
Simulation
size (after
burn-in)

100000 100000 100000 100000

Table 6: Overview of high-dimensional scenarios

If one compares the effective sample sizes, one can see that scenarios 1 and 2 have much

higher values than scenarios 3 and 4, which indicates a higher number of contained infor-

mation and thus a better convergence. The explanation for this is that these scenarios

have only elliptical copulas. This observation appears to be plausible, as our adaptive

algorithm also applies elliptical copulas as proposal distributions, as the proposal variables

are multivariate normal distributed and thus have an elliptical copula. As in Section 5.3,

it was shown, that proposal distribution close to the distribution from which simulations

we want to simulate from lead to faster convergence, this indicates that the conditional

distributions seem to be elliptical, too. Thus, we can also assume in Chapter 8 to receive

better convergence when many pair-copulas in the R-vine are elliptical.

To visualize the resulting distribution, we plotted the resulting joint distribution on the

U-Level and on the Z-Level. For the proof of the convergence, we plotted the marginal

distribution functions and the marginal densities as describe above.

To visualize the joint distribution we will apply pair-plots on the U-Level and Z-Level.

For the Z-Level plot we additionally plot the marginal histograms on the diagonal of the

pair-plot, and the Kendall’s τ on the upper triangular.
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family τ family τ family τ
Level 1

C1,2 Student
df = 5

0.4 C1,3 Student
df = 5

0.4 C1,4 Student
df = 5

0.4

C1,5 Student
df = 5

0.4 C1,6 Student
df = 5

0.4 C1,7 Student
df = 5

0.4

C1,8 Student
df = 5

0.4 C1,9 Student
df = 5

0.4 C1,10 Student
df = 5

0.4

Level 2
C2,3|1 Student

df = 5
0.4 C2,4|1 Student

df = 5
0.4 C2,5|1 Student

df = 5
0.4

C2,6|1 Student
df = 5

0.4 C2,7|1 Student
df = 5

0.4 C2,8|1 Student
df = 5

0.4

C2,9|1 Student
df = 5

0.4 C2,10|1 Student
df = 5

0.4

Level 3
C3,4|1,2 Student

df = 5
0.4 C3,5|1,2 Student

df = 5
0.4 C3,6|1,2 Student

df = 5
0.4

C3,7|1,2 Student
df = 5

0.4 C3,8|1,2 Student
df = 5

0.4 C3,9|1,2 Student
df = 5

0.4

C3,10|1,2 Student
df = 5

0.4

Level 4
C4,5|1,2,3 Student

df = 5
0.4 C4,6|1,2,3 Student

df = 5
0.4 C4,7|1,2,3 Student

df = 5
0.4

C4,8|1,2,3 Student
df = 5

0.4 C4,9|1,2,3 Student
df = 5

0.4 C4,10|1,2,3 Student
df = 5

0.4

Level 5
C5,6|1,2,3,4 Student

df = 5
0.4 C5,7|1,2,3,4 Student

df = 5
0.4 C5,8|1,2,3,4 Student

df = 5
0.4

C5,9|1,2,3,4 Student
df = 5

0.4 C5,10|1,2,3,4 Student
df = 5

0.4

Level 6
C6,7|1,2,3,4,5 Student

df = 5
0.4 C6,8|1,2,3,4,5 Student

df = 5
0.4 C6,9|1,2,3,4,5 Student

df = 5
0.4

C6,10|1,2,3,4,5 Student
df = 5

0.4

Level 7
C7,8|1,2,3,4,5,6 Student

df = 5
0.4 C7,9|1,2,3,4,5,6 Student

df = 5
0.4 C7,10|1,2,3,4,5,6 Student

df = 5
0.4

Level 8
C8,9|1,2,3,4,5,6,7 Student

df = 5
0.4 C8,10|1,2,3,4,5,6,7 Student

df = 5
0.4

Level 9
C9,10|1,2,3,4,5,6,7,8 Student

df = 5
0.4

Table 7: Summary of the tree-wise chosen pair-copulas (high-dimensional scenario 1)
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(a1) Pair-plot with Kendall’s τ
values of (z6, z7, z8, z9, z10) (Z-Level)

(a2) Pair-plot of (u6, u7, u8, u9, u10) (U-Level)

(b1) Empirical and theoretical cumulative
distribution function of u6

(b2) Empirical and theoretical density
function of u6

(c1) Empirical and theoretical cumulative
distribution function of u7

(c2) Empirical and theoretical density
function of u7

Figure 21: Summary of high-dimensional scenario 1
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(cont.)(d1) Empirical and theoretical
cumulative distribution function of u8

(cont.)(d2) Empirical and theoretical density
function of u8

(cont.)(e1) Empirical and theoretical
cumulative distribution function of u9

(cont.)(e2) Empirical and theoretical density
function of u9

(cont.)(f1) Empirical and theoretical
cumulative distribution function of u10

(cont.)(f2) Empirical and theoretical density
function of u10

Figure 21 (cont.): Summary of high-dimensional scenario 1
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Family τ Family τ Family τ
Level 1

C1,2 Student
df = 5

0.4 C1,3 Student
df = 5

0.4 C1,4 Student
df = 5

0.4

C1,5 Student
df = 5

0.4 C1,6 Student
df = 5

-0.4 C1,7 Student
df = 5

-0.4

C1,8 Student
df = 5

0.4 C1,9 Student
df = 5

0.4 C1,10 Student
df = 5

0.4

Level 2
C2,3|1 Student

df = 5
0.4 C2,4|1 Student

df = 5
0.4 C2,5|1 Student

df = 5
0.4

C2,6|1 Student
df = 5

-0.4 C2,7|1 Student
df = 5

-0.4 C2,8|1 Student
df = 5

0.4

C2,9|1 Student
df = 5

0.4 C2,10|1 Student
df = 5

0.4

Level 3
C3,4|1,2 Student

df = 5
0.4 C3,5|1,2 Student

df = 5
0.4 C3,6|1,2 Student

df = 5
-0.4

C3,7|1,2 Student
df = 5

-0.4 C3,8|1,2 Student
df = 5

0.4 C3,9|1,2 Student
df = 5

0.4

C3,10|1,2 Student
df = 5

0.4

Level 4
C4,5|1,2,3 Student

df = 5
0.4 C4,6|1,2,3 Student

df = 5
-0.4 C4,7|1,2,3 Student

df = 5
-0.4

C4,8|1,2,3 Student
df = 5

0.4 C4,9|1,2,3 Student
df = 5

0.4 C4,10|1,2,3 Student
df = 5

0.4

Level 5
C5,6|1,2,3,4 Student

df = 5
-0.4 C5,7|1,2,3,4 Student

df = 5
-0.4 C5,8|1,2,3,4 Student

df = 5
0.4

C5,9|1,2,3,4 Student
df = 5

0.4 C5,10|1,2,3,4 Student
df = 5

0.4

Level 6
C6,7|1,2,3,4,5 Student

df = 5
-0.4 C6,8|1,2,3,4,5 Student

df = 5
0.4 C6,9|1,2,3,4,5 Student

df = 5
0.4

C6,10|1,2,3,4,5 Student
df = 5

0.4

Level 7
C7,8|1,2,3,4,5,6 Student

df = 5
0.4 C7,9|1,2,3,4,5,6 Student

df = 5
0.4 C7,10|1,2,3,4,5,6 Student

df = 5
0.4

Level 8
C8,9|1,2,3,4,5,6,7 Student

df = 5
0.4 C8,10|1,2,3,4,5,6,7 Student

df = 5
0.4

Level 9
C9,10|1,2,3,4,5,6,7,8 Student

df = 5
0.4

Table 8: Summary of the tree-wise chosen pair-copulas (high-dimensional scenario 2)
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(a1) Pair-plot with Kendall’s τ values
of (z6, z7, z8, z9, z10) (Z-Level)

(a2) Pair-plot of (u6, u7, u8, u9, u10) (U-Level)

(b1) Empirical and theoretical cumulative
distribution function of u6

(b2) Empirical and theoretical density
function of u6

(c1) Empirical and theoretical cumulative
distribution function of u7

(c2) Empirical and theoretical density
function of u7

Figure 22: Summary of high-dimensional scenario 2
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(cont.)(d1) Empirical and theoretical
cumulative distribution function of u8

(cont.)(d2) Empirical and theoretical density
function of u8

(cont.)(e1) Empirical and theoretical
cumulative distribution function of u9

(cont.)(e2) Empirical and theoretical density
function of u9

(cont.)(f1) Empirical and theoretical
cumulative distribution function of u10

(cont.)(f2) Empirical and theoretical density
function of u10

Figure 22 (cont.): Summary of high-dimensional scenario 2
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Family τ Family τ Family τ
Level 1

C1,2 Student
df = 5

0.4 C1,3 Student
df = 5

0.4 C1,4 Student
df = 5

0.4

C1,5 Clayton 0.4 C1,6 Frank 0.4 C1,7 Student
df = 5

0.4

C1,8 Student
df = 5

0.4 C1,9 Gumbel 0.4 C1,10 Clayton 0.4

Level 2
C2,3|1 Student

df = 5
0.4 C2,4|1 Student

df = 5
0.4 C2,5|1 Clayton 0.4

C2,6|1 Frank 0.4 C2,7|1 Student
df = 5

0.4 C2,8|1 Student
df = 5

0.4

C2,9|1 Gumbel 0.4 C2,10|1 Clayton 0.4
Level 3

C3,4|1,2 Student
df = 5

0.4 C3,5|1,2 Clayton 0.4 C3,6|1,2 Frank 0.4

C3,7|1,2 Student
df = 5

0.4 C3,8|1,2 Student
df = 5

0.4 C3,9|1,2 Gumbel 0.4

C3,10|1,2 Clayton 0.4
Level 4

C4,5|1,2,3 Clayton 0.4 C4,6|1,2,3 Frank 0.4 C4,7|1,2,3 Student
df = 5

0.4

C4,8|1,2,3 Student
df = 5

0.4 C4,9|1,2,3 Gumbel 0.4 C4,10|1,2,3 Clayton 0.4

Level 5
C5,6|1,2,3,4 Frank 0.4 C5,7|1,2,3,4 Student

df = 5
0.4 C5,8|1,2,3,4 Student

df = 5
0.4

C5,9|1,2,3,4 Gumbel 0.4 C5,10|1,2,3,4 Clayton 0.4
Level 6

C6,7|1,2,3,4,5 Student
df = 5

0.4 C6,8|1,2,3,4,5 Student
df = 5

0.4 C6,9|1,2,3,4,5 Gumbel 0.4

C6,10|1,2,3,4,5 Clayton 0.4
Level 7

C7,8|1,2,3,4,5,6 Student
df = 5

0.4 C7,9|1,2,3,4,5,6 Gumbel 0.4 C7,10|1,2,3,4,5,6 Clayton 0.4

Level 8
C8,9|1,2,3,4,5,6,7 Gumbel 0.4 C8,10|1,2,3,4,5,6,7 Clayton 0.4

Level 9
C9,10|1,2,3,4,5,6,7,8 Clayton 0.4

Table 9: Summary of the tree-wise chosen pair-copulas (high-dimensional scenario 3)
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(a1) Pair-plot with Kendall’s τ values
of (z6, z7, z8, z9, z10) (Z-Level)

(a2) Pair-plot of (u6, u7, u8, u9, u10) (U-Level)

(b1) Empirical and theoretical cumulative
distribution function of u6

(b2) Empirical and theoretical density
function of u6

(c1) Empirical and theoretical cumulative
distribution function of u7

(c2) Empirical and theoretical density
function of u7

Figure 23: Summary of high-dimensional scenario 3
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(cont.)(d1) Empirical and theoretical
cumulative distribution function of u8

(cont.)(d2) Empirical and theoretical density
function of u8

(cont.)(e1) Empirical and theoretical
cumulative distribution function of u9

(cont.)(e2) Empirical and theoretical density
function of u9

(cont.)(f1) Empirical and theoretical
cumulative distribution function of u10

(cont.)(f2) Empirical and theoretical density
function of u10

Figure 23 (cont.): Summary of high-dimensional scenario 3
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Family τ Family τ Family τ
Level 1

