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Abstract

In this paper, we investigate the construction of mortality indexes using the time-varying
parameters in common stochastic mortality models. We first study how existing models
can be adapted to satisfy the new-data-invariant property, a property that is required to
ensure the resulting mortality indexes are tractable by market participants. Among the
collection of adapted models, we find that the adapted Model M7 (the Cairns-Blake-Dowd
model with cohort and quadratic age effects) is the most suitable for constructing mortality
indexes, partly because it gives the best fit to the majority of the data sets we consider and
partly because the three time-varying parameters in it are highly interpretable and rich in
information content. Based on the three indexes created from this model, one can write a
standardized mortality derivative called K-forward, which can be used to hedge longevity
risk exposures. Another contribution of this paper is a method called key K-duration that
permits one to calibrate a longevity hedge formed by K-forward contracts. Our numerical
illustrations indicate that a K-forward hedge has a potential to outperform a q-forward hedge
in terms of the number of hedging instruments required.

Keywords: Cairns-Blake-Dowd model, securitization, longevity risk reduction

1. Introduction

Pension plan sponsors can mitigate their longevity risk exposures by trading securities
that are linked to future realized mortality. To date, the market for such securities is still in its
infancy and has yet to overcome a number of challenges. As Blake et al. (2013) pointed out,
one of these challenges is the creation of homogeneous and transparent instruments, which
allow the market to concentrate liquidity. A significant step in overcoming this challenge is
to develop tractable mortality indexes, upon which standardized mortality-linked securities
can be written.
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Existing mortality indexes produced by investment banks such as J.P. Morgan, Deutsche
Börse and Credit Suisse are constructed without using any model. One disadvantage of this
construction approach is that the information content of each index is limited, which means
the information reflected by an index is either highly aggregate (e.g., the life expectancy
at birth) or specific (e.g., the death probability at a certain age).1 It follows that a large
number of such indexes would be needed to effectively hedge longevity risk, which arises
from complex and non-parallel shifts in the underlying mortality curve. This problem hinders
market development, because liquidity would be diluted across the large spectrum of indexes.

To improve the information content of a mortality index, one may use a model-based
construction method, in which mortality indexes are developed from the time-varying param-
eters in a stochastic mortality model, such as the Lee-Carter model (Lee and Carter, 1992)
and the Cairns-Blake-Dowd (CBD) model (Cairns et al., 2006). The model-based approach
was first studied by Chan et al. (2014), who argued that the model on which index con-
struction is based must satisfy the new-data-invariant property, which means that when the
model is updated with new mortality data, the mortality indexes (time-varying parameters)
for the previous years would not be affected. This property is crucially important, because
once made public, an index value cannot (and should not) be changed. Chan et al. (2014)
found that among the six stochastic models documented by Dowd et al. (2010), the original
CBD model (also called Model M5) is the only model that satisfies the new-data-invariant
property.

The first objective of this paper is to further investigate the construction of mortality
indexes from stochastic mortality models. We begin with a discussion on how models other
than the original CBD model can be adapted to satisfy the new-data-invariant property. We
then evaluate the fit of the adapted models to the mortality data from 10 national populations
on the basis of the Bayesian Information Criterion (BIC). Among the collection of adapted
models, we find that the adapted Model M7 (the Cairns-Blake-Dowd model with cohort
and quadratic age effects) yields the best BIC values for the majority of the data sets we
consider. On top of that, the time-varying parameters in the model are highly interpretable
and are able to reflect the varying age pattern of mortality improvement. For these reasons,
we propose to use the three time-varying parameters in the adapted Model M7 jointly as
mortality indexes. We call these indexes the 3-factor CBD mortality indexes.

Our second objective is to develop standardized securities written on the 3-factor CBD
mortality indexes. In particular, we explain how a security called K-forward, proposed as a
concept by Chan et al. (2014), can be used to hedge the longevity risk exposures of a pension
plan. The structure of a K-forward is identical to that of a q-forward (see, e.g., Coughlan,
2009), except that the reference rates to which the contracts are linked are different. In more
detail, the payoff from a q-forward depends on the realized death probability at a reference
age in a reference year, whereas that from a K-forward depends on a realized 3-factor CBD
mortality index in a reference year. Compared to a q-forward, a K-forward is an even simpler
building block, because its reference rate contains only one parameter (the reference year)

1The mortality index of Credit Suisse is based on the life expectancy at birth of the US population, while
that of JP Morgan is based on the death probabilities of four national populations.
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instead of two.

To ensure that a hedge formed by standardized instruments is effective, there is a need to
calibrate it. Following the lines of Cairns et al. (2008), Cairns (2011), Coughlan et al. (2007),
Plat (2009, 2010), Li and Luo (2012), Lin and Tsai (2013), Tsai et al. (2010) and Wang et
al. (2010), we contribute a measure called key K-duration, which measures a liability’s price
sensitivity to a specific segment in the time trend of a 3-factor CBD mortality index. The
required notional amounts of K-forwards can be determined readily by equating the key K-
durations of the portfolio of K-forwards and the liability being hedged. The key K-duration
measure is parallel to Li and Luo’s (2012) key q-duration, which measures the change in a
liability’s value due to a small change in a death probability. It also has a close resemblance
to Cairns’ (2011) approximate deltas (with respect to the time-varying parameters in the
original CBD model) and to Plat’s (2009) minimum variance hedge ratios that are derived
by considering the shifts of the two time-varying parameters in the original CBD model.

The calculation of key K-durations does not require any simulation, so the execution
of the proposed hedging strategy is quick and requires minimal computational effort. Our
numerical illustrations indicate that the proposed hedging strategy is effective in reduc-
ing a portfolio’s longevity risk exposure, even if parameter uncertainty and sampling risk
are taken into account. Furthermore, although the mortality indexes are derived from the
adapted Model M7, our proposed hedging strategy also works well under scenarios simulated
from other stochastic mortality models, suggesting that the success in hedging is largely in-
dependent of the simulation model and is likely to be achievable in practice.

The advantage of our proposed hedging strategy is particularly apparent when the port-
folio being hedged involves individuals who were born in different years. First, a K-forward
hedge is easier to execute in comparison to a q-forward hedge, which requires the hedger
to determine the key cohorts in the portfolio. Second, our numerical illustrations suggest
that compared to a q-forward hedge, a K-forward hedge giving a comparable hedge effective-
ness involves a smaller number of securities. This helps the market to concentrate liquidity,
thereby facilitating market development.

The remainder of this paper is organized as follows. Section 2 discusses the construc-
tion of mortality indexes using common stochastic mortality models. Section 3 specifies a
K-forward contract, defines the key K-duration measure and details the proposed hedging
strategy. Section 4 illustrates the proposed methods with a hypothetical pension plan in-
volving one single cohort and investigates important issues such as sampling risk. Section 5
presents the generalization to multiple birth cohorts. Section 6 concludes the paper.

2. Constructing Mortality Indexes

In this section, we revisit the problem of model-based mortality index construction, which
was previously studied by Chan et al. (2014). The conventions below are used throughout
the discussion:

• mx,t =
Dx,t

Ex,t
is the central death rate at age x in year t;
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Table 1

Specifications of the six stochastic mortality models under consideration.

Model M1: The Lee-Carter Model

ln (mx,t) = β
(1)
x + β

(2)
x κ

(2)
t (2 constraints)

Model M2: The Renshaw-Haberman Model

ln (mx,t) = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γ

(3)
t−x (4 constraints)

Model M3: The Age-Period-Cohort Model

ln (mx,t) = β
(1)
x + n−1

a κ
(2)
t + n−1

a γ
(3)
t−x (3 constraints)

Model M5: The Original Cairns-Blake-Dowd Model

ln
(

qx,t

1−qx,t

)

= κ
(1)
t + κ

(2)
t (x− x̄) (No constraint)

Model M6: The Cairns-Blake-Dowd Model with a Cohort Effect Term

ln
(

qx,t

1−qx,t

)

= κ
(1)
t + κ

(2)
t (x− x̄) + γ

(3)
t−x (2 constraints)

Model M7: The Cairns-Blake-Dowd Model with Cohort Effect and Quadratic Age Effect Terms

ln
(

qx,t

1−qx,t

)

= κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)
t−x (3 constraints)

• Dx,t is observed number of deaths at age x in year t;

• Ex,t is the matching exposures at age x in year t;

• qx,t is the probability that a person aged x at time t will die between time t and t+ 1;

• β
(i)
x , i = 1, 2, 3, are age-specific parameters;

• κ
(i)
t , i = 1, 2, 3, are time-varying parameters;

• γ
(i)
c , i = 3, 4, where c = t− x denotes year of birth, are cohort-related parameters;

• na is the number of ages covered in the sample age range;

• x̄ is the mean age over the sample age range;

• σ̂2
x is the mean of (x− x̄)2 over the sample age range.

