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1 Introduction

Recent developments in (financial) markets have shown that unexpected negative events may

have a tremendous impact on a wide range of financial institutions such as banks, funds, in-

vestment and insurance companies. Often such events are followed by serious problems ranging

from economic depression with high unemployment rates, a decrease in common wealth and bad

medical maintenance to social riots. Governmental authorities and regulatory institutions have

been established to adopt and develop regulatory frameworks for the financial industry, in order

to reduce negative impact of such events and to avoid collateral damage on other parts of the

economy in the future.

In Germany the Federal Financial Supervisory Authority (BaFin) supervises banks, financial

services provider, insurance companies as well as securities trading. Moreover, in response to the

financial crisis 2007–2008 the European Union (EU) created the European System of Financial

Supervision, which consists of three European Supervisory Authorities:

1. European Banking Authority (EBA) for the European banking sector

2. European Insurance and Occupational Pensions Authority (EIOPA) for the insurance sec-

tor

3. European Securities and Markets Authority (ESMA) for securities trading

For the banking sector the corresponding regulatory framework called Basel II was developed

by the Basel Committee on Banking Supervision and is currently replaced by its successor Basel

III. Insurance companies in Europe are controlled by the regulatory framework called Solvency

II. In Switzerland the regulation of all financial institutions including insurance companies is

provided by the Swiss Financial Markets Authority (FINMA) with the corresponding regulation

frameworks Basel II and Basel III for the banking sector and the Swiss Solvency Test (SST) for

the insurance industry.

For an insurance company there are two ways a regulatory framework can be looked at.

a) From the perspective of investors and the management: The function and the ex-

istence of the company must be maintained in the mid/long term run to generate earnings

for the investors and the management. Moreover, these earnings should be maximized

1



2 1 Introduction

(profit maximization).

b) From the perspective of regulatory authorities: Financial liquidity of the insurance

company must be provided even in times of extreme financial distress and phases of an

extraordinary accumulation of claim compensation payments. The ability of the insurer

to pay losses has to be maintained in almost all realistic scenarios to prevent losses for the

policyholders and to eliminate wide-ranging negative effects on the whole economy.

Similar to Basel II, the Solvency II regulatory framework is subdivided into three main pillars

to incorporate the main ideas of the regulatory authorities’ point of view:

• Pillar I: Minimum Standard and Implementation

– Market consistent valuation of assets and liabilities

– Internal models, best-estimate reserves, technical provisions, solvency capital require-

ments, target capital and own funds

• Pillar II: Supervisor Review and Control

– Group supervision

– Supervisory review process

– Governance

• Pillar III: Disclosure

– Supervisory transparency

– Accountability

– Reporting and disclosure

For details on the technical standards, further guidelines and information, see the Website of

EIOPA1. For the basic structure of the SST we refer to the Website of FINMA2.

In this thesis we focus on the the first pillar. Moreover, one has to distinguish between life and

non-life insurance business, since the contract specifications, risk drivers and payoff patterns and

hence the methodologic means of approaching and modeling life and non-life contract liabilities

differ substantially. For an illustration of this fact we refer to the examples given in Chapter 7

in Wüthrich–Merz [62]. An introduction on stochastic models in life insurance can be found

in Gerber [26] and Koller [35]. It is crucial to keep in mind that from now on throughout

the thesis we will strictly deal with non-life insurance business.

The first pillar in non-life insurance has been subject to many quantitative scientific studies,

see Wüthrich–Merz [63] and [62] for an overview, since it is directly associated with the

1https://eiopa.europa.eu/activities/insurance/solvency-ii
2http://www.finma.ch/archiv/bpv/e/themen/00506/index.html?lang=en

https://eiopa.europa.eu/activities/insurance/solvency-ii
http://www.finma.ch/archiv/bpv/e/themen/00506/index.html?lang=en
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problem of the management and quantification of (random) future cash flows. These cash flows

typically arise from assets and claims payments, see Wüthrich–Merz [62]. The corresponding

field of study to analyze (random) risk outcomes and associated loss liability cash flows in

insurance with mathematical and statistical methods is called actuarial science. Actuarial science

comprises the following aspects:

1. Evaluation of (random) outstanding loss liability cash flows and setting-up of sufficient

reserves to meet these liabilities

2. Evaluation of assets and its associated risk

3. Level of premiums in policies

4. Reinsurance

5. Asset liability management (ALM) comprising all previous aspects

All stated aspects have an impact on the process of future cash flows and are therefore crucial

for management purposes in insurance companies. That means that actuarial science is directly

associated with the central problem in insurance companies of predicting future cash flows.

Therefore, the crucial task and main goal of actuaries is the

prediction of (random) future cash flows.

Among the five aspects stated above we focus in this thesis on the first aspect, i.e. the field

of predicting future outstanding loss liabilities. In actuarial science this field is called claims

reserving. Claims reserving belongs to the main tasks of a non-life actuary, since claims reserves

are the biggest position on a balance sheet of a non-life insurance company and must therefore

be predicted very precisely.

Therefore, in this doctoral thesis we will focus on the task of predicting future loss liabilities

and calculating the corresponding reserves needed to cover these outstanding loss liabilities

in non-life insurance companies. For this prediction problem there are often various sources of

information available. Most classical claims reserving methods are very limited w.r.t. the sources

of information they can incorporate. We present in this thesis two powerful models which can

cope with several sources of information in a mathematically consistent way. The first model

generalizes most widely used distribution-free claims reserving methods. This provides a new

perspective and new possibilities for distribution-free claims modeling and is subject to Part II

of this thesis. The second method is an important representative of the class of distributional

claims reserving methods which can cope with two different data sources often available in

insurance practice. This is subject to Part III. The thesis is closed up by Part IV discussing

some central aspects of claims reserving under new solvency requirements like Solvency II or

SST.



4 1 Introduction

Outline

This thesis is divided into four parts:

Part I: In the first part (Chapter 2) the classical claims reserving problem is introduced. We

consider the associated general prediction problem and point out which data sources have been

used in classical as well as in state-of-the-art claims reserving methods for the prediction of fu-

ture loss liabilities. Moreover we show how the incorporated prediction uncertainty is classically

quantified in long term as well as in short term risk considerations.

Part II: In the second part (Chapters 3 and 4) we briefly present widely used classical claims

reserving methods. Following Dahms [17] and Dahms–Happ [15] all these methods are then

merged in a general state-of-the-art distribution-free claims reserving framework in Chapter 4.

This model framework comprises almost all distribution-free claims reserving methods. More-

over, it allows for the incorporation of various sources of information for the prediction process

and hence provides a new perspective and possibilities of distribution-free claims reserving.