C1,2 Student
df = 5

0.4 C1,3 Student
df = 5

0.4 C1,4 Student
df = 5

0.4

C1,5 Clayton 0.4 C1,6 Frank -0.4 C1,7 90◦

rotated
Gumbel

-0.4

C1,8 90◦

rotated
Joe

0.4 C1,9 Gumbel 0.4 C1,10 Clayton 0.4

Level 2
C2,3|1 Student

df = 5
0.4 C2,4|1 Student

df = 5
0.4 C2,5|1 Clayton 0.4

C2,6|1 Frank -0.4 C2,7|1 90◦

rotated
Gumbel

-0.4 C2,8|1 90◦

rotated
Joe

0.4

C2,9|1 Gumbel 0.4 C2,10|1 Clayton 0.4
Level 3

C3,4|1,2 Student
df = 5

0.4 C3,5|1,2 Clayton 0.4 C3,6|1,2 Frank -0.4

C3,7|1,2 90◦

rotated
Gumbel

-0.4 C3,8|1,2 90◦

rotated
Joe

0.4 C3,9|1,2 Gumbel 0.4

C3,10|1,2 Clayton 0.4
Level 4

C4,5|1,2,3 Clayton 0.4 C4,6|1,2,3 Frank 0.4 C4,7|1,2,3 90◦

rotated
Gumbel

0.4

C4,8|1,2,3 90◦

rotated
Joe

0.4 C4,9|1,2,3 Gumbel 0.4 C4,10|1,2,3 Clayton 0.4

Level 5
C5,6|1,2,3,4 Frank -0.4 C5,7|1,2,3,4 90◦

rotated
Gumbel

-0.4 C5,8|1,2,3,4 90◦

rotated
Joe

0.4

C5,9|1,2,3,4 Gumbel 0.4 C5,10|1,2,3,4 Clayton 0.4
Level 6

C6,7|1,2,3,4,5 90◦

rotated
Gumbel

0.4 C6,8|1,2,3,4,5 90◦

rotated
Joe

0.4 C6,9|1,2,3,4,5 Gumbel 0.4

C6,10|1,2,3,4,5 Clayton -0.4
Level 7

C7,8|1,2,3,4,5,6 90◦

rotated
Joe

0.4 C7,9|1,2,3,4,5,6 Gumbel 0.4 C7,10|1,2,3,4,5,6 Clayton 0.4

Level 8
C8,9|1,2,3,4,5,6,7 Gumbel 0.4 C8,10|1,2,3,4,5,6,7 Clayton 0.4

Level 9
C9,10|1,2,3,4,5,6,7,8 Clayton 0.4

Table 10: Summary of the tree-wise chosen pair-copulas (high-dimensional scenario 4)
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(a1) Pair-plot with Kendall’s τ values
of (z6, z7, z8, z9, z10) (Z-Level)

(a2) Pair-plot of (u6, u7, u8, u9, u10) (U-Level)

(b1) Empirical and theoretical cumulative
distribution function of u6

(b2) Empirical and theoretical density
function of u6

(c1) Empirical and theoretical cumulative
distribution function of u7

(c2) Empirical and theoretical density
function of u7

Figure 24: Summary of high-dimensional scenario 4
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(cont.)(d1) Empirical and theoretical
cumulative distribution function of u8

(cont.)(d2) Empirical and theoretical density
function of u8

(cont.)(e1) Empirical and theoretical
cumulative distribution function of u9

(cont.)(e2) Empirical and theoretical density
function of u9

(cont.)(f1) Empirical and theoretical
cumulative distribution function of u10

(cont.)(f2) Empirical and theoretical density
function of u10

Figure 24 (cont.): Summary of high-dimensional scenario 4
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6.5 Conclusions of the implications on this work

Summarizing the results of the simulation studies applied, we can say that the MH al-

gorithm can be regarded as having converged to the stationary distribution if the test

by Welch and Heidelberger does not suggest further need for a burn-in and ÊSS ≥ 100.

However,bigger values are recommended. If the values of ÊSS are too small, one should

be careful when considering the interpretation of the results, as they can contain a high

uncertainty.

One observation during the simulation was that, small scale simulations require less

iterations to get certain levels of ÊSS. This is caused by the fact, that smaller dimen-

sioned vectors also have a smaller number of dependencies within the vector which have

to be matched by the simulated random variables.

A further observation is, that the simulation of R-vines with elliptical copulas also results

in higher values of ÊSS. As the proposal distribution of our adaptive MH algorithm is

also elliptical, this fits with the theoretical findings derived in Chapter 4. As we showed

in Section 5.3, the convergence is improved when the proposal distribution is close to

the stationary distribution.
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7 Descriptive analysis of the empirical data set

So far, we have examined the feasibility and validity of the methods used. In this chapter,

we will thoroughly describe the empirical data set which we have used for the current work.

As we use market data on credit default swap (CDS) spreads, we will therefore first give

a comprehensive insight into the meaning of CDS spreads and explain possible benefits

of this approach. In the second part, a detailed overview of the institutions contained in

the data set will be provided, followed by a descriptive analysis of these data along with

regression analysis.

7.1 CDS spreads

Using balance sheets gives an economic point of view which is based on their capability to

predict the future of a company. However, the approach to analyze CDS spreads is more

of an actuarial/financial-mathematical point of view based on statistical methods. In this

approach, the predictions are based on statistical methods.

A CDS is a bilateral over-the-counter credit derivative contract that enables trading

the default risks of an underlying corporation.

The protection buyer pays a fixed annual premium, called a CDS spread, for a fixed

period of time to the protection seller, who in turn compensates the protection buyer

in case of a credit event of the reference entity. Thus, since a CDS enables to trade the

default risk of companies, it is comparable to an insurance contract. The CDS spread

thereby represents the price of this protection granted. Thus, institutions with higher

CDS spreads but same maturity indicate higher default probability.

Most of current financial stress tests, which can be found in published literature, are using

balance sheets of financial institutions, which are subject to legal restrictions and results

are therefore limited.

As CDSs are traded credit derivatives, one can consider them to be fair priced and therefore

appropriate to measure the risk of financial institutions.

It has been shown by Kou and Varotto, 2005, that CDS spreads can even predict decisions

of S&P and Moody’s. This fact emphasizes that statistical analyses using CDS spreads

have the potential to result in meaningful results considering the default risk of companies.

Another study by Cont et al., 2010, used network methods to evaluate the systemic risk of

financial institutions. It was mentioned that the inter-similarity of financial institutions

can increases the probability of contagion of financial distress. It has been shown in this
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study, that balance sheet sizes alone are not capable of indicating systemic importance.

In addition, Huang et al., 2009, explained, that only measuring correlation of CDS spreads

is a very restricted approach and thus other methods, as explained in this thesis, have to

be developed.

It is denoted in Chu et al., 2010, that until now, mainly Gaussian and Student models are

used in the financial context, which represents a great limitation.

Even if modeled by multivariate Brownian motion, it is implied that their joined copula is

normal (see Cont and Kan, 2011). Therefore, we will apply R-vines to the transformed

CDS spread data set to fully exploit the potential of the data.

On the other hand, one possible weakness of CDS spreads as suggested by Markose

et al., 2009, are the strong self-reflexive properties. Increasing CDS spreads can accelerate

the default event as ratings-downgrade follow. This observation represents a drawback of

CDS spreads. However as time series model were applied to the data set, these effects

were eliminated from the data set.

7.2 Overview of the data set

For our analysis, daily changes of senior CDS spreads were collected from Bloomberg

with a maturity of five years for the period from January 4th, 2006 to October 25th,

2011. This data set had to be transformed to the U-Level using estimated cumulative

distribution functions. Additional time series had to be applied to receive independent

random variables. For further information of this procedure see Hendrich, 2012.

The companies included in the investigation are summarized in Table 11. For each

of the companies, their short name, their financial sector, their country the geographical

region and whether the company was quoted as systemically important by Risk and

Soundness, 2009, is given in the table. For further details we refer to Hendrich, 2012.
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Company name Short name Sector Geographical region Country Systemic bank
Citigroup Inc. Citi Banking North America United States Yes
Goldman Sachs Inc. GS Banking North America United States Yes
JP Morgan Chase & Co. Corp. JPM Banking North America United States Yes
Banco Bilbao Vizcaya Argentaria S.A. BBVA Banking Europe Spain No
Banco Santander S.A. BS Banking Europe Spain Yes
Barclays plc Barclays Banking Europe United Kingdom Yes
BNP Paribas S.A. BNP Banking Europe France Yes
Deutsche Bank AG DB Banking Europe Germany Yes
Intesa Sanpaolo S.p.A. Intesa Banking Europe Italy No
Royal Bank of Scotland Ltd. RBS Banking Europe United Kingdom Yes
Société Générale S.A. SG Banking Europe France Yes
Standard Chartered plc StanCha Banking Europe United Kingdom No
UBS AG UBS Banking Europe Switzerland Yes
Unicredit S.p.A. Unicredit Banking Europe Italy Yes
Bank of China Ltd. BoC Banking Asia-Pacific China Yes
Kookmin Bank Kookmin Banking Asia-Pacific South Korea No
Sumitomo Mitsui Financial Group K.K. Sumitomo Banking Asia-Pacific Japan Yes
Westpac Banking Corp. Westpac Banking Asia-Pacific Australia No

Table 11: Overview of the banks selected for further analyses including geographical and sectoral clustering
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Company name Short name Sector Geographical region Country Systemic bank
ACE Ltd. ACE Insurance North America Bermuda /
Allstate Corp. Allstate Insurance North America United States /
American International Group Inc. AIG Insurance North America United States /
Chubb Corp. Chubb Insurance North America United States /
Hartford Financial Services Group Inc. Hartford Insurance North America United States /
XL Group plc XLG Insurance North America Bermuda /
Aegon N.V. Aegon Insurance Europe Netherlands /
Allianz SE Allianz Insurance Europe Germany /
Assicurazioni Generali S.p.A. AssGen Insurance Europe Italy /
Aviva plc Aviva Insurance Europe United Kingdom /
AXA S.A. AXA Insurance Europe France /
Hannover Ruck AG HannRe Insurance Europe Germany /
Legal & General Group plc LG Insurance Europe United Kingdom /
Munich Re AG MR Insurance Europe Germany /
Prudential plc Prudential Insurance Europe United Kingdom /
SCOR SE SCOR Insurance Europe France /
Swiss Re AG SwissRe Insurance Europe Switzerland /
Zurich Insurance Group AG Zurich Insurance Europe Switzerland /
QBE Insurance Group Ltd. QBE Insurance Asia-Pacific Australia /
Tokio Marine Holdings K.K. TM Insurance Asia-Pacific Japan /

Table 11 (cont.): Overview of the insurances selected for further analyses including geographical and sectoral clustering
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As there are 3 North American banks included in the model, we will in the following

chapter compare these institutions to 3 major European banks by asset size as it is stated

in Tor and Sarfraz, 2013.

We will analyze the dependencies among different financial institutions in this section.

For this we will use the empirical Kendall’s τ as given in Definition 3.6. The values

of (τ̂i,j)i<j are calculated for institutions i and j. The empirical distribution of these is

investigated in the following figures.

Figure 25: Box plot of the empirical Kendall’s τ values

In Figure 25 we can see that the empirical Kendall’s τ values vary in a great range of

variables. The median value is at 0.228, however also a lot of higher values of Kendall’s τ

do exist.

The box plot indicates one outlier, which is the Kendall’s τ of the company Banco Bilbao

Vizcaya Argentaria S.A. (BBVA) and Banco Santander S.A. (BS). These companies are

both Spanish, which is one explanation for the strong dependence. One question which

arises from this observation is, whether these institutions will have a high Kendall’s τ in

the simulations again. This question will be answered in Section 8.12.

To investigate the distribution of the Kendall’s τ values in more detail we plot the

histogram in Figure 26. We also plot the distribution of the different geographical regions

of the pair of companies associated with the Kendall’s τ values indicated by different

coloring in this histogram.
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Figure 26: Histogram of the empirical Kendall’s τ values with different colors for companies
from different geographical regions

In Figure 26 we can see that the highest values of Kendall’s τ can be observed within

the European market, followed by the North American market. The lowest values can be

found between Asian Pacific institutions on one side and European or North American

institutions on the other side.

7.3 Regression model

We want to apply a regression model using the empirical Kendall’s τ values to describe the

data set. The advantage of using the Kendall’s τ values compared to the θ̂i,j of the R-vine

model is that these values can be compared among all families of copulas, to summaries

the strength of the dependence in the pair-copula.

With these results we will try to predict the results of the stress test in Chapter 8.

To analyze the dependencies in the data set model, we want to apply a regression with a

linear model. For this we have to transform the values of τ̂i,j to the whole real axis. This

can be done by the Fisher transformation.

Definition 7.1 (Fisher transformation).