The candidate models under consideration are the six stochastic mortality models discussed
by Dowd et al. (2010). The specifications of the six models are displayed in Table 1. In fitting
these models (except Model M5), we need to impose identifiability constraints to stipulate
parameter uniqueness. The number of identifiability constraints needed for each model is
displayed in parentheses in Table 1. We refer interested readers to Cairns et al. (2009) for a
deeper discussion on the identifiability constraints.
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2.1. The New-Data-Invariant Property

Chan et al. (2014) argued that the model on which index construction is based must
satisfy the new-data-invariant property. In more detail, the time-varying parameters in the
model must remain unchanged when the model is fitted to additional years of data. This
property is crucial to the tractability of the mortality indexes, because without it historical
index values will need to be revised every time when new mortality data becomes available.
Furthermore, if an index value at a particular time point is not fixed, it would be difficult,
if not impossible, to define the payoff from an instrument written on the index.

Chan et al. (2014) provided two sufficient conditions for the new-data-invariant property
to hold. The first condition is related to the log-likelihood. AssumingDx,t ∼ Poisson(Ex,tmx,t),
the log-likelihood of a stochastic mortality model can be expressed as

l =

tend
∑

t=tstart

x1
∑

x=x0

Dx,t ln(Ex,tmx,t)−Ex,tmx,t − ln(Dx,t!) =

tend
∑

t=tstart

λ(t),

where [x0, x1] is the sample age range, [tstart, tend] is the sample period and λ(t) represents
the contribution to the log-likelihood from data of year t. We require the log-likelihood to be
separable, that is, for t 6= s, λ(t) and λ(s) do not contain any common free parameters. This
condition implies that we can estimate the mortality indexes in each year independently. The
second condition is associated with the identifiability constraints. In particular, we require
that the estimation process involves no identifiability constraint, because otherwise when
the model is fitted to additional years of data, parameters for the previous years would be
changed to conform to the constraint imposed on them. Among the six candidate models
we consider, Model M5 is the only model that meets these two conditions.

In what follows, we discuss how the other five models can be adapted to satisfy the new-
data-invariant property. The way we adapt a model depends on whether the model contains
age-specific parameters, cohort effect parameters, or both.

To make Model M1 (which contains age-specific parameters) meet the new-data-invariant

property, we could keep the age-specific parameters β
(i)
x , i = 1, 2, fixed when we update the

model. In using this adaptation, the log-likelihood becomes separable and identifiability
constraints are no longer needed. We denote the adapted version of Model M1 by Model
M1*.

For Models M6 and M7 (which contain cohort effect parameters), we could first estimate

the time-varying parameters κ
(i)
t , where i = 1, 2 for Model M6 and i = 1, 2, 3 for Model M7,

and then the cohort effect parameters γ
(i)
t−x, where i = 3 for Model M6 and i = 4 for Model

M7, from the residuals. In this way, the estimation of the time-varying parameters would
be based on a separable log-likelihood and requires no identifiability constraint. The time-
varying parameters in the adapted models thus possess the new-data-invariant property. We
denote the adapted versions of Models M6 and M7 by Models M6* and M7*, respectively.

For Models M2 and M3 (which contain both age-specific and cohort effect parameters),
we need both of the previously mentioned adaptations. Every time we update the models, we
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Table 2

Specifications of the stochastic mortality models that are adapted to satisfy the new-data-invariant
property.

Model M1*: The adapted version of model M1

ln (mx,t) = β
(1)∗
x + β

(2)∗
x κ

(2)
t (No constraint)

Model M2*: The adapted version of model M2

ln (mx,t) = β
(1)∗
x + β

(2)∗
x κ

(2)
t + β

(3)∗
x γ

(3)∗
t−x (No constraint)

Model M3*: The adapted version of model M3

ln (mx,t) = β
(1)∗
x + n−1

a κ
(2)
t + n−1

a γ
(3)∗
t−x (No constraint)

Model M6*: The adapted version of model M6

ln
(

qx,t

1−qx,t

)

= κ
(1)
t + κ

(2)
t (x− x̄) + γ

(3)∗
t−x (No constraint)

Model M7*: The adapted version of model M7

ln
(

qx,t

1−qx,t

)

= κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)∗
t−x (No constraint)

keep the age-specific parameters fixed, estimate the time-varying parameters first and then
the cohort effect parameters from the residuals. In this way, the time-varying parameters
in the adapted model would meet the new-data-invariant property. We denote the adapted
versions of Models M2 and M3 by Models M2* and M3*, respectively.

The five adapted candidate models are specified in Table 2, where β
(i)∗
x , i = 1, 2, 3, and

γ
(i)∗
t−x, i = 3, 4, are the parameters that are subject to the proposed adaptations.

2.2. The Impact of the Proposed Adaptations

An adapted model yields a reduced goodness-of-fit in comparison to the corresponding
original model, because the estimation of an adapted model is conditioned on some pre-
estimated parameters. Specifically, the estimation of the time-varying parameters in Models
M1*, M2* and M3* is conditioned on the fixed age-specific parameters, which, in practice,
can be determined by data over a restricted sample period, say [tstart, tmid], where tmid < tend.

2

On the other hand, the estimation of the cohort effect parameters in Model M2*, M3*, M6*
and M7* is conditioned on the estimated time-varying parameters.

To evaluate the impact of the proposed adaptations, we compare the goodness-of-fit to
the data over the period of [tmid + 1, tend] produced by the original models and the adapted
models (whose fixed age-specific parameters, if any, are determined by the data over the
period of [tstart, tmid]). The metric we use is l̂r − l̂r∗ , the difference between the maximized
log-likelihoods for model r and its adapted version r∗.

2Parameter estimation over the restricted sample period of [tstart, tmid] is still subject to the usual identi-
fiability constraints.
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Table 3

The data sample periods for the 10 populations under consideration.

Population Data sample period

Australia, Canada, England and Wales, France,
1950-2009

Japan, Norway, Sweden, United States
New Zealand 1950-2008
Taiwan 1970-2010

Table 4

The reductions in log-likelihood values due to the proposed adaptations.

Males Females

Population M1* M2* M3* M6* M7* M1* M2* M3* M6* M7*

Australia 3734 3125 1624 335 19 1045 6249 1431 1150 24
Canada 6948 24836 1404 203 15 1060 6809 805 1313 194
England and Wales 13886 2362 2600 90 83 9566 1633 2353 1252 27
France 2051 2282 3466 4539 1820 7847 10668 4107 14868 545
Japan 24212 1805 4118 2655 537 88416 2707 3853 13185 261
New Zealand 972 830 399 32 1 555 538 389 191 38
Norway 359 2351 437 54 4 94 267 377 480 27
Sweden 979 364 902 190 12 361 206 892 943 76
Taiwan 8033 6151 951 910 5 3415 1886 718 505 15
United States 53358 14229 10554 8860 1766 20218 11028 7202 14371 2224

We consider gender-specific mortality data from 10 populations across different geograph-
ical regions, including Australasia (Australia, New Zealand), East Asia (Japan, Taiwan),
the Nordic region (Norway, Sweden), Western Europe (England and Wales, France) and
North America (Canada, United States). All data are obtained from the Human Mortality
Database (2013). The sample period for each data set is shown in Table 3. We consider
an age range of 40-90, because models in the CBD family may not fit the accident hump
at younger ages well and the data beyond age 90 are subject to reliability problems. With
this age range, we have x̄ = 65 and σ̂2

x = 650
3
. Furthermore, in fitting the models that are

built for qx,t (Models M5, M6, M6*, M7 and M7*), we assume a constant force of mortality
between integer ages, which implies that mx,t = − ln(1− qx,t).