Part III: In contrary to Part II this part is subject to distributional claims reserving. In

the model class of distributional claims reserving methods we consider in Chapters 5 and 6 an

important representative, the paid-incurred chain (PIC) reserving method presented in Merz–

Wüthrich [46]. Following Happ et al. [30] and Happ–Wüthrich [31] we consider for this

method the quantification of the one-year reserving risk and generalize the classical PIC method

so that dependence structures in the data can be appropriately captured. Moreover, the whole

predictive distribution of the claims development result is derived via Monte-Carlo (MC) meth-

ods.

Part IV: In this part (Chapter 7) we point out central regulatory requirements included in re-

cent solvency frameworks like SST or Solvency II. These solvency requirements are not coherent

with most classical claims reserving methods. We point out simplification methods proposed in

the SST and show how they make most claims reserving methods accessible for these solvency

requirements. We close up this part by presenting an example where reserves are calculated

regarding the SST reserving requirements.



2 Reserving Problem

2.1 Insurance Contracts and Process of Claims Settlement

An insurance contract is an agreement of two parties: For a fixed payment (insurance premium)

the insurer (insurance company) obliges to pay a financial compensation to the insured (policy-

holder) in the case of an occurrence of some well defined (random) future event in a well specified

time period. In the case of such an event at a certain date (occurrence date) during the insured

period, the insured person reports the claim to the insurance company at the so-called reporting

(notification) date. The time between the occurrence and the reporting date is called reporting

delay. After the reporting of the claim the insurance company verifies whether all insurance con-

tract specifications are fulfilled so that the insurer has to provide coverage of the claim. If this

is the case, the insurance company starts payments for the financial compensation of the claim

in accordance to the contract specifications. This claims settlement process typically consists of

one or more payments to the policyholder. It ends with the closure date where no further claims

payments are expected and the claim is (presumably) completely settled and closed. The time

line of typical non-life insurance claims from occurrence to the final settlement is illustrated

in Figure 2.1. Time delays from occurrence to notification and from settlement process to the

p
re
m
iu
m

insured period

occurrence notification closure
claims payments

time

1

Figure 2.1: Generic time line of the claims settlement process

closure date are typical for non-life insurance claims and can be caused by different reasons:

• Delays when incurred claim events are not immediately reported to the insurance company

• Final claim amounts are determined over a long period of time (up to several decades)

• Juridical inspection of a claim. The liability of the insurance company to pay for the claim

5



6 2 Reserving Problem

is to be determined

• Court decisions leading to payment adjustments, reverse transactions of already paid com-

pensations or additional claims payments

These time delays often lead to a very slow claims settlement process with claims payments far

in the future (up to several decades). This shows that the very nature of insurance business (i.e.

underwriting risks through insurance contracts) often causes a very slow settlement process and

the prediction of this process becomes a central point of interest. For a more detailed discussion

on that topic, see Wüthrich–Merz [63].

General Remark:

In non-life insurance business many claim characteristics (occurrence date, frequency of claims,

severity of a claim, claim settlement pattern, claims payments, etc.) are subject to randomness

and can not be predicted without uncertainty. Hence, probability theory and statistics provide

suitable mathematical tools for dealing with those claim characteristics. Thereby, it is assumed

that the very nature and the behavior of these claim characteristics do not change “too fast”

over time. This assumption is required to utilize past observations for predicting purposes and

to reveal systematic properties (behavior) of the quantities under consideration. For this reason

we model all quantities of interest in a stochastic framework as random variables, which are

defined on a common probability space (Ω,D,P).

2.2 Data Basis in a Non-life Insurance Company

In general, insurance companies group policies (insurance contracts) with similar risk character-

istics or comparable contract specifications into sufficiently homogeneous insurance portfolios.

This is often done by Lines of Business (LoB), but can be subdivided further into smaller units.

Typical LoBs are: Motor third party, product liability, private and commercial property, com-

mercial liability, health insurance, etc. An insurance company has to put provisions aside, in

order to cover future loss liabilities arising from these grouped insurance portfolios. For this

reason an accurate prediction of future loss liabilities and the associated cash flows in the claim

settlement process is of central interest. This prediction can be based on various sources of

information.

2.2.1 Classical View

In the classical view the prediction of future loss liabilities is often based on the information

of the past observed development of the settlement process itself. Classical claims reserving
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literature often assumes that an insurance company has, after grouping of individual contracts,

M ≥ 1 nearly homogeneous portfolios. All claims, which occur in year i, are called claims in

accident year i ∈ {0, . . . , I}, where I is the current year. The number k of years between accident

year and the year of the actual claims payment is called development year k ∈ {0, . . . , J}, with

J being the total number of development years. It is usually assumed that I ≥ J and that

all claims are completely settled in development year J , i.e. there are no claims payments

beyond development year J . For models considering claims payments beyond development year

J by means of so-called tail factors, see Mack [40] and Merz–Wüthrich [42]. We denote all

payments for accident year i and development year k in the m-th portfolio (m ∈ {1, . . . ,M})
by Smi,k and say that all claims payments Smi,k with i + k = n and n ∈ {0, . . . , I + J} belong

to accounting year n. This notation is called incremental claims representation in the actuarial

literature, because we consider claims payments Smi,k in accident year i and development year k of

the m-th portfolio. In the actuarial literature (cf. Wüthrich–Merz [63]) the cumulative claims

payments representation of the claim settlement process is also used. In this representation one

considers cumulated amounts in accident year i up to development year k defined by

Cmi,k :=
k∑

j=0

Smi,j , (2.1)

where all claims payments which belong to accident year i up to development year k in the m-th

portfolio are aggregated. At time n ∈ {0, . . . , I+J} all claims payments Smi,k with i+k ≤ n and

1 ≤ m ≤M are observed and generate the σ-field

Dn := σ
{
Smi,k
∣∣i+ k ≤ n, 0 ≤ i ≤ I, 0 ≤ k ≤ J, 1 ≤ m ≤M

}

= σ
{
Cmi,k

∣∣i+ k ≤ n, 0 ≤ i ≤ I, 0 ≤ k ≤ J, 1 ≤ m ≤M
}
.

(2.2)

Moreover, we denote the resulting filtration by D := (Dn)0≤n≤I+J leading to the probability

space with filtration (Ω,D,D,P). The two representations (incremental or cumulative repre-

sentation) are commonly used in the claims reserving literature, and it mainly depends on the

model choice whether the incremental or the cumulative representation is used. The settlement

process of the m-th portfolio in the incremental as well as in the cumulative claims payments

representation is illustrated in claims development (run-off) trapezoids where accident years

i ∈ {0, . . . , I} and development years k ∈ {0, . . . , J} are given by the rows and the columns,

respectively. This means the incremental claims payments in accident year i and development

year k of the m-th portfolio are positioned in the i-th row and the k-th column in the m-th

development trapezoid, see Figure 2.2.

