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Preface

This thesis mainly deals with dependence concepts and their impact on
stochastic optimal control in multidimensional Lévy-driven insurance mod-
els. It concludes my doctorate research which was carried out at the In-
stitute for Stochastics at Universität Karlsruhe in the period from April
2006 to November 2008. My work was supervised by Professor Dr. Nicole
Bäuerle, Universität Karlsruhe.
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Chapter 1

Introduction and summary

Itô (cf. Itô (1998)) describes “mathematical beauty” in very nice metaphors.

“In precisely built mathematical structures, mathematicians find
the same sort of beauty others find in enchanting pieces of music,
or in magnificent architecture. There is, however, one great dif-
ference between the beauty of mathematical structures and that of
great art. Music by Mozart, for instance, impresses greatly even
those who do not know musical theory; the cathedral in Cologne
overwhelms spectators even if they know nothing about Christian-
ity. The beauty in mathematical structures, however, cannot be
appreciated without understanding of a group of numerical for-
mulae that express laws of logic. Only mathematicians can read
”musical scores” containing many numerical formulae, and play
that ”music” in their hearts.”

1.1 Historical overview and existing literature

Financial and actuarial applications often require multivariate models with
jumps allowing for dependence between the univariate components. Be-
fore going into more detail we consider the historical development. Jump
processes have been successfully used in univariate insurance models. The
collective risk model of an insurance company has already been introduced
at the beginning of the twentieth century by Filip Lundberg. Later, Harald
Cramér enhanced Lundberg’s ideas and formulated in an intuitive way a
model for the random variation of an insurance company’s surplus which is
today known as a compound Poisson process. In recent years the classical
Cramér-Lundberg model has been generalized in many directions. One way
to generalize the classical risk process is to consider an arbitrary spectrally
negative Lévy process. Recently, this model has attracted a lot of research
interest and has been successfully used to construct one-dimensional insur-
ance models, see for example Albrecher et al. (2008) and the references given



4 Chapter 1. Introduction and summary

therein. However, multivariate applications are still dominated by Brown-
ian motion. In this thesis we therefore focus on multidimensional insurance
models driven by jump processes. To be more precise, we consider in Chap-
ter 2 a multidimensional extension of the classical Cramér-Lundberg model
observed at discrete-time points and in Chapters 5 and 6, a multidimen-
sional insurance model driven by a general Lévy process.

As mentioned before, in reality risk processes of an insurance company
are often dependent. Let us think of large insurance groups operating in
various countries around the world or offering different types of insurance
coverage. One might easily think of instances which may generate dependent
claims of the single business lines. Simplified examples for such possible de-
pendencies are a car accident or the occurrence of hurricanes. A car accident
may cause a claim for the motor liability and health insurance. Hurricanes
might cause losses in different countries. To model this appropriately, multi-
dimensional models capturing complex dependency structures are necessary.
Bäuerle and Grübel (2005) suggest to use models incorporating thinning and
shifts such that events of a background Poisson process trigger later claims
in different categories. Lindskog and McNeil (2003) consider dependence of
individual jumps of compound Poisson processes assuming that losses result
from underlying shock processes. However, this is only possible if there are
only a few sources of risk causing jumps. In Pfeifer and Nešlehová (2004)
modeling dependence is entirely based on the total number of claims in a
finite time interval described by a static multidimensional copula. Whereas
Tankov (2003) suggests to model the dependence structure of spectrally pos-
itive Lévy processes via Lévy copulas. This concept is extended by Kallsen
and Tankov (2006), see also the book of Cont and Tankov (2004). Advan-
tages of modeling dependence of Lévy processes via Lévy copulas instead of
ordinary copulas are summarized in the introduction to Chapter 4.

A fundamental problem in actuarial mathematics deals with optimal risk
control and optimal investment in a financial market. The surplus process of
an insurance company consists of premium income and the payment arising
through claims. An insurance company can reduce its risk by ceding claims
to a reinsurance company which of course reduces in return the net premium
income. To derive an optimal choice on the amount to reinsure and the in-
vestments to make, methods from stochastic control theory may be used.
Various optimality criteria are used to formulate the optimization problem
of risk control such as minimizing the probability of ruin and maximizing
expected exponential utility of terminal wealth. Browne (1995) showed that,
in a univariate diffusion model, minimizing the probability of ruin is equal
to maximizing the expected exponential utility of terminal wealth which is
often used as performance criterion in applications. Since the expected ex-
ponential utility function is more tractable to work with, it is widely spread.
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Another characteristic of multidimensional insurance models is that there
are several possibilities to define the ruin probability. In the most general
case, the ruin probability is defined as the probability that the multivariate
risk process of the insurance company, eventually hits the so-called insol-
vency region A, some domain of Rd. If the insurance company only consists
of one business line the insolvency region is generally chosen to be A =
(−∞, 0). Unlike the univariate setting, the concept of ruin for multivariate
processes could have various interpretations. The least restrictive and at the
same time the least realistic one would be to require that all business lines
are simultaneously below zero, i.e. A = {y ∈ Rd : max(y1, . . . , yd) < 0}. A
more restrictive choice is to take A = {y ∈ Rd : y1 + . . . + yd < 0}, which
corresponds to the classical univariate ruin problem for the global company.
Thus ruin occurs when the sum of net values of the business units are neg-
ative. But as capital is not completely versatile between different business
lines, ruin may already occur before the aggregated reserves become nega-
tive. That is, ruin might occur when at least one business gets ruined and the
solvency region is chosen to be A = {y ∈ Rd : min(y1, . . . , yd) < 0}. More
generally, Hult and Lindskog (2006) propose that capital may be transferred
between the business lines. They define ruin as the situation when negative
positions in one or several lines of business cannot be balanced by capital
transfer.

There is quite a lot of literature on optimal control of ruin probabilities
as well as exponential utility of terminal wealth for the univariate setting.
For models in discrete-time we only mention Schäl (2004) and Schäl (2005)
which serves as a basis for Chapter 2. Optimal reinsurance and investment
problems in a continuous-time insurance model can be for example found in
Hipp (2004), Højgaard and Taksar (1998), Schmidli (2001), Schmidli (2002),
the book of Schmidli (2008) and Fernández et al. (2008). However, litera-
ture on multivariate risk processes is relatively sparse. Collamore (1996)
considers in discrete time a multidimensional problem of first passage of a
process into a general region and Collamore (2002) simulates this probabil-
ity. Recently, ruin estimation in multivariate models with heavy-tailed claim
sizes and capital transfer between single business lines has been considered
by Hult and Lindskog (2006) and Bregman and Filipovic (2006). However,
methods which allow to reduce the multidimensional problem to a univariate
problem are mainly used. For example, Bregman and Klüppelberg (2005)
consider the sum of single business line risk reserves and model dependence
via a Clayton Lévy copula to estimate the ruin probability. Chan et al.
(2003) define several types of ruin probabilities and obtain bounds for the
two-dimensional ruin probabilities using univariate model results. A cer-
tain bivariate ruin problem is solved in recent publications by Avram et al.
(2008b) and Avram et al. (2008a). They allocate claims according to some
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fixed proportion between the two business lines. However, they again reduce
this problem to a one-dimensional setting.

1.2 Summary and outline

The main aim of this thesis is to deal with dependence concepts and their
impact on stochastic optimal control in multidimensional insurance models
allowing for jumps in the claim processes and in the investment portfolio.

Discrete-time multivariate risk processes

In Chapter 2 we develop a multidimensional insurance model in which the
risk processes of individual business lines can be controlled by reinsurance
and investment in a financial market taking into account the special features
of multidimensional insurance models. That is, we allow for stochastically
dependent development of the risk reserves and for the most general ruin
definition in assuming that ruin occurs when the corresponding risk reserve
first hits the insolvency region in Rd .
After providing a short introduction to the theory of discrete-time stochastic
programming in Section 2.1 we consider in Section 2.2 our multidimensional
insurance model. In Sections 2.3 and 2.5 we apply the theory of dynamic
programming to maximize expected exponential utility of terminal wealth
and to minimize the probability of ruin, respectively. We prove in Section 2.3
that the optimal control of the exponential utility maximization of termi-
nal wealth neither depends on the time nor on the present state of the risk
reserve. Modeling dependence between the individual business lines by an
Archimedean copula we identify structure conditions of the Archimedean
generator under which an insurance company certainly reinsures a larger
fraction of claims from one business line than from another. Similarly, struc-
ture conditions are derived for the investment portfolio. These results can
be found in Section 2.4.
Unlike the exponential utility function, the ruin probability does not resem-
ble the well-known cost criterion of control theory at first glance. However,
results from stochastic dynamic programming can be applied in the context
of our insurance model by interpreting the ruin probability as total cost
without discounting which have to be paid entering the insolvency region.
This is similar to Schäl (2004) and Schäl (2005). In Section 2.5 the ruin
probability can then be described as a fixed point of a contractive operator
and can be approximated using an iteration method.

Basic concepts of Lévy processes

In Chapter 3 we discuss essential tools and concepts of the theory of Lévy
processes which are beneficial for Lévy driven risk processes in an insurance
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model. Beginning with the definition of a Lévy process we subsequently dis-
cuss the Lévy measure, the famous Lévy-Itô-decomposition that describes
the structure of its sample paths, and the distributional properties of Lévy
processes such as the Lévy-Khinchin formula and infinite divisibility. More-
over, we classify the paths behavior of Lévy processes distinguishing between
finite and infinite activity and variation. Section 3.3 contains a discussion
and actuarial interpretation of examples of Lévy processes i.a. a compound
Poisson process, a jump diffusion and a spectrally negative Lévy process
since they are commonly used in risk process modeling. In Section 3.4 we
recall the martingale and Markov property of Lévy processes and treat the
infinitesimal generator of Lévy processes in terms of its characteristic triplet
which we need in Chapter 5. The Itô-Doeblin formula, until recently known
as Itô-formula, is presented in Section 3.5. However, we do not present its
most general version. Instead we restrict ourselves to a version for Lévy-
type stochastic integrals which is frequently applied in this thesis. Finally,
in Section 3.6 we recall conditions under which existence and uniqueness of
solutions of Lévy stochastic differential equations can be guaranteed. These
results enable us to derive a maximum inequality for a certain power of the
solution of a Lévy stochastic differential equation which is beneficial for the
correct formulation of the stochastic control problem in Chapter 5. So far,
such a maximum inequality only exists for the pure diffusion case.

Dependence concepts for Lévy processes

An intuitive approach to model dependence of Lévy processes might be the
use of copulas for random vectors. However, as we will see in Chapter 4
there are a few drawbacks which make this concept not suitable for Lévy
processes. Therefore, in order to characterize the dependence structure of a
multivariate Lévy measure the concept of Lévy copulas was recently intro-
duced in Cont and Tankov (2004) and further refined in Kallsen and Tankov
(2006). However, caution has to be exercised since Lévy copulas can only be
used with respect to some dependence properties to characterize dependence
among the univariate components of multidimensional Lévy processes (cf.
Bäuerle et al. (2008)).
We start this chapter briefly recalling some general definitions which will be
important in the following sections i.a. the notion of d-increasing functions
is introduced. In the literature different definitions for d-increasing func-
tions exist. However, we show that the different definitions only differ by an
additional condition. We then discuss the conceptually simpler case of spec-
trally positive Lévy processes (cf. Cont and Tankov (2004)) before treating
the concept for general Lévy processes introduced in Kallsen and Tankov
(2006). A special class of Lévy copulas known as Archimedean Lévy copu-
las is our main focus. Archimedean Lévy copulas can be constructed quite
easily and at the same time possess a lot of nice properties. For that reason
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Archimedean Lévy copulas are widely spread in applications. In Subsection
4.2.2 we derive a sufficient and necessary condition for an Archimedean Lévy
generator to create a multidimensional positive Lévy copula in arbitrary di-
mension. So far, this has only been analyzed for a bivariate Lévy copula,
while for dimensions larger than two there is only a sufficient condition. It
turns out that the necessary and sufficient condition derived in Theorem
4.2.10 contains the existing results as special cases. Finally, we recall the
construction of a general Archimedean Lévy copula introduced in Bäuerle
et al. (2008).
Describing the dependence structure of a multidimensional Lévy process in
terms of its Lévy copula allows us to quantify the effect of dependence on
the retention levels and the investment portfolio in our multidimensional
Lévy driven insurance model (cf. Chapter 6 and Chapter 5).

Stochastic control of portfolios with Lévy-dynamics

We consider the optimization of proportional reinsurance and investment
strategies in a multidimensional Lévy-driven insurance model with depen-
dent claims and dependent investments of the insurance company’s single
business lines. Before entering the world of our insurance model driven
by Lévy dynamics in Section 5.2, we treat Lévy process stochastic control
theory in Section 5.1. As far as we know, there is so far only a very short in-
troduction to stochastic control with respect to jump diffusions provided by
Øksendal and Sulem (2007). Inspired by Browne (1995) who discovered that
in a one-dimensional diffusion model the control which maximizes expected
exponential utility of terminal wealth also minimizes the ruin probability, we
consider in Section 5.3 the optimization criterion that maximizes exponen-
tial utility of terminal wealth. Imbedding this problem in stochastic control
theory and solving the Hamilton-Jacobi Bellman equation we can show that
it is optimal to keep the retention level and investment portfolio constant
regardless of the time and the company’s wealth level. This does not only
hold for proportional reinsurance but also for general reinsurance as well
as for a mixture of proportional and excess of loss reinsurance in a slightly
modified model. In the latter case we can even show that there exists a
pure excess of loss policy which is always better than any combined reinsur-
ance policy. We conclude in Section 5.4 with a validation of the conjecture
that the policy which maximizes utility of terminal wealth also minimizes
the ruin probability in our multidimensional reinsurance model. This holds
omitting claims caused by jumps while assuming that ruin occurs when the
weighted sum of net values of the business lines become negative.
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Structural comparison results

This chapter is dedicated to comparison results with respect to jumps in
an insurance company’s risk reserve. The performance criterion is still the
expected exponential utility of terminal wealth. In the first section the
optimal control in a compensated jump diffusion model is compared with
the correspondent results in a pure diffusion model. Not surprisingly, it
turns out that the optimal retention level of the insurance company is larger
in the model without jumps than it is in the model containing jumps. In
Section 6.2 we weaken the difference between the models and consider only
models differing by the weighting of claims caused by jumps. There, we show
that the accumulated risk reserve increases in concave order as the weighting
factor of the claims decreases. However, the main focus of this chapter is put
on the last section. Based on the results of Chapter 5 we devote Section 6.3
to identify structure conditions with respect to the Archimedean generator
and the Lévy measure under which an insurance company reinsures a larger
fraction of claims from one business line than from another. Similar results
can be obtained with respect to investments on a financial market.
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1.3 Notation

This section consists of some basic notation, abbreviations and conventions
used throughout this thesis.

x+ y, x ≤ y are componentwise operations for x, y ∈ Rd
(x, y) =

∑d
i=1 x

iyi inner product in Rd where x, y ∈ Rd

||x|| = (x, x)
1
2 Euclidean norm where x ∈ Rd

||x||p =
(∑d

i=1 |xi|p
) 1
p p-norm where x ∈ Rd

||M ||sn =
∑d

i=1 ||M i
i || matrix semi-norm for M ∈ Rd ×Rd

sgn(x) sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 if x < 0
C set of continuous functions
Cd set of all d-times continuously differentiable functions
C1,2 set of continuous functions

which are continuously differentiable with respect to
the first variable and twice continuously differentiable
with respect to the second variable

C0 set of continuous functions vanishing at infinity
C2

0 set of twice continuously differentiable functions,
vanishing at infinity

ft(t, x), fxi(t, x) partial derivatives with respect to t and xi

where x ∈ Rd and i ∈ {1, . . . , d}
Ran f range of a function f
Dom f domain of a function f
∂B the boundary of the set B
B the closure of the set B
int B the open set of B
Bc the complement of the set
l.s.c. abbreviation for lower semi-continuous
i.i.d. abbreviation for independently and identically

distributed
δx Dirac measure given by δx(A) = 1x∈A

for every Borel set A
B(X) Borel σ-algebra, i.e. the smallest σ-algebra of subsets of X

which contains all the open subsets of X
R = R ∪ {−∞} ∪ {∞}, the extended real line
〈X〉 the quadratic variation of X



Chapter 2

Discrete-time multivariate
risk processes

In this chapter we develop a multidimensional insurance model in which the
risk processes of individual business lines can be controlled by reinsurance
and investment in a financial market. We take into account the special fea-
tures of multidimensional insurance models described in Chapter 1. That
is, we allow for dependent risk reserves which are determined by claims,
premiums, and the financial market result. There are strong reasons to
believe that claims of different types are stochastically dependent. A sim-
plified example for such possible dependencies is a car accident. On the one
hand vehicles might be damaged, on the other hand car occupants might
be injured. Thus, two business lines have to bear the damage, the motor
insurance and the accident-and health insurance. In addition to that, stock
returns on the financial market can depend on each other as well.
Another characteristic of multidimensional insurance models is to have sev-
eral different possibilities to define ruin. We allow for a quite general defini-
tion in assuming that ruin occurs when the corresponding risk reserve hits
first the so-called insolvency region, some domain of Rd .

After a short introduction to the theory of discrete-time stochastic pro-
gramming in Section 2.1 we consider our multidimensional insurance model
in Section 2.2. In Sections 2.3 and 2.5 we then apply dynamic programming
to maximize the expected exponential utility of terminal wealth and to min-
imize the probability of ruin, respectively. The main result of Section 2.3
shows that the optimal control of terminal wealth utility maximization nei-
ther depends on the time nor on the present state of the risk reserve. Mod-
eling dependence between the individual business lines by an Archimedean
copula we identify structure conditions of the Archimedean generator under
which an insurance company certainly reinsures a larger fraction of claims
from one business line than from another. Similarly, structure conditions
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are derived for the investment portfolio. These results can be found in Sec-
tion 2.4.
Unlike the exponential utility function, the ruin probability does not resem-
ble the well-known cost criterion of control theory at first glance. However,
results from stochastic dynamic programming can be applied in the context
of our insurance model by interpreting the ruin probability as total cost
without discounting which has to be paid entering the insolvency region.
This is similar to Schäl (2004) and Schäl (2005). In Section 2.5 the ruin
probability can then be described as a fixed point of a contractive operator
and approximated using an iteration method.

2.1 Stochastic dynamic programming

We give a short introduction to the theory of stochastic discrete-time dy-
namic programming. The main purpose of this section is to state terms,
definitions as well as results used in the sections to come. A more detailed
introduction for a finite and an infinite horizon problem can be found in Bert-
sekas and Shreve (1978) or in Schäl (2004) on which this section is mainly
based. A broad list of excellent literature providing a thorough treatment
of discrete stochastic dynamic programming including a historical overview
can be found in Puterman (1994).
Our setting of treating the ruin probability control in Section 2.5, how-
ever, requires to consider some special features. For example, there is a
discontinuity of the system function forcing us to use a so-called structure
assumption instead of the usual continuity assumption.

2.1.1 The finite horizon model

A (stationary) finite horizon stochastic optimal control model with horizon
N ∈ N is a tuple (S,A,D,E, F tr, g, V0, α) consisting of

1. a state space S which is a nonempty subset of some Euclidean space
where (S,B(S)) is a measurable space;

2. an action space A which is a nonempty subset of some Euclidean space
where (A,B(A)) is a measurable space;

3. a control constraint D ⊂ S ×A which is B(S)⊗B(A)-measurable and

D(x) := {a ∈ A : (x, a) ∈ D} 6= ∅ for all x ∈ S

is the set of feasible control actions in state x ∈ S.
For a measurable function ϕ : S → A we assume that (x, ϕ(x)) ∈ D
for all x ∈ S;
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4. a disturbance space E which is a nonempty subset of some Euclidean
space where (E,B(E)) is a measurable space;

5. a measurable system function F tr : D × E → S;

6. a measurable function g : S × A → (−∞,∞] which is bounded from
below, called the cost-per-stage function;

7. a measurable function V0 : S → (−∞,∞] which is bounded from
below, called terminal cost function;

8. a discount factor α ∈ [0, 1].

The system transition in this model is determined by so-called disturbance
variables (Wn)1≤n≤N , a sequence of independent and identically distributed
random variables on some probability space (Ω,F ,P) with values in the
disturbance space (E,E).

Definition 2.1.1. (a) A decision function is a measurable function ϕ :
S → A such that ϕ(x) ∈ D(x) for all x ∈ S. The set of all decision
functions is denoted by Φ.

(b) A policy is a sequence π = (ϕn)0≤n≤N−1 of decision functions ϕn ∈ Φ.

A stochastic dynamic programme can be interpreted as follows. A de-
cision maker is faced with the opportunity of influencing the behavior of a
probabilistic system as it evolves over time. Observing the system in state
xn ∈ S and choosing an action an = ϕn(xn) from the set of allowable ac-
tions D(xn) in state xn, the decision maker has to face costs g(xn, an) and
the system state moves to state xn+1 = F tr(xn, an, wn+1) influenced by a
disturbance Wn+1 = wn+1. Repeating this procedure up to time N the cost
incurred in state xN is given by V0(xN ). We seek a finite sequence of control
functions π = (ϕ0, . . . , ϕN−1) which minimizes the total cost over N stages.

Definition 2.1.2. (a) The total discounted cost over N periods starting
in X0 = x ∈ S and choosing policy π is

VNπ(x) = E
[N−1∑
n=0

αng(Xn, ϕn(Xn)) + αNV0(XN )
]
.

(b) The minimal total discounted cost over N periods starting in X0 =
x ∈ S and choosing policy π is

VN (x) = inf
π
VNπ(x).

(c) A policy π is said to be optimal if

VNπ(x) = VN (x) for all x ∈ S.
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The next lemma shows that the total discounted cost can be computed
recursively.

Lemma 2.1.3 (Cost iteration). For π = (ϕ0, ϕ1, . . . , ϕN−1) and π← =
(ϕ1, . . . , ϕN−1) it holds

VNπ(x) = g(x, ϕ0(x)) + αE
[
VN−1π←

(
F tr(x, ϕ0(x),W )

)]
.

Proof. This follows from Definition 2.1.2.

It is useful to write this recursion formula in terms of operators.

Definition 2.1.4. For any v : S → (−∞,∞] measurable and bounded from
below we define

(a) Lv(x, a) = g(x, a) + αE
[
v
(
F tr(x, a,W )

)]
for (x, a) ∈ D;

(b) Uϕv(x) = Lv(x, ϕ(x)) for any decision function ϕ;

(c) Uv(x) = infa∈D(x) Lv(x, a).

It can be shown that these operators are order preserving and costs
corresponding to a policy π = (ϕ0, . . . , ϕN−1) can be defined in terms of the
composition of operators Uϕ0 . . . UϕN−1 .

Lemma 2.1.5. (a) Let v, w : S → (−∞,∞] be measurable and bounded
from below and v(x) ≤ w(x) for all x ∈ S. This implies

Uϕv(x) ≤Uϕw(x) for all x ∈ S, ϕ(x) ∈ D(x),
Uv(x) ≤Uw(x) for all x ∈ S.

(b) Let π = (ϕ0, ϕ1, . . . , ϕN−1) and π← = (ϕ1, ϕ2, . . . , ϕN−1) then

VNπ(x) = Uϕ0VN−1π←(x) = Uϕ0 . . . UϕN−1V0(x).

Proof. (a) Let v(x) ≤ w(x) for all x ∈ S. Then

Uϕv(x) =g(x, ϕ(x)) + αE
[
v
(
F tr(x, ϕ(x),W )

)]
≤g(x, ϕ(x)) + αE

[
w
(
F tr(x, ϕ(x),W )

)]
= Uϕw(x).

Taking the infimum on both sides the second statement follows.

(b) The proof can be found in Bertsekas and Shreve (1978), Lemma 8.1.

Note that it is not clear if Uv is measurable. However, we avoid the
measurability questions by the following assumption.

Structure assumption
There exists a set V of measurable functions v : S → (−∞,∞] which are
bounded from below and a set Φ of decision functions such that
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(i) V0 ∈ V;

(ii) Uv ∈ V for all v ∈ V;

(iii) For all v ∈ V there exists a decision function ϕ ∈ Φ such that

Uϕv = Uv.

Definition 2.1.6. Let v : S → (−∞,∞] be measurable and bounded from
below. A decision function ϕ ∈ Φ is called a minimizer of v if

Uϕv(x) = Uv(x) for all x ∈ S.

The following theorem states the main result of this section. Beginning with
the cost V0 and applying the operator U successively N times the optimal
cost function can be generated. Furthermore, the construction of an optimal
policy is given.

Theorem 2.1.7 (Main Theorem). Suppose that the structure assumption
holds. We then have

(a) The value iteration

Vn = UVn−1 = UnV0 ∈ V for all n = 1, . . . , N ;

(b) The optimal policy
If ϕn is a minimizer of Vn−1 for all n = 1, . . . , N , then the policy
π := (ϕN , . . . , ϕ1) is optimal;

(c) Existence
There exists an optimal policy π.

Proof. The structure assumption directly implies that UnV0 is well-defined.
The proof of the value iteration, the existence and optimality of the policy
can be found in Bertsekas and Shreve (1978) Proposition 8.2, Corollary 8.2.1
and Proposition 8.5.

2.1.2 The infinite horizon model

The infinite horizon stochastic optimal control model is as described in Sec-
tion 2.1.1 differing only by the horizon which is infinite. One approach
to solve infinite horizon stochastic dynamic programmes is to approximate
them with finite horizon problems. In doing so we have to guarantee that the
sequence of value functions generated by the successive application of the
finite horizon value iteration converges to the optimal value function of the
infinite horizon problem. For this purpose we can, for example, demand a
contraction property or impose a monotonicity assumption. Since it is more
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convenient for our application we stick to the latter case and the following
assumption will hold in this section (cf. Bertsekas and Shreve (1978)).

Uniform increase assumption
It holds

LV0(x, a) ≥ V0(x) for all x ∈ S and a ∈ D(x).

It is common practice to define V0 ≡ 0 in an infinite horizon model. However,
in our application to ruin probabilities we do not want 0 to be in the set V
and therefore assume V0 = g for some g 6= 0.

Remark 1. By the uniform increase assumption and Lemma 2.1.5(b) we get

Vn+1π = Uϕ0 . . . Uϕn−1(UϕnV0) ≥ Uϕ0 . . . Uϕn−1V0 = Vnπ

implying monotonicity of the value function, that is for all n ∈ N

V0 ≤ Vnπ ≤ Vn+1π and V0 ≤ Vn ≤ Vn+1.

By the preceding remark the limit of the sequence of finite horizon value
functions is well defined and we are now in the position to define the per-
formance criterion.

Definition 2.1.8. (a) The total expected cost starting in X0 = x and
choosing policy π is

Vπ(x) = lim
n→∞

Vnπ(x).

(b) The minimal total expected cost starting in X0 = x is

V (x) = inf
π
Vπ(x).

V (x) is called the value function of the infinite horizon problem.

(c) A policy π is optimal if Vπ(x) = V (x) for all x ∈ S.

(d) The policy (ϕ,ϕ, . . .) where ϕ ∈ Φ is called stationary and we write
π = ϕ∞.

As in the previous section we write Vn = infπ Vnπ for n ∈ N and define
the so-called limit function by

V∞(x) = lim
n→∞

Vn(x)

which is again well-defined by Remark 1.

Lemma 2.1.9. (a) Let π = ϕ∞ be a stationary policy. Then

UϕVϕ∞ = Vϕ∞ = lim
n→∞

(Uϕ)nV0.
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(b) It holds that
V0 ≤ V∞(x) ≤ V (x).

Proof. (a) We know that

Vn(ϕ,...,ϕ) = Uϕ(Uϕ . . . UϕV0) = (Uϕ)nV0.

The assertion follows by the monotone convergence theorem.

(b) We have

Vπ(x) = lim
n→∞

Vnπ(x) ≥ lim
n→∞

Vn(x) = V∞(x) for all π.

Thus
V (x) = inf

π
Vπ(x) ≥ V∞(x).

Analogously to the finite horizon model we need a structure assumption
ensuring measurability.

Structure assumption
There exists a set V of measurable functions v : S → (−∞,∞] which are
bounded from below such that

(i) V0 ∈ V;

(ii) Uv ∈ V for all v ∈ V;

(iii) D(x) is a compact metric space for all x ∈ S;

(iv) Lv(x, a) is lower semi-continuous in a for all x ∈ S and v ∈ V.

Remark 2. Brown and Purves (1973) (cf. Corollary 1) show that there exists
a decision function ϕ such that Uϕv = Uv for any v ∈ V. Note that under
the structure assumption the conditions required for Corollary 1 in Brown
and Purves (1973) are fulfilled. This means that the structure assumption
for the infinite horizon model implies the structure assumption for the finite
horizon model.

Let us finally turn to the main theorem for the infinite horizon model.

Theorem 2.1.10 (Main theorem). Suppose that the structure assumption
holds. We then have

(a) The value iteration

V = lim
n→∞

UnV0;
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(b) The optimality equation
V = UV ;

(c) The optimality criterion
If ϕ is a minimizer of V then the stationary policy ϕ∞ is optimal;

(d) Existence
There exists a stationary optimal policy.

Proof. The finite horizon structure assumption follows directly from the
structure assumption for the infinite horizon case (cf. Remark 2). Thus, by
the main theorem for the finite horizon model (cf. Theorem 2.1.7), we have
Vn ∈ V for all n ∈ N.
Fix x ∈ S and define vn(a) := LVn−1(x, a) for all a ∈ D(x). By the structure
assumption we know that vn(a) is lower semi-continuous in a. Further by
Remark 1 and Lemma 2.1.5(a) we have that vn(a) is increasing in n. By use
of a variant of Dini’s theorem (cf. Schäl (1975), Proposition 10.1) we obtain

lim
n→∞

inf
a∈D(x)

vn(a) = inf
a∈D(x)

lim
n→∞

vn(a).

Applying Theorem 2.1.7 it yields

V∞(x) = lim
n→∞

Vn(x) = lim
n→∞

UVn−1(x) = lim
n→∞

inf
a∈D(x)

LVn−1(x, a)

= inf
a∈D(x)

lim
n→∞

LVn−1(x, a) = inf
a∈D(x)

LV∞(x, a) = UV∞(x). (2.1)

Note that limn→∞ LVn(x, a) = LV∞(x, a) follows directly from the mono-
tone convergence theorem since the value function is increasing (cf. Re-
mark 1). We further know that the limit of an increasing sequence of
lower semi-continuous functions, limn→∞ vn(a) = LV∞(x, a), is lower semi-
continuous. By the selection theorem of Brown and Purves (1973) (cf. Re-
mark 2) there exists a decision function ϕ such that

UϕV∞(x) = UV∞(x) (2.2)

for all x ∈ S. Thus together with (2.1)

V∞(x) = UϕV∞(x) (2.3)

for all x ∈ S. This implies

V∞(x) = UnϕV∞(x) ≥ UnϕV0(x).

Therefore, by Lemma 2.1.9 (a) we have

V∞(x) ≥ lim
n→∞

UnϕV0(x) = Vϕ∞(x)
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for all x ∈ S. On the other hand we have by Lemma 2.1.9 (b)

V∞(x) ≤ V (x) ≤ Vϕ∞(x)

for all x ∈ S. Thus parts (a), (b) and (d) follow immediately. Let us finally
turn to part (c). Since ϕ is a minimizer of V it holds that UϕV (x) = UV (x)
for all x ∈ S and we therefore obtain

V (x) = UϕV (x) = UnϕV (x) ≥ UnϕV0(x).

Hence for n→∞ it yields

V (x) ≥ lim
n→∞

UnϕV0(x) = Vϕ∞(x)

for all x ∈ S and hence (c) follows.

The optimality equation in Theorem 2.1.10 is a so-called fixed-point
equation which can be solved in our model by iteration without a contraction
property. Another approach to obtain the value function V is the Howard
improvement theorem.

Theorem 2.1.11 (Howard improvement). Let ϕ and ϕ̃ be any decision
functions. Define J := Vϕ∞, J̃ := Vϕ̃∞,

A(x, ϕ) :=
{
a ∈ A : LJ(x, a) < J(x)

}
for x ∈ S

and S∗ := {x ∈ S : A(x, ϕ) 6= ∅}. Let ϕ̃(x) ∈ A(x, ϕ) for x ∈ S∗ and
ϕ̃(x) = ϕ(x) for x /∈ S∗. If

lim
n→∞

αnE[(J − V0)(Xn)] = 0 for all x ∈ S (2.4)

then

J̃(x) ≤J(x) for all x ∈ S and

J̃(x) <J(x) for all x ∈ S∗.

Note that assumption (2.4) is always satisfied in the discounted case.
The next theorem states that if there is no improvement anymore, which
means that A(x, ϕ) = ∅, then we already have the value function and the
optimal policy.

Theorem 2.1.12 (Verification theorem). Let v : S → (−∞,∞] be a mea-
surable function with v ≥ V0 and

v = Uv = Uϕv.

If (2.4) holds then the function v corresponds to the value function V and
ϕ defines a stationary optimal policy ϕ∞.

A proof of Theorem 2.1.11 and Theorem 2.1.12 can be found in Schäl (2004).



20 Chapter 2. Discrete-time multivariate risk processes

2.2 Multidimensional insurance model

In this section we introduce our multidimensional insurance model where
the surplus process of the single business lines can be controlled by reinsur-
ance and by investment in a financial market. Our construction is based
on the one-dimensional insurance model of Schäl (2004) and Schäl (2005).
Considering a multidimensional version we can add a special feature allow-
ing for dependent claim occurrences and dependencies in investments of the
different business lines.

The claim process as well as the gain process of the financial market are
driven by d-dimensional compound Poisson processes. More precisely, the
claim size at time T ′n is described by the d-dimensional random vector
Yn = (Y 1

n , . . . , Y
d
n ) with values in [0,∞)d, whereas a Poisson process N ′(t)

with intensity λ models the occurrence of claims.
Similarly, the return process in the financial market is defined by the se-
quences of returns Rn = (R1

n, . . . , R
d
n) at jump times T

′′
n and a Poisson

process N ′′(t) with intensity λ̃ which specifies the occurrence of jumps in
the financial market. The intensity λ̃ is generally much larger than λ. Re-
turns are described by a d-dimensional stock price process Sn = (S1

n, . . . , S
d
n)

such that Sin = Sin−1(1 +Rin) and 1 +Rin > 0 a.s.

The discrete-time process Xn = (X1
n, . . . , X

d
n) specifies our risk process

where Xi
n denotes the risk process of business line i immediately after time

Tn. The time epochs Tn result from the superposition of the claim times T ′n
and the jump times at the financial market T

′′
n .

We consider now two possible actions for the insurance company.

1. The process can be controlled by reinsurance.
The insurance company chooses a retention level b = (b1, . . . , bd) ∈
[b, b]d, b ∈ Rd+, of reinsurance for a period. The kind of reinsur-
ance is fixed in advance. The (measurable) function h(bi, yi) denotes
the part of the claim yi in business line i paid by the insurer, where
0 ≤ h(bi, yi) ≤ yi. We mainly constrain ourselves to the case of pro-
portional reinsurance. When a claim arises, the share of the reinsurer
and the ceding company are paid in proportions of the claim which
are fixed in advance, that is

h(bi, yi) = bi · yi with retention level 0 ≤ bi ≤ 1, for all i ∈ {1, . . . , d}.