The Fisher transformation is defined as:

z(τ) =
1

2
ln

(
1 + τ

1− τ

)
Thus, for all values of τ̂i,j the associated z values are:
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zi,j := z(τ̂i,j) =
1

2
ln

(
1 + τ̂i,j
1− τ̂i,j

)
In our statistical model we include the following characteristics, which we will use as the

set of explaining variables:

An institution can fit to the following 3 geographical locations:

1. North America

2. Europe

3. Asia Pacific

The institution is also part of one of the following core businesses:

1. bank

2. insurance

We first examine a full regression model. In a second step we analyze a smaller regression

model in order to compare both models.

If we assume, that the Kendall’s τ of two companies, dependence on the characteristics

of both companies, the coefficients for the following matrix of combinations has to be

estimated.
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Bank &
North
America

Bank &
Europe

Bank &
Asia Pa-
cific

Insurance
& North
America

Insurance
& Europe

Insurance
& Asia
Pacific

Bank &
North
America

β1 β2 β4 β7 β11 β16

Bank &
Europe

β2 β3 β5 β8 β12 β17

Bank &
Asia Pa-
cific

β4 β5 β6 β9 β13 β18

Insurance
& North
America

β7 β8 β9 β10 β14 β19

Insurance
& Europe

β11 β12 β13 β14 β15 β20

Insurance
& Asia
Pacific

β16 β17 β18 β19 β20 β21

Table 12: First proposed set of regression coefficients for the analysis of empirical Kendall’s
τ values (full regression model)

The problem of this model is the high number of values that have to be estimated. Thus,

we propose a second model with a lower number of variables. Assume the 6 possible

properties of a company (Bank & North America, Bank & Europe, Bank & Asia Pacific,

Insurance & North America, Insurance & Europe, Insurance & Asia Pacific) are numbered

from 1 to 6 with:

zi,j = β1 + β2 · (Ii Bank + Ij Bank) + β3 · (Ii NorthAmerica + Ij NorthAmerica)

+ β4 · (Ii Europe + Ij Europe) +
6∑

k=1

βk+4Ii, j share combination k

This leads to the following symmetric coefficient matrix:
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Bank &
North
America

Bank &
Europe

Bank
& Asia
Pacific

Insur-
ance &
North
America

Insur-
ance &
Europe

Insur-
ance &
Asia Pa-
cific

Bank &
North
America

β1 +2β2 +
2β3 + β5

β1 +2β2 +
β3 + β4

β1 +2β2 +
β3

β1 + β2 +
2β3

β1 + β2 +
β3 + β4

β1 + β2 +
β3

Bank &
Europe

β1 +2β2 +
β3 + β4

β1 +2β2 +
2 ·β4 +β6

β1 +2β2 +
β4

β1 + β2 +
β3 + β4

β1 + β2 +
2β4

β1 + β2 +
β4

Bank
& Asia
Pacific

β1 +2β2 +
β3

β1 +2β2 +
β4

β1 +2β2 +
β7

β1 + β2 +
β3

β1 + β2 +
β4

β1 + β2

Insur-
ance &
North
America

β1 + β2 +
2β3

β1 + β2 +
β3 + β4

β1 + β2 +
β3

β1 +2β3 +
β8

β1 + β3 +
β4

β1 + β3

Insur-
ance &
Europe

β1 + β2 +
β3 + β4

β1 + β2 +
2β4

β1 + β2 +
β4

β1 + β3 +
β4

β1 +2β4 +
β9

β1 + β4

Insur-
ance &
Asia Pa-
cific

β1 + β2 +
β3

β1 + β2 +
β4

β1 + β2 β1 + β3 β1 + β4 β1 + β10

Table 13: Second proposed set of regression coefficients for the analysis of empirical
Kendall’s τ values (smaller regression model)
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The resulting values of the smaller regression are summarized in Table 14:

parameter of the model Estimate

values

p-value

β1 (Intercept) 0.0181 0.0328

β2 (Bank) 0.0169 0.00000415

β3 (North America) 0.0559 < 10−16

β4 (Europe) 0.1617 < 10−16

β5 (Both companies are: Bank & North America) 0.3336 < 10−16

β6 (Both companies are: Bank & Europe) 0.1362 < 10−16

β7 (Both companies are: Bank & Asia Pacific) 0.148 2.22 · 10−11

β8 (Both companies are: Insurance & North America) 0.2147 < 10−16

β9 (Both companies are: Insurance & Europe) 0.1506 < 10−16

β10 (Both companies are: Insurance & Asia Pacific) 0.1226 0.0166

Table 14: Parameters of second proposed set of coefficients for the analysis of the data set
(smaller regression model)

To compare the models with coefficients as described in Table 12 and in Table 13, we

performed a Cox-test for non-nested models (see H.Greene, 2003). This test analysis, if

the variables of one of the two compared models, if added to the other model, add further

information. This would indicate that the model is to small.

The set of variables of the full model, adds further information to the second model

(p-value< 0.000001). The second model can not add further information to the first model,

as this model is already the full model. Thus, the full model is significantly better.

We calculate and analyze the full model described in Table 12 and receive the empirical

estimated values as listed in Table 15:
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Bank &

North

America

Bank &

Europe

Bank

& Asia

Pacific

Insur-

ance &

North

America

Insur-

ance &

Europe

Insur-

ance &

Asia Pa-

cific

Bank &

North

America

0.497 0.262 0.135 0.248 0.252 0.117

Bank &

Europe

0.262 0.511 0.159 0.195 0.403 0.131

Bank

& Asia

Pacific

0.135 0.159 0.200 0.155 0.174 0.200

Insur-

ance &

North

America

0.248 0.195 0.155 0.344 0.201 0.137

Insur-

ance &

Europe

0.252 0.403 0.174 0.201 0.492 0.155

Insur-

ance &

Asia Pa-

cific

0.117 0.131 0.200 0.137 0.155 0.140

Table 15: Estimated values of the regression coefficients for the analysis of empirical
Kendall’s τ values with heat-map coloring (full regression)
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One can see in Table 15 that the strongest dependencies exist among European banks

(0.511), among North American banks (0.497), among European insurances (0.492) and

between European insurances and European banks (0.403). On the other hand, the

dependency of Asian companies with companies from other regions is very low. We will

compare these results with the results of the simulation study in Chapter 8.

From the values in Table 15 one can see that the dependence within the North American

banking market is the highest parameter, which can be seen as one possible reason for the

severe impact of the financial crises since 2007.

Based on these empirical Kendall’s τ values, we can make predictions of the results

of the stress tests in Chapter 8.

An obvious prediction would be, that a stress situation induced by European banks would

effect other European banks the most. These effects should be the strongest effects, among

all dependencies, as within the European banking sector the strongest dependencies exist.

Also, one would assume that institutions from the Asia-Pacific region to be less effected

by stress tests.

Summarizing the results, the geographical region has a more important role than the

financial sector in the stress tests.



8 APPLIED STRESS TESTS BASED ON THE MH ALGORITHM 100

8 Applied stress tests based on the MH algorithm

In this chapter we will perform stress tests to empirically fitted R-vine models, based on the

data explained in Chapter 7. This will be done for 4 different market models, one of which

is the full model and 3 are sub-models. For these models we will at first choose the R-vine

structure based on maximum likelihood estimation, the Dissmann algorithm and the AIC

criterion as explained in Section 3.6 and then perform different stress tests to this models.

In the stress test we will simulate conditional random variables, derived by the 4 R-vine

models, with Algorithm 4 which was developed in Chapter 5 and has been validated in

Chapter 6. This procedure will produce conditional random variables on the U-Level.

Thus we will work on the quantile level, meaning that e.g. 0.99 is the 99% quantile. We

will evaluate the effect of the stress situations upon the different institutions, by comparing

the distributions of these conditional random variables.

In this chapter we compare 4 different financial models which are given below for which

we investigate the effect of a financial crises:

- Model 1: World market

- Model 2: European market

- Model 3: North American market

- Model 4: Banking market

In each model, we conduct up to 3 kinds of stress test. More specifically, we either stress

the European systemic banks, the North American systemic banks or the 3 major European

systemic banks which are Barclays pls, BNP Paribas S.A and Deutsche Bank AG. For

the North American banks and the major European systemic banks we set the values to

either the 0.9 quantile, the 0.95 quantile or the 0.99 quantile and simulate the conditional

random variable of the remaining variables, given these conditional values. As we have 8

systemic European banks, given in Table 11, and since high quantiles result in longer

burn-in periods and slower convergence, we limit the quantile levels to 0.9, 0.95 for the set

of European systemic banks in order to ensure reliable convergence of the data.

We summarize the conducted stress tests in the Table 25.

To estimate the effect of shocks to the financial institutions, we analyzed the distri-

bution of their conditional values by using different stress tests. For this we will compare

the median of the random variables. As we work on the U-Level, the unconditional
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random variables have a median value of 0.5.

As we evaluate CDS spreads, increased values denote an increase in the default probability.

Thus, we will evaluate how much the median values of the conditional random variables

have been increased compared to this value.

8.1 Copula model selection

We implemented vine copula models with all pair-copulas listed in Table 1. These copulas

are the pair-copulas which are implemented in the R-package VineCopula (see Table 1 in

Section 3.2). We compared 4 different vine-structures for all 4 models:

- full R-vine

- R-vine with pairwise independence tests

- full C-vine

- C-vine with pairwise independence tests

The pairwise independence test was performed as described in Genest and Favre, 2007,

with a confidence level of α = 0.05.

Our aim was to find the model, which is closest to the true model. To compare the different

models we therefore performed Vuong tests as described in Vuong, 1989. If the test does

not show, that one of the compared models is significantly closer to the actual model than

all other models, we choose the model according to the Akaike information criterion (AIC),

meaning that lower AIC values indicate a better model.
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8.2 World market model

As we can see from Table 16, the Vuong test favors the full R-vine over the R-vine model

with pairwise independence tests and the full C-vine over the C-vine model with pairwise

independence tests. However, the test does not show a significant difference between the

full C-vine and the full R-vine model, thus we choose the vine model according to the AIC

criterion. From Table 17, it can be concluded that we select the full C-vine model. We

additionally list the values of the log-likelihood (LLH) and BIC in Table 17.

Comparison

Vuong

test

Vuong test

with AIC

correction

Vuong test

with BIC

correction

full R-vine test statistic 1.3904 1.7432 2.6648

to full C-vine p-value 0.164 0.081 0.007

R-vine with independence tests test statistic -0.2483 1.0602 4.4776

to C-vine with independence tests p-value 0.803 0.289 0.000

full C-vine test statistic 12.742 4.1398 -18.3262

to C-vine with independence tests p-value 0.000 0.000 0.000

full R-vine test statistic 14.393 4.8077 -20.2255

to R-vine with independence tests p-value 0.000 0.000 0.000

Table 16: Statistics and p-values of the Vuong test comparing different copula models
(World market)

Number of

parameters

LLH AIC BIC

full R-vine 940 21237.82 -39984.41 -35685.74

R-vine with independence tests 447 20497.54 -40101.08 -37766.27

full C-vine 959 21162.96 -40407.91 -35398.77

C-vine with independence tests 519 20511.21 -39984.41 -37273.52

Table 17: Comparison of different copula models (World market)
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8.3 European market model

The same procedure as described above was undertaken with the second model. As we

can see from Table 18, the Vuong test favors the full C-vine over the C-vine model with

independence tests, but the Vuong test does not show a significant difference between the

full vine models and the vine models with independence tests. Therefore, we choose the

vine model according to the AIC criterion. From Table 19, it can be concluded that we

select the full R-vine model.

Comparison

Vuong

test

Vuong test

with AIC

correction

Vuong test

with BIC

correction

full R-vine test statistic 1.254 1.117 0.7591

to full C-vine p-value 0.209 0.263 0.447

R-vine with independence tests test statistic -1.0591 -0.2582 1.8333

to C-vine with independence tests p-value 0.289 0.796 0.066

full C-vine test statistic 7.0596 2.8298 -8.2168

to C-vine with independence tests p-value 0.000 0.004 0.000

full R-vine test statistic -1.0591 -0.2582 1.8333

to R-vine with independence tests p-value 0.289 0.796 0.066

Table 18: Statistics and p-values of the Vuong test comparing different copula models
(European market)

Number of

parameters

LLH AIC BIC

full R-vine 225 16089.26 -31384.52 -29310.88

R-vine with independence tests 145 15831.86 -31139.73 -29771.22

full C-vine 228 16034.35 -31286.69 -29244.38

C-vine with independence tests 160 15880.8 -31163.59 -29601.82

Table 19: Comparison of different copula models (European market)
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8.4 North American market model

As we can see from Table 20, the Vuong test favors the full R-vine over the R-vine model

with independence tests and the full C-vine over the C-vine model with independence

tests. However, the test does not show a significant difference between the full C-vine

and the full R-vine model, thus we choose the vine model according to the AIC criterion.