We will see in Chapter 4 that the incremental claims payments representation is an appropri-

ate choice for almost all distribution-free claims reserving methods. Moreover, the incremental

representation is advantageous if one is interested in the valuation of outstanding loss liabili-
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Figure 2.2: Classical view (extended view): Generic run-off trapezoid of the m-th LoB (claim in-

formation) for m ∈ {1, . . . ,M} and incremental claims payments (claim information)

of accident year i and development year k with i+ k = I

ties via valuation portfolios, see Wüthrich–Merz [62]. However, we switch to the cumulated

claims payments representation, if helpful (Chapters 5 and 6).

2.2.2 Extended View

Beside the claim settlement process data there are often other sources of information available

for the prediction of loss liabilities:

• Settlement processes of other correlated portfolios

• Data of collectives which may influence the settlement process under consideration

• Incurred losses: Claims payments plus individual case dependent loss reserves

• Prior ultimate claim estimates: This information may include pricing arguments

• Insured volume

• Number and size of contracts

• etc.

Recent publications in actuarial science consider new models which allow for including some of

these sources of information in a mathematically consistent way, see for example Dahms [17]

and Merz–Wüthrich [46]. In these models Smi,k and Cmi,k do not necessarily only correspond
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anymore to incremental claims payments and cumulative claims payments (i.e. information from

the claim settlement process). They may also represent some other sources of information stated

above, for example incurred losses data, see the PIC reserving method in Merz–Wüthrich

[46], or prior ultimate claim estimates, see the Bornhuetter–Ferguson (BF) method in Mack

[39]. Therefore, it is necessary to extend the denotation of Smi,k of the classical view, since we

focus in the actuarial contributions of this thesis on such new model classes, see Chapters 4–6.

Throughout the thesis Smi,k denotes the m-th (m ∈ {1, . . . ,M}) claim information of accident

year i ∈ {0, . . . , I} and development year k ∈ {0, . . . , J} and not necessarily only the claims

payments as it is convenient in classical claims reserving methods. These claim information may

– beside the claims payments process – contain incurred losses, see Merz–Wüthrich [46] and

Dahms [16], received premium and the average loss ratio, see Bühlmann [11], prior ultimate

claim estimates, see Mack [39] and Arbenz–Salzmann [6], claim volume information, see

Dahms [17], or other additional sources of information.

By a slight abuse of notation we will call also m ∈ {1, . . . ,M} the m-th claim information by

identifying the index m with its associated claim information Smi,k. In the extended view some

claim information Smi,k do not generate any loss liability cash flows in the future and thus do not

have to be predicted. Therefore, we define

M :=
{
m ∈M

∣∣ Smi,k generates loss liability cash flows
}
. (2.3)

By definition M is the set of claim information which generate cash flows, see (2.3), and is

therefore of central interest for claims reserving and risk management.

Remarks 2.1 (Set M) In most classical claims reserving methods, each claim information

m ∈M is given by the claims payments of an insurance portfolio of a specific LoB, see Chapter

3 for examples. However, this is not always the case. In Example 1 in Dahms [17] there is

a claim information m ∈ M of subrogation payments. This shows that M may – beside the

claims payments of different LoBs – also contain other claim information which also generate

cash flows. That means that the claim information in M are not explicitly restricted to claims

payments of different insurance portfolios. However, for a simpler interpretation of the set M
one may think of each claim information m ∈M as claims payments arising from an insurance

portfolio of a certain LoB.

As a consequence of the definition of M, the set of all claim information {1, . . . ,M} is divided

into disjoint subsetsM⊆ {1, . . . ,M} andMc = {1, . . . ,M}\M. The claim information m ∈M
have already been discussed above. The setMc of claim information is not of central interest for

risk management and claims reserving, because it does not generate any loss liability cash flows.

However, claim information out of Mc are utilized in many models for the prediction of claim

information m ∈ M under consideration, i.e. they contain information, which are required for
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the prediction of claim information m ∈ M. To name only a few of them, an ultimate claim

estimate (as a claim information m ∈Mc) is incorporated for the prediction of claims payments

(as a claim information m ∈M) in the BF method, see Section 3.5, incurred losses are used for

the prediction of claims payments in the extended complementary loss ratio (ECLR) method,

see Dahms [16], and in the PIC reserving method, see Chapters 5 and 6, or volume measures

are included for claims payments predictions in the additive loss reserving (ALR) method in

Merz–Wüthrich [44]. In analogy to the classical view, claim information m ∈ {1, . . . ,M} in

the extended view are also illustrated in development (run-off) trapezoids, see Figure 2.2.

Notational Convention:

Unless otherwise indicated we work in this thesis within the extended view, i.e. we assume that

a set of M ≥ 1 claim information (sources of information) is available today, i.e at time I. In

this extended view all claim information m ∈ M generate loss liability cash flows and hence

have to be predicted, whereas claim information m ∈ Mc are used only for the prediction of

claim information m ∈M.

2.3 Prediction Problem

As mentioned in the previous section insurance companies often have various sources of informa-

tion (claim information) for the prediction of future loss liabilities cash flows Smi,k with m ∈M.

We work in the extended view, i.e. we assume that M ≥ 1 claim information m ∈ {1, . . . ,M} (as

mentioned above we identify m by its corresponding claim information Smi,k) are available today

(at time I). The set of claim information generating cash flows is denoted by M⊆ {1, . . . ,M}.
A reserving actuary has to predict today (at time I) and at all future times up to the final run-off,

i.e. at times n ∈ {I, . . . , I +J − 1}, the outstanding loss liability cash flows. These are given for

claim information m ∈M and accident year i ∈ {I−J+1, . . . , I} at time n ∈ {I, . . . , I+J−1}
by (an empty sum is defined by zero)

Rm|ni :=
J∑

j=n−i+1

Smi,j . (2.4a)

By summation of (2.4a) over all claim information of interest, i.e. m ∈ M, we obtain the

aggregated outstanding loss liabilities of accident year i given by

Rni :=
∑

m∈M
Rm|ni =

∑

m∈M

J∑

j=n−i+1

Smi,j (2.4b)
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and the aggregated outstanding loss liabilities for several accident years are given by

Rn :=
I∑

i=n−J+1

Rni =
I∑

i=n−J+1

∑

m∈M

J∑

j=n−i+1

Smi,j . (2.4c)

It mainly depends on the situation which of the quantities in (2.4a)–(2.4c) is of interest. In

an accounting view the actuary often considers at time n ∈ {I, . . . , I + J − 1} the aggregated

outstanding loss liability cash flows Rn given by (2.4c). However, in some situations a more

detailed analysis at time n of the outstanding loss liabilities of a specific claim information

m ∈ M and a certain accident year i in (2.4a) is required. One such situation is that most

classical claims reserving model frameworks consider claims payments (in these models only

claims payments are considered and hence we speak about claims payments instead of loss

liability cash flows) on the level of each individual claim information of a specific accident

year (cf. Wüthrich–Merz [63]). The aggregated claims payments Rn are then derived by

aggregation over different individual claim information as in (2.4c).