In case of an excess of loss reinsurance the reinsurer only responds if
the claims suffered by the insurer exceeds a certain amount, that is

h(b, y) = min(b, y) with retention level 0 ≤ b ≤ ∞.

For each retention level b the insurer pays a reinsurance premium which
has to be deducted from the premium c = (c1, . . . , cd) ∈ Rd being paid



2.2. Multidimensional insurance model 21

by the policy holder. This leads to a so-called net-income c(b) =
(c1(b1), . . . , cd(bd)) that may be calculated according to the expected
value principle. It holds that

0 ≤ c(b) ≤ c = c(b) for b ≤ b ≤ b (2.5)

and c(b) is increasing in b. The smallest retention level b has to be
chosen such that (2.5) is satisfied.

2. The insurance company can invest in a financial market.
We consider a financial market where d risky assets (stocks) are traded
and described by the price process Sn = (S1

n, . . . , S
d
n) as mentioned

before. At any time Tn the insurance company chooses a portfolio
vector δn = (δ1n, . . . , δ

d
n) where the component δin denotes the amount

of capital invested in stock i by business line i.

To sum up, the risk process can be controlled by reinsurance, choosing
retention level b ∈ [b, b]d and by investments in a financial market choosing
a portfolio vector δ ∈ Rd. Thus our control action a = (b, δ) consists of two
components.
We define the Poisson process N(t) by superposition of the independent
Poisson processes N ′(t) and N ′′(t). Therefore, N(t) = N ′(t) + N ′′(t) is a
Poisson process with intensity λ+ λ̃ and jump times Tn. The period length
Zn is given by the intervals between the jump times of the Poisson process
N(t). We write Kn = 0 if the jump is caused by a claim at time Tn and
Kn = 1 if there is a jump at the financial market. Thus P(Kn = 1) = λ̃

λ̃+λ
=

1− P(Kn = 0).

The surplus process of business line i can be computed according to

Xi
n+1 = Xi

n + ci(bin)Zn+1 + δinR
i
n+1Kn+1 − (1−Kn+1)h(bin, Y

i
n+1)

given the surplus Xi
n and the control action (bin, δ

i
n).

We suppose that the disturbance of our model Wn = (Rn, Yn, Zn,Kn) sat-
isfies the following assumption.

Model assumption
The random vectors Wn, 1 ≤ n ≤ N are independent and identically dis-
tributed, (Rn, Zn,Kn) and Yn are independent, (Zn, Rn) and Kn are inde-
pendent and

(i) Zn is exponentially distributed with parameter λ+ λ̃,

(ii) Y i
n > 0 for all i ∈ {1, . . . , d},

(iii) P(Rin < 0) > 0 and E|Rin| <∞ for all i ∈ {1, . . . , d}.
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Note that we allow Zn and Rn to be dependent which is a reasonable ap-
proach since indeed the gains on a financial market depend on the duration
of investment. Moreover, we allow for dependent claims Y i

n and dependent
returns Rin on the financial market of the single business lines. Such possible
dependencies might be modeled using the concept of copulas as we show in
Section 2.4.

2.3 Maximizing expected exponential utility

We are interested in maximizing expected exponential utility of terminal
wealth in our multidimensional insurance model. The choice of this per-
formance criterion was motivated by a result of Browne (1995) in a diffu-
sion model. The policy maximizing expected exponential utility of terminal
wealth has been shown to be identical to the policy which minimizes the
ruin probability at least under certain constraints.

Imbedding our optimization problem in the theory of discrete-time stochas-
tic dynamic programming we choose

1. the state space S = Rd;

2. the action space A = D(x) = [b, b]d × Rd meaning we are allowed to
borrow an unlimited amount of money. Our decision function (b, δ) is
composed of two components where b ∈ [b, b]d denotes the retention
level of reinsurance and δ ∈ Rd the amount invested in stocks;

3. the transition function

F tr(x, a, w) = x+ c(b)z + δρk − h(b, y)(1− k)

for a = (b, δ) and w = (ρ, y, z, k);

4. the cost functions g(x, a) = 0 and V0(x) = ν0 exp(−θ
∑d

i=1 x
i) for

some ν0 ≥ 0. This means the insurance company is imposed a fine
which gets larger the smaller the aggregated risk reserve is at the end
of the term.

We aim to minimize the expected penalty to pay. That is,

minimize E
[

exp
(
−θ

d∑
i=1

Xi,x,π
N

)]
which is equivalent to the maximization of the expected exponential utility
of terminal wealth.
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In order to apply the main theorem for the finite horizon model we have to
check the conditions of the structure assumption. Define

V :=
{
v : Rd → [0,∞) : v(x) = ν exp

(
−θ

d∑
i=1

xi
)
, ν ≥ 0

}
and let Φ be the set of all constant decision functions, i.e.

Φ := {ϕ : S → A : ϕ(x) = (b, δ)∀x ∈ S, (b, δ) ∈ [b, b]d ×Rd}.

Now, let us verify conditions (i)-(iii) of the structure assumption.

(i) V0 ∈ V trivially holds by definition of the terminal cost function V0.

(ii) We have to show that Uv ∈ V for all v ∈ V.
For v(x) = ν exp(−θ

∑d
i=1 x

i), the control a = (b, δ) ∈ [b, b] ×Rd and
the disturbance vector W = (R1, . . . , Rd, Y 1, . . . , Y d, Z,K) we have

Lv(x, a)
=g(x, a) + E

[
v
(
F tr(x, a,W )

)]
=ν E

[
exp
(
−θ

d∑
i=1

(
xi + ci(bi)Z − (1−K)h(bi, Y i) +KδiRi

))]
=ν exp

(
−θ

d∑
i=1

xi
)

E
[
exp
(
−θ

d∑
i=1

(
ci(bi)Z − (1−K)h(bi, Y i) +KδiRi

))]
.

This yields

Uv(x) = ν∗ ν exp
(
−θ

d∑
i=1

xi
)

where

ν∗ := inf
(b,δ)∈A

E
[
exp
(
−θ

d∑
i=1

(
ci(bi)Z − (1−K)h(bi, Y i) +KδiRi

))]
.

(2.6)

Thus our model satisfies condition (ii).

(iii) We have to find a decision function ϕ ∈ Φ such that Uϕv = Uv for
all v ∈ V. Here it is sufficient to show that the infimum in (2.6) is
attained by some constant policy. The decision function ϕ ∈ Φ can
then be defined as the constant function ϕ = (b∗, δ∗).
For this purpose we need some preliminary work which will be done
in detail in the following.
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In order to verify property (iii) of the structure assumption we first show
that

(b, δ) 7→ E
[

exp
(
− θ

d∑
i=1

(
xi + ci(bi)Z − (1−K)h(bi, Y i) +KδiRi

))]
(2.7)

is continuous on any compact set [b, b]d×B. On account of this we need the
following assumption.

Continuity assumption
The functions ci(bi) and h(bi, yi) are continuous in bi (for each yi) for all
i ∈ {1, . . . , d}. Furthermore,

E
[

exp
(
θ

d∑
i=1

Y i
)]

<∞ and E[exp(ε||R||)] <∞ for all ε > 0.

We are now able to check the continuity of (2.7). Since 0 ≤ h(bi, yi) ≤ yi

for all i ∈ {1, . . . , d}, k ∈ {0, 1} and the random vectors (Y 1, . . . , Y d) and
(R1, . . . , Rd,K) are independent by our model assumption, we have

E
[

exp
(
− θ

d∑
i=1

(
xi + ci(bi)Z − (1−K)h(bi, Y i) +KδiRi

))]
≤E

[
exp

(
θ

d∑
i=1

Y i − θK
d∑
i=1

δiRi
)]

=E
[

exp
(
θ

d∑
i=1

Y i
)]
E
[

exp
(
− θK

d∑
i=1

δiRi
)]

≤E
[

exp
(
θ

d∑
i=1

Y i
)]
E
[

exp
∣∣∣− θK d∑

i=1

δiRi
∣∣∣]

≤E
[

exp
(
θ

d∑
i=1

Y i
)]
E
[

exp(θK ||δ|| ||R||)
]

where the last inequality follows from the Cauchy-Schwarz inequality. By
the continuity assumption we therefore have,

E
[

exp
(
− θ

d∑
i=1

(
xi + ci(bi)Z − (1−K)h(bi, Y i) +KδiRi

))]
<∞

for all (b, δ) ∈ [b, b]d × B, where B is compact. Applying Lebesgue’s domi-
nated convergence theorem yields the continuity of (2.7).

The control constraint is not compact in our model. But it can be shown
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that the infimum is attained under the following no arbitrage assumption.

No arbitrage assumption

P
( d∑
i=1

δiRi ≥ 0
)

= 1 implies P
( d∑
i=1

δiRi = 0
)

= 1 for any δ ∈ Rd.

Lemma 2.3.1. The infimum over D(x) of

(b, δ) 7→ E
[

exp
(
− θ

d∑
i=1

(
KδiRi + ci(bi)Z − h(bi, Y i)(1−K)

))]
is attained in (b∗, δ∗), where δ∗ ∈ L and L denotes the smallest linear space
in Rd with P(R ∈ L) = 1.

Proof. Let us show that the condition

P
( d∑
i=1

δiRi < 0
)
> 0 for all δ ∈ L, δ 6= (0, . . . , 0)

follows from the no-arbitrage assumption. Let δ ∈ L, δ 6= (0, . . . , 0) and
assume that P

(∑d
i=1 δ

iRi < 0
)

= 0. That means P
(∑d

i=1 δ
iRi ≥ 0

)
= 1.

By the no-arbitrage assumption

P
( d∑
i=1

δiRi ≥ 0
)

= 1 implies P
( d∑
i=1

δiRi = 0
)

= 1.

That is, δ ∈ L⊥ which clearly contradicts the assumption.
By the projection theorem we know for all δ ∈ Rd there is a unique δ̌ ∈ L
and δ̆ ∈ L⊥ such that δ = δ̌ + δ̆. Thus δ · R = δ̌ · R almost surely for all
δ ∈ Rd. Therefore, it suffices to consider δ ∈ L. Define

v(b, δ) := E
[

exp
(
− θ

d∑
i=1

(
KδiRi + ci(bi)Z − h(bi, Y i)(1−K)

))]
and

Fλ :=
{

(b, δ) ∈ [b, b]d × L : ||δ|| = 1, v(b, λδ) ≤ v(b, 0) + 1
}
.

The set Fλ is compact. Furthermore, we know that v(b, δ) is convex in δ
since it is a composition of the exponential and a linear function. Thus, we
get that Fλ ⊂ Fλ′ for 0 < λ′ < λ since

v(b, λ′δ) =v
(
b,
λ′

λ
λδ +

(
1− λ′

λ

)
0
)
≤ λ′

λ
v(b, λδ) +

(
1− λ′

λ

)
v(b, 0)

≤λ
′

λ
(v(b, 0) + 1) +

(
1− λ′

λ

)
v(b, 0) < 1 + v(b, 0).
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From the no-arbitrage assumption and monotone convergence theorem we
have for δ ∈ L

lim
λ↑∞

v(b, λδ) ≥ lim
λ↑∞

E
[

exp
(
− θ

d∑
i=1

(
λKδiRi + Zci

))
1{

∑d
i=1 δ

iRi<0}

]
=E
[

lim
λ↑∞

exp
(
− θ

d∑
i=1

(
λKδiRi + Zci

))
1{

∑d
i=1 δ

iRi<0}

]
=∞.

Thus, there is some λ0 ∈ N such that Fλ = ∅ for all λ ≥ λ0. That is,
v(b, δ) ≥ v(b, 0) + 1 for all δ ∈ Rd with ||δ|| ≥ λ0. Hence,

inf
(b,δ)∈D(x)

v(b, δ) = min
(b,δ)∈[b,b]×L,||δ||≤λ0

v(b, δ).

Hence, the infimum over (b, δ) ∈ D(x) is attained on the compact set [b, b]×
{δ ∈ L : ||δ|| ≤ λ0}.

Therefore, our model satisfies the conditions of the structure assumption
with V and Φ as defined above and we are able to apply the main theorem
for the finite horizon problem (cf. Theorem 2.1.7) to obtain the main result
of this section.

Theorem 2.3.2. There exists an optimal policy π∗ such that π∗ = (b∗, δ∗) ∈
[b, b] × Rd neither depends on the time n nor on the present state x where
(b∗, δ∗) is the minimizer of

(b, δ) 7→ E
[

exp
(
− θ

d∑
i=1

(
ci(bi)Z − (1−K)h(bi, Y i) +KδiRi

))]
.

Remark 3. Let us finally consider a slight modification of the latter model.
Unlike in the previously considered model we do only allow for control at the
occurrence of claims. The random variable Zn is the period length between
the (n − 1)-th and n-th claim. Thus R is the return of the period between
two claims. Given the surplus Xn and the control action (bn, δn) the surplus
process can be computed according to

Xn+1 = Xn + c(bn)Zn+1 + δnRn+1 − h(bn, Yn+1).

We get an equivalent result to Theorem 2.3.2. If we additionally assume
that R and Z are independent then the optimal portfolio (b∗, δ∗) can be
obtained by computing the minimizers of the functions

b 7→E
[

exp
(
− θ

d∑
i=1

(
ci(bi)Z − h(bi, Y i)

))]
δ 7→E

[
exp

(
− θ

d∑
i=1

δiRi
)]
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separately.

2.4 Structural comparison results

In this section we identify structure conditions with respect to the claim
density and the generator of an Archimedean copula under which an insur-
ance company reinsures a larger fraction of claims from one business line
than from another. Similarly, structure conditions are derived for the in-
vestment portfolio. Since the optimal policy is constant (cf. Theorem 2.3.2)
we can apply a similar theory to the one which was developed by Hennessy
and Lapan (2002) for a stationary portfolio allocation problem.

We first state Sklar’s theorem which is fundamental for copula theory. It
illustrates the role of copulas in the relationship between multivariate dis-
tribution functions and their univariate margins. A detailed introduction to
copulas can be found in Nelsen (2006) or in Joe (1997).

Theorem 2.4.1 (Sklar). Let F be a d-dimensional distribution function
with margins F 1, . . . , F d. Then there exists a d-dimensional copula C such
that for all x ∈ Rd,

F (x1, . . . , xd) = C
(
F 1(x1), . . . , F d(xd)

)
. (2.8)

If F 1, . . . , F d are all continuous then C is unique. Otherwise, C is uniquely
determined on Ran F 1 × . . .× Ran F d.
Conversely, if C is a d-dimensional copula and F 1, . . . , F d are distribution
functions, then the function F defined by (2.8) is a d-dimensional distribu-
tion function with margins F 1, . . . , F d.

Assuming dependence is modeled via an Archimedean copula, the re-
sulting distribution possesses convenient analytic properties. McNeil and
Nešlehová (2008) recently developed a sufficient and necessary condition for
Archimedean generators to generate a d-dimensional copula.

Theorem 2.4.2 (Archimedean copula). Let φ be a continuous and strictly
decreasing function defined on [0, 1]→ [0,∞] such that φ(1) = 0 and φ(0) =
∞. Then C : [0, 1]d → [0, 1] given by

C(u1, . . . , ud) = φ−1
( d∑
i=1

φ(ui)
)

defines an Archimedean d-copula if and only if φ−1 is d-monotone on [0,∞)
i.e. differentiable up to order d− 2 with derivatives satisfying

(−1)k
(
φ−1

)(k)(t) ≥ 0 k ∈ {1, . . . , d− 2} (2.9)

for any t ∈ [0,∞) and further (−1)d−2(φ−1)(d−2)(t) is non-increasing and
convex in [0,∞).
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Remark 4. In terms of the notation of Nelsen (2006) we have a strict
Archimedean copula since we require that φ(0) = ∞. An Archimedean
copula can analogously be defined in terms of φ−1 rather than φ, compare
Nelsen (2006) or Cont and Tankov (2004).

By Theorem 2.4.1 we know that the pair, copula and marginal law
of a d-dimensional random vector gives an alternative description of the
law of a random vector. Let us assume in the following that the inverse
of the Archimedean generator has derivatives up to order d. Using the
Archimedean d-copula we can therefore compute the density function

f(x1, . . . , xd) =
(
φ−1

)(d)( d∑
i=1

φ
(
F i(xi)

)) d∏
i=1

si(xi) (2.10)

with marginal distribution functions F i(xi), marginal densities f i(xi), and

si(·) = φ(1)
(
F i(·)

)
f i(·) i ∈ {1, . . . , d}.

Thus our optimization problems can be written in terms of Archimedean
d-copulas as we will show in Sections 2.4.1 and 2.4.2.

The optimization criterion is still the maximization of expected expo-
nential utility of terminal wealth or equivalently the minimization of

E
[

exp
(
− θ

d∑
i=1

Xπ,i
N

)]
where

Xπ,i
N =

N−1∑
n=0

(
c(bin)Zn+1 − (1−Kn+1)h(bin, Y

i
n+1) +Kn+1δ

i
nR

i
n+1

)
.

By Theorem 2.3.2 we know that the optimal policy π∗ = (b∗, δ∗) ∈ [b, b]×Rd
neither depends on the present state of wealth Xn nor on the remaining
periods n. Thus, our optimization problem reduces to the minimization of

E
[

exp
(
− θ

d∑
i=1

N−1∑
n=0

(
c(bi)Zn+1 − (1−Kn+1)h(bi, Y i

n+1) +Kn+1δ
iRin+1

))]
where (b, δ) ∈ [b, b] × Rd is some constant policy. Moreover, since the dis-
turbance vector Wn = (Rn, Yn, Zn,Kn), 1 ≤ n ≤ N is independent and
identically distributed it suffices to minimize

M(b, δ) :=E
[

exp
(
− θ

d∑
i=1

(
c(bi)Z − (1−K)h(bi, Y i) +KδiRi

))]
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where Y i := Y i
1 , Ri := Ri1 and Z := Z1. The expectation can be computed

using the density in (2.10) given the marginal densities of the claim size
vector and the investment portfolio.
In the sequel let us consider the choice of a retention level and a portfolio-
vector separately.

2.4.1 Optimal proportional reinsurance

Modeling dependence via an Archimedean copula we establish conditions
under which we can be sure that the optimal retention level of one business
line is larger than it is from another business line. Suppose we have propor-
tional reinsurance and cheap reinsurance with the same premium income in
each business line i.e. c(bi) = cbi. For notational simplicity we assume that
there is no financial market.

Theorem 2.4.3. Let φ be an Archimedean generator and its inverse φ−1

has derivatives up to order d with alternating signs satisfying

(−1)k
(
φ−1

)(k)(t) ≥ 0, k ∈ {1, . . . , d} (2.11)

for any t ∈ [0,∞). Moreover, let F i, f i for i ∈ {1, . . . , d} be the marginal
distribution functions, respectively the marginal densities of the negative
claim size vector. If

si(y) ≥ sj(y)

on the domain of definition Rd−, i, j ∈ {1, . . . , d}, then

b∗,i ≤ b∗,j

where b∗ = (b1,∗, . . . , bd,∗) is the optimal retention level.

Proof. Let y ∈ Rd− and denote by f(y) the density of the negative claim size
vector taking into consideration the dependence as described in (2.10). Our
optimization problem is to minimize

M(b) =
∫
R+

∫
Rd−

exp(−λz) exp
(
−θ

d∑
i=1

(
cbiz + biyi

))
f(y1, . . . , yd)

d∏
i=1

dyi dz.

Note that Z is exponentially distributed with parameter λ. We now aim
to identify structure conditions under which b

∗j ≥ b∗,i. Let us therefore
analyze the effect on the expected terminal utility when bi is permuted with
bj of an arbitrary retention level b ∈ Rd+. Without loss of generality consider
permutation τ of indices 1 and 2 and keep the retention levels (b3, . . . , bd)
fixed. We define the permuted policy by bτ = (b2, b1, b3, . . . , bd). Comparing
the two expected terminal dis-utility terms we obtain

M(b)−M(bτ )

=
∫
R+

∫
Rd−2
−

exp
(
−λz − θcz

d∑
i=1

bi − θ
d∑
i=3

biyi
)
M(y3, . . . , yd)

d∏
i=3

dyi dz
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where

M(y3, . . . , yd) =
∫
R2
−

exp
(
−θ

2∑
i=1

biyi
)
f(y1, . . . , yd) dy1dy2

−
∫
R2
−

exp
(
−θ(b2y1 + b1y2)

)
f(y1, . . . , yd) dy1dy2.

Separating the integration area of M(y3, . . . , yd) and changing the integra-
tion variables in the second term yields

M(y3, . . . , yd)

=
∫
{R2
−,y1≥y2}

exp
(
− θ

2∑
i=1

biyi
)
f(y1, . . . , yd) dy2dy1

+
∫
{R2
−,y

1≥y2}
exp

(
− θ(b1y2 + b2y1)

)
f(y2, y1, y3, . . . , yd) dy2dy1

−
∫
{R2
−,y1≥y2}

exp
(
− θ(b2y1 + b1y2)

)
f(y1, . . . , yd) dy2dy1

−
∫
{R2
−,y

1≥y2}
exp

(
− θ

2∑
i=1

biyi
)
f(y2, y1, y3, . . . , yd) dy2dy1.

Plugging in the density in terms of the Archimedean copula as described in
(2.10) we have

M(y3, . . . , yd)

=
d∏
i=3

si(yi)
∫
{R2
−,y

1≥y2}

(
D(y1, y2)−D(y2, y1)

)
H(y1, . . . , yd) dy2dy1

with

D(y1, y2) = exp
(
−θ

2∑
i=1

biyi
)

and

H(y1, . . . , yd)

=
(
φ−1

)(d)( d∑
i=1

φ
(
F i(yi)

))
s1(y1)s2(y2)

−
(
φ−1

)(d)(
φ
(
F 1(y2)

)
+ φ

(
F 2(y1)

)
+

d∑
i=3

φ
(
F i(yi)

))
s1(y2)s2(y1).
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Define

L(y3, . . . , yd) =
∫
{R2
−,y

1≥y2}

(
D(y1, y2)−D(y2, y1)

)
H(y1, . . . , yd) dy2dy1.

Thus, M(y3, . . . , yd) and therefore M(b) − M(bτ ) has the same sign as
(−1)d−2L(y3, . . . , yd). In order to deduce an inequality let us integrate
L(y3, . . . , yd) along y2, that is

L(y3, . . . , yd)

=
∫
R−

(
D(y1, y2)−D(y2, y1)

)
J (y1, . . . , yd)

∣∣∣y1
−∞

dy1

−
∫
{R2
−,y

1≥y2}

(
−b2θD(y1, y2) + b1θD(y2, y1)

)
J (y1, . . . , yd) dy2dy1

where

J (y1, . . . , yd)

=
(
φ−1

)(d−1)
( d∑
i=1

φ
(
F i(yi)

))
s1(y1)

−
(
φ−1

)(d−1)
(
φ
(
F 1(y2)

)
+ φ

(
F 2(y1)

)
+

d∑
i=3

φ
(
F i(yi)

))
s2(y1).

Note that the first summand vanishes through integration-by-parts. More
precisely, the first term in the integrand clearly vanishes for y2 = y1 since
D(y1, y2) − D(y2, y1)|y2=y1 = 0, the second term equals zero since for y2 =
−∞ we have F (−∞) = 0, φ(0) =∞ and thus J (y1, y2, y3, . . . , yd)|y2=−∞ =
0 (cf. Lemma A.2.2). Thus, it remains

L(y3, . . . , yd)

=θ
∫
{R2
−,y

1≥y2}

(
b2D(y1, y2)− b1D(y2, y1)

)
J (y1, . . . , yd) dy2dy1.

Let us now deduce conditions under which (−1)d−2J (y1, . . . , yd) ≤ 0. The
expression J (y1, . . . , yd) may be written as

J (y1, . . . , yd)

=
(
(s1(y1)− s2(y1)

)(
φ−1

)(d−1)
( d∑
i=1

φ
(
F i(yi)

))
+ s2(y1)K(y1, . . . , yd)

(2.12)
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where

K(y1, . . . , yd) =
(
φ−1

)(d−1)
( d∑
i=1

φ
(
F i(yi)

))
−
(
φ−1

)(d−1)
(
φ
(
F 1(y2)

)
+ φ

(
F 2(y1)

)
+

d∑
i=3

φ
(
F i(yi)

))
.

In determining the sign of K(y1, . . . , yd) we can follow Hennessy and La-
pan (2002). Note that (−1)d−1(φ−1)(d−1)(·) is a decreasing function since
(−1)d−1(φ−1)(d−2)(·) ≤ 0 by condition (2.11). We therefore obtain

(−1)d−1K(y1, . . . , yd) ≤ 0 for y1 ≥ y2

if

L(y1, y2) = φ
(
F 1(y1)

)
+ φ

(
F 2(y2)

)
− φ

(
F 1(y2)

)
− φ

(
F 2(y1)

)
≥ 0.

Fix y2. We have L(y1, y2)
∣∣
y1=y2

= 0 and a sufficient and necessary condition

for ∂L(y1,y2)
∂y1

≥ 0 to hold is that

s1(y1)− s2(y1) ≥ 0 for y1 ≥ y2. (2.13)

Returning to J (y1, . . . , yd), (2.11), (2.13) and s2(y1) ≤ 0 imply that

(−1)d−1J (y1, . . . , yd) ≥ 0 and (−1)d−2J (y1, . . . , yd) ≤ 0.

We further now that (b1− b2)(y1− y2) ≤ 0 for y1 ≥ y2 if and only if b1 ≤ b2.
Hence,

b2D(y1, y2)− b1D(y2, y1) ≥ 0

for y1 ≥ y2 if and only if b1 ≤ b2. Assuming

s1(y) ≥ s2(y)

we have
M(b)−M(bτ ) ≤ 0 if and only if b1 ≤ b2.

This yields the assumed retention level is preferable to its bivariate permu-
tation.

2.4.2 Optimal investment

After having derived structure conditions for the optimal retention level let
us finally establish conditions under which we can be sure that the optimal
investment of one business line is larger than it is from another business
line. We exclude short-selling and for notational convenience we disregard
the occurrence of claims.
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Theorem 2.4.4. Let φ be an Archimedean generator and its inverse φ−1

has derivatives up to order d with alternating signs satisfying

(−1)k
(
φ−1

)(k)(t) ≥ 0, k ∈ {1, . . . , d} (2.14)

for any t ∈ [0,∞). Moreover, let F i, f i for i ∈ {1, . . . , d} be the marginal
distribution functions, respectively the marginal densities of the return vec-
tor. If

si(r) ≥ sj(r)

on the domain of definition Rd, i, j ∈ {1, . . . , d}, then

δ∗,i ≤ δ∗,j

where δ∗ = (δ∗,1, . . . , δ∗,d) ∈ Rd+ is the optimal retention level.

Proof. Let r ∈ Rd and denote by f(r) the return density taking into con-
sideration dependence as described in (2.10). Our optimization problem is
to minimize

M(δ) =
∫
R+

∫
Rd

exp
(
− λ̃z

)
exp

(
− θ
(
cz +

d∑
i=1

δiri
))
f(r1, . . . , rd)

d∏
i=1

dridz.

Note that Z is exponentially distributed with parameter λ̃. We now look
for conditions under which δ∗,j ≥ δ∗,i. Let us therefore analyze the effect on
the expected terminal utility when δi is permuted with δj for an arbitrary
portfolio vector δ ∈ Rd+. Without loss of generality consider permutation τ
of indices 1 and 2 and keep the investment (δ3, . . . , δd) fixed. We define the
permuted policy by δτ = (δ2, δ1, δ3, . . . , δd). Comparing the two expected
terminal dis-utilities we obtain

M(δ)−M(δτ )

=
∫
R+

∫
Rd−2

exp
(
−λ̃z − θ

(
cz +

d∑
i=3

δiri
))
M(r3, . . . , rd)

d∏
i=3

dri dz

where

M(r3, . . . , rd) =
∫
R2

exp
(
−θ

2∑
i=1

δiri
)
f(r1, . . . , rd) dr1dr2

−
∫
R2

exp
(
−θ(δ2r1 + δ1r2)

)
f(r1, . . . , rd) dr1dr2.

Separating the integration area of M(r3, . . . , rd), changing the integration
variables in the second summand and plugging in the return density in terms
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of the Archimedean copula as described in (2.10) yields

M(r3, . . . , rd)

=
d∏
i=3

si(ri)
∫
{R2,r1≥r2}

(
D(r1, r2)−D(r2, r1)

)
H(r1, . . . , rd) dr1dr2

where

D(r1, r2) = exp
(
−θ

2∑
i=1

δiri
)

and

H(r1, . . . , rd)

=
(
φ−1

)(d)( d∑
i=1

φ
(
F i(ri)

))
s1(r1)s2(r2)

−
(
φ−1

)(d)(
φ
(
F 1(r2)

)
+ φ

(
F 2(r1)

)
+

d∑
i=3

φ
(
F i(ri)

))
s1(r2)s2(r1).

Define

L(r3, . . . , rd) =
∫
{R2,r1≥r2}

(
D(r1, r2)−D(r2, r1)

)
H(r1, . . . , rd) dr1dr2.

Thus, M(r3, . . . , rd) and therefore M(δ) − M(δτ ) has the same sign as
(−1)d−2L(r3, . . . , rd). In order to deduce an inequality let us integrate
L(r3, . . . , rd) along r2, that is

L(r3, . . . , rd)

=
∫
R

(
D(r1, r2)−D(r2, r1)

)
J (r1, r2)

∣∣∣r1
−∞

dr1

− θ
∫
{R2,r1≥r2}

(
−δ2D(r1, r2) + δ1D(r2, r1)

)
J (r1, . . . , rd) dr1dr2

where

J (r1, . . . , rd)

=
(
φ−1

)(d−1)
( d∑
i=1

φ
(
F i(ri)

))
s1(r1)

−
(
φ−1

)(d−1)
(
φ
(
F 1(r2)

)
+ φ

(
F 2(r1)

)
+

d∑
i=3

φ
(
F i(ri)

))
s2(r1).

Note that the first summand vanishes. More precisely, the first term in the
integrand clearly vanishes for r2 = r1 since D(r1, r2) − D(r1, r1)|r2=r1 = 0,
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the second term equals zero since for r2 = −∞ we have F (−∞) = 0, φ(0) =
∞ and thus J (r1, r2, r3, . . . , rd)|r2=−∞ = 0 (cf. Lemma A.2.2). Thus, it
remains

L(r3, . . . , rd) =θ
∫
{R2,r1≥r2}

(
δ2D(r1, r2)− δ1D(r2, r1)

)
J (r1, . . . , rd) dr1dr2.

Similarly to the proof of Theorem 2.4.3 we can show that (−1)d−2J (r1, r2) ≤
0 if s1(r1) ≥ s2(r1). Moreover, we know that D(r1, r2) − D(r2, r1) ≥ 0 for
r1 ≥ r2, or equivalently (δ2 − δ1)(r2 − r1) ≤ 0 for r1 ≥ r2 if and only if
δ2 ≥ δ1. Further, note that δ ∈ Rd+. Hence, M(δ) − M(δτ ) ≤ 0 under
the investment policy δ = (δ1, . . . , δd) where δ1 ≤ δ2. This yields that the
assumed retention level is preferable to its bivariate permutation.

2.4.3 Examples

Hennessy and Lapan (2002) show that the reversed hazard dominance on
the marginals is sufficient for the stochastic order condition in Theorem 2.4.3
and Theorem 2.4.4. Furthermore, they provide some examples of copulas
satisfying this condition. Let us first recall the definition of the reversed
hazard order (cf. Müller and Stoyan (2002), Definition 1.3.9).

Definition 2.4.5 (Reversed hazard rate order). The distribution function
F 2(x) is said to dominate the distribution function F 1(x) with respect to the
reversed hazard rate order (written F 1 ≤rh F 2) if

R 3 x 7→ F 2(x)
F 1(x)

is increasing.

Proposition 2.4.6. Let φ be an Archimedean generator such that

Rφ(x) = −xφ
(2)(x)
φ(1)(x)

≥ 1

and let F j ≥rh F i, i, j ∈ {1, . . . , d}, then

si(x) ≥ sj(x).

Proof. For si(x) ≥ sj(x) we require

f i(x)φ(1)
(
F i(x)

)
≥ f j(x)φ(1)

(
F j(x)

)
.

Rewriting this we obtain

f i(x)F j(x)
f j(x)F i(x)

≤
F j(x)φ(1)

(
F j(x)

)
F i(x)φ(1)

(
F i(x)

)
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since φ(1)(·) ≤ 0. By definition of the reversed hazard rate order it holds that
F i ≤rh F j if and only if F

j(x)
F i(x)

is increasing in x or equivalently f j(x)F i(x) ≥
f i(x)F j(x). Thus, it suffices to require

F j(x)φ(1)
(
F j(x)

)
F i(x)φ(1)

(
F i(x)

) ≥ 1 or F j(x)φ(1)
(
F j(x)

)
≤ F i(x)φ(1)

(
F i(x)

)
.

Since F i(x) ≥ F j(x) for all x (cf. Müller and Stoyan (2002), Theorem 1.3.14)
the condition that tφ(1)(t) is increasing, is sufficient. That is,

Rφ(t) = − tφ
(2)(t)

φ(1)(t)
≥ 1.

Indeed there are copulas satisfying the condition in Proposition 2.4.6.
For example the Clayton copula with generator φ(t) = t−% − 1, % > 0,
t ∈ [0,∞) satisfies condition Rφ ≥ 1.

2.5 Minimizing ruin probability

The concept of ruin for a multivariate risk process could have different inter-
pretations when compared to the univariate risk process. Here, ruin occurs
if the multivariate risk process enters some domain of Rd, the so-called in-
solvency region. In this section we show that the problem of minimizing the
probability of ruin for a multi-line insurance company can be imbedded in
the framework of discrete-time stochastic dynamic programming. According
to Schäl (2004) and Schäl (2005) we show that the probability of ruin can be
written as total cost without discounting which has to be paid once entering
the insolvency region. As in the one-dimensional model the lack of discount-
ing of the value function and the discontinuity of the system function lead
to some special features that have to be considered.

2.5.1 Insolvency region

As mentioned before there are several definitions of ruin for a multidimen-
sional insurance model. In the following, we choose the insolvency region as
general as possible, only requiring the insolvency region A ⊂ Rd to be open.

Example 2.5.1. The least restrictive choice of the insolvency region would
be

A = {y ∈ Rd : max(y1, . . . , yd) < 0},
i.e. to require that all business lines are simultaneously below zero. A more
restrictive choice is to take

A = {y ∈ Rd : y1 + . . .+ yd < 0},
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which corresponds to the classical univariate ruin problem for the global
company. Thus ruin occurs when the sum of net values of the business units
are negative. But as capital is not completely versatile between different
business lines, ruin may already occur before the aggregated reserves become
negative. That is, ruin might occur when at least one business gets ruined
and the solvency region is chosen to be

A = {y ∈ Rd : min(y1, . . . , yd) < 0}.

More generally, Hult and Lindskog (2006) propose that capital may be trans-
ferred between the business lines. They define ruin as the situation when
negative positions in one or several lines of business cannot be balanced by
capital transfer.

2.5.2 Formulation as stochastic dynamic programme

We imbed our insurance model in the theory of discrete-time stochastic
dynamic programming. Let us therefore choose

1. the state space as
S = Rd ∪ {−∞}d,

that means, if the risk process reaches an insolvency region the system
moves to the absorbing state (−∞, . . . ,−∞).

The risk process of our insurance company can be controlled both by rein-
surance and investment in a financial market. Therefore, we choose

2. the control space as
A = [b, b]d ×Rd

and the set of all admissible controls as

D(x) = [b, b]d ×4(x),

where 4(x) denotes the set of all admissible portfolio vectors in state
x,

4(x) = {δ ∈ Rd : 0 ≤ δi ≤ αxi, i ∈ {1, . . . , d}}

where 0 ≤ α ≤ 1 is a constant. In order to obtain a compact constraint
space which is needed for the structure assumption, we do not allow
for negative amounts of δi. Thus short selling of stocks is not possible.

The transition equation for the risk process of business line i ∈ {1, . . . , d} is

Xi
n+1 =

{
Xi
n +H i(bin, Y

i
n+1, Zn+1,Kn+1) + δinR

i
n+1Kn+1 for Xn ∈ Ac

−∞ for Xn ∈ A.
(2.15)
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where
H i(bi, yi, z, k) = ci(bi)z − h(bi, yi)(1− k).

Choosing a = (a1, . . . , ad) where ai = (bi, δi) and w = (w1, . . . , wd) where
wi = (ρi, yi, z, k)

3. the transition function F tr : D × E → S is given by

F tr(x, a, w) =

{(
F tr,1(x1, a1, w1), . . . , F tr,d(xd, ad, wd)

)
for x ∈ Ac

(−∞, . . . ,−∞) for x ∈ A,

and F tr(−∞, . . . ,−∞, a, w) = (−∞, . . . ,−∞)
where

F tr,i(xi, ai, wi) = xi +H i(bi, yi, z, k) + δiρik

is the transition function of business line i ∈ {1, . . . , d}.

4. The cost will be defined by

g(x, a) = V0(x) = 1{x∈A}, α = 1

and g(−∞, . . . ,−∞, a) = V0(−∞, . . . ,−∞) = 0.

We are interested in minimizing the probability of ruin specified by the
insolvency region A, that is

Ψπ(x) = P(Xx,π
n ∈ A for some n).

Therefore, the probability of reaching the insolvency regionA after n periods
can be defined by

Ψπ
n(x) = P(Xx,π

m ∈ A for some 0 ≤ m ≤ n),

in particular Ψπ
n(x) = 1 for x ∈ A and Ψπ

n(−∞, . . . ,−∞) := 0. Let

Ψπ(x) = Ψπ
∞(x).

By construction the ruin state is reached only once in our model. Thus, the
probability of ruin can be written as total cost without discounting which
has to be paid once entering the insolvency region.

Ψπ
n(x) = E

[ ∑
0≤m<n

g
(
Xm, ϕm(Xm)

)
+ V0(Xn)

]
.

As usual in stochastic optimization it is convenient to introduce the following
operators for ϕ = (b, δ) and any bounded measurable function v : Rd 7→ R

Uϕv(x)=


λ̃

λ+ λ̃
E
[
v
(
F tr(x, ϕ,R, Y, Z, 1)

)]
for x ∈ Ac

+
λ

λ+ λ̃
E
[
v
(
F tr(x, ϕ,R, Y, Z, 0)

)]
1 for x ∈ A
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and

Uv(x)= inf
ϕ∈D(x)

Uϕv(x).

2.5.3 Examining the structure assumption

If our model meets the structure assumption, Theorem 2.1.10 holds which
yields more information about the ruin probability. For example, the ruin
probability can be described as a fixed point of an operator and moreover,
an optimality criterion for the optimal policy can be provided. Let us first
state the continuity assumption

Continuity assumption
The functions ci(bi) and h(bi, yi) are continuous in bi for all yi and i ∈
{1, . . . , d}.

As in the one-dimensional case there is a discontinuity of the system func-
tion F tr(x, a, w) at x ∈ ∂A. Thus, the usual continuity assumption is not
satisfied. As in Schäl (2004) and Schäl (2005) we deal with this problem by
choosing a suitable class V in the structure assumption. We define here

V :=
{
v : [−∞,∞)d → [0, 1] : v l.s.c. on Ac, v(x) = 1 for x ∈ A,

v(−∞, . . . ,−∞) = 0
}
.

We now show that the structure assumption for the infinite horizon model
is satisfied and thus the main theorem, Howard’s improvement theorem and
verification theorem (cf. Theorems 2.1.10, 2.1.11, 2.1.12) can be applied in
our context.

Proposition 2.5.2. The structure assumption holds under the continuity
assumption.

Proof. Clearly, we have V0 ∈ V and the space of admissible actions in state
x, D(x), is compact by construction of our model since we do not allow for
short-selling. Thus, it remains to show that Uv ∈ V for all v ∈ V and that
Lv(x, a) is lower semi-continuous in (x, a) for all x ∈ S and v ∈ V.
Let v ∈ V. Then v is lower semi-continuous onAc and since the setA is open,
v(x) = 1{x∈A} is lower semi-continuous on A. Therefore, v is lower semi-
continuous on Rd. The continuity of F tr(x, a, w) in (x, a) ∈ Ac×D(x) yields
v(F tr(x, a, w)) is lower semi-continuous in (x, a) ∈ Ac × D(x). Applying
Fatou’s lemma we obtain by definition of lower semi-continuity

lim inf
(x̃,ã)→(x,a)

E
[
v
(
F tr(x̃, ã, w)

)]
≥E
[

lim inf
(x̃,ã)→(x,a)

v
(
F tr(x̃, ã, w)

)]
≥E
[
v
(
F tr(x, a, w)

)]
,
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i.e. Lv(x, a) = E[v(F tr(x, a, w)] is lower semi-continuous in (x, a) ∈ Ac ×
D(x). From the compactness and continuity of D(x) we conclude the lower
semi-continuity of Uv(x) = mina∈D(x) Lv(x, a) in x ∈ Ac (cf. Hernández-
Lerma and Lasserre (1996), Proposition D.5). Furthermore, we know that
Lv(x, a) = 1 for x ∈ A and Lv(x, a) = 0 for x = (−∞, . . . ,−∞). Thus, the
assertion follows.

Remark 5. (a) The uniform increase assumption (LV0(x, a) ≥ V0(x) for
all a ∈ D(x) and for all x ∈ S) is clearly fulfilled by construction of
our model.

(b) The structure assumption implies the existence of a measurable func-
tion ϕ such that Uϕv(x) = Uv(x) for all v ∈ V. This is a result of the
selection theorem by Brown and Purves (1973) (cf. Corollary 1).

2.5.4 Howard’s improvement theorem

In this subsection we show that there is a contraction property for the ruin
probability which is strong enough for the application of Howard’s improve-
ment theorem and verification theorem (cf. Theorems 2.1.11, 2.1.12) in spite
of the lack of discounting. However, we have to specify the insolvency region,
i.e.

A := {y ∈ S : min(A1y, . . . , Ary) < 0, Aj ∈ Re×d+ , j ∈ {1, . . . , r}}.

Note that Example 2.5.3 still holds in our context. We assume the following
net profit condition to hold.

Net profit condition:
(c− λEY ) ≥ 0.

For notational convenience we set

H(b, y, z, k) =

 H1(b1, y1, z, k)
. . .
Hd(bd, yd, z, k)


and

G(b, δ, y, r, z, k) =

 G1(b1, δ1, y1, r1, z, k)
. . .
Gd(bd, δd, yd, rd, z, k)


where

Gi(bi, δi, yi, ri, z, k) = δirik +H i(bi, yi, z, k).
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In the sequel we exclude cheap reinsurance and we assume the following
natural contraction property to hold.

Contraction property (C):

P
(
H(b, Y, Z, 0) ∈ A

)
> 0 for all b ∈ [b, b]d.

Let us give an example under which the contraction condition is fulfilled.

Example 2.5.3. We consider an insurance company consisting of two de-
pendent lines of business allowing for proportional reinsurance. Claims of
the two branches are exponentially distributed with parameter λ1, λ2 and
dependence is modeled via a Clayton copula with parameter % = 1. If it
is not possible to cancel all negative positions the insurance company is
insolvent and ruin occurs. That is, we assume the insolvency region is

A = {x = (x1, x2) ∈ R2 : x1 + x2 < 0}.

In order to prove that the contraction property holds even in the case the
occurrence of claims in the single business lines are dependent, we have to
show that

P
(
(c1(b1) + c2(b2))Z − b1Y 1 − b2Y 2 < 0

)
> 0.

First note that by Sklar’s theorem and modeling dependence via a Clayton
copula with parameter % = 1 it holds

P
(
Y 1 ≤ y1, Y 2 ≤ y2

)
= C

(
F 1(y1), F 2(y2)

)
=
(
(1− exp(−λ1y1))−1 + (1− exp(−λ2y2))−1 − 1

)−1

=
1− exp(−λ2y2)− exp(−λ1y1) + exp(−λ2y2 − λ1y1)

1− exp(−λ1y1 − λ2y2)
(2.16)

assuming that claims are exponentially distributed with parameter λ1, λ2.
Since the period length Z is exponentially distributed we have

P
(
b1Y 1 + b2Y 2 > (c1(b1) + c2(b2))Z

)
=
∫ ∞

0
λe−λzP

(
b1Y 1 + b2Y 2 > (c1(b1) + c2(b2))z

)
dz.

Moreover,

P
(
b1Y 1 + b2Y 2 > (c1(b1) + c2(b2))z

)
≥ P

(
b1Y 1 > c1(b1)z , b2Y 2 > c2(b2)z

)
.

For notational simplicity we define y1 = c1(b1)z
b1

and y2 = c2(b2)z
b2

. Note that
b > 0 since we exclude cheap reinsurance. It remains to show that

P(Y 1 > y1, Y 2 > y2)

=1− P(Y 1 ≤ y1)− P(Y 2 ≤ y2) + P(Y 1 ≤ y1, Y 2 ≤ y2) > 0.
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Using (2.16) and the fact that claims are exponentially distributed we know
that this holds if and only if

exp(−λ1y1)− 1 + exp(−λ2y2)

+
1− exp(−λ2y2)− exp(−λ1y1) + exp(−λ2y2 − λ1y1)

1− exp(−λ1y1 − λ2y2)
> 0

which is equivalent to(
exp(−λ1y1)− 1 + exp(−λ2y2)

)(
1− exp(−λ1y1 − λ2y2)

)
+ 1− exp(−λ2y2)− exp(−λ1y1) + exp(−λ2y2 − λ1y1)

= exp(−λ2y2 − λ1y1)
(
2− exp(−λ1y1)− exp(−λ2y2)

)
> 0

and the contraction property holds in this example.

For notational convenience we set IJ := {1, . . . , r}, IK := {1, . . . , e} and
MKJ := {j : IK → IJ}. The k-th entry of the vector (·) is denoted by (·)k.

Lemma 2.5.4. Let ξ : (0,∞)→ (0, 1] be a measurable and integrable func-
tion. Then it holds

(a) The function

d(b, x) :=E
[
ξ(Z)1{∩k∈IK (Aj(k)(H(b,Y,Z,0)−x))k<0}

]
=(λ+ λ̃)

∫
ξ(z)P

( ⋂
k∈IK

(
Aj(k)(H(b, Y, z, 0)− x)

)k
< 0
)
dz

is lower semi-continuous in b ∈ Rd for all x ∈ Rd and some j ∈MKJ .

(b) There is some ε ∈ Rd+ such that

inf
b∈[b,b]d

d(b,−ε) > 0.

Proof. (a) Since Z and Y = (Y 1, . . . , Y d) are independent by construction
of our model the first equality holds. The function H i(bi, yi, z, 0) =
ci(bi)z − hi(bi, yi) is continuous in bi by the continuity assumption.
Using this and the fact that the intersection of finite open sets is open,
we know that the indicator function 1{∩k∈IK (Aj(k)(H(b,y,z,0)−x))k<0} is

lower semi-continuous in b ∈ Rd for all y, z. The assertion follows from
Fatou’s lemma.

(b) Since ξ ∈ (0, 1] the function d(b, x) is increasing in x. Using the lower
semi-continuity of d(b, x) in b ∈ [b, b]d, the compactness of [b, b]d and
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the fact that d(b, x) is increasing in x we can apply a variant of Dini’s
theorem (cf. Schäl (1975), Proposition 10.1) and obtain

lim
||ε||→0

inf
b∈[b,b]d

d(b,−ε) = inf
b∈[b,b]d

d(b, 0) = d(b0, 0) for an b0 ∈ [b, b]d.

By the contraction property (C) the last expression is strictly positive
for all b0 ∈ [b, b]d.

Furthermore, let us state an assumption related to the usual no-arbitrage
assumption which excludes portfolios that make profit without risk.

Weak no-arbitrage assumption (NA):
For all δ ∈ Rd and for all z ∈ R+ it holds

P
(
(δ1R1, . . . , δdRd) ≤ 0|Z = z

)
> 0.

Lemma 2.5.5. (a) For all z ∈ R+ we have

inf
δ∈4(x)

P
(
(δ1R1, . . . , δdRd) ≤ 0|Z = z

)
> 0.

(b) There is some ε ∈ Rd+ and some j ∈MKJ such that

inf
(b,δ)∈[b,b]d×4(x)

P
( ⋂
k∈IK

(
Aj(k)

(
G(b, δ, Y,R, Z,K) + ε

))k
< 0
)
> 0

Proof. (a) By the weak no-arbitrage assumption we have for all δ ∈ Rd

P
(
(δ1R1, . . . , δdRd) ≤ 0|Z = z

)
> 0.

As in the preceding lemma it can be shown that the function

δ 7→ P
(
δ1R1 < 0, . . . , δdRd < 0|Z = z

)
is lower semi-continuous. Since 4(x) is compact, the infimum is at-
tained on 4(x).

(b) With part (a) we have for all z ∈ R+

ξ(z) := inf
δ∈4(x)

P
(
(δ1R1, . . . , δdRd) ≤ 0|Z = z

)
> 0.

Set
δR = (δ1R1, . . . , δdRd).
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Thus it holds

P
( ⋂
k∈IK

(
Aj(k)(G(b, δ, Y,R, Z,K) + ε)

)k
< 0
)

≥P
(
δRK ≤ 0,

⋂
k∈IK

(
Aj(k)(G(b, δ, Y,R, Z,K) + ε)

)k
< 0
)
.

Since Aj ∈ Re×d+ for all j ∈ {1, . . . , d} we have

P
(
δRK ≤ 0,

⋂
k∈IK

(
Aj(k)(G(b, δ, Y,R, Z,K) + ε)

)k
< 0
)

≥P
(
δRK ≤ 0,

⋂
k∈IK

(
Aj(k)(H(b, Y, Z,K) + ε)

)k
< 0
)

≥P
(
δR ≤ 0,

⋂
k∈IK

(
Aj(k)(H(b, Y, Z,K) + ε)

)k
< 0
)
.

By the independence assumptions of R, Y and K we obtain

P
(
δR ≤ 0,

⋂
k∈IK

(
Aj(k)(H(b, Y, Z,K) + ε)

)k
< 0
)

=(λ+ λ̃)
∫ ∞

0
P
(
δR ≤ 0|Z = z

)
e−(λ+λ̃)z

P
( ⋂
k∈IK

(
Aj(k)(H(b, Y, z,K) + ε)

)k
< 0
)
dz

≥(λ+ λ̃)
∫ ∞

0
ξ(z) e−(λ+λ̃)z

P
(
K = 0,

⋂
k∈IK

(
Aj(k)(H(b, Y, z, 0) + ε)

)k
< 0
)
dz

=(λ+ λ̃)P(K = 0)∫ ∞
0

ξ(z) e−(λ+λ̃)zP
( ⋂
k∈IK

(
Aj(k)(H(b, Y, z, 0) + ε)

)k
< 0
)
dz.

The assertion follows from Lemma 2.5.4 for an ε ∈ Rd+.

For notational convenience we define

AM := {y ∈ S : ∀k ∈ IK ∃j ∈MKJ such that (Aj(k)y)k ≤ (M j(k))k }.

Proposition 2.5.6. Let M ∈ Re×r+ be arbitrary.

(a) There is an n ∈ N such that

sup
{
P
(
Xx,π
n ∈ Ac

)
: x ∈ AM , π

}
< 1;
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(b) It holds

P
(
Xx,π
m ∈ Ac and Xx,π

m ∈ AM , for infinitely many m
)

= 0.

Proof. (a) Choose ε ∈ Rd+ as in Lemma 2.5.5 and an arbitrary policy π.
Consider in the following the event {Xm ∈ Ac, 0 ≤ m < n}. By the
transition equation (2.15) it holds

Xi
n = Xi

0 +
n−1∑
m=0

δimR
i
m+1Km+1 +H i(bim, Y

i
m+1, Zm+1,Km+1).

Further define

Gim := δimR
i
m+1Km+1 +H i(bim, Y

i
m+1, Zm+1,Km+1).

Recall that by Lemma 2.5.5

inf
(b,δ)∈[b,b]d×4(x)

P
( ⋂
k∈IK

(
Aj(k)(G1

m + ε1, . . . , Gdm + εd)T
)k
< 0
)

=: ν > 0.

(2.17)

By induction we obtain

P
( ⋂
k∈IK

(
Aj(k)

(n−1∑
m=0

G1
m + nε1, . . . ,

n−1∑
m=0

Gdm + nεd
)T)k

< 0
)

≥P
( n−1⋂
m=0

⋂
k∈IK

(
Aj(k)(G1

m + ε1, . . . , Gdm + εd)T
)k
< 0
)
.

By (2.17) it therefore holds

P
( ⋂
k∈IK

(
Aj(k)

(n−1∑
m=0

G1
m + nε1, . . . ,

n−1∑
m=0

Gdm + nεd
)T)k

< 0
)
≥ νn.

(2.18)

Taking into consideration the definition of the insolvency region A we
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can rewrite the ruin probability as follows

P(Xn ∈ A)

= P
((n−1∑

m=0

G1
m + x1, . . . ,

n−1∑
m=0

Gdm + xd
)T
∈ A

)
=P
(

min
(
A1
( n−1∑
m=0

G1
m + x1, . . . ,

n−1∑
m=0

Gdm + xd
)T
, . . . ,

Ar
( n−1∑
m=0

G1
m + x1, . . . ,

n−1∑
m=0

Gdm + xd
)T)

< 0
)

=P
( ⋂
k∈IK

min
((
A1
( n−1∑
m=0

G1
m + x1, . . . ,

n−1∑
m=0

Gdm + xd
)T)k

, . . . ,

(
Ar
( n−1∑
m=0

G1
m + x1, . . . ,

n−1∑
m=0

Gdm + xd
)T)k)

< 0
)
,

(2.19)

where the last equality holds since we have to consider the minimum
componentwise. Since for all k ∈ IK it exists j ∈ MKJ such that
(Aj(k)x)k ≤ (M j(k))k ≤ n(Aj(k)ε)k we get

min
(
. . . ,

(
Aj(k)

( n−1∑
m=0

G1
m + x1, . . . ,

n−1∑
m=0

Gdm + xd
)T)k

, . . . ,

(
Ar
( n−1∑
m=0

G1
m + x1, . . . ,

n−1∑
m=0

Gdm + xd
)T)k)

≤min
(
. . . ,

(
Aj(k)

( n−1∑
m=0

G1
m + nε1, . . . ,

n−1∑
m=0

Gdm + nεd
)T)k

, . . . ,

(
Ar
( n−1∑
m=0

G1
m + x1, . . . ,

n−1∑
m=0

Gdm + xd
)T)k)

.

(2.20)

Clearly, (2.20) is smaller than(
Aj(k)

( n−1∑
m=0

G1
m + nε1, . . . ,

n−1∑
m=0

Gdm + nεd
)T)k

.

In (2.19) we therefore get

P(Xn ∈ A)

≥P
( ⋂
k∈IK

(
Aj(k)

( n−1∑
m=0

G1
m + nε1, . . . ,

n−1∑
m=0

Gdm + nεd
)T)k

< 0
)
≥ νn
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where the last inequality follows from (2.18). Hence, P(Xn ∈ Ac) ≤
1−νn where for all k ∈ IK there exists j(k) ∈ IJ such that (Aj(k)x)k ≤
(M j(k))k ≤ n(Ajε)k.

(b) Applying part (a) we obtain that

ηn,M := sup
Xx,π
m ∈AM , π

P(Xx,π
m+n ∈ Ac) < 1

where n is defined as in part (a). Defining the stopping times

τ0 :=0,

τk+1 := inf
{
m ≥ τk + n|Xx,π

m ∈ Ac and Xx,π
m ∈ AM

}
and inf ∅ := +∞ we have

P(τ1 <∞, . . . , τk+1 <∞)
=P(τ1 <∞, . . . , τk <∞)P(τk+1 <∞|τ1 <∞, . . . , τk <∞)
≤P(τ1 <∞, . . . , τk <∞)P(Xx,π

τk+n
∈ Ac|τ1 <∞, . . . , τk <∞)

≤P(τ1 <∞, . . . , τk <∞) ηn,M .

Thus,

P
(
Xx,π
m ∈ Ac and Xx,π

m ∈ AM for infinitely many m
)

= lim
k→∞

P(τ1 <∞, . . . , τk <∞)

≤P
(
Xx,π
m ∈ Ac and Xx,π

m ∈ AM for infinitely many m
)
ηn,M

and the assertion follows.

From Proposition 2.5.6 we conclude by the continuity of the probability
measure that for all x,M > 0 and policies π

lim
n→∞

P
(
Xx,π
n ∈ Ac, Xx,π

n ∈ AM
)

= 0. (2.21)

We are finally able to derive a weak contraction property in order to treat
models without discounting.

Lemma 2.5.7 (Contraction theorem). If ξ : [−∞,∞)d 7→ [0,∞) is a
bounded measurable function such that ξ(x) = 0 for x ∈ A and

lim
n→∞

ξ(x(n)) = 0

where (x(n))n∈N is an arbitrary sequence such that

lim
n→∞

((A1x(n))k, . . . , (Arx(n))k) = (∞, . . . ,∞),

for some k ∈ {1, . . . , e} then

lim
n→∞

E
[
ξ(X1,x1,π

n , . . . , Xd,xd,π
n )

]
= 0 for all x, π.
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Proof. For every ε > 0 we can choose a M ∈ Re×r+ such that ξ(x) ≤ ε where
it exists k ∈ IK , (Ajx)k > (M j)k for all j ∈ IJ . Denote by ||ξ|| the upper
bound of ξ. Thus we have

E
[
ξ(X1

n, . . . , X
d
n)
]

=E
[
1{Xn∈Ac}1{∃k∈IK , ∀j∈IJ : (AjXn)k>(Mj)k}ξ(X

1
n, . . . , X

d
n)
]

+ E
[
1{Xn∈Ac}1{∀k∈IK , ∃j(k)∈IJ : (Aj(k)Xn)k≤(Mj(k))k}ξ(X

1
n, . . . , X

d
n)
]

≤ε+ ||ξ||E
[
1{Xn∈Ac}1{∀k∈IK ,∃j(k)∈IJ : (Aj(k)Xn)k≤(Mj(k))k}

]
.

The assertion follows from (2.21).

We are now in the position to show that the contraction property is
strong enough for the application of Howard’s improvement theorem and
the verification theorem (cf. Theorem 2.1.11, Theorem 2.1.12). Denote by
ϕ∞ the stationary policy under which the decision maker does not invest in
the financial market and does not choose to reinsure its claims, i.e.

ϕ(x) = (b, 0) for all x ∈ Rd.

The ruin probability is then denoted by Ψ := Ψϕ∞ .

Lemma 2.5.8. Let ϕ∞ = (b, 0) and let (x(n))n∈N be an arbitrary sequence
such that limn→∞((A1x(n))k, . . . , (Arx(n))k) = (∞, . . . ,∞) for some k ∈ IK .
Then

(a) limn→∞Ψ(x(n)) = 0.

(b) Ψ(x)− V0(x) = 0 for x ∈ A and limn→∞(Ψ(x(n))− V0(x(n))) = 0.

Proof. (a) We have

Ψ(x) =P
(
{min(A1Xn, . . . , A

rXn) < 0 for an n ∈ N}
)

=P
( e⋂
k=1

{min((A1Xn)k, . . . , (ArXn)k) < 0 for an n ∈ N}
)

≤P
(
{min((A1Xn)k, . . . , (ArXn)k) < 0 for an n ∈ N}

)
=P
( r⋃
j=1

{(AjXn)k < 0 for an n ∈ N}
)

≤
r∑
j=1

P({(AjXn)k < 0 for an n ∈ N})

for some k ∈ IK where Ψjk := P({(AjXn)k < 0 for an n ∈ N}) cor-
responds to the one dimensional ruin probability of the risk reserve
(AjXn)k with initial risk reserve (Ajx)k, i.e.

(AjXn)k = (Ajx)k +
n−1∑
m=0

(Ajc)kZm+1 − (AjYm+1)k.
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The net profit condition implies that

Aj(c− λEY ) ≥ 0 for all j ∈ IJ .

Therefore, the net profit condition for the one dimensional risk reserves
(AjXn)k hold which ensures that (AjXn)k →∞ as n→∞ (cf. Rolski
et al. (1999), Theorem 6.3.1). Thus, Ψjk → 0 as the initial risk reserve
(Ajx)k →∞ and the assertion follows.

(b) It is V0(x1, . . . , xd) = 0 for (x1, . . . , xd) ∈ Ac and Ψ(x1, . . . , xd) =
V0(x1, . . . , xd) for (x1, . . . , xd) ∈ A. The assertion follows from part
(a).

Hence, the contraction property holds in our model and we may apply
Howard’s improvement theorem and the verification theorem. We can now
check whether an insurance company can operate more successfully than
to keep its risk reserve. More precisely, we aim to improve ϕ∞ and find
conditions such that it is the optimal policy.

Theorem 2.5.9. Let ϕ and ϕ̃ be any decision function. Set Ψ := Ψϕ∞,
Ψ̃ := Ψϕ̃∞ and

A(x, ϕ) :=
{
a ∈ D(x) : LΨ(x, a) < Ψ(x)

}
for all x ∈ S.

Under the assumptions of this section we have

(a) Howard improvement
Let ϕ̃ ∈ A(x, ϕ) for some x ∈ S and ϕ̃ = ϕ for other states x ∈ S then

Ψ̃(x) ≤Ψ(x) for all x ∈ S and

Ψ̃(x) <Ψ(x) if ϕ̃ ∈ A(x, ϕ).

(b) Verification theorem
If Ψ = UΨ = UϕΨ then ϕ defines a stationary, optimal policy ϕ∞.
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Chapter 3

Basic concepts of Lévy
processes

Lévy processes are named in honors of the French mathematician Paul Lévy
(1886 – 1971). Paul Lévy explored a major part of modern stochastic process
theory parallel with, but independently from, the Russian mathematicians
Andrei N. Kolmogorov (1903 – 1987) and Aleksandr Yakovlevich Khinchin
(1894 – 1959). His student Loève (cf. Loève (1973)) gives a vivid description
of Lévy’s work:

“Paul Lévy was a painter in the probabilistic world. Like the very
great painting geniuses, his palette was his own and his paintings
transmuted forever our vision of reality [...].”

In this chapter we present an introduction to the theory of Lévy processes
and discuss those properties of a Lévy process which are required for Lévy
driven risk processes in an insurance model. Moreover, we introduce two fun-
damental tools, the Lévy-Khinchin formula allowing to study distributional
properties of a Lévy process and the Lévy-Itô decomposition describing the
structure of its sample paths. However, a more thorough treatment can be
found for example in Applebaum (2004), Protter (1990), Sato (1999) or in
a more recent book by Cont and Tankov (2004). Finally, we recall condi-
tions under which existence and uniqueness of solutions of Lévy stochastic
differential equations can be guaranteed. These results enable us to derive a
maximum inequality for a certain power of the solution of a Lévy stochastic
differential equation which is beneficial for the correct formulation of the
stochastic control problem in Chapter 5. So far, such a maximum inequality
only exists for the pure diffusion case. Throughout this thesis we consider
risk processes of an insurance company only, thus it suffices to treat the case
of a finite time horizon T ∈ [0,∞).
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3.1 Definitions and basic properties

Let (Ω,F, (Ft)0≤t≤T ,P) be a filtered probability space satisfying the usual
hypotheses of completeness and right-continuity (cf. Protter (1990), Chap-
ter I). In the following we will always assume this probability space as given.
As we frequently need the notion of a martingale we briefly recall its defini-
tion. The term martingale roots in French language and originally describes
a tack being used on horses to control their head carriage. It shall avoid the
horse raising too high its head. Later, the term martingale also referred to
betting strategies which were popular in 18th century France. In probabil-
ity theory, the notion martingale was introduced by Paul Lévy and further
developed by Joseph L. Doob (1910 – 2004).

Definition 3.1.1. A càdlàg Ft-adapted process (Xt)t≥0 satisfying the inte-
grability condition E||Xt|| <∞ for all t ≥ 0 is said to be a martingale if for
all 0 ≤ s < t <∞,

E[Xt|Fs] = Xs a.s.

As in Protter (1990), Chapter I and Cont and Tankov (2004), Chapter
3 we define a Lévy process as follows.

Definition 3.1.2. An adapted (càdlàg) stochastic process X = (Xt)0≤t≤T
with values in Rd such that X0 = 0 is called a Lévy process if it possesses
the following properties:

(i) Independent increments:

Xt −Xs is independent of Fs, 0 ≤ s < t ≤ T.

(ii) Stationary increments:

Xt+h −Xt
d= Xh, 0 ≤ t < t+ h ≤ T,

that is, the law of Xt+h −Xt does not depend on t.

(iii) Stochastic continuity:

∀ε > 0, lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0,

that is, processes with jumps at a fixed (non-random) time t occur only
with zero probability.

The property “càdlàg” (continu à droite, limites à gauche) means that a
stochastic process has a.s. sample paths which are right continuous and have
left limits. This property in the definition of a Lévy process is not necessary
since it can be shown that every Lévy process has a unique modification
which is càdlàg (cf. Protter (1990), Theorem I.30).
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Jumps of a Lévy process

Let us turn our attention to the discontinuities of a Lévy process. Since a
Lévy process is càdlàg the only type of discontinuities are those caused by
a jump which at time t are defined by

4Xt = Xt −Xt− where Xt− = lim
s↑t

Xs is the left limit at t.

The main challenge of a Lévy process arises from the fact that there may
occur an infinite number of small jumps in every finite time interval, that is∑

0≤s≤t ||4X(s)|| =∞ a.s, t > 0.

Rather than analyzing the jumps themselves, we count jumps of specified
size. The jump counter of a Lévy process can be described by

Nt(B) :=
∑

0<s≤t
1(4Xs 6= 0)1(4Xs ∈ B), t > 0

for every Borel-measurable set B ∈ Rd. Thus for any Borel-measurable set
B ∈ Rd, Nt(B) is the sum of all jumps taking values in the set B up to the
time t. Since the paths of X are càdlàg, this is almost surely a finite sum
whenever 0 /∈ B (the closure of B). It can be shown that Nt(·) and E[N1(·)]
define σ-finite measures on Rd \ {0} (cf. Protter (1990), Theorem I.35). Let
us now define the Lévy measure.

Definition 3.1.3. The measure ν on Rd defined by

ν(B) = E[N1(B)], B ∈ B(Rd)

is called the Lévy measure of the Lévy process X, ν(B) is the expected number
of jumps, per unit of time, whose size belongs to B ∈ B(Rd) where B(Rd)
denotes the Borel-σ-algebra over Rd.

For a fixed Borel-measurable set B in Rd such that 0 /∈ B, it can be
shown that (Nt(B))0≤t≤T is a Poisson process (cf. Protter (1990), p.26 or
Applebaum (2004) Theorem 2.3.5). Therefore, we know that Nt(B) has in-
tensity tν(B) and (Nt(B)− tν(B))0≤t≤T is a martingale.
More generally, one considers a Poisson random measureN(dt, dx) on [0, T ]×
Rd (cf. Cont and Tankov (2004), Chapter 2.6). The connection between the
Poisson process Nt and the random measure N(dt, dx) is as follows

Nt(B) =
∫ ∫

[0,t]×B
N(ds, dx) for any set B ∈ B(Rd) and t ∈ [0, T ].

The measure dtν(dx) is called intensity measure or compensator of N(dt, dx)
and

Ñ(dt, dx) := N(dt, dx)− dtν(dx)
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is called the compensated measure.
We close this section with some properties used extensively later in this
thesis. The next lemma is adapted from Applebaum (2004) Theorem 2.3.8,
Sato (1999) Proposition 19.5 or (more elementary) from Cont and Tankov
(2004) Chapter 2.6.

Lemma 3.1.4. For a Borel-measurable set B ∈ Rd with 0 /∈ B and for a
Borel-measurable function f : [0, T ]×Rd → Rd such that∫ ∫

[0,T ]×B
|f(t, x)| dtν(dx) <∞ (3.1)

it holds

E[
∫ ∫

[0,T ]×B
f(t, x)N(dt, dx)] =

∫ ∫
[0,T ]×B

f(t, x) dtν(dx).

Under the assumptions of Lemma 3.1.4 one can show that integrals of the
form ∫ ∫

[0,t]×B
f(s, x)Ñ(ds, dx) 0 ≤ t ≤ T

are martingales. Observe that∫ ∫
(s,t]×B

f(s, x)N(ds, dx) is independent of Fs

for 0 ≤ s < t ≤ T . Together with Lemma 3.1.4 this immediately implies the
martingale property.
Let us finally discuss the relationship between infinitely divisible distribu-
tions and Lévy processes. We first cite the following definition from Kypri-
anou (2006).

Definition 3.1.5. A Rd-valued random variable Y with law µ is infinitely
divisible if for all n ∈ N there exist i.i.d. random variables Yin, i ∈ {1, . . . , n},
such that

Y
d=

n∑
i=1

Yin.

Or equivalently, the law µ of a Rd- valued random variable is infinitely di-
visible if for all n ∈ N, there exists a law µn such that

µ = µ∗nn ,

where µ∗n denotes the n-fold convolution of µn.
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If (Xt) is a Rd-valued Lévy process, then Xt is for any t infinitely divis-
ible. To verify that we may write for any fixed t and n ∈ N

Xt = (Xtn −Xtn−1) + . . .+ (Xt1 −Xt0) for tk =
kt

n
.

Because of the stationarity and independence of the increments of a Lévy
process this is the sum of n independent identically distributed random
variables.