From Table 21, it can be concluded, that we select the full R-vine model.

Comparison

Vuong

test

Vuong test

with AIC

correction

Vuong test

with BIC

correction

full R-vine test statistic 1.6829 1.8338 2.2281

to full C-vine p-value 0.092 0.066 0.025

R-vine with independence tests test statistic 1.8517 1.7769 1.5816

to C-vine with independence tests p-value 0.064 0.075 0.113

full C-vine test statistic 2.2203 0.9591 -2.3344

to C-vine with independence tests p-value 0.026 0.337 0.019

full R-vine test statistic 2.6702 1.4065 -1.8939

to R-vine with independence tests p-value 0.007 0.159 0.058

Table 20: Statistics and p-values of the Vuong test comparing different copula models
(North American market)

Number of

parameters

LLH AIC BIC

full R-vine 63 3141.22 -6156.45 -5827.385

R-vine with independence tests 55 3124.32 -6138.64 -5851.364

full C-vine 65 3118.92 -6107.85 -5768.342

C-vine with independence tests 54 3099.56 -6091.12 -5809.065

Table 21: Comparison of different copula models (North American market)
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8.5 Banking market model

As we can see from Table 22, the Vuong test favors the full R-vine over the R-vine model

with independence tests and the full C-vine over the C-vine model with independence

tests. However, the test does not show a significant difference between the full C-vine

and the full R-vine model, thus we choose the vine model according to the AIC criterion.

From Table 23, it can be concluded, that we select the full R-vine model.

Comparison
Vuong
test

Vuong test
with AIC
correction

Vuong test
with BIC
correction

full R-vine test statistic 0.0476 0.1558 0.4384
to full C-vine p-value 0.962 0.876 0.661

R-vine with independence tests test statistic -0.5645 -0.0479 1.301
to C-vine with independence tests p-value 0.572 0.961 0.193

full C-vine test statistic 6.7856 2.867 -7.367
to C-vine with independence tests p-value 0.000 0.004 0.000

full R-vine test statistic 6.9518 2.8463 -7.8756
to R-vine with independence tests p-value 0.000 0.004 0.000

Table 22: Statistics and p-values of the Vuong test comparing different copula models
(Banking market)

Number of
parameters

LLH AIC BIC

full R-vine 225 9029.78 -17609.57 -16434.33
R-vine with independence tests 145 8894.31 -17498.64 -16741.26
full C-vine 228 9028.46 -17600.93 -16410.02
C-vine with independence tests 160 8910.71 -17501.43 -16665.7

Table 23: Comparison of different copula models (Banking market)
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We want to compare the R-vine structures estimated for the 4 models to evaluate the

expected speed of convergence.

World
market
model

European
market
model

North
American
market
model

Banking
market
model

Gaussian 41 (5.83%) 4 (1.58%) 1 (2.78%) 9 (5.88%)
Student 198 (28.17%) 126 (49.8%) 23 (63.89%) 55 (35.95%)
Clayton 45 (6.4%) 7 (2.77%) 0 (0%) 11 (7.19%)
Gumbel 27 (3.84%) 7 (2.77%) 1 (2.78%) 9 (5.88%)
Frank 128 (18.21%) 40 (15.81%) 3 (8.33%) 22 (14.38%)
Joe 13 (1.85%) 3 (1.9%) 1 (2.78%) 2 (1.31%)
BB1 4 (0.57%) 0 (0%) 0 (0%) 0 (0%)
BB8 27 (3.84%) 8 (3.16%) 1 (2.78%) 8 (5.23%)
180◦ rotated Clayton 40 (5.69%) 11 (4.35%) 0 (0%) 8 (5.23%)
180◦ rotated Gumbel 38 (5.41%) 12 (4.74%) 2 (5.56%) 6 (3.92%)
180◦ rotated Joe 28 (3.98%) 8 (3.16%) 0 (0%) 6 (3.92%)
180◦ rotated BB1 1 (0.14%) 0 (0%) 0 (0%) 1 (0.65%)
180◦ rotated BB7 0 (0%) 0 (0%) 1 (2.78%) 0 (0%)
180◦ rotated BB8 21 (2.99%) 9 (3.56%) 2 (5.56%) 6 (3.92%)
90◦ rotated Clayton 24 (3.41%) 3 (1.19%) 0 (0%) 3 (1.96%)
90◦ rotated Gumbel 10 (1.42%) 0 (0.4%) 0 (0%) 0 (0%)
90◦ rotated Joe 9 (1.28%) 4 (1.58%) 0 (0%) 2 (1.31%)
90◦ rotated BB8 3 (0.43%) 1 (0.4%) 0 (0%) 1 (0.65%)
270◦ rotated Clayton 28 (3.98%) 6 (2.37%) 1 (2.78%) 1 (0.65%)
270◦ rotated Gumbel 3 (0.43%) 0 (0%) 0 (0%) 1 (0.65%)
270◦ rotated Joe 13 (1.85%) 3 (1.19%) 0 (0%) 1 (0.65%)
270◦ rotated BB8 2 (0.84%) 0 (0%) 0 (0%) 1 (0.65%)

Table 24: Distribution of pair-copula families for each vine model

In Table 24 one can see a summary of the pair-copulas chosen in each model. One can

see that overall Student pair-copulas are chosen most often. The second most often chosen

pair-copula is the Frank copula.

However, one can see great differences among the models, while in the World market model

only 28% of the pair-copulas are Student copulas, in the North American market model

63% of the pair-copulas are Student copulas. Considering the conclusions of Section 6.5,

we would thus assume the World market to have worse convergence properties. Because of

this reason, we will apply longer running MH algorithms for the World market model.
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8.6 Overview of simulated stress tests

For the fitted R-vine and C-vine structures we conditioned on different sets of variables,

which are summarized in Table 25. We simulated realizations of these conditional random

variables by applying Algorithm 4, the MH algorithm with a proportion of β = 0.1

univariate Beta distributed proposed updates and a proportion of 1− β = 0.9 adapted

Gaussian proposed updates.

Based on the dimension of the models and a medium size simulation with 20000 samples,

we choose different values for the number of the runs of the MH algorithm. To ensure

convergence, we choose a minimum burn-in length of 30000 and a simulation size after

initial burn-in between 30000 and 280000, depending on the results of the first medium

size simulation.

To investigate if further burn-in was required the test by Welch and Heidelberger as

described in Section 4.3, was applied to the output of the algorithm. According to the

result of the test, the burn-in was increased if required.
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Model 1 Model 2
Test No. 1 2 3 4 5 6 7 8 9 10 11 12 13
Market World market European

market
Stress-
inducing
group

European
systemic banks

North American
systemic banks

major European
banks

European
systemic banks

major European banks

Stress level
(moderate/
severe/ ex-
treme)

mode-
rate
(0.9)

severe
(0.95)

mode-
rate
(0.9)

severe
(0.95)

ex-
treme
(0.99)

mode-
rate
(0.9)

severe
(0.95)

ex-
treme
(0.99)

mode-
rate
(0.9)

severe
(0.95)

mode-
rate
(0.9)

severe
(0.95)

ex-
treme
(0.99)

Chosen vine
model

full C-vine full R-vine

Burn-in 55000 80000 70000 110000 130000 30000 55000 105000 30000 30000 30000 35000 40000
Simulation
size (after
burn-in)

225000 200000 160000 120000 150000 260000 225000 175000 40000 40000 40000 40000 40000

Effective
sample size

ÊSS (mini-
mum,maximum)

(431,
664)

(478,
542)

(226,
411)

(171,
264)

(176,
286)

(425,
703)

(282,
537)

(94,
525)

(463,
624)

(382,
602)

(347,
575)

(229,
386)

(198,
501)

Table 25: Overview of stress tests performed with the empirical data set
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Model 3 Model 4
Test No. 14 15 16 17 18 19 20 21
Market North American Banking market

market
Stress-
inducing
group

North American
systemic banks

European
systemic banks

North American
systemic banks

Stress level
(moderate/
severe/ ex-
treme)

mode-
rate
(0.9)

severe
(0.95)

ex-
treme
(0.99)

mode-
rate
(0.9)

severe
(0.95)

mode-
rate
(0.9)

severe
(0.95)

ex-
treme
(0.99)

Chosen vine
model

full R-vine full R-vine

Burn-in 30000 30000 30000 33000 30000 30000 33000 36000
Simulation
size

30000 30000 30000 30000 40000 40000 27000 24000

Effective
sample size

ÊSS (mini-
mum,maximum)

(1211,
1307)

(1115,
1354)

(1299,
1376)

(305,
423)

(911,
1100)

(864,
1150)

(275,
431)

(279,
383)

Table 25 (cont.): Overview of stress tests performed with the empirical data set
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In the following Sections 8.7- 8.10, we will show the results of different stress tests listed

in Table 25. In Section 8.11 and 8.12, we then discuss the possible interpretation of

these stress tests.

The first figure in each of the following sections shows the performance of the respective

market in stress situations with different stress levels. The companies printed in italic

and bold letters represent the institutions inducing the current stress situation. We

therefore use the U-Level transformed CDS spreads, which can be seen as a measure

for the default probability as described in Section 7.1. As higher values of the U-Level

variables would also result in higher values in the original non-transformed variables,

these would indicate a higher default probability in the specific stress situation. The

dotted colored lines depict the overall medians observed in the specific scenarios. For each

institution, it is thus possible to evaluate whether the reaction is stronger than the overall

median.

The second figure in each section shows the differences in the performance of the respective

markets in increasingly extreme stress situations. The represented values indicate by how

much the effect of induced stress upon the institutions is influenced by the severity of the

crisis, from a moderate over a severe to an extreme financial crisis.

For improved visualization, we assigned a separate color to each region: Red for North

America, blue for Europe and green for Asia Pacific. Additionally, bright colors indicate

banks, whereas light colors indicate insurances. We therefore have 6 combinations, each of

which is represented by a characteristic color:

- North American banks

- North American insurances

- European banks

- European insurances

- Asian Pacific banks

- Asian Pacific insurances

These colorings will make it easer to compare the different performances in the stress

situations.
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8.7 Performance of the world market model

(a) Performance of the
world market in stress
situations induced by
European systemic
banks1

(b) Performance of the
world market in stress
situations induced by
North American sys-
temic banks1

(c) Performance of the
world market in stress
situations induced by
major European banks

Figure 27: Performance of the world market in stress situations - Summary of median values
1 Symbols depict the different institutions, whereas the dotted horizontal line represents

the overall median value
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(a) Differences in the
performance of the
world market in stress
situations induced by
European systemic
banks

(b) Differences in the
performance of the
world market in stress
situations induced
by North American
systemic banks

(c) Differences in the
performance of the
world market in stress
situations induced by
major European banks

Figure 28: Differences in the performance of the world market in stress situations - Summary
of differences in median values
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8.8 Performance of the European market model

(a) Performance of the European
market in stress situations induced
by European systemic banks1

(b) Performance of the European
market in stress situations induced
by major European banks1

Figure 29: Performance of the European market in stress situations - Summary of median
values
1 Symbols depict the different institutions, whereas the dotted horizontal line represents

the overall median value
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(a) Differences in the performance
of the European market in stress
situations induced by European
systemic banks

(b) Differences in the performance
of the European market in stress sit-
uations induced by major European
banks

Figure 30: Differences in the performance of the European market in stress situations -
Summary of differences in median values
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8.9 Performance of the North American market model

Figure 31: Performance of the North Amer-
ican market in stress situations induced by
North American systemic banks - Summary
of median values1

1 Symbols depict the different institutions, whereas the dotted horizontal line represents

the overall median value
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Figure 32: Performance of the North Amer-
ican market in stress situations induced by
North American systemic banks - Summary
of median values
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8.10 Performance of the banking market model

(a) Performance of the banking
market in stress situations induced
by European systemic banks1

(b) Performance of the banking mar-
ket in stress situations induced by
North American systemic banks1

Figure 33: Performance of the banking market in stress situations - Summary of median values
1 Symbols depict the different institutions, whereas the dotted horizontal line represents

the overall median value
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(a) Differences in the performance
of the banking market in stress
situations induced by European
systemic banks

(b) Differences in the performance
of the banking market in stress situ-
ations induced by North American
systemic banks

Figure 34: Differences in the performance of the banking market in stress situations - Summary
of differences in median values
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8.11 Interpretation of Z-Level plots

So far, we have only visualized the median values of the stress tests. However, we also want

to give a comprehensive overview of the whole situation on financial markets, given a stress

situation. For this we developed a graphic method of providing a great range of information.