In order to build up sufficient reserves for outstanding loss liabilities an insurance company

is obliged to predict precisely all outstanding loss liabilities, based on information Dn in (2.2)

available at time n of prediction. In most well-known claims reserving methods predictors for the

incremental claim information Smi,k for i+ k > n and m ∈ M are derived. This is described for

some well-known claims reserving methods in Chapter 3 and in a more general model framework

in Chapter 4. Throughout this thesis we will denote those predictors for Smi,k based on the data

Dn at time n by Ŝ
m|n
i,k . At time n ∈ {I, . . . , I + J − 1} the outstanding loss liabilities in (2.4a)–

(2.4c) consist of (sums of) incremental claim information Smi,k with i + k > n and m ∈ M.

Therefore, the prediction of these loss liabilities is equivalent to the prediction of incremental

claim information Smi,k for i+ k > n and m ∈M. For the resulting predictors for Rm|ni , Rni and

Rn based on the data Dn we then obtain

R̂m|ni :=
J∑

j=n−i+1

Ŝ
m|n
i,j , (2.5a)

R̂ni :=
∑

m∈M
R̂m|ni =

∑

m∈M

J∑

j=n−i+1

Ŝ
m|n
i,j (2.5b)

and the predictor for aggregated outstanding loss liabilities for all accident years is given by

R̂n :=
I∑

i=n−J+1

R̂ni =
I∑

i=n−J+1

∑

m∈M

J∑

j=n−i+1

Ŝ
m|n
i,j . (2.5c)

So far, we do not state any requirements w.r.t. properties of the predictors of loss liabilities Ŝ
m|n
i,k

and hence for (2.5a)–(2.5c), except that the predictor Ŝ
m|n
i,k at time n must be Dn-measurable.

In Chapter 7 we state a regulatory requirement for these predictors to be so-called best-estimate

valuation of liabilities (BEL).
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Remarks 2.2 (Discounting) In the definition of outstanding loss liabilities at time

n ∈ {I, . . . , I + J − 1} in (2.4a)–(2.4c) loss liabilities Smi,k occurring at different times i+ k > n

are aggregated. In these aggregations Smi,k are not weighted by a discount factor and hence time

value of money (discounting) is not incorporated. This shows that we work on a nominal scale

as almost all classical claims reserving methods. The problem of the incorporation of stochastic

discounting in claims reserving methods is an important topic in recent actuarial research and

leads to the concept of market-consistent valuation via valuation portfolios. Since a detailed

discussion is beyond the scope of this thesis we will not discuss this further here and refer to

Wüthrich–Merz [62].

Concluding at time n = I, an reserving actuary calculates within a certain model framework

predictors Ŝ
m|I
i,k for loss liabilities Smi,k with m ∈ M and i+ k > I. This leads to the predictors

of outstanding loss liabilities given by (2.5a)–(2.5c).

2.4 Inflation

For the discussion on inflation we partly follow Taylor [57] and Wüthrich–Merz [63].

Inflation in claims reserving has not been often discussed in classical claims reserving literature.

For the time being we assume that each claim information m ∈ M corresponds to claims

payments of a specific LoB. Most claims reserving methods are based on the assumption that

the observed outcome of the claim settlement process of claim information out ofM in the past

plus other additional sources of information of claim information out ofMc can be used to predict

future outcomes of a claim information m ∈M. Therefore, we have to differentiate between the

development of the claim settlement process itself and the “inflation noise” which overlays the

claim settlement process. The crucial point is that depending on the claim information m ∈M
under consideration the development of claim costs may vary over time. The claims payments

Smi,k in accounting year i + k = n and m ∈ M and its development over time may therefore be

affected not only by the “pure severity and other characteristics” of the claim but also by claims

inflation. In general, this claims inflation does not coincide with (but may be effected by) the

classical inflation. Moreover, the impact and the severity of claims inflation may differ in each

specific LoB under consideration. Therefore, for each LoB we try to exclude the inflation from

the claims payments Smi,k at time i+k = n. Let λm(n) be an inflation index that measures claims

inflation of LoB (claim information) m ∈ M at time n relative to time 0. Then the indexed

claims payments Sm,indi,k are given by

Sm,indi,k :=
1

ϕmI
· ϕmn · Smi,k, for i+ k = n, (2.6)
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where ϕmn := (λm(n))−1. Note that ϕmn play the role of stochastic deflators as discussed in

Wüthrich–Merz [62]. The indexed payments Sm,indi,k in (2.6) should be the basis for claims

reserving modeling, since they contain the “pure” information of the claims payments develop-

ment without the inflation “noise”. However, it is difficult in practice to model such an inflation

process, because λm(n) is not directly observable. Moreover, significant changes in λm(n) are

mainly caused by new developments, innovations in certain industries, for example in health

care, and also by common inflation. Thus, it is difficult to calibrate a time series model for the

claims inflation rate by data of the past. We propose two strategies:

1. In the claims reserving model non-indexed claims payments Smi,k are considered. This is

an acceptable assumption as long as there is no period of high claims inflation followed by

a period of low claims inflation or vice versa, i.e. as long as there is no regime switch in

the claims inflation process.

2. All observations in DI are adjusted at time I by the observed (claims) inflation rate

and inflation-adjusted claims payments Sm,indi,k are modeled, leading to the predictor of

inflation-adjusted claims payments Ŝ
m,ind|I
i,k . In this case, the inflation index λm(n) is

modeled independently from the claims payments leading to a predictor of the inflation

index λ̂m(n) for n > I. The predicted values of the inflation-adjusted claims payments

Ŝ
m,ind|I
i,k and the inflation index λ̂m(n) are then combined to the predictor of claims pay-

ments

Ŝ
m|I
i,k :=

1

ϕmn
ϕmI Ŝ

m,ind|I
i,k for i+ k = n > I, (2.7)

where

(ϕmn )−1 :=




λ̂m(n) for n > I

λm(n) for n ≤ I
. (2.8)

As mentioned above, it is difficult in general to predict the claims inflation process λm(n),

since changes in this process are mainly caused by exogenous shocks. Hence, it is difficult to

calculate (2.8) and (2.7). Therefore, Strategy 1. is preferred and non-indexed claims payments

are modeled. The restriction in the beginning of this section that all claim information m ∈M
correspond to claims payments of a specific LoB can be removed, since the arguments above

hold true not only for claims payments, but also for information m ∈ M. Thus, we model

throughout this thesis non (claims) inflation-adjusted quantities. This is in line with almost all

classical claims reserving methods.
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2.5 Prediction Precision

As outlined in Section 2.3, at time n ∈ {I, . . . , I + J − 1} a reserving actuary has to calculate

R̂n to meet outstanding loss liabilities in the run-off portfolios. Depending on the data sources

available, see Section 2.2 for an overview of possible sources of information, and the structure of

the data the actuary sets up a model framework, see Chapters 4–6. The model is then calibrated

to the data and the outstanding loss liabilities are predicted in this model framework. This leads

to (model based) reserves.

Of course, there is a risk that the actual outcome of loss liabilities Rn significantly deviates from

the prediction R̂n. This may have the following reasons:

1. Model misspecification: The chosen model does not describe the stochastic dynamics of

the loss liability process appropriately

2. Parameter uncertainty: Within a given model framework unknown model parameters

are replaced by estimates. These estimates may deviate from the “true” values, due to

randomness in the parameter estimation

3. Process variance of the stochastic (random) process of loss liabilities: Even if we assume

that we have chosen the “right” model and model parameters the realization of the stochas-

tic process of loss liabilities may be far from a “typical” realization (the mean) by pure

randomness

The appropriateness of the model under consideration is to be verified before using the model.

This can be done in some cases by statistical methods similar to Chapter 11 in Wüthrich–

Merz [63]. Of course, more sophisticated models require other strategies for verifying model

assumptions. Statistical tests have to be deduced in each individual model under consideration.

This is not well developed so far in actuarial science and should be subject to further research.

Having chosen a model framework, one is interested in the quantification of the prediction

uncertainty. However, for this we must find an agreement in what sense the “distance” between

the prediction and the actual outcomes should be measured. For that reason we have to choose an

appropriate risk measure which determines a conception of measuring the quality of prediction.

There is a large range of reasonable risk measures (cf. Artzner et al. [7]) which could

be used to quantify prediction uncertainty. The choice of a sensible risk measure is not a pure

mathematical issue and it mainly depends on the application at hand which risk measure is most

appropriate. In actuarial tradition the most important risk measure is the (conditional) mean

squared error of prediction (MSEP). However, the (conditional) MSEP has some conceptional

weaknesses, see Remarks 2.4. Therefore, the MSEP is supplemented by other risk measures like

Value-at-Risk (VaR) or Expected Shortfall (ES) in recent regulatory solvency frameworks like

Solvency II and SST, see European Commission [23], FOPI [24] and FOPI [25]. For a proper
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definition of VaR and ES, see Definitions 7.7 and 7.8. The issue of the incorporation of VaR

and ES in solvency considerations is discussed in Chapter 7.

2.5.1 Mean Squared Error of Prediction

As already stated above the most popular risk measure in actuarial science is the (conditional)

MSEP.

Definition 2.3 (MSEP) For a square integrable random variable X and a DI-measurable pre-

dictor X̂ the conditional MSEP is defined by

msepX|DI

[
X̂
]

:= E

[(
X − X̂

)2
∣∣∣∣DI

]
.

2

Remarks 2.4 (MSEP)

i) The (conditional) MSEP is very popular in statistics and actuarial science, since it corre-

sponds to the squared norm of the Hilbert space of square integrable random variables L2

with respect to P( |DI). This allows for using basic Hilbert space theory (cf. Kolmogorov–

Fomin [36]) what makes many calculations easier to handle.

ii) In claims reserving practice one is basically interested in the shortfall risk, i.e. in the

risk of not having adequate reserves to meet loss liabilities. The MSEP uses a quadratic

loss function and therefore does not reflect this risk potential, because upside as well as

downside deviations are taken in the same way into account.

iii) Replacing the MSEP by another more reasonable risk measure requires completely new

models in claims reserving with much stronger model assumptions. Moreover, analyti-

cal closed form results would mostly be infeasible, because other risk measures are often

much harder to handle. Instead simulation methods such as Markov-Chain-Monte-Carlo

(MCMC) have to be used in those cases (cf. Scollnik [55]).

The (conditional) MSEP has the useful property that it can be decomposed into

msepX|DI

[
X̂
]

= Var
[
X| DI

]
︸ ︷︷ ︸
process variance

+
(
X̂ − E

[
X| DI

])2

︸ ︷︷ ︸
estimation error

. (2.9)

This decomposition is a central technique to derive estimates for the MSEP of the outstanding

loss liabilities in various claims reserving methods, see Mack [38], Wüthrich–Merz [63],

Dahms [17] and Dahms–Happ [15]. Unless otherwise indicated we will use the (conditional)

MSEP as an optimality criterion (risk measure) and the term “best” means with the smallest

(conditional) MSEP.
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In the context of our claims reserving problem at time I the (conditional) MSEP of the

aggregated outstanding loss liabilities RI in (2.4c) is given by

msepRI |DI

[
R̂I
]

= E






I∑

i=I−J+1

∑

m∈M

J∑

j=I−i+1

(
Smi,j − Ŝm|Ii,j

)



2∣∣∣∣∣∣
DI

 . (2.10)

The conditional MSEP (2.10) measures the mean quadratic deviation of the aggregated liability

predictors Ŝ
m|I
i,j and the actual loss liability outcomes Smi,j up to the final settlement of the run-off

in development year J . The conditional MSEP in (2.10) is called long term or ultimate claim

view of the prediction uncertainty. In new solvency regulation frameworks such as Solvency II

and SST the so-called one-year view is of central interest, see European Commission [23] and

FOPI [24], which is quite different from the ultimate claim view. This short term view focuses

on the changes in the loss liability predictions, i.e. the change of the prediction in an one-year

horizon (from time I to time I + 1). The stochastic quantity which describes these changes in

an one-year horizon is the so-called claims development result (CDR).

2.6 Claims Development Result

We recapitulate the prediction problem of a reserving actuary at times I and I + 1.

Accounting year I:

The information DI is available. Based on this information the actuary determines the (model

dependent) predictor of aggregated outstanding loss liabilities

R̂I =
I∑

i=I−J+1

∑

m∈M

J∑

j=I−i+1

Ŝ
m|I
i,j .

Accounting year I + 1:

All loss liabilities

SMI+1 :=
∑

m∈M

I∑

i=I−J+1

Smi,I−i+1 (2.11)

for accounting year I + 1 are paid out to the policyholder (or paid to the insurance company

in the case of subrogation payments). Since new updated information DI+1 is available at time

I + 1, updated predictors R̂I+1 are calculated based on DI+1, see Figure 2.3. The resulting

updated loss liability predictor at time I + 1 is then given by

R̂I+1 =

I∑

i=I−J+2

∑

m∈M

J∑

j=I−i+2

Ŝ
m|I+1
i,j .

The CDR describes the one-year change of predictions of aggregated outstanding loss liabilities

for several accident years R̂I in the time step from accounting year I to I + 1, adjusted by the

loss liability payments SMI+1 in (2.11) at time I + 1:
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Figure 2.3: Data set DI observable at time I and data set DI+1 observable at time I + 1

Definition 2.5 (Claims Development Result) The claims development result (CDR) at

time I + 1 of the predictor R̂I of aggregated outstanding loss liabilities for several accident years

is defined by

CDRM,I+1 := R̂I −
(
R̂I+1 + SMI+1

)
. (2.12)

2

In many claims reserving methods the CDR is often considered on the level of single accident

years i ∈ {I − J + 1, . . . , I} and claim information m ∈ M. The CDR at time I + 1 for the

predictor of outstanding loss liabilities R̂m|Ii of accident year i and claim information m ∈M is

given by

CDRm,I+1
i := R̂m|Ii −

(
R̂m|I+1
i + Smi,I−i+1

)
.

Moreover, the CDR at time I + 1 for the predictor of aggregated loss liabilities R̂Ii of single

accident years i ∈ {I − J + 1, . . . , I} is defined by

CDRM,I+1
i :=

∑

m∈M
CDRm,I+1

i = R̂Ii −
(
R̂I+1
i + SMi,I−i+1

)
,

with the aggregated loss liabilities of accident year i and development year k

SMi,k :=
∑

m∈M
Smi,k.

By Definition 2.5 the claims development result CDRM,I+1 exactly corresponds to the change

between i) the predictor R̂I at time I and ii) the predictor R̂I+1 at time I + 1 plus the loss

liabilities SMI+1 paid out at time I+1, see (2.12). A negative claims development result CDRM,I+1
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Figure 2.4: Reserves R̂I based on DI at time I, updated reserves R̂I+1 based on DI+1 at time

I + 1 and the resulting claims development result CDRM,I+1

results in a loss in the position “loss experience prior accident years” on the balance sheet of

an insurance company, whereas a positive one leads to a profit in this position (cf. Merz–

Wüthrich [45]). Hence the CDR directly effects the profit and loss statement in the balance

sheet of an insurance company. This reveals the direct link of the claims development result

CDRM,I+1 to re-adjustments of the predictor R̂I+1 in accounting year I+ 1, see Figure 2.4. We

analyze the CDR in more detail.

Properties of the claims development result CDRM,I+1

In accounting year I the best DI -measurable estimator for Smi,k is given by E
[
Smi,k

∣∣∣DI
]
. If for

the predictor holds Ŝ
m|I
i,k = E

[
Smi,k

∣∣∣DI
]
, the linearity and the tower property of conditional

expectations (cf. Williams [59]) imply for the expected claims development result CDRM,I+1

at time I

E
[
CDRM,I+1

∣∣DI
]

= E
[
R̂I −

(
R̂I+1 + SMI+1

)∣∣∣DI
]

= E




I∑

i=I−J+1

∑

m∈M

J∑

j=I−i+1

Ŝ
m|I
i,j −




I∑

i=I−J+2

∑

m∈M

J∑

j=I−i+2

Ŝ
m|I+1
i,j + SMI+1



∣∣∣∣∣∣
DI



= E




I∑

i=I−J+1

∑

m∈M

J∑

j=I−i+1

Ŝ
m|I
i,j −

I∑

i=I−J+1

∑

m∈M

J∑

j=I−i+1

Ŝ
m|I+1
i,j

∣∣∣∣∣∣
DI



=
I∑

i=I−J+1

∑

m∈M

J∑

j=I−i+1

(
E
[
Ŝ
m|I
i,j

∣∣∣DI
]
− E

[
Ŝ
m|I+1
i,j

∣∣∣DI
])

= 0.

The interpretation of this result is as follows: Assume that the data generating process of loss

liabilities is given by the model used by the reserving actuary for claims reserving and the
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model allows for the calculation of E
[
Smi,k

∣∣∣DI
]
. Then the prediction at time I of aggregated

outstanding loss liabilities of several accident years R̂I equals in the average the sum of R̂I+1 and

SMI+1, viewed from time I. That means that the amount of R̂I is such that, viewed from time I, in

the average the prediction R̂I+1 as well as the loss liability payments SMI+1 can be financed by R̂I .
This property is often called self-financing property. In most (classical) distribution-free claims

reserving methods estimates of E
[
Smi,k

∣∣∣DI
]

are used as a predictor for outstanding loss liabilities,

see the chain ladder (CL) method in Mack [38] or the linear stochastic reserving methods

(LSRMs) in Dahms [17] among others. This motivates the fact that the claims development

result CDRM,I+1 is often predicted by 0 in the profit and loss statement of the balance sheet in

a non-life insurance company.

Similar to the quantification of the prediction uncertainty of the aggregated outstanding loss

liabilities in terms of the (conditional) MSEP, see (2.10), we measure the prediction uncertainty

of the CDR by means of the (conditional) MSEP given by

msepCDRM,I+1|DI [0] := E

[((
CDRM,I+1

)
− 0
)2
∣∣∣∣DI

]
. (2.13)

Sometimes the (conditional) MSEP for the claims development result CDRM,I+1
i for single

accident years i ∈ {I − J + 1, . . . , J} is considered

msep
CDRM,I+1

i |DI [0] := E

[((
CDRM,I+1

i

)
− 0
)2
∣∣∣∣DI

]
.

For more information on the CDR see Ohlsson–Lauzeningks [49].

Remarks 2.6 (CDR)

i) The CDR is the risk driver in the one-year reserving risk (for the multi-year reserving risk,

see Diers–Linde [20]). Therefore, the CDR is the central quantity in current regulatory

solvency frameworks, see Chapter 7 for details.

ii) Regulatory solvency rules aim to protect against shortfalls in the CDR, see European

Union [23] or FOPI [24]. In these rules the (conditional) MSEP (2.13) is utilized to

calibrate a log-normal distribution by the method of moments, see Chapter 7. Therefore,

it is questionable, whether the choice of the MSEP as a risk measure is appropriate, since

many distributional properties can not be captured by the MSEP.

Risk Characteristics in Classical Claims Reserving Methods

In this chapter we introduced predictors for aggregated outstanding loss liabilities for several

accident years R̂I and the claims development result CDRM,I+1 as the central stochastic quan-

tities under consideration for claims reserving at time I (today). In a first step a predictor
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R̂I for aggregated outstanding loss liabilities RI is calculated. In classical claims reserving the

prediction uncertainty of the predictor R̂I for the outstanding loss liabilities RI , see (2.5c), as

well as the predictor 0 for the CDRM,I+1, see (2.13), is usually measured by the (conditional)

MSEP, see Definition 2.3. The CDR became the central quantity in recent solvency frameworks,

see FOPI [24], since it reflects the adjustments in the predictions of outstanding loss liabilities

that will (possibly) be necessary in the time step from I to I + 1. As motivated in the last

section the claims development result CDRM,I+1 is predicted by 0 at time I, i.e. no adjustment

at time I + 1 are to be expected. As a conclusion, we note that in classical claims reserving

the aggregated outstanding loss liabilities RI and the claims development result CDRM,I+1 are

predicted by the predictors R̂I and 0, respectively. The corresponding prediction uncertainty is

measured by the MSEP, see Table 2.1 for an overview. These quantities can be calculated (or

quantity predictor prediction uncertainty

RI R̂I msepRI |DI

[
R̂I
]

CDRM,I+1 0 msepCDRM,I+1|DI [0]

Table 2.1: Classical risk characteristics: Reserves and CDR and the corresponding first two

moments

estimated) for many claims reserving methods. Especially the claims reserving methods which

belong to the class of LSRMs or Bayesian LSRMs allow for the derivation of these quantities,

see Chapter 4.

In recent regulatory solvency frameworks more sophisticated risk measures like higher mo-

ments or quantile based risk measures such as VaR or ES are required. The calculation of

such risk measures overcharges the possibilities of distribution-free claims reserving methods.

They are only accessible under simplifications or approximations, which are subject to Chapter

7. These different accessibility levels of claims reserving methods w.r.t. the MSEP (basic risk

measure) and VaR or ES (more sophisticated risk measures) are important in new solvency

frameworks, see European Commission [23] and Fopi [24].

Therefore, we divide the set of stochastic claims reserving methods into two groups:

1. (Bayesian) distribution-free claims reserving methods:

(Bayesian) distribution-free claims reserving methods comprise many classical claims re-

serving methods used in actuarial practice. We present some important representatives of

this class in Chapter 3. These methods can be essentially summarized in the wide class

of (Bayesian) LSRMs introduced in Dahms [17] and Dahms–Happ [15]. This unification

and generalization of distribution-free claims reserving methods is subject to Chapter 4.
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In this class only the risk characteristics given in Table 2.1 can be derived. More so-

phisticated risk measures are accessible in this model class only under simplifications and

approximations, see Simplifications I–II in Chapter 7.

2. Distributional methods:

In actuarial science various distributional claims reserving methods have been introduced.

Among others generalized linear model (GLM) techniques were used in

England–Verrall [21] and [22], Haberman–Renshaw [29], Taylor–McGuire [58]

and Alai et al. [3], generalized linear mixed models (GLMM) were applied in Antonio–

Beirlant [5], Frees–Shi [56] and De Jong [19] used copula based models and distri-

butional Bayesian models were applied in Salzmann–Wüthrich [54], Wüthrich [60],

Merz–Wüthrich [46], Happ–Wüthrich [31] and others. These methods often allow

for the derivation of the whole predictive distribution of outstanding loss liabilities and

not only of the first two (conditional) moments given in Table 2.1.

In Chapter 5 we highlight one important representative of the class of distributional meth-

ods, namely the paid-incurred chain (PIC) reserving method by Merz–Wüthrich [46].

This distributional claims reserving method combines in an elegant way claims payments

and incurred losses data. Following Happ et al. [15] we recapitulate the PIC reserving

method and show how the MSEP of the CDR can be derived analytically. Moreover, we

derive the whole predictive distribution of the CDR via Monte-Carlo (MC) simulations. A

generalization of the PIC model which allows to model dependence structures in the data

presented in Happ–Wüthrich [30] is subject to Chapter 6.





3 Classical Distribution-Free Claims Reserving

Methods

In this chapter we present classical distribution-free claims reserving methods commonly used in

actuarial practice. We state model assumptions underlying each method and present predictors

R̂I for outstanding aggregated loss liabilities (claims payments)RI . Prediction uncertainty is not

considered in this chapter. This has the following reason: As will be shown in Chapter 4 almost

all classical distribution-free claims reserving methods can be embedded in the general (Bayesian)

LSRM framework. For this model class the (conditional) MSEP of aggregated outstanding loss

liabilities for several accident years R̂I and the CDR, see Table 2.1, are derived in Dahms [17] for

LSRMs and in Chapter 4 for Bayesian LSRMs. In the sequel of each method presented we state

some remarks on advantages and disadvantages and point out to what extend the disadvantages

could be tackled in state-of-the-art claims reserving methods.

3.1 General Notation

In this chapter we work under the extended view given in Chapter 2. For the general formulation

of the stochastic dynamics of classical distribution-free claims reserving methods we define the

linear subspaces Ln and Lk denoting the linear spaces generated by all increments Smi,j up to

accounting year n and development year k, respectively. Furthermore, the linear subspace

generated by Ln and Lk is denoted by Lnk, i.e.

Ln :=





M∑

m=1

I∑

i=0

(n−i)∧J∑

j=0

xmi,jS
m
i,j : xmi,j ∈ R



 ,

Lk :=





M∑

m=1

I∑

i=0

k∑

j=0

xmi,jS
m
i,j : xmi,j ∈ R



 ,

Lnk :=





M∑

m=1

I∑

i=0

((n−i)∧J)∨k∑

j=0

xmi,jS
m
i,j : xmi,j ∈ R



 ,

23
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Figure 3.1: σ-fields (sets of observations): Bi,k - all claim information in accident year i up to

development year k, Dk - all claim information up to development year k, Dn - all

claim information up to accounting year n and Dnk - the union of all information in

Dk and Dn

where a∧b and a∨b denote the minimum and maximum of the real numbers a and b, respectively.

Moreover, the corresponding σ-fields (sets of observations) are defined by

Bi,k := σ
(
Smi,j : 1 ≤ m ≤M, 0 ≤ j ≤ k

)
, Dk := σ (Lk) = σ

(
I⋃

i=0

Bi,k
)
,

Dn := σ (Ln) = σ

(
I⋃

i=0

Bi,(n−i)∧J
)
, Dnk := σ (Lnk) = σ

(
I⋃

i=0

Bi,((n−i)∧J)∨k

)

and illustrated in Figure 3.1.

3.2 Chain Ladder Method

The CL method is the most popular and widest used claims reserving method. The original

version of the CL method was a purely deterministic procedure for calculating reserves without

considering the claims reserving problem in a stochastic framework. In 1993, Mack [38] was

the first to formulate a distribution-free stochastic framework where the reserves resulting from

the original deterministic method are given a meaningful stochastic foundation. Within the

stochastic framework, Mack [38] was able to present estimates for the prediction uncertainty

in terms of the (conditional) MSEP. The classical model assumptions of Mack [38] for the CL
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method are formulated in the cumulative claims payments representation, i.e. we consider Cmi,k

instead of Smi,k, and the method uses its own past claims settlement process as the only source

of information. That means in the CL method we consider one cumulative claim information

Ci,k, i.e. M = 1, M = {1} (the superscript 1 in the exponent will be omitted, because there is

only one claim information).

Model Assumptions 3.1 (Distribution-free CL model of Mack) There exist

constant factors g0, . . . , gJ−1 and variance parameters σ2
0, . . . , σ

2
J−1 > 0 such that

a) Cumulative claims payments {Ci,k| 0 ≤ k ≤ J} from different accident years i ∈ {0, . . . , I}
are independent.

b) For all 0 ≤ i ≤ I and 0 ≤ k ≤ J − 1 holds

E[Ci,k+1| Bi,k] = E[Ci,k+1|Ci,k] = gkCi,k,

Var[Ci,k+1| Bi,k] = Var[Ci,k+1|Ci,k] = σ2
kCi,k.

2

The factors gk are called development or age-to-age factors, because they describe the expected

one step transition of (Ci,k)k≥0. The conditional expectation E
[
Ci,k+1| DI

]
is the best DI -

measurable predictor for Ci,k+1 (k ∈ {0, . . . , J − 1}), see Williams [59, p. 86], page 86. In

accounting year I (i.e. given DI) the conditional expected cumulative claims payments for

accident year I−J + 1 ≤ i ≤ I up to development year I− i < k+ 1 ≤ J are given under Model

Assumptions 3.1 by

E
[
Ci,k+1| DI

]
= Ci,I−i

k∏

j=I−i
gj ,

see Wüthrich–Merz [63] for a proof. For the ultimate claim, i.e. k = J − 1, we obtain

E
[
Ci,J | DI

]
= Ci,I−i

J−1∏

j=I−i
gj .

In practice the development factors {gk| 0 ≤ k ≤ J − 1} are unknown and have to be estimated

from the data DI available in accounting year I. A (conditional) unbiased estimator with

minimum (conditional) variance in the class of linear unbiased estimators is given by

ĝ I,CLk :=

I−k−1∑
i=0

Ci,k+1

I−k−1∑
i=0

Ci,k

, k ∈ {0, . . . , J − 1}, (3.1)
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see Wüthrich–Merz [63] for a proof. The claim predictors are then given by

ĈI,CLi,k+1 := Ci,I−i
k∏

j=I−i
ĝ I,CLj . (3.2)

For these predictors in (3.2) we obtain by the (conditional) unbiasedness of the estimators ĝ I,CLk

in (3.1)

E
[
ĈI,CLi,k+1

∣∣∣Ci,I−i
]

= E


Ci,I−i

k∏

j=I−i
ĝ I,CLj

∣∣∣∣∣∣
Ci,I−i




= E


E


Ci,I−i

k∏

j=I−i
ĝ I,CLj

∣∣∣∣∣∣
Dk



∣∣∣∣∣∣
Ci,I−i




= E


Ci,I−igk

k−1∏

j=I−i
ĝ I,CLj

∣∣∣∣∣∣
Ci,I−i




...

= Ci,I−i
k∏

j=I−i
gj

= E
[
Ci,k+1| DI

]
.

This shows that the predictor (3.2) is conditionally given Ci,I−i unbiased for E
[
Ci,k+1| DI

]
. This

motivates the explicit claim predictor (3.2). Finally, we obtain the CL predictor of aggregated

outstanding loss liabilities of accident year i ≥ I − J + 1 at time I (note that M = 1)

R̂I,CLi = ĈI,CLi,J − Ci,I−i = Ci,I−i
J−1∏

j=I−i
ĝ I,CLj − Ci,I−i = Ci,I−i




J−1∏

j=I−i
ĝ I,CLj − 1


 . (3.3)

The CL predictor of aggregated loss liabilities for several accident years follows by summation

of (3.3) over accident years i ∈ {I − J + 1, . . . , J}

R̂I,CL :=
I∑

i=I−J+1

R̂I,CLi . (3.4)

The prediction uncertainty in terms of the conditional MSEP of the CL predictors R̂I,CL is

given under slightly varying approaches in Mack [38], Murphy [48] and Buchwalder et al.

[10]. For the quantification of the CDR uncertainty by means of the (conditional) mean squared

error of prediction msepCDR1,I+1|DI [0] we refer to Merz–Wüthrich [47].

Remarks 3.2 (Distribution-free CL model of Mack)

i) The CL method is by far the most popular claims reserving method, since it is easy to use,

very intuitive and simple to implement.
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ii) The CL method is based on only one source of information (the settlement process itself)

and does not respect other sources of information available. In insurance practice additional

sources of information, for example incurred losses data, are often available. The problem

of considering cumulative payments and incurred losses simultaneously is addressed in

Chapters 5 and 6.

iii) According to (3.4) and (3.3) the reserves R̂I in the CL method completely rely on the

last observable entries {CI−J+1,J−1, . . . , CI,0}. This makes the method very sensitive with

respect to outliers or zeros on the diagonal leading to nonsense reserve estimates. Such

scenarios are not unusual in excess-of-loss reinsurance.

iv) The classical CL method does not allow for the incorporation of expert knowledge or infor-

mation from industry-wide data in the development factors gk. This problem is addressed

in the Bayes CL method, see Section 3.3. In Chapter 4 the general case is considered of in-

corporating such information in all models which belong to the wide class of LSRMs. This

includes the CL method and the class of Bayesian LSRMs is therