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Chapter 1

Introduction

1.1 Motivation of the thesis

Variable Annuities are fund-linked annuities where typically the policyholder pays a

single premium that is then – after deduction of acquisition fees – invested in one or

several mutual funds. Usually, the policyholder may choose from a variety of differ-

ent mutual funds, which in most cases consist of positions in bonds and equities.

Such products were introduced in the 1970s in the United States. Two decades later,

in the 1990s, insurers started to offer certain guarantee riders on top of the basic

structure of the Variable Annuity policies, including so-called guaranteed minimum

death benefits (GMDB), as well as guaranteed minimum living benefits, which can be

classified into three main subcategories: guaranteed minimum accumulation benefits

(GMAB), guaranteed minimum income benefits (GMIB) and guaranteed minimum

withdrawal benefits (GMWB). The GMAB type of guarantee provides the policy-

holder with some guaranteed value at the maturity of the contract, while the GMIB

type provides a guaranteed annuity benefit, starting after a certain deferment period.

However, the currently most popular type of guaranteed minimum living benefits is

the third one, the GMWB rider.

Under certain conditions, the policyholder may withdraw money from their account,

even if the value of the account has dropped to zero since policy inception. Such

withdrawals are guaranteed as long as both, the amount that is withdrawn within

each policy year and the total amount that has been withdrawn over the term of the

policy stay within certain limits.

Recently, insurers started to include additional features in GMWB type of products.

The most prominent is called “GMWB for Life” (also known as guaranteed living

1



CHAPTER 1. INTRODUCTION 2

withdrawal benefits, GLWB): guaranteed lifelong withdrawals. Within this guaran-

tee type, the total amount of withdrawals is unlimited. However, the annual amount

that may be withdrawn by the policyholder while the insured is still alive must not

exceed some maximum value, or otherwise the guarantee will be affected.

The withdrawals made by the policyholder are deducted from their account value –

as long as it has not been depleted. Afterwards, the insurer has to compensate for

the guaranteed withdrawals for the rest of the insured’s life.

In contrast to a conventional annuity, in which the single premium paid by the

policyholder is annuitized, the fund assets of the contract remain accessible to the

policyholder within a “GMWB-for-Life” or “GLWB” type of policy. The policy-

holder may access the remaining fund assets at any time by (partially) surrendering

the contract.

In case of death of the insured, any remaining fund value is paid out to the insured’s

beneficiaries.

In return for this guarantee, the insurer receives guarantee fees that are usually

deducted as a fixed annual percentage from the policyholder’s fund assets (but of

course only as long as there are any assets left).

Therefore, from an insurer’s point of view, these products contain a combination of

several risks from policyholder behavior, financial markets, and longevity that makes

these kind of guarantees difficult to hedge.

Owing to the significant financial risk that is inherent within the insurance contracts

sold, in general risk management strategies such as dynamic hedging are applied.

However, during the recent financial crisis, insurers have suffered from inefficient

hedging strategies within their books1.

Among other effects, the financial crises led to a significant increase in actual and

implied equity volatility, and thus to a tremendous increase in the value of most

standard and non-standard equity-linked options, including the value of the sold

and offered Variable Annuity guarantee riders. In particular for insurers with no or

no sufficient hedging concept against the risk of changing volatilities (in particular

increasing volatility levels), the hedge portfolio did not compensate for the increase in

the option’s value, leading to a loss for existing business and less attractive conditions

for new contracts, i.e. the same guarantees come at higher guarantee fees.

1Cf. e.g. different articles and papers in “Life and Pensions”: “A challenging environment”
(June 2008), “Variable Annuities - Flawed product design costs Old Mutual 150m” (September
2008), “Variable annuities - Milliman denies culpability for clients’ hedging losses” (October 2008),
“Variable Annuities - Axa injects $3bn into US arm” (January 2009).
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There already exists some literature on the pricing of different guaranteed minimum

benefits and in particular on the pricing of GMWB rider options: Valuation methods

have been proposed by e.g., Milevsky and Posner (2001, [26]) for the GMDB option,

Milevsky and Salisbury (2006, [27]) for the GMWB option, Bacinello et al. (2009,

[3]) for life insurance contracts with surrender guarantees, and Holz et al. (2007,

[17]) for GMWB for Life riders.

Bauer et al. (2008, [2]) introduced a general model framework that allows for the

simultaneous and consistent pricing and analysis of various Variable Annuity guaran-

tees. We also refer to their paper for a comprehensive analysis of non-pricing related

literature on Variable Annuities.

To our knowledge, however, there is only little literature on the efficiency of different

strategies for hedging against the market risk inherent in Variable Annuity guar-

antees. Coleman et al. (2005, [7], and 2007, [8]) provide such analyses for death

benefit guarantees under different hedging and data-generating models. Again to

our knowledge, the performance of different hedging strategies for GLWB contracts

with varied product designs has not been analyzed under stochastic equity volatility

yet, nor have the accompanying inherent model risks been evaluated.

The aim of this thesis is to fill this gap.

1.2 Outline of the thesis

The remainder of the thesis is organized as follows.

First, we give a high-level description of the Guaranteed Living Withdrawal Benefits

(GLWB) rider options and explain their general functionality in chapter 2, where we

also present the product designs of the GLWB rider options that will be analyzed

in the numerical section of the thesis. The considered product designs differ in the

ratchet (or step-up) and bonus feature that is implemented in the respective design.

We also describe the model framework for insurance liabilities that is used for our

analyses and which is akin to the one presented by Bauer et al. (2008, [2]).

In the last part of chapter 2, we describe the general pricing framework that is used

for the evaluation of the GLWB rider option, which is necessary in order to find the

“fair” guaranteed withdrawal rate. We also present the assumptions that we used

regarding the policyholder behavior and the mortality of the insured.

In chapter 3, we present the models of the financial market that we will use for differ-

ent purposes within our analyses. We describe in detail both equity models that we
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use for comparison, the well-known Black-Scholes-Merton model (with deterministic

equity volatility) as reference model and the Heston model as a model that allows for

stochastic equity volatility. We show how for both models an equivalent martingale

measure can be derived, which is necessary for the evaluation of the GLWB options

within the general pricing framework of chapter 2.

In the second part of chapter 3 we present and explain the numerical methods that

we use later for the analyses within the numerical part of this thesis, including the

numerical valuation of European standard options via Fourier inversion techniques

under the Heston model.

Further, we introduce the notion of Black-Scholes-Merton Implied Volatility and

analyze the implied volatility surfaces generated by the Heston model for different

parameter sets.

The hedging strategies whose hedge efficiency we will analyze later in the numerical

part of the thesis are presented in chapter 4, where we introduce different types of

dynamic hedging strategies that may be applied by the insurance company in order

to reduce the risk that originates from selling GLWB rider options. The strategies

differ mainly in the model used for hedging and in the hedge instruments used within

the strategies. Finally, for each hedging strategy, we give a clear summary of the

used hedge ratios in table form.

Chapter 5 deals with the design, architecture and implementation of the software

solution that we used to conduct the analyses of the numerical part of this thesis. We

also give details on how we use Microsoft Excel as an user interface to our software

solution and we list and discuss the open-source libraries that we made use of. We

conclude the chapter with a detailed usage example of the final software solution.

In the first chapter of the numerical part of the thesis, chapter 6, we present the first

set of analyses regarding the pricing of the GLWB rider options, i.e. the determi-

nation of the “fair” guaranteed withdrawal rate under different product designs and

under different assumptions regarding the financial market and policyholder behav-

ior.

We also analyze the characteristics of the considered product designs that were intro-

duced in chapter 2. To this end, we analyze the risk-return profiles of the considered

contracts from the viewpoint of the policyholder, and analyze the respective distri-

bution of the GLWB guarantee’s “trigger time”, i.e. the specific point in time, when,

for the first time, guarantee payments from the insurer to the policyholder are due.

Furthermore, we present our results regarding the development of the sensitivity of a

pool of identical policies with respect to changes in the underlying fund’s price (the
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so-called “Delta”) over time and for each product design.

In the second chapter of the numerical part of this thesis, chapter 7, we analyze

the performance and behavior of the different hedging strategies that were presented

in chapter 4 under different stochastic scenarios. The results include analyses of

the distribution of the hedge portfolio’s value, the insurer’s cumulative profit/loss

and certain risk measures hereof. Additionally, we quantify the model risk that is

inherent in the use of the considered hedging strategies. To this end, we use different

models of the financial market for calculation of the hedge positions and for data

generation within the simulation. A particular focus lies on examining the effects if

the model used for hedging differs from the data-generating model.

We conclude with a summary of the presented work in the final chapter 8, where we

also give an outlook of possible future research work.



Chapter 2

Liability Framework

In Bauer et al. (2008), a general framework for modeling and a valuation of variable

annuity contracts was introduced. Within this framework, any contract with one or

several living benefit guarantees and/or a guaranteed minimum death benefit can be

represented. In their numerical analysis however, only contracts with a rather short

finite time horizon were considered. Within the same model framework, Holz et al.

(2008) describe how GMWB for Life products can be included in this model. In

what follows, we introduce this model framework focusing on the peculiarities of the

contracts considered within our numerical analyses. We refer to Bauer et al. (2008)

as well as Holz et al. (2008) for the explanation of other living benefit guarantees

and more details on the model.

2.1 High-level description of the considered insur-

ance contracts

Variable Annuities are fund-linked products. At inception of the contract, the pol-

icyholder pays a single premium P , which is then – after deduction of acquisition

fees – invested in one or several mutual funds. We call the value of the insured’s

individual portfolio the account value and denote it by AVt . During the runtime

of the contract, all running fees are taken from the account value by cancellation

of fund units. Furthermore, the policyholder has the possibility to surrender the

contract, which is the same as withdrawing the whole account value, or, of course,

to withdraw just a portion of the account value. Products with a GMWB (”Guaran-

teed Minimum Withdrawal Benefits”) option give the policyholder the possibility of

6
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guaranteed withdrawals during the lifespan of the contract, i.e. the policyholder may

withdraw a guaranteed amount at prespecified points in time, even if the value of the

portfolio has dropped to zero in the meantime. The initially guaranteed withdrawal

amount is usually (or may be expressed as) a certain percentage xWL of the single

premium P .

For our analyses, we focus on the case where such withdrawals are guaranteed lifelong

(”GMWB for life” or ”Guaranteed Lifetime Withdrawal Benefits”, GLWB), which

means that, if the account value of the policy drops to zero while the insured is still

alive, the insured can still continue to withdraw the guaranteed amount until death.

The insurer charges a fee for this guarantee which is usually a prespecified annual

percentage of the account value. In case the insured dies before the account value

was depleted and/or the contract was surrendered, the remaining account value is

paid to the beneficiary as death benefit.

Depending on the type of the GLWB option, the amount guaranteed for withdrawal

may increase during the policy lifespan if the fund’s assets perform well, allowing the

policyholder to withdraw a higher amount than the initially guaranteed amount. This

increase may either be permanent (withdrawal “step-up” or “ratchet”) or be effective

just for the single withdrawal (“surplus distribution” or “performance bonus”). In

our numerical analyses in sections 6 and 7, we have a closer look on four different

product designs that can be observed in the market:

• No Ratchet: The first and simplest alternative is one where no ratchets or

surplus exists at all. In this case, the guaranteed withdrawal amount is constant

and does not depend on market movements.

• Lookback Ratchet: The second alternative is a ratchet mechanism where a

withdrawal benefit base at outset is given by the single premium paid. Dur-

ing the contract term, on each policy calculation date the withdrawal benefit

base is increased to the account value if the account value exceeds the previous

withdrawal benefit base. The guaranteed withdrawal is increased accordingly

to xWL multiplied by the new withdrawal benefit base. This effectively means

that the fund performance needs to compensate for policy charges and annual

withdrawals in order to increase the guaranteed withdrawals. With this prod-

uct design, increases in the guaranteed withdrawal amount are permanent,

i.e. over time, the guaranteed withdrawal amount may only increase, never

decrease.
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• Remaining WBB Ratchet: With the third ratchet mechanism, the with-

drawal benefit base at outset is also given by the single premium paid. The

withdrawal benefit base is however reduced by every guaranteed withdrawal.

On each policy calculation date where the current account value exceeds the

current withdrawal benefit base, the withdrawal benefit base is increased to

the account value. The guaranteed annual withdrawal is increased by xWL

multiplied by the difference between the account value and the previous with-

drawal benefit base. This effectively means that the fund performance needs to

compensate for policy charges only but not for withdrawals in order to increase

guaranteed withdrawals. This ratchet mechanism is therefore c.p. somewhat

“richer” than the Lookback Ratchet. As with the Lookback Ratchet design,

increases in the guaranteed amount are permanent.

• Performance Bonus: For this alternative the withdrawal benefit base is

defined similarly as in the Remaining WBB ratchet, but with the difference,

that in this design the withdrawal benefit base is never increased. Instead

of permanently increasing the guaranteed withdrawal amount, on each policy

calculation date where the current account value is greater than the current

withdrawal benefit base, 50% of the difference is paid out immediately as a

so-called “Performance Bonus”, additionally to the base guaranteed amount of

xWL ·P . In contrast to the previous two designs, the minimum amount of the

forthcoming guaranteed withdrawals remains unchanged in the Performance

Bonus design. For the calculation of the withdrawal benefit base, only the

base guaranteed amount xWL · P is subtracted from the benefit base and not

the performance bonus payments.

2.2 Model of the liabilities

For the sake of simplicity, we assume that all payments made to and by the policy-

holder, including fee payments, withdrawals, surrender benefits and death benefits,

may only occur at prespecified points in time
{
t̃i
}
i≥0

, expressed in terms of years

from contract inception. We will refer to these dates as contract (or policy) calcula-

tion dates. Let the filtration (Ft)t∈{t̃i}
i≥0

represent the corresponding information

structure, where Ft is the information available at time t .

As a further simplification, we restrict the options that the policyholders have to

two choices: At a contract calculation date t̃k , they may either withdraw the then
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guaranteed withdrawal amount W guar

t̃k
, or they may fully surrender the contract and

withdraw all of the remaining fund assets.

At outset, the percentage ϕacq is deducted from the single premium P as acquisition

fee and the remaining amount is invested in the selected funds, hence it holds for the

initial account value AV0 = P · (1− ϕacq) .

Let AV −t denote the account value at time t after deduction of fees, but before

withdrawals. Accordingly, AV +
t denotes the value of the account at time t after

both, deduction of fees and withdrawals. We assume that at each end of a policy

period administration and guarantee fees, in terms of percentages ϕadm and ϕguar ,

are deducted from the policyholder’s account value. With St denoting the spot

price of the portfolio’s underlying fund at time t , the transition of the account value

between two calculation dates t̃k and t̃k+1 is given by

AV −
t̃k+1

= AV +
t̃k
·
St̃k+1

St̃k
· e−ϕadm−ϕguar (2.1)

While being still alive, the policyholder withdraws an amount Wt from the account

at each of the contract calculation dates following the outset of the contract. The

random variable Wt is Ft -measurable. Note that, although (depending on the

guarantee of the contract) withdrawals may exceed the current account value, the

account value itself may not drop below zero and is therefore given by

AV +
t = max

(
AV −t −Wt, 0

)
. (2.2)

At each contract calculation date t , the maximum amount allowed to be withdrawn

by the policyholder is the maximum out of the account value AV −t and the guaran-

teed withdrawal amount W guar
t , which are both Ft -measurable random variables.

Therefore, a (full) surrender of the policyholder at a given contract calculation date t

may be expressed as Wt > W guar
t ∧Wt = AV −t , with all of the following withdrawals

being set to zero. The guarantee payments Gt due to be made by the insurer at time

t are then given by the shortage resulting from the difference between guaranteed

withdrawal amount and the remaining account value:

Gt :=
(
W guar
t − AV −t

)+
= max

(
W guar
t − AV −t , 0

)
. (2.3)
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2.2.1 Transition at a policy calculation date

At a policy calculation date t̃k , we have to distinguish the following cases:

The insured has died within the previous period
(
t̃k−1, t̃k

]
: If the insured

has died within the previous policy period, the account value is paid out to the

beneficiary as death benefit. With the payment of the death benefit, the insurance

contract matures. Thus, the account value and the guaranteed withdrawal amount

are set to zero.

The insured has survived the previous policy period and withdraws an

amount within the limits of the withdrawal guarantee at time t̃k : If the

insured has survived the previous period, no death benefit is paid. For the withdrawal

amount Wt̃k
, it holds 0 ≤ Wt̃k

≤ W guar

t̃k
. The amount withdrawn is deducted from

the account value as far as the funds suffice. After the account value has dropped

to zero, the insurer bears the exceeding part of the guaranteed withdrawal amount.

Thus, AV +
t̃k

= max(AV −
t̃k
−Wt̃k

, 0) .

The insured has survived the previous policy year and at the policy an-

niversary withdraws an amount exceeding the limits of the withdrawal

guarantee : In this case again, no death benefits are paid. For the sake of brevity,

we only give the formulae for the case of full surrender, i.e. the case in which

Wt̃k
= AV −

t̃k
> W guar

t̃k
, since partial surrender is not analyzed in what follows. In

case of full surrender, the complete account value is withdrawn, therefore we set

AV +
t̃k

= 0 and the contract terminates.

2.2.2 Computation of the guaranteed withdrawal amount

W guar

For all three product designs that make use of the withdrawal benefit base as an

auxiliary variable for computing the guaranteed withdrawal amount, we have two

variables at time t : WBB−t , the withdrawal benefit base before the withdrawal

of Wt takes place, and the variable WBB−t , which denotes the withdrawal benefit

base right after the deduction of Wt . At outset, the withdrawal benefit base is set

to the single premium P paid by the policyholder, i.e. WBB+
0 = P , and the initial
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guaranteed withdrawal amount is set to W guar
0 = xWL · P .