The new form of Z-Level plot can visualize the whole joint distribution of the mar-

kets under stress. One small example for the Z-Level plot is shown in Figure 35.

On the upper triangular, the empirical Kendall’s τ values are plotted and colored to

indicate the strength of dependence of the companies in the stress situation ranging from

dark blue for low dependencies, over gray for medium dependencies to dark red for strong

dependencies.

On the diagonal, the empirical histograms of the conditional random variables are plotted.

Based on the fact, that the variables are transformed to the Z-Level the unconditional

random variables are N0,1 distributed, as the U-Level variables are uniformly distributed

on [0, 1]. The unconditional random variable transformed to the Z-Level has median zero,

marked as a gray dotted line in the figures. In the stress situations the values will usually

be shifted to the right, indicating higher default probabilities. The histogram can moreover

visualize the whole distribution of the conditional random variable, which provides further

information besides the median values. The different colors of the histograms indicate

North American banks, North American insurances, European banks, European insurances,

Asian Pacific banks and Asian Pacific insurances (see Appendix).

On the lower triangular, there are the contour plots of the bivariate distributions. As

the empirical Kendall’s τ values denote the strength of dependence only by a single number,

we use these images to give a better indication of the specific type of co-movement of the

values. The derived shape plots can therefore be compared to the plots given in Section

3.7 in order to evaluate the type of dependence.

The Z-Level plots for all 21 stress tests are given in Appendix A.
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(a1) Independence copula with uniform
margins

(a2) Gaussian copula with τ = 0.5 and
uniform margins

(b1) Gaussian copula with τ = 0.5 and
margins shifted to the right

(b2) Clayton copula with τ = 0.5 and
uniform margins

Figure 35: Example illustrating Z-Level plot and Kendall’s τ values

As mentioned above Figure 35 is an example for a Z-Level plot, generated by 5000

random samples. In (a1), (a2) and (b2) the random variables both have uniform margins,

as it can be seen in the histograms. Thus, these random variables have the same uniform

distribution as the unconditional random variables. Furthermore, by considering the

histograms, it is shown in (b1) that the random variables are shifted to the right, which is

usually the case in stress situations. In (a1) and (a2) one can compare random variables

with the same marginal distribution, but with different Kendall’s τ values. It is also

recognizable how the shape of the contour plot changes. When comparing (a2) and (b2)

one can see the marginal distributions and the Kendall’s τ values are the same, but the
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contour plots look differently, as the kind of co-movement is different. This can lead to

different interpretations of the dependence.

8.12 Interpretation of the results of the simulated stress situa-

tions

In this section we will at first analyze the results of the median values for all 4 markets. We

will hereby analyze which institutions are effected the most in the conducted stress tests.

The stress test is therefore conducted with strictly monotonously transformed daily CDS

spread changes, thus high increases represent an increase in the default probability. This

in return means, that institutions with higher values are stronger effected than institutions

with lower values.

In the second part of the interpretation we will focus on the Z-Level plots, introduced in

Section 8.11.

First, we will interpret the median values: In all market models, it can be observed

that with increasing stress level the overall median value also increases. This observation

is reasonable from an economical point of view, as it implies that in more extreme stress

situations the average default probability increases. This observation therefore supports

the validation of the stress tests applied.

A further validating observation becomes apparent when comparing the results of the

world market and the European market for the stress induced by either a larger group of

8 European banks or 3 major European banks.

In the case of the larger group of 8 systemic European banks, the overall median is higher

than in the stress test situation induced by the smaller group. This can also be seen as

economically plausible, as a bigger proportion of the market is under stress, and thus the

stress situation is more extreme. However, in Figure 29, it can be seen that the overall

median is only moderately increased. This shows that Barclays, BNP and DB representing

the major 3 institutions in Europe, whereas other institutions do not contribute much to

the increase in stress.

It is therefore initially important to investigate the results of the European banks across

all stress tests in the following paragraph. Standard Chartered plc (Stancha) is less effected

by stress induced by European banks than the other European banks. This indicates that

this company is less interconnected to the European banking market.

It can be noted that the European banks are far more effected by moderate and severe

stress situations induced by North American banks than the North American insurances.
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More precisely, the overall medians of the European banks in moderate and severe stress

are 0.743 and 0.784, while the overall medians of the North American insurances are 0.714

and 0.768. This observation changes in the extreme stress test situation where the overall

median of the North American insurances is higher (0.887) than the median value of

the European banks (0.867). This observation hence demonstrates that the geographical

region is not always the most influential factor.

Last but not least, the European insurances which are effected the least by stress situ-

ations induced by one of the three stress inducing groups in the world market and the

European market are Legal and General Group pls (LG), Prudential plc (Prudent) and

Score SE (SCOR). These institutions are therefore relatively less effected by financial crises.

Regarding the world market and the North American market, the North American

insurance which is least influenced by stress induced by North American banks, is Chubb

Corp. (Chubb).

In view of the Asian Pacific market, the institutions here are effected little by stress

induced by either European or North American institutions. Tokio Marine Holdings K. K.

(TM) is the least effected institution in most of the stress tests. The least effected bank

in most of the stress tests is Sumitomo Mitsui Financial Group K. K. (Sumit.). Both

institutions, TM and Sumit. are Japanese institutions. This indicates that the Japanese

financial market would be least effected by crises induced by North American or European

banks, considering all financial markets included in this study.

Thus the probability that an European or North American crises will cross-over to the

Asian Pacific financial sector can be regarded as rather small.

In the second part we will now focus on the Z-scale plots, introduced in Section 8.11 and

shown in detail in the Appendix.

As a full analysis of all scenarios would take too long, some key results will be summarized.

It can be observed that institutions from the same geographical region form a clus-

ter in the heat-map, as institutions within these groups have high Kendall’s τ values.

In stress tests 1 and 2 (Figure A.1, A.2) and also in stress tests 9 and 10 (Figure

A.9, A.10) we see that the European banks, especially BBVA and Intesa, are effected

more than the European insurances are, as their distribution is more increased than the

distribution of the insurances. However, surprisingly, the Kendall’s τ values within the
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group of banks and between the group of banks and the group of insurances is very low,

whereas the Kendall’s τ values in the group of insurances are much higher. This has

therefore an interesting interpretation, as: BBVA and Intesa are effected the most by an

European induced crises, however they do not effect other institutions.

In the stress tests 1-2, and 6-8 (Figure A.1, A.2, A.6, A.7, A.8) one can see that the

North American companies are not as strongly effected as the European institutions, but

the dependencies within the North American institutions are still high.

A still open question is the comparison of the stress induced by European and North

American banks. Just comparing the overall median values in the world market model in

Figure 27 is not appropriate, as the high number of European institutions, which are

more effected by stress induced by European banks makes the comparison biased.

We therefore propose two procedures to compare the effects:

At first, the effect of both groups upon the Asian-Pacific institutions is measured by

comparing the overall median of the Asian Pacific institutions in these stress situations.

As a second component the comparison of the effect of North American banks upon the

major European banks and vice versa was chosen. Thus, in Figure 36 the effects of the

analysis can be compared more easily.
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(a) Comparison of the median values of:
-The effect of North American banks
upon Asian Pacific institutions
-The effect of major European banks
upon Asian Pacific institutions

(b) Comparison of the median values of:
-The effect of North American banks
upon major European banks
-The effect of major European banks
upon North American banks

Figure 36: Comparison of the effect of stress induced by North American banks and major
European banks

The comparison of the effect of stress induced by major European and major North

American institutions upon Asian institutions is shown in Figure 36 (a). In Figure 36

(b) we compare how the major European and major North American institutions are

effecting each other.

It can be seen that in moderate stress situations, the effect of European institutions is

stronger than the effect of North American institutions. However, this effect is no longer

present in more severe stress situations. Thus, only in moderate stress situations the effect

of European institutions is more important than the effect of North American institutions.
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9 Similarity-based pair-copula constructions

Influenced by the work of Gräler and Pebesma, 2011, where an approach was applied to

geographical distances between observation points, we developed a new approach which

we describe in the following pages.

This method will strongly differ from other methods, as we will derive procedures, which

can be used for regression models on C-vines.

In this respect, we will introduce the concept of similarity of financial institutions,

which corresponds to the role of geographical distances as reported by Gräler and Pebesma,

2011, in a way that high values of similarity can be interpreted as small distances between

points and thus as a high dependence.

9.1 Similarity-based pair-copulas

We want to define a similarity measure which evaluates the strength of the association of

two vectors with uniform margins. This measure should indicate the strength of connect-

edness of two institutions, which we want to evaluate in this thesis.

The general definition of a similarity measure is as follows:

Definition 9.1 (Similarity measure).

A similarity measure s : [0, 1]n × [0, 1]n × {1, ..., d} × {1, ..., d} → R+

assigns two random vectors ui,uj with values in [0, 1]n associated with two institutions

(i, j), with a positive real similarity value. This similarity measure s defines a similarity

matrix for a set of d vectors (ui)i=1,...,d defined as:

S = (si,j)i,j=1,...,d = (s(ui,uj, (i, j)))i,j=1,...,d

Higher values of s(ui,uj, (i, j)) represent more similarity between ui and uj, while lower

values indicate less similarity. One example for such a similarity measure, where s is a

function of ui and uj , is the Pearson correlation. In this case, the matrix S becomes a

correlation matrix.

Another example for a similarity measure containing the indices i and j is the similarity

of institutions, which will be used in Section 9.4:
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Definition 9.2 (Similarity of institutions).

The similarity between the institutions i and j, with measurements ui ∈ [0, 1]n and

uj ∈ [0, 1]n is given by:

s(ui,uj, i, j) := |τ̂(ui,uj)|+ geographical closeness(i, j)

The values for the closeness among the geographical regions, geographical closeness(i, j),

can be chosen arbitrarily, but should be symmetric in i and j.

Higher values for the geographical closeness indicate a high inter-similarity of these

geographical regions, which can be interpreted as small geographical distances between

these institutions.

For the analysis, the following values listed in Table 27 were chosen:

North America Europe Asia Pacific

North America 1
0.002

1.002

0.002

1.002

Europe
0.002

1.002
1

0.001

1.001

Asia Pacific
0.002

1.002

0.001

1.001
1

Table 26: Chosen values for geographical closeness

The advantage of including (i, j) in the function s is that further properties of the financial

institutions can be included, as for example geographical regions.

In this example the following values would be derived to calculate the similarity measure:

As an example, the similarity between the Deutsche Bank (DB) and 4 different institutions

including the Citigroup Inc (Citi), Standard Chartered plc (StanCha), Legal and General

Group plc (LG) and QBE Insurance Group Ltd. (QBE) was assessed. We therefore receive

the following Kendall’s τ values:

τDB,Citi =0.24173

τDB,StanCha =0.38681

τDB,LG =0.29171

τDB,QBE =0.15498
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The corresponding similarity values, which are received by adding the geographical closeness,

are:

sDB,Citi =0.24173 + 0.00199 = 0.24372

sDB,StanCha =0.38681 + 1 = 1.38681

sDB,LG =0.29171 + 1 = 1.29171

sDB,QBE =0.15498 + 0.00099 = 0.15597

It can be seen, how the geographical closeness increases some values a lot. These effects

will be further investigated in Section 9.4.

The function s is crucial for the definition of the newly developed approach of similarity-

based pair-copulas, which we will present in this chapter. The construction of our

R-vine structure is thereby based on the triplet RV = (V ,B(V),θ(B(V))). In this chapter

we will introduce a new approach to construct this triplet RV based on the values of the

similarity measure s.

The crucial idea in our method is to construct pair-copulas out of linear mixtures

of two different pair-copulas. The proportion and the families of these combinations

will depend on the values of s.

For this, we want to partition the set of the
(
d
2

)
values of (si,j)i>j into B+1 sets, which cor-

respond to B boundaries for these sets. In other words, we define B quantiles, (qαi)i=1,...,B

with the quantile levels (αi)i=1,...,B, and divide the set into B + 1 sub-intervals, that are

the intervals [0, qα1 ], (qα1 , qα2 ],...,(qαB−1
, qαB ],(qαB ,∞).