In evaluating the goodness-of-fit, we set tmid to tend − 15, which means the evaluation
is based on the fit to the most recent 15 years of mortality data. The results are tabulated
in Table 4. It can be seen that Model M7* consistently gives the smallest reductions in
log-likelihood values, indicating that the performances of Models M7* and M7 are similar.
One possible explanation is that the three time-varying parameters in Model M7 capture
the majority of the historical variations in mortality, so that whether or not the cohort
effect parameters are conditionally estimated has little impact on the overall goodness-of-fit.
However, other adapted models yield a significantly worse fit in comparison to their original
versions. The reductions in log-likelihood values are the most prominent for Models M1*,
M2* and M3*, possibly because fixing age-specific parameters makes the model structures a
lot more stringent.
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Table 5

Values of the Bayesian Information Criterion (BIC) produced by the five adapted models and Model M5.

Males Females

Population M1* M2* M3* M5 M6* M7* M1* M2* M3* M5 M6* M7*

Australia 15766 14937 11419 11942 8894 8199 10051 20938 10810 17545 10452 7965
Canada 22776 58868 11543 10697 9298 8781 10677 22564 10066 17673 11453 8752
England and Wales 39538 14465 14497 16137 9887 9454 30549 12765 13763 24662 12298 9097
France 15899 14421 16359 56935 23612 13372 26739 30858 17351 121168 41037 11041
Japan 62618 14144 19169 40456 19438 12627 187997 15358 17880 132618 38947 12164
New Zealand 8852 9100 7752 6833 6902 6848 7880 8375 7605 7869 7213 6801
Norway 7801 12354 7989 7338 7057 7021 7061 7922 7621 9977 7716 6849
Sweden 9668 8935 9499 9175 8035 7652 8269 8460 9273 14262 9405 7589
Taiwan 24720 21321 10446 15448 10333 8580 14829 12271 9449 12044 8820 7888
United States 123233 40388 34770 102543 40562 17818 54680 33198 25935 122063 52332 16553

2.3. Finding the Best-Fitting Adapted Model

In this subsection we compare the performances of the five adapted models and Model M5
(which requires no adaptation). The metric we use is the Bayesian Information Criterion
(BIC), defined by BICr = −2l̂r + vr lnnd. The BIC indicates a model’s goodness-of-fit
(reflected by the maximized log-likelihood l̂r), taking into account the number of observations
nd and the effective number of free parameters vr in the model. We prefer a model with a
lower BIC value.

The BIC values produced by the five adapted models and Model M5 are depicted in
Table 5. We observe that Model M7* gives the best BIC values for all populations except
New Zealand males.3 This is possibly because, as previously mentioned, the adaptation
involved in Model M7* does not have much impact on the model’s performance. Another
possible explanation is that the quadratic age effect term (which is unique to Model M7*)
has a significant explanatory power.

Judging from the evaluation results, Model M7* is the best candidate model for con-
structing mortality indexes. Furthermore, as we are going to discuss in the next subsection,
the time-varying parameters in Model M7* are easy to interpret and are able to explain the
varying age pattern of mortality improvement. For these reasons, we propose to use the
three time-varying parameters, κ

(1)
t , κ

(2)
t and κ

(3)
t , in Model M7* as mortality indexes. We

call these indexes the 3-factor CBD mortality indexes.

2.4. Interpretations of the 3-factor CBD Mortality Indexes

To recap, Model M7* can be written as

ln

(

qx,t

1− qx,t

)

= κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)∗
t−x , (1)

3For New Zealand males, Model M5 gives the smallest BIC value. The fact that the BIC value produced
by Model M5 is less than those produced by Models M6* and M7* implies that cohort effects are not
significant in this population. However, the quadratic age effect term is significant, because Model M7*
yields a smaller BIC value compared to Model M6*.
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Fig. 1. Changes in the logit-transformed mortality curve under different combinations of the 3-factor CBD
mortality indexes.

which means that at a given time t, the logit-transformed death probability is a quadratic
function of (x − x̄), with coefficients being the mortality indexes κ

(1)
t , κ

(2)
t and κ

(3)
t . This

simple structure permits us to interpret the three mortality indexes straightforwardly.

The first index, κ
(1)
t , captures the level of the mortality curve in logit scale. A reduction

in κ
(1)
t signifies an overall mortality improvement across all ages. The impact of a change

in this mortality index is illustrated in the top right panel of Fig. 1 (the solid and dashed
lines).

The second index, κ
(2)
t , represents the slope of the logit-transformed qx,t with respect

to age x. As demonstrated in the bottom left panel of Fig. 1 (the solid and dashed lines),

an increase in κ
(2)
t leads to a steeper logit-transformed mortality curve, which implies that

mortality at younger ages (below the mean age x̄) declines more rapidly than that at older
ages (above the mean age x̄).

The third index, κ
(3)
t , measures the curvature of the logit-transformed mortality curve.

A higher value of κ
(3)
t implies an increase in qx,t over the age ranges of 40-50 and 80-90 but
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Fig. 2. Mortality curves implied by six different combinations of the 3-factor CBD mortality indexes.

a decrease in qx,t over the age range of 51-79. This effect is due to the term ((x− x̄)2 − σ̂2
x),

which is positive when 51 ≤ x ≤ 79 and negative otherwise. The impact of κ
(3)
t for fixed

combinations of κ
(1)
t and κ

(2)
t is shown in the top left panel of Fig. 1. The interaction between

κ
(3)
t and the other two indexes is demonstrated in the other panels of Fig. 1.

Besides being easy to interpret, desirable mortality indexes should be able to capture a
wide range of mortality age patterns, so that securities written on the indexes can effectively
hedge longevity risk, which fundamentally arises from random non-parallel shifts in the
underlying mortality curve. The ability of the 3-factor CBD mortality indexes to represent
different age patterns of mortality can be observed from Fig. 1 (in logit scale) and Fig. 2 (in
the original scale).

Let us illustrate the interpretations of the mortality indexes by considering a portfolio
of 3-year term life insurance contracts that are issued to persons aged 40. The present value
of this portfolio is higher than expected when:

• the future values of κ
(1)
t are higher than expected (which implies the overall mortality

improves slower than expected),

• the future values of κ
(2)
t are lower than expected (which implies mortality at younger

ages (below age 65) improves slower than expected), and

• the future values of κ
(3)
t are higher than expected (which implies mortality over the

age ranges of 40-50 and 80-90 improves slower than expected).

To further illustrate, we consider a closed pension plan, which makes pension payments
to persons aged 65 to 91. The following statements apply to this pension plan:

• The present value is higher than expected if the future values of κ
(1)
t are lower than

expected (which implies the overall mortality improves faster than expected).

• The present value is higher than expected if the future values of κ
(2)
t are lower than
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expected (which implies mortality at older ages (above age 65) improves faster than
expected).

• The impact of κ
(3)
t on the present value is not clear-cut, depending very much on the

demographics of the plan. For instance, if the majority of the pensioners are now aged
above 80, then lower future values of κ

(3)
t are likely to yield a higher present value.

3. Hedging Longevity Risk with K-forwards

With three mortality indexes capturing different aspects of mortality patterns, we can
split longevity risk into three constituent risks, namely “K1 risk”, “K2 risk” and “K3 risk”.
K1 risk refers to the uncertainty associated with overall mortality improvements, while K2
and K3 risks reflect the uncertainty surrounding the first and second order age effects, re-
spectively.

Chan et al. (2014) proposed, as a concept, a simple security called K-forward that can
be used to hedge each of the three constituent risks. In this section, we detail the mechanism
of a K-forward and explain how an effective longevity hedge can be built using a portfolio
of K-forward contracts.

3.1. Specification of K-forwards

A K-forward contract is a zero-coupon swap that exchanges on the maturity date a fixed
amount, determined at time 0 (when the contract is established), for a floating amount that
is proportional to a CBD mortality index (the reference rate) for a certain population (the
reference population) in some future time (the reference year).

For a K-forward contract with a reference year t∗, the reference rate is κ
(i)
t∗ , an unknown

at time 0. The fixed amount is proportional to the corresponding forward mortality index,
denoted as κ̃

(i)
t∗ . This forward value is determined in such a way that no payment exchanges

hands at time 0. Mathematically, the net payoff to the fixed rate receiver of a K-forward
contract can be written as

Y × (κ̃
(i)
t∗ − κ

(i)
t∗ ), i = 1, 2, 3,

where Y is the notional amount. The settlement that takes place on the maturity date T ∗

is illustrated in Fig. 3. In practice, the maturity date T ∗ may be slightly later than the
reference year t∗ due to the time lag in the availability of the mortality index data. For
simplicity, we assume in this paper that the maturity date T ∗ is last day of the reference
year t∗.