At a contract calculation date t̃k > 0 , the computation of the guaranteed withdrawal

amount W guar

t̃k
works as described below for each ratchet mechanism:

• No Ratchet:

W guar

t̃k
= xWL · P (2.4)

• Lookback Ratchet:

WBB−
t̃k

= max(WBB+
t̃k−1

, AV −
t̃k

) (2.5)

W guar

t̃k
=xWL ·WBB−

t̃k
(2.6)

WBB+
t̃k

= max(WBB−
t̃k
−Wt̃k

, 0) (2.7)

• Remaining WBB Ratchet:

WBB−
t̃k

= max(WBB+
t̃k−1

, AV −
t̃k

) (2.8)

W guar

t̃k
=W guar

t̃k−1
+ xWL ·max(AV −

t̃k
−WBB+

t̃k−1
, 0) (2.9)

WBB+
t̃k

= max(WBB−
t̃k
−Wt̃k

, 0) (2.10)

• Performance Bonus:

WBB−
t̃k

=WBB+
t̃k−1

(2.11)

W guar

t̃k
=xWL · P +

1

2
max(AV −

t̃k
−WBB+

t̃k−1
, 0) (2.12)

WBB+
t̃k

= max(WBB−
t̃k
− xWL · P, 0) (2.13)

2.3 Contract valuation framework

The valuation framework in this section follows in some parts the one used in

Bacinello, Biffis and Millossovich (2009, [3]) and in others Bauer, et. al. (2008,

[2]). We take as given a filtered probability space (Ω,F ,F,P) , in which P is the

real-world (or physical measure) and F = (Ft)t≥0 is a filtration with F0 = {Ø,Ω}
and Ft ⊂ F ∀ t ≥ 0 . We assume that trading takes place continuously over time and

without any transaction costs or spreads. Furthermore we assume that the price pro-

cesses of the traded assets in the market are adapted and of bounded variation. With
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the assumed absence of arbitrage, a probability measure Q∗ exists which is equiva-

lent to P and under which the gain from holding a traded asset is a Q∗ -martingale

after discounting by the chosen numéraire process, the money-market account. We

call Q∗ the equivalent martingale measure (EMM). Details on the derivation and

the existence of the EMM Q∗ subject to the used financial market model are given

in chapter 3.

Let τX denote the date of the insured’s death, expressed in terms of years since

policy inception. Similarly, let iX denote the index of the contract calculation date

immediately following the death of the insured. Let H denote the filtration generated

by the process Nt = 1τX≤t , which is zero as long as the insured is alive and which

jumps to one in the moment the insured dies. With G being the enlargement of

the filtration F in order to include H , i.e. G = F ∨ H , it follows that τX is a

G -stopping time, since

{ω ∈ Ω : τX(ω) < t} ⊂ Gt (2.14)

holds. Assuming independence between financial markets and mortality as well as

risk-neutrality of the insurer with respect to mortality risk, we are able to use the

product measure of the risk-neutral measure of the financial market and the mor-

tality measure. In what follows, we denote this product measure by Q and use the

enlargement (Ω,G,G,Q) of the filtered probability space (Ω,F ,F,Q∗) .

We denote by x0 the insured’s age (in full years) at the time of the start of the

contract, and with X = τX + x0 the age of the insured at the time of their death.

Further denote tpx0 the probability under Q for a x0 -year old to survive the next t

years, sqx0+t the probability under Q for a x0+t -year old to die within s years, and

let ω be the limiting age of the mortality table, i.e. the age beyond which survival

is assumed to be impossible. The probability that an insured aged x0 at inception

passes away within the period (t, s] is thus given by the product tpx0 · sqx0+t . The

limiting age ω allows for a finite time horizon T = ω − x0 . The policy calculation

dates are therefore given by 0 = t̃0 < t̃1 < . . . < t̃M = T , with M ∈ N .

We restrict the policyholder behavior to the simple case where the policyholder (while

being still alive) has two possibilities to chose from at each policy calculation date

t :

• either they withdraw exactly the guaranteed amount W guar
t

• or they surrender the contract, i.e. they withdraw AV −t > W guar
t .
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This means we do not allow for partial surrender nor a withdrawal amount lower

than the guaranteed amount. We denote the policy calculation date at which the

policyholder surrenders with τS , where τS = ∞ is to be interpreted as though the

policyholder did not chose to surrender the contract while the contract was still in

force. Let iS denote the corresponding index of the policy calculation date τS , such

that τS = t̃iS holds, given τS <∞ .

The contract calculation date at which the account value of the policyholder falls

below the guaranteed withdrawal amount for the first time and thus the date at

which the insurer has to compensate for the guaranteed withdrawals for the first

time, may then be expressed via the random variable τG , which is given by the

formula

τG := inf
{
t ∈
{
t̃i
}M
i=0

∣∣∣ t < τX , t < τS, AV
−
t < W guar

t

}
. (2.15)

As usually, the infimum of the empty set is defined as +∞ , which in that case

implies that the guarantee of the contract does not trigger while the insured is still

alive or before they chose to surrender. Let iG denote the corresponding index of

the contract calculation date τG , such that τG = t̃iG holds, given τG < ∞ . In the

following, we will sometimes refer to τG as the “trigger time” of the guarantee. After

the guarantee has triggered, for the policyholder there is no reason to surrender the

contract, hence it holds τS <∞⇒ τS < τG . However, for the sake of simplicity, we

allow for (theoretical) surrender after the guarantee has triggered and will interpret

this as if the policyholder did not surrender. Both, τS and τG , are stopping times

with respect to the filtration G = (Gt)t∈{t̃i}
i≥0

, i.e. it holds ∀ i ∈ N

{
ω ∈ Ω : τG(ω) < t̃i

}
⊂ Gt̃i (2.16){

ω ∈ Ω : τS(ω) < t̃i
}
⊂ Gt̃i . (2.17)

With Bt denoting the value at time t of the cash-bond (the chosen numéraire), the

time- t value GP
t of the deflated future guarantee payments Gt (see formula 2.3) of
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the insurer is given by

GP
t =

0 , τG =∞

Bt ·
∑iX

i=iG

Gt̃i
Bt̃i
· 1{t̃i>t} , τG <∞

(2.18)

=


0 , τG =∞

Bt ·
(

(W guar
τG

−AV −τG )

BτG
1{τG>t} +

∑iX
i=iG+1

W guar

t̃i

Bt̃i
1{t̃i>t}

)
, τG <∞

. (2.19)

The time- t value GF
t of all future guarantee fees deducted from the account value

can be computed similarly. We assume that the fraction of the total amount of

running fees (for administration and guarantee) that is assigned for covering the

costs of the guarantee is given by ϕguar

ϕadm+ϕguar
1. Thus, GF

t takes the form

GF
t =Bt · ϕguar

ϕadm+ϕguar
·
(

1− e−(ϕadm+ϕguar)
)

·
min(iG,iX ,iS)∑

i=1

1

Bt̃i

· AV +
t̃i−1
·
St̃i
St̃i−1

· 1{t̃i>t} (2.20)

=Bt · ϕguar

ϕadm+ϕguar
·
(

1− e−(ϕadm+ϕguar)
)

·
min(iG,iX ,iS)∑

i=1

1

Bt̃i

· AV −
t̃i
· eϕadm+ϕguar · 1{t̃i>t} (2.21)

=Bt · ϕguar

ϕadm+ϕguar
·
(
eϕ

adm+ϕguar − 1
)
·

min(iG,iX ,iS)∑
i=1

1

Bt̃i

· AV −
t̃i
· 1{t̃i>t} .

(2.22)

We define the time- t value V G
t of the GLWB option as the value of all (deflated)

future guarantee payments occurring after time t , less the value of all (deflated)

future guarantee fees deducted from the policyholder’s account value, again only

those occurring after time t . In formulas,

V G
t = EQ

[
GP
t

∣∣Gt]− EQ
[
GF
t

∣∣Gt] . (2.23)

At outset, we call the contract (in an actuarial sense) fair from an insurer’s point

1This is motivated by the fact that
∫ T

0
ϕguar · exp(−(ϕadm + ϕguar)t)dt = ϕguar

ϕadm+ϕguar ·(
1− exp(−(ϕadm + ϕguar)T )

)
.
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of view, if the GLWB option’s value V G
0 is zero. That is, to make the contract fair,

the following equation must hold at inception of the contract:

EQ
[
GP

0

] !
= EQ

[
GF

0

]
. (2.24)

Finally, we assume that the policyholder surrenders the contract at each contract

calculation date t with a certain probability pSt conditional to the insured being

alive, the contract being still in force and an account value above zero. The prob-

ability that the policyholder surrenders at the contract calculation date t̃i (again

under the assumption of an untriggered guarantee and the insured being still alive)

is therefore given by
(∏i−1

j=0(1− pS
t̃j

)
)
pS
t̃i

. We will denote this probability by p̃Si .

Then the computation of the time-0 value of the GLWB option, V G
0 , allows for the

following conditionings of the expected value under Q :

V G
0 = EQ

[
GP

0 −GF
0

]
(2.25)

= EQ
[
EQ
[
GP

0 −GF
0

∣∣τX]] (2.26)

= EQ
[
EQ
[
EQ
[
GP

0 −GF
0

∣∣τS]∣∣τX]] (2.27)

= EQ
[
EQ
[
EQ
[
GP

0 −GF
0

∣∣τS]∣∣iX]] (2.28)

=
M∑
i=1

t̃i−1
px0 ·t̃i−t̃i−1

qx0+t̃i−1
· EQ

[
EQ
[
GP

0 −GF
0

∣∣τS]∣∣iX = ix
]

(2.29)

=
M∑
i=1

t̃i−1
px0 ·t̃i−t̃i−1

qx0+t̃i−1
·

[
ix−1∑
is=0

p̃Sis · EQ
[
GP

0 −GF
0

∣∣iS = is, iX = ix
]

+

(
1−

ix−1∑
is=0

p̃Sis

)
· EQ

[
GP

0 −GF
0

∣∣τS =∞, iX = ix
] ]

. (2.30)



Chapter 3

Financial Market and Numerical

Analysis Framework

3.1 Models of the financial market

For our analyses we assume two primary traded assets: the fund’s underlying, whose

spot price at time t we denote by St , and the money-market account, whose value at

time t is denoted by Bt . The price processes B = (Bt)0≤t≤T and S = (St)0≤t≤T are

assumed to be adapted, right-continuous with left-limits (“càdlàg”1) and strictly pos-

itive semi-martingales on a filtered probability space (Ω,F ,F,P) with F = (F)0≤t≤T

and a fixed time horizon T ∈ (0,∞) . Furthermore, we assume the market to be

free of arbitrage, in the sense of being equivalent (cf. Bingham and Kiesel, 2004, [5])

to the existence of an equivalent martingale measure (EMM). However, we do not

assume the market to be complete in all cases, i.e. there may be contingent claims

that are non-attainable by self-financing strategies.

We assume the interest rate spread to be zero and the money-market account to

evolve at a continuously compounded risk-free rate r , which remains constant over

time. Thus, the dynamics of the money-market account are given by

dBt = rBtdt (3.1)

and thus

Bt = B0 exp(rt) . (3.2)

1French “continue à droite, limitée à gauche”.

16
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For the dynamics of the process of the underlying spot price, S = (St)0≤t≤T , we

use two different models: first we assume the equity volatility to be deterministic

and constant over time, and hence use the Black-Scholes-Merton (Black and Scholes,

1973, [6], Merton, 1973) model. Second, to allow for a stochastic equity volatility

modeling, we use the Heston (1993, [16]) model, in which both, the underlying itself

and its instantaneous (or local) variance, are modeled by stochastic processes.

3.1.1 Black-Scholes-Merton model

In the Black-Scholes-Merton framework (Black and Scholes, 1973, [6], Merton, 1973),

the underlying’s spot price S follows a geometric Brownian motion whose dynamics

under the real-world measure P are given by the following stochastic differential

equation (SDE)

dSt = µStdt+ σBSStdWt, S0 ≥ 0 (3.3)

where µ is the (constant) drift rate of the underlying, σBS ≥ 0 its constant volatility

and W = (Wt)0≤t≤T denotes a P -Wiener process. By Itō’s lemma, S has the

solution

St = S0 exp

((
µ− σ2

BS

2

)
t+ σBSWt

)
, S0 ≥ 0. (3.4)

3.1.2 Heston model

There are various extensions to the Black-Scholes-Merton model that aim at a more

realistic modeling of the underlying’s volatility. We use the Heston (1993, [16])

model in our analyses where the instantaneous (or local) variance of the asset is

modeled stochastic. Under the Heston model, the market is assumed to be driven

by two stochastic processes: the underlying’s price S = (St)0≤t≤T , and its instan-

taneous (local) variance V = (Vt)0≤t≤T , which is assumed to follow a one-factor

mean-reverting square-root process identical to the one used in the Cox-Ingersoll-

Ross (1985, [10]) interest rate model. The dynamics of the two processes under the

real-world measure P are given by the following system of stochastic differential

equations,

dSt = µStdt+
√
VtSt

(
ρdW 1

t +
√

1− ρ2dW 2
t

)
, S0 ≥ 0 (3.5)

dVt = κ (θ − Vt) dt+ σV
√
VtdW

1
t , V0 ≥ 0, (3.6)



CHAPTER 3. FINANCIAL MARKET AND NUMERICAL ANALYSIS FRAMEWORK 18

where µ again is the drift of the underlying, Vt is the instantaneous (or local)

variance of the underlying’s spot price process at time t , κ is the speed of mean

reversion, θ is the long-term average variance, σV is the so-called vol of vol, or

(more precisely) the volatility of the variance, ρ denotes the correlation between

the processes of the underlying and the variance, and W 1/2 =
(
W

1/2
t

)
0≤t≤T

are two

independent P -Wiener processes.

The condition 2κθ ≥ σ2
V ensures that the variance process will remain strictly

positive almost surely (cf. Cox, Ingersoll, Ross, 1985 [10]).

To our knowledge, there is no analytical solution for S available, thus numerical

methods are used in the simulation, which are presented in section 3.3.1.

3.2 Change of measure: the equivalent martingale

measure

In order to determine the values (i.e. the risk-neutral expectations) of the assets

in our model, we need to transform the real-world measure P into its risk-neutral

counterpart Q∗ , i.e. into an equivalent measure (that is, both measures share the

same null sets, i.e. same things possible and same things impossible) under which

the process of the deflated (by the natural numeréraire B ) underlying’s spot price

is a (local) martingale. While the transformation to such a measure is unique under

the Black-Scholes-Merton model, it is not under the Heston model.

3.2.1 Black-Scholes-Merton model

If no dividends are paid on the underlying, by Itō’s formula, the dynamics of the

deflated underlying’s price S̃ =
(
S̃t

)
0≤t≤T

, S̃t := St/Bt , under the Black-Scholes-

Merton model is given by the following SDE (cf. Bingham and Kiesel, 2004, [5]):

dS̃t = (µ− r)S̃tdt+ σBSS̃tdWt, S0 ≥ 0 (3.7)

where r denotes the risk-free rate of return, µ the return of the underlying and

W = (Wt)0≤t≤T is a Wiener process under the real-world measure P .

Let γ = (γ(t))0≤t≤T be a measurable, adapted process with
∫ T

0
γ(t)2dt <∞ almost
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surely. We then define the process L = (L(t))0≤t≤T via

L(t) = exp

{
−
∫ t

0

γ(s)′dWs −
1

2

∫ t

0

γ(s)2ds

}
. (3.8)

Now assume γ fulfills Novikov’s condition (again cf. Bingham and Kiesel, 2004, [5]),

i.e.

E

(
exp

{
1

2

∫ t

0

γ(s)2ds

})
<∞ (3.9)

holds, which implies that L is a (continuous) martingale. Girsanov’s theorem then

shows that the process W̃t := Wt +
∫ t

0
γ(s)ds, 0 ≤ t ≤ T , is a Wiener process under

the equivalent probability measure P̃ (defined on (Ω,FT )) with the Radon-Nikodým

derivative

P̃
P

= L(T ). (3.10)

If F = (Ft)0≤t≤T is the Brownian filtration (the filtration generated by the Wiener

process), any pair of equivalent probability measures Q∗ ∼ P on FT is a Girsanvov

pair, i.e.

Q∗

P

∣∣∣
Ft

= L(t). (3.11)

With that, the dynamics for S̃ under the equivalent measure Q∗ are

S̃t = (µ− r − σBSγ(t)) S̃tdt+ σBSS̃tdW̃t, S0 > 0. (3.12)

Since S̃ has to be a (local) martingale under Q∗ , the drift part of the SDE must be

zero, i.e.

(µ− r − σBSγ(t))
!

= 0, 0 ≤ t ≤ T, (3.13)

which implies that γ(t) is a constant and given by the following formula (also known

as the “market price of risk”

γ(t) ≡ µ− r
σBS

. (3.14)

We then arrive at the following Q∗ -dynamics for the undiscounted price of the
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underlying, S :

St = rStdt+ σBSStdW̃t, S0 > 0, (3.15)

with W̃ being a Q∗ -Wiener process.

3.2.2 Heston model

Under the Heston model, as there are two sources of risk, W 1 and W 2 , there are

also two “market price of risk” processes, denoted by γ1 and γ2 (corresponding to

W 1 and W 2 ).