We want to choose the quantile levels such that the difference between neighboring values

is constant. By denoting the difference of the level of two neighboring quantiles as ∆ and

the following calculation, we get the values of the quantile levels:

αi+1 − αi = ∆

α1 = ∆/2

1− αB = ∆/2

We set the lowest quantile level as
1

2B
and the highest quantile level as 1− 1

2B
.
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Written in form of a telescoping sum, we thus get:

⇒ 1 = α1 +
B−1∑
i=1

(αi+1 − αi) + 1− αB

= ∆/2 + (B − 1)∆ + ∆/2

= B ·∆

⇔ ∆ =
1

B

As values of αi, we get:

αi =
1

2B
+
i− 1

B
(9.1)

As we want to work with linear combinations of copulas we need to define these combina-

tions:

Definition 9.3 (Linear mixtures of two copulas).

Given two pair-copulas C1 and C2 we can now define a linear mixture of two copulas

as:

Cs(u, v) = λ(s) · C1(u, v) + (1− λ(s)) · C2(u, v, ) (9.2)

This combination is still a copula, as linear combinations of cumulative distribution

functions stay cumulative distribution functions.

The influence of s is illustrated in Figure 37. One can see how the linear combination

changes depending on the value of s.
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Figure 37: Illustration of the contribution of pair-copulas to the linear combinations based
on similarity values (see equation (9.2))

In Figure 38 and Figure 39 the contour plots for a range of different copulas are shown.

One can see that a great range of new contours are possible. This enables this method to

fit certain copulas even better than the traditional approach does.
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(a1) C1=Frank, C2 = t3, τ = 0.1, λ = 0.1 (a2) C1=Frank, C2 = t3, τ = 0.1, λ = 0.5 (a3) C1=Frank, C2 = t3, τ = 0.1, λ = 0.9

(b1) C1=Frank, C2 = t3, τ = 0.5, λ = 0.1 (b2) C1=Frank, C2 = t3, τ = 0.5, λ = 0.5 (b3) C1=Frank, C2 = t3, τ = 0.5, λ = 0.9

Figure 38: Summary of Z-Level contour plots for τ = 0.1 (first row) and τ = 0.5 (second row) (see equation (9.2))
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(a1) C1=Gumbel, C2 = t3, τ = 0.1, λ = 0.1 (a2) C1=Gumbel, C2 = t3, τ = 0.1, λ = 0.5 (a3) C1=Gumbel, C2 = t3, τ = 0.1, λ = 0.9

(b1) C1=Gumbel, C2 = t3,τ = 0.5, λ = 0.1 (b2) C1=Gumbel, C2 = t3, τ = 0.5,λ = 0.5 (b3) C1=Gumbel, C2 = t3,τ = 0.5,λ = 0.9

Figure 39: Summary of Z-Level contour plots for τ = 0.1 (first row) and τ = 0.5 (second row) (see equation (9.2))
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To define the pair-copulas similarly to Gräler and Pebesma, 2011, we can now define the λ

values based on similarity values given the quantiles (qαi)i=1,...,B:

Definition 9.4 (Weights).

For each value of si,j ∈ S, we define λ(si,j) as the proportion of the similarity to the

nearest higher quantile qαi relative to the size of the interval. If si,j is smaller than qα1,

we set λ(si,j) = 1, if si,j is larger than qαB , we set λ(si,j) = 0:

λ(s) :=


1 if s ≤ qα1

qαb−s
qαB−qαb−1

if s ∈ (qαb−1
, qαb ]

0 if s > qαB

According to this approach, we will associate the set of quantiles q = (qα1 , ..., qαB) with a

set of pair-copulas C = (C1(·, ·, θ1), ..., CB(·, ·, θB)).

In Section 9.4 we will use that the similarity measure includes the values of Kendall’s τ .

This has the advantage, that the Dissmann algorithm (Algorithm 1) also requires the

calculation of all Kendall’s τ values. As we will therefore have to calculate all empirical

values of Kendall’s τ (τ̂(ui,uj)), we use these values to estimate the values of θ by the

inversion of Kendall’s τ , as explained in Definition 3.14.

This is why the set of proposed pair-copulas for the estimation has to be defined:

Definition 9.5 (Set of proposed pair-copulas).

The set of proposed pair-copulas, from which the pair-copulas in C are chosen from is

defined as:

C = {Ci,θi}i=1,...,m

The set only contains copulas whose value of θi is a function of τ .

By only including copulas whose value of θi is a function of τ , we can reduce the computa-

tional effort, as we have to calculate the values of Kendall’s τ only once.

Against this background and the definition of λ(s), we can now define the similarity-

based pair-copulas.
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Definition 9.6 (Similarity-based pair-copulas).

Given the quantiles q = (qα1 , ..., qαB) and the set of associated pair-copulas

C = (C1(·, ·, θ1), ..., CB(·, ·, θB)), we define the pair-copula Cs as:

Cs(u, v; τ, s,C, q) :=


C1(u, v, θ1(τ)) if s ≤ qα1

λ(s)Cb−1(u, v, θb(τ)) + (1− λ(s))Cb(u, v, θb(τ)) if s ∈ (qαb−1
qαb ]

CB(u, v, θB(τ)) if s > qαB

With this background, it becomes more clear why the quantile levels were chosen in this

way. We choose the values such that each of the intervals contains the same number

of pairs, while the two outer intervals, [0, qα1 ] and (qαB ,∞), contain half the number

of the observations of the inner intervals. This can be explained as follows: All inner

copulas as for example C2 determine approximately half of the dependence in interval

(qα1 , qα2 ] and half of the interval (qα2 , qα3 ], as it appears only as one component of the

pair-copula Cs for these intervals. As each of these intervals contains a share of ∆ of the

data set, this can be interpreted as determining a proportion of ∆/2 + ∆/2 of the total

dependency. The outer copulas as for example C1 also determines approximately half of

the dependence in the interval (qα1 , qα2 ], however it determines the whole dependence in

the interval [0, qα1 ]. As a result, the copula again determines approximately a share of

∆/2 + ∆/2 of the dependency. Thus, this choice of the quantile levels makes all copulas

in the set C = (C1(·, ·, θ1), ..., CB(·, ·, θB)) approximately equally important and better to

interpret.

One important function for the construction of C-vines is the h-function, as defined

in Definition 3.11:

h(u, v|θ) =
∂Cu,v(u, v, θ)

∂v

By using the linearity of the differential operator
∂

∂v
, we can derive a formula for the

h-function of Cs(u, v; τ, s,C, q), which therefore is again a linear combination. We get the

following definition:
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Definition 9.7 (h-functions for similarity-based pair-copulas).

Given τ, s,C, q we define the h function of a similarity-based pair-copulas:

hs(u, v; τ, s,C, q) :=


h1(u, v|θ1(τ)) if s ≤ qα1

λ(s)hb−1(u, v|θb(τ)) + (1− λ(s))hb(u, v|θb(τ)) if s ∈ (qαb−1
, qαb ]

hB(u, v|θB(τ)) if s > qαB

This formula shows, that the construction of the C-vine copula is a straight forward

calculation, if the pair-copulas C = (C1(·, ·, θ1), ..., CB(·, ·, θB)) are chosen. We therefore

have to analyze how we should choose these functions by applying a procedure similar to

the maximum likelihood estimation. For this, we have to investigate the density induced

by Cs.

Corollary 9.1.

The density of the pair-copula Cs has the following form:

cs(u, v; τ, s,C, q) :=


c1(u, v, θ1(τ)) if s ≤ qα1

λ(s)cb−1(u, v, θb(τ)) + (1− λ(s))cb(u, v, θb(τ)) if s ∈ (qαb−1
, qαb ]

cB(u, v, θB(τ)) if s > qαB

9.2 C-Vine with similarity-based pair-copulas for jointly chosen

pair-copulas

The result derived above can now be used to calculate the density of the copula. The

general formula for a C-vine density, as described in Chapter 3, is given as follows:

c(u) =
d−1∏
j=1

d−j∏
i=1

cj,j+i|1,...,j−1(F (uj|u1, ..., uj−1), F (uj+i|u1, ..., uj−1))

for u = (u1, ..., ud)
t

As mentioned in Section 3.4, it is not easy to apply a maximization on this copula density

directly, as it leads to very high computational effort. Thus, we have to propose another

faster method to calculate the best fitting copulas.

The approach to estimate the suitable copulas sequentially, as described in Section 3.6, is

not appropriate, as the families of pair-copulas are not chosen independently on each vine

level but on all vine levels simultaneously. We thus implemented a composite likelihood
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approach (see Varin et al., 2011).

We therefore first calculate the logarithmic likelihood of the product of the
(
d
2

)
pairs of

companies, given the values τ̂ = (τ̂i,j)i,j=1,...,d and S = (si,j)i,j=1,...,d.

The aim of this procedure is to choose the copulas C = (C1(·, ·, θ1), ..., CB(·, ·, θB)) from C,

the set of proposed copulas, as defined in Definition 9.5:

Ls(u1, ...,ud; τ̂ ,S,C, q) = log

(
n∏
k=1

d∏
i=1

d∏
j=i+1

cs(ui,k, uj,k; τ̂i,j, si,j,C, q)

)

=
n∑
k=1

d∑
i=1

d∑
j=i+1

log(cs(ui,k, uj,k; τ̂i,j, si,j,C, q))) (9.3)

=
∑

(i,j):j>i,si,j≤bin1

n∑
k=1

log(c1((ui,k, uj,k, θ1(τ̂i,j)))

+
B−1∑
b=2

∑
(i,j):j>i,si,j∈(qαb−1

,qαB ]

n∑
k=1

[
log(λ(si,j)cb−1(ui,k, uj,k, θb−1(τ̂i,j))

+ (1− λ(si,j))cb(ui,k, uj,k, θb(τ̂i,j)))

]

+
∑

(i,j):j>i,ŝi,j>qαB

n∑
k=1

log(cB(ui,k, uj,k, θB(τ̂i,j)))

We can see above that the expression c1 influences the first two summands. In the same

way each of the functions influences two summands, as it can be seen from Figure 37.

Thus, the choice of the the copula families maximizing the function Ls is not independently

possible.

The sum in equation (9.3) can be seen as a optimizing problem of the following form:

(f ?i )i=1,...,B = argmaxfi∈{f1,...,fn}
∑
j

log(f1(aj,1) + ...+ fB(aj,B))

In our case these functions fi are the density function, which we want to choose.

We approximate the solution by optimizing over each fi:

f
′

i = argmaxf=f1,...,fn

∑
j

log(f(aj,i))

Using these chosen values we can thus approximate our solution as follows:

(f
′

i)i=1,...,B ≈ (f ?i)i=1,...,B (9.4)
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As we used a composite likelihood approach, which is an approximation itself, we

considered it to be appropriate to use the approximation as described in equation (9.4).

With this assumption, we receive the following discrete maximization:

c1 := argmax{c∈C}

[ ∑
(i,j):j>i,si,j≤bin1

n∑
k=1

log(c(ui,k, uj,k, θ(τ̂i,j)))

+
∑

(i,j):j>i,si,j∈(qα1 ,qα2 ]

n∑
k=1

log(λ(si,j)c(ui,k, uj,k, θ(τ̂i,j)))

]

Following this approach, we get:

cb := argmax{c∈C}

[ ∑
(i,j):j>i,si,j∈(qαb−1

,qαb ]

n∑
k=1

log((1− λ(si,j))c(ui,k, uj,k, θ(τ̂i,j)))

+
∑

(i,j):j>i,si,j∈(qαb ,qαb+1
]

n∑
k=1

log(λ(si,j)c(ui,k, uj,k, θ(τ̂i,j)))

]

Analogously, we get:

cB := argmax{c∈C}

[ ∑
(i,j):j>i,si,j∈(qαB−1

,qαB ]

n∑
k=1

log((1− λ(si,j))c(ui,k, uj,k, θB(τ̂i,j)))

+
∑

(i,j):j>i,si,j≥qαB

n∑
k=1

log(c(ui,k, uj,k, θB(τ̂i,j)))

]
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In this way, we have derived a fast numerical procedure to approximate the best fitting

copulas. From this step on the pair-copula construction can proceed as usual:

1. The vine structure, which is in our case restricted to be a C-vine, is chosen by the

Dissmann algorithm. As we apply a C-vine, this is equivalent to choosing the inner

node i1.

2. The pair-copulas Cj,i1(·, ·) = Cs(·, ·, τj,i1 , sj,i1 ,C, q) required for the first level of the

C-vine, are chosen.

3. The values of uj are transformed using the h-function associated with the pair-copulas

Cj,i1 . And thus the values uj|i1 are calculated.