Pension plans and life insurers can hedge their longevity risk exposures with K-forward
contracts. As an illustration, we consider a closed pension plan that promises pension pay-
ments up to age 91. At present, the majority of the pensioners in the plan are aged 65-79.
Since the pension payouts are negatively associated with the future values of κ

(1)
t and κ

(2)
t ,

the pension plan sponsor should write K1- and K2-forwards (K-forwards linked to the first

11



Fixed Rate Payer Fixed Rate Receiver

notional × fixed mortality index

notional × realized mortality index

Fig. 3. Settlement of a K-forward contract at maturity.

two CBD mortality indexes) as a fixed rate receiver to offset the adverse outcome when the

future values of κ
(1)
t and κ

(2)
t turn out to be lower than expected. As the majority of the

pensioners are currently younger than age 80, higher than expected values of κ
(3)
t in the first

few years will result in a larger aggregate payout. After a sufficiently long time period (say,
15 years), the age profile of the pensioners will be concentrated in the age range of 80-90,

which means lower than expected values of κ
(3)
t in later years will lead to more pension pay-

ments. To hedge its exposure to K3-risk, the pension plan sponsor should write short-dated
K3-forwards as a fixed rate payer and long-dated K3-forwards as a fixed rate receiver.

The mechanism of K-forwards is similar to that of q-forwards, which were transacted
in deals such as the one between Lucida PLC and J.P. Morgan in January 2008. The only
difference between the two instruments is that the floating and fixed legs of a q-forward
are respectively determined by qx∗,t∗ , the death probability at the reference age x∗ in the

reference year t∗, and q
f
x∗,t∗ , the corresponding forward mortality rate.

Compared to a q-forward, a K-forward is an even simpler security, because it is catego-
rized by only one parameter, the reference year. A K-forward longevity hedge may be easier
to implement, because it does not require the hedger to make decisions about the reference
ages. This advantage, as we are going to demonstrate in Section 5, is prominent when the
portfolio being hedged covers multiple birth cohorts, involving many possible combinations
of reference ages and years. From another viewpoint, K-forwards may be more conductive
to the development of liquidity, because the market can focus on contracts written on three
indexes only instead of the full range of discrete ages.

3.2. Key K-duration

To ensure a K-forward longevity hedge is effective, there is a need to calibrate it. We
propose a calibration method called key K-duration (KKD), which is largely parallel to the
key q-duration method recently proposed by Li and Luo (2012).

To explain the method of KKD, we need to define the notion of key K-indexes, the
mortality indexes κ

(i)
t , i = 1, 2, 3, in future years t = t1, t2, . . . , tn (the key years). It is

assumed that K-forwards with reference years equal to the n key years are traded in the
market and that no other K-forwards are available.

A KKD measures the change in the value of a liability with respect to a small change in
a key K-index. Mathematically, the KKD associated with the ith CBD mortality index and
the jth key year can be expressed as

KKDi(P (κ), j) =
∂P (κ)

∂κ
(i)
tj

, (2)

12



where P (κ) denotes the portfolio value as a function of the vector of the mortality indexes
κ. The idea behind the KKD calibration method is to split the future time line into parts by
the n key years. Then the longevity hedge is calibrated by matching the price sensitivities
(measured by KKDs) of the pension plan and hedge portfolio over each subperiod.

In practice, it is generally difficult to compute a KKD by analytical means. To solve
this problem, we propose a numerical estimation method, which involves the following two
working assumptions:

• A shock in the key K-index κ
(i)
tj

by an amount of δ(i)(j) is accompanied with a level

shift in κ
(i)
t over the period of tj ≤ t < tj+1 by the same amount.4 The shock δ(i)(j) is

assumed to have no impact on the trajectory of κ
(i)
t beyond tj ≤ t < tj+1.

• The shock δ(i)(j) has no impact on κ
(h)
t for all h 6= i and t.

Admittedly, these working assumptions are rather arbitrary, but they still lead to satisfying
hedging results (see Sections 4 and 5).

Let κ̆(δ(i)(j)) be the vector of mortality indexes that is subject to the shift δ(i)(j). The
proposed estimation procedure can be summarized as follows:

1. take κ as the best estimate of mortality indexes;

2. assuming the shift δ(i)(j) is 0.1% of the best estimate, calculate κ̆(δ(i)(j));

3. estimate the KKD associated with the ith CBD mortality index and the jth key year

as KKDi(P (κ), j) ≈ P (κ̆(δ(i)(j)))−P (κ)

δ(i)(j)
.

3.3. Building a Longevity Hedge using Key K-durations

We now explain how key K-durations can be used to construct a static longevity hedge
for a life-contingent liability at time 0. The hedge we build is a value hedge, which aims to
reduce the variability of the liability’s present value.

We set time 0 to be the beginning of the current year t0. Suppose that K1-, K2- and
K3-forwards with reference years t1, t2, . . . , tn are available in the market. From the fixed
rate receiver’s viewpoint, the random present values of the cash flows from the K-forwards
with reference year tj can be expressed as

F
(i)
j (κ) = (1 + r)−(Tj−t0)(κ̃

(i)
tj

− κ
(i)
tj
), i = 1, 2, 3, (3)

4We define tn+1 as +∞.
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where r is the interest rate at which the cash flows are discounted.5 It can be seen that

KKDi(F
(i)
j (κ), j) = −(1 + r)−(Tj−t0), (4a)

KKDi(F
(i)
j (κ), h) = 0, j 6= h, (4b)

KKDh(F
(i)
j (κ), j) = 0, i 6= h. (4c)

Eq. (4b) and (4c) arise from the two working assumptions in Section 3.2.

We let w(1)(j), w(2)(j) and w(3)(j) be the notional amounts of the K1-, K2- and K3-
forwards with reference year tj, respectively. The present value of hedge portfolio at time 0
is

H(κ) =

n
∑

h=1

3
∑

g=1

w(g)(h)F
(g)
h (κ).

Let L(κ) be the random present value of liability at time 0. To achieve effective hedging,
the KKDs of hedge portfolio must match the KKDs of liability. This is equivalent to solving
the following set of conditions for i = 1, 2, 3 and j = 1, 2, . . . , n:

KKDi(L(κ), j) = KKDi(H(κ), j)

= KKDi(

n
∑

h=1

3
∑

g=1

w(g)(h)F
(g)
h (κ), j)

= w(i)(j)KKDi(F
(i)
j (κ), j). (5)

The simplification, which follows from Eq. (4b) and (4c), allows us to determine the re-
quired notional amount of each K-forward separately without solving a system of equations.
Furthermore, by using Eq. (4a), we obtain

w(i)(j) = −(1 + r)Tj−t0KKDi(L(κ), j), (6)

where KKDi(L(κ), j) can be numerically estimated by the algorithm described in Section
3.2. A longevity hedge can be constructed readily by writing K-forwards with the notional
amounts specified by Eq. (6).

4. Illustrations of a K-Forward Hedge: Single Cohort

In this section, we illustrate a K-forward hedge for a hypothetical pension plan involving
only a single birth cohort. The following assumptions about the pension plan and the hedging
instruments are made:

5The settlement date is Tj , which is generally later than the reference year tj . As previously mentioned,
to simplify our calculations, we assume that the settlement date Tj is the last day of the reference year
tj.
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• Assumptions about the hypothetical pension plan:

1. The pension plan contains one pensioner. It pays the pensioner $1 at the beginning
of each year starting from age 65 until the pensioner dies or attains age 91.

2. There is no basis risk, that is, the pensioner’s mortality experience is the same as
the experience of the population to which the K-forwards are linked.

3. All cash flows are discounted at an interest rate of 3%.

• Assumptions about the hedging instruments:

1. The 3-factor CBD mortality indexes are derived from Model M7* that is fitted to
data over the age range of 40-90.

2. The current year t0 (i.e. time 0) is taken as the beginning of the year immedi-
ately after the end of the data sample period (see Table 3). For instance, in the
illustration that is based on data from English and Welsh population, time 0 is
set to the beginning of year 2010.

3. K-forwards with reference years 2015, 2020, 2025 and 2030 are available in the
market.

4. The forward mortality indexes, κ̃
(i)
tj
, are identical to the best estimates of the corre-

sponding mortality indexes. This assumption, which implies a zero risk premium,
affects the cost of the hedge but not the performance of hedge.

5. The best estimates of the future mortality indexes required in Assumption 4 and
the calculation of KKD values are obtained by extrapolating the time-varying pa-
rameters in Model M7* (fitted to the age range of 40-90 and the entire data sample
period) through a Vector Autoregressive Integrated Moving Average (VARIMA)
process.6

We evaluate the effectiveness of a longevity hedge by the amount of longevity risk re-
duction, R, defined as

R = 1−
σ2(X∗)

σ2(X)
,

where σ2(.) is the variance function,

X = L(κ)− E(L(κ))

is the random present value of unexpected cash flows (the random present value of future
cash flows minus the expected present value of future cash flows) when the plan is not hedged,
and

X∗ = L(κ)− E(L(κ))−H(κ) + E(H(κ))

6The modeling of the CBD time-varying parameters with VARIMA processes is described by Chan et al.
(2014). We also refer interested readers to Tiao and Box (1981) and Wei (2006) for further details about
VARIMA modeling.
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is the random present value of unexpected cash flows when a hedge is in place. A longevity
hedge is considered to be effective if the variability of X∗ is significantly smaller than that
of X , so a higher value of R implies a better hedging performance.

Model M7* plays two roles in the longevity hedge. First, the mortality indexes to which
the instruments are linked are derived from Model M7*. Second, in computing KKDs,
the best estimates of the future mortality indexes are derived from a Model M7* that is
fitted to historical data. So, a natural question to ask is whether the longevity hedge still
works if future mortality does not follow Model M7*. To address this concern, we evaluate
hedge effectiveness on the basis of mortality scenarios simulated from five different stochastic
mortality models:

• Model M7*: the adapted version of model M7

• Model M5: the original CBD model

• Model M3: the original Age-Period-Cohort model

• Model M2: the original Renshaw-Haberman model

• Model MRW: the multivariate random walk model7 (Bell, 1997)

If the hedge is effective regardless of what simulation model is used, then a high hedge
effectiveness is likely to be achievable in reality. The simulation procedure is summarized as
follows:

1. Specify the stochastic processes for the time-varying and cohort effect parameters in
the simulation models. For Model M7*, the three time-varying parameters are modeled
by a VARIMA process, whereas the cohort effect parameter is modeled by an AR(1)
process. For Model M5, the two time-varying parameters are modeled by a VARIMA
process. For Models M2 and M3, the time-varying parameter is modeled by a random
walk with drift, whereas the cohort effect parameter is modeled by an ARIMA(1,1,0)
process.8 For Model MRW, the evolution of the log death rates at different ages is
modeled by a multivariate random walk with drift.

2. For each model, simulate 5,000 realizations of future death probabilities and transform
them to realizations of the 3-factor CBD mortality indexes.9 Parameter uncertainty is
incorporated into the simulations via the parametric bootstrap approach (see Brouhns
et al., 2005).

3. For each realization, calculate the values ofX andX∗. Then for each simulation model,
compute the variances of X and X∗ and finally the amount of longevity risk reduction

7It models the log death rates at different ages directly with a multivariate random walk with drift. No
time-varying or age-specific parameters are involved.

8The ARIMA orders used for the cohort effect parameters in Models M7*, M2 and M3 are taken from the
paper by Cairns et al. (2011b).

9The step is necessary, because we need the realized 3-factor CBD mortality indexes to calculate the
simulated payoffs from the K-forwards. This step is not needed when the simulation model is Model M7*
or when the hedging instruments used are q-forwards.
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Table 6

The calculated key K-durations and notional amounts of K-forwards. The pension plan and K-forwards are
linked to the mortality of English and Welsh males.

j = 1 j = 2 j = 3 j = 4

Key year 2015 2020 2025 2030

KKDi(F
(i)
j (κ), j) −0.8375 −0.7224 −0.6232 −0.5375

KKD1(L(κ), j) −0.8373 −0.7540 −0.5825 −0.3155

KKD2(L(κ), j) −5.8541 −9.0194 −9.8330 −6.8644

KKD3(L(κ), j) 139.2352 54.5539 −40.2955 −80.3121

w(1)(j) 0.9997 1.0437 0.9347 0.5869

w(2)(j) 6.9901 12.4850 15.7791 12.7698

w(3)(j) −166.2541 −75.5153 64.6624 151.2644

R.

4.1. The Baseline Results

In this subsection, we present the baseline results for English and Welsh male popula-
tion.10 The calculated KKDs and notional amounts are tabulated in Table 6. Note that a
positive notional amount means the pension plan participates as a fixed rate receiver, whereas
a negative notional amount means the pension plan participates as a fixed rate payer. It can
be seen that the signs of the calculated notional amounts agree with the arguments presented
in Section 3.1.

The longevity risk reductions calculated from different simulation models are displayed in
Table 7, and the density functions forX and X∗ simulated from Model M7* are shown in Fig.
4. Using a portfolio of K1-, K2- and K3-forwards, the amounts of longevity risk reduction
obtained range from 94.0% to 96.0%. The results depend minimally on the simulation model
used, indicating that the hedge effectiveness is achievable even if future mortality does not
follow Model M7*. The results also indicate that a high hedge effectiveness can be achieved
by using K-forwards associated with four key years only.

Table 7 also shows the amounts of longevity risk reduction resulting from different subsets
of the available K-forwards. It can be seen that K1 risk is the most crucial whereas K3 risk
has the smallest impact. In particular, when the simulation model is Model M5, the use
of K3-forwards seems to have no marginal benefit. This result can be explained using the
following equation:

X∗

with K3-forward = X∗

without K3-forward −

4
∑

j=1

w(3)(j)(1 + r)−(Tj−t0)(E(κ
(3)
tj
)− κ

(3)
tj
).

Because of the nature of Model M5, which assumes that future mortality is driven entirely
by κ

(1)
t and κ

(2)
t , the values of κ

(3)
t simulated from Model M5 are practically zero. It follows

10The numerical results for the other populations are available on request.
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Table 7

The amounts of longevity risk reduction (R) resulting from different combinations of K-forwards and
different simulation models. The pension plan and K-forwards are linked to the mortality of English and
Welsh males. The VARIMA orders for the time-varying parameters in Models M7* and M5 are (1,1,0) and
(5,1,0), respectively.

Simulation model K1 only K2 only K3 only K1&K2 K1&K3 K2&K3 K1&K2&K3

M7* 68.8% 43.5% 0.5% 93.7% 69.4% 44.4% 94.7%
M5 89.5% 3.3% 0.0% 96.0% 89.5% 3.3% 96.0%
M3 95.6% 4.6% 0.2% 95.7% 95.5% 4.7% 95.6%
M2 93.7% 16.1% 0.0% 95.1% 93.7% 16.2% 95.2%
MRW 77.2% 39.3% 0.6% 93.5% 77.9% 39.9% 94.0%

−1.0 −0.5 0.0 0.5 1.0
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2

4

6

8

Model M7*

Present value of unexpected cash flow

de
ns

ity

Unhedged
K1 only
K2 only
K3 only
K1 & K2 & K3

Fig. 4. The distributions of X and X∗ simulated from Model M7*. It is assumed that the underlying
population is English and Welsh males and that the pension plan consists of a single pensioner currently
aged 65.

that the variability in the second term of the right-hand-side of the equation is close to
zero. Therefore, X∗

with K3-forward and X∗

without K3-forward have almost the same variability, which
implies that the impact of the K3-forwards on the hedge effectiveness is negligible.

In general, the third CBD mortality index may take values that are significantly different
from zero.11 In this case, adding K3-forwards to the hedge portfolio may improve hedge
effectiveness. For example, when Model M7* is assumed, adding K3-forwards to a portfolio
of K1- and K2-forwards increases the value of R from 93.7% to 94.7%. We also found that
the benefit of adding K3-forwards is more apparent for some other populations, including
Taiwanese females and U.S. males.

In principle, given a collection of simulated mortality scenarios, we can gradually adjust

11For all populations under consideration, Model M7* results in better BIC values compared to Model M6
(see Table 5). This supports the existence of a quadratic age effect, which implies that the third CBD
mortality index generally takes non-zero values.
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the notional amounts of the K-forwards in the hedge portfolio to compute the highest attain-
able value of R. The value of R obtained by matching KKDs is generally less than its highest
attainable value, because KKDs are only approximate measurements of the sensitivity to the
underlying mortality indexes. We found that the maximum achievable R values for a port-
folio of K1-, K2- and K3-forwards are 97.3% (for Model M7*), 99.1% (for Model M5), 96.6%
(for Model M3), 95.8% (for Model M2) and 96.4% (for Model MRW). These values are very
close to those obtained by matching KKDs, providing a strong case for the KKD method.
Note that the computation of the highest attainable R value requires heavy computational
resources, because it involves simulations and a maximization of a multi-variable function.
By contrast, as discussed in Section 3.3, the method of KKD is rather easy to execute.