It is known (for all of the following we refer to Wong and Heyde, 2006, [31]) that

the (class of) equivalent martingale measures Q∗ , if existent, can be considered in

terms of the Radon-Nikodým derivative

Q∗

P

∣∣∣
FT

= L(T ) (3.16)

= exp

{
−
(∫ T

0

γ1(u)dW 1
u +

∫ T

0

γ2(u)dW 2
u

)
(3.17)

− 1

2

(∫ T

0

γ2
1(u)du+

∫ T

0

γ2
2(u)du

)}
. (3.18)

A necessary condition to ensure that the discounted underlying price is a local mar-

tingale and therefore a necessary condition for an equivalent local martingale measure

to exist, is given by the equation

µ− r =
√
Vt

(
ργ1(t) +

√
1− ρ2γ2(t)

)
. (3.19)

Heston (1993, [16]) proposed the following additional restriction on the market-price-

of-volatility-risk process, assuming it to be linear in local volatility,

γ1(t) = λ
√
Vt , (3.20)

where λ ∈ R is a real-valued constant.
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With this, we know that the variance process under Q∗ has the dynamics

dVt = κθdt− (κ+ λσV )Vtdt+ σV
√
VtdW̃

1
t , V0 > 0, (3.21)

= κ∗ (θ∗ − Vt) dt+ σV
√
VtdW̃

1
t , V0 > 0, (3.22)

with W̃ 1 being a Q∗ -Wiener process.

Hence we obtain the same functional form as under P , but with transformed pa-

rameters for the speed of mean reversion and long-term average variance,

κ∗ = κ+ λσV (3.23)

θ∗ =
κθ

κ+ λσV
. (3.24)

For the second market-price-of-risk process γ2 , we obtain by substituting 3.20 into

equation (3.19) and under the aforementioned parameter restriction 2κθ ≥ σ2
V , the

equation

γ2(t) =
1√

1− ρ2

(
µ− r√
Vt
− λρ

√
Vt

)
, (3.25)

and thus, if λ is given, both market-price-of-risk processes are fully defined.

Wong and Heyde (2006, [31]) also show that the equivalent local martingale measure

that corresponds to the market price of volatility risk λ
√
Vt , exists if the inequality

− κ

σV
≤ λ <∞ (3.26)

is fulfilled. They further show that, if an equivalent local martingale measure Q∗

exists and

κ+ λσV ≥ σV ρ (3.27)

holds, the discounted stock price S̃ =
(
S̃t

)
0≤t≤T

, S̃t := St/Bt is a Q∗ -martingale.

Finally, provided both measures, P and Q∗ , exist, the Q∗ -dynamics of S and V ,

again under the assumption that no dividends are paid, are given by (cf. Wong and

Heyde, 2006, [31])

dSt = rStdt+
√
VtSt

(
ρdW̃ 1

t +
√

1− ρ2dW̃ 2
t

)
, S0 ≥ 0 (3.28)

dVt = κ∗ (θ∗ − Vt) dt+ σV
√
VtdW̃

1
t , V0 ≥ 0, (3.29)
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where W̃ 1/2 are two independent Q∗ -Wiener processes and where κ∗ and θ∗ are

the risk-neutral counterparts to κ and θ as defined in (3.23) and (3.24) respectively.

3.3 Numerical analysis framework

3.3.1 Monte-Carlo simulations

As, to our knowledge, there exist no closed form solutions for the in section 2.3 de-

fined value of the GLWB rider option V G
0 , we have to rely on numerical methods

to determine the option’s value, i.e. the value of the difference between expected

discounted future guarantee payments made by the insurer and the expected dis-

counted future guarantee fees deducted from the policyholder’s fund assets. We

call the contract fair, if this difference is zero at inception of the contract. To this

end, for both equity models, we use Monte-Carlo simulations to compute the value

of the GLWB option as defined in section 2.3, that is to compute the expectation

V G
0 = EQ∗

[
GP

0 −GF
0

]
we use the Monte-Carlo approximation / estimator for V G

0

(cf. Glasserman, 2003, [14]),

V̂ G
0 =

1

N

N∑
k=1

(
GP

0

(
Ŝk
)
−GF

0

(
Ŝk
))

(3.30)

where each Ŝk =
(
Ŝki

)
0≤i≤M

is one path of the fund’s underlying price process at

the policy calculation dates
(
t̃i
)

0≤i≤M .

a) Path generation

As there is a closed form solution for S available under the Black-Scholes-Merton

model, simulation of the financial market, i.e. path generation of S is rather simple:

Let zki , 0 ≤ i ≤ M, 0 ≤ k ≤ N be a realization of independent standard-normal

distributed random variables Zk
i ∼ N(0, 1), 0 ≤ i ≤M, 0 ≤ k ≤ N . Then the path

generation for one path Ŝk =
(
Ŝki

)
0≤i≤M

in the Black-Scholes-Merton case works

as follows (cf. Glasserman, 2003, [14]),

Ŝk0 = S0 (3.31)
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and

Ŝki+1 = Ŝki exp

((
µ− 1

2
σ2
BS

)(
t̃i+1 − t̃i

)
+ σBS

√
t̃i+1 − t̃i Zk

i

)
. (3.32)

In the Heston model however, as there is no closed-form solution for S , numerical

methods are needed for the path generation of Ŝk . We follow Lord, Koekkoek and

van Dijk (2008, [25]) in the remainder of this section.

A method to simulate paths for the Heston model without bias, using non-central

chi-squared random variables and a numerical Fourier inversion of the characteristic

function, has recently been derived by Broadie and Kaya (2004, 2006). However, the

part of the numerical Fourier inversion makes the algorithm highly time-consuming

in the case if many observation dates of the underlying’s price are needed, i.e. if many

intermediate steps need to be computed, as, for instance, it is the case with highly

path-dependent products. Since there are indeed many intermediate steps needed

for our simulations, for instance when we analyze and compare different hedging

strategies, and as performance is an important issue with this kind of simulations,

we do not use this unbiased algorithm for our simulations, but, instead, use methods

that allow for a (comparably) fast, however biased generation of simulation paths of

S .

To this end, we use Euler discretizations of the instantaneous variance process V ,

i.e. we use (very) small (typically equidistant) steps in time to approximate the

dynamics of V given in its corresponding SDE. Let ∆t be the chosen step size of

our Euler discretization and let (tj)0≤j≤Ñ be the resulting time grid and
(
V̂j

)
0≤j≤Ñ

the corresponding simulated path2 of V , then a näıve Euler discretization for V

would read

V̂0 = V0 (3.33)

and

V̂j+1 = V̂j + κ
(
θ − V̂j

)
∆t+ σV

√
V̂j
√

∆t zj, 0 ≤ j ≤ Ñ − 1 , (3.34)

where the (zj)0≤j≤Ñ again are realizations of independent standard-normal dis-

tributed random variables.

The problem with the simulation scheme in (3.34) is, that, given Ṽj > 0 , the proba-

2For ease of notation and better readability, we omitted the indication of the path number, ()k .
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bility that Ṽj+1 will be negative is given by (cf. Lord, Koekkoek and van Dijk, 2008,

[25]):

P
(
Ṽj+1 < 0

)
= N

− (1− κ∆t) Ṽj − κθ∆t

σV

√
Ṽj
√

∆t

 , (3.35)

where N is the cumulative distribution function of the standard normal distribution.

That is, the probability that we end up with a negative value for the local variance

within our simulations is strictly positive within the proposed scheme in (3.34).

Lord, Koekkoek and van Dijk (2008, [25]) introduce a general framework for all of the

common fixes for this problem. All of the considered Euler schemes can be unified

within the scheme (with the auxiliary values
(
Ṽj

)
0≤j≤Ñ

)

V̂0 = V0 (3.36)

Ṽ0 = V0 (3.37)

and

Ṽj+1 = f1

(
Ṽj

)
− κ∆t ·

(
f2

(
Ṽj

)
− θ
)

+ σV

√
f3

(
Ṽj

) √
∆t zj (3.38)

V̂j+1 = f3

(
Ṽj+1

)
, 0 ≤ j ≤ Ñ − 1 . (3.39)

Now, the considered schemes can be summarized as presented in table 3.1, where

|x| is the absolute value and x+ = max(x, 0) . For details and references, see Lord,

Koekkoek and van Dijk (2008, [25]).

Scheme f1(x) f2(x) f3(x)

Absorption x+ x+ x+

Reflection |x| |x| |x|
Higham and Mao x x |x|
Partial truncation x x x+

Full truncation x x+ x+

Table 3.1: Overview of Euler schemes for simulation of the local volatility process
under the Heston model.

Lord, Koekkoek and van Dijk (2008, [25]) demonstrate that using the correct fix at

the boundary is important, and significantly impacts the magnitude of the bias. In

their examples, the numerical results indicate that the full truncation scheme pro-
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duces the smallest bias, being far superior to the (in practice widely used) absorp-

tion scheme. The most biased scheme according to their comparison is the reflection

scheme with almost double the bias of the absorption scheme and about 100 times

the bias of the full truncation scheme. Therefore, we use the proposed full truncation

scheme in our simulations.

For the simulation of the underlying’s price
(
Ŝj

)
0≤j≤Ñ

along the chosen time grid

(tj)0≤j≤Ñ , we switch to logarithms, resulting in

Ŝ0 = S0 (3.40)

and (with 0 ≤ j ≤ Ñ − 1 ),

ln Ŝj+1 = ln Ŝj +

(
µ− 1

2
V̂j

)
∆t+

√
V̂j
√

∆t
(
ρzj +

√
1− ρ2z̃j

)
, (3.41)

where zj are the values used in the simulation of the local variance, and z̃j are

another set of realizations of independent standard-normal distributed random vari-

ables.

We refer to Andersen (2007, [1]) and Van Haastrecht et. al. (2008, [29]) for more

elaborate simulation schemes of the Heston model, that aim at finding the best mix

between exact simulation and computational efficiency.

b) Variance reduction techniques

In order to reduce the variance of the Monte-Carlo estimator of an option value, one

could use a higher number N of paths in the simulation, but this comes at the cost of

a higher computational effort and, as the central feature of the Monte Carlo method

is a standard deviation of the form σMC/
√
N (cf. Glasserman, 2003, [14]), where

four times the number of paths only result in a bisection of the standard deviation,

this may prove inefficient. There are several alternative methods known how the

variance of the Monte-Carlo estimator can be reduced, well known is for instance

the use of the control variate technique, where (additionally to the option value of

interest) the value of an option for which a closed-form solution exists is also priced

within the Monte-Carlo simulation. The computed Monte-Carlo price of this option

is then compared to its real value, given by the closed-form solution. The according

deviation is then used to improve the estimator for the value of the option which is

of interest.
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Another technique is the use of so-called antithetic variates (cf. Glasserman, 2003,

[14]), where the simulation of the paths is done in form of pairs in case of the Black-

Scholes-Merton model and in form of quadruples in case of the Heston model. This

method uses the fact, that a Wiener process W = (Wt)0≤t≤T multiplied by −1 (i.e.

reflected with respect to the time axis) again is a Wiener process, and therefore, if

we have simulated one path of the Wiener process, we can use it in fact twice as

the pair (W,−W ) , resulting in a symmetrical distribution of the simulated paths,

as the outcome of the simulation generated by the first path will be balanced by the

outcome of the simulation result of the second path.

When the financial market in our model is driven by two Wiener processes, as it

is the case with the Heston model, we can use the same approach to generate four

scenarios out of one realization of each Wiener process, resulting in the quadruple

({W 1,W 2} , {W 1,−W 2} , {−W 1,W 2} , {−W 1,−W 2}) .

An additional benefit of the antithetic variates method is a reduced computational

effort, as in order to perform a Monte Carlo simulation with the same number of

paths, the computational costs to produce realizations of the standard-normal dis-

tribution is reduced, because flipping the sign normally needs considerably less effort

than calculating an “original” draw from the standard-normal distribution.

3.3.2 Computation of sensitivities (Greeks)

Where no analytical solutions for the sensitivity of the option’s or guarantee’s value

to changes in model parameters (the so-called Greeks, see for instance Joshi (2003,

[19]) for a detailed explanation) exist, we use Monte-Carlo methods to compute the

respective sensitivities numerically. We use finite differences (cf. Glasserman, 2003,

[14]) as approximations of the partial derivatives, where the direction of the shift is

chosen accordingly to the direction of the risk, i.e. for the delta we shift the stock

downwards in order to compute the backward finite difference, and for the vega we

shift the current volatility upwards, this time to compute a forward finite difference.

3.3.3 Valuation of European standard options via Fourier

inversion

In some of the hedging strategies considered in section 4, European standard or

“plain vanilla” options are used. Under the Black-Scholes-Merton model, there are
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closed form solutions for the price of European call and put options (cf. e.g. Bingham

and Kiesel, 2004, [5]). For strike price K and maturity T , the fair value of a call

option at time t is given by the Black (1976) formula

CBS (St, K, σBS, t, T ) = P (t, T ) [F (t, T ) ·N(d1)−K ·N(d2)] , (3.42)

where N(·) denotes the cumulative distribution function of the standard normal

distribution and d1 and d2 are given by

d1 :=
ln(F (t, T )/K) + (σ2

BS/2)(T − t)
σBS
√
T − t

(3.43)

and

d2 := d1 − σBS
√
T − t . (3.44)

Further, F (t, T ) denotes the forward price and P (t, T ) denotes the discount factor

to the option expiry date. With µ being the underlying’s drift under the risk-neutral

measure, and r the risk-free rate of return, we have

F (t, T ) := St exp (µ(T − t)) (3.45)

and

P (t, T ) := exp (−r(T − t)) . (3.46)

Similarly, the price of a European put option is given by

PBS (St, K, σBS, t, T ) = P (t, T ) [K ·N(−d2)− F (t, T ) ·N(−d1)] . (3.47)

Pricing via Fourier inversion under the Heston model

For the Heston stochastic volatility model, Heston (1993, [16]) found a semi-analytical

solution for pricing European call and put options using Fourier inversion techniques.

The time- t prices for European call and put options with strike price K and ma-

turity T can be expressed very similar to the Black-Scholes ones, namely (for the

following cf. Kahl and Jackel, 2005, [21])

CHeston(St, K, Vt, t, T ) = P (t, T ) [F (t, T ) · P1 −K · P2] (3.48)
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and

PHeston(St, K, Vt, t, T ) = P (t, T ) [F (t, T ) · (P1 − 1)−K · (P2 − 1)] , (3.49)

with F (t, T ) and P (t, T ) as defined in (3.45) and (3.46) respectively, and with

P1/2 :=
1

2
+

1

π

∫ ∞
0

f1/2(u)du . (3.50)

The functions f1 and f2 are

f1(u) := Re

(
e−iu lnKϕ(u− i)

iuF (t, T )

)
(3.51)

and

f2(u) := Re

(
e−iu lnKϕ(u)

iu

)
, (3.52)

with ϕ(·) being defined as the log-characteristic function of the underlying’s price

ST at expiry under the risk-neutral measure Q∗ , that is

ϕ(u) := EQ∗
[
eiu lnST

∣∣St] . (3.53)

The equations for the price of a call or put option given the log-characteristic function

ϕ(·) of the underlying’s price at expiry are generic and apply to any model.

Specifically for the Heston model, with τ = T − t , we have the log-characteristic

function

ϕ(u) = eC(τ,u)+D(τ,u)Vt+iu lnF (t,T ) , (3.54)

where the coefficients C and D are solutions of a two-dimensional system of ordinary

differential equations (ODE) of Riccati-type, and are given by

C(τ, u) =
κθ

σ2
V

(
(κ− ρσV ui+ d(u)) τ − 2 ln

(
c(u)ed(u)τ − 1

c(u)− 1

))
, (3.55)

and

D(τ, u) =
κ− ρσV ui+ d(u)

σ2
V

(
ed(u)τ − 1

c(u)ed(u)τ − 1

)
, (3.56)
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with the auxiliary functions

c(u) =
κ− ρσV ui+ d(u)

κ− ρσV ui− d(u)
(3.57)

and

d(u) =

√
(ρσV ui− κ)2 + iuσ2

V + σ2
V u

2 . (3.58)

As Kahl and Jackel (2005, [21]) point out, the computation of the terms P1/2 in

(3.50) includes the evaluation of the logarithm with complex arguments in (3.55),

which may lead to numerical instabilities for certain sets of parameters and/or long-

dated options. For that reason, we use the scheme proposed in their paper, which is

supposed to allow for a robust computation of the fair values of European call and

put options for (practically) all levels of parameters and – as they state – even for

maturities of many decades.

Kahl and Jackel also point out in their paper that the choice of the right integration

scheme is another crucial point for a robust implementation of the semi-analytical

Heston solution, since the integrands f1/2 can vary in their shape from simply expo-

nentially decaying to highly oscillatory depending on the choice of parameters. As

in the proposed scheme, we use the adaptive Gauss-Lobatto quadrature method as

described in Gander and Gautschi (2000, [13]) for the numerical integration of P1

and P2 .