4. For this transformed values, the procedure again starts from step 1.

This procedure will be repeated until the whole C-vine is specified.
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Summarized, the developed procedure works as follows:

At first the empirical values of Kendall’s τ̂ = {τ̂i,j}i∈{1,...,d−1}, j∈{i+1,...,d} are calculated.

Second, the values of S are calculated, in this example, this requires the values of τ̂ . Based

on these values the quantiles q are calculated.

With all these values the set of copulas C = (C1, ..., CB) as described in Section 9.2 is

chosen with a composite likelihood approach. This requires a discrete optimization, where

each pair-copula Ci is chosen from the set of proposed copulas C.
Based on the empirical Kendall’s τ values τ̂ the Dissmann algorithm is applied to choose

the root node for the next tree level. As we restrict the choice to the class of C-vines

the Dissmann algorithm is equivalent to choosing the inner node i1 by the following

maximization:

i1 = argmaxi=1,...,d

∑
j 6=i

|τi,j|

Based on the values of τ̂ , S and q the pair-copulas Ci1,j are chosen, based on the interval

in which si1,j lies and the value of τ̂i1,j (see Definition 9.6 and Figure 37).

With these values, the variables are transformed and thus the values uj|i1 are calculated.

On the second level of the C-vine this procedure changes. The values of τ̂ , S are

calculated based on the pairs of transformed variables uj|i1 . The value of i2 is again calcu-

lated by maximization. However, the set C is not newly estimated. Thus, the pair-copulas

Ci2,j;i1 are chosen directly based on the values of si2,j and τ̂i2,j;i1 .

The same procedure, as for the second level, is applied on the following levels of the

C-vine.

This procedure is summarized and visualized in Figure 40.
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Figure 40: Summary of the similarity-based C-vine construction
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9.3 C-vine with similarity-based pair-copulas chosen adaptively

up to level K

The developed approach can successively be applied to the values on the different C-vine

levels. For this, the until now fixed values of C and q are newly chosen on the consecutive

tree levels. And thus the copulas Cs is updated on consecutive tree levels. The major

reason for this procedure is to improve the fit of the similarity-based model by increasing

its flexibility.

The new choice of the Cs is repeated until a fixed level K. From this C-vine level on Cs is

not changed and the algorithm proceeds as described in Section 9.2.

This procedure will be called Renewing the choice of similarity-based copulas up

to level K.

The question which arises is until which level K which number of repetitions should

be chosen. To solve this problem we introduce the AIC criterion for similarity-based

C-vines:

Definition 9.8 (AIC for similarity-based C-vines).

Given a similarity-based C-vine, and the empirically estimated value θ̂ we define the AIC

as:

AIC = 2 ·B ·K − 2 · log-likelihood(θ̂)

Where B ·K stands for the number of variables in the model which is equal to the product

of B, the number of families per level, and K the level up to which similarity-based copulas

are chosen.

We will choose the model with the lowest values of AIC.

This newly changed procedure will be visualized, as in the preceding section, with renew-

ing the choice of similarity-based copulas up to level 2.
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Figure 41: Summary of the similarity-based C-vine construction with renewing up to level
K = 2
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On the following pages we will provide the algorithms derived in this chapter to be able to

construct similarity-based C-vines.

Algorithm 5 Choosing pair-copula families

Calculating the similarity of the institutions and choosing the pair-copula

families

Require: Quantile levels α1, ..., αB, (ui)i=1,...,d with ui ∈ [0, 1]n, set of proposed (continu-

ous) copulas C with parameter θ only depending on τ , similarity function s

1: for i← 1 to d, j ← i+ 1 to d do

2: si,j = s(ui,uj, i, j)

3: end for

4: for b← 1 to B do

5: Calculate the quantile qαb with level αb of (si,j)1≤i<j≤d

6: end for

7: Define function λ and calculate (λi,j)1≤i<j≤d = (λ(si,j))1≤i<j≤d given (qαb)b=1,...,B

8: c1,θ1 = argmaxc1∈C

 ∑
j>i:

si,j≤qα1

n∑
k=1

log(c1,θ1(τ̂i,j)(ui,k, uj,k))

9: +
∑
j>i:

si,j∈(qα1 ,qα2 ]

n∑
k=1

log(λi,jc1,θ1(τ̂i,j)(ui,k, uj,k))


10: for b← 2 to B-1 do

11: cb = argmaxcb∈C

 ∑
j>i:

si,j∈(qαb−1
,qαb ]

n∑
k=1

log((1− λi,j)cb,θb(τ̂i,j)(ui,k, uj,k))

12: +
∑
j>i:

si,j∈(qαb ,qαb+1
]

n∑
k=1

log(λi,jcb,θb(τ̂i,j)(ui,k, uj,k))


13: end for

14: cB = argmaxcB∈C

 ∑
j>i:

si,j>qαB

n∑
k=1

log(cB,θB(τ̂i,j)(ui,k, uj,k))

15: +
∑
j>i:

si,j∈(qαB−1
,sαB ]

n∑
k=1

log((1− λi,j)cB,θB(τ̂i,j)(ui,k, uj,k))
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Algorithm 6 Pair-copulas and h-functions as part of the similarity-based copula approach

Derive h-functions and densities for a R-vine structure using the similarity-based copula

approach

Require: Quantiles q1, ..., qB, (ui)i=1,...,d with ui ∈ [0, 1]n, set of densities

{c1,θ(τ), ..., cB,θ(τ)} with parameter θ only depending on τ ,

matrix S = (si,j)i,j=1,...,d, matrix (τ̂i,j)i,j=1,...,d

1: Function(cs)(u, v, τ̂i,j, si,j)

2: if si,j ≤ qα1 then

3: cs(u, v, τ̂i,j, si,j) = c1,θ1(τ̂i,j)(u, v)

4: end if

5: for b← 2 to B do

6: if si,j ∈ (qαb−1
, qαb ] then

7: cs(u, v, τ̂i,j, si,j) = λi,jcb−1,θb(τ̂i,j)(u, v) + (1− λi,j)cb,θb(τ̂i,j)(u, v)

8: end if

9: end for

10: if si,j > qαB then

11: cs(u, v, τ̂i,j, si,j) = cB,θB(τ̂i,j)(u, v)

12: end if

13: EndFunction

14: Function(hs)(u, v, τ̂i,j, si,j)

15: if si,j ≤ qα1 then

16: hs(u, v, τ̂i,j, si,j) = h1(u, v|θ1(τ̂i,j))

17: end if

18: for b← 2 to B do

19: if si,j ∈ (qαb−1
, qαb ] then

20: hs(u, v, τ̂i,j, si,j) = λi,jhb−1(u, v|θb(τ̂i,j)) + (1− λi,j)hb(u, v|θb(τ̂i,j))
21: end if

22: end for

23: if si,j > qαB then

24: hs(u, v, τ̂i,j, si,j) = hB(u, v|θB(τ̂i,j))

25: end if

26: EndFunction



9 SIMILARITY-BASED PAIR-COPULA CONSTRUCTIONS 144

The h-function and the copula functions, given by Algorithm 6 are used to implement

the C-vine procedure as described in Section 3.3.

To compare the fit of this procedure with the individually chosen R-vine copula, we

calculate the log-likelihood of the observations (uk)k=1,...,n as it is needed for the AIC

values.

The general algorithm to calculate the log-likelihood for C-vines is given by Aas et al.,

2009, and is described in Algorithm 7 which requires the h-function and the vine density

given by Algorithm 6.

Algorithm 7 Log-likelihood evaluation for a similarity-based C-vine

Calculate the log-likelihood for a similarity-based C-vine

Require: Observations (ui)i=1,...,d with ui ∈ Rn, h-function hs and density cs given by

Algorithm 6, matrix S = (si,j)i,j=1,...,d,matrix (τ̂i,j)i,j=1,...,d

1: log-likelihood=0

2: i = 1

3: for i← 1 to d do

4: v0,i = ui

5: end for

6: for j ← 1 to d− 1 do

7: for i← 1 to d− j do

8: for k ← 1 to n do

9: log-likelihood=log-likelihood+log(cs(vj−1,1,k, vj−1,i+1,k, τ̂j,i, sj,i))

10: end for

11: end for

12: if j == d− 1 then

13: STOP ALGORITHM

14: end if

15: for i← 1 to d− j do

16: for k ← 1 to n do

17: vj,i,k = hs(vj−1,i+1,k, vj−1,1,k, τ̂j,i, sj,i)

18: end for

19: end for

20: end for
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9.4 Application of C-vine regression analysis with similarity-

based pair-copulas

In this section we will continue with the example for similarity measures, the similarity

of institutions, which we introduced in Section 9.1. We will then apply the concept of

similarity-based pair-copulas to the data set described in Chapter 7.

Definition 9.9 (Similarity of institutions).

The similarity between the institutions i and j, with measurements ui ∈ [0, 1]n and

uj ∈ [0, 1]n, is given by:

s(ui,uj, i, j) := |τ̂(ui,uj)|+ geographical closeness(i, j)

The values for the closeness among the geographical regions, geographical closeness(i, j),

can be chosen arbitrarily, but should be symmetric in i and j. These values can be

seen as regression parameters, as one possibility could be finding the set of values

geographical closeness(i, j) which maximizes the likelihood. The comparison of the

goodness of fit of these values can be achieved by the AIC criterion, as introduced in

Definition 9.8.

Higher values for the geographical closeness indicate a high inter-similarity of these geo-

graphical regions, which can be interpreted as small geographical distances between these

institutions.

For the analysis the following values listed in Table 27 were chosen:

North America Europe Asia Pacific

North America 1
0.002

1.002

0.002

1.002

Europe
0.002

1.002
1

0.001

1.001

Asia Pacific
0.002

1.002

0.001

1.001
1

Table 27: Chosen values for geographical closeness

Knowing that the value of geographical closeness(i, j) has an upper bound of 1 and a

lower bound of 0.001
1.001

, and that the value of |τ̂ | lies in [0, 1], we thereby get the following
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bounds for the value of s(ui,uj, i, j):

0.001

1.001
≤ s(ui,uj, i, j) ≤ 2

With that done, we can now calculate the similarity for each pair of institutions. As we

have 38 institutions, this leads to
(

38
2

)
= 703 pairs, each of which is related to a specific

similarity.

By choosing αi =
1

2B
+
i− 1

2B
we receive the following quantile levels αi:

α1 = 1
18
, α2 = 3

18
, α3 = 5

18
, α4 = 7

18
, α5 = 9

18
, α6 = 11

18
, α7 = 13

18
, α8 = 15

18
, α9 = 17

18
.

In our example, the quantiles are located at the following positions:

qα1 = 0.1389; qα2 = 0.1837; qα3 = 0.2033; qα4 = 0.223; qα5 = 0.2643; qα6 = 1.259;

qα7 = 1.372; qα8 = 1.424; qα9 = 1.5129.

These quantiles are shown as vertical blue lines in Figure 42, together with an interpre-

tation of the strength of the dependencies within the different regions:

0 1 2

weak

dependence

strong

dependence

Figure 42: Location of the quantiles in the example, within the interval [0,2]

In this section we apply the algorithms summarized in Algorithm 5, Algorithm 6 and

in Algorithm 7 to estimate and construct the similarity-based C-vine.

As the set of pair-copula families we choose: Gaussian, Gumbel, Frank and Student

copulas with ν ∈ {3, 4, 5, 6, 7, 10, 15, 20, 25}.
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To improve the fit of the model we will use the concept of Renewing of the choice

of similarity-based copulas up to level K, as described in Section 9.3. This can

improve the fit, as the model becomes more flexible, as the choice of the location of the

quantiles and the pair-copula families can vary.

Table 28 summarizes the AIC values, the log-likelihood values and the number of pa-

rameters used in the models depending on the vine tree level, up to which the choice of

similarity-based copulas is renewed. To compare these models with the standard approach,

we add the full C-vine model chosen in Chapter 8.

As a decision rule for the choice of the model, we choose the AIC value. According to this

rule, it is optimal to renew the choice of similarity-based copulas up to level 4.

C-vine level K up to which the

choice of similarity-based pair-

copula are renewed

Log-likelihood AIC values Number of pa-

rameters

1 -41205.06 72316 7

2 20041.21 -40207.21 14

3 19389.93 -39234.68 21

4 20232.17 -40446.05 28

5 19725.36 -39273.75 35

6 20134.33 -40172.15 42

7 20071.86 -40169.63 49

8 20166.32 -40325.76 56

9 19838.66 -40201.5 63

10 19952.03 -39724.05 70

full C-vine 21162.96 -40407.91 959

Table 28: Comparing models with different choices of the value K up to which the choice
of similarity-based pair-copula is renewed

The total log-likelihood of the chosen similarity-based C-vine is 20232.17, whereas the

log-likelihood of the full C-vine model with free copula choice was 211162.96. This indi-

cates that the similarity-based model describes the data worse. This is reasonable, as the

similarity-based model is much less flexible.