4.2. Sampling Risk

Sampling risk, or small-sample risk, refers to the risk that the actual mortality experience
of a population turns out to be different from the ‘true’ underlying mortality rates. In this
subsection, we study the impact of sampling risk on hedge effectiveness. Again, we use the
mortality data from English and Welsh males population to illustrate.

We retain all assumptions specified in Section 4, except that we now assume the pension
plan has a cohort of pensioners aged 65 at time 0 instead of only one single pensioner. We let
l(65) be the initial number of pensioners, and l(x) be the number of pensioners who survive
to age x, where 65 < x ≤ 91. To incorporate sampling risk, we treat the cohort of pensioners
as a random survivorship group. Specifically, we model l(x) for 65 < x ≤ 91 by a binomial
process:

l(x+ 1) ∼ Binomial(l(x), 1− qx,1945+x), x = 65, 66, . . . , 90.

The procedure for simulating liability cash flows is adapted as follows:

1. Simulate a future mortality curve from the assumed mortality model.

2. Given the simulated mortality curve, simulate the number of survivors l(x), for x =
66, 67, . . . , 91, from the binomial process.

3. Calculate the liability cash flows based on the simulated values of l(x).

4. Repeat the steps above to obtain 5,000 scenarios of liability cash flows.

The incorporation of sampling risk does not affect the method by which the KKDs are
calculated. Therefore, in this illustration, the values of KKDi(F

(i)
j (κ), j) are the same as

those in Table 6, whereas the values of KKDi(L(κ), j) are equal to l(65) multiplied by the
corresponding values in Table 6 (because the initial number of pensioners is l(65) instead
of one). It follows that the required notional amounts are simply l(65) multiplied by the
notional amounts shown in Table 6.

The amounts of longevity risk reduction for different values of l(65) are shown in Table
8. The row with l(65) = ∞ shows the values of R when there is no sampling risk. It can be
seen that the hedge effectiveness drops as l(65) decreases. When l(65) = 1000, the value of
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Table 8

The amounts of risk reduction (R) for pension plans of different initial sizes. The pension plans and
K-forwards are linked to the mortality of English and Welsh males. The simulation model is Model M7*
with a VARIMA(1,1,0) process for the time-varying parameters.

l(65) K1 only K2 only K3 only K1&K2 K1&K3 K2&K3 K1&K2&K3

∞ 68.8% 43.5% 0.5% 93.7% 69.4% 44.4% 94.7%
10000 65.6% 41.3% 0.6% 89.3% 66.3% 42.3% 90.3%
5000 63.0% 39.8% 0.5% 85.8% 63.6% 40.6% 86.8%
3000 59.6% 37.3% 0.6% 80.8% 60.2% 38.2% 81.9%
1000 46.5% 29.0% 0.4% 63.0% 46.9% 29.6% 63.7%

Table 9

The amounts of risk reduction (R) under different interest rate assumptions. The pension plan and
K-forwards are linked to the mortality of English and Welsh males. The simulation model is Model M7*
with a VARIMA(1,1,0) process for the time-varying parameters.

Interest Rate σ(X) K1 only K2 only K3 only K1&K2 K1&K3 K2&K3 K1&K2&K3

1% 0.325 68.7% 45.0% 0.3% 94.3% 69.0% 45.8% 95.2%
2% 0.269 68.7% 44.3% 0.4% 94.0% 69.2% 45.1% 95.0%
3% 0.223 68.8% 43.5% 0.5% 93.7% 69.4% 44.4% 94.7%
4% 0.187 68.8% 42.8% 0.6% 93.3% 69.6% 43.7% 94.4%
5% 0.157 68.7% 41.9% 0.8% 92.8% 69.8% 42.9% 94.1%

R resulting from the hedge built from all available K-forwards is only 63.7%. This finding
suggests that a small pension plan should consider alternative de-risking solutions, such as
pension buy-ins (see Coughlan et al., 2013), instead of using standardized K-forwards.

4.3. Sensitivity Tests

In this subsection, we sensitivity test several assumptions used in estimating hedge ef-
fectiveness.

4.3.1. Interest Rate

In the previous illustrations, an interest rate of 3% per annum was used. We now examine
the relationship between the hedging results and the assumed interest rate. The results are
summarized in Table 9. A higher interest rate produces a lower standard deviation of X ,
because the more distant and so more uncertain cash flows are discounted by a larger extent.
For the same reason, the required notional amounts are lower in magnitude when the assumed
interest rate is higher. Nevertheless, the amounts of risk reduction under different interest
rate assumptions are similar, indicating that the effectiveness of a K-forward hedge is not
very sensitive to the interest rate assumption.

4.3.2. Availability of K-forwards

In the KKD framework, the key years are the reference years for which K-forwards are
available. It is assumed in the baseline calculations that the separation between two adjacent
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Table 10

The amounts of risk reduction (R) resulting from different spacings between two adjacent key years. The
pension plan and K-forwards are linked to the mortality of English and Welsh males. The simulation
model is Model M7* with a VARIMA(1,1,0) process for the time-varying parameters.

Separation between two
adjacent key years (total
number of key years)

K1 only K2 only K3 only K1&K2 K1&K3 K2&K3 K1&K2&K3

8 (3) 53.3% 32.5% 0.5% 77.5% 53.9% 33.2% 78.3%
7 (3) 59.1% 36.6% 0.4% 84.5% 59.6% 37.3% 85.3%
6 (4) 62.8% 39.2% 0.5% 88.5% 63.5% 40.0% 89.4%
5 (4) 68.8% 43.5% 0.5% 93.7% 69.4% 44.4% 94.7%
5 (3) 67.6% 42.4% 0.3% 91.5% 68.2% 43.0% 92.3%
5 (2) 61.1% 36.7% 0.1% 81.4% 61.5% 36.8% 81.7%

key (reference) years is 5 years. Here we examine how the hedging results may change when
different separations are assumed. Throughout the analysis, the earliest key year is fixed to
2015. The hedging results are tabulated in Table 10. It can be seen that no matter 3 or 4 key
years are used, a smaller separation produces a (slightly) higher amount of risk reduction.
This result may possibly be explained by the fact that closer key years (from 2015) yield
better hedging results for the earlier random cash flows but worse hedging results for the
later ones, which are discounted more heavily and hence less important to the overall hedging
performance. It can also be seen that, as expected, the amount of risk reduction increases
with the number of key years (i.e., the number of instruments used).

4.3.3. Age Range

In our baseline calculations, we use an age range of 40-90 to define the 3-factor CBD
mortality indexes. We now study how the age range over which the indexes are defined may
affect the hedging results. In Table 11 we compare the baseline hedging results with the
hedging results that are based on two alternative age ranges, 50-90 and 60-90. It can be
observed that the choice of age range does not have a significant impact on the amount of
risk reduction produced by the hedge with all three types of K-forwards. However, the R

values for other combinations of K-forwards vary significantly with the age range used. In
particular, the performances of the K1-forward only and K3-forward only hedges improve
with the mean age in the age range, but the reverse is true for the K2-forward only hedge.
This pattern suggests that if the 3-factor CBD mortality indexes are defined over an older
age range, the first and third CBD indexes would capture a larger proportion of the overall
longevity risk, while the second CBD index would capture less.

4.4. Advanced Ages

Here, we examine how a K-forward hedge may perform if we extend the coverage of
the hypothetical pension plan to age 101. While the age coverage of the pension plan is
extended, the definition of the 3-factor CBD mortality indexes remains unchanged; that is,
the indexes are still derived by fitting Model M7* to data over the age range of 40-90. We use
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Table 11

The amounts of risk reduction (R) for different age ranges over which the 3-factor CBD mortality indexes
are defined. The pension plan and K-forwards are linked to the mortality of English and Welsh males. The
simulation model is Model M7* (fitted to the corresponding age range) with a VARIMA(1,1,0) process for
the time-varying parameters.