Theorem 3.1.6 (Infinite divisibility and Lévy processes). If (Xt)0≤t≤T is
a Rd-valued Lévy process then for any fixed t, Xt has an infinitely divisible
distribution.
Conversely, if µ is an infinitely divisible distribution on Rd then there exists
a Lévy process (Xt)0≤t≤T such that the distribution of X1 is given by µ.

Proof. The first part is shown above. For the converse statement we refer
to Sato (1999), Theorem 7.10.

3.2 Lévy-Itô decomposition

After having discussed the discontinuities of a Lévy process in the first sec-
tion we now turn our attention to the formulation of the so-called Lévy-Itô
decomposition. The Lévy-Itô decomposition probably is the most meaning-
ful property of a Lévy process and certainly provides more structure than
the definition since it reveals its building blocks. To be more precise, the
structure of a Lévy process is described in terms of three independent Lévy
processes with different behavior of their sample paths.

Theorem 3.2.1 (Lévy-Itô decomposition). Let X be a Rd-valued Lévy pro-
cess and ν its Lévy measure. Then the Lévy measure ν satisfies the integra-
bility condition ∫

min(||x||2, 1) ν(dx) <∞.

Moreover, there exist a Brownian motion B with covariance matrix A and
a (constant) vector µ ∈ Rd such that

Xt = µt+Bt +X l
t + X̃t,

where

X l
t =

∫ t

0

∫
{Rd, ||x||>1}

xN(ds, dx), and X̃t =
∫ t

0

∫
{Rd, ||x||≤1}

x Ñ(ds, dx).

The terms B, X l and X̃ l are independent.
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Proof. The original proof of Lévy, which has been completed by Itô, can be
found in Lévy (1934) and Itô (1942). An outline of the proof can be found
in Cont and Tankov (2004), Chapter 3.4.

We call (µ,A, ν) in Theorem 3.2.1 the generating (or characteristic)
triplet of a Lévy process. A is called Gaussian covariance matrix and ν the
Lévy measure. The characteristics (µ,A, ν) of a Lévy process are uniquely
determined by a Lévy process (cf. Applebaum (2004), Corollary 2.4.21).

Let us follow Cont and Tankov (2004) and some results in Protter (1990)
for a brief comment on the jump processes of this decomposition.
Given a Lévy process X with Lévy measure ν, we know that ν(B) must be
finite for every compact set B such that 0 /∈ B (cf. Protter (1990), Theorem
I.35). Thus the sum of the jumps with magnitude larger than one is a finite
series and does not invoke any convergence problems. It can be shown that

X l
t =

∫ t

0

∫
{Rd, ||x||>1}

xN(ds, dx)

is a compound Poisson process (cf. Applebaum (2004), Theorem 2.3.10).
There is nothing special about the threshold of jump amplitude being equal
to one. Further note that for every ε > 0, the process∫ t

0

∫
{Rd, ε<||x||<1}

xN(ds, dx) =
∑

0≤s≤t
4Xs1(ε < |4Xs| < 1)

is a well-defined compound Poisson process. However, ν can have infinitely
many small jumps close to zero. Therefore, as ε → 0, this sum does not
necessarily converge. As we have seen before, replacing the Poisson random
measure N(dt, dx) by its compensated measure Ñ(dt, dx) = N(dt, dx) −
tν(dx) generates a martingale,

X̃t =
∫ t

0

∫
{Rd, ||x||<1}

x Ñ(ds, dx),

which allows to apply Kolmogorov’s three series Theorem (cf. Kallenberg
(2002), Theorem 4.18) in order to show the desired convergence.
The process X l (respectively X̃) could be interpreted as an infinite super-
position of independent (compensated) Poisson processes.

The Lévy-Itô decomposition shows that every Lévy process is the sum of
a Brownian motion with drift and a possibly infinite sum of independent
compound Poisson processes. Therefore, every Lévy process can be approx-
imated by a jump diffusion process, that is, by the sum of a Brownian motion
with drift and a compound Poisson process.
Moreover, the Lévy-Itô decomposition shows that any Lévy process can be
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decomposed into a martingale Bt + X̃t and a process µt+X l
t with paths of

finite variation on compacts. Thus we can conclude that every Lévy process
is a semimartingale (cf. Protter (1990), Theorems II.7/8/9).

Remark 6. Other choices than 1{||x||≤1} as truncation function can be used.
Jumps larger than an arbitrary c might be truncated or one might even
allow for a more general truncation function g : Rd → R which behaves as
1 + o(|x|) for x → 0 and O( 1

|x|) for x → ∞. The covariance matrix A as
well as the Lévy measure ν remain unaffected only µ changes with different
choices of the truncation function

An important implication of the Lévy-Itô decomposition is the Lévy-
Khinchin formula for the characteristic function of a Lévy process.

Theorem 3.2.2 (Lévy-Khinchin). Let X be a Rd-valued Lévy process with
characteristic triplet (µ,A, ν). Then it holds

E[eiuXt ] = etψ(u)

for u ∈ Rd where

ψ(u) = −1
2
uAu+ iµu+

∫
Rd

(
eiux − 1− iux1{||x||≤1}

)
ν(dx).

Proof. A proof can be found in Cont and Tankov (2004), Theorem 3.1.

In applications the additional assumption,∫
{Rd, ||x||>1}

||x|| ν(dx) <∞,

is often seen. Since there is no need to truncate the magnitude of large
jumps, this assumption allows us to simplify the Lévy-Itô decomposition
and the Lévy-Khinchin formula. We have E[X l

1] < ∞ and thus we can
represent the Lévy-Itô decomposition in the following way

Xt = Bt + M̃t + at, 0 ≤ t ≤ T

where

M̃t =
∫ t

0

∫
Rd
xÑ(ds, dx) and a = µ+

∫
||x||≥1

xν(dx).

This decomposition of a Lévy process into a predictable process at and a
martingale Bt + M̃t is called Doob-Meyer decomposition (cf. Kallenberg
(2002), Chapter 25). Analogously, the characteristic exponent simplifies to

ψ(u) = −1
2
uAu+ iau+

∫
Rd

(
eiux − 1− iux

)
ν(dx).
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Path properties of a Lévy process

We finally state path properties of a Lévy process in terms of its charac-
teristic triplet. Let X be a Rd-valued Lévy process with generating triplet
(µ,A, ν).

Proposition 3.2.3. (i) (Continuity) Almost all paths of X are continu-
ous if and only if ν ≡ 0.

(ii) (Piecewise constancy) Almost all paths of X are piecewise constant (it
is a compound Poisson process) if and only if A = 0, ν(Rd) <∞ and
µ =

∫
{||x||≤1} xν(dx).

Proof. A proof can be found in Sato (1999) Theorems 21.1/2.

Moreover, Lévy processes can be distinguished by their jump activity.

Proposition 3.2.4. (i) (Finite activity) If ν(Rd) < ∞ then almost all
path of X have only finitely many jumps on any compact interval.

(ii) (Infinite activity) If ν(Rd) = ∞ then almost all path of X have in-
finitely many jumps on any compact interval.

Proof. A proof can be found in Riesner (2006), Theorem 2.2.6.

The Lévy-Itô decomposition implies that the path of a Lévy process is
almost surely of infinite variation in the case that a Brownian motion is
present. Let us therefore consider the case A = 0. Since the second term in
the Lévy-Itô decomposition is a compound Poisson process and therefore of
finite variation the third term decides whether the Lévy process is of finite
or of infinite variation.

Proposition 3.2.5 (Finite variation). A Lévy process with generating triplet
(µ,A, ν) is of finite variation if and only if

A = 0 and
∫
{||x||≤1}

||x|| ν(dx) <∞.

Proof. For a proof we refer to Cont and Tankov (2004) Proposition 3.9.

3.3 Examples and actuarial interpretation

To conclude the short introduction to Lévy processes we consider some ex-
amples. The Brownian motion and the Poisson process are two fundamental
examples of Lévy processes. The Brownian motion possesses almost sure
continuous paths and normal distributed increments. It can be shown (cf.
Proposition 3.2.3) that a Lévy process has continuous sample paths if and
only if it is a Brownian motion (with drift). The Poisson process which is a
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counting process is an example for a Lévy process with discontinuous paths.
It is used for the construction of more complex jump processes, for example
the compound Poisson process. A compound Poisson process can be written
as

Xt =
Nt∑
k=1

Yk, 0 ≤ t ≤ T,

where the jump sizes Yk ∈ Rd are an i.i.d. sequence of random vectors with
distribution having a density f(x) with respect to the Lebesgue measure
and (Nt) is a Poisson process with intensity λ independent from (Yk)k≥1. A
compound Poisson process is the only Lévy process with almost sure piece-
wise constant sample paths (cf. Cont and Tankov (2004), Proposition 3.3).
The Lévy measure of a compound Poisson process has a simple structure.

Proposition 3.3.1. Let X be a compound Poisson process with intensity λ
and claim size density f(x). Then its Lévy measure is given by

ν(dx) = λf(x)dx.

Proof. For a proof we refer to Cont and Tankov (2004), Proposition 3.5.

This shows that a compound Poisson process is of finite activity. More-
over, every compound Poisson process can be written in terms of the Poisson
random measure, that is

Xt =
∫ t

0

∫
Rd
xN(ds, dx). (3.2)

where N is a Poisson random measure with intensity measure ν(dx)dt.
The exponent in the Lévy-Khintchin formula for compound Poisson pro-
cesses reduces to

Ψ(u) = λ

∫
Rd

(eiux − 1) f(dx).

In the classical Cramér-Lundberg model the risk process of an insurance
company is modeled using the compound Poisson process. The Poisson
process (Nt) describes the number of claims during the interval (0, t]. At each
jump of (Nt) the insurance company has to pay out claims which are assumed
to be independent and identically distributed. Then the total payment in
the interval (0, t] by the company is a compound Poisson process. For details
on the classical risk model we refer to Grandell (1991).

Together with the Brownian motion compound Poisson processes constitute
a jump diffusion. A Lévy process of jump diffusion type has the following
form.

Xt = µt+ σWt +
Nt∑
k=1

Yk, 0 ≤ t ≤ T,
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where µ ∈ Rd, σ > 0, (Wt)0≤t≤T is a standard Brownian motion and∑Nt
k=1 Yk is a compound Poisson process. Note that the jump diffusion

process is a special case of the Lévy-Itô decomposition, compare Theorem
3.2.1 and the compound Poisson process representation (3.2). However, it
is important to note that not every jump part of a Lévy process can be
represented in this form since ν can have a singularity at zero meaning the
Lévy process may have an infinite number of small jumps close to zero such
that their sum does not necessarily converge.

So far, we restricted the examples mentioned to finite activity Lévy pro-
cesses, that is ν(Rd) < ∞ (cf. Proposition 3.2.4). The most well-known
examples of infinite activity Lévy processes are generated by Brownian sub-
ordination. To be more precise, a Brownian motion (Wt)t≥0 with possible
drift µ is evaluated on a stochastic time scale which is given by a subordi-
nator (St)t≥0. A subordinator is a Lévy process having trajectories which
are almost surely increasing. It can therefore be interpreted as time change.
A process generated by subordination is still a Lévy process (cf. Cont and
Tankov (2004), Theorem 4.2), that is Xt = σWSt + µSt is again a Lévy
process. Examples of infinite activity processes generated by Brownian sub-
ordination include the inverse Gaussian model of Barndorff-Nielsen (1998)
(infinite variation) and the variance gamma process (finite variation). De-
tails to the variance gamma process can be found in Madan (2001).

We finally follow Kyprianou (2006), Section 2.7.1 to offer an actuarial in-
terpretation of a spectrally negative Lévy process, that is ν(0,∞) = 0.
Rearranging the terms in the Lévy-Khintchin exponent we have

ψ(u) =
(
− 1

2
uAu

)
+
(
iµu+

∫
{Rd−, ||x||>1}

(eiux − 1) ν(dx)
)

+
(∫
{Rd−, ||x||≤1}

(eiux − 1− iux) ν(dx)
)
.

Let us focus on the infinite activity case in which case the characteristics are
definitely different from the Cramér-Lundberg model. The second part of
the Lévy-Khintchin exponent represents large claims meaning claims of size
larger than one. Analogously to the Cramér-Lundberg model these claims
are counterbalanced by some constant premium income µ > 0. The first
part might be interpreted as perturbation of claims and incoming premium
payments. Finally, the third term represents a countably infinite number of
arbitrarily small claims which are counterbalanced by a positive drift which
can be interpreted as accumulated premiums over an infinite number of
insurance contracts. Note that the first and third parts of the corresponding
Lévy process are martingales. Therefore, the long term behavior of the risk
process depends on the second term.
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3.4 Martingale and Markov property

Directly from the Lévy-Itô-decomposition and the Lévy-Khinchin formula
we get conditions under which a Lévy process or its exponential is a mar-
tingale.

Proposition 3.4.1. Let X be a Rd-valued Lévy process with characteristic
triplet (µ,A, ν).

(a) X is a martingale if and only if∫
{||x||≥1}

||x|| ν(dx) <∞ and µ+
∫
{||x||≥1}

x ν(dx) = 0.

(b) The exponential of a Lévy process is a martingale if and only if∫
{||x||≥1}

exp(x) ν(dx) <∞ and

A

2
+ µ+

∫
Rd

(
exp(x)− 1− x1{||x||≤1}

)
ν(dx) = 0.

Proof. The assertions follow from Lemma 3.1.4 and Theorems 3.2.1, 3.2.2.

Another important property of a Lévy process is its Markov property.
That means using the whole past history of the process to predict its future
behavior is equal to a prediction based on the knowledge of the present only.

Definition 3.4.2. An adapted process (Xt)t≥0 defined on the filtered prob-
ability space (Ω,F, (Ft)t≥0,P) is a Markov process if for every B ∈ B(Rd)
and for 0 ≤ s ≤ t <∞

E[Xt ∈ B|Fs] = E[Xt ∈ B|σ(Xs)] a.s.

For a Markov process Xt we can define the transition probability for
0 ≤ s < t <∞, B ∈ B(Rd), x ∈ Rd by

Ps,t(x,B) = P(Xt ∈ B|Xs = x).

That is, the mappings Ps,t describe the probabilities that the process fades
from point x at time s to the set B at time t. Let us now take into con-
sideration the special structure of Lévy processes. Lévy processes can be
completely characterized as temporally homogeneous Markov processes with
spatially homogeneous transition functions (cf. Sato (1999), Theorem 10.5).
That means the transition probability is

Ps,t(x,B) = P0,t−s(0, B − x)

for any 0 ≤ s ≤ t, x ∈ Rd and B ∈ B(Rd), where B − x = {y − x : y ∈
B}. Therefore, the Markov property is weaker than the independence and
stationarity property of Lévy process increments.
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Infinitesimal generator of Lévy processes

The characteristic triplet of a Lévy process can also be used to describe its
infinitesimal generator. Let us first define the transition operator for a Lévy
process X and f : Rd → Rd by

(Ttf)(x) =
∫
Rd
f(y)Pt(x, dy) = E[f(Xt + x)].

For homogeneous Markov processes, we always write the operators T0,t as
Tt and the transition probabilities P0,t as Pt. Applying the Chapman-
Kolmogorov equation (cf. Applebaum (2004), Theorem 3.15) we have the
following relation between transition operators

Ts+t = TsTt. (3.3)

Any family of linear operators on a Banach space that satisfies (3.3) is called
a semigroup. There is an extensive theory of semigroups which can be
found e.g. in Applebaum (2004), Section 3.2. Moreover, let us introduce the
notation of a Feller process based on Applebaum (2004). A homogeneous
Markov process X is said to be a Feller process if Ttf ∈ C0(Rd) for f ∈
C0(Rd) and for all f ∈ C0(Rd) it holds

lim
t→0
||Ttf − f || = 0.

It can be shown that every Lévy process is a Feller process (Applebaum
(2004), Theorem 3.1.9). A semigroup Tt verifying the Feller property can be
described via its infinitesimal generator which is a linear operator defined
by

(Af)(x) = lim
t→0

∣∣∣∣∣∣Ttf(x)− f(x)
t

∣∣∣∣∣∣ = 0,

where f should be chosen such that the limit exists.
While the infinitesimal generator is hard to characterize in general, its behav-
ior on the subset of smooth functions with compact support is well defined
in terms of the Lévy characteristics. The following theorem can be found
e.g. in Sato (1999), Theorem 31 or in Applebaum (2004), Theorem 3.3.3.

Theorem 3.4.3. Let X be a Rd-valued Lévy process with characteristic
triplet (µ,A, ν) and let A be its infinitesimal generator. For f ∈ C2

0 (Rd) it
holds

Af(x) =
1
2

d∑
i,j=1

Aij
∂2f(x)
∂xi∂xj

+
d∑
i=1

µi
∂f(x)
∂xi∫

Rd

(
f(x+ z)− f(x)−

d∑
i=1

zi
∂f(x)
∂xi

1{||z||≤1}

)
ν(dz).
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Example 3.4.4. (i) The Brownian motion with drift
Let (µ,A, 0) be the characteristic triplet of a d-dimensional Brownian
motion with drift. The generator is

Af(x) =
d∑
i=1

µi
∂f(x)
∂xi

+
1
2

d∑
i,k=1

Aik
∂2f(x)
∂xi∂xk

.

(ii) The Poisson process
Let (0, 0, λδ0) be the characteristic triplet of a Poisson process with
intensity λ. The generator is

Af(x) = λ(f(x+ 1)− f(x)).

(iii) The compound Poisson process
Let (0, 0, λg) be the characteristic triplet of a compound Poisson pro-
cess with intensity λ and jump density g(x). Then the generator is

Af(x) = λ

∫
Rd

(f(x+ y)− f(x))g(y) dy.

In the next section, we show that the infinitesimal generator is the term
that has to be subtracted from the Lévy process to get a martingale.

3.5 Itô-Doeblin formula for Lévy-type stochastic
integrals

In this section we recall the famous Itô-Doeblin formula, until recently known
as Itô formula. Since this topic has recently hit the press let us briefly com-
ment on the naming history of this formula. In the year 2000 a sealed letter
which had been stored at the Academy of Sciences in Paris for 60 years re-
vealed a sensation. The letter contained a mathematical manuscript titled
“On Kolmogorov‘s equation”. It has been written by Wolfgang Doeblin, a
young French mathematician of German origin, during his deployment as
simple soldier near the Franco-German border in 1939/1940. A few months
later he committed suicide to escape being captured by the German Wehr-
macht. The letter proves that Wolfgang Doeblin developed a formula com-
parable to the famous formula of the Japanese mathematician Kiyoshi Itô.

Proving the Itô-Doeblin formula is non-trivial. The reader my consult
Applebaum (2004) or Protter (1990) who treats integration with respect to
a general semimartingale. Cont and Tankov (2004) also give a brief review.
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Theorem 3.5.1 (Itô-Doeblin formula for multidimensional Lévy processes).
Let X be a Rd-valued Lévy process with characteristic triplet (µ,A, ν) and
f ∈ C1,2([0,∞)×Rd). Then we have

f(t,Xt)

=f(0, X0) +
∫ t

0

∂f(s,Xs)
∂s

ds+
∫ t

0

d∑
i=1

∂f(s, x)
∂xi

∣∣∣
x=Xs−

dXi
s

+
1
2

∫ t

0

d∑
i,j=1

Aij
f(s, x)
∂xi∂xj

∣∣∣
x=Xs

ds

+
∫ t

0

∫
Rd

(
f(s,Xs− + z)− f(s,Xs−)−

d∑
i=1

zi
∂f(s, x)
∂xi

∣∣∣
x=Xs−

)
N(ds, dz).

It is often useful to separate the martingale term in the equation of
Theorem 3.5.1 when it comes to the computation of the mean.

Proposition 3.5.2 (Martingale decomposition). Let X be a Rd-valued Lévy
process with characteristic triplet (µ,A, ν) where A = σσT and f ∈ C2(Rd).
Then

f(Xt) = Mt + Vt

where Mt is the martingale part given by

Mt =f(X0) +
∫ t

0

d∑
i,k=1

∂f(x)
∂xi

∣∣∣
x=Xs

σik dW k
s

+
∫ t

0

∫
Rd

(
f(Xs− + z)− f(Xs−)

)
Ñ(ds, dz).

and Vt a continuous finite variation process

Vt =
1
2

∫ t

0

d∑
i,j=1

Aij
∂2f(x)
∂xi∂xj

∣∣∣
x=Xs

ds+
∫ t

0

d∑
i=1

∂f(x)
∂xi

∣∣∣
x=Xs

µi ds

+
∫ t

0

∫
Rd

(
f(Xs− + z)− f(Xs−)−

d∑
i=1

zi
∂f(x)
∂xi

∣∣∣
x=Xs−

1||z||≤1

)
ν(dz)ds.

Proof. Plug the Lévy-Itô decomposition into the Itô-Doeblin formula.

Let us close this section citing Applebaum (2004)

“Itô’s fromula is the key to the wonderful world of stochastic
calculus.”
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3.6 Existence and uniqueness of Lévy stochastic
differential equations

In the following theorems on the existence and uniqueness of solutions of
Lévy stochastic differential equations (SDE) we do not present the most
general theory. However, we restrict ourselves to conditions being adequate
for the vast majority of applications. For more general results we refer to
Protter (1990), Chapter V.3. and the references given therein.

Recall that we operate on a filtered probability space (Ω,F, (Ft)0≤t≤T ,P)
satisfying the usual hypotheses of completeness and right-continuity. Let
W = (Wt)t≥0 be a d-dimensional standard Brownian motion, N an inde-
pendent Poisson random measure on R+ × (R \ {0})d with associated com-
pensated process Ñ and intensity measure ν where we assume that ν is a
Lévy measure.

Consider the following Lévy stochastic differential equation in Rd

dXt =µ(Xt) dt+ σ(Xt) dWt +
∫
{Rd,||z||<1}

γ1(Xt−, z) Ñ(dt, dz)

+
∫
{Rd,||z||≥1}

γ2(Xt−, z)N(dt, dz) (3.4)

with initial conditionX0 = x ∈ Rd. Written out in detail component number
i of Xt in equation (3.4) is

dXi
t =µi(Xt) dt+

d∑
k=1

σik(Xt) dW k
t

+
∫
{Rd,||z||<1}

γi1(Xt−, z) Ñ(dt, dz) +
∫
{Rd,||z||≥1}

γi2(Xt−, z)N(dt, dz)

where 1 ≤ i ≤ d. We assume all µi : Rd → R, σik : Rd → R, γi1 : Rd×Rd →
R and γi2 : Rd ×Rd → R to be measurable for 1 ≤ i, k ≤ d.

The solution to (3.4), if it exists, will be an Rd-valued stochastic process
Xt = (X1

t , . . . , X
d
t ), t ≥ 0. In related literature such a solution is frequently

called a strong solution since W and N are specified in advance. A discussion
about the notion of weak solutions can be found in Applebaum (2004),
Section 6.7.3. Moreover, we require our solutions to be unique meaning
pathwise uniqueness a.s. To be more precise, if Xt and X̃t are solutions to
(3.4) then P(Xt = X̃t, ∀t ≥ 0) = 1.
We now impose the following conditions on the coefficients of a Lévy process
in order to ensure that (3.4) has a unique strong solution. Note that || · ||sn
is the matrix semi-norm as defined in Section 1.3.
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(C1) Growth condition
There exists a constant C1 > 0 such that for all x ∈ Rd,

||µ(x)||2 + ||σ(x)σ(x)T ||sn +
∫
{Rd,||z||<1}

||γ1(x, z)||2 ν(dz) ≤ C1(1 + ||x||2).

(C2) Lipschitz condition
There exists a constant C2 > 0 such that for all x, y ∈ Rd,

||µ(x)− µ(y)||2 + ||σ(x)σ(x)T − 2σ(x)σ(y)T + σ(y)σ(y)T ||sn

+
∫
{Rd,||z||<1}

||γ1(x, z)− γ1(y, z)||2 ν(dz) ≤ C2||x− y||2.

(C3) Continuity
The mapping x→ γ2(x, z) is continuous for all z ≥ 1.

Let us introduce the modified Lévy stochastic differential equation

dXt =µ(Xt) dt+ σ(Xt) dWt +
∫
{Rd,||z||<1}

γ1(Xt−, z) Ñ(dt, dz). (3.5)

Theorem 3.6.1. Suppose (C1) and (C2) hold. Then there exists a unique
càdlàg adapted strong solution X = (Xt)t≥0 to the modified stochastic dif-
ferential equation (3.5) with X0 = x.

Proof. For a proof we refer to Applebaum (2004), Section 6.2.

Using the results of the modified equation one can apply a standard
interlacing procedure to construct the solution of the original equation. The
continuity assumption ensures that the integrands in the Poisson integrals
are predictable.

Theorem 3.6.2. Suppose (C1), (C2) and (C3) hold. Then there exists a
unique càdlàg adapted strong solution X = (Xt)t≥0 to the stochastic differ-
ential equation (3.4) with X0 = x.

Proof. A proof can be found e.g. in Applebaum (2004), Section 6.2.

For the next theorem we need a stronger assumption than condition (C1)
including also the large jump term.

(C1’) Adjusted growth condition
There exists a constant C ′1 > 0 such that for all x ∈ Rd,

||µ(x)||2 + ||σ(x)σ(x)T ||sn +
∫
{Rd,||z||<1}

||γ1(x, z)||2 ν(dz)

+
∫
{Rd,||z||≥1}

||γ2(x, z)||2 ν(dz)

≤C ′1(1 + ||x||2).
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The following theorem will be helpful in Chapter 5. The corresponding result
for diffusion processes can be found for example in Yong and Zhou (1999),
Theorem 6.16 or in Karatzas and Shreve (1991), Chapter 5 Problem 3.15.
We show that this upper bound does not only hold for diffusion processes
but also for general Lévy processes.

Theorem 3.6.3. Suppose (C1′), (C2) and C3 hold. If E||X0||2m < ∞ and∫
{||z||≥1} ||z||

2m ν(dz) <∞ for some m ≥ 1 then

E
[

max
0≤t≤T

||Xt||2m
]
≤ CeCT (1 + E||X0||2m)

where X is the solution to (3.4) and C is some positive constant depending
only on m, T and d.

Proof. In this proof we use the following inequality (cf. Karatzas and Shreve
(1991), Chapter 5, inequality (9.3)) for m ∈ N and x1, . . . , xd ∈ R

|x1|m+ . . .+ |xd|m ≤ d(|x1|+ . . .+ |xd|)m ≤ dm+1(|x1|m+ . . .+ |xd|m). (3.6)

Let us consider the stochastic differential equation in (3.4) and let the con-
stant C(m, d) ≥ 0 depend on m and d but it is not necessarily the same
throughout the proof. Applying inequality (3.6) we have almost surely for
all 0 ≤ t ≤ T

||Xt||2m ≤C(m, d)
[
||X0||2m +

∣∣∣∣∣∣ ∫ t

0
µ(Xs) ds

∣∣∣∣∣∣2m +
∣∣∣∣∣∣ ∫ t

0
σ(Xs) dWs

∣∣∣∣∣∣2m
+
∣∣∣∣∣∣ ∫ t

0

∫
{Rd,||z||<1}

γ1(Xs−, z) Ñ(ds, dz)
∣∣∣∣∣∣2m

+
∣∣∣∣∣∣∫ t

0

∫
{Rd,||z||≥1}

γ2(Xs−, z)N(ds, dz)
∣∣∣∣∣∣2m]. (3.7)

The upper bound for the drift term can be obtained using Hölder’s inequality∣∣∣∣∣∣ ∫ t

0
µ(Xs) ds

∣∣∣∣∣∣2m =
[ d∑
i=1

(∫ t

0
µi(Xs) ds

)2]m
≤ tm

[∫ t

0

∣∣∣∣µ(Xs)
∣∣∣∣2 ds ]m.

(3.8)

We compensate the last term in inequality (3.7), apply the triangle inequality
and inequality (3.6). Thus,∣∣∣∣∣∣∫ t

0

∫
{Rd,||z||≥1}

γ2(Xs−, z)N(ds, dz)
∣∣∣∣∣∣2m

=
∣∣∣∣∣∣∫ t

0

∫
{Rd,||z||≥1}

γ2(Xs−, z) Ñ(ds, dz)−
∫ t

0

∫
{Rd,||z||≥1}

γ2(Xs−, z) ν(dz)ds
∣∣∣∣∣∣2m

≤22m
(∣∣∣∣∣∣∫ t

0

∫
{Rd,||z||≥1}

γ2(Xs−, z) Ñ(ds, dz)
∣∣∣∣∣∣2m

+
∣∣∣∣∣∣ ∫ t

0

∫
{Rd,||z||≥1}

γ2(Xs−, z) ν(dz)ds
∣∣∣∣∣∣2m). (3.9)
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The bound for the finite variation part of (3.9) can be obtained using
Hölder’s inequality∣∣∣∣∣∣ ∫ t

0

∫
{Rd,||z||≥1}

γ2(Xs−, z) ν(dz)ds
∣∣∣∣∣∣2m

=
[ d∑
i=1

(∫ t

0

∫
{Rd,||z||≥1}

γi2(Xs−, z) ν(dz)ds
)2]m

≤
(∫ t

0

∫
{Rd,||z||≥1}

1 ν(dz)ds
)m( d∑

i=1

∫ t

0

∫
{Rd,||z||≥1}

|γi2(Xs−, z)|2 ν(dz)ds
)m

.

(3.10)

Using the property
∫
{||z||≥1} ν(dz) < ∞ of the Lévy measure (cf. Theorem

3.2.1) implies ∣∣∣∣∣∣ ∫ t

0

∫
{Rd,||z||≥1}

γ2(Xs−, z) ν(dz)ds
∣∣∣∣∣∣2m

≤Km
(∫ t

0

∫
{Rd,||z||≥1}

||γ2(Xs−, z)||2 ν(dz)ds
)m

. (3.11)

In order to get a bound for the martingale terms we apply the Burkholder-
Davis-Gundy inequality (cf. Theorem A.1.1). Let T be the stopping time
needed therein. Taking into account the bounds obtained in (3.8),(3.9),
(3.11), truncating at the stopping time T , taking the maximum and the
expectation, inequality (3.7) gives

E
[

max
0≤t≤T

||Xt||2m
]

≤C(m, d)
(
E||X0||2m + TmE

[∫ T

0
||µ(Xs)||2 ds

]m
+ E

[∫ T

0

∫
{||z||≥1}

||γ2(Xs−, z)||2 ν(dz)ds
]m

+ E
[

max
0≤t≤T

∣∣∣∣∣∣ ∫ t

0
σ(Xs) dWs

∣∣∣∣∣∣2m ]
+ E

[
max

0≤t≤T

∣∣∣∣∣∣ ∫ t

0

∫
{||z||≤1}

γ1(Xs−, z)Ñ(ds, dz)
∣∣∣∣∣∣2m]

+ E
[

max
0≤t≤T

∣∣∣∣∣∣ ∫ t

0

∫
{||z||≥1}

γ2(Xs−, z)Ñ(ds, dz)
∣∣∣∣∣∣2m]).

Applying Corollary A.1.1 we get bounds for

E
[

max
0≤t≤T

∣∣∣∣∣∣ ∫ t

0
σ(Xs) dWs

∣∣∣∣∣∣2m] ≤KmE
[ ∫ T

0

∣∣∣∣σ(Xs)
∣∣∣∣2 ds ]m,
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E
[

max
0≤t≤T

∣∣∣∣∣∣ ∫ t

0

∫
{||z||≤1}

γ1(Xs−, z) Ñ(ds, dz)
∣∣∣∣∣∣2m]

≤KmE
[ ∫ T

0

∫
{||z||≤1}

∣∣∣∣γ1(Xs−, z)
∣∣∣∣2 ν(dz)ds

]m
.

and

E
[

max
0≤t≤T

∣∣∣∣∣∣ ∫ t

0

∫
{||z||≥1}

γ2(Xs−, z) Ñ(ds, dz)
∣∣∣∣∣∣2m]

≤KmE
[ ∫ T

0

∫
{||z||≥1}

∣∣∣∣γ2(Xs−, z)
∣∣∣∣2 ν(dz)ds

]m
.

Note that (C1′) is required in order to obtain these bounds (cf. Cont and
Tankov (2004), Proposition 8.8). So far, we therefore have

E
[

max
0≤t≤T

||Xt||2m
]

≤C(m, d)
(
E||X0||2m + TmE

[∫ T

0

∣∣∣∣µ(Xs)
∣∣∣∣2 ds ]m

+ E
[∫ T

0

∫
{||z||≥1}

||γ2(Xs−, z)||2 ν(dz)ds
]m

+ E
[ ∫ T

0

∣∣∣∣σ(Xs)
∣∣∣∣2 ds ]m

+ E
[ ∫ T

0

∫
{||z||≤1}

∣∣∣∣γ1(Xs−, z)
∣∣∣∣2 ν(dz)ds

]m)
.

Applying (C1’) yields

E
[

max
0≤t≤T

||Xt||2m
]
≤ C(T,m, d)

(
E||X0||2m + E

[∫ T

0

(
1 + ||Xs||2

)
ds
]m)

.

(3.12)

Let us have a closer look at the last term in (3.12). Hölder’s inequality and
inequality (3.6) imply

E
[∫ T

0
(1 + ||Xs||)2 ds

]m
≤Tm−1E

[∫ T

0
(1 + ||Xs||2

)m
ds
]

≤Tm−12mE
[∫ T

0
(1 + ||Xs||2m) ds

]
. (3.13)

Finally, we have

E
[

max
0≤t≤T

||Xt||2m
]
≤ C(T,m, d)

(
E||X0||2m + 1 + E

[ ∫ T

0
||Xs||2m ds

])
.
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Using the assumption that the Lévy measure ν(dz) of the Lévy process X
satisfies

∫
{||z||≥1} ||z||

2m ν(dz) <∞ we know by Riesner (2006), Lemma 2.2.5
that E[||Xt||2m] <∞ for all t. Therefore, we have with the latter inequality
by an interchange of integral and expectation

ψ(T ) := E
[

max
0≤t≤T

||Xt||2m
]
<∞.

We apply Gronwall’s inequality (e.g. Amann (1983)) to

ψ(T ) ≤ C(T,m, d)
(
E||X0||2m + 1 +

∫ T

0
ψ(s) ds

)
and obtain

ψ(T ) ≤C(T,m, d)(E||X0||2m + 1)
(

1 +
∫ T

0
C(s,m, d)eC(T,m,d)(T−s) ds

)
≤C(T,m, d)(E||X0||2m + 1)

(
1 +

∫ T

0
C(T,m, d)eC(T,m,d)(T−s) ds

)
.

Simplifying the right hand side yields

ψ(T ) ≤C(T,m, d)(E||X0||2m + 1)
(

1− eC(T,m,d)(T−s)∣∣T
0

)
=C(T,m, d)(E||X0||2m + 1)eC(T,m,d)T .

As mentioned before C(T,m, d) is not necessarily the same throughout the
proof. Finally, we have

E
[

max
0≤t≤T

||Xt||2m
]
≤ C(E||X0||2m + 1) eCt

where C = C(T,m, d). This yields the assertion.



Chapter 4

Dependence concepts for
Lévy processes

Financial and actuarial applications often require multidimensional models
with jumps allowing for dependence between the univariate components.
Jumps can be easily modeled via Lévy processes. An intuitive approach to
model dependence of such Lévy processes might be the use of copulas for
random vectors. However, there are a few drawbacks which make this con-
cept not suitable for Lévy processes e.g. the copula Ct of (X1

t , . . . , X
d
t ) may

depend on t. An example for a Lévy process with a copula that is not con-
stant can be found in Tankov (2004). Moreover, it is unknown which copula
yields a multidimensional infinitely divisible distribution for given infinitely
divisible distributions of X1

t , . . . , X
d
t . Last but not least it would be incon-

venient to model dependence via the copula of the probability distribution
whereas the behavior of a multidimensional Lévy process is characterized
by the Lévy measure. Therefore, the concept of Lévy copulas was recently
introduced in Tankov (2003) and further refined in Kallsen and Tankov
(2006). However, caution has to be exercised since Lévy copulas can only
be used in some cases to characterize dependence among the components of
multidimensional Lévy processes (cf. Bäuerle et al. (2008)). It is possible
with respect to the dependence property of association, but the Lévy copula
fails to characterize some other dependence properties like multivariate total
positivity of order 2 or conditionally increasing in sequence.

We start this chapter briefly recalling some general definitions which will
be important in the following sections i.a. the notion of d-increasing func-
tions is introduced. In the literature different definitions for d-increasing
functions exist. However, we show that the different definitions only differ
by an additional condition. We then discuss the conceptually simpler case
of spectrally positive Lévy processes (cf. Cont and Tankov (2004)) before
treating the concept for general Lévy processes introduced in Kallsen and
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Tankov (2006). A special class of Lévy copulas known as Archimedean Lévy
copulas is our main focus. Archimedean Lévy copulas can be constructed
quite easily and at the same time possess a lot of nice properties. For that
reason they are widely spread in applications. In Subsection 4.2.2 we derive
a sufficient and necessary condition for an Archimedean Lévy generator to
create a multidimensional positive Lévy copula in arbitrary dimension. So
far, this has only been analyzed for a bivariate Lévy copula, while for di-
mensions larger than two there is only a sufficient condition. It turns out
that the necessary and sufficient condition derived in Theorem 4.2.10 con-
tains the existing results as special cases. These considerations were inspired
by McNeil and Nešlehová (2008) considering ordinary copulas for random
vectors. Finally, we recall the construction of a general Archimedean Lévy
copula introduced in Bäuerle et al. (2008).
Describing the dependence structure of a multidimensional Lévy process
in terms of its Archimedean Lévy copula allows us to quantify the effect
of dependence on the retention levels and the investment portfolio in our
multidimensional Lévy driven insurance model (cf. Chapter 5 and Chapter
6).

4.1 Basic definitions

Let us start with some general definitions which will be important in the
sections to come.

Definition 4.1.1. (a) Difference operator
For functions f : Rd → R the multivariate difference operator is de-
fined by

4y
xf =

∑
(ε1,...,εd)∈{0,1}d

(−1)
∑d
i=1 ε

i
f
(
ε1x1+(1−ε1)y1, . . . , εdxd+(1−εd)yd

)
where x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd.

(b) d-increasing
A function f : Rd → R is called d-increasing if 4y

xf ≥ 0 for all x < y.

In the literature the notion of d-increasing functions may have a slightly
different meaning and sometimes they are referred to as quasi-monotone
functions or 4-monotone functions. To make the definition of d-increasing
in our context clear we show that the different definitions only differ by an
additional condition.

Lemma 4.1.2. Let f : Rd → R and f(x) = 0 if xj = 0 for at least one
j ∈ {1, . . . , d}. It holds that f is d-increasing if and only if

4ε̃1

i1 . . .4
ε̃k

ik
f(x) ≥ 0 for all x ∈ Rd, (4.1)
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for every subset J := {i1, . . . , ik} ⊂ {1, . . . , d} and ε̃1, . . . , ε̃k > 0 where
4ε̃1
i1
. . .4ε̃k

ik
denotes a sequential application of the first order difference op-

erator 4ε̃j
ij
f(x) = f(. . . , xij + ε̃j , . . .)− f(. . . , xij , . . .), j ∈ {1, . . . , k}.

Remark 7. The definition of d-increasing is sometimes given as in (4.1).

Proof. We first make a general observation. Set J = {i1, . . . , ik} ⊂ {1, . . . , d}
for 1 ≤ k ≤ d. Let x ∈ Rd and xj = 0 for all j /∈ J then f(x) = 0. W.l.o.g.
we assume ij = j for all j ∈ {1, . . . , k}. Moreover let y ∈ Rd such that
x < y. The multivariate difference operator can therefore be written as∑

(ε1,...,εd)∈{0,1}d
(−1)

∑d
i=1 ε

i
f(ε1x1 + (1− ε1)y1, . . . , εdxd + (1− εd)yd)

=
∑

εj∈{0,1}, ∀j∈J
εj=0, ∀j /∈J

(−1)
∑d
i=1 ε

i
f(ε1x1 + (1− ε1)y1, . . . , εdxd + (1− εd)yd)

=
∑

(ε1,...,εk)∈{0,1}k
(−1)

∑k
j=1 ε

j

f(ε1x1 + (1− ε1)y1, . . . , εkxk + (1− εk)yk,

yk+1, . . . , yd)

for all (x1, . . . , xk, yk+1, . . . , yd) ∈ Rd. Writing the il-th summand in detail,
w.l.o.g. we assume l = 1 and obtain∑

(ε1,...,εk)∈{0,1}k
(−1)

∑k
j=1 ε

j

f(ε1x1 + (1− ε1)y1, . . . , εkxk + (1− εk)yk,

yk+1, . . . , yd)

=
∑

(ε2,...,εk)∈{0,1}k−1

(−1)
∑k
j=2 ε

j(
f(y1, ε2x2 + (1− ε2)y2, . . . ,

εkxk + (1− εk)yk, yk+1, . . . , yd)

− f(x1, ε2x2 + (1− ε2)y2, . . . ,

εkxk + (1− εk)yk, yk+1, . . . , yd)
)

=
∑

(ε2,...,εk)∈{0,1}k−1

(−1)
∑k
j=2 ε

j

4ε̃1

1 f(x1, ε2x2 + (1− ε2)y2, . . . ,

εkxk + (1− εk)yk, yk+1, . . . , yd)
= . . .

=4ε̃k

k . . .4ε̃1

1 f(x1, . . . , xk, yk+1, . . . , yd) (4.2)

where ε̃j > 0 is chosen such that

ε̃j = yj − xj for all j ∈ {1, . . . , k}.
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(i) Let f be now d-increasing and let J = {i1, . . . , ik} ⊂ {1, . . . , d} for
1 ≤ k ≤ d. W.l.o.g. we assume ij = j for all j ∈ {1, . . . , k}. By (4.2)
we then have

4ε̃k

k . . .4ε̃1

1 f(x1, . . . , xk, yk+1, . . . , yd) ≥ 0

for all (x1, . . . , xk, yk+1, . . . , yd) ∈ Rd. Therefore,

4ε̃k

k . . .4ε̃1

1 f(x1, . . . , xk, xk+1, . . . , xd) ≥ 0

for all (x1, . . . , xk, xk+1, . . . , xd) ∈ Rd.

(ii) Now, let (4.1) hold. Choose J = {i1, . . . , ik} ⊂ {1, . . . , d} for k ∈
{1, . . . , d} and ε̃1, . . . , ε̃k > 0 such that ε̃j = yij − xij . W.l.o.g. we
assume ij = j for all j ∈ {1, . . . , k}. We have that

4ε̃1

1 , . . . ,4ε̃k

k f(x1, . . . , xk, xk+1, . . . , xd) ≥ 0

implies
4ε̃1

1 , . . . ,4ε̃k

k f(x1, . . . , xk, yk+1, . . . , yd) ≥ 0.

This yields the assertion.

The following observation will be convenient in the sequel.

Proposition 4.1.3. Let f : Rd+ → R+. It holds that x 7→ (−1)df(x) is
d-increasing for x ≥ 0 if and only if x 7→ f(−x) is d-increasing for x ≤ 0.

Proof. Define f̃(x) := f(−x) for x ≤ 0. By Definition 4.1.1 we know that
x 7→ f̃(x) is d-increasing if and only if 4y

xf̃ ≥ 0 for x < y where

4y
xf̃

=
∑

(ε1,...,εd)∈{0,1}d
(−1)

∑d
i=1 ε

i
f̃
(
ε1x1 + (1− ε1)y1, . . . , εdxd + (1− εd)yd

)
=

∑
(ε1,...,εd)∈{0,1}d

(−1)
∑d
i=1 ε

i
f
(
− ε1x1 − (1− ε1)y1, . . . ,−εdxd − (1− εd)yd

)
.

Define x̃i := −xi, ỹi := −yi and ε̃i := 1− εi. Then

4y
xf̃

=
∑

(ε̃1,...,ε̃d)∈{0,1}d
(−1)

∑d
i=1(1−ε̃i)f

(
(1− ε̃1)x̃1 + ε̃1ỹ1, . . . , (1− ε̃d)x̃d + ε̃dỹd

)
=(−1)d4x̃

ỹf

for ỹ < x̃. Note that

(−1)d−
∑d
i=1 ε

i
= (−1)

∑d
i=1 ε

i−d.

This yields the assertion.
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The following definition of margins can be found in Kallsen and Tankov
(2006).

Definition 4.1.4. Let f : (−∞,∞]d → (−∞,∞] be a d-increasing function
such that f(u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d}. For
any non-empty index set I ⊂ {1, . . . , d}, the I-margin of f is the function
f I : (−∞,∞]I → (−∞,∞] defined by

f I
(
(ui)i∈I

)
:= lim

c→∞

∑
(uj)j∈Ic∈{−c,∞}|I

c|

f(u1, . . . , ud)
∏
j∈Ic

sgn uj ,

where Ic := {1, . . . , d} \ I.

For notational simplicity, the I-margin of F for I = {i} is denoted by
F i.

Remark 8. Let f : [0,∞]d → [0,∞] satisfy the conditions of Definition 4.1.4.
Then the I-margin of f is given by

f I
(
(ui)i∈I

)
:= f(u1, . . . , ud)

∣∣
ui=∞, i∈Ic .

4.2 Lévy copula for spectrally positive Lévy pro-
cesses

The term copula originates from the Latin noun for link, tie or bond. It is
originally used in linguistic to link the subject and predicate of a sentence.
It first appears in statistics in a theorem by Sklar to characterize the func-
tion which links univariate distribution functions to construct a multivariate
distribution function and which is named after him today. A detailed intro-
duction to the theory of ordinary copulas, mostly in the bivariate case, can
be found in Nelsen (2006). For the multivariate case Joe (1997) is a good
reference.
In the context of Lévy processes the idea is to establish an analogue of
Sklar’s theorem for Lévy measures. Since, with the exception of a com-
pound Poisson process, Lévy measures have a non-integrable singularity at
zero, we follow Kallsen and Tankov (2006) and introduce a Lévy copula on
the tail integral which is defined for each quadrant separately. We therefore
first treat Lévy copulas for Lévy processes with only positive jumps in each
component. A more detailed discussion about positive Lévy copulas can be
found e.g. in Cont and Tankov (2004).

4.2.1 Definitions and Sklar’s theorem

We only consider Lévy measures and Lévy copulas living on Rd+. Unlike
copulas for random vectors we have to take into account the possibility of
the Lévy measure to be infinite.
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Definition 4.2.1 (Positive Lévy copula). A d-dimensional positive Lévy
copula is a function F : [0,∞]d → [0,∞] satisfying

(i) F (u1, . . . , ud) is d-increasing

(ii) F (u1, . . . , ud) = 0 whenever ui = 0 for at least one i ∈ {1, . . . , d}

(iii) F has uniform margins, i.e. F i(u) = u for all i ∈ {1, . . . , d} and
u ∈ [0,∞].

We state the definition of a tail integral which is adapted from Tankov
(2003). The link between Lévy copulas and tail integrals will be illustrated
later in this section. The tail integral can be interpreted as the tail integral
of a Lévy measure and it characterizes the Lévy measure like the distribution
function characterizes the law of a random vector. As before we only consider
Lévy processes with positive jumps in every component.

Definition 4.2.2 (Tail integral of a Lévy measure). Let X be a d-dimensional
Lévy process with positive jumps and Lévy measure ν on (R+\{0})d. Its tail
integral is a function U : (R+ \ {0})d → [0,∞] such that for (x1, . . . , xd) ∈
(R+ \ {0})d

U(x1, . . . , xd) := ν
(
[x1,∞)× . . .× [xd,∞)

)
.

Remark 9. We know that (cf. Rüschendorf (1980)) f satisfies (4.1) and
is right-continuous if, and only if, f determines a measure µ on Rd by
µ((x, y]) = 4y

xf . Therefore, Definition 4.2.2 corresponds to the abstract
definition of a tail integral in Cont and Tankov (2004) (cf. Definition 5.7).
However, it possesses two additional properties:

(i) U is left-continuous in each variable.

(ii) U integrates ||x||2 near 0.∫
||x||≤1

||x||2ν(dx) =
∫
||x||≤1

||x||2dU <∞. (4.3)

Property (i) is equivalent to the right-continuity of U(−x) for x < 0. More-
over the definition of abstract tail integrals demands x 7→ (−1)dU(x) to be
d-increasing where x > 0 which is equivalent to x 7→ U(−x) d-increasing
for x < 0 (cf. Proposition 4.1.3). Therefore, U(−x) is a measure defining
function for x < 0. Furthermore, property (ii) entails that ν satisfies the
properties of a Lévy measure.

Definition 4.2.3 (Marginal tail integral). For I ⊂ {1, . . . , d} non-empty,
the I-marginal tail integral U I of X is the tail integral of the process XI =
(Xi)i∈I . To simplify notation, we denote one-dimensional margins by U i :=
U{i}.
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Tankov (2004) shows that there is a reformulation of Sklar’s theorem for
tail integrals. In analogy to survival copulas, multidimensional tail integrals
are coupled to their margins via a Lévy copula. The following theorem
known as Sklar’s theorem for Lévy processes can be found in Kallsen and
Tankov (2006).

Theorem 4.2.4 (Sklar’s theorem for Lévy processes). (a) Let X be a Rd+-
valued Lévy process.Then there exists a Lévy copula F on [0,∞]d such
that the tail integral of X is

U I
(
(xi)i∈I

)
= F I

(
(U i(xi))i∈I

)
(4.4)

for all I ⊂ {1, . . . , d} and all x ∈ (R+ \ {0})|I|. The function F is
uniquely determined on

∏d
i=1 Ran U i.

(b) Conversely, let X1, . . . , Xd be R+-valued Lévy processes with tail in-
tegrals U1, . . . , Ud and let F be a Lévy copula on [0,∞]d. Then equa-
tion (4.4) defines for all I ⊂ {1, . . . , d} and all x ∈ (R+ \ {0})|I| the
marginal tail integrals of a Rd+-valued Lévy process whose components
have tail integrals U1, . . . , Ud.

In the case that the marginal Lévy measures ν1, . . . , νd are infinite and
have no atoms, i.e. Ran U i = [0,∞] for all i, the Lévy copula is unique.

On the one hand, Sklar’s theorem states that Lévy copulas characterize the
tail integral of a Lévy process given fixed marginal tail integrals. On the
other hand, for given Lévy copula and one-dimensional tail integrals a mul-
tidimensional tail integral can be constructed. That is, the knowledge of
the marginal tail integrals does not provide the entire knowledge for the tail
integral of a multidimensional Lévy process.

For Lévy measures having Lebesgue densities, these densities can be
computed by differentiation. The following result does not only hold in the
positive Lévy copula case but also for general Lévy copulas and can be found
e.g. in Cont and Tankov (2004), Proposition 5.8.

Proposition 4.2.5. Let F be a positive, d-dimensional Lévy copula contin-
uous on [0,∞]d such that

∂dF (y1, . . . , yd)
∂y1 . . . ∂yd

exists on (0,∞)d

and let U1, . . . , Ud be univariate tail integrals with densities ν1, . . . , νd. Then

ν(x1, . . . , xd) =
∂dF (y1, . . . , yd)
∂y1 . . . ∂yd

∣∣∣
yi=U i(xi),i∈{1,...,d}

d∏
i=1

νi(xi)

is the Lévy density of a Lévy measure with marginal Lévy densities ν1, . . . , νd.
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Further properties of positive Lévy copulas as well as examples can be
found in the literature cited in this section as well as in Barndorff-Nielsen
and Lindner (2005).

4.2.2 Positive Archimedean Lévy copula

We focus on Archimedean Lévy copulas, a special class of Lévy copulas.
The term “Archimedean” originates from ordinary Archimedean copulas
satisfying a version of the Archimedean axiom, (cf. Nelsen (2006), Theorem
4.3.1).
We derive a necessary and sufficient condition for an Archimedean Lévy
generator to define a multidimensional positive Lévy copula. Inspired by
McNeil and Nešlehová (2008) we show that such a generator creates an
Archimedean Lévy copula if and only if it is a d-monotone function. So far, a
sufficient and necessary condition has only been analyzed for a bivariate Lévy
copula. Cont and Tankov (2004) (cf. Proposition 5.6) prove that a bivariate
Lévy copula is defined by an Archimedean Lévy generator if and only if
this generator is strictly decreasing and convex. While for a d-dimensional
Lévy copula Tankov (2003) requires the Archimedean Lévy generator to
have derivatives up to the order d with alternating signs. However, this
condition is only sufficient and not necessary for dimensions greater than
two.

Definition 4.2.6 (Archimedean Lévy generator and copula).

(a) A strictly decreasing and continuous function ψ : [0,∞] → [0,∞]
which satisfies the conditions ψ(0) = ∞ and ψ(∞) = 0 is called an
Archimedean Lévy generator.

(b) A d-dimensional Lévy copula F is called Archimedean if it permits the
presentation

F (u1, . . . , ud) = ψ
(
ψ−1(u1) + . . .+ ψ−1(ud)

)
, u ∈ [0,∞]d

for some Archimedean Lévy generator ψ.

Remark 10. We use the more familiar additive generator approach in con-
trast to the multiplicative generator approach used in Kallsen and Tankov
(2006), but they differ only by a logarithmic transformation (cf. Nelsen
(2006) for the case of Archimedean copulas of probability measures).

The following definition describes the requirement on the Archimedean
Lévy generator to create a positive Lévy copula as we will show later in this
section.

Definition 4.2.7. (a) d-monotonicity
A real function f is called d-monotone in (a, b), where a, b ∈ R and
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d ≥ 2, if it is differentiable in (a, b) up to order d−2 and the derivatives
satisfy

(−1)kf (k)(x) ≥ 0, k = 0, 1, . . . , d− 2

for any x ∈ (a, b) and further if (−1)d−2f (d−2) is non-increasing and
convex in (a, b).
For d = 1, f is called 1-monotone in (a, b) if it is non-negative and
non-increasing on (a, b).

(b) Complete monotonicity
If f has derivatives of all orders in (a, b) and if (−1)kf (k) ≥ 0 for any
x in (a, b), then f is called completely monotone.

Before we state the main theorem of this section some preliminary work
has to be done. The following proposition can be found in McNeil and
Nešlehová (2008), Proposition 15.

Proposition 4.2.8. Let f be a real function on (a, b), a, b ∈ R, let d ≥ 1
and let further f̃ denote a function on (−b,−a) given by f̃(x) = f(−x).
Then the following statements are equivalent

(i) f is d-monotone on (a, b).

(ii) f is non-negative and satisfies for any k = 1, . . . , d, any x ∈ (−b,−a)
and any hi > 0, i = 1, . . . , k such that (x+ h1 + . . .+ hk) ∈ (−b,−a)

4hk . . .4h1 f̃(x) ≥ 0

where 4hk . . .4h1 denotes a sequential application of the first order
difference operator 4x+h

x whenever x and (x+ h) ∈ (−b,−a).

(iii) f is non-negative and satisfies for any k = 1, . . . , d, any x ∈ (a, b) and
any h > 0 such that (x+ kh) ∈ (−b,−a)

(4h)kf̃(x) ≥ 0

where (4h)k denotes the k-fold sequential use of the operator 4x+h
x .

There is a crucial relation between d-monotonicity and d-increasing func-
tions which is essential for the proof of the main theorem of this section.

Proposition 4.2.9. Let f : [0,∞] → [0,∞] be a continuous, strictly de-
creasing real function satisfying f(∞) = 0 and G : [0,∞]d → [0,∞] be a
function specified by

G(f(x1), . . . , f(xd)) = f(||x||1).

Then it holds G is d-increasing if and only if f is a d-monotone function.
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Proof. First note that the boundary condition f(∞) = 0 forces the function
G to be grounded, i.e.

G(0, f(x2), . . . , f(xd)) = f(∞) = 0.

Define f̃(x) := f(−x) for any x ∈ (−∞, 0), J ⊂ {1, . . . , k} and

εi =

{
1, for i ∈ J
0, for i ∈ {1, . . . , k} \ J.

For k ∈ {1, . . . , d} and h > 0 such that x+ kh < 0 it holds that

(4h)kf̃(x)

=
∑

(ε1,...,εk)∈{0,1}k
(−1)

∑k
i=1 ε

i
f̃
(x
k

k∑
i=1

εi +
(x
k

+ h
)(
k −

k∑
i=1

εi
))

=
∑

(ε1,...,εk)∈{0,1}k
(−1)

∑k
i=1 ε

i
f
(
− x

k

k∑
i=1

εi −
(x
k

+ h
)(
k −

k∑
i=1

εi
))

=
∑

J⊂{1,...,k}

(−1)|J |G
(
f
(
− x

k

)
j∈J

, f
(
− x

k
− h
)
j∈{1,...,k}\J

, f(0), . . . , f(0)
)

First, let G be d-increasing. Together with the property that G is grounded
we obtain by Lemma 4.1.2 that∑
J⊂{1,...,k}

(−1)|J |G
(
f
(
− x

k

)
j∈J

, f
(
− x

k
− h
)
j∈{1,...,k}\J

, f(0), . . . , f(0)
)
≥ 0

(4.5)

since f is decreasing. Proposition 4.2.8 implies that f is d-monotone on
(0,∞).
Now, let us assume that f is d-monotone on (0,∞)d which is according to
Proposition 4.2.8 equivalent to (4h)kf̃(x) ≥ 0. Therefore the inequality
(4.5) holds and Lemma 4.1.2 implies that G is d-increasing.

We are now in the position to finally show that d-monotonicity is a
sufficient and necessary condition for an Archimedean Lévy generator to
create a d-dimensional Lévy copula.

Theorem 4.2.10. Let ψ be an Archimedean Lévy generator. Then F :
[0,∞]d → [0,∞] given by

F (u1, . . . , ud) = ψ
(
ψ−1(u1) + . . .+ ψ−1(ud)

)
, u ∈ [0,∞]d

is a d-dimensional Lévy copula if and only if ψ is d-monotone on (0,∞).
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Proof. F always satisfies (ii) and (iii) of Definition 4.2.1. It remains to show
that F is d-increasing if and only if ψ is d-monotone on (0,∞). We obtain

F (ψ(x1), . . . , ψ(xd)) = ψ(||x||1)

for any x ∈ (0,∞)d and ψ(xi) = ui. By Proposition 4.2.9 it holds that
F (ψ(x1), . . . , ψ(xd)) is d-increasing if and only if ψ is d-monotone. This
yields the assertion.

This Theorem entails the following two corollaries as special case (cf.
Cont and Tankov (2004), Propositions 5.6 and Proposition 5.7 for the if
part).

Corollary 4.2.11. Let ψ be an Archimedean Lévy generator. Then ψ gen-
erates a bidimensional positive Lévy copula if and only if ψ is convex.

Corollary 4.2.12. Let ψ be an Archimedean Lévy generator with derivatives
up to order d. Then ψ generates a d-dimensional positive Lévy copula if and
only if ψ has alternating signs of derivatives up to order d, i.e.

(−1)kψ(k)(x) ≥ 0 for k ∈ {1, . . . , d}.

Let us consider a few examples to illustrate Theorem 4.2.10.

Example 4.2.13 (Clayton Lévy copula). The generator ψ(t) = t−
1
δ for

δ ∈ (0,∞) generates the Clayton copula given by

Fδ(u1, . . . ud) =
(
(u1)−δ + . . .+ (ud)−δ

)− 1
δ .

The limiting cases include the complete dependence and independence Lévy
copulas, i.e.

lim
δ→∞

Fδ(u1, . . . , ud) = min(u1, . . . , ud),

lim
δ→0

Fδ(u1, . . . , ud) =u11{u2=...=ud=0} + . . .+ ud1{u1=...=ud−1=0}.

Therefore, δ allows to adjust the degree of dependence. We refer to Tankov
(2004) for a characterization of independence and complete dependence Lévy
copulas.

Example 4.2.14 (Gumbel Lévy copula). The generator ψ(t) = exp(t−
1
δ )−

1, δ ∈ (0,∞) generates the Gumbel Lévy copula given by

Fδ(u1, . . . , ud) = exp
(( d∑

i=1

(log(1 + ui))−δ
)− 1

δ
)
− 1.
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Figure 4.1: Bidimensional tail integral, U : (R \ {0}) × (R \ {0}) → R,
x > 0 y > 0 7→ ν

(
[x,∞) × [y,∞)

)
, x > 0 y < 0 7→ ν

(
[x,∞) × (−∞, y)

)
,

x < 0 y > 0 7→ ν
(
(−∞, x)× [y,∞)

)
, x < 0 y < 0 7→ ν

(
(−∞, x)× (−∞, y)

)
.

Example 4.2.15 (Ali-Mikhail-Haq Lévy-copula). The generator ψ(t) =
1−δ
et−1 , δ ∈ [−1, 1) generates

Fδ(u1, . . . , ud) =
1− δ∏d

i=1

(
1−δ
ui

+ 1
)
− 1

.

Inspired by Nelsen (2006) who chooses a similar generator for a copula for
random vectors we call this Lévy copula Ali-Mikhail-Haq Lévy-copula.

4.3 Lévy copula for general Lévy processes

Next we give a brief review of Lévy copulas for general Lévy processes.
As mentioned before, the main difficulty of Lévy processes is that Lévy
measures may have a singularity at zero. Therefore, each corner of the Lévy
measure has to be considered separately and we have to define tail integrals
for each orthant, compare Figure 4.1. For a more detailed approach and
details concerning the following definitions see Kallsen and Tankov (2006).
For I = {i1, . . . , ik} ⊂ {1, . . . , d} and x = (x1, . . . , xd) ∈ Rd we define
xI := (xi1 , . . . , xik).

4.3.1 Definitions and Sklar’s theorem

Analogously to the case of spectrally positive Lévy processes, the Lévy mea-
sure for the general case is characterized by its tail integral which is given
by the following definition.
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Definition 4.3.1. Let X be a Rd-valued Lévy process with Lévy measure ν.
The tail integral of X is the function U : (R\{0})d → R defined by

U(x1, . . . , xd) :=
d∏
i=1

sgn(xi) ν
( d∏
j=1

I(xj)
)
,

where

I(x) =
{

[x,∞) , x > 0
(−∞, x) , x ≤ 0

.

This definition differs from the positive Lévy copula case in that the Lévy
measure is not characterized by a single tail integral anymore. Instead, the
Lévy measure is characterized by all marginal tail integrals, each defined on
(R \ {0})I . Note that the tail integral does not determine the Lévy measure
uniquely. However, the Lévy measure is completely determined by the set
of its marginal tail integrals (cf. Tankov (2003), Lemma 4.7).
The abstract definition for general Lévy copulas is similar to the spectrally
positive case but it is defined on a different domain. Lévy copulas for general
Lévy processes are functions from (−∞,∞]d to (−∞,∞] instead of functions
from [0,∞]d to [0,∞] in the positive Lévy copula case.

Definition 4.3.2 (Lévy copula). A d-dimensional Lévy copula is a function
F : [−∞,∞]d → [−∞,∞] satisfying

(i) F (u1, . . . , ud) is d-increasing

(ii) F (u1, . . . , ud) = 0 whenever ui = 0 for at least one i ∈ {1, . . . , d}

(iii) F has uniform margins, i.e. F i(u) = u for all i ∈ {1, . . . , d} and
u ∈ [−∞,∞].

Finally, let us state a version of Sklar’s theorem for general Lévy pro-
cesses.

Theorem 4.3.3 (Sklar). (a) Let X be Rd-valued Lévy process. Then there
exists a Lévy copula F on (−∞,∞]d such that the tail integral of X is

U I
(
(xi)i∈I

)
= F I

(
(U i(xi))i∈I

)
(4.6)

for all I ⊂ {1, . . . , d} and all x ∈ (R \ {0})|I|. The function F is
uniquely determined on

∏d
i=1 Ran U1.

(b) Conversely, let (X1), . . . , (Xd) be R-valued Lévy processes with tail
integrals U1, . . . , Ud and let F be a Lévy copula on (−∞,∞]d. Then
equation (4.6) defines for all I ⊂ {1, . . . , d} and all x ∈ (R\{0})|I| the
marginal tail integrals of a Rd-valued Lévy process whose components
have tail integrals U1, . . . , Ud.

Here
∏d
i=1 RanU i = [−∞,∞]d if as before νi, i = 1, . . . , d has no atoms

and νi
(
(−∞, 0)

)
= ∞, νi

(
(0,∞)

)
= ∞. In this case the Lévy copula is

unique.
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4.3.2 General Archimedean Lévy copula

To complete this chapter, let us finally turn to general Archimedean Lévy
copulas on (−∞,∞]d. As mentioned before, the construction described
above is not valid if there are jumps in several directions. In this case the
definition of positive Lévy copulas has to be extended to the whole Euclidean
space. This can be done by constructing an Archimedean Lévy copula for
each orthant according to Subsection 4.2.2 and combining them in a certain
way. The following is adapted from Bäuerle et al. (2008).

Let I = {−1, 1}d and define for each i = (i1, . . . , id) ∈ I an orthant

Oi = {x ∈ Rd : sgn (xj) = ij , j ∈ {1, . . . , d}}.

Given a set of functions Fφi , i ∈ I, and a weight function η : I → [0, 1]
having the property that for each k ∈ {1, . . . , d} it holds∑

i: ik=−1

η(i) =
∑
i: ik=1

η(i) = 1,

we can define an Archimedean Lévy copula on Rd by

F (u1, . . . , ud) =
∑
i∈I

(
η(i)Fφi(|u

1|, . . . , |ud|)1u∈Oi
d∏
j=1

sgn (uj)
)

if |uj | > 0, j ∈ {1, . . . , d} and F (u1, . . . , ud) = 0 else.

Remark 11. Kallsen and Tankov (2006) have introduced a family of Arch-
imedean Lévy copulas on (−∞,∞]d. However, it can be checked that the
class of Lévy processes generated by their family of Archimedean Lévy cop-
ulas does not include positive dependent Lévy processes in terms of associ-
ation.



Chapter 5

Stochastic control of
portfolios with
Lévy-dynamics

We investigate now optimization of reinsurance and investment strategies
in a multidimensional Lévy-driven insurance model. A special feature of
our construction allows for dependent claims and dependent investments of
the insurance company’s single business lines. Before considering our insur-
ance model driven by Lévy dynamics in Section 5.2, we treat Lévy process
stochastic control theory in Section 5.1. As far as we know, there is by now
only a very short introduction to stochastic control with respect to jump
diffusions provided by Øksendal and Sulem (2007). Specific conditions are
required to get existence of a solution of the Lévy stochastic differential
equations and to have a well-defined mean in the reward functional.
Inspired by Browne (1995) who discovered that in a one-dimensional dif-
fusion model the control which maximizes expected exponential utility of
terminal wealth also minimizes the ruin probability, we consider in Section
5.3 the optimization criterion that maximizes exponential utility of terminal
wealth. Imbedding this problem in stochastic control theory and solving the
Hamilton-Jacobi Bellman equation we can show that it is optimal to keep
the retention level and investment portfolio constant regardless of the time
and the company’s wealth level. This does not only hold for proportional
reinsurance but also for general reinsurance as well as for a mixture of pro-
portional and excess of loss reinsurance in a slightly modified model. In the
latter case we can even show that there exists a pure excess of loss strategy
which is always better than any combined reinsurance policy. We conclude
in Section 5.4 with a validation of the conjecture that the policy which max-
imizes utility of terminal wealth also minimizes the ruin probability in our
multidimensional reinsurance model. This holds omitting claims caused by
jumps while assuming that ruin occurs when the weighted sum of net values
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of the business units become negative.

5.1 Stochastic control of Lévy processes

There is quite a bit of literature on continuous time stochastic control theory
for processes having continuous paths. We only mention a few e.g. Flem-
ing and Rishel (1975), Yong and Zhou (1999), Schmidli (2008) in actuarial
context and Korn (1997) with respect to portfolio optimization. However,
literature on stochastic control for jump processes is quite sparse. As far as
we know, only Øksendal and Sulem (2007) provide a short introduction to
stochastic control of jump diffusions. For this reason we provide a thorough
introduction to stochastic control of general Lévy processes.

5.1.1 Terminology of classical control theory

Let (Ω,F, (Ft)0≤t≤T ,P) be a filtered probability space satisfying the usual
hypotheses of completeness and right-continuity (cf. Protter (1990), Chapter
I) and let U be a given set. We refer to X = (Xs)s∈I defined in Section
3.6 as state process in the time interval I ⊂ R+. We are free to choose
a control process u = (us)s∈I , u : I × Ω → U affecting the dynamics of
the system. The control process u = (us)s∈I is assumed to be predictable,
i.e. measurable with respect to the σ-algebra generated by all adapted left-
continuous processes. In the finite horizon case the state process is only
controlled in a finite interval I = [t, T ] whereas in the infinite horizon case it
is controlled in the interval I = [0,∞). Choosing a control u the dynamics
of the system are governed by the following differential equation

dXs =µ(Xs, us) ds+ σ(Xs, us) dWs +
∫
Rd
γ(Xs−, us, z) N̄(ds, dz)

Xt =x (5.1)

where
N̄(ds, dz) = N(ds, dz)− 1{||z||<1}ν(dz)ds,

µ : Rd × U → Rd, σ : Rd × U → Rd×r and γ : Rd × U ×Rd → Rd.

If it exists, the process X = (Xs)s∈I is the solution of the controlled Lévy
stochastic differential equation (5.1).

Remark 12. If (Xs) is a càdlàg adapted process, then (Xs−) is a predictable
process (cf. Jacod and Shiryaev (2003), Proposition 2.6). Therefore our
stochastic integral in (5.1) is well-defined.

Exercising control does not only affect the dynamics of the system but
also results in rewards. We therefore associate a reward functional with each
control u which is for the
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(a) finite horizon

J(t, x;u) = Et,x

[∫ T

t
g(s,Xs, us) ds+ h(XT )

]
. (5.2)

The function g(s, x, u) is called running reward function and h(x) ter-
minal reward function. Both, the running reward and the terminal re-
ward function are assumed to be continuous. The functional J(t, x;u)
is therefore the total expected reward of using control u on the interval
[t, T ] when starting at time t in position x. This is also indicated by
the indices at the conditional expectation.