3.4 Black-Scholes-Merton Implied Volatility sur-

face

The Black-Scholes-Merton Implied Volatility of an European standard option is the

specific volatility σBS for which the result of the Black-Scholes-Merton formulas

in (3.42) for a call option or (3.47) for a put option respectively coincide with the

observed market prices of these options, i.e. the volatility implied by the market

price of the option. For instance in the case of a call option with maturity T , strike

set at K and a current level of the underlying St , this means that for a given time-

t market price Cmarket(St, K, t, T ) of this option, the Black-Scholes-Merton implied

volatility σBS(St, K, t, T, r) , with the (assumed to be observable) risk-free rate of



CHAPTER 3. FINANCIAL MARKET AND NUMERICAL ANALYSIS FRAMEWORK 30

return r , is defined as the unique3 value for which the following equation holds:

Cmarket(St, K, t, T ) = CBS(St, K, σBS, t, T ). (3.59)

If we have a matrix of option prices of call and put options on the same underlying but

for different maturities and different strikes, we call the corresponding set of Black-

Scholes-Merton (BSM) implied volatilities, the implied volatility surface, i.e. the

surface of the BSM volatilities implied by the observed market prices. For instance, if

the market prices are computed with the Black-Scholes-Merton model using only one

constant volatility σBS for all strikes and maturities, the resulting implied volatility

surface would be flat.

In reality however, the implied surfaces observed in the market are not flat but show

different kinds of dynamic “deformations” (cf. e.g Cont and Da Fonseca, 2002, [9],

and Joshi, 2003, [19]) with the most prominent being the following:

• skewness or smile: typically put options with a low moneyness (i.e. the strike

is significantly below the current level of the underlying) have a (much) higher

implied volatility than options struck at-the-money, i.e. the strike price coin-

cides with the current spot price of the underlying, or options with a strike

above the current level of the underlying (in-the-money puts or out-of-the-

money calls). Depending on the underlying, the implied volatilities may rise

again with an increasing strike level. The emerging pattern is called the smile

of the implied volatility surface.

• term structure: the implied volatilities observed in the market also usually

change with the time to maturity of the options. Typically, the smile of the

surface flattens and the volatilies around the current level of the underlying (or

the forward value F (t, T ) = EQ∗ [ST |Ft] hereof) rise or fall.

It is of interest to know the characteristics and dynamics of the implied volatility

surface that a certain financial market model generates, i.e. the volatility surface

which is implied by the prices of a given set of standard options computed within the

model. Ideally, if the model is used for market-consistent pricing, these computed

prices should coincide (within an error margin) with the observed market prices.

3In the Black-Scholes-Merton model, the Vega of a call option is given by ∂CBS

∂σBS
=

S
√

T − tN ′(d1) , which - by means of put-call parity and because the vega of a forward is zero
- coincides with the Vega of the put option. Note that the Vega is always positive and therefore
the map from volatilities to prices is injective (cf. Joshi, 2003, [19]).
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Therefore, when confronted with the task of calibrating an equity model for pricing

purposes, there are usually two main approaches on how to determine the parameters

(cf. Wilmott, 2006, [30]): The statistical approach first looks at the statistics of the

underlying and estimates the real-world model parameters from historical data of

the underlying, then tries to estimate the market price of risk processes (in case

of the Heston model, the parameter λ ) from option price data in order to get the

risk-neutral parameters. The second approach aims at the market consistency of the

model and directly calibrates the risk-neutral parameters to option prices observable

in the market, such that the model replicates these prices as accurately as possible.

The model is then used to determine the values of options that are not observable

in the market.

Figure 3.1 shows the implied volatility surface that is implied by the option prices

generated by the Heston model with parameters as given in table 6.4 that we use

later on for our analyses in chapters 6 and 7.

The two implied volatility surfaces pictured in figure 3.2 illustrate the dynamics of

the implied volatility surface generated by the Heston model, as they show how the

generated surface changes if the start value for the local variance, V0 , is changed to

a higher or lower value than the long-term variance θ respectively.

The option prices were calculated via the Fourier inversion technique presented in

section 3.3.3 and the Newton-Raphson iteration procedure (cf. Bingham and Kiesel,

2004, [5]) was used for calculation of the implied volatilities.
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Figure 3.1: Implied volatility surface generated by the Heston model with the option’s
strike stated as percentage of the underlying’s current spot price, and with model
parameters r = 0.04 , θ = 0.2202 , κ = 4.75 , σV = 0.55 , ρ = −0.569 and V0 = θ .
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(i) Lower start value for the local variance: V0 = 0.102

(ii) Higher start value for the local variance: V0 = 0.352

Figure 3.2: Implied volatility surfaces generated by the Heston model with the op-
tion’s strike stated as percentage of the underlying’s current spot price, with model
parameters r = 0.04 , θ = 0.2202 , κ = 4.75 , σV = 0.55 , ρ = −0.569 , and with
V0 = 0.102 used in (i) and V0 = 0.352 used in (ii) respectively.



Chapter 4

Hedging

In this Section, we describe the different (dynamic) hedging strategies that we use

for the hedging simulations whose results are presented in chapter 7. The presented

strategies may be applied by the insurer in order to reduce the financial risk of

the guarantees (and thereby reducing the required economic risk capital). We first

describe the assumed structure of the (hedge) portfolio of the insurer before we de-

scribe the considered hedging strategies for both equity models presented in chapter

3, Black-Scholes-Merton and Heston, and for different assumptions regarding the

used hedge instruments.

4.1 Hedge portfolio

We assume that the insurer has sold a pool of policies with GLWB guarantees. We

denote by Ψt the cumulative (fair) option value for that pool at time t , i.e. Ψt is

the sum of the individual (fair) option values at time t of all policies in that pool,

where the (fair) option value is defined and to be calculated as presented in section

2.3.

Additionally, we assume that the insurer cannot influence the value Ψt of the pol-

icy pool by changes in the underlying fund, like, for instance, changing the fund’s

exposure to risky assets or forcing the policyholder to switch to a different, e.g. less

volatile, fund1.

1In practice, however, this is a frequently seen feature in products, which allows the insurer to
hedge against volatility risk by means of product design, and effectively transfer volatility risk back
to the policyholder. In our analyses, however, we concentrate on hedging strategies that aim at
compensating the (externally generated) changes of an option’s value.

34
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We further assume that the insurer invests the guarantee fees in a hedge portfolio

ΠHedge
t and implements certain hedging strategies within this hedging portfolio. Also,

if the guarantee of a contract is triggered, all of the subsequent guaranteed payments

are made from this hedge portfolio. Thus, the insurer’s cumulative profit/loss Πt (in

what follows sometimes just denoted as the insurer’s profit) at time t that originates

from the pool of policies and the implemented hedging strategy is given by

Πt = −Ψt + ΠHedge
t , (4.1)

where Ψt is the the time- t value of the implied guarantees of the pool of policies

and ΠHedge
t is the time- t value of the corresponding hedge portfolio implemented by

the insurer.

The following hedging strategies aim at reducing the insurer’s risk by implementing

certain investment strategies within the hedge portfolio ΠHedge
t . Note that the value

Ψt of the pool of policies at time t does not only depend on the number of the written

contracts and their respective face value, but also on retrospective and prospective

factors, such as - due to the path-dependent nature of the GLWB contracts - historical

prices of the fund at previous withdrawal dates, and several model assumptions

concerning mortality, lapsation, and the financial market.

The insurer’s choice of the financial market model and the corresponding choice of

parameters has a significant impact on the hedging strategies. Therefore, we will

differentiate in the following between the hedging model that is chosen and used by

the insurer, and the data-generating model that we use to simulate the development

of the underlying and the market prices of European call and put options. This al-

lows us, e.g., to analyze the impact on the insurer’s risk situation if the insurer bases

pricing and hedging on the Black-Scholes-Merton model (hedging model) with deter-

ministic equity volatility, whereas in reality (data-generating model) equity volatility

is stochastic. We assume the value of the guarantee to be marked-to-model, where

the same model is used for valuation as the insurer uses for hedging. All other assets

in the insurer’s portfolio are marked-to-market, i.e. their prices are determined by

the (external) data-generating model.

We assume that, additional to the fund’s underlying and the money-market account,

a market for European “plain vanilla” options on the underlying (i.e. simple Eu-

ropean put and call options) exists. However, we assume that only options with

limited time to maturity are liquidly traded. As well as the underlying and the

money-market account, we assume the option prices (i.e. the implied volatilities of
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the options) to be driven by the data-generating model, and presume risk-neutrality

with respect to volatility risk, i.e. the market price of volatility is set to zero in case

the Heston model is used as data-generating model. Additionally, we assume the

spread between bid and ask prices/volatilities to be zero.

For all considered hedging strategies we assume the hedging portfolio to consist of

positions in three assets, whose quantities are rebalanced at the beginning of each

hedging period: a position of quantity ∆S
t in the underlying, a position of quantity

∆B
t in the money-market account and a position of ∆X

t in a 1-year ATMF straddle

option (that is, an option consisting of long positions in one call and one put, both

with one year to maturity and struck at-the-money with respect to the maturity’s

forward, hereafter referred to by the acronym “ATMF”). We assume the insurer to

hold the position in the straddle for one hedging period, then sell the options at the

then-current price, and set up a new position in a then 1-year ATMF straddle. For

each hedging period, the price of the currently used straddle option is denoted by

Xt . We assume that the portion of the hedge portfolio that is not invested in either

the underlying or the straddle options is invested in (or borrowed from) the money

market. Thus, the hedge portfolio at time t has the form

ΠHedge
t = ∆S

t St + ∆B
t Bt + ∆X

t Xt, (4.2)

where

∆B
t =

ΠHedge
t −∆S

t St −∆X
t Xt

Bt

. (4.3)

4.2 Dynamic hedging strategies

For both considered hedging models, Black-Scholes-Merton and Heston, we analyze

three different types of (dynamic) hedging strategies.

4.2.1 No active hedging

The first strategy simply invests all guarantee fees in the money-market account and

does no further hedging, i.e. ∆S
t = 0 and ∆X

t = 0 ∀ t . The strategy is obviously

identical for both models.
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4.2.2 Delta hedging

The second type of hedging strategy uses a position in the underlying in order to

hedge the portfolio against small changes in the underlying’s price, i.e. to achieve

so-called delta-neutrality of the portfolio.

Using the Black-Scholes-Merton model as hedging model, the position ∆S
t is chosen

as the delta of Ψt , i.e. the partial derivative of Ψt with respect to the underlying’s

spot price, because of the following reasoning: The portfolio of the insurer at time

t consists of the option value Ψt of the pool of policies and the hedge portfolio

ΠHedge
t . The hedge portfolio only consists of positions in the underlying and the

money-market account. Therefore we have

Πt = −Ψt + ∆S
t St + ∆B

t Bt . (4.4)

A natural question to ask is how the value of the portfolio Πt changes from time t

to time t + dt . The change in the portfolio value originates in changes in all three

asset positions:

dΠt = −dΨt + ∆S
t dSt + ∆B

t dBt . (4.5)

Assuming the underlying follows a geometric Brownian motion as described in section

3.1.1 with the SDE

dSt = µStdt+ σBSStdWt, S0 ≥ 0 , (4.6)

then, from Itō we have (cf. Wilmott, 2006, [30])

dΨt =
∂Ψt

∂t
dt+

∂Ψt

∂St
dSt +

1

2
σ2
BSS

2
t

∂2Ψt

∂S2
t

dt . (4.7)

Thus the portfolio changes by

dΠt = −∂Ψt

∂t
dt− ∂Ψt

∂St
dSt −

1

2
σ2
BSS

2
t

∂2Ψt

∂S2
t

dt+ ∆S
t dSt + ∆B

t rBtdt. (4.8)

The random parts in (4.8) are(
−∂Ψt

∂St
+ ∆S

t

)
dSt, (4.9)
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and therefore, if we choose

∆S
t =

∂Ψt

∂St
(4.10)

the randomness is reduced to zero.

In the Black-Scholes-Merton framework with time-continuous trading and with no

transaction costs, such a position is sufficient to perform a perfect hedge. In reality

however, time-discrete trading and transaction costs cause imperfections.

While delta hedging under the Black-Scholes-Merton model (given the typical as-

sumptions), constitutes a theoretically perfect hedge, it does not under the Heston

model. Delta hedging with ∆S
t = ∂Ψt

∂St
could still be used, arguing that this strategy

constitutes a first-order approximation (via Taylor’s theorem) to the real dynamics

of Ψt . However, as it is clear that in most cases the hedge cannot be perfect, the

question arises if this imperfection can be effectively minimized.

This question leads to (locally) risk-minimizing strategies, that aim at minimizing

the variance of the instantaneous change of the portfolio. Under the Heston model2,

the problem

Var (dΠt)→ min, ∆S
t ∈ R, ∆X

t ≡ 0 (4.11)

has the solution (cf. e.g. Ewald et al., 2007, [12])

∆S
t =

∂ΨHeston
t

∂St
+
ρσV
St

∂ΨHeston
t

∂Vt
, (4.12)

where the superscript “Heston” indicates that the time- t value of the pool of policies,

Ψt , is calculated within the Heston model.

To keep notation simple, this (locally) risk-minimizing strategy under the Heston

model is sometimes also referred to as “delta” hedge.

4.2.3 Delta and Vega hedging

The third type of hedging strategies incorporates the use of the straddle option Xt ,

exploiting its sensitivity to changes in volatility for the purpose of neutralizing (or

2Note that a (time-continuously) delta-hedged portfolio under the Black-Scholes-Merton model
is already risk-free. Therefore for the Black-Scholes-Merton model, the delta-hedging strategy
coincides with the locally risk minimizing strategy.
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at least limiting) the portfolio’s exposure to changes in volatility.

Under the Black-Scholes-Merton model, volatility is assumed to be constant; there-

fore using the model to hedge against a changing volatility may appear counterintu-

itive. Nevertheless, following Taleb (1997, [28]), we analyze some kind of ad-hoc vega

hedge in our simulations, that aims at compensating the deficiencies of the Black-

Scholes-Merton model: In order to perform the vega hedge, we do not compute the

Black-Scholes-Merton vega
∂ΨBS

t

∂σBS
of the guarantee’s value Ψt and compare it to the

corresponding Black-Scholes-Merton vega
∂XBS

t

∂σBS
of the straddle option’s value Xt ,

but, instead, we use the so-called modified vega of Ψt for comparison.

Since the expected future cash flows of all maturities of the pool of policies cannot

be expected to react the same way to changes in today’s volatility, the modified vega

applies a different weighting to the respective vega of each maturity. We use the

inverse of the square root of time as simple weighting method and use the maturity

of the hedging instrument Xt , i.e. one year, as the benchmark maturity (cf. Taleb

1997, [28]).

The modified vega of Ψt at a policy calculation date t̃i then has the form

ModVega(t̃i) =
M∑

k=i+1

υt̃k(t̃i)
1√
t̃k − t̃i

(4.13)

where the υt̃k(t̃i) denote the respective Black-Scholes-Merton vega, computed at

time t̃i , of the expected discounted cash flow at time t̃k of the pool of policies.

The ratio between the modified vega and the vega of the straddle then is used to

determine the portfolio’s position in the straddles (i.e. the quantity of the straddles

bought).

Under the Heston model, we compare the two derivatives of Ψt and Xt with respect

to the current local variance Vt in the “vega” sense and then analogously determine

the option position required to offset the changes of the portfolio with respect to

changes in the local variance in first order, while ignoring terms of higher-order and

Cross-Greek 3 terms.

Of course, under both hedging models, the position in the underlying must be ad-

justed for the delta of the option position ∆X
t Xt .

3Second-order and higher partial derivatives of the option price with respect to several different
model parameters, for instance the sensitivity of the option delta with respect to change in volatility,
the so-called “Vanna” (also known as “DvegaDspot” or “DdeltaDvol”), which is defined as the
second-order derivative of the option value, once to the underlying spot price and once to the
Black-Scholes volatility, in formulas: Vanna = ∂2Πt

∂St∂σBS
.
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The hedge ratios for all three strategies used in our simulations are summarized in

table 4.1 for the Black-Scholes-Merton model, and in table 4.2 for the Heston model,

where the supercripts “BS” and “Heston” of the option prices indicate which model

was used for computation of the option prices.

When using the Black-Scholes-Merton model for hedging, we use the assumed long-

term volatility σBS for computation of the Greeks of the portfolio value ΨBS
t . For

the computation of the sensitivities of the option price XBS
t , however, we use the

Black-Scholes-Merton implied volatility σXBS(t) implied by the market price at time

t of the straddle option. This means for the simulation, that, at a rebalancing date

of the hedge portfolio, we first retrieve the market price of the straddle option from

the (unknown) data-generating model, use this price to calculate the Black-Scholes-

Merton implied volatility of the option via a root finding algorithm (see section 3.4)

and then put this implied volatility in the Black-Scholes-Merton model in order to

calculate the sensitivities (delta and vega) of the straddle option.

∆S ∆X

(NH) − −

(D-BS)
∂ΨBS

t

∂St
−

(DV-BS)
∂ΨBS

t

∂St
−∆X

t
∂XBS

t

∂St
ModVega(t)

/
∂XBS

t

∂σXBS

Table 4.1: Hedge ratios for the different strategies if the Black-Scholes-Merton model
is used as hedging model.

∆S ∆X

(NH) − −

(D-H)
∂ΨHeston

t

∂St
+ ρσV

St

∂ΨHeston
t

∂Vt
−

(DV-H)
∂ΨHeston

t

∂St
−∆X

t
∂XHeston

t

∂St ∂ΨHeston
t

∂Vt

/
∂XHeston

t

∂Vt

+ρσV
St

(
∂ΨHeston

t

∂Vt
−∆X

t
∂XHeston

t

∂Vt

)
Table 4.2: Hedge ratios for the different strategies if the Heston model is used as
hedging model.
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4.2.4 Additional semi-static hedge

Additionally, for all “active” dynamic hedging strategies (Delta and Delta-Vega), we

assume that the hedger buys European put options at each policy calculation date

such that the possible guarantee payments for the next calculation date are fully

hedged by the put options (assuming surrender and mortality rates are deterministic

and known by the insurer).

This strategy aims at avoiding having to hedge an option with short time to maturity

and hence having to deal with a potentially rapidly alternating delta (due to a high

gamma of the option) if the option is near the strike (cf. Taleb, 1997, [28]).

This is possible for all four considered ratchet mechanisms, since the minimum guar-

anteed withdrawal amount at a policy calculation date is always known at the pre-

vious calculation date 4.

4Actually, for the ratchet mechanisms “No Ratchet”, “Lookback Ratchet” and “Remaining
WBB Ratchet” it holds that E

[
W guar

t̃i+1
W
∣∣∣Gt̃i] = W guar

t̃i
, i.e. at a policy calculation date, the

minimum guaranteed withdrawal amount of the next calculation date is the exact value of the cur-
rent guaranteed withdrawal amount, due to the monotonically increasing property of these ratchet
mechanisms. For the “Performance Bonus” product design, the minimum guaranteed withdrawal
amount is always equal to the initial guaranteed withdrawal amount, i.e. the guaranteed withdrawal
amount without any performance bonus.



Chapter 5

Software Solution

In this chapter we present the main aspects of the design and the architecture of

the software solution that we used to conduct the different numerical analyses of

the GLWB option presented in the forthcoming chapters 6 and 7. The two main

requirements on the design and the implementation of the software solution were

flexibility and reusability. That is, a single implementation of an insurance product

or of a financial instrument should be sufficient for all of the desired simulations

and calculations. Similarly, once implemented numerical algorithms (like the Monte

Carlo routine for instance) should be working for different products, even those that

will be implemented at a later point in time. Generally, in order to allow for a

potentially growth and extension of the software solution for forthcoming analyses,

it should be easy to add new instruments and new models of the financial market

without needing to change much of the already existing code. All of this also aims

at keeping redundancy at a minimum, and can therefore also be expected to be

beneficial for software quality assurance.

First, we give a list of the main specifications of the software solution that we defined,

discuss the issues and questions arising from the implementation and present our

solution afterwards.

5.1 Functional specification

In this section, we specify the core functionality and the requested behavior of the

final software solution and the requested properties of the input and output data.

• core functionality

42
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– The software solution should allow the user to conduct Monte-Carlo anal-

yses of various financial instruments (including the GLWB products pre-

sented in chapter 2) and different models of the financial market (at least

the Black-Scholes-Merton and the Heston model must be implemented).

– The result of the Monte-Carlo simulations should be generic in the sense

that while the structure of the output may be pre-specified, its content

may change depending on the analyzed instrument.

– A toolkit for the (statistical) analysis of the Monte-Carlo results should be

provided to the user, including tools and functions to compute percentiles,

compute simple statistics (empirical moments like mean, standard devia-

tion, skew and kurtosis) and risk measures (value at risk, conditional tail

expectation, lower moments, . . . ).

– The software solution should also provide functions for the pricing of Eu-

ropean standard options, i.e. functions should be provided that implement

the closed-form formulas in case of the Black-Scholes-Merton model and

the inverse Fourier transformation in the case of the Heston model.

• input / output

– The required input data should be easily transferable out of spreadsheet

files, i.e. file types that are used within spreadsheet calculation programs

(.xls files for instance).

– The result of the analyses should also be easily transferable to spreadsheet

files or should be spreadsheet files in the first place.

• user interface

– The user interface should be easy to use, should allow for a clear but

flexible input structure and should assist the user in avoiding mistakes.

– The user interface should also be supportive of task automatization, i.e.

it should allow for a kind of scripting language (e.g. a simple batch file,

Visual Basic for Applications, Perl or Python) in order to automate the

use of the core functionality of the software solution via the use of macros.

• general requirements

– As the numerical analyses are expected to be rather time-consuming, the

software solution should aim at maximizing efficiency and speed of com-

putation.
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– The software solution should be reusable for subsequent analyses and tasks

and should therefore provide a flexible structure in both, the construction

of the code itself and the user interface.

– The implementation should allow for an easy way to add new financial in-

struments for analysis without having to change (too much) of the already

existing code.

– The programming language used should be widely-used amongst aca-

demics and practitioners, and should also have a strong (online) com-

munity supporting it.

– The implementation should be easy to test and debug, i.e. the program-

mer should be able to locate and correct mistakes in the code with as

little effort as possible.

– It must be possible for the programmer to expose functions directly to

the user (in the sense that the user is able to use the function directly)

that have standard signatures, i.e. functions whose input and output

parameters are of standard types such as double, integer and string,

as well as arrays and matrices of the aforementioned types.

– It must be clearly definable which functions are visible to and usable by

the user and which are not. The changes in the code that are needed for

exposing a function to the user should be kept minimal.

5.2 Architecture and implementation

The software solution that we build for our analyses is designed and implemented

for the use under Microsoft Windows. All of the core functionality of our software

solution was implemented using the C++ programming language and compiled with

the Visual C++ 9.0 compiler provided by Microsoft.

We used an object oriented approach for the software solution and hence also make

use of the accompanying terminology and concepts, particularly the concept of (ab-

stract) classes as representation of an object type and as container for the features

and traits of the object. We also use the concept of information hiding in this con-

text, which says that the (implementational) details of the methods of an object

as well as the data structure should be hidden from the user of this object and be

encapsulated within the object. The concept also says that it is only of interest
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what is implemented by the object and not how, i.e. for the user is only of interest

which interface (as a collection of provided functionality) is implemented by the ob-

ject. This concept is called polymorphism, as the same interface can be implemented

by several object types (classes) and therefore, if a function requires an object as

argument that implements a specific interface, objects of all of these implementing

classes may be passed to the function, since only the provided functionality matters

and not the true type of the object.

In our software solution there are two main interfaces (or as they are known in C++:

abstract classes, i.e. classes that have so-called pure virtual methods, which declare

only the method’s signature but do not define the method’s body), which are the

parent classes of all models and instruments that we implemented:

• cProduct: This is the main interface for all financial products and instruments.

cMCProduct is derived from this class and represents all financial products and

instruments that support the simulation within a Monte Carlo routine, and

hence implement the needed functionality. Every derived class of cProduct

and cMCProduct also contains the calculation dates of the product, i.e. for

instance for an European call option the start and end date of the option and

for a GLWB-type product all of the policy calculation dates.

• cModel: This is the abstract class which all of the financial market model classes

are derived from. Every class that represents a model of the financial market

also contains all of the corresponding model parameters and additional data

needed within this model. For each model, there has to be a corresponding

scenario generator, i.e. a class that produces an arbitrary number of path

realizations for all of the considered assets in this market (typically at least

one stock and a money-market account).

Our software solution includes a central storage facility implemented in the class

cStorage, in which objects of the types cProduct, cModel, as well as matrices of

doubles and models for lapsation (cLapsation) and mortality (cMortality) can

be stored and retrieved from within all parts of the code. For storage and retrieval

of the objects an identifier in form of an arbitrary string is used, i.e. when storing

an object, apart from the object itself, a string has to be delivered by the user.

The string must be unique within the category (model, product, . . . ), otherwise the

already stored object with the same identifier is replaced by the new object.

This storage class is designed to allow only one single instance of itself, i.e. there

may never exist two parallel instances (objects) of this class. There are at least two
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ways of implementing such a behavior, with one being the so-called Singleton pattern

(cf. for instance Joshi, 2004, [20]), where the user has to address all of their calls

to the static method usually called instance() or getInstance() which returns a

reference or a pointer to the single object of the class, which was created at the time

of the first call of instance(). The other way of implementing this “single object

pattern” makes use of static methods and variables, i.e. variables whose lifetime

extend across the entire run of the program and methods that can be called without

an existing instance of the class. We chose the latter for our implementation, mainly

because of its superior simplicity.

The core design principle for the implementation of the Monte-Carlo functionality of

the software solution is as follows: there is the function MonteCarlo, which expects

information about the financial market model to be used in the simulation and

about the product that is to be simulated. The information about the model is

passed in form of an object of a class derived from the abstract base class called

cModel. Every class that represents a model of the financial market used within the

Monte Carlo simulation must be derived from this class. Each derived model class

then is supposed to contain the model type (in form of an enumeration) and the

corresponding parameters of the model. To each model, there is a corresponding

scenario generator, which will generate random scenarios according to the given

financial market model and for a given set of calculation dates. The base class of all

scenario generators is called cScenarioGenerator and has the following structure:

1 class cScenar ioGenerator {
2 public :

3 virtual void i n i t S c e n a r i o ( cScenar io& Scenar io ) = 0 ;

4 virtual void gene ra t eScenar i o ( cScenar io& Scenar io ) = 0 ;

5 } ;

where the class cScenario is a container for the financial market data (especially

prices of the stocks and the money-market account at the calculation dates) in one

specific scenario. The function MonteCarlo creates an instance of cScenario and

passes it to the scenario generator for initialization and for each new scenario. The

purpose of the function initScenario is that in some financial market models not

all of the simulated market data is stochastic, but deterministic, i.e. the values

remain the same in each scenario. In order to achieve computational savings, in this

case initScenario writes these deterministic values in the scenario object at the

beginning of the simulation and later on generateScenario only updates the values

for the assets that are (pseudo-) randomly generated.
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5.3 User interface

For the user interface we decided to follow a direct approach and integrate the solu-

tion into the spreadsheet environment provided by the Microsoft Office Excel soft-

ware. The library containing the C++ implementation of our software solution is

compiled as a native Dynamic-link library 1 and marked via the file extension .xll

for the use within Microsoft Office Excel as an add-in. To achieve the interoper-

ability of C++ functions and Microsoft Office Excel, we made use of version 3.0.0

of the “xlw C++ wrapper for Excel” library2 which makes use of the C application

programming interface (API) of Excel3, and allows the programmer to easily export

C++ functions to Excel, where these “hand-made” functions are embedded just like

the built-in functions as, for instance, =SUM(...) are. To give an example: If a func-

tion is to be exported to Excel, which is called MyTest, takes a double as argument

and returns also a double, then the following code must be added to the project

files:

1 #include <xlw/xlw . h>

2 using namespace xlw ;

3 extern ”C” {
4 LPXLFOPER EXCEL EXPORT xlMyTest ( XlfOper xlValue ){
5 EXCEL BEGIN;

6 . . .

7 double inputValue = xlValue . AsDouble ( ) ;

8 double r e t = Test ( inputValue ) ;

9 return XlfOper ( r e t ) ;

10 EXCEL END;

11 }
12 XLRegistrat ion : : Arg MyTestArgs [ ] = {
13 { ”Value” , ”The input va lue ” , ”XLF OPER” }
14 } ;

15 XLRegistrat ion : : XLFunct ionRegistrat ionHelper reg i s terMyTest (

16 ”xlMyTest” , ”MyTest” ,

17 ” Tests the xlw C++ wrapper f o r Excel . ” ,

1See for instance Microsoft’s documentation of Dynamic-link libraries at
http://msdn.microsoft.com/en-us/library/ms682589(VS.85).aspx.

2Project website to be found at http://xlw.sourceforge.net.
3This C API of Excel is documented in: Baarns Consulting Group. Microsoft Excel 97 Devel-

oper’s kit, Microsoft Press, 1997.
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18 MyTestArgs , 1 ) ;

19 }

In order to automate this procedure of adding the xlw-specific code to the project,

we implemented a script using the Ruby programming language4 which parses all

of the header files of the project (i.e. all files in the project directory ending on

.h) and searches for specific annotations to function declarations and produces the

export code for the matched function automatically. The annotation to the function

declaration which marks the function to be exported to Excel has the following

pattern:

1 //# EXPTOXLL( MyTest , Tests the xlw C++ wrapper f o r Exce l . )

2 double MyTest

3 (

4 const double Value // The input v a l u e

5 ) ;

The first argument after EXPTOXLL indicates the definable name of the function within

Excel (in the sense of using it in a spreadsheet cell via =MYTEST(...)), and the second

argument, as well as the comment part after the input argument (after the double-

slash), are used for the description of the fields of the Excel Function Wizard, as can

be seen in the screenshot shown in figure 5.1 (note that the automatization script

always adds the prefix FR to the function name in order to make the function names

distinctable from the built-in functions).

Figure 5.1: Screenshot showing the Microsoft Office Excel Function Wizard with the
exemplary C++ function that was exposed to Excel via the use of xlw.

4See http://www.ruby-lang.org.
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5.4 Used libraries

Our software solution makes use of several open-source libraries for C++, for the

reason that we wanted to avoid writing code that has already been written by others

and – more importantly – has been tested and used by many programmers. The

following list gives an overview of the used libraries and their purpose (cf. Joshi,

2004, [20]):

• Boost: The boost project is an open source library designed to extend the

C++ standard library (stl). It can be found at http://www.boost.org. The

intention is that the libraries incorporated in boost will become part of the

C++ Standard in the future, and hence, the license is very unrestrictive and

allows the user basically to do whatever they want with the code (as opposed

to projects using the GNU license5). This is important if it is intended to use

the library within a product that is used or sold commercially. From the boost

website6 some of the requirements met by the license:

– Must grant permission without fee to copy, use and modify the software

for any use (commercial and non-commercial).

– Must require that the license appear with all copies [including redistribu-

tions] of the software source code.

– Must not require that the license appear with executables or other binary

uses of the library.

– Must not require that the source code be available for execution or other

binary uses of the library.

Of the many libraries of the boost project we use the following within our

software solution (in alphabetical order, with descriptions taken from the boost

website):

– Bind: boost::bind is a generalization of the standard functions std::bind1st

and std::bind2nd. It supports arbitrary function objects, functions, func-

tion pointers, and member function pointers, and is able to bind any

argument to a specific value or route input arguments into arbitrary posi-

tions. We use this in the context of numerical quadrature, where arbitrary

5See the website of the Free Software Foundation, http://www.fsf.org/licensing/, for details.
6http://www.boost.org/users/license.html, retrieved August 20, 2009.
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unary functions (i.e. functions that take a double as argument and re-

turning a double) can be passed to the quadrature function in order to

have them numerically integrated.

– Conversion: Polymorphic and lexical casts. Used in our software solution

for lexical casts from strings to doubles.

– Date Time: A set of date-time libraries based on generic programming

concepts. We use this for the calculation dates of the analyzed financial

instruments.

– Math/Statistical Distributions: A wide selection of univariate sta-

tistical distributions and functions that operate on them.

– Random: A complete system for random number generation. We use this

for (pseudo-) random number generation, especially the implementation

of the Mersenne Twister 19937 algorithm7.

– Smart Ptr: Smart pointer class templates. We use smart pointers to

manage all of the cModel and cProduct objects, i.e. when an object

of this type is to be passed to a function, a smart pointer referencing

to the object is passed instead. This way we avoid potential memory

leakage when working with many dynamically generated objects. This

is especially important because leaked memory would accumulate with

every function call from Excel and would not be freed again until the

Excel application is closed.

– uBLAS: uBLAS provides matrix and vector classes as well as basic lin-

ear algebra routines. Several dense, packed and sparse storage schemes

are supported. We use this for all numerical calculations and in high-

performance areas of the code, where fast parsing of arrays is needed. In

those parts of the code where performance is not an issue, we often use

the std::vector template provided by the standard library instead.

• QuantLib: The QuantLib project is aimed at “providing a comprehensive

software framework for quantitative finance. QuantLib is a free / open-source

library for modeling, trading, and risk management in real-life.” The project

website can be found at http://www.quantlib.org. Similarly to boost, the

license is very unrestrictive, allowing free use in commercial software. We took

parts of this library and used it for several numerical algorithms in our software

7cf. Matsumoto, M., Nishimura, T. (1998), “Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator”.
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solution, including the Gauss-Lobatto quadrature, which is used in the context

of the Heston model for the pricing of European “plain vanilla” options via

Fourier inversion (cf. section 3.3.3).

• xlw: We already mentioned the use of this library for generating Excel plug-ins,

known as xlls. The code for xlw can be obtained from http://xlw.sourceforge.net.

5.5 Usage example

In this section, we give a short example to illustrate the usage of our software solution

via the Microsoft Office Excel spreadsheet application. In this example we will

perform a 10-year Monte Carlo simulation of a portfolio of identical GLWB contracts

under the Heston stochastic volatility model and we will compute simple statistics

of the simulation result.

(i) =FRSchedule(Start; Step; NbSteps)

In order to generate a financial instrument, we need calculation dates, which

are often of the form “each month for x years”. For this purpose =FRSchedule

provides the functionality to define a start date, a step size (e.g. 1w for a

step size of one week, or 2m for the step size of two months), and the total

number of steps. The function will return a vector of dates according to the

specification. In our example we have annual calculation dates for a period of

10 years, therefore the function call is =FRSchedule(TODAY(); ‘‘1y’’; 10).

(ii) =FRSetPGMxBProduct(ID; LumpSum; GWRate; DeathBenefitMethod;

StepUpMethod;[...]; AcquisitionFee ;[...]; CalcDates)

This function generates an object of the type cGMxBProduct, the first argument,

ID, will be the string identifier of the object that is needed to pass it to other

functions (e.g. LookbackRatchet#01 would be a possible choice). The last

argument is a vector of the calculation dates, i.e. here we would pass the dates

that we created in the first step. The rest of the arguments are the parameters

of the product (note that we omitted some of the parameters for the sake of

simplicity of presentation). All of the functions that begin with FRSet... will

first check the parameters for correctness, will then create an object of their

specific type, will store the created object via the cStorage class, and will

finally return the identifier of the object back to the cell in Excel from where

the function was called.
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(iii) =FRSetMortality(ID; Ages; DeathProbabilities)

For the portfolio of GLWB contracts, we need an underlying model of the

mortality of the insured. In this case, we only use a simple mortality table,

matching an annualized probability to each age. The first argument is the

identifier of the created mortality table, e.g. Mort#male#1965 would be a pos-

sible choice, whereas Ages and DeathProbabilities are vectors representing

the mortality probability for each age of the insured.