Age range x̄ K1 only K2 only K3 only K1&K2 K1&K3 K2&K3 K1&K2&K3

40-90 65 68.8% 43.5% 0.5% 93.7% 69.4% 44.4% 94.7%
50-90 70 79.8% 22.3% 3.8% 91.1% 81.1% 27.8% 94.1%
60-90 75 87.9% 7.6% 5.4% 90.2% 89.9% 14.4% 93.5%

the following procedure to calculate the amount of risk reduction produced by the K-forward
hedge for the extended pension plan.

1. Calibrate the K-forward hedge as follows:

(a) Compute the best estimates of future mortality indexes by extrapolating from a
VARIMA process that is fitted to the historical index values.

(b) Calculate the best estimates of the death probabilities over the age range of 65-101
using Eq. (1) with x̄ = 65 and σ̂2

x = 650
3
.

(c) On the basis of the values from Steps (a) and (b), calculate P (κ), P (κ̆(δ(i)(j)))
and KKDi(P (κ), j) for i = 1, 2, 3 and j = 1, . . . , n.

(d) Using the KKD values computed in Step (c), compute the notional amounts of
the K-forwards in the hedge portfolio.

2. Simulate 5000 realizations of future death probabilities from a stochastic mortality
model that is fitted to historical data over the age range of 40-100. As before, the
simulation models considered are Models M7*, M5, M3, M2 and MRW.

3. Calculate the simulated present values of pension payments from age 65 to 101.

4. Transform the simulated future death probabilities over the age range of 40-90 to
realizations of the 3-factor CBD mortality indexes, which are then used to determine
the simulated payoffs from the K-forwards.

5. Compute X , X∗ and finally the amount of risk reduction R.

We use the same key years despite the coverage of this pension plan is 10 years longer.
With this setup, the amounts of longevity risk reduction produced by a calibrated portfolio
of K1-, K2- and K3-forwards are 93.9% (for Model M7*), 93.4% (for Model M5), 94.3% (for
Model M3), 95.1% (for Model M2) and 93.9% (for Model MRW). These findings suggest that
the KKD strategy still produces a satisfactory hedge effectiveness when the pension plan is
extended to include more advanced ages.
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Fig. 5. The initial demographic structure of the multi-cohort closed pension plan.

5. Generalization to Multiple Cohorts

In real life, individuals in a pension plan are generally born in different years. For a multi-
cohort pension plan, longevity risk is associated with a two-dimensional mortality surface,
composed by a collection of mortality curves for various birth cohorts. The illustrations in
the previous section may be viewed as a special case, whereby the longevity risk exposure
arises from a particular diagonal over the mortality surface.

In this section, we use a more realistic hypothetical pension plan to illustrate how the
proposed method can be applied to situations involving multiple birth cohorts. We retain
all assumptions stated in Section 4, except those about the pensionable age and the plan’s
demographics. Here, we assume that individuals in the plan are currently aged 50 to 85,
following the age distribution displayed in Fig. 5. The pensionable age is 60, so the indi-
viduals who are currently aged 50 to 59 are now active members (who will receive pension
payments when they reach age 60) while those who are currently aged 60 or above are now
retirement pensioners (who are currently receiving pension payments). It is further assumed
that the plan is closed to new entrants and that all active members remain in their jobs until
retirement.

We consider two hedging scenarios:

1. A hedge for the current retirement pensioners only

This hedge aims to reduce the variability of the present values of the pension payments
to the current retirement pensioners in the next 31 years.

2. A hedge for both current active members and retirement pensioners
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This hedge aims to reduce the variability of the present values of the pension payments
to the current retirement pensioners and the deferred pension payments to the current
active members in the next 31 years.

As the market has started to see static longevity hedges for active members, the results for
the second hedging scenario may be of many practitioners’ interest.12

Another objective of this section is to compare the K-forward longevity hedges with the
corresponding longevity hedges that are composed of q-forwards, a standardized instrument
that has been promoted by the Life and Longevity Markets Association (LLMA). We cal-
ibrate q-forward hedges for the aforementioned two hedging scenarios using the method of
key q-duration (KQD), proposed by Li and Luo (2012).

As before, all results in this section are computed using mortality data from English and
Welsh males population.

5.1. Building K-Forward Hedges

In this illustration, we assume that K-forwards with reference years 2015, 2020, 2025,
2030 and 2035 are available. An additional reference year (2035) is considered, because the
hedging horizon here is longer than that for the single-cohort pension plan, which makes
at most 26 years of payments (from age 65 to 91). The KKD with respect to each in-
dex and reference year can be estimated by using the algorithm described in Section 3.2.
Given the KKD values, the required notional amounts (shown in Table 12) can be computed
accordingly.

It can be observed that the signs of the notional amounts are completely in line with the
arguments presented in Section 3.1. It is interesting to note that the pension plan’s positions
in the K3-forward with reference year 2025 are different in the two hedging scenarios. For the
hedge involving current retirement pensioners only, the plan’s position in that K3-forward
should be a fixed rate receiver, because in 2025 the individuals associated with the hedge
will attain ages 75-90, such that the total pension payments at that time will be negatively
related to the index value to which that K3-forward is linked.

It is also interesting to compare the required notional amounts of K1- and K2-forwards
in the two hedging scenarios. Since more risk is being hedged, the notional amounts of K1-
and K2-forwards in the larger hedge covering both current active members and retirement
pensioners are generally higher. The only exception is the K2-forward with reference year
2015. This is because from 2015 to 2019, all individuals associated with the smaller hedge
(covering the current retirement pensioners only) will be at least 65 years old, but some
individuals associated with the larger hedge will still be younger than 65. As explained in
Section 2.4, pension payments below and above age x̄ = 65 respond to the second CBD
mortality index in opposite directions. The offsetting effects thus reduce the amount of K2
risk that the larger hedge has to mitigate.

12In January 2011, the Pall (UK) pension fund executed a £70 million deal with J.P. Morgan to hedge
the longevity risk associated with its active and deferred members (see Blake et al., 2014).

24



Table 12

The required notional amounts of K-forwards, calibrated by KKD. The pension plan and K-forwards are
linked to the mortality of English and Welsh males.

Reference year tj Type
Notional amount

Retirement pensioners only Active members and retirement pensioners

2015
K1 11821 16887
K2 110873 100389
K3 −1174133 −2220565

2020
K1 10736 17719
K2 137888 151606
K3 −357008 −1775855

2025
K1 8495 16116
K2 138762 191452
K3 518404 −696304

2030
K1 5058 12385
K2 99205 185632
K3 874180 373324

2035
K1 1588 6730
K2 35931 121384
K3 469823 822578

Table 13

Locations of the key mortality rates of the chosen key cohorts.

Key cohort k Year of birth ck Number of key mortality rates nk Location of key mortality rates

1 1930 1 Age 85
2 1935 2 Ages 80, 85
3 1940 3 Ages 75, 80, 85
4 1945 4 Ages 70, 75, 80, 85
5 1950 5 Ages 65, 70, 75, 80, 85
6 1955 5 Ages 65, 70, 75, 80, 85
7 1960 4 Ages 65, 70, 75, 80

5.2. Building q-Forward Hedges

We now use the KQD method to develop the corresponding q-forward hedges. The first
step in the KQD method is to identify the key cohorts in the pension portfolio. The pension
plan involves 36 birth cohorts in total, with the oldest born in year 1925 and the youngest
in year 1960. In the smaller hedge for the current retirement pensioners only, we consider
five key cohorts, which were born in 1930, 1935, 1940, 1945 and 1950. In the larger hedge
that covers additionally the current active members, we use two extra key cohorts, which
were born in 1955 and 1960.

The next step is to identify the key mortality rates in each key cohort. Following Li and
Luo (2012), the key mortality rates are chosen in such a way that they are no more than
five ages apart (see Table 13). It is assumed that the q-forwards linked to the chosen key
mortality rates are available in the market.

We then use the q-forwards that are linked to the key mortality rates to build longevity
hedges for the two hedging scenarios. The reference rate of the q-forward that corresponds to
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Table 14

The required notional amounts of q-forwards, calibrated by KQD. The pension plan and K-forwards are
linked to the mortality of English and Welsh males.