However, comparing the resulting AIC with the AIC of the full C-vine model shows a

different result, as the full model has an AIC of -40407.91 but the similarity-based model

has an even lower value of -40446.05. This better result is due to the low number of

parameters required in the similarity-based model.
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Thus compared to the small number of parameters included in the model, it has a surpris-

ingly good fit.

In Table 29 the detailed values of the quantiles and the pair-copulas are summarized.
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Level qα1 qα2 qα3 qα4 qα5 qα6 qα7 qα8 qα9

1 0.1389 0.1836 0.2033 0.223 0.2643 1.2586 1.371 1.4239 1.5129

2 0.0559 0.0811 0.0942 0.1071 0.1283 1.1162 1.1545 1.192 1.3191

3 0.0341 0.0511 0.0649 0.0779 0.0961 1.051 1.0934 1.1437 1.2217

4 0.0245 0.04 0.0511 0.0651 0.0866 1.0193 1.0648 1.1251 1.2019

(a) Summary of the positions of the quantiles

Level C1 C2 C3 C4 C5 C6 C7 C8 C9

1 t5 t10 t10 t10 t3 t10 t6 t6 t4

2 t25 Frank t25 Frank t25 t15 t10 t10 t6

3 t15 t25 t15 t25 t25 Frank t15 t15 t7

4 Frank t25 Frank t25 t25 t25 t20 t15 t7

(b) Summary of the chosen pair-copula families

Table 29: Summary of the C-vine structures of the similarity-based copula model
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Level 1 2 3 4 5 6 7 8 9 10

Similarity-

based C-vine

Allianz BNP Zurich BS LG StanCha Aegon Intesa HannRe Barclays

Traditional

full C-vine

Allianz XLG BNP Zurich Hartford BBVA LG JPM Aegon QBE

Level 11 12 13 14 15 16 17 18 19 20

Similarity-

based C-vine

AXA SCOR SG ACE AssGen Hartford BBVA Prudential JPM DB

Traditional

full C-vine

Barclays ACE AssGen Kookmin HannRe DB Chubb TM Unicredit SCOR

Level 21 22 23 24 25 26 27 28 29 30

Similarity-

based C-vine

Westpac Chubb SwissRe BoC XLG RBS TM Citi Unicredit QBE

Traditional

full C-vine

Citi SwissRe RBS Prudential SG AXA BoC Sumitomo StanCha Allstate

Level 31 32 33 34 35 36 37 38

Similarity-

based C-vine

Allstate Aviva AIG Kookmin MR UBS GS Sumitomo

Traditional

full C-vine

BS AIG MR Intesa UBS Westpac GS Aviva

Table 30: Summary of the inner nodes of the C-vine tree structures
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1st interval 2nd interval 3rd interval 4th interval 5th
interval

6th interval 7th interval 8th interval 9th interval 10th
interval

Figure 43: Box plots of the Kendall’s τ values for the different intervals calculated by model 1
and different geographical regions



9 SIMILARITY-BASED PAIR-COPULA CONSTRUCTIONS 152

In Table 29 one can apply the interpretation of the tail dependence of the pair-copulas.

As we saw in Lemma 3.3, the tail dependence of the Frank copula is zero. In Lemma

3.5 we saw that the tail dependence of Student copulas is decreasing in ν.

In most of the cases the degrees of freedom parameter is decreasing from level to level and

thus the tail dependence decreases. This indicates that the strongest dependencies are

observed in lower levels.

Interestingly, C5 has a high tail dependence on Level 1 as ν = 3. C5 effects the interval

(qα4 , qα5 ] and (qα5 , qα6 ]. The interval (qα5 , qα6 ], however, contains a big proportion of

similarity values between European and North American institutions as one can see from

Figure 43. These have very high Kendall’s τ values, as they have to compensate for their

low values of geographical closeness, to lie in the interval (qα5 , qα6 ].

In Table 30 one can see the full C-vine specification of the traditional full C-vine

and the similarity-based C-vine. As both models are C-vines, it is sufficient to list the

inner nodes of the models.

Figure 44: Locations of the bins on different tree levels

It is illustrated in Figure 44, that the quantile values are decreasing from level to level.

Another observation, that is one explanation for the bad fit of model 1 in Table 28, is

the sharp decrease in values of the quantiles after the first level. These changing values

result in a badly fitting model as shown in Table 28.

One can further see a sharp decrease in the value of qα6 between level 5 and 6. The reason

for this is that the Dissmann algorithm chooses the companies with the highest sum of

Kendall’s τ values, these, however, have also higher similarity values. Thus, after several
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repetitions of the algorithm many of these values have been chosen as the interior node of

the tree of the C-vine, and were therefore not included in the following tree levels, thus

the quantile drops.

In Figure 45 we plot the histograms for the Kendall’s τ values and the similarity

values for each pair of institutions. The different geographical regions are indicated by

different colors. In Figure 45 (b) the effect of the geographical closeness is illustrated.

One can see how, compared to the set of Kendall’s τ values, the set of values is divided

into two groups. This is the effect of the geographical closeness: Depending on whether

both companies come from the same region or not, the similarity value is high or low.
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(a) Histogram of Kendall’s τ values (b) Histogram of similarity values

Figure 45: Histogram of Kendall’s τ values and similarity values for all pairs of companies
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10 Conclusions and Outlook

In this thesis a method was developed to simulate conditional random variables with

arbitrary continuous R-vine dependency structures using the MH algorithm. Therefore,

it is possible with this method to condition on arbitrary sets of variables with arbitrary

values.

The proposed method was then validated and successfully applied to a data set of trans-

formed CDS spreads as these were considered to be capable of measuring default probabil-

ities. Stress tests were thereby conducted as simulations of conditional random variables:

Specially, this allows us to asses the reactions of financial markets and institutions.

The methodology used has several advantages, which will be listed in the following.

The advantage of using R-vine models for stress tests is that they are capable to model

dependencies much more flexible than usual approaches using the multidimensional Gaus-

sian or Student distributions.

Another contribution of this thesis is that the stress tests carried out do not use balance

sheets in contrast to most of the currently used methods. An advantage of the approach

described in this thesis is that CDS spreads are not influenced by political decisions. A

further advantage is that no new sensitive data have to be collected to implement the

stress tests.

The results of the stress tests are consistent with the study carried out by Hendrich,

2012, as we confirmed that geographical regions are of key importance in stress testing.

However, this thesis reveals many new findings about stress testing as a measure of the

sensitivity of the financial sector to systemic risk indicators. Some of the key results can

be summarized as follows:

- One of the most explaining variables for the interconnectedness of financial institu-

tions is their corresponding geographical region.

- Even within same geographical regions strong differences in the reaction of financial

institutions upon stress situations were present.

- Major European banks seem to be at least as systemically important as major North

American banks.

- North American banks have a stronger effect upon European banks than upon North

American insurances.
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- Asian Pacific financial institutions are not strongly effected by stress situations

induced by North American banks or European banks.

- The major European banks are in the case of a crises, the key driver of financial

stress within Europe.

A further improvement in the speed of convergence of the adaptive MH algorithm could

be achieved by including other adapted proposal distributions. Particularly other adapted

copulas could be used for better simulations from non-elliptical distributions, as until now

Gaussian copulas and uniform Beta distributions were used predominantly.

In addition, to monitor world-wide market developments, the approach of this thesis

could be extended by including further financial institutions. These extended models

could improve the comprehensive analysis of world-wide financial markets as more complex

dependence structures can be taken into account. This issue, however, was not included in

the scope of this thesis, as such models require high-performance computing, exceeding

the already large computation time in this work.

In Chapter 9, additionally to the stress tests conducted, we established a new method

of similarity-based pair-copula construction for C-vines which is capable to describe the

empirical data well, despite of the low number of parameters estimated. Such an approach

has only been used for geographical data so far, e.g. rain fall statistics. Taking advantage

of this method, we analogously included the geographical region of financial institutions

as explanatory variables.

Further parameters, especially the balance sheet sizes of the institutions, could be used to

further define the similarity of institutions. In this way, the two major topics of this thesis

could be linked more closely.

Another point to mention is, that in this thesis the dependence was assumed to be constant

over time. The similarity-based approach, however, could be extended to use time varying

similarity measures, and thus analyze the dependency during historical financial crises.

A potential overall problem which could evolve with the implementation of these stress

tests, is that the self-reflexiveness of CDS spreads (see Markose et al., 2009) could even

increase. The influence of trading CDS on the stress test results of certain financial

institutions may therefore be taken into consideration. However, the CDS market has

a high trading volume (see Oehmke and Zawadowski, 2013) and thus this effect would

probably be not as strong.
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A Additional figures - Results of stress tests

For an overview of the performed stress tests, see Table 25. In the appendix the plots as

described in Section 8.11 are listed.

Stress test 1

Figure A.1: Z-Level plot and Kendall’s τ values: Performance of the world market in a
moderate stress situation (0.9) induced by European systemic banks
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Stress test 2

Figure A.2: Z-Level plot and Kendall’s τ values: Performance of the world market in a
severe stress situation (0.95) induced by European systemic banks
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Stress test 3

Figure A.3: Z-Level plot and Kendall’s τ values: Performance of the world market in a
moderate stress situation (0.9) induced by North American systemic banks
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Stress test 4

Figure A.4: Z-Level plot and Kendall’s τ values: Performance of the world market in a
severe stress situation (0.95) induced by North American systemic banks
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Stress test 5

Figure A.5: Z-Level plot and Kendall’s τ values: Performance of the world market in an
extreme stress situation (0.99) induced by North American systemic banks
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Stress test 6

Figure A.6: Z-Level plot and Kendall’s τ values: Performance of the world market in a
moderate stress situation (0.9) induced by major European banks
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Stress test 7

Figure A.7: Z-Level plot and Kendall’s τ values: Performance of the world market in a
severe stress situation (0.95) induced by major European banks
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Stress test 8

Figure A.8: Z-Level plot and Kendall’s τ values: Performance of the world market in an
extreme stress situation (0.99) induced by major European banks
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Stress test 9

Figure A.9: Z-Level plot and Kendall’s τ values: Performance of the European market in
a moderate stress situation (0.9) induced by European systemic banks
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Stress test 10

Figure A.10: Z-Level plot and Kendall’s τ values: Performance of the European market in
a severe stress situation (0.95) induced by European systemic banks
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Stress test 11

Figure A.11: Z-Level plot and Kendall’s τ values: Performance of the European market in
a moderate situation (0.9) induced by biggest European banks
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Stress test 12

Figure A.12: Z-Level plot and Kendall’s τ values: Performance of the European market in
a severe stress situation (0.95) induced by biggest European banks
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Stress test 13

Figure A.13: Z-Level plot and Kendall’s τ values: Performance of the European market in
an extreme stress situation (0.99) induced by biggest European banks
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Stress test 14

Figure A.14: Z-Level plot and Kendall’s τ values: Performance of the North American
market in a moderate stress situation (0.9) induced by North American systemic banks
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Stress test 15

Figure A.15: Z-Level plot and Kendall’s τ values: Performance of the North American
market in a severe stress situation (0.95) induced by North American systemic banks
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Stress test 16

Figure A.16: Z-Level plot and Kendall’s τ values: Performance of the North American
market in an extreme stress situation (0.99) induced by North American systemic banks
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Stress test 17

Figure A.17: Z-Level plot and Kendall’s τ values: Performance of the banking market in a
moderate stress situation (0.9) induced by North American systemic banks
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Stress test 18

Figure A.18: Z-Level plot and Kendall’s τ values: Performance of the banking market in a
severe stress situation (0.95) induced by North American systemic banks
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Stress test 19

Figure A.19: Z-Level plot and Kendall’s τ values: Performance of the banking market in
an extreme stress situation (0.99) induced by North American systemic banks
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Stress test 20

Figure A.20: Z-Level plot and Kendall’s τ values: Performance of the banking market in a
moderate stress situation (0.9) induced by European systemic banks
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Stress test 21

Figure A.21: Z-Level plot and Kendall’s τ values: Performance of the banking market in a
severe stress situation (0.95) induced by European systemic banks
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