(iv) =FRSetLapsation(ID; ElapsedTime; LapsationProbabilities)

For the portfolio of GLWB contracts, we also need an underlying model of the

lapsation of the insured. Again, we use a simple model where in each contract

year there is a certain annualized probability that the insured will surrender.

The first argument is the identifier of the created surrender probabilities, for

instance Lapse#01.

(v) =FRSetPGMxBPortfolio(ID; GMxBProductID; MortalityID; LapsationID; Age)

In order to generate the product portfolio we have to pass to the function

=FRSetPGMxBPortfolio its chosen identifier, the identifier of the underlying

product, the identifier of the mortality object, the identifier of the lapsation

object, and the age of the insured at outset of the contract, i.e. in our example

the call for a 65-year old would look like this:

=FRSetPGMxBPortfolio(‘‘Portfolio#01’’; ‘‘LookbackRatchet#01’’;

‘‘ Mort#male#1965’’; ‘‘Lapse#01’’; 65).

(vi) =FRSetMHeston(ID; Spot; ShortVol; LongVol; MeanReversion; VolOfVol;

Correlation; UndYC; CurrYC)

Now we have to create an object for the model of the financial market. The

function =FRSetMHeston will create an object of the model class cHestonModel,

which is derived of the abstract class cModel. Spot is the spot price of the

stock at inception, the following parameters are model-specific (cf. section

3.1), UndYC is the yield curve of the drift of the stock, and CurrYC is the yield

curve of the currency in which the money-market account is denoted.

(vii) =FRMonteCarlo(ProductID; ModelID; NbPaths; Seed)

To perform the actual Monte-Carlo simulation, we have to pass the identifier

of the product that is to be analyzed and the identifier of the model that the

model that is to be used for scenario generation. Additionally, the number of

paths and the seed for the random number generation is needed as argument.

The function will then try to fetch the model and the product from cStorage,
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and will then perform the Monte-Carlo simulation. All single path results are

then stored in cStorage, and the mean of the results is returned as a cell

matrix to Excel.

(viii) =FRStatistics(Statistic ; Percentile ; Dimension; RowNbr)

This function is used to calculate statistics from a simulation result which is

stored in cStorage. The following statistics are supported: minimum, max-

imum, mean, standard deviation, variance, skewness, kurtosis, value at risk,

expected shortfall, and arbitrary percentiles between 0 and 1. The arguments

Dimension and RowNbr are used to select the value of the result matrix from

which the statistic is to be computed.



Chapter 6

Contract Analysis

In this chapter, we analyze the GLWB rider options that we presented and defined

in chapter 2. We first compare the pricing results for each product design under

different model assumptions for the financial market and the policyholder behavior.

Afterwards we analyze the distribution of the guaranteed withdrawal amount gen-

erated by the different product designs, and also analyze and compare the different

distributions of the point in time when the guarantee of the GLWB option triggers.

We conclude the chapter with an analysis of the deltas (i.e. the sensitivity of the

option’s value to changes in the underlying’s spot price) of the considered GLWB

product designs.

6.1 Determination of the fair guaranteed with-

drawal rate

In this section, we first calculate the guaranteed withdrawal rate xWL that makes a

contract fair (in the sense discussed in section 2.3), assumed all other policy param-

eters are given. In order to calculate xWL , we perform a root search with xWL as

argument and the value of the GLWB option V G
0 (as defined in section 2.3) as func-

tion value. For all of our analyses we assume a fee structure of the GLWB contract

as given in Table 6.1.

Policy calculation dates are assumed to be annually, i.e. withdrawals and step-

ups are made only once per year at a prespecified point in time. The number of

policyholders in the pool is assumed to be large enough to allow for the use of the

Law of Large Numbers with respect to mortality and lapsation within the pool, and
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Acquisition fee 4.00% of lump sum
Management fees 1.50% p.a. of NAV
Guarantee fees 1.50% p.a. of NAV
Withdrawal fees 0.00% of withdrawal amount

Table 6.1: Assumed fee structure for all considered contracts.

thus deterministic mortality and surrender rates may be applied for projection of

the cohort of policyholders. We further assume the policyholder to be a 65 years old

male. For pricing purposes, we use best-estimate mortality probabilities given in the

DAV 2004R table published by the German Actuarial Society (DAV).

Regarding the policyholder behavior, we assume that policyholders - as long as their

contracts are still in force - only chose between two options at a policy calculation

date: either to withdraw exactly the guaranteed annual withdrawal amount or to

perform a full surrender and withdraw all of the remaining assets1.

All results in this chapter have been calculated assuming an annual risk-free rate of

interest of r = 4% .

6.1.1 Results for the Black-Scholes-Merton model

Table 6.3 displays the results for the fair guaranteed withdrawal rate xWL for all

four ratchet mechanisms that were defined in chapter 2 and for different assumptions

regarding the policyholder behavior, where the pricing was done using the Black-

Scholes-Merton model with different assumed values σBS for the equity volatility.

In regard to the policyholder behavior, we consider three different scenarios: no

policyholder ever surrenders (no surr), surrender happens according to Table 6.2

(surr 1) and surrender with twice the probabilities given in Table 6.2 (surr 2).

A comparison of the different product designs shows that, obviously, the highest

annual guarantee can be provided if no ratchet or performance bonus is provided

at all. If no surrender and a volatility of σBS = 20% is assumed, the guarantee is

similar to a “5 for life” product (4.98%). Including a Lookback Ratchet would need

a reduction of the initial annual guarantee by 66 basis points to 4.32%. If a richer

ratchet mechanism is provided such as the Remaining WBB Ratchet, the guarantee

1Please note that if the guaranteed withdrawal amount coincides with the remaining fund assets,
the withdrawal of all remaining assets is not considered to be a full surrender and the guarantee
does not end.
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Year Surrender rate

1 6 %
2 5 %
3 4 %
4 3 %
5 2 %
≥6 1 %

Table 6.2: Assumed deterministic surrender rates.

needs to be reduced to 4.01%. About the same annual guarantee (4.00%) can be

provided if no ratchet is provided but a Performance Bonus is paid out annually.

Throughout our analyses, the Remaining WBB Ratchet and the Performance Bonus

allow for a similar annual guarantee. However, for lower volatilities, the Remaining

WBB Ratchet seems to be less valuable than the Performance Bonus and therefore

allows for a higher withdrawal rate while for higher volatilities the Performance Bonus

allows for higher withdrawal rates. Thus, the relative impact of volatility on the price

of a GLWB depends on the chosen product design and appears to be particularly high

for ratchet type products (II and III). This can also be observed when comparing

the No Ratchet case with the Lookback Ratchet. While - when volatility is increased

from 15% to 25% - for the No Ratchet case, the fair withdrawal rate decreases by

just over half a percentage point from 5.26% to 4.70%, it decreases by almost a full

percentage point from 4.80% to 3.85% in the Lookback Ratchet case (all values for

the no surrender case). The reason for this is that for the products with ratchet, high

volatility leads to a possible lock in of high positive returns of the underlying fund

in some years (as some kind of option on an option) and thus is a rather valuable

feature if volatilities are high.

If the insurance company assumes the deterministic surrender probabilities given

in table 6.2 when pricing the GLWB option, the fair withdrawal rates increase for

all considered model points. The extent of the increase of the withdrawal rate is

rather similar over all product types and assumed values of the Black-Scholes-Merton

volatility σBS . The annual guarantee increases by around 15-20 basis points if the

surrender assumption from table 6.2 is made and increases by another 20 basis points

if this surrender assumption is doubled.
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Product

No Ratchet Lookback
Ratchet

Rem. WBB
Ratchet

Performance
Bonus

Volatility Surrender I II III IV

No surr 5.26 4.80 4.43 4.37
σBS = 15% Surr 1 5.45 5.00 4.62 4.57

Surr 2 5.66 5.22 4.83 4.79

No surr 4.98 4.32 4.01 4.00
σBS = 20% Surr 1 5.16 4.50 4.18 4.19

Surr 2 5.35 4.71 4.38 4.40

No surr 4.87 4.13 3.85 3.85
σBS = 22% Surr 1 5.04 4.30 4.01 4.03

Surr 2 5.23 4.50 4.20 4.24

No surr 4.70 3.85 3.61 3.62
σBS = 25% Surr 1 4.86 4.01 3.76 3.81

Surr 2 5.04 4.20 3.94 4.01

Table 6.3: Fair guaranteed withdrawal rates xWL in % for different ratchet mech-
anisms, different policyholder behavior assumptions and for different values of the
Black-Scholes-Merton volatility σBS .

6.1.2 Results for the Heston model

For the pricing of the GLWB rider option under the Heston model we use the cali-

bration given in table 6.4, where the Heston parameters (long-term local variance θ ,

speed of mean reversion κ , “vol of vol” σV , equity correlation ρ , and starting value

for the local variance process V0 ) are those derived by Eraker (2004, [11]), which

have also been stated in annualized form for instance by Ewald et al. (2007, [12]).

Parameter Value

r 0.04
θ (0.220)2

κ 4.75
σV 0.55
ρ −0.569
V0 θ

Table 6.4: Benchmark parameters for the Heston model.

One of the key parameters in the Heston model is the market price of volatility risk

λ (cf. section 3.2). Since absolute λ -values are hard to interpret, table 6.5 shows
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the corresponding values for the long-term local variance θ and the speed of mean

reversion κ for different choices of λ .

Market price
of volatility

risk

Speed of
mean

reversion κ

Long-run
local variance

θ

λ = 3 6.40 (0.190)2

λ = 2 5.85 (0.198)2

λ = 1 5.30 (0.208)2

λ = 0 4.75 (0.220)2

λ = −1 4.20 (0.234)2

λ = −2 3.65 (0.251)2

λ = −3 3.10 (0.272)2

Table 6.5: Q -parameters for different choices of the market price of volatility risk
factor λ .

Higher values of λ correspond to a lower long-term variance and a higher speed of

mean reversion, while negative values of λ correspond to a higher long-term variance

and a lower speed of mean reversion. Thus, a negative value of λ leads to a higher

variation and a higher long-term mean of the local variance process, meaning that

if the insurer is “short volatility” (i.e. the insurer potentially suffers from volatility

increases) as it is the case if the insurer has a portfolio of sold GLWB rider options,

then presumably a negative value of λ would be chosen for pricing purposes. λ = 2

implies a long-term volatility of θ = (19.8%)2 and λ = −2 implies a long-term

variance of θ = (25.1%)2 .

In table 6.6, we show the pricing results for the fair annual withdrawal rates under the

Heston model for all different product designs, the same scenarios for the policyholder

behavior as in the Black-Scholes-Merton case, and integer values of λ between −2

and 2 .

Under the Heston model, the fair annual guaranteed withdrawal appears to be the

same as under the Black-Scholes model with a comparable constant volatility. For

instance for λ = 0 , which corresponds to a long-term volatility of 22%, the fair

annual guaranteed withdrawal rate for a contract without ratchet is given by 4.87%,

exactly the same number as under the Black-Scholes-Merton model. In the Lookback

Ratchet case, the Heston model leads to a fair guaranteed withdrawal rate of 4.17%,

the Black-Scholes-Merton model of 4.13%. For the other two product designs, again,

both asset models almost exactly lead to the same withdrawal rates. Also the impact
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Product

Market price
of volatility
risk factor

No Ratchet Lookback
Ratchet

Rem. WBB
Ratchet

Performance
Bonus

Surrender I II III IV

No surr 4.99 4.36 4.03 4.00
λ = 2 Surr 1 5.18 4.56 4.21 4.22

Surr 2 5.38 4.76 4.40 4.43

No surr 4.93 4.27 3.95 3.93
λ = 1 Surr 1 5.12 4.46 4.13 4.14

Surr 2 5.31 4.66 4.32 4.35

No surr 4.87 4.17 3.86 3.84
λ = 0 Surr 1 5.05 4.35 4.03 4.06

Surr 2 5.24 4.55 4.22 4.27

No surr 4.79 4.05 3.75 3.74
λ = −1 Surr 1 4.97 4.23 3.92 3.95

Surr 2 5.16 4.42 4.10 4.16

No surr 4.70 3.90 3.62 3.62
λ = −2 Surr 1 4.87 4.08 3.79 3.82

Surr 2 5.05 4.26 3.97 4.04

Table 6.6: Fair guaranteed withdrawal rates xWL in % under the Heston model
for different ratchet mechanisms, different assumptions regarding the policyholder
behavior and for different values of the market price of volatility risk parameter λ .

that the different assumed policyholder behavior scenarios have on the pricing out-

come seem to be of the same magnitude as in the Black-Scholes-Merton case, with

an increase of around 20 basis points between the scenarios.

Thus, for the pricing (as opposed to hedging, see chapter 7) of GLWB rider options,

the long-term volatility assumption is much more crucial than the question whether

volatility should be modeled stochastic or deterministic.

6.2 Distribution of withdrawals

In this section, we compare the distributions of the guaranteed withdrawal benefits

(given the policyholder is still alive and did not surrender the contract) for each pol-

icy year and for all four different ratchet mechanisms that were presented in chapter

2. We use the Black-Scholes-Merton model for all simulations in this chapter and

assume a risk-free rate of interest r = 4% , a drift of the underlying of µ = 7% and
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(i) No Ratchet (ii) Lookback Ratchet

(iii) Remaining WBB Ratchet (iv) Performance Bonus

Figure 6.1: Development of empirical percentiles (25th - 75th dark blue area, 10th -
90th light blue area), median (yellow points) and mean (red line) of the guaranteed
withdrawal amount over policy years 0 to 30 for each ratchet type and a single
premium of 10,000. The Black-Scholes-Merton model with parameters µ = 7% and
σBS = 22% was used for data generation of the simulation.

a constant volatility of σBS = 22% .

For all four ratchet types, we use the guaranteed withdrawal rates derived in section

6.1 (without surrender). In figure 6.1, for each product design we show the develop-

ment of arithmetic average, median, 10th - 90th percentiles, and 25th - 75th percentiles

of the guaranteed annual withdrawal amount over time, assuming the policyholder

paid a single premium of 10,000.

Obviously, the different considered product designs lead to significantly different

risk/return profiles for the policyholder. While the No Ratchet case provides de-

terministic cash flows over time, the other product designs differ quite consider-

ably. Both ratchet products have potentially increasing benefits. For the Lookback

Ratchet, however, the 25th percentile remains constant at the level of the first with-

drawal amount. Thus, the probability that a ratchet never happens is higher than
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25%. The median increases for the first 10 years and then reaches some constant

level implying that with a probability of more than 50% no withdrawal increments

will take place thereafter.

Product III (Remaining WBB Ratchet) provides more potential for increasing with-

drawals: For this product, the 25th percentile increases over the first few years and

the median is increasing for around 20 years. In the 90th percentile, the guaranteed

annual withdrawal amount reaches 1, 500 after slightly more than 25 years while

the Lookback Ratchet hardly reaches 1, 200 . On average, the annual guaranteed

withdrawal amount more than doubles over time while the Lookback Ratchet does

not, of course this is only possible since the guaranteed withdrawal at t = 0 is lower.

A completely different profile is achieved by the fourth product design, the prod-

uct with Performance Bonus. Here, annual withdrawal amounts are rather high

in the first years and are falling later. After 15 years, with a 75% probability no

more performance bonus is paid, after 25 years, with a probability of 90% no more

performance bonus is paid.

For all three product designs with some kind of bonus, the probability distribution

of the annual withdrawal amount is rather skewed: the arithmetic average is sig-

nificantly above the median. For the product with Performance Bonus, the median

exceeds the guarantee only in the first year. Thus, the probability of receiving a

performance bonus in later years is less than 50%. The expected value, however, is

more than twice as high.

6.3 Distribution of the guarantee’s trigger time

In this section, we analyze the point in time τG , when the guarantee of the contract

triggers, i.e. we analyze the point in time when the insurer has to compensate for the

guarantee payments to the policyholder for the first time since policy inception. For

this analysis, we assume that the policyholder does not die and does not surrender

during the observation period, i.e. the guaranteed withdrawal amount is deducted

every year.

In figure 6.2, for each of the products, we show the simulation results for the prob-

ability distribution of the trigger time τG . Any probability mass at the end of

the simulation period refers to scenarios where the guarantee is not triggered. The

assumptions and parameters used for this simulation are the same as in section 6.2.
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(i) No Ratchet (ii) Lookback Ratchet

(iii) Remaining WBB Ratchet (iv) Performance Bonus

Figure 6.2: Distribution of guarantee’s trigger time for each of the product designs.
The Black-Scholes model with parameters µ = 7% and σBS = 22% was used for
the data generation of the simulation.
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For the No Ratchet product, trigger times vary from 7 to over 55 years. With

a probability of 17%, there is still some account value available at age 121 (the

limiting age of the mortality table). For this product, on the one hand, the insurance

company’s uncertainty with respect to if and when guarantee payments have to be

paid is very high; on the other hand, there is a significant chance that the guarantee

is not triggered at all, meaning that the insurer never has to compensate for the

guaranteed withdrawals of the insured, even if the insured survives until the limiting

age of the mortality table.

For the products with ratchet features, very late or even no triggers appear to be

less likely. The more valuable a ratchet mechanism is for the client, the earlier the

guarantee tends to trigger. While for the Lookback Ratchet still 2% of the contracts

do not trigger at all, the Remaining WBB Ratchet almost certainly triggers within

the first 40 years. However, on average the guarantee is triggered rather late, after

around 20 years.

The least uncertainty in the trigger time appears to be in the product with Perfor-

mance Bonus. While the probability distribution looks very similar to that of the

Remaining WBB Ratchet for the first 15 years, trigger probabilities then increase

rapidly and reach a maximum at t = 25 and 26 years. Later trigger times did

not occur at all within our simulation. The reason for this is quite obvious: The

Performance Bonus is calculated as 50% of the difference between the current ac-

count value and the remaining withdrawal benefit base. However, the remaining

withdrawal benefit base is annually reduced by the initially guaranteed withdrawal

amount and therefore reaches 0 after 26 years ( 1/3.85% ). Thus, after 20 years,

almost half of the account value is paid out as bonus every year.

This, of course, leads to a tremendously decreasing account value in later years.

Therefore, there is not much uncertainty with respect to the trigger time on the in-

surance company’s side. On the other hand, the complete longevity tail risk remains

with the insurer. Whenever the guarantee is triggered, the insurance company needs

to pay an annual lifelong annuity equal to the last guaranteed annual withdrawal

amount. This is the guarantee that needs to be hedged by the insurer. Thus, in

the following section, we have a closer look on the Greeks of the guarantees of the

different product designs.
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(i) No Ratchet (ii) Lookback Ratchet

(iii) Remaining WBB Ratchet (iv) Performance Bonus

Figure 6.3: Development over time of the empirical percentiles (dark blue line is the
median, blue lines are 25th - 75th, light blue lines 10th - 90th percentiles) and mean
(red dashed line) of the delta of a pool of policies, at each time multiplied with the
then current spot St of the underlying. The delta was computed within the Black-
Scholes model with parameters with r = 4% , µ = 7% and σBS = 22% , which was
also used for data generation of the simulation.

6.4 The Delta of the GLWB rider option

Within our Monte-Carlo simulation, for each scenario we can calculate different

sensitivities of the option value as defined in section 2.3, the so called Greeks. All

Greeks are calculated for a pool of identical policies with a total single premium

volume of US$ 100m under assumptions of future mortality and future surrender.

All the results shown in this section are calculated under standard mortality and no

surrender assumptions.

In figure 6.3, we chose to show different empirical percentiles as well as median and

arithmetic average of the so-called delta, i.e. the sensitivity of the option value as

defined in section 2.3 with respect to changes in the price of the underlying.
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First of all, it is rather clear that all products throughout do have negative deltas

since the value of the guarantee increases with falling stock markets and vice versa.

Once the guarantee is triggered, no more account value is available and thus, from

this point on, the delta is zero. Thus, in what follows, we call delta to be “high”

whenever its absolute amount is large.

At outset, the product without any ratchet or bonus does have the biggest delta and

thus the highest sensitivity with respect to changes in the underlying’s price. The

reason for this mainly is that the guarantee is not adjusted when fund prices rise. In

this case, the value of the guarantee decreases much stronger than with any product

where either ratchet lead to an increasing guarantee or a performance bonus leads to

a reduction of the account value. On the other hand, if fund prices decrease, the first

product is deeper in-the-money since it does have the highest guarantee at outset.

Over time, all percentiles of the delta in the No Ratchet case are decreasing, and the

decay of the delta2 is quite steady in comparison to the other product designs.

For products II and III, the guarantee can never be far out-of-the-money due to the

ratchet feature. Thus delta increases in the first few years. All percentiles reach a

maximum after ten years and tend to be decreasing from then on, i.e. there is a

change of sign from plus to minus for the delta decay.

For the product with Performance Bonus, delta exposure is by far the lowest. This

is consistent with our results of the previous section where we concluded that the

uncertainty for the insurance company is the highest in the No Ratchet case and the

lowest in the Performance Bonus case.

2Delta decay is also known as the “Charm” or “DdeltaDtime” of an option, and is mathematically
defined as the second derivative of the option’s value, once to the spot price of the underlying asset
and once to time, that is ∂2V G

t

∂St∂t
.



Chapter 7

Analysis of Hedge Efficiency

In this chapter we use the hedging strategies presented in chapter 4 to apply and

analyze them within Monte Carlo simulations, where we use different models for data-

generating, that is, we use different models for scenario generation of the underlying

asset’s spot price.

7.1 Objective and risk measures

We use the hedging strategies in order to hedge a pool of identical GLWB policies,

i.e. policies that have the same product design, the same age at inception of the

insured and the same product parameters like for instance the withdrawal rate xWL

and the fee structure. However, the insureds themselves are assumed to be separate

individuals with independent decisions to lapse the contract and with independent

time of deaths.

We assume the number of policyholders in the pool to be large enough to allow for

the use of the Law of Large Numbers with respect to mortality and lapsation within

the pool, and thus deterministic mortality and surrender rates may be applied for

projection of the cohort of policyholders.

In each scenario, we start with a pool of identical contracts that is then projected until

the limiting age of the mortality table is reached. We use the same denotations as in

chapter 4, that is the time- t value of the guarantees embedded in the pool of policies

is denoted by Ψt , whereas the time- t value of the hedge portfolio implemented by

the insurer is denoted by ΠHedge
t , and the insurer’s portfolio balance Πt at time t

for the pool of policies is given by the difference between the value of the embedded

66
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guarantees and the hedge portfolio, i.e. by

Πt = −Ψt + ΠHedge
t , (7.1)

where all of the cash-flows generated by the pool of policies are transacted through

the hedge portfolio ΠHedge of the insurer, i.e. there are no transactions by the

insurance company to or from the portfolio Πt up until the end of the simulation

(at time T ), where the insurer’s final profit/loss (short: P/L), ΠT , has to be settled.

We use the following three ratios to compare the performance of the different hedging

strategies, all in normalized form as a percentage of the premiums paid to the insurer

at t = 0 :

• EP
[
e−rTΠT

]
, the discounted expectation of the final value of the insurer’s

profit/loss under the real-world measure P , where T = ω − x0 is the last

policy calculation date. This is a measure for the insurer’s expected profit,

where a value of 1 means that, in expectation, for a single premium of 100 paid

by the client, the insurance company’s expected profit is 1.

• CTE1−α(χ) = EP [−χ|−χ ≥ VaRα(χ)] , the conditional tail expectation of the

random variable χ , where χ is defined as the minimum of the discounted

values of the insurer’s profit/loss at all policy calculation dates, i.e. χ =

min
{
e−rt̃iΠt̃i

∣∣∣i = 0, . . . ,M
}

, and VaR denotes the Value at Risk operator,

that is VaRα(χ) = inf {l ∈ R|P(−χ > l) ≤ α} . This is a measure for the in-

surer’s downside risk given a certain hedging strategy: It can be interpreted

as the additional amount of money that would be necessary at outset such

that the insurer’s profit/loss would never become negative over the life of the

contract, even if the financial market develops according to the average of the

α (e.g. 10% ) worst scenarios in the stochastic model. In this sense, a value

of 1 means that, for a single premium of 100 paid by the client, the insurance

company would need to hold 1 additional unit of capital upfront.

• CTE1−α(e−rTΠT ) = EP
[
−e−rTΠT

∣∣−e−rTΠT ≥ VaRα(e−rTΠT )
]

, the conditional

tail expectation of the discounted final profit/loss ΠT . This again is a risk

measure, however, with the difference to the previously defined CTE0.9(χ) ,

that it focuses on the value of the profit/loss at maturity T , i.e. after all

liabilities have been met (as in the model all of the insured have deceased),

and does therefore not factor in negative portfolio values that may have oc-

curred over time. Thus a value of 1 in means that, in expectation over the
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α (e.g. 10%) worst scenarios, for a premium of 100 paid by the client, the

insurance company’s expected discounted loss is 1. By definition, it holds

CTE1−α(χ) ≥ CTE1−α(e−rTΠT ) .

7.2 Simulation results

For all of the considered hedging strategies we assume that the hedge portfolio is

rebalanced on a monthly basis.

In the numerical analyses below, we set α = 10% for both risk measures and assume

a pool of identical policies with parameters as given in chapter 6, assuming that none

of the policyholders surrenders.

Our analysis focuses on model risk rather than parameter risk. Therefore, we use

the benchmark parameters for the capital market models presented in chapter 6 for

both, the hedging and the data-generating model, and we assume no risk regarding

mortality, thus using the same mortality tables1 for projection of the insured cohort

and for hedging.

7.2.1 Comparison of hedge results

Table 7.1 gives the results for different hedging strategies and different data-generating

models as a percentage of the single premium paid by the client. In the table, the

hedging strategies are abbreviated as follows: (NH) represents the “no active hedg-

ing” strategy presented in chapter 4, (D-BSM) represents the delta-hedging strategy

where the delta is computed using the Black-Scholes-Merton model. (D-H) stands

for the local risk-minimizing strategy performed using the Heston model, whereas

(DV-BSM) indicates the delta-vega combination hedge using the additional straddle

options computed under the Black-Scholes-Merton model. (DV-H) finally represents

the extension of the local risk-minimizing strategy (D-H) for vega hedging also using

straddle options.

If no hedging (strategy (NH)) is in place, the insurance company’s portfolio has a

positive delta due to the put character (and therefore negative delta, cf. section 6.4)

of the sold GLWB guarantees. This effectively means the insurance company has

a (indirect) long position in the underlying and thus faces a rather high expected

1Best-estimate mortality probabilities given in the DAV 2004R table published by the German
Actuarial Society (DAV).
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Data-generating model

Black-Scholes-Merton Heston
Product Product

Strategy Statistic I II III IV I II III IV

(NH)
EP
[
e−rTΠT

]
10.43 07.77 06.67 3.88 10.36 7.97 6.82 04.13

CTE0.9(χ) 25.29 20.07 17.54 15.12 25.76 20.97 18.54 15.97
CTE0.9(e−rTΠT ) 23.41 18.27 15.90 13.35 22.93 18.55 16.25 13.51

(D-BSM)
EP
[
e−rTΠT

]
0.48 0.27 0.21 0.17 0.57 0.29 0.17 0.13

CTE0.9(χ) 1.71 3.25 3.12 2.02 2.77 4.76 4.51 3.35
CTE0.9(e−rTΠT ) 1.44 2.74 2.71 1.78 2.44 4.14 3.99 3.02

(D-H)
EP
[
e−rTΠT

]
0.52 0.42 0.34 0.21

CTE0.9(χ) 2.63 4.59 4.44 3.36
CTE0.9(e−rTΠT ) 2.28 4.03 3.98 2.95

(DV-
BSM)

EP
[
e−rTΠT

]
0.82 0.81 0.75 0.47

CTE0.9(χ) 1.75 2.41 3.01 1.88
CTE0.9(e−rTΠT ) 1.35 1.80 2.40 1.53

(DV-H)
EP
[
e−rTΠT

]
0.49 0.41 0.33 0.19

CTE0.9(χ) 1.40 1.99 1.95 1.49
CTE0.9(e−rTΠT ) 1.15 1.58 1.60 1.21

Table 7.1: Results for different hedging strategies and different data-generating mod-
els as a percentage of the single premium paid by the client. The strategies are “no
active hedging” (NH), delta-hedging with the Black-Scholes-Merton model (D-BSM),
local risk-minimizing strategy using the Heston model (D-H), delta-vega hedge using
the Black-Scholes-Merton model (DV-BSM), and the extension for vega hedging of
the local risk-minimizing strategy under Heston (DV-H).

return combined with high risk. The results show that no active hedging effectively

means that the insurance company, on average over the worst 10% scenarios, would

need additional capital between 15% and 25%, depending on the respective product

design, of the total premium volume paid by the clients in order to avoid a loss over

time.

The CTE0.9(e−rTΠT ) , i.e. the conditional tail expectation of the insurer’s discounted

final profit/loss ΠT , is around 23 for product type I (No Ratchet) and around 13 for

product IV (Performance Bonus) for both data-generating models, Black-Scholes-

Merton and Heston, which means that in expectation over the 10% worst scenarios,

for a premium of 100 paid by the client, the insurance company’s expected discounted

loss would be 23 or 13 respectively.

The corresponding values for the products with ratchet are in between. The difference
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in risk and expected return between the two data-generating models is rather small.

If the insurance company sets up a delta-hedging strategy based on the Black-Scholes-

Merton model, risk is significantly reduced for all products and under both data-

generating models. If the data-generating model is also the Black-Scholes-Merton

model, risk is reduced to less than 10% of its unhedged value for product I (No

Ratchet). On the other side, the expected profit of the insurer is also reduced.

While without hedging, the No Ratchet product appeared to have the product design

that creates the most risk, with a delta-hedging strategy in place, the products with

a ratchet feature (Lookback Ratchet and Remaining WBB Ratchet) now are the

riskiest of the four considered designs.

The reason for this is that the delta is rather “volatile” for the products with ratchet,

cf. figure 6.3 in section 6.4. Since fast changes in the delta lead to hedging errors due

to time-discrete readjusting of the hedge portfolio, this leads to an increase of the

risk for the two ratchet type products. This result shows the impact of the gamma

(the second order derivative of the option value with respect to the underlying price)

on the hedgeability of an option. The larger the gamma, the higher discretization

errors and thus the higher the risk of a time-discrete delta-only hedge.

We now switch the data-generating model to the Heston model and analyze how the

results of the Black-Scholes-Merton delta-only hedge change. By sole introduction

of stochastic equity volatility into the capital market, the riskiness of the GLWB

products, throughout all designs, is increased by roughly 50%. This is an indication

of the magnitude of the model risk that the insurance company bears. While the

risk significantly increases, the insurance company’s expected return hardly changes,

meaning that the risk-return profile of the products worsens considerably.

In the last set of simulations of the delta-only strategies, we analyze what happens

if the calculation of the hedge ratios is performed within the Heston model (strategy

(D-H)), i.e. we analyze what happens if the hedging is done with the “correct”

model. However, the risk is only reduced by a small amount in comparison to

the Black-Scholes-Merton delta-only hedge, which, in a reverse conclusion, can be

interpreted as the Black-Scholes-Merton not being such a poor choice in comparison

to more sophisticated models, even if it is known that the model is only a crude

approximation to the real dynamics.

Nevertheless, for both products with a ratchet mechanism and the Performance

Bonus product, the insurer’s expected profit is significantly increased if the Heston

model is used. Thus, in conclusion, by adapting the hedging model to the data-

generating model, the insurance company’s profit increases while its risk is only
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slightly reduced.

In the last two sets of simulations, we analyze the two hedging strategies where

volatility risk is also tackled. The (DV-BSM) hedge further reduces risk significantly

compared to the two delta-only hedges, even though the hedge is set up with a model

that assumes equity volatility to be deterministic, even constant.

Risk is further reduced by almost 50% and the results are even better than a (D-

BSM) hedge with the Black-Scholes-Merton model as scenario generator, which is

certainly not surprising, considering the hedge instrument used for vega hedging

(a one-year ATMF straddle) also is sensitive to changes in delta and therefore (as

vega and gamma tend to bear resemblance to each other) introduces a partial hedge

against the gamma of the insurer’s liability.

If the vega hedge is set up using the Heston model (DV-H), results improve even

further. The market risk within our simulation model now is below 2% of the initial

single premium paid by the client for all four product designs. Also, the differences

between the riskiness of the different product designs seems more evenly, as product

types II and III benefit the most in terms of reducing risk if stategy (DV-H) is used

instead of (DV-BSM).

7.2.2 Distribution of hedge portfolio’s value and insurer’s

balance

Figure 7.1 shows for each product type the empirical percentiles of the value of the

insurer’s hedge portfolio ΠHedge
t over time, assumed a Black-Scholes-Merton delta-

only hedging strategy is in place and with the data-generating model also being

the Black-Scholes model with the same parameters that were used in chapter 6. If

the implemented delta hedge resulted in a perfect hedge, the value of the hedge

portfolio at time t , ΠHedge
t , should coincide with the value of the pool of policies,

Ψt , for any t . Thus, if Ψt is negative, also ΠHedge
t should be negative. The value

of a GLWB contract becomes negative, if, for instance, the underlying fund has

performed well, the policyholder’s fund assets therefore are still substantial and thus

the guarantee fees (as percentage of the fund assets) paid by the policyholder are

comparably high, whereas the present value of the future guarantee payments of the

GLWB rider decreases as ruin is less likely and the guarantee therefore is farther

out-of-the-money.

As the guaranteed withdrawal amount is never increased within product design I

(No Ratchet), the scenario of a negative option value – and thus a negative hedge
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portfolio – is quite often seen in the first 25 years after inception of the contract. If

the policyholder decides to surrender the contract in such a scenario, the insurance

company has to close the hedge position, and thus realizes a loss. Hence, surrender

risk is high in this case.

For product designs II (Lookback Ratchet) and III (Remaining WBB Ratchet), due

to their ratchet mechanisms that cause the present value of the future guarantee pay-

ments of the GLWB rider to decrease less (or even to increase) if the underlying fund

has performed well, the decline in the contract’s value is mitigated, and therefore,

while the hedge portfolio still may become negative, it is less likely to happen than

with the No Ratchet product design. This effect is more distinctive with product

design III, since – as seen in chapter 6 – the Remaining WBB Ratchet increases the

guaranteed withdrawal amount faster than the Lookback Ratchet design.

In the fourth product design, the Performance Bonus design, the value of the contract

does not vary as much as in the other products, especially the downwards variation is

limited, because any surplus is reduced quickly by the performance bonus payments

to the policyholder.