Key cohort k Reference age xl,k Reference year tl,k
Notional amount

Retirement pensioners only Active members and
retirement pensioners

1 85 2015 35107 35107

2
80 2015 75556 75556
85 2020 19215 19215

3
75 2015 210216 210216
80 2020 64683 64683
85 2025 36228 36228

4

70 2015 418885 418885
75 2020 162233 162233
80 2025 102002 102002
85 2030 58076 58076

5

65 2015 283558 500145
70 2020 159431 255112
75 2025 115337 183150
80 2030 73061 113965
85 2035 41998 60440

6

65 2020 564347
70 2025 242804
75 2030 163699
80 2035 85929
85 2040 23716

7

65 2025 341518
70 2030 138863
75 2035 83317
80 2040 30373

the lth key mortality rate of the kth key cohort (which was born in year ck) is qxl,k,tl,k , where
xl,k and tl,k = ck + xl,k are the q-forward’s reference age and reference year, respectively.
For instance, the reference rates of the five q-forwards associated with the key cohort that
was born in 1950 are q65,2015, q70,2020, q75,2025, q80,2030 and q85,2035. Note that the smaller hedge
consists of 15 q-forwards, while the larger hedge contains 9 more q-forwards, as two extra
key cohorts are introduced.

The notional amounts are determined by matching the KQD values of the pension plan
and the portfolio of q-forwards. The KQD values are estimated using the procedure detailed
in Section 5 of Li and Luo (2012). The required notional amounts of q-forwards for each
hedging scenario are tabulated in Table 14. As a consequence of how the KQD values are
estimated, the required notional amounts of the 10 q-forwards corresponding to the first
four key cohorts are identical in both hedging scenarios. Also, as expected, the pension plan
acts as a fixed rate receiver in all q-forwards, because the pension payments are negatively
associated with the realized mortality rates.

5.3. Hedging Results

The hedging results are reported in Table 15 and illustrated graphically in Fig. 6. For
the hedging scenario involving the current retirement pensioners only, the amounts of risk
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Table 15

The amounts of risk reduction (R) resulting from the K-forward and q-forward hedges for the hypothetical
multi-cohort pension plan. The pension plan and hedging instruments are linked to the mortality of
English and Welsh males. The simulation model is Model M7* with a VARIMA(1,1,0) process for the
time-varying parameters.

Hedging scenarios K1-, K2- and K3-forwards q-forwards

Retirement pensioners only 94.5% 91.6%
Active members and retirement pensioners 96.0% 95.5%
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Fig. 6. The distributions of X and X∗ for the hedges that are constructed for both current active
members and retirement pensioners in the hypothetical multi-cohort pension plan. The pension plan and
hedging instruments are linked to the mortality of English and Welsh males. The simulation model is
Model M7* with a VARIMA(1,1,0) process for the time-varying parameters.

reduction produced by the K-forward hedge and the q-forward hedge are 94.5% and 91.6%,
respectively. For the other scenario that includes additionally the current active members,
the amounts of risk reduction resulting from the K-forward hedge and the q-forward hedge
are 96.0% and 95.5%, respectively. The simulation results indicate that both types of in-
struments can yield highly satisfactory hedging results, even if the portfolio being hedged
covers multiple birth cohorts. They also indicate that a K-forward hedge may yield a higher
amount of risk reduction compared to a q-forward hedge.

What distinguishes the two instruments is the number of securities needed to achieve a
given level of hedge effectiveness. For the hedging scenario involving both current retirement
pensioners and active members, although both hedges lead to similar R values, the q-forward
hedge (calibrated by the KQD method) requires 9 more securities in comparison to the K-
forward hedge (calibrated by the KKD method). It follows that when the number of cohorts
covered is large, a K-forward hedge is more compact and thus more preferred.

Technically speaking, the KQD measure relies heavily on certain assumptions about how
a shift in a key mortality rate affects the mortality rates in the neighbouring cohorts. Li
and Luo (2012) showed empirically that these assumptions are reasonably accurate when
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the separation between two key cohorts is small, but are less likely to hold if the key cohorts
are farther apart. Therefore, in implementing the KQD method, additional key cohorts and
hence q-forward contracts have to be introduced when the portfolio being hedged covers more
cohorts of individuals. Otherwise, the estimated KQD values may not accurately reflect the
portfolio’s sensitivity to changes in the underlying mortality curve, thereby leading to a less
satisfactory hedging result.

By contrast, the KKD value for a particular CBD mortality index depends only on time,
having no relationship with the individuals’ years of birth. It follows that there is no need
to alter the choices of the key K-indexes when more cohorts of individuals are included in
the portfolio being hedged. In our illustration, if the pension plan covers even more birth
cohorts (say those who are aged 40-49 at time 0), the number of key K-indexes and hence
the number of K-forwards will still be 15. To hedge the risk associated with these additional
cohorts, all the hedger needs to do is to recalculate the notional amounts.

The benefit of K-forwards to market development has now become clear. With a finite
number of K-forwards, the hedging needs of pension plans with different demographic struc-
tures can be met. However, the collection of q-forwards that are applicable to one pension
plan may not be suitable and/or sufficient for another pension plan that has a different age
profile. Hence, relative to q-forwards, K-forwards are easier to attract demand from hedgers
and are potentially more liquid.

6. Concluding Remarks

In this paper, we studied the construction of mortality indexes using stochastic mortality
models. We recommend using the three time-varying parameters in Model M7* (i.e., Model
M7 that is adapted to satisfy the new-data-invariant property) to construct mortality indexes.
One basis of our recommendation is that among the collection of six appropriately adapted
models, Model M7* provides the best goodness-of-fit to the majority of the data sets under
consideration. Another basis is that the three time-varying parameters, which we call the
3-factor CBD mortality indexes, are easy to interpret and are able to reflect the varying age
pattern of mortality.

We also investigated the potential applications of the 3-factor CBD mortality indexes to
securitization. In particular, we further developed a standardized security called K-forward,
the payoff of which is linked to a 3-factor CBD mortality index. We also explained how and
why a portfolio of K-forward contracts can be used to hedge the longevity risk associated
with a life-contingent portfolio. In terms of structure, the proposed K-forwards are simpler
than the existing q-forwards, because each K-forward contract is characterized by one single
parameter (the reference year) only.

The proposed KKD measure permits one to calibrate a longevity hedge that is formed by
K-forward contracts. From the results of the simulation studies we conducted, the following
conclusions can be drawn. First, a calibrated K-forward hedge can substantially reduce the
variability in the values of a pension portfolio, even if parameter uncertainty and sampling
risk are taken into account. Second, the effectiveness of a K-forward hedge does not vary
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significantly with the assumed simulation model, indicating that the success in hedging
is likely to be achievable in real life. Finally, compared to a q-forward hedge, a K-forward
hedge giving a comparable hedge effectiveness requires a smaller number of securities, thereby
helping the market to concentrate liquidity.

The proposed KKD method may be improved in future research in a number of ways. For
instance, similar to the recent contributions by Lin and Tsai (2013), Tsai et al. (2010) and
Wang et al. (2010), a convexity component can be added to improve the approximation of
a portfolio’s sensitivity to the 3-factor CBD mortality indexes. Also, following the footsteps
of Cairns (2011), it would be interesting to extend the KKD hedging framework from static
to dynamic, permitting hedgers to periodically adjust their K-forward portfolios. Periodic
adjustments allow a K-forward portfolio to reflect the changes in KKD values over time
due to, for example, fluctuations in expected interest and mortality rates, thereby possibly
leading to even better hedging results.

One important issue that is not addressed in this paper is the pricing of K-forwards. Our
illustrations are based on the assumption that the K-forwards are costless, so they provide
no information about how a K-forward hedge may cost the hedger. It is warranted in future
research to study how a K-forward contract may be priced by no-arbitrage approaches (see,
e.g., Cairns et al., 2006; Denuit et al., 2007; Dowd et al., 2006; Li et al., 2011) or economic
methods (see, e.g., Zhou et al., 2011, 2013a,b). Given that K-forwards have a very simple
structure, it may be possible to derive close-form pricing formulas for them.

Another concerning issue in using a standardized K-forward hedge is population ba-
sis risk, which arises from the differences between the mortality experience of the hedger’s
population and the population to which the K-forwards are linked. Recently, a number of
multi-population stochastic mortality models have been developed by researchers including
Cairns et al. (2011a), Dowd et al. (2011), Jarner and Kryger (2011), Li and Lee (2005), Yang
and Wang (2013) and Zhou et al. (2013b, 2014) to address the issue of population basis risk.
In addition, Coughlan et al. (2011) and Li and Hardy (2011) proposed frameworks for quan-
tifying population basis risk. Further research is required to find out how population basis
risk can be incorporated in the KKD hedging strategy and how it affects the effectiveness of
a K-forward hedge.
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