(b) infinite horizon

J(x;u) = Ex

[∫ ∞
0

e−rsg(Xs, us) ds
]
. (5.3)

The running reward g(x, u) is assumed to be continuous and it does not
depend on s. The functional J(x;u) is the discounted reward of using
control u when starting at time t = 0 in position x. The parameter
r > 0 is called discount rate.

We denote by U(t, x) ⊂ U the set of all admissible controls u where the
controlled process starts in (t, x) ∈ I×Rd if the stochastic differential equa-
tion (5.1) with initial condition Xt = x admits a unique solution X for all
x ∈ Rd and if the mean in the reward functional (5.2) (respectively in (5.3))
is well-defined.

The aim is to choose the control process which maximizes the reward func-
tion. That is, in order to get a solution we have to find an optimal control
u∗ ∈ U(t, x) and the value function V (t, x) or V (x) defined by

V (t, x) = sup
u∈U(t,x)

J(t, x;u) = J(t, x;u∗),

and
V (x) = sup

u∈U(x)
J(x;u) = J(x;u∗)

respectively.

In the following we only focus on the finite horizon problem. Let us introduce
some necessary assumptions. As we have seen in the previous section, even
the solution of an uncontrolled stochastic differential equation may not exist
unless the drift, the diffusion coefficient and the jump coefficient satisfy
certain regularity conditions. Furthermore, the reward functional could be
infinite for each admissible control if the reward functions’ rate of growth
is too large. We assume that the functions µ(·, ·), σ(·, ·), γ(·, ·) and the
functions g(·, ·, ·) and h(·, ·) satisfy the following conditions:
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(A1) Adjusted linear growth condition
There exists a constant C1 such that,

||µ(x, u)||2 + ||σ(x, u)σ(x, u)T ||sn +
∫
Rd
||γ(x, u, z)||2 ν(dz)

≤C1(1 + ||x||2 + ||u||2).

(A2) Lipschitz condition
There exists a constant C2 such that

||µ(x, u)− µ(y, v)||2 +
∫
{Rd,||z||<1}

||γ(x, u, z)− γ(y, v, z)||2 ν(dz)

+ ||σ(x, u)σ(x, u)T − 2σ(x, u)σ(y, v)T + σ(y, v)σ(y, v)T ||sn
≤C2(||x− y||2 + ||u− v||2).

(A3) Continuity
The mapping (x, u)→ γ(x, u, z) is continuous for all z ≥ 1.

(A4) Polynomial growth condition
There exist constants C3 and k <∞ such that

|g(t, x, u)| ≤C3(1 + ||x||k + ||u||k)
|h(t, x)| ≤C3(1 + ||x||k).

(A5) Moment condition
For some k ≥ 1 the Lévy measure ν(dz) satisfies∫

{Rd,||z||≥1}
||z||k ν(dz) <∞.

By Theorem 3.6.2 existence and uniqueness of the solution to (5.1) follow
from (A1), (A2) and (A3). The next proposition shows that these assump-
tions also ensure that the mean in the reward functional is well-defined.

Proposition 5.1.1. Suppose (A1)-(A5) and E[
∫ T
t ||us||

k ds] < ∞ for all
k < ∞ hold. Then the reward functional J(t, x;u) and the value function
V (t, x) satisfy

|J(t, x;u)| ≤K(1 + ||x||k) for all u ∈ U (5.4)

|V (t, x)| ≤K(1 + ||x||k) for all (t, x) ∈ [0, T ]×Rd. (5.5)

Proof. Let (t, x) ∈ [0, T )×Rd be fixed. By Theorem 3.6.3 we have

E
[

max
t≤s≤T

||Xs||k
]
≤ C(1 + ||x||k) (5.6)
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where X is the solution of (5.1). Together with (A4) we get an upper bound

|J(t, x;u)| ≤K(1 + ||x||k) ∀u ∈ U(t, x)

where K depends on C = C(T,m, d), C3, T as well as the upper bound of
E
[ ∫ T

t ||us||
k ds

]
. This implies (5.5).

Under the assumptions of this section it therefore suffices to define the
set of admissible controls U(t, x) for fixed (t, x) ∈ I ×Rd such that

U(t, x) =
{
u ∈ U : (us)s∈[t,T ] is predictable and

E
[∫ T

t
||us||k ds

]
<∞ for all k <∞

}
.

5.1.2 Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman (HJB) equation serves a method to derive the
solution of stochastic control problems. This famous equation is named after
Richard Bellman, who pioneered the theory of dynamic programming in the
1950s and after whom the corresponding discrete-time equation is named. It
is further named after William Rowan Hamilton and Carl Gustav Jacob Ja-
cobi since the Hamilton-Jacobi-Bellman equation for the diffusion case can
be seen as an extension of the Hamilton-Jacobi equation in classical physics.

Let us now derive the Hamilton-Jacobi-Bellman equation for the finite hori-
zon problem where we extend the classical Hamilton-Jacobi-Bellman equa-
tion to the case of the controlled process being a general Lévy process. The
main tool is the Bellman equation which is sometimes also called Dynamic
Programming principle. The following citation is due to Bellman (cf. Bell-
man (1957), p. 83).

“An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first
decision.”

Theorem 5.1.2 (Bellman equation). The optimal reward function V (t, x)
satisfies the Bellman equation, i.e. for all (t, x) ∈ [0, T )×Rd,

V (t, x) = sup
u∈U(t,x)

Et,x

[ ∫ t̃

t
g(s,Xs, us) ds+ V (t̃, Xt̃)

]
, for all t̃ ∈ [t, T ],

where X denotes the solution of the stochastic differential equation (5.1).

Proof. We omit this rather technical proof and refer to Yong and Zhou
(1999) (cf. Theorem 3.3) or Højgaard and Taksar (2007) (cf. Theorem B.1).
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The Bellman equation states that the maximal expected value V (t, x) in
the interval [t, T ] can be derived by taking the supremum over the following
strategy: Choose control u in [t, t̃] and act optimal from Xt̃ onwards which
leads to a reward V (t̃, Xt̃).

Corollary 5.1.3 (Bellman’s principle of optimality). If (X∗, u∗) is optimal
on [t, T ] then

V (t̃, X∗
t̃
) = J(t̃, X∗

t̃
;u∗) for t̃ ≥ t.

That means the restriction of (X∗, u∗) on the interval [t̃, T ] with t̃ ≥ t is
optimal.

Proof. For all t ≤ t̃ we have

V (t, x) =J(t, x;u∗) = Et,x

[∫ t̃

t
g(s,Xs, u

∗
s) ds+ J(t̃, X∗

t̃
;u∗)

]
≤Et,x

[∫ t̃

t
g(s,Xs, u

∗
s) ds+ V (t̃, X∗

t̃
)
]
≤ V (t, x)

where the last inequality follows from the Bellman equation (cf. Theorem
5.1.2). Therefore,

Et,x
[
J(t̃, X∗

t̃
;u∗)

]
= Et,x

[
V (t̃, X∗

t̃
)
]

and thus
J(t̃, X∗

t̃
;u∗) = V (t̃, X∗

t̃
) a.s.

which yields the assertion.

Let us now define the Hamiltonian generator Auf(t, x) with respect to
general Lévy processes for any C1,2 function f : [0, T ]×Rd → R such that

Auf(t, x)

=
∂f(t, x)
∂t

+
d∑
i=1

µi(x, u)
∂f(t, x)
∂xi

+
1
2

d∑
i,j=1

Aij(x, u)
∂2f(t, x)
∂xi∂xj

+
∫
Rd

(
f(t, x+ γ(x, u, z))− f(t, x)−

d∑
i=1

γi(x, u, z)
∂f(t, x)
∂xi

1{||z||≤1}

)
ν(dz)

where A(x, u) = σ(x, u)σ(x, u)T denotes the covariance matrix of our state
process. Before we state the Hamilton-Jacobi Bellman equation based on
Lévy processes, we need some more assumptions to ensure the martingale
preserving property with respect to general Lévy processes.

(M1) For V ∈ C1,

E
[∫ T

0

∣∣∣∣∣∣∂V (t, x)
∂x

∣∣∣
x=Xt

σ(Xt, ut)
∣∣∣∣∣∣2 dt] <∞.
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(M2) E
[∫ T

0

∫
Rd

∣∣∣∣V (t,Xt− + γ(Xt−, ut, z))− V (t,Xt−)
∣∣∣∣2 ν(dz)dt

]
<∞.

We are now able to derive the Hamilton-Jacobi Bellman equation.

Theorem 5.1.4. Suppose (A1)-(A5), (M1)-(M2) and V (t, x) ∈ C1,2([0, T ]×
Rd) hold. Then V (t, x) satisfies the Hamilton-Jacobi-Bellman (HJB) equa-
tion

sup
u∈U

{
AuV (t, x) + g(t, x, u)

}
= 0, (t, x) ∈ [0, T )×Rd, (5.7)

with terminal condition

V (T, x) = h(x), x ∈ Rd. (5.8)

Proof. Fix (t, x) ∈ [0, T )×Rd as well as an arbitrary constant control u ∈ U .
Let X be the corresponding state trajectory to u ∈ U(t, x) with us ≡ u for
all s. For ε > 0 let ηεu = (ε+ t)∧ inf{s ≥ t : ||Xs−x|| ≥ ε}. Then ηεu <∞ a.s.
and ηεu → t as ε→ 0. Applying the Itô-Doeblin formula for multidimensional
Lévy processes (cf. Theorem 3.5.1) on the value function we have for ηεu ≥ t
in terms of the Hamiltonian generator

V (ηεu, Xηεu) =V (t, x) +
∫ ηεu

t
AuV (s,Xs) ds (5.9)

+
∫ ηεu

t

d∑
i,k=1

V (s, x)
∂xi

∣∣∣
x=Xs

σik(s,Xs, u) dW k
s

+
∫ ηεu

t

∫
Rd

(
V (s,Xs− + γ(Xs−, u, z))− V (s,Xs−)

)
Ñ(ds, dz).

The finite variation process is contained in the Hamiltonian generator, the
remaining term of (5.9) is a martingale term (cf. Theorem 3.5.2). Note
that for the application of Itô-Doeblin’s formula the assumption V (t, x) ∈
C1,2([0, T ] × Rd) is required. Applying Bellman’s equation (cf. Theorem
5.1.2) yields

0 ≥ E
[
V (ηεu, Xηεu)− V (t, x)

]
+ E

[∫ ηεu

t
g(s,Xs, u) ds

]
.

Dividing by E[ηεu − t] and pasting in (5.9) gives us

0 ≥ 1
E[ηεu − t]

E
[
V (ηεu, Xηεu)− V (t, x) +

∫ ηεu

t
g(s,Xs, u) ds

]
=

1
E[ηεu − t]

E
[∫ ηεu

t

(
AuV (s,Xs) + g(s,Xs, u)

)
ds

+
∫ ηεu

t

d∑
i,k=1

V (s, x)
∂xi

∣∣∣
x=Xs

σik(s,Xs, u) dW k
s
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+
∫ ηεu

t

∫
Rd

(
V (s,Xs− + γ(Xs−, u, z))

− V (s,Xs−)
)
Ñ(ds, dz)

]
.

Because of assumptions (M1)-(M2) and the martingale preserving property
for Brownian integrals and compensated Poisson integrals (cf. Cont and
Tankov (2004) p.259 ff.) it holds that

E
[ ∫ ηεu

t

d∑
i,k=1

V (s, x)
∂xi

∣∣∣
x=Xs

σik(s,Xs, u) dW k
s

]
= 0 (5.10)

as well as

E
[ ∫ ηεu

t

∫
Rd

(
V (s,Xs−+γ(Xs−, us−, z))−V (s,Xs−)

)
Ñ(ds, dz)

]
= 0. (5.11)

Thus it remains

0 ≥ 1
E[ηεu − t]

E
[∫ ηεu

t

(
AuV (s,Xs) + g(s,Xs, u)

)
ds
]
.

By construction of ηεu we have that ηεu − t ≤ ε and ||Xs − x|| < ε for all
s ∈ [t, ηεu). Therefore,

g(s,Xs, u) +AuV (s,Xs) = g(t, x, u) +AuV (t, x) + φ(s)

where

|φ(s)| ≤ sup
||x−y||<ε,|t−s|<ε

|g(t, x, u)− g(s, y, u)|+ |AuV (t, x)−AuV (s, y)| → 0

as ε→ 0 by the continuity of g, the Lipschitz condition (A2) and V ∈ C12.
Letting ηεu tend to t we obtain

0 ≥ AuV (t, x) + g(t, x, u)

for all u ∈ U . Arbitrariness of u yields

sup
u∈U

{
AuV (t, x) + g(t, x, u)

}
≤ 0.

Now, let ε̃ > 0, ηεu as defined above and 0 ≤ t < ηεu ≤ T with E[ηεu − t]
small enough. Then there exists u ≡ uε̃,ηεu ∈ U(t, x) with

V (t, x)− ε̃E[ηεu − t] ≤ E
[∫ ηεu

t
g(s,Xs, us) ds+ V (ηεu, Xηεu)

]
.
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Thus

−ε̃ ≤ 1
E[ηεu − t]

E
[
V (ηεu, Xηεu)− V (t, x) +

∫ ηεu

t
g(s,Xs, us) ds

]
.

Therefore by (5.9) and the same arguments as above we have

−ε̃ ≤ 1
E[ηεu − t]

E
[∫ ηεu

t

(
AuV (s,Xs)) + g(s,Xs, us)

)
ds
]

≤ 1
E[ηεu − t]

E
[∫ ηεu

t
sup
u∈U

{
AuV (s,Xs) + g(s,Xs, u)

}
ds
]

and letting ε→ 0 yields

−ε̃ ≤ sup
u∈U

{
AuV (t, x) + g(t, x, u)

}
.

We obtain

0 ≤ sup
u∈U

{
AuV (t, x) + g(t, x, u)

}
and the assertion follows.

We proved that the Hamilton-Jacobi-Bellman equation is satisfied by the
optimal reward function V (t, x) under certain regularity conditions. How-
ever, it is hardly possible to prove the smoothness of the optimal reward
function a priori. But the following theorem states that if there exists a so-
lution to the HJB-equation and certain assumptions are satisfied then this
solution coincides with the optimal reward function. In addition, the proof
provides a method for the construction of an optimal control.

Theorem 5.1.5 (Verification theorem). Let Ṽ (t, x) ∈ C1,2([0, T ] × Rd) be
a solution of the HJB-equation (5.7) with terminal condition (5.8). Suppose
(A1)-(A5) and (M1)-(M2) for Ṽ hold. Then

(a) Ṽ (t, x) ≥ V (t, x) for all (t, x) ∈ [0, T ]×Rd.

(b) If for all (t, x) ∈ [0, T ] × Rd there exists an ũ(·, ·) ∈ U(t, x) such that
ũ(s, y) is a maximum point of

u 7→ AuṼ (s, y) + g(s, y, u) for all s ∈ [t, T ] (5.12)

and X∗s the corresponding state process, i.e. X∗s is the solution to the
following stochastic differential equation

dXs =µ
(
s,Xs, ũ(s,Xs)

)
ds+ σ

(
s,Xs, ũ(s,Xs)

)
dWs

+
∫
Rd
γ
(
Xt−, ũ(t,Xt−), z

)
N̄(dt, dz)

Xt =x.
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Then
u∗s = ũ(s,X∗s ) for all s ∈ [t, T ]

is an optimal control and

Ṽ (t, x) = V (t, x) for all (t, x) ∈ [0, T )×Rd.

Proof. (a) Fix (t, x) ∈ [0, T ) × Rd as well as an arbitrary control. Let X
be the corresponding state trajectory to u ∈ U(t, x). Applying Itô-
Doeblin’s formula for multidimensional Lévy processes (cf. Theorem
3.5.1) we get under assumption (M1)-(M2)

Et,x
[
Ṽ (T,XT )− Ṽ (t, x)

]
=Et,x

[∫ T

t
AuṼ (s,Xs) ds

]
≤Et,x

[
−
∫ T

t
g
(
s,Xs, us

)
ds
]

where the last step follows from the Hamilton-Jacobi-Bellman equation
(5.7). Since (t, x) is fixed, Ṽ (t, x) is deterministic. Thus

Ṽ (t, x) ≥Et,x
[∫ T

t
g(s,Xs, us) ds+ Ṽ (T,XT )

]
=Et,x

[∫ T

t
g(s,Xs, us) ds+ h(XT )

]
= J(t, x;u) (5.13)

for all u ∈ U . Arbitrariness of u yields

Ṽ (t, x) ≥ V (t, x).

(b) Now, apply the above argument to u∗s = ũ(s,X∗s ) for all s ∈ [t, T ].
Then we get equality in (5.13) and u∗ is the optimal solution, since

Ṽ (t, x) = V (t, x) = J(t, x;u∗).

The verification theorem (cf. Theorem 5.1.5) offers a technique to solve
our stochastic control problem. It is described by the following steps.

Verification technique

Step 1 Determine ũ(s, y) as a maximum point of (5.12) depending on the
unknown function Ṽ .

Step 2: Determine Ṽ (t, x) as a solution of

Aũ(t,x)Ṽ (t, x) + g(t, x, ũ(t, x)) =0,

V (T, x) =h(x) (t, x) ∈ [0, T ]×Rd.
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Step 3: Compute X∗s as a solution of

dXs =µ
(
s,Xs, ũ(s,Xs)

)
dt+ σ

(
s,Xs, u

∗(s,Xs)
)
dWs

+
∫
Rd
γ
(
Xs−, u

∗(s−, Xs−), z
)
N̄(ds, dz)

Xt =x.

Define u∗(s) = ũ(s,X∗s ).

Step 4: Verify optimality, i.e. check all assumptions of Theorem 5.1.5.

There is a simple method to confirm that the candidate for the optimal
control is indeed optimal.

Theorem 5.1.6 (Martingale optimality principle). Let u ∈ U(t, x) and
define the following reward process by

Mu,t,x
ϑ :=

∫ ϑ

t
g
(
s,Xu

s , us
)
ds+ V (ϑ,Xu

ϑ) for all ϑ ∈ [t, T ].

Then

(a)
(
Mu,t,x
ϑ

)
is a supermartingale for all u ∈ U(t, x).

(b)
(
Mu∗,t,x
ϑ

)
is a martingale if and only if u∗ is the optimal control.

Proof. First note by assumptions (A1)-(A5) it holds that E|Mu,t,x
ϑ | <∞ for

all ϑ ∈ [t, T ] (cf. Proposition 5.1.1).

(a) For ϑ̃ ≤ ϑ it holds

E[Mu,t,x
ϑ |Fϑ̃]

=E
[∫ ϑ̃

t
g(s,Xu

s , us) ds+
∫ ϑ

ϑ̃
g(s,Xu

s , us) ds+ V (ϑ,Xu
ϑ)
∣∣∣Fϑ̃]

=
∫ ϑ̃

t
g(s,Xu

s , us) ds+ E
[∫ ϑ

ϑ̃
g(s,Xu

s , us) ds+ V (ϑ,Xu
ϑ)
∣∣∣Fϑ̃]

≤
∫ ϑ̃

t
g(s,Xu

s , us) ds+ V (ϑ̃,Xu
ϑ̃

) = Mu,t,x

ϑ̃
.

The inequality results from the Bellman equation (cf. Theorem 5.1.2).
Hence,

(
Mu,t,x
ϑ

)
is a supermartingale.

(b) First, let
(
Mu∗,t,x
ϑ

)
be a martingale. Then

V (t, x) = Mu∗,t,x
t = E[Mu∗,t,x

T |Ft] = J(t, x;u∗).
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Therefore, u∗ is optimal. Second, let u∗ be optimal on [t, T ]. We have
by Bellman’s optimality principle (cf. Corollary 5.1.3)

V (ϑ̃,X∗
ϑ̃
) = J(ϑ̃,X∗

ϑ̃
;u∗) for all ϑ̃ ∈ [t, T ].

Hence for all ϑ ≥ ϑ̃ it yields

V (ϑ̃,X∗
ϑ̃
) =J(ϑ̃,X∗

ϑ̃
;u∗)

=E
[∫ ϑ

ϑ̃
g(s,Xu∗

s , u∗s) ds+ V (ϑ,X∗ϑ)
∣∣Fϑ̃].

Therefore, we have equality in (a) and

Mu∗,t,x

ϑ̃
= E[Mu∗,t,x

ϑ |Fϑ̃],

i.e.
(
Mu∗,t,x
ϑ

)
is a martingale.

Intuitively, the submartingale inequality of Theorem 5.1.6 yields that
the difference E[Mu,t,x

ϑ |Fϑ̃]−Mu,t,x

ϑ̃
is the expected cost caused by using the

non-optimal control over the time interval [ϑ̃, ϑ] rather than switching to an
optimal control already at time ϑ̃.

Remark 13. The Hamilton-Jacobi Bellman verification theorem (cf. Theo-
rem 5.1.5) is a special case of the martingale optimality principle (cf. The-
orem 5.1.6) since by the Itô-Doeblin formula (cf. Theorem 3.5.1) we have

dMu,t,x
ϑ =g(ϑ,Xϑ, uϑ) dϑ+ dV (ϑ,Xu

ϑ)

=g(ϑ,Xϑ, uϑ) dϑ+AuV (ϑ,Xϑ) + M̃,

where M̃ is the martingale term (cf. Theorem 3.5.2). Therefore, part (a) of
Theorem 5.1.6 holds if and only if

g(ϑ,Xϑ, uϑ) dϑ+AuV (ϑ,Xϑ) ≤ 0

for all u ∈ U(t, x), respectively part (b) if and only if

g(ϑ,Xϑ, u
∗
ϑ) dϑ+Au∗V (ϑ,Xϑ) = 0

for the optimal control u∗.
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5.2 Insurance model driven by Lévy dynamics

Let (Ω,F ,P) be a probability space endowed with filtration (Ft)t≥0 that sat-
isfies the usual hypotheses of completeness and right-continuity (cf. Protter
(1990), Chapter I). The σ-algebra Ft represents the information available
at time t and any decision is made upon this information. Let (Wt)t≥0 be
a d-dimensional standard Brownian motion and N an independent Pois-
son random measure with associated compensated Poisson random measure
Ñ and intensity measure ν where we assume that ν is a Lévy measure.
For notational convenience let us again define N(dt, dz) := N(dt, dz) −
1{||z||<1}ν(dz)dt.

We consider an insurance company consisting of d lines of business. Let Xi
t

be a stochastic process that denotes the current reserve of business line i at
any time t where i ∈ {1, . . . , d}. In such case that no reinsurance is real-
ized and no investments on the financial market are made, the risk process
evolves according to

Xi
t =xi + cit+

r∑
k=1

σC,ikWC,k
t −

∫ t

0

∫
Rd
yiN

C(ds, dy)

where xi > 0 is the initial reserve of business line i, ci > 0 is the (constant)
premium income over time and σC,ik ∈ R. The index C denotes the relation
to the claim process.

A special feature of our construction allows the risk reserves to be depen-
dent. One might be interested in insurance losses occurring in different lines
of business supposing that different types of casualties are dependent. A
simplified example for such possible dependencies is that of natural disas-
ters which might affect several lines of business. Let us think of a storm
tide. On the one hand a storm tide may cause claims on buildings. On the
other hand it may contaminate drinking water which results in infections of
people. Thus two lines of business of the insurance company are affected,
the property as well as the health insurance. For a mathematical formu-
lation of dependencies among Lévy processes we refer to Chapter 4 of this
thesis.

In the following, we deal with the evolution of the reserves of an insurance
company with d ≥ 1 lines of business facing dependent risks where the risk
reserves of the single business lines can be controlled by reinsurance and
investments on a financial market.
That is, on the one hand our d-dimensional stochastic process can be con-
trolled by a proportional reinsurance policy bt = (b1t , . . . , b

d
t ) which reinsures

the fraction 1 − bit of the incoming claims of business line i at any time t.
In other words bt = (b1t , . . . , b

d
t ) denotes the fraction of the incoming claims

that the company insures itself, the so-called retention level. We require
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bt ∈ Rd+, where bi > 1 indicates that additional business should be signed
to line of business i. Thus the risk reserve is now constructed by a dynamic
choice of bt ∈ Rd+. The corresponding equation for the risk reserve including
proportional reinsurance is

Xb,i
t =xi + ci

∫ t

0
bis ds+

∫ t

0
bis

r∑
k=1

σC,ik dWC,k
s

−
∫ t

0

∫
Rd
bisy

iN
C(ds, dy).

This is based on the assumption, that reinsurance companies have the same
safety loading as the insurance company itself. This is usually called cheap
reinsurance. Of course, one might also think of other choices of reinsurance
policies including mixtures (cf. Section 5.3.3). However, we restrict ourselves
in the majority of cases to proportional reinsurance since it is the most
tractable one.

On the other hand, the surplus of the insurance company can be invested
in a Lévy-driven financial market. Suppose we have a market with d risky
investments with price dynamics

dSit =Sit−
(
µi dt+

r∑
k=1

σS,ik dWS,k
t +

∫
(−1,∞)d

ziN
S(ds, dz)

)

where Si0 = si > 0, µ > 0 and σS,ik ∈ R for i ∈ {1, . . . , d}. The index
S denotes the relation to the stock price. The assumption that jumps in
the financial market are larger than −1 is necessary for the stock prices to
be positive (cf. Cont and Tankov (2004), Proposition 8.21, Doléans-Dade
exponential). Our construction allows the evolution of the price processes
(S1, . . . , Sd) to be dependent. Let δt = (δ1t , . . . , δ

d
t ) ∈ Rd be the amounts of

money invested in the stock at any time t. We allow δt to become negative
which represents short selling of stocks.

Thus our control action at = (bt, δt) consists of two components where bt
specifies the retention level and δt the portfolio vector at any time t. We
require at = (bt, δt) to be predictable.

To sum up, the risk process of business line i controlled by reinsurance and
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investment on a financial market evolves according to

Xa,i
t =xi +

∫ t

0

(
cibis + µiδis

)
ds+

∫ t

0

r∑
k=1

bisσ
C,ik dWC,k

s

+
∫ t

0

r∑
k=1

δisσ
S,ik dWS,k

s

+
∫ t

0

∫
Rd

∫
(−1,∞)d

(
δisz

i − bisyi
)
N(ds, dz, dy)

where N = N
S⊗NC . We assume the claim process to be independent from

the stock price process, which means that the stock price process and the
claim process never jump together. In other words, the support of the Lévy
measure ν is contained in the set {(y, z) : y · z = 0} (cf. Cont and Tankov
(2004), Proposition 5.3).

5.3 Maximizing exponential utility

In this section we consider an insurance company that is interested in max-
imizing its utility from terminal wealth at time T . We further suppose that
the insurance company has an exponential utility function

u(x1, . . . , xd) = λ− γ

θ
exp

(
−θ

d∑
i=1

xi
)

(5.14)

where γ > 0 and θ > 0. The function V (t, x) describes the maximal expected
exponential utility starting at time t in state x. That is,

V (t, x) = sup
a
E[u(Xa

T )|Xa
t = x].

5.3.1 Proportional reinsurance and investment

We imbed the problem of maximizing exponential utility of terminal wealth
in the framework of stochastic dynamic programming. Solving the Hamilton-
Jacobi-Bellman equation, we can show that it is optimal to keep the retention
level and investments constant, regardless of time and the company’s level
of wealth.

We need some integrability conditions. Let∫
{Rd,||y||>1}

||y|| exp
(
θΓ||y||

)
νC(dy) <∞ (5.15a)

and ∫
{Rd,||z||>1}

||z|| exp
(
θΛ||z||

)
νS(dz) <∞ (5.15b)
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for some constants 0 < Γ,Λ <∞.

Theorem 5.3.1. The optimal strategy to maximize expected exponential
utility at a terminal time T is to keep the retention level constantly equal to
the solution b∗ = (b∗,1, . . . , b∗,d) of the equation

0 =ci − θ
r∑

k=1

d∑
j=1

b∗,jσC,ikσC,jk −
∫
Rd
yi
(

exp
(
θ

d∑
j=1

b∗,jyj
)
− 1{||y||<1}

)
νC(dy)

over the interval [0,∞)d and to invest at each time t ≤ T the constant
amount equal to the solution δ∗ = (δ∗,1, . . . , δ∗,d) of the equation

0 =µi − θ
r∑

k=1

d∑
j=1

δ∗,jσS,ikσS,jk

+
∫

(−1,∞)d
zi
(

exp
(
−θ

d∑
j=1

δ∗,jzj
)
− 1{||z||<1}

)
νS(dz)

over Rd. Then the value function is

V (t, x) = λ− γ

θ
exp
(
−θ

d∑
i=1

xi + (T − t)h∗c
)

where h∗c is a constant given by

h∗c =− θ
d∑
i=1

(
cib∗,i + µiδ∗,i

)
+

1
2
θ2

d∑
i,j=1

r∑
k=1

(
b∗,ib∗,jσC,ikσC,jk + δ∗,iδ∗,jσS,ikσS,jk

)
+
∫
Rd

(
exp
(
θ

d∑
i=1

b∗,iyi
)
− 1− θ1{||y||<1}

d∑
i=1

b∗,iyi
)
νC(dy)

+
∫

(−1,∞)d

(
exp
(
−θ

d∑
i=1

δ∗,izi
)
− 1 + θ1{||z||<1}

d∑
i=1

δ∗,izi
)
νS(dz).

Proof. Suppose first that we search for the optimal control on a compact set
||b|| ≤ Γ <∞ and ||δ|| ≤ Λ <∞. For the problem of maximizing exponential
utility of terminal wealth at a fixed terminal time T , the Hamilton-Jacobi-
Bellman equation becomes

sup
a∈Rd+×Rd

AaV (t, x) =0 (5.16)

V (T, x) =u(x).
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That means, we have to solve (5.16) for all (t, x) and derive a(t, x) which
maximizes the generator with respect to our wealth process given by

AaV (t, x)

=
∂V (t, x)
∂t

+
d∑
i=1

∂V (t, x)
∂xi

(
cibi + µiδi

)
+

1
2

d∑
i,j=1

r∑
k=1

∂2V (t, x)
∂xi∂xj

(
bibjσC,ikσC,jk + δiδjσS,ikσS,jk

)
+
∫
Rd

∫
(−1,∞)d

(
V (t, x− by + δz)− V (t, x)

−
d∑
i=1

∂V (t, x)
∂xi

(δizi − biyi)1{||y||2+||z||2<1}

)
ν(dz, dy)

where x, y, z ∈ Rd. The Lévy measure ν is supported by the set {(y, z) :
y · z = 0} which means that in the integrand y is always zero whenever
z 6= 0 and vice versa. Therefore, it can represented in the form ν(B) =
νC(BY ) + νS(BZ) where BY = {y : (y, 0) ∈ B} and BZ = {z : (0, z) ∈ B}
for all B ∈ B(Rd) (cf. Cont and Tankov (2004), Proposition 5.3). Therefore,
the generator can be rewritten as

AaV (t, x)

=
∂V (t, x)
∂t

+
d∑
i=1

∂V (t, x)
∂xi

(
cibi + µiδi

)
+

1
2

d∑
i,j=1

r∑
k=1

∂2V (t, x)
∂xi∂xj

(
bibjσC,ikσC,jk + δiδjσS,ikσS,jk

)
+
∫
Rd

(
V (t, x− by)− V (t, x) +

d∑
i=1

∂V (t, x)
∂xi

biyi1{||y||<1}

)
νC(dy)

+
∫

(−1,∞)d

(
V (t, x+ δz)− V (t, x)−

d∑
i=1

∂V (t, x)
∂xi

δizi1{||z||<1}

)
νS(dz).

We choose the Ansatz (cf. Browne (1995))

Ṽ (t, x) = λ− γ

θ
exp

(
− θ

d∑
i=1

xi + hc(T − t)
)

for a suitable constant hc. Note that the boundary condition is Ṽ (T, x) =
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λ− γ
θ exp(−θ

∑d
i=1 x

i) = u(x). For this trial solution we have

∂Ṽ (t, x)
∂t

=− hc(Ṽ (t, x)− λ) (5.17)

∂Ṽ (t, x)
∂xi

=− θ(Ṽ (t, x)− λ) (5.18)

∂2Ṽ (t, x)
∂xi∂xj

=θ2(Ṽ (t, x)− λ). (5.19)

Substituting (5.17), (5.18) and (5.19) into the generator gives

AaṼ (t, x)

=− hc(Ṽ (t, x)− λ)− θ(Ṽ (t, x)− λ)
d∑
i=1

(cibi + µiδi)

+
1
2
θ2(Ṽ (t, x)− λ)

d∑
i,j=1

r∑
k=1

(
bibjσC,ikσC,jk + δiδjσS,ikσS,jk

)
+
∫
Rd

(Ṽ (t, x)− λ)
(

exp
(
θ

d∑
i=1

biyi
)
− 1− θ

d∑
i=1

biyi1{||y||<1}

)
νC(dy)

+
∫

(−1,∞)d
(Ṽ (t, x)− λ)

(
exp
(
−θ

d∑
i=1

δizi
)
− 1 + θ

d∑
i=1

δizi1{||z||<1}

)
νS(dz).

Since Ṽ (t, x)− λ < 0 the Hamilton-Jacobi-Bellman equation gives

sup
(b,δ)∈Rd+×Rd

L(b, δ) = 0

where

L(b, δ) =hc + θ
d∑
i=1

(cibi + µiδi)

− 1
2
θ2

d∑
i,j=1

r∑
k=1

(
bibjσC,ikσC,jk + δiδjσS,ikσS,jk

)
−
∫
Rd

(
exp
(
θ

d∑
i=1

biyi
)
− 1− θ1{||y||<1}

d∑
i=1

biyi
)
νC(dy)

−
∫

(−1,∞)d

(
exp
(
−θ

d∑
i=1

δizi
)
− 1 + θ1{||z||<1}

d∑
i=1

δizi
)
νS(dz)

which is concave in (b, δ) ∈ Rd+×Rd. Moreover, we notice that the maximum
point (b̃, δ̃) is constant, both with respect to t and x. Let us now find the
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value ã = (b̃1, . . . , b̃d, δ̃1, . . . , δ̃d) which maximizes L(b, δ). The first order
condition for maximality of b̃i is

0 =ci − θ
r∑

k=1

d∑
j=1

b̃jσC,ikσC,jk −
∫
Rd
yi
(

exp
(
θ

d∑
j=1

b̃jyj
)
− 1{||y||<1}

)
νC(dy)

for all i ∈ {1, . . . d}. Likewise the first order condition for maximality of δ̃i

is

0 =µi − θ
r∑

k=1

d∑
j=1

δ̃jσS,ikσS,jk

+
∫

(−1,∞)d
zi
(

exp
(
−θ

d∑
j=1

δ̃jzj
)
− 1{||z||<1}

)
νS(dz)

for all i ∈ {1, . . . , d}. Let us denote the optimal policy by a∗ = (a∗,1, . . . , a∗,d)
where a∗,i = (b∗,i, δ∗,i). Inserting a∗ = (a∗,1, . . . , a∗,d) in the Hamilton-
Jacobi-Bellman equation yields

h∗c =− θ
d∑
i=1

(
cib∗,i + µiδ∗,i

)
+

1
2
θ2

d∑
i,j=1

r∑
k=1

(
b∗,ib∗,jσC,ikσC,jk + δ∗,iδ∗,jσS,ikσS,jk

)
+
∫
Rd

(
exp
(
θ

d∑
i=1

b∗,iyi
)
− 1− θ1{||y||<1}

d∑
i=1

b∗,iyi
)
νC(dy)

+
∫

(−1,∞)d

(
exp
(
−θ

d∑
i=1

δ∗,izi
)
− 1 + θ1{||z||<1}

d∑
i=1

δ∗,izi
)
νS(dz).

(5.20)

In order to verify that both the control and the value function are in fact
optimal let us finally apply the martingale optimality principle (cf. Theorem
5.1.6). For notational simplicity define

Xa∗
t =

d∑
i=1

Xa∗,i
t .

By the independence and stationarity of the increments it holds that

E[exp(−θ(Xa∗
t+s −Xa∗

t ))|Ft] = E[exp(−θ(Xa∗
t+s −Xa∗

t ))] = E[exp(−θXa∗
s )]

which can be computed in terms of the characteristic triplet using the Lévy-
Khinchin representation (cf. Theorem 3.2.2)

E[exp(−θXa∗
s )] = exp(sh∗c)
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with h∗c is as in (5.20). Thus under policy a∗ the value function Ṽ (t, x) is a
martingale for the optimally controlled process (Xa∗

t ). Note that

E[Ṽ (t+ s, x)|Ft] = Ṽ (t, x)

if and only if

E[exp(−θ(Xa∗
t+s −Xa∗

t ))|Ft] = exp(sh∗c).

Furthermore, it can be shown that Ṽ (t,Xa
t ) is a supermartingale under any

other admissible policy a ∈ Rd+×Rd, which establishes optimality. Alterna-
tively, we may check the conditions of the verification theorem (cf. Theorem
5.1.5).
Finally, we show that the moment-generating functions and its first deriva-
tives used in this proof indeed exist. We only show the existence for the
reinsurance term, for the financial market term one can proceed analogously.
We require that∣∣∣∣ ∫

Rd

(
exp

(
θ

d∑
i=1

biyi
)
− 1− θ1{||y||<1}

d∑
i=1

biyi
)
νC(dy)

∣∣∣∣ <∞. (5.21)

By Hölder’s inequality we have for m ≥ 1( d∑
i=1

∣∣biyi∣∣)m ≤ ( d∑
i=1

∣∣bi∣∣2)m2 ( d∑
i=1

∣∣yi∣∣2)m2 = ||b||m||y||m. (5.22)

For ||y|| ≤ 1 and m ≥ 2 it holds that ||y||m ≤ ||y||2. Condition (5.21) always
holds for ||y|| ≤ 1 since∣∣∣∣∫

{Rd, ||y||≤1}

(
exp

(
θ

d∑
i=1

biyi
)
− 1− θ

d∑
i=1

biyi
)
νC(dy)

∣∣∣∣
=
∣∣∣∣∫
{Rd, ||y||≤1}

∞∑
m=2

(
θ
∑d

i=1 b
iyi
)m

m!
νC(dy)

∣∣∣∣
≤
∫
{Rd, ||y||≤1}

∞∑
m=2

θm
(∑d

i=1

∣∣biyi∣∣)m
m!

νC(dy)

≤
∞∑
m=2

θm||b||m

m!

∫
{Rd, ||y||≤1}

||y||2 νC(dy)

=(exp
(
θ||b||

)
− 1− θ||b||)

∫
{Rd, ||y||≤1}

||y||2 νC(dy) <∞.

Note that ||b|| ≤ Γ and νC is a Lévy measure and therefore satisfies the
integrability condition ∫

Rd
(||y||2 ∧ 1) νC(dy) <∞.
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Proceeding as in the case of ||y|| ≤ 1 we obtain for ||y|| ≥ 1

∣∣∣∣∫
{Rd,||y||≥1}

(
exp

(
θ

d∑
i=1

biyi
)
− 1
)
νC(dy)

∣∣∣∣
≤
∫
{Rd,||y||≥1}

exp
(
θ||b|| ||y||

)
νC(dy) +

∫
{Rd,||y||≥1}

νC(dy).

By the integrability condition (5.15a) and the properties of a Lévy measure
it holds ∫

{Rd,||y||≥1}
exp

(
θ||b|| ||y||

)
νC(dy) +

∫
{Rd,||y||≥1}

νC(dy) <∞.

Note that ||b|| <∞ on our compact set. For the first derivative we require

∣∣∣∣∫
Rd
yi
(

exp
(
θ

d∑
i=1

biyi
)
− 1{||y||<1}

)
νC(dy)

∣∣∣∣ <∞ (5.23)

for all i ∈ {1, . . . , d}. Again we start with the case of ||y|| ≤ 1. It holds that
||y||m+1 ≤ ||y||2 for m ≥ 1. Taking into account (5.22) for m ≥ 1 we obtain

∣∣∣∣∫
{Rd,||y||≤1}

yi
(

exp
(
θ

d∑
i=1

biyi
)
− 1
)
νC(dy)

∣∣∣∣
≤
∫
{Rd,||y||≤1}

||y||2
∣∣∣∣ ∞∑
m=1

θm
(∑d

i=1 b
iyi
)m

m!

∣∣∣∣ νC(dy)

≤
∫
{Rd,||y||≤1}

∞∑
m=1

θm||b||m||y||m+1

m!
νC(dy)

≤(exp
(
θ||b||

)
− 1)

∫
{Rd,||y||≤1}

||y||2 νC(dy) <∞.

It remains to consider the case of ||y|| ≥ 1. It holds that

∣∣∣∣∫
{Rd,||y||≥1}

yi exp
(
θ

d∑
i=1

biyi
)
νC(dy)

∣∣∣∣ ≤∫
{Rd,||y||≥1}

|yi| exp
(
θ||b|| ||y||

)
νC(dy)

≤
∫
{Rd,||y||≥1}

||y|| exp
(
θ||b|| ||y||

)
νC(dy) <∞

for all i ∈ {1, . . . , d} by the integrability assumption (5.15a) and ||b|| ≤ Γ.
Since for any b we can find Γ such that ||b|| ≤ Γ and (5.15a) holds, this finally
yields the assertion.
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Remark 14 (Existence of a solution).
Existence of a solution might be shown using a generalization of Brouwer’s
fixed point theorem which is known as the Bolzano-Poincaré-Miranda theo-
rem (cf. Schäfer (2007)):

Let R = {x ∈ Rd : |xi| ≤ L, i ∈ {1, . . . , d}} and let f : R → Rd

be continuous satisfying

f i(x1, x2, . . . , xi−1,−L, xi+1, . . . , xd) ≥0

f i(x1, x2, . . . , xi−1,+L, xi+1, . . . , xd) ≤0

for all i ∈ {1, . . . , d}. Then f(x) = 0 has a solution in R. For
d = 1 this reduces to the well-known intermediate-value theorem.

Define for i ∈ {1, . . . , d}

f i(b1, . . . , bd) =ci − θ
d∑
j=1

r∑
k=1

bjσC,ikσC,jk

−
∫
Rd
yi
(

exp
(
θ

d∑
j=1

bjyj
)
− 1{||y||<1}

)
νC(dy).

If the model parameters are chosen such that

f i(b1, b2, . . . , bi−1,−Γ, bi+1, . . . , bd) ≥ 0

and f i(b1, b2, . . . , bi−1,Γ, bi+1, . . . , bd) ≤ 0

for all i ∈ {1, . . . , d} then there exists a solution in R = {b ∈ Rd+ : |bi| ≤
Γ, i ∈ {1, . . . , d}} by Bolzano-Poincaré-Miranda theorem. A negative reten-
tion level indicates that no claims are retained. However, explicit conditions
for the model parameters can not be derived. Conditions for the existence
of a solution of (5.44) might be stated analogously.

Let us finish this subsection with an explicit computation of a propor-
tional reinsurance policy which is possible in the pure diffusion case. For
notational convenience let us give the result for d = r = 2 and let us assume
that there are no investments on a financial market. Set σC := σ.

Corollary 5.3.2. The optimal policy to maximize expected utility at a ter-
minal time T is to choose, at each time t ≤ T , constant retention levels

b∗,1 = max
(

0,
c1ρ2 − ρ12c2

θ(ρ2ρ1 − (ρ12)2)

)
, b∗,2 = max

(
0,

c2ρ1 − ρ12c1

θ(ρ1ρ2 − (ρ12)2)

)
.

where ρ1 = (σ11)2 + (σ12)2, ρ2 = (σ21)2 + (σ22)2 and ρ12 = σ11σ21 +σ12σ2,2.
The optimal value function is

V (t, x) = λ− γ

θ
exp

(
− θ(x1 + x2) + h∗(T − t)

)
,
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where

h∗c = −θ(c1b∗,1 + c2b∗,2) +
1
2
θ2((b∗,1)2ρ1 + (b∗,2)2ρ2 + 2b∗,1b∗,2ρ12).

Proof. By Theorem 5.3.1 the first order conditions for maximality in case
of no jumps are

0 =c1 − θ(b1ρ1 + b2ρ12)

0 =c2 − θ(b2ρ2 + b1ρ12).

Solving this system of equations we get the optimal retention level.

5.3.2 General reinsurance policy

Let us glance at the control by a general reinsurance policy. To be more pre-
cise, the insurance company can choose a retention level bt = (b1t , . . . , b

d
t ) ∈

[b, b]d. The function h(b, y) describes the share of claim y paid by the in-
surance company itself depending on the retention level. Natural assump-
tions are |h(b, y)| ≤ |y| and h(b, y) is increasing in b. For example, in the
case of proportional reinsurance we have h(b, y) = by with retention level
b ∈ [0, 1]d or in the case of excess of loss reinsurance h(b, y) = min(b, y)
with retention level b ∈ [0,∞]d. For each retention level b the insurer pays a
premium rate to the reinsurer which has to be deducted from the premium
rate c = (c1, . . . , cd) ∈ Rd+ the policy holder pays to the insurance com-
pany. This leads to a so-called net-income rate c(b) = (c1(b1), . . . , cd(bd))
that may be calculated according to the expected value principle. It holds
that 0 ≤ c(b) ≤ c = c(b).

Thus the risk reserve is again constructed by a dynamical choice of the re-
tention level bt ∈ [b, b]d. The corresponding risk reserve including general
reinsurance is

Xb,i
t =xi +

∫ t

0
ci(bis) ds+

∫ t

0

r∑
k=1

σi,k dW k
s −

∫ t

0

∫
Rd
h(bis, y

i)N(ds, dy).

We need the following integrability condition∫
{Rd,||y||≥1}

exp
(
θ
√
d||y||

)
ν(dy) <∞. (5.24)

Note that since there is no investment on a financial market we skip the
claim index C. As in the preceding section we are interested in maximizing
expected exponential utility of terminal wealth.

Theorem 5.3.3. The optimal policy to maximize expected exponential util-
ity at a terminal time T is to keep the retention level fixed, regardless of the
time t and the insurance company’s level of wealth x.
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Proof. For the problem of maximizing exponential utility of terminal wealth
at a fixed terminal time T , the Hamilton-Jacobi-Bellman equation becomes

sup
b∈[b,b]d

AbV (t, x) =0 (5.25)

V (T, x) =u(x).

That means, we have to solve (5.25) for all (t, x) and derive b(t, x) which
maximizes the generator with respect to our wealth process given by

AbV (t, x)

=
∂V (t, x)
∂t

+
d∑
i=1

∂V (t, x)
∂xi

ci(bi) +
1
2

d∑
i,j=1

r∑
k=1

∂2V (t, x)
∂xi∂xj

σikσjk

+
∫
Rd

(
V (t, x− h(b, y))− V (t, x) +

d∑
i=1

∂V (t, x)
∂xi

h(bi, yi)1{||y||<1}

)
ν(dy).

As before we choose the Ansatz

Ṽ (t, x) = λ− γ

θ
exp

(
− θ

d∑
i=1

xi + hc(T − t)
)

for a suitable constant hc. As required the boundary condition is Ṽ (T, x) =
λ− γ

θ exp(−θ
∑d

i=1 x
i) = u(x). For our trial solution we have

∂Ṽ (t, x)
∂t

=− hc(Ṽ (t, x)− λ) (5.26)

∂Ṽ (t, x)
∂xi

=− θ(Ṽ (t, x)− λ) (5.27)

∂2Ṽ (t, x)
∂xi∂xj

=θ2(Ṽ (t, x)− λ). (5.28)

Substituting (5.26), (5.27) and (5.28) into the generator gives

AbṼ (t, x)

=(Ṽ (t, x)− λ)
(
−hc − θ

d∑
i=1

ci(bi) +
1
2
θ2

d∑
i,j=1

r∑
k=1

σikσjk
)

+
∫
Rd

(Ṽ (t, x)− λ)
(

exp
(
θ

d∑
i=1

h(bi, yi)
)
− 1− θ

d∑
i=1

h(bi, yi)1{||y||<1}

)
ν(dy).

Since Ṽ (t, x)− λ < 0 the Hamilton-Jacobi-Bellman equation gives

sup
b∈[b,b]d

L(b) = 0 (5.29)
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where

L(b) =hc + θ
d∑
i=1

ci(bi)− 1
2
θ2

d∑
i,j=1

r∑
k=1

σikσjk

−
∫
Rd

(
exp

(
θ

d∑
i=1

h(bi, yi)
)
− 1− θ1{||y||<1}

d∑
i=1

h(bi, yi)
)
ν(dy).

Thus we notice that the optimal reinsurance policy is constant, both with
respect to t and x.
In order to verify that the control which satisfies (5.29) is in fact optimal
let us finally apply the martingale optimality principle (cf. Theorem 5.1.6).
For notational simplicity define

Xb∗
t =

d∑
i=1

Xb∗,i
t .

By the independence and stationarity of the increments it holds that

E[exp(−θ(Xb∗
t+s −Xb∗

t ))|Ft] = E[exp(−θ(Xb∗
t+s −Xb∗

t ))] = E[exp(−θXb∗
s )]

which can be computed in terms of the characteristic triplet using the Lévy-
Khinchin representation (cf. Theorem 3.2.2). We have

E[e−θX
b∗
s ] = exp(sh∗c)

where

h∗c =− θ
d∑
i=1

ci(b∗,i) +
1
2
θ2

d∑
i,j=1

r∑
k=1

σikσjk

+
∫
Rd

(
exp

(
θ

d∑
i=1

h(b∗,i, yi)
)
− 1− θ1{||y||<1}

d∑
i=1

h(b∗,i, yi)
)
ν(dy).

Thus under policy b∗ the value function Ṽ (t, x) is a martingale for the opti-
mally controlled process (Xb∗

t ). Furthermore, it can be shown that Ṽ (t,Xb
t )

is a supermartingale under any other admissible policy b ∈ [b, b]d, which
establishes optimality. Existence of the moment-generating function can be
shown analogously to the proportional reinsurance case using the integra-
bility condition (5.31) and |h(bi, yi)| ≤ |yi|. Note that for all m ≥ 1

( d∑
i=1

∣∣h(bi, yi)
∣∣)m ≤ ( d∑

i=1

∣∣yi∣∣)m ≤ (
√
d)m||y||m.



110 Chapter 5. Stochastic control of portfolios with Lévy-dynamics

5.3.3 Mixture of proportional and excess of loss reinsurance

In this subsection we allow the insurance company to control its risk reserve
by a combination of proportional and excess of loss (XL) reinsurance.
Let bt = (b1t , . . . , b

d
t ) denote the retention level of the proportional rein-

surance policy and mt = (m1
t , . . . ,m

d
t ) the retention level of the excess of

loss reinsurance. We require bt ∈ [0, 1]d and mt ∈ Rd+. Thus the risk re-
serve is now constructed by a dynamical choice of bt and mt. The risk
reserve including proportional and excess of loss reinsurance of business line
i, i ∈ {1, . . . , d} evolves according to

X
(b,m),i
t =xi +

∫ t

0
ci(bis,m

i
s) ds+

∫ t

0

r∑
k=1

σik dW k
s

−
∫ t

0

∫
Rd+

(bisy
i ∧mi

s)N(ds, dy).

The premium is calculated according to the expected value principle.

ci(bis,m
i
s) =(1 + η̃)E

(∫
Rd
yiN(ds, dy)

)
− (1 + η)E

(∫
Rd

(
yi − (bisy

i ∧mi
s)
)
N(ds, dy)

)
where η > 0 and η̃ > 0 are the safety loadings of the insurance company
and reinsurance company. For simplicity let us assume, that the reinsurance
company has the same safety loading as the insurance company (i.e. cheap
reinsurance). Thus we have

ci(bis,m
i
s) = (1 + η)

∫
{Rd+,||y||≥1}

(bisy
i ∧mi

s) ν(dy). (5.30)

Again, we imbed the problem of maximizing exponential utility of terminal
wealth in the framework of stochastic dynamic programming. Solving the
Hamilton-Jacobi-Bellman equation, we can show that there exists a pure
excess of loss reinsurance strategy which is better than any combination of
an excess of loss and proportional reinsurance strategy where 0 < bi < 1,
i ∈ {1, . . . , d}. Moreover, we get that the optimal retention level for the
excess of loss reinsurance is to keep a fixed constant amount of the claims,
regardless of the time and the company’s level of wealth.
We need an integrability condition. Let∫

{Rd,||y||>1}
||y|| exp

(
θ||y||

)
ν(dy) <∞. (5.31)
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Theorem 5.3.4. The optimal policy to maximize expected exponential util-
ity at a terminal time T is (1,m∗) = (1, . . . , 1,m∗,1, . . . ,m∗,d) where the
excess of loss retention level m∗,i is given by the constant solution of

0 =
∫ ∞
mi

∫
Rd−1

+

(
η1{||y||≥1} + 1− exp

(
θmi + θ

d∑
j 6=i

(yj ∧mj)
))

ν(dy)

over the interval [0,∞)d. Then the value function is

V (t, x) = λ− γ

θ
exp
(
−θ

d∑
i=1

xi + (T − t)h∗c
)

where h∗c is a constant given by

h∗c =− θ
d∑
i=1

ci(1,m∗,i) +
1
2
θ2

d∑
i,j=1

r∑
k=1

σikσjk

+
∫
Rd+

(
exp

(
θ

d∑
i=1

yi ∧m∗,i
)
− 1− θ1{||y||<1}

d∑
i=1

(yi ∧m∗,i)
)
ν(dy).

Proof. For the problem of maximizing exponential utility of terminal wealth
at a fixed terminal time T , the Hamilton-Jacobi-Bellman equation becomes

sup
(b,m)∈[0,1]d×Rd+

A(b,m)V (t, x) =0 (5.32)

V (T, x) =u(x).

That means, we have to solve (5.32) for all (t, x) and derive (b(t, x),m(t, x))
which maximizes the generator with respect to our wealth process given by

A(b,m)V (t, x)

=
∂V (t, x)
∂t

+
d∑
i=1

∂V (t, x)
∂xi

ci(bi,mi) +
1
2

d∑
i,j=1

r∑
k=1

∂2V (t, x)
∂xi∂xj

σikσjk

+
∫
Rd+

(
V
(
t, x− b

(
y ∧ m

b

))
− V (t, x)

+
d∑
i=1

∂V (t, x)
∂xi

(
bi
(
yi ∧ m

i

bi

))
1{||y||<1}

)
ν(dy).

We choose the Ansatz

Ṽ (t, x) = λ− γ

θ
exp

(
− θ

d∑
i=1

xi + hc(T − t)
)
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for a suitable constant hc. As required the boundary condition is Ṽ (T, x) =
λ− γ

θ exp(−θ
∑d

i=1 x
i) = u(x). For our trial solution we have

∂Ṽ (t, x)
∂t

=− hc(Ṽ (t, x)− λ) (5.33)

∂Ṽ (t, x)
∂xi

=− θ(Ṽ (t, x)− λ) (5.34)

∂2Ṽ (t, x)
∂xi∂xj

=θ2(Ṽ (t, x)− λ). (5.35)

Substituting (5.33), (5.34) and (5.35) into the generator we obtain

A(b,m)Ṽ (t, x)

=(Ṽ (t, x)− λ)
(
−hc − θ

d∑
i=1

ci(bi,mi) +
1
2
θ2

d∑
i,j=1

r∑
k=1

σikσjk
)

+
∫
Rd+

(Ṽ (t, x)− λ)
(

exp
(
θ

d∑
i=1

bi
(
yi ∧ m

i

bi

))
− 1

− θ
d∑
i=1

bi
(
yi ∧ m

i

bi

)
1{||y||<1}

)
ν(dy).

Since Ṽ (t, x)− λ < 0 the Hamilton-Jacobi-Bellman equation yields

sup
(b,m)∈[0,1]d×Rd+

L(b,m) = 0

where

L(b,m)

=hc + θ
d∑
i=1

ci(bi,mi)− 1
2
θ2

d∑
i,j=1

r∑
k=1

σikσjk

−
∫
Rd+

(
exp

(
θ

d∑
i=1

bi
(
yi ∧ m

i

bi

))
− 1− θ1{||y||<1}

d∑
i=1

bi
(
yi ∧ m

i

bi

))
ν(dy).

Plugging in the premiums (5.30) we get

L(b,m)

=hc + θ(1 + η)
d∑
i=1

∫
Rd+

bi
(
yi ∧ m

i

bi

)
1{||y||≥1} ν(dy)− 1

2
θ2

d∑
i,j=1

r∑
k=1

σikσjk

−
∫
Rd+

(
exp
(
θ

d∑
i=1

bi
(
yi ∧ m

i

bi

))
− 1− θ1{||y||<1}

d∑
i=1

bi
(
yi ∧ m

i

bi

))
ν(dy).
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Thus we notice that the optimal policy is constant, both with respect to t
and x. Differentiating with respect to mi we get by Lemma A.2.1

∂L(b,m)
∂mi

=
∫ ∞
mi

bi

∫
Rd−1

+

(
η1{||y||≥1} + 1− exp

(
θmi + θ

d∑
j 6=i

bj
(
yj ∧ m

j

bj

)))
ν(dy).

(5.36)

The first order condition for maximality of m̃i is

0 =
∫ ∞
mi

bi

∫
Rd−1

+

(
η1{||y||≥1} + 1− exp

(
θmi + θ

d∑
j 6=i

bj
(
yj ∧ m

j

bj

)))
ν(dy)

for all i ∈ {1, . . . d}. If

m̃i(y1, . . . , yd) =
log
(
η1{||y||≥1} + 1

)
θ

−
d∑
j 6=i

bj
(
yj ∧ m

j

bj

)
(5.37)

the first order condition for maximality holds. Moreover, we have

∂L(b,m)
∂mi

> 0

for all mi ∈ (0, m̃i). Since L(b,m) is an increasing function with respect to
mi ∈ (0, m̃i) we obtain

m∗,i = m̃i.

Differentiating with respect to bi and plugging in m∗,i yields (cf. Lemma
A.2.1)

∂L(b,m)
∂bi

=
∫ m∗,i

bi

0

∫
Rd−1

+

yi
(
η1{||y||≥1} + 1 (5.38)

− exp
(
θbiyi + θ

d∑
j 6=i

bj
(
yj ∧ m

j

bj

)))
ν(dy).

For yi ∈ [0, m
∗,i

bi
] we have

η1{||y||≥1} + 1− exp
(
θbiyi + θ

d∑
j 6=i

bj
(
yj ∧ m

j

bj

))

≥η1{||y||≥1} + 1− exp
(
θm∗,i + θ

d∑
j 6=i

bj
(
yj ∧ m

j

bj

))
= 0
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since m∗,i equals (5.37). Therefore, it yields

∂L(b,m)
∂bi

≥ 0

for all bi ∈ [0, 1], i ∈ {1, . . . , d}. Thus, the optimal proportional reinsurance
policy is b∗,i = 1 for all i ∈ {1, . . . , d}. We will denote the optimal policy by
a∗ = (a∗,1, . . . , a∗,d) where a∗,i = (1,m∗,i).
Inserting a∗ = (a∗,1, . . . , a∗,d) in the Hamilton-Jacobi-Bellman equation yields

h∗c =− θ
d∑
i=1

ci(1,m∗,i) +
1
2
θ2

d∑
i,j=1

r∑
k=1

σikσjk

+
∫
Rd+

(
exp

(
θ

d∑
i=1

(yi ∧m∗,i)
)
− 1− θ1{||y||<1}

d∑
i=1

(yi ∧m∗,i)
)
ν(dy).

(5.39)

In order to verify that the control and the value function are in fact optimal
let us finally apply the martingale optimality principle (cf. Theorem 5.1.6).
For notational simplicity define

Xa∗
t =

d∑
i=1

Xa∗,i
t .

By the independence and stationarity of the increments it holds that

E[exp(−θ(Xa∗
t+s −Xa∗

t ))|Ft] = E[exp(−θ(Xa∗
t+s −Xa∗

t ))] = E[exp(−θXa∗
s )]

which can be computed in terms of the characteristic triplet

E[exp(−θXa∗
s )] = exp(sh∗c)

where h∗c is as in (5.39). Thus under policy a∗ the value function Ṽ (t, x)
is a martingale for the optimally controlled process (Xa∗

t ). Furthermore, it
can be shown that Ṽ (t,Xa

t ) is a supermartingale under any other admissible
policy a ∈ [0, 1]d ×Rd+, which establishes optimality.
For existence of the moment-generating function and the first derivative we
can follow the lines of the proportional reinsurance case since mj ≤ bjyj for
yj ∈ (m

j

bj
,∞), bj(yj ∧ mj

bj
) ≤ bjyj for all j ∈ {1, . . . , d} and ||b|| ≤ 1 using the

integrability condition (5.31).

Theorem 5.3.4 shows that there exists a pure excess of loss policy which is
always better than any combined reinsurance policy (b,m) where 0 < bi < 1
for all i ∈ {1, . . . , d}.
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Remark 15. Choosing mi = ∞ for all i ∈ {1, . . . , d}, the first order maxi-
mality condition

∂L(b,m)
∂bi

= 0

for bi, i ∈ {1, . . . , d} (cf. equation (5.38)) corresponds to the maximality
condition in the pure proportional reinsurance case (cf. Theorem 5.3.1) dis-
regarding the diffusion term. To be more precise, the net premium income
is

ci(bi,mi) = bi(1 + η)
∫
{Rd+,||y||≥1}

yi ν(dy).

Therefore, the premium income c = (c1, . . . , cd) corresponds to

ci = (1 + η)
∫
{Rd+,||y||≥1}

yi ν(dy). (5.40)

for i ∈ {1, . . . , d}. Substituting (5.40) in (5.38), letting mi tend to ∞ and
rearranging the terms we obtain

0 =
∫
Rd+

yi
(
η1{||y||≥1} + 1− exp

(
θ

d∑
j=i

bjyj
))

ν(dy)

=
∫
Rd+

yi(η1{||y||≥1} + 1− 1{||y||≤1}) ν(dy)

−
∫
Rd+

yi
(

exp
(
θ

d∑
j=i

bjyj
)
− 1{||y||≤1}

)
ν(dy)

=c−
∫
Rd+

yi
(

exp
(
θ

d∑
j=i

bjyj
)
− 1{||y||≤1}

)
ν(dy)

which corresponds to the maximality condition in the pure proportional
reinsurance case (cf. Theorem 5.3.1) disregarding the diffusion term.

Example 5.3.5. We assume that our insurance company only consists of
one business line and that claims are modeled by a compound Poisson pro-
cess with jump size distribution F and intensity λ. The optimality equation
for the optimal excess of loss retention level (cf. Theorem 5.3.4) reduces to

0 =
∫ ∞
m

(
η − exp(θm) + 1

)
ν(dy) = λ

(
η − exp(θm) + 1

) ∫ ∞
m

F (dy)

=λ
(
η + 1− exp(θm)

)(
1− F (m)

)
.

The optimal excess of loss retention level can be computed explicitly, that
is

m∗ =
ln(1 + η)

θ
.
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5.4 Minimizing probability of ruin in a pure diffu-
sion model

In this section we focus on obtaining a retention level as well as an invest-
ment strategy which are optimal with respect to minimizing the probability
of ruin. Inspired by Browne (1995) we then validate the conjecture that
maximizing exponential utility of terminal wealth and minimizing probabil-
ity of ruin are exactly equivalent in our multidimensional insurance model,
at least in the case of no jumps.

Let us assume that ruin occurs when the weighted sum of net values of the
business units are negative. Therefore, the ruin time is

τruin = inf
{
t ≥ 0 : Xa

t :=
d∑
i=1

wiXa,i
t < 0, wi ∈ R+

}
.

If the weights w = (w1, . . . , wd) are equal to one this corresponds to the ruin
problem of the global company, i.e. ruin occurs when the aggregate sum of
risk reserves of the single lines of business become negative. The risk process
of business line i, i ∈ {1, . . . , d} controlled by proportional reinsurance and
investments on a financial market evolves according to

Xa,i
t =xi +

∫ t

0

(
cibis + µiδis

)
ds

+
r∑

k=1

(∫ t

0
bisσ

C,ik dWC,k
s +

∫ t

0
δisσ

S,ik dWS,k
s

)
.

In order to get the optimal policy in the sense of minimizing the ruin prob-
ability let us focus on maximizing the probability of reaching a given upper
wealth barrier before hitting a given lower ruin barrier. To be more precise,
let τaz denote the first excess time of z under policy a = (b, δ) ∈ Rd+ × Rd,
i.e.

τaz = inf{t > 0 : Xa
t = z},

and for the particular two numbers α and β, let

τa = min{τaα, τaβ}.

We aim to find a control which maximizes

P(Xa
τa ≥ β|X0 = x)

where

α < x :=
d∑
i=1

wixi < β.
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Now, we start at X0 = x with 0 ≤ α < x < β ≤ ∞ and our goal is
to maximize the probability of reaching the wealth level β ∈ R+ before
exceeding the given lower ruin barrier α ∈ R+. Denote by V (x) the optimal
value function, i.e.

V (x) = sup
a
P(Xa

τ ≥ β|X0 = x).

Theorem 5.4.1. The optimal policy to maximize the probability of reaching
point β ∈ R+ before α ∈ R+ is to keep the retention levels constantly equal
to the solution b∗ = (b∗,1, . . . , b∗,d) of the equation

0 =ci − θ
d∑
j=1

r∑
k=1

wjb∗,jσC,ikσC,jk (5.41)

over the interval [0,∞)d and to invest the constant amount equal to the
solution δ∗ = (δ∗,1, . . . , δ∗,d) of the equation

0 = µi − θ
d∑
j=1

r∑
k=1

wjδ∗,jσS,ikσS,jk. (5.42)

The optimal value function is

V (x) =
e−θα − e−θ

∑d
i=1 w

ixi

e−θα − e−θβ
.

Note that the optimal control a∗ = (a∗,1, . . . , a∗,d) does not depend on
the barriers α and β. Therefore, letting β tend to infinity and α tend to zero
we know that this is also the control which minimizes the ruin probability.
The following corollary is a direct consequence of Theorem 5.4.1.

Corollary 5.4.2. The optimal policy to minimize the probability of ruin is
to keep the retention levels and the investment portfolio constantly equal to
the solutions b = (b1, . . . , bd) and δ = (δ1, . . . , δd) of the equations (5.41)
and (5.42).

Remark 16. (a) The solution-equations (5.41) and (5.42) for the optimal
controls with respect to ruin probability minimization coincide with
the corresponding solution-equations for the optimal controls in the
case that the performance criterion is the expected exponential utility
of terminal wealth (cf. Theorem 5.4.1 and Theorem 5.3.1), choosing
weights wi = 1, i ∈ {1, . . . , d} and disregarding the jump part. This
validates the conjecture that the policy that maximizes expected ex-
ponential utility of terminal wealth at a fixed terminal time coincides
with the policy that minimizes the probability of ruin in case of no
jumps.
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(b) However, the situation is awkward as soon as jumps are involved.
Boundary conditions have to be imposed not only at the boundary
but as well outside the boundary. In fact they have to be extended to
any point that the process can jump to from inside the domain which
makes an explicit computation impossible.

Proof of Theorem 5.4.1. The Hamilton-Jacobi-Bellman equation is

sup
a∈Rd+×Rd

AaV (x) = 0

with the boundary conditions V (α) = 0 and V (β) = 1 where α, β ∈ R+.
The quadratic variation of our wealth process satisfies

d〈X〉t = dt

d∑
i,j=1

r∑
k=1

wiwj
(
bitb

j
tσ
C,ikσC,jk + δitδ

j
tσ

S,ikσS,jk
)
.

Applying the Itô-Doeblin formula (cf. Theorem 3.5.1) we obtain the gener-
ator with respect to our wealth process

AaV (x) =
∂V (x)
∂x

d∑
i=1

wi
(
cibi + µiδi

)
+

1
2
∂2V (x)
∂2x

d∑
i,j=1

r∑
k=1

wiwj
(
bibjσC,ikσC,jk + δiδjσS,ikσS,jk

)
for α < x =

∑d
i=1w

ixi < β. Let us choose the Ansatz

Ṽ (x) = λ− γ

θ
e−θx.

For our trial solution we have

∂Ṽ (x)
∂x

=− θ(Ṽ (x)− λ)

∂2Ṽ (x)
∂2x

=θ2(Ṽ (x)− λ).

Since Ṽ (t, x)− λ < 0 the Hamilton-Jacobi-Bellman equation gives

sup
(b,δ)∈Rd+×Rd

L(b, δ) = 0

where

L(b, δ) =θ
d∑
i=1

wi
(
cibi + µiδi

)
− 1

2
θ2

d∑
i,j=1

r∑
k=1

wiwj
(
bibjσC,ikσC,jk + δiδjσS,ikσS,jk

)
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which is concave in (b1, . . . , bd, δ1, . . . , δd). Thus we notice that the optimal
policy is constant with respect to x and the hitting points α and β.
Let us now find the value ã = (b̃1, . . . , b̃d, δ̃1, . . . , δ̃d) which maximizes this
function. The first order condition for maximality of b̃i is

0 = ci − θ
d∑
j=1

r∑
k=1

wj b̃jσC,ikσC,jk (5.43)

for all i ∈ {1, . . . d}. And the first order condition for maximality of δ̃i is

0 = µi − θ
d∑
j=1

r∑
k=1

wj δ̃jσS,ikσS,jk. (5.44)

for all i ∈ {1, . . . d}. Let us denote the optimal policy by a∗ = (a∗1, . . . , a
∗
d)

where a∗i = (b∗i , δ
∗
i ). In order to verify that the control and the value func-

tion are in fact optimal we apply the martingale optimality principle (cf.
Theorem 5.1.6). By the independence and stationarity of the increments
of our diffusion process and the Lévy-Khinchin representation (cf. Theorem
3.2.2) we obtain

E[exp(−θ(Xa∗
t+s −Xa∗

t ))|Ft] = E[exp(−θ(Xa∗
t+s −Xa∗

t ))] = E[exp(−θXa∗
s )]

= exp
(
s
(
−θ

d∑
i=1

wi
(
cib∗,i + µiδ∗,i

)
+

1
2
θ2

d∑
i,j=1

r∑
k=1

wiwj
(
b∗,ib∗,jσC,ikσC,jk + δ∗,iδ∗,jσS,ikσS,jk

)))
=1.

The last equality holds since b∗ is a solution of (5.43) and δ∗ is a solution of
(5.44). This implies L(b∗, δ∗) = 0 which corresponds to the exponent. Thus
under policy a∗ the value function Ṽ (x) is a martingale for the optimally
controlled process

(
Xa∗
t

)
. Furthermore, it can be shown that Ṽ (Xa

t ) is a
supermartingale under any other admissible policy a ∈ Rd+ × Rd, which
establishes optimality. The boundary condition V (α) = 0 determines the
constant λ as

λ =
γ

θ
e−θα,

and the boundary condition V (β) = 1 determines the constant γ as

γ =
θ

e−θα − e−θβ
.

Therefore, the optimal value function is

V (x) =
e−θα − e−θx

e−θα − e−θβ
.
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Chapter 6

Structural comparison
results

This chapter is dedicated to comparison results with respect to jumps in
our insurance company’s risk reserve. The performance criterion is still
the expected exponential utility of terminal wealth. In the first section the
optimal control in a compensated jump diffusion model is compared with
the correspondent results in a pure diffusion model. Not surprisingly, it
turns out that the optimal retention level of the insurance company is larger
in the model without jumps than it is in the model containing jumps. In
Section 6.2 we weaken the difference between the models and consider only
models differing by the weighting of claims caused by jumps. There, we show
that the accumulated risk reserve increases in concave order as the weighting
factor of the claims decreases. However, the main focus of this chapter is put
on the last section. Based on the results of Chapter 5 we devote Section 6.3
to identify structure conditions with respect to the Archimedean generator
and the Lévy measure under which an insurance company reinsures a larger
fraction of claims from one business line than from another. Similar results
can be obtained with respect to investments on a financial market.

6.1 Comparison of the pure diffusion and jump
diffusion case

We compare the optimal control in a compensated jump diffusion model
with the correspondent results in a pure diffusion model. The optimal risk
reserve of business line i, i ∈ {1, . . . , d}, in the compensated jump diffusion
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model evolves according to

Xa∗,i
t =xi + (cib∗,i + µiδ∗,i

)
t+

∫ t

0

r∑
k=1

b∗,iσC,ik dWC,k
s

+
∫ t

0

r∑
k=1

δ∗,iσS,ik dWS,k
s

+
∫ t

0

∫
Rd+

∫
(−1,0]d

(δ∗,izi − b∗,iyi) Ñ(ds, dz, dy)

where a∗ = (b∗, δ∗) ∈ Rd×d+ denotes the optimal control which can be com-
puted according to Theorem 5.3.1. Whereas the optimal risk reserve of
business line i in a pure diffusion model follows

Xao∗,i
t =xi + (cibo∗,i + µiδo∗,i

)
t+

∫ t

0

r∑
k=1

bo∗,iσC,ik dWC,k
s

+
∫ t

0

r∑
k=1

δo∗,iσS,ik dWS,k
s

where ao∗ = (bo∗, δo∗) ∈ Rd×d+ denotes the optimal control. It is important
that we compare a pure diffusion process with a compensated jump diffusion
process instead of a general Lévy process since a meaningful comparison is
only possible if the means coincide.

Corollary 6.1.1. Let (b∗, δ∗) be the optimal control in the compensated
jump diffusion model and (bo∗, δo∗) in the pure diffusion model respectively.
Then we have

bo∗ ≥b∗ componentwise.

Proof. Let L(b, δ) and Lo(b, δ) denote the Hamiltonian functions as defined
in Theorem 5.3.1 for the compensated jump diffusion model and the pure
diffusion model respectively. In the jump diffusion case there is only a finite
number of jumps in each interval. Hence, L(b, δ) reduces to

L(b, δ) =hc + θ

d∑
i=1

(cibi + µiδi)

−1
2
θ2

d∑
i,j=1

r∑
k=1

(bibjσC,ikσC,jk + δiδjσS,ikσS,jk)

−
∫
Rd+

(
exp

(
θ

d∑
i=1

biyi
)
− 1
)
νC(dy)

−
∫

(−1,0]d

(
exp

(
− θ

d∑
i=1

δizi
)
− 1
)
νS(dz).
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Let Lo(b, δ) be the corresponding function in case of no jumps. Note that
L and Lo are both concave in b and δ. Furthermore, we have for all bi ≥ 0,
i ∈ {1, . . . , d}

∂L
∂bi

(b, δ) =θci − θ2
d∑
j=1

r∑
k=1

bjσC,ikσC,jk −
∫
Rd+

θyi exp
(
θ

d∑
i=1

biyi
)
νC(dy)

≤∂L
o

∂bi
(b, δ)

and for all δi ≥ 0, i ∈ {1, . . . , d}

∂L
∂δi

(b, δ) =θµi − θ2
d∑
j=1

r∑
k=1

δjσS,ikσS,jk

+
∫

(−1,0]
θzi exp

(
− θ

d∑
i=1

δizi
)
νS(dz) ≤ ∂Lo

∂δi
(b, δ).

Under the model assumptions of Chapter 5 the derivatives can be computed
using Lebesgue’s dominated convergence theorem (cf. the proof of Theorem
5.3.1). Since L and Lo are concave in (b1, . . . , bd) and (δ1, . . . , δd) we have

b∗,i ≤ bo∗,i and δ∗,i ≤ δo∗,i

for all i ∈ {1, . . . , d}.

6.2 Comparison with respect to weighting of claims
caused by jumps

We compare two insurance portfolios with different weighting of claims
caused by jumps. More precisely, we consider the accumulated terminal
risk reserves of the insurance company and insert weights β, β̃ ∈ R+ with
β ≤ β̃ such that

Xβ
T =

d∑
i=1

(
xi + cibiT

)
+

d∑
i=1

r∑
k=1

σikW k
T − β

d∑
i=1

∫ T

0

∫
Rd
biyiN(ds, dy) (6.1)

X β̃
T =

d∑
i=1

(
xi + cibiT

)
+

d∑
i=1

r∑
k=1

σikW k
T − β̃

d∑
i=1

∫ T

0

∫
Rd
biyiN(ds, dy). (6.2)

We show that the accumulated risk reserve increases in concave order as
the weighting factor of the jumps decreases. The increasing concave or-
der is explained in the following definition adapted from Definition 1.5.1 in
Müller and Stoyan (2002). The reason for choosing this order is that our
performance criterion is still the expected utility of terminal wealth.
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Definition 6.2.1 (Increasing concave order). Let X and X̃ be random vari-
ables with finite means. Then we say that X̃ is less than X in increasing
concave order (written X̃ ≤icv X) if Ef(X̃) ≤ Ef(X) for all increasing
concave functions f such that the expectations exist.

Because of the relation X̃ ≤icv X if and only if −X̃ ≥icx −X the re-
sults of Müller and Stoyan (2002) for increasing convex functions can be
applied in our context. Let us cite a sufficient condition for increasing con-
vex order from Müller and Stoyan (2002). For that purpose we need another
order definition which corresponds to Definition 1.5.16 in Müller and Stoyan
(2002).

Definition 6.2.2 (Dangerous order). Let X and X̃ be random variables
with distribution functions FX and FX̃ . Then X is said to be less dangerous
than X̃ (written X ≤D X̃) if there is some t0 ∈ R such that FX(t) ≤ FX̃(t)
for all t < t0 and FX(t) ≥ FX̃(t) for all t ≥ t0 and if in addition EX ≤ EX̃.

Theorem 6.2.3. X ≤D X̃ implies X ≤icx X̃.

Proof. For a proof we refer to Müller and Stoyan (2002), Theorem 1.5.17.

We are now in the position to compare the two models (6.1) and (6.2)
with respect to increasing concave order.

Theorem 6.2.4. Let the risk reserves be as described in (6.1) and (6.2).
Then

Xβ
T ≥icv X

β̃
T .

Proof. For notational convenience define

JβT := β

∫ T

0

∫
Rd
biyiN(ds, dy) and J β̃T := β̃

∫ T

0

∫
Rd
biyiN(ds, dy).

By the independence of the diffusion and jump term of Lévy processes (cf.
Sato (1999), Theorem 19.2) and since the increasing convex order is pre-
served under convolution (cf. Müller and Stoyan (2002), Theorem 1.5.5) it
suffices to show that

J β̃T ≥icx J
β
T .

It holds

P(J β̃T ≤ t) = P
( β̃
β
JβT ≤ t

)
= P

(
JβT ≤

β

β̃
t
)
.

Therefore

P(JβT ≤ t)− P(J β̃T ≤ t) ≤ 0 for t < 0

P(JβT ≤ t)− P(J β̃T ≤ t) ≥ 0 for t ≥ 0.
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That is,

J β̃T ≥D JβT

and the assertion follows by Theorem 6.2.3.

Corollary 6.2.5. Let u be an utility function and let the risk reserves be as
described in (6.1) and (6.2). Then

Eu(Xβ
T ) ≥ Eu(X β̃

T ).

6.3 Structure conditions for the Lévy measure

We identify structure conditions with respect to the Lévy measure under
which an insurance company certainly reinsures a larger fraction of claims
from one business line than from another. Intuitively, such a decision de-
pends on the expected number of jumps in each business line as well as on
the dependence structure between the single business lines. The dependence
structure of a multivariate Lévy process can be characterized completely by
the Lévy measure and the covariance matrix of the Brownian motion. The
continuous term and the jump term of a Lévy process are independent (cf.
Sato (1999), Theorem 19.2). Therefore, it suffices to consider the jump and
diffusion part separately. In this section, let us focus on the jump part only,
since the Brownian part is easy to handle.

In order to get meaningful comparisons we have to assume that there are
only jumps in one direction. Moreover, we assume that the underlying Lévy
process is of finite activity (cf. Proposition 3.2.4). Our performance crite-
rion is still the expected exponential utility of terminal wealth (cf. (5.14)).
By Theorem 5.3.1 we know that it is optimal to keep the control constant
regardless of the time and the company’s level of wealth. That means our
dynamic optimization problem is now stationary. Define

X∗T =
d∑
i=1

(
xi +

∫ t

0

(
cib∗,i + µiδ∗,i

)
ds

−
∫ t

0

∫
Rd+

∫
[0,1)d

(
δ∗,izi + b∗,iyi

)
N(ds, dz, dy)

)
.

The value function can be computed in terms of the characteristic triplet of
the accumulated Lévy process

E[u(X∗T )] = λ− γ

θ
exp

(
Tψ(b∗, δ∗)

)
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where

ψ(b, δ) =− θ
d∑
i=1

(
cbi + µδi

)
+
∫
Rd+

∫
[0,1)d

(
exp

(
θ

d∑
i=1

(biyi + δizi)
)
− 1
)
ν(dz, dy).

The Lévy measure ν is supported by the set {(y, z) : yz = 0} which
means that in the integrand y is always zero whenever z 6= 0 and vice
versa. Therefore, the generator can be rewritten in terms of the Lévy
measures νC(A) = ν(AY ) and νS(A) = ν(AZ) for all A ∈ B(Rd) where
AY = {y : (y, 0) ∈ A} and AZ = {z : (0, z) ∈ A}. We can therefore analyze
the retention level separately from the investment portfolio. Define

M(b) =
∫
Rd+

(
exp

(
θ

d∑
i=1

biyi
)
− 1
)
νC(dy).

We assume that the dependence structure between the business lines is spec-
ified via an Archimedean Lévy copula (cf. Definition 4.2.6) generated by a
completely monotone Lévy generator (cf. Definition 4.2.7). We chose here
φ := ψ−1 since this leads to simpler expressions in this context. Therefore,
the inverse inverse φ−1 has derivatives up to order d with alternating signs
satisfying

(−1)k
(
φ−1

)(k)(t) ≥ 0, k ∈ {1, . . . , d} (6.3)

for any t ∈ [0,∞) . Moreover, suppose that the one-dimensional tail integrals
are sufficiently smooth. Then we know by Proposition 4.2.5 that the Lévy
density νC can be constructed by specifying the dependence structure and
the marginal Lévy measures separately, that is

νC(dy1, . . . , dyd) =
(
(φC)−1

)(d)( d∑
i=1

φC
(
UC,i(yi)

)) d∏
i=1

sC,i(yi) νC,i(dyi),

where
sC,i(·) = (φC)(1)(UC,i(·)).

Thus our optimization problems can be written in terms of an Archimedean
Lévy copula. We determine structure conditions with respect to the Lévy
measure under which we can be sure that b∗,j ≥ b∗,k where b∗ = (b∗,i, . . . , b∗,d)
is the optimal retention level. Inspired by the approach of Hennessy and La-
pan (2002) we establish an inequality on the level of the expected terminal
exponential utility function if b∗,j is permuted with b∗,k for j, k ∈ {1, . . . , d}.
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Theorem 6.3.1. If dependence is modeled via an Archimedean Lévy copula
generated by a completely monotone Lévy generator and

sC,j(x)νC,j(x) ≥ sC,k(x)νC,k(x)

on the domain of definition, j, k ∈ {1, . . . , d}. Then

b∗,j ≥ b∗,k

where b∗ = (b∗,i, . . . , b∗,d) is the optimal retention level.

Proof. For notational convenience we skip the index C. In the sequel we
assume the Lévy measure ν(dy) to be equivalent to the Lebesgue measure,
that is ν(dy) = ν(y)dy, where ν(y) is the Lévy density of the Lévy measure
ν(dy). Without loss of generality, consider permutation τ of indices 1 and 2
of an arbitrary retention vector b ∈ Rd+. Note that the retentions (b3, . . . , bd)
are held fixed. We write bτ = (b2, b1, b3, . . . , bd) for the permuted policy and
assume that b2 ≥ b1. Comparing the two evaluations we have

M(bτ )−M(b)

=
∫
Rd+

exp
(
θ
(
b1y2 + b2y1 +

d∑
i=3

biyi
))

ν(dy1, . . . , dyd)

−
∫
Rd+

exp
(
θ

d∑
i=1

biyi
)
ν(dy1, . . . , dyd).

Separating the integration area and changing the notation of the variables
in the second summand we obtain

M(bτ )−M(b)

=
∫
{Rd+,y1≥y2}

exp
(
θ
(
b1y2 + b2y1 +

d∑
i=3

biyi
))

ν(dy1, . . . , dyd)

+
∫
{Rd+,y1≥y2}

exp
(
θ

d∑
i=1

biyi
)
ν(dy2, dy1, dy3, . . . , dyd)

−
∫
{Rd+,y1≥y2}

exp
(
θ

d∑
i=1

biyi
)
ν(dy1, . . . , dyd)

−
∫
{Rd+,y1≥y2}

exp
(
θ
(
b1y2 + b2y1 +

d∑
i=3

biyi
))

ν(dy2, dy1, . . . , dyd).



128 Chapter 6. Structural comparison results

Defining

H(y1, . . . , yd)

=
(
φ−1

)(d)( d∑
i=1

φ
(
U i(yi)

)) d∏
i=1

νi(yi)si(yi)

−
(
φ−1

)(d)(
φ
(
U1(y2)

)
+ φ

(
U2(y1)

)
+

d∑
i=3

φ
(
U i(yi)

))
ν1(y2)s1(y2)ν2(y1)s2(y1)

d∏
i=3

νi(yi)si(yi),

and

D(y1, y2) = exp
(
θ

d∑
i=1

biyi
)

the above equation can be rewritten as

M(bτ )−M(b)

=
∫
{Rd+,y1≥y2}

(
D(y2, y1)−D(y1, y2)

)
H(y1, . . . , yd) dy1 . . . dyd.

In order to obtain an inequality for M(bτ ) −M(b) we integrate along y2.
That is,

M(bτ )−M(b)

=
∫
Rd−1

+

(
D(y2, y1)−D(y1, y2)

)
J (y1, . . . , yd)

∣∣∣y1
0
dy1dy3 . . . dyd

−
∫
{Rd+,y1≥y2}

θ
(
b1D(y2, y1)− b2D(y1, y2)

)
J (y1, . . . , yd) dy1 . . . dyd

where

J (y1, . . . , yd)

=
(
φ−1

)(d−1)
( d∑
i=1

φ
(
U i(yi)

))
s1(y1)ν1(y1)

d∏
i=3

si(yi)νi(yi)

−
(
φ−1

)(d−1)
(
φ
(
U1(y2)

)
+ φ

(
U2(y1)

)
+

d∑
i=3

φ
(
U i(yi)

))
s2(y1)ν2(y1)

d∏
i=3

si(yi)νi(yi).
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The first term vanishes for y1 = y2. Upon integration along y1 in the second
term we have

M(bτ )−M(b)

=−
∫
Rd−1

+

(
D(0, y1)−D(y1, 0)

)
J (y1, 0, y3, . . . , yd) dy1dy3 . . . dyd

−
∫
Rd−1

+

θ
(
b1D(y2, y1)− b2D(y1, y2)

)
K(y1, . . . , yd)

∣∣∣∞
y2
dy2 . . . dyd

+
∫
{Rd+,y1≥y2}

θ2b2b1
(
D(y2, y1)−D(y1, y2)

)
K(y1, . . . , yd) dy1 . . . dyd

where

K(y1, . . . , yd)

=
(
φ−1

)(d−2)
( d∑
i=1

φ
(
U i(yi)

)) d∏
i=3

si(yi)νi(yi)

−
(
φ−1

)(d−2)
(
φ
(
U1(y2)

)
+ φ

(
U2(y1)

)
+

d∑
i=3

φ
(
U i(yi)

)) d∏
i=3

si(yi)νi(yi).

The second term vanishes since K(y1, y2, y3, . . . , yd) = 0 for y1 = y2 and
K(y1, y2, y3, . . . , yd) = 0 for y1 = ∞ by Lemma A.2.2 keeping in mind that
U(∞) = 0 and φ(0) =∞. Integrating the first term along y1 finally yields

M(bτ )−M(b)

=−
∫
Rd−2

+

(
D(0, y1)−D(y1, 0)

)
K(y1, 0, y3, . . . , yd)

∣∣∣∞
0
dy3 . . . dyd

+
∫
Rd−1

+

θ
(
b2D(0, y1)− b1D(y1, 0)

)
K(y1, 0, y3, . . . , yd) dy1dy3 . . . dyd

+
∫
{Rd+,y1≥y2}

θ2b1b2
(
D(y2, y1)−D(y1, y2)

)
K(y1, . . . , yd) dy1dy2 . . . dyd.

Since K(y1, 0, y3, . . . , yd) = 0 for y1 = ∞ and K(y1, 0, y3, . . . , yd) = 0 for
y1 = 0 it remains

M(bτ )−M(b)

=
∫
Rd−1

+

θ
(
b2D(0, y1)− b1D(y1, 0)

)
K(y1, 0, y3, . . . , yd) dy1dy3 . . . dyd

+
∫
{Rd+,y1≥y2}

θ2b1b2
(
D(y2, y1)−D(y1, y2)

)
K(y1, . . . , yd) dy1dy2 . . . dyd.

(6.4)
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We establish conditions under which we can determine the sign ofK(y1, . . . , yd).
Note that

sgn
( d∏
i=3

si(yi)νi(yi)
)

= (−1)d−2.

By (6.3) we know that (−1)d−2(φ−1)(d−2)(·) is a decreasing function since
(−1)d−2(φ−1)(d−1)(·) ≤ 0. Therefore, it holds that

K(y1, . . . , yd) ≥ 0 for y1 ≥ y2

if

L(y1, y2) = φ
(
U1(y1)

)
+ φ

(
U2(y2)

)
− φ

(
U1(y2)

)
− φ

(
U2(y1)

)
≤ 0.

Fix y2. We have y1 ≥ y2, L(y1, y2)
∣∣
y1=y2

= 0 and a sufficient and necessary

condition for ∂L(y1,y2)
∂y1

≤ 0 to hold is that

s1(y1)ν1(y1) ≤ s2(y1)ν2(y1).

We analogously get that K(y1, 0, y3, . . . , yd) ≥ 0 for y1 ≥ 0 if and only if
s1(y)ν1(y) ≤ s2(y)ν2(y).
For b2 ≥ b1 and y1 ∈ R+ it holds that

b2 exp
(
θ
(
b2y1 +

d∑
i=3

biyi
))
≥ b1 exp

(
θ
(
b1y1 +

d∑
i=3

biyi
))
.

With K(y1, 0, y3, . . . , yd) ≥ 0 we therefore know that the first term in (6.4)
is positive, so is the second term since for b2 ≥ b1 and y1 ≥ y2 it holds that

exp
(
θ
(
b1y2 + b2y1 +

d∑
i=3

biyi
))
≥ exp

(
θ

d∑
i=1

biyi
)
.

Note that we have (b2 − b1)(y1 − y2) ≥ 0 for y1 ≥ y2 if and only if b2 ≥ b1.
Hence

M(bτ )−M(b) ≥ 0

for
s1(y)ν1(y) ≤ s2(y)ν2(y) and b2 ≥ b1 ≥ 0.

Clearly, the assumed allocation is preferable to its bivariate permutation.

Remark 17. (a) Considering a more general model with different premium
incomes in the single business lines ci for i ∈ {1, . . . , d} we can easily
show by Theorem 6.3.1: If

cj ≥ ck and sC,j(y)νC,j(y) ≥ sC,k(y)νC,k(y)

on the domain of definition. Then

b∗,j ≥ b∗,k.
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(b) This approach is not valid to identify regularity conditions if there
are jumps in several directions. In this case the definition of positive
Lévy copulas has to be extended to the whole Euclidean space. The
construction of such an extended Archimedean Lévy copula can be
found in Chapter 4 of this thesis.

Our structure condition can be simplified to a condition which can be
checked more easily

Proposition 6.3.2. Let Uk(x) ≤ U j(x) for all x and let Uk(x)
Uj(x)

be decreasing
in x, j, k ∈ {1, . . . , d} fixed. For an Archimedean Lévy copula with generator
φ such that

Rφ(u) = −uφ
(2)(u)
φ(1)(u)

≥ 1,

the structure condition of Theorem 6.3.1 is satisfied.

Proof. We can rewrite condition sj(x)νj(x) ≥ sk(x)νk(x) as

νj(x)Uk(x)
νk(x)U j(x)

≤
φ(1)

(
Uk(x)

)
φ(1)

(
U j(x)

) Uk(x)
U j(x)

,

note that si(x) = φ(1)
(
U i(x)

)
< 0.

Since Uk(x)
Uj(x)

is decreasing in x that is νj(x)Uk(x)
νk(x)Uj(x)

≤ 1 it suffices to show that

φ(1)
(
Uk(x)

)
φ(1)

(
U j(x)

) Uk(x)
U j(x)

≥ 1

or equivalently

φ(1)
(
Uk(x)

)
Uk(x) ≤ φ(1)

(
U j(x)

)
U j(x).

Since Uk(x) ≤ U j(x) for all x it suffices to establish that uφ(1)(u) is increas-
ing in u. This condition is satisfied if and only if

φ(1)(u) + uφ(2)(u) ≥ 0.

Recall that φ(u) is decreasing in u. Therefore, this condition is satisfied if
and only if −uφ

(2)(u)

φ(1)(u)
≥ 1.

Let us finally verify that there are indeed Archimedean Lévy copulas
satisfying the condition of Theorem 6.3.1.

Example 6.3.3 (Clayton Lévy copula).
Consider the positive Clayton Lévy copula with generator φ(u) = u

− 1
% ,

% > 0, u ≥ 0. Therefore, φ(1)(u) = −1
%u
− 1
%
−1, φ(2)(u) = 1

%(1
% + 1)u−

1
%
−2 and

Rφ(u) = −uφ
(2)(u)
φ(1)(u)

=
−u1

%(1
% + 1)u−

1
%
−2

−1
%u
− 1
%
−1

= 1 +
1
%
> 1.
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Assuming that U2(x)
U1(x)

is decreasing in x and U2(x) ≤ U1(x) for all x the
structure condition is satisfied by Proposition 6.3.2.

Example 6.3.4 (Gumbel Lévy copula).
Consider the positive Gumbel Lévy copula with generator φ(u) =

(
log(u+

1)
)−%, % > 0, u > 0. It yields

φ(1)(u) =
−%
(

log(u+ 1)
)−%−1

u+ 1
< 0,

φ(2)(u) =
%(%+ 1)

(
log(u+ 1)

)−%−2(u+ 1) + %
(

log(u+ 1)
)−%−1

(u+ 1)2
> 0.

Thus

Rφ(u) = u
(%+ 1)

(
log(u+ 1)

)−1(u+ 1) + 1
(u+ 1)

≥ 1.

We therefore have to show that

f(u) := u(u+ 1)(%+ 1)− log(u+ 1) ≥ 0.

This clearly holds since f(0) = 0 and f ′(u) = (%+ 1)(2u+ 1)− 1
1+u ≥ % > 0.

Assuming that U2(x)
U1(x)

is decreasing in x and U2(x) ≤ U1(x) for all x the
structure condition is satisfied by Proposition 6.3.2.



Appendix A

Supplementary Material

A.1 The Burkholder-Davis-Gundy inequality

The following inequality can be found in Karatzas and Shreve (1991) for
continuous local martingales. However, this inequality still holds in the case
of an arbitrary martingale, so jumps are included. Details can be found in
Dellacherie and Meyer (1982), Theorem VII.92. In the following we use the
convention

M∗t = max
0≤s≤t

||Ms||.

Theorem A.1.1 (The Burkholder-Davis-Gundy inequality). Let M be an
arbitrary local martingale. For every m > 0 there exists a constant Km

(depending only on m) such that for every stopping time τ

E[(M∗τ )2m] ≤ KmE[〈M〉mτ ].

Corollary A.1.1. Let M a d-dimensional local martingale. There exists a
constant Km such that for all m > 0 and every stopping time τ

E[(M∗τ )2m] ≤ KmE[Amτ ] where At =
d∑
i=1

〈Mi〉t 0 ≤ t <∞.

Proof. With inequality (3.6) we have

||Mt||2m =
[ d∑
i=1

(M i
t )

2
]m
≤ dm

d∑
i=1

|M i
t |2m

and
d∑
i=1

〈Mi〉mτ ≤ d
( d∑
i=1

〈Mi〉τ
)m

= dAmτ .
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Taking maxima and expectation in the first inequality and maxima in the
second inequality we obtain by the Burkholder-Davis-Gundy-inequality (cf.
Theorem A.1.1)

E(||M ||∗τ )2m ≤ dm
d∑
i=1

E[(M i
τ )∗]2m ≤ dm

d∑
i=1

KmE[〈M i〉mτ ] ≤ Kmd
m+1E(Amτ ).

A.2 Selected proofs

The following lemma is needed for the proof of Theorem 5.3.1.

Lemma A.2.1. Let L(b,m) be as derived in the proof of Theorem 5.3.1.
Then

∂L(b,m)
∂mi

=
∫ ∞
mi

bi

∫
Rd−1

+

(
η1{||y||≥1} + 1− exp

(
θmi + θ

d∑
j 6=i

bj
(
yj ∧ m

j

bj

)))
ν(dy)

∂L(b,m)
∂bi

=
∫ mi

bi

0

∫
Rd−1

+

yi
(
η1{||y||≥1} + 1

− exp
(
θbiyi + θ

d∑
j 6=i

bj
(
yj ∧ m

j

bj

)))
ν(dy).

Remark 18 (Differentiation rule for parameter integrals).
Let f ∈ C1,· and ϕ ∈ C1 then

∂

∂x

∫ ϕ(x)

a
f(x, t) dt =

∫ ϕ(x)

a

∂f(x, t)
∂x

dt+ f(x, ϕ(x))ϕ′(x).

Therefore,

∂

∂x

∫ a

ϕ(x)
f(x, t) dt =− ∂

∂x

∫ ϕ(x)

a
f(x, t) dt

=
∫ a

ϕ(x)

∂f(x, t)
∂x

dt− f(x, ϕ(x))ϕ′(x).

Proof. Let L(b,m) be as derived in the proof of Theorem 5.3.1. Defining

E(y) = θ

d∑
j 6=i

bj
(
yj ∧ m

j

bj

)
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and separating the integrating area of L(b,m) we have

L(b,m)

=θ(1 + η)
d∑
i=1

(∫ mi

bi

0

∫
Rd−1

+

biyi1{||y||≥1} ν(dy) +
∫ ∞
mi

bi

∫
Rd−1

+

mi1{||y||≥1} ν(dy)
)

+ hc −
1
2
θ2

d∑
i,j=1

r∑
k=1

σikσjk

−
∫ mi

bi

0

∫
Rd−1

+

(
exp

(
θbiyi + E(y)

)
− 1− θ1{||y||<1}

(
biyi + E(y)

))
ν(dy)

−
∫ ∞
mi

bi

∫
Rd−1

+

(
exp

(
θmi + E(y)

)
− 1− θ1{||y||<1}

(
mi + E(y)

))
ν(dy).

In the sequel we assume the Lévy measure has a density with respect to the
Lebesgue measure, that is

ν(dy) = ν(y) dy.

For notational simplicity we define

I(y) =

√√√√√ d∑
j=1
j 6=i

(yj)2 +
(mi

bi

)2
.

Differentiation with respect to mi yields

∂L(b,m)
∂mi

=θ(1 + η)
( 1
bi

∫
Rd−1

+

mi1{I(y)≥1}ν(y)
∣∣∣
yi=mi

bi

d∏
j=1
j 6=i

dyj +
∫ ∞
mi

bi

∫
Rd−1

+

1{||y||≥1}ν(y)dy

− 1
bi

∫
Rd−1

+

mi1{I(y)≥1}ν(y)
∣∣∣
yi=mi

bi

d∏
j=1
j 6=i

dyj
)

− 1
bi

∫
Rd−1

+

(
exp(θmi + E(y))− 1− θ1{I(y)<1}(m

i + E(y))
)
ν(y)

∣∣∣
yi=mi

bi

d∏
j=1
j 6=i

dyj

−
∫ ∞
mi

bi

∫
Rd−1

+

(
θ exp(θmi + E(y))− θ1{||y||<1}

)
ν(y) dy

+
1
bi

∫
Rd−1

+

(
exp(θmi + E(y)

)
− 1− θ1{I(y)<1}(m

i + E(y))
)
ν(y)

∣∣∣
yi=mi

bi

d∏
j=1
j 6=i

dyj .
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Note that some terms cancel out. We finally obtain

∂L(b,m)
∂mi

=θ(1 + η)
∫ ∞
mi

bi

∫
Rd−1

+

1{||y||≥1}ν(y) dy

−
∫ ∞
mi

bi

∫
Rd−1

+

(
θ exp(θ(mi + E(y))− θ1{||y||<1}

)
ν(y) dy

=θ
∫ ∞
mi

bi

∫
Rd−1

+

(
η1{||y||≥1} − exp(θ(mi + E(y)) + 1

)
ν(y) dy.

Differentiation with respect to bi yields

∂L(b,m)
∂bi

=θ(1 + η)
(∫ mi

bi

0

∫
Rd−1

+

yi1{||y||≥1}ν(y) dy

− mi

(bi)2

∫
Rd−1

+

bi
mi

bi
1{I(y)≥1}ν(y)

∣∣
yi=mi

bi

d∏
j=1
j 6=i

dyj

+
mi

(bi)2

∫
Rd−1

+

mi1{I(y)≥1}ν(y)
∣∣
yi=mi

bi

d∏
j=1
j 6=i

dyj
)

−
∫ mi

bi

0

∫
Rd−1

+

θyi
(
exp

(
θ(biyi + E(y))

)
− 1{||y||<1}

)
ν(y) dy

+
mi

(bi)2

∫
Rd−1

+

(
exp

(
θ(mi + E(y))

)
− 1

− θ1{I(y)<1}(m
i + E(y))

)
ν(y)

∣∣
yi=mi

bi

d∏
j=1
j 6=i

dyj

− mi

(bi)2

∫
Rd−1

+

(
exp(θ(mi + E(y))− 1

− θ1{I(y)<1}(m
i + E(y))

)
ν(y)|

yi=mi

bi

d∏
j=1
j 6=i

dyj .
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Note that some terms cancel out. We finally obtain

∂L(b,m)
∂bi

=θ(1 + η)
∫ mi

bi

0

∫
Rd−1

+

yi1{||y||≥1}ν(y) dy

−
∫ mi

bi

0

∫
Rd−1

+

(
θyi exp

(
θ(biyi + E(y))

)
− θ1{||y||<1}yi

)
ν(y) dy

=θ
∫ mi

bi

0

∫
Rd−1

+

yi
(
η1{||y||≥1} + 1− exp

(
θ(biyi + E(y))

))
ν(dy).

The following lemma is part of Chapter 6.

Lemma A.2.2. Let f : R+ → R+ and f ∈ Ck. Assuming (−1)kf (k) ≥ 0
and limx→∞ f(x) = 0 it holds that

lim
x→∞

f (k)(x) = 0.

Proof. Let f(x) = −
∫∞
x f ′(y)dy. For ε > 0 there exists a x0 such that for

all x > x0: f(x) ≤ ε. Therefore, it holds for all x > x0 + 1 that

ε ≥
∫ ∞
x−1
−f ′(y) dy >

∫ x

x−1
−f ′(x) dy = −f ′(x)

since −f ′(y) is decreasing in y. Thus −f ′(x) ≤ ε. Assuming that this holds
for the k-th derivative and proceeding in the same manner as above for k+1
yields the assertion.
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variate Analysis 97, 1551–1572.

Karatzas, I. and Shreve, S. E. (1991) Brownian motion and stochastic
calculus. Springer-Verlag, New York.

Korn, R. (1997) Optimal portfolios: stochastic models for optimal invest-
ment and risk management in continuous time. Singapore: World Scien-
tific.

Kyprianou, A. E. (2006) Introductory lectures on fluctuations of Lévy
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Schäfer, U. (2007) A fixed point theorem based on Miranda. Fixed Point
Theory Appl. Art. ID 78706, 5.

Schäl, M. (1975) Conditions for optimality in dynamic programming and
for the limit of n-stage optimal policies to be optimal. Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete 32, 179–196.

Schäl, M. (2004) On discrete-time dynamic programming in insurance:
exponential utility and minimizing the ruin probability. Scand. Actuar.
J. 189–210.

Schäl, M. (2005) Control of ruin probabilities by discrete-time investments.
Math. Methods Oper. Res. 62, 141–158.



BIBLIOGRAPHY 143

Schmidli, H. (2001) Optimal proportional reinsurance policies in a dynamic
setting. Scand. Actuar. J. 55–68.

Schmidli, H. (2002) On minimizing the ruin probability by investment and
reinsurance. Ann. Appl. Probab. 12, 890–907.

Schmidli, H. (2008) Stochastic control in insurance. Springer-Verlag, Lon-
don.

Tankov, P. (2003) Dependence structure for spectrally positive multidi-
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