Although the results in the previous section indicate that product design I is the

easiest to hedge (which coincides with the finding of a in comparison rather steady

delta decay, cf. section 6.4), the variation of the value of the hedge portfolio during

the first 25 years of the contract is the highest for this product design, which is, on

the one hand due to the high initial guaranteed withdrawal amount, and on the other

hand due to the missing upside potential of the guarantee. This greater variation

may make the insurer more vulnerable to policyholder behavior.

After the guarantee has triggered, the active hedging ends, and the hedge portfolio’s

assets are completely transfered into the money-market account, where they are com-

pounded at the risk-free rate r and the guarantee payments are deducted annually.

This proceeding is responsible for the steady development of the percentiles in the

later policy years (starting between year 20 to 30, depending on the product design).

In the very end, the value of the hedge portfolio coincides with the final profit/loss

of the insurer, i.e. it holds ΠT = ΠHedge
T .

Finally, table 7.2 shows the empirical percentiles of the balance (or cumulative prof-

it/loss) Πt of the insurer. Product designs II and III show almost no differences,

apart from the higher upside potential of design II manifesting in a slightly skewed

distribution where the mean is higher than the median. However, product I seems

to have a better combination of upside potential and downside risk, leading to the



CHAPTER 7. ANALYSIS OF HEDGE EFFICIENCY 73

(i) No Ratchet (ii) Lookback Ratchet

(iii) Remaining WBB Ratchet (iv) Performance Bonus

Figure 7.1: For each product design, development over time of the empirical per-
centiles (dark blue line represents the median, blue lines are 25th - 75th, light blue
lines are 10th - 90th percentiles) and mean (red dashed line) of the hedge portfolio
ΠHedge
t for a pool of identical policies with a total single premium volume of US$

100m, using the Black-Scholes model for both, delta hedging and as data-generating
model.

highest mean of the final profit/loss amongst all product designs.

In comparison, product design IV leads to a more symmetrical distribution of the

profit/loss of the insurer, with reduced risk in comparison to product design II and

III, and the lowest upside potential of all products.
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(i) No Ratchet (ii) Lookback Ratchet

(iii) Remaining WBB Ratchet (iv) Performance Bonus

Figure 7.2: For each product design, development over time of the empirical per-
centiles (dark blue line represents the median, blue lines are 25th - 75th, light blue
lines are 10th - 90th percentiles) and mean (red dashed line) of the insurer’s portfolio
balance Πt for a pool of identical policies with a total single premium volume of US$
100m, using the Black-Scholes model for both, delta hedging and as data-generating
model.
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7.2.3 Unmodified Vega hedge

In this last section of the chapter, we would like to add some comments about vega

hedging. First of all, there is not one equity volatility, but quite a few different types

of equity volatility (e.g. actual volatility, realized/historical volatility and (Black-

Scholes-Merton) implied volatilities) that all can change in different ways, like for

example in their level, skew, slope, or convexity. On the other side, there is a great

variety of instruments that are liquidly traded in the market or that are commonly

available over-the-counter (OTC) from investment banks that exhibit different and

often complex sensitivities to changes in volatilities. Therefore, a single, unique

vega-hedging strategy that is generally applicable is hard to imagine to exist.

The second comment is in regard to the shortcomings of a somewhat intuitive and

straightforward way of setting up a delta-vega hedge within the Black-Scholes model:

One could simply calculate the vega of the portfolio’s option value Ψt , defined as

the first-order derivate with respect to the Black-Scholes volatility parameter σBS ,

and then use the ratio between this vega of Ψt and the vega of hedge instrument,

in our setting the vega of Xt , the straddle option’s value, in order to set up a vega

hedge consisting of a position of straddle options.

This strategy, however, results in a rather bad hedge performance (at least within

our analyses, with decade-long cash-flows) due to the following reason: A change

in current equity volatility under the Heston model would mean a change in short-

term volatility and a much smaller change in long-term volatility, due to the mean-

reversion property of the Heston model. This effect can also be seen in figure 3.2,

where different implied volatility surfaces are shown that are all generated by the

Heston model, but using different start parameters for the local volatility process.

Since volatility in the Black-Scholes model is assumed to be constant over time, and

thus also the change in volatility is assumed to be permanent and constant over time,

the change in value of a long-dated option would be significantly overestimated (at

least if the Heston model is considered the “correct” model), and thus lead to a too

large position in the straddle options.

The resulting hedge portfolio would lead to an increase of risk, because the vega hedge

is off target and may even introduce additional sensitivity to volatility risks into the

insurer’s portfolio, and because the insurer additionally needs to hedge the delta of

the straddle options, which leads to further sources of hedging errors. Therefore,

instead of reducing the insurer’s risk, this additional vega hedge would increase the

insurer’s risk, foiling the very idea of hedging.
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To illustrate this effect, we calculated the risk measures introduced in the beginning

of this chapter for the unmodified vega hedge, using the Heston model for data

generation. The results are shown in table 7.2.

Product

Strategy Statistic I II III IV

(D-BSM)
EP
[
e−rTΠT

]
0.57 0.29 0.17 0.13

CTE0.9(χ) 2.77 4.76 4.51 3.35
CTE0.9(e−rTΠT ) 2.44 4.14 3.99 3.02

(DV-BSM)
EP
[
e−rTΠT

]
0.82 0.81 0.75 0.47

CTE0.9(χ) 1.75 2.41 3.01 1.88
mod. vega CTE0.9(e−rTΠT ) 1.35 1.80 2.40 1.53

(DV-BSM)
EP
[
e−rTΠT

]
10.43 7.77 6.67 3.88

CTE0.9(χ) 25.29 20.07 17.54 15.12
unmod. vega CTE0.9(e−rTΠT ) 23.41 18.27 15.90 13.35

Table 7.2: Results under the Heston model as data-generating model for the BSM
delta hedge, the BSM delta-vega hedge using a modified version of the vega for
setting up the position in the straddle options, and the BSM delta-vega hedge using
the unmodified vega.



Chapter 8

Conclusion

8.1 Summary

Our main concern in the present thesis was the analysis of the properties of dif-

ferent types of Guaranteed Living Withdrawal Benefits (GLWB) riders, the latest

guarantee feature within Variable Annuities, from both, a client’s perspective and

an insurer’s perspective, in particular in regard to pricing and hedging of this new

type of insurance contract.

In chapter 2, we first gave a high-level description of the considered Guaranteed

Living Withdrawal Benefits rider options and explained their general functionality.

Subsequently, we presented different step-up and ratchet mechanisms in the product

designs of the GLWB options, that allow for potential (permanent) increases of

the guaranteed withdrawal amount during the lifetime of the contract, given the

underlying fund of the variable annuity performed sufficiently well.

In the last part of chapter 2, we described the general pricing framework that is

used for evaluation of the GLWB rider option and for the purpose of finding the

“fair” guaranteed withdrawal rate. We also described and discussed the assumptions

that were made regarding the policyholder behavior (the policyholder’s surrender

behavior to be precise) and regarding the mortality of the insured.

In chapter 3, we presented the models of the financial market that we used within

our analyses. The models are used for different purposes: first, as the financial

market model that is assumed to be used by the insurance company for pricing and

hedging of the GLWB options, in particular for determing the positions in the hedge

instruments within the insurer’s hedge portfolio. Second, as the (external) data-

generating model in our analyses of the GLWB contracts in chapter 6, as well as in

77



CHAPTER 8. CONCLUSION 78

chapter 7, where the efficiency of the hedging strategies is analyzed.

We used two models of the financial market, one with deterministic (and constant)

equity volatility, the Black-Scholes-Merton model, and a second one, the Heston

model, in which the instantaneous variance of the underlying asset’s spot price is

assumed to evolve according to an one-factor mean-reverting square-root process,

similar to the process that is used within the Cox-Ingersoll-Ross model. We further

described how an equivalent martingale measure can be derived for both models,

which then can be used for pricing purposes within the general framework that we

presented in the last section of chapter 2.

In section 3.3 of chapter 3 we described the numerical methods that we used within

our analyses. Besides pricing and calculation of partial derivatives (Greeks) via

Monte-Carlo techniques, we also described the valuation of European standard op-

tions under both financial market models that were presented in the previous chapter,

in particular the time-efficient valuation via Fourier inversion of European standard

options under the Heston model.

In the last section of chapter 3, we introduced the notion of the Black-Scholes-Merton

Implied Volatility. Afterwards, we presented an illustration of the implied volatility

surface generated by the Heston model, using the parameters that we used for our

analyses. Additionally, we showed how the shape of the implied volatility surface

generated by the Heston model changes if the starting value of the local variance

process is changed.

As mentioned, we analyzed the hedge efficiency of different hedging strategies that

may be applied by the insurance company in order to reduce the risk that originates

from selling GLWB options. The analyzed strategies were presented in chapter 4,

where we described different types of dynamic hedging strategies that differ mainly

in the type and number of the hedge instruments that are used within the respective

strategy, i.e. some strategies use the money-market account and the underlying only,

while others make additional use of standard options on the underlying. For both

financial market models, Black-Scholes-Merton and Heston, we specified the hedge

ratios that correspond to the different hedging strategies in table 4.1 and table 4.2.

Chapter 5 deals with the design, architecture and implementation of the software

solution that was used to conduct our analyses. We gave details on how we made

use of Microsoft Excel as an user interface to our software solution, and on how we

seamlessly embedded the functionality of the software solution into Excel by means

of the open-source library xlw. We also specified and described all of the open-source
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libraries that we used within our software solution and concluded the chapter with

a detailed usage example of the final software solution.

In chapter 6, we presented the first set of analyses that dealt with the pricing of

the GLWB options and the distinctions in the characteristics of the product designs

that originate from the ratchet and bonus features that are implemented in the

respective product types. We found that different ratchet and bonus features can

lead to significantly different cash-flows to the insured. Similarly, the probability

that, at some point in time, the insurer has to compensate for guaranteed payments,

the amount of the guaranteed payments, and the distribution of the point in time

when the guarantee of the GLWB option triggers differ significantly for the different

product designs, even if they all come at the same guarantee fee. We also found that

the development of the Greeks - that is the sensitivities of the GLWB option value

with respect to changes in certain market parameters - over time is also significantly

different, depending on the selected product features.

In the subsequent chapter 7 we analyzed different (dynamic) hedging strategies (no

active hedging, delta only, delta and vega) and analyzed the distribution of the

insurer’s cumulative profit/loss and certain risk measures hereof. We found that

the insurer’s risk can be significantly reduced by suitable hedging strategies, but

with considerable differences between the considered hedging strategies. However,

we also found that – which is in line with our findings in chapter 6 – the product

design has a significant impact on how risky a product is to the insurer and on how

well it is hedgeable. Thus both, the constitution of a hedging portfolio (following a

certain hedging strategy) and the insurer’s risk after hedging, differ significantly for

the analyzed products.

We then quantified the model risk that is inherent in the use of the considered hedging

strategies by using different models of the financial market for data generation and

calculation of the hedge positions. The results hereof can be used as an indication

for the model risk that an insurer takes who utilizes a certain model for hedging,

whilst in the real world, financial markets behave differently. Within this analysis,

we focused on the risk an insurer takes by assuming a constant equity volatility in the

hedging model whereas in the real world equity volatility is stochastic, and showed

that this risk can be substantial.

With the last analysis in chapter 7, we were able to show that, while – using the

Black-Scholes-Merton model for hedging – a delta-vega hedging strategy based on

a modified version of vega can lead to a significant reduction of volatility risk, even

though the model assumes deterministic volatility, a somewhat more intuitive and
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straightforward attempt to hedge against volatility risk based on the unmodified vega

may lead to results inferior to the case with no vega hedging at all, which would be

clearly not the intention of implementing a vega hedge in the first place.

Our results - in particular with respect to model risk - should be of interest to both,

insurers and regulators, in particular in regard to the neglected model risk that is

present if the analysis of the hedge efficiency of a certain strategy is done under the

same data-generating model that is used by the insurer as hedging model.

8.2 Outlook and future research

Further research could aim at extending our findings in several areas, starting with

the product design of the GLWB riders: For instance, we could add designs to our

analyses that include a deferment period with a guaranteed compounding of the with-

drawal benefit base during that period, or we could extend our analyses to product

designs that allow for partial surrender of the policyholder or a withdrawal amount

below the guaranteed withdrawal amount.

Also, different forms of defining and deducting the guarantee fees would be an inter-

esting feature to examine, e.g. guarantee fees that are not fixed as a percentage of

the policyholder’s current fund assets, but as a percentage of the current withdrawal

benefit base, which would result in much more foreseeable guarantee payments re-

ceived by the insurer.

Furthermore, the GLWB riders considered in this thesis all expect an initial single

premium payment of the policyholder. Therefore it would be interesting how GLWB

riders that allow for regular premium payments compare against these products in

terms of riskiness to the insurer.

Similarly, the models of the financial market that we used in this work could be

extended in various ways, for instance by incorporating jumps in the dynamics of

the underlying – since jumps can be expected to considerably influence the perfor-

mance of the considered hedging strategies. The jumps would be added on top of

the modeled stochastic equity volatility, as it is the case e.g. in the Bates (1996,

[4]) model, where the Heston stochastic volatility model and the Merton (1976, [23])

jump-diffusion model were combined. Also, adding stochastic interest rates to the

existing model seems important, especially if product designs are considered that

allow for regular premiums.

Likewise, different approaches to how the stochasticity of the actual and/or the im-
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plied equity volatility are modeled are thinkable. For instance, using the SABR

model (Hagan, 2002, [15]) for data-generating, while hedging is done under the He-

ston model, or even considering separate models for implied and actual volatility.

In addition, a systematic analysis of parameter risk appears worthwhile, with re-

spect to the financial market parameters as well as to mortality probabilities and

deterministic surrender rates.

In the present work policyholder behavior is modeled deterministic (probabilistic),

and the policyholder’s decision is furthermore restricted to just two options: full

surrender or withdrawal of the guaranteed withdrawal amount. Therefore, it is cer-

tainly of interest how the results of our analyses change if the policyholder behavior

is modeled differently: First, under a framework that allows for arbitrary withdrawal

amounts between nil and all of the remaining fund assets, and, second, under optimal

and/or stochastic policyholder behavior.

For instance, we could follow Le Courtois and Nakagawa (2009, [22]), who used an

approach for the modeling of stochastic policyholder behavior via a mixed Poisson

process (also known as doubly stochastic Poisson process or Cox process) with a

stochastic intensity process that is correlated to the underlying asset’s spot price.

This approach models stochastic surrender rates that are influenced by market move-

ments and that allows for the modeling of external effects like e.g. higher surrender

rates due to a deteriorated reputation of the insurance company. However, within

this approach, the calibration of the Poisson process could constitute a problem.

Further, an approach where the moneyness or the value of the GLWB option’s value

directly affects the policyholder’s likelihood to surrender appears useful.

Regarding the computation of the optimal policyholder behavior, an approach sim-

ilar to that used in Bacinello, Biffis, and Millossovich (2009, [3]), which is based on

the Least-Squares Monte-Carlo method, seems promising.

In general, an analysis of the robustness of the hedging strategies against policyholder

behavior appears worthwhile.

Also, within the scope of future research work, there is much room for refinement re-

garding the numerical methods used in our analyses: We could aim at improving the

quality of the calculated Greeks, as well as decreasing the computational effort that

is necessary to calculate them. Possible starting points would be the use of different

techniques for valuating the GLWB rider options, and more efficient schemes for

the numerical calculation of the partial derivatives, like, for instance, the Likelihood

Ratio method (cf. Glasserman, 2003, [14]).

Hedging by product design: Likewise, it would be interesting to analyze how the
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insurer can reduce risk by means of product design, e.g. by offering investments funds

within their products that are managed to keep the volatility of the fund’s returns

constant at some prespecified volatility target (so-called “VolTarget”1 funds), or by

reserving the right to switch the policyholder’s assets to less risky funds (e.g. funds

with an higher portion in bonds or the money market), should market volatilities

increase. Ideally, such product designs would allow for pricing and hedging using a

model that assumes only constant equity volatility.

1At the time of writing this thesis, such products were for instance offered by Société Générale,
like e.g. the “SGI Vol Target BRIC” index.
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Ich bin mir bewusst, dass eine unwahre Erklärung rechtliche Folgen haben wird.

Ulm, den 22. September 2009

(Unterschrift)


	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation of the thesis
	Outline of the thesis

	Liability Framework
	High-level description of the considered insurance contracts
	Model of the liabilities
	Transition at a policy calculation date
	Computation of the guaranteed withdrawal amount 

	Contract valuation framework

	Financial Market and Numerical Analysis Framework
	Models of the financial market
	Black-Scholes-Merton model
	Heston model

	Change of measure: the equivalent martingale measure
	Black-Scholes-Merton model
	Heston model

	Numerical analysis framework
	Monte-Carlo simulations
	Computation of sensitivities (Greeks)
	Valuation of European standard options via Fourier inversion

	Black-Scholes-Merton Implied Volatility surface

	Hedging
	Hedge portfolio
	Dynamic hedging strategies
	No active hedging
	Delta hedging
	Delta and Vega hedging
	Additional semi-static hedge


	Software Solution
	Functional specification
	Architecture and implementation
	User interface
	Used libraries
	Usage example

	Contract Analysis
	Determination of the fair guaranteed withdrawal rate
	Results for the Black-Scholes-Merton model
	Results for the Heston model

	Distribution of withdrawals
	Distribution of the guarantee's trigger time
	The Delta of the GLWB rider option

	Analysis of Hedge Efficiency
	Objective and risk measures
	Simulation results
	Comparison of hedge results
	Distribution of hedge portfolio's value and insurer's balance
	Unmodified Vega hedge


	Conclusion
	Summary
	Outlook and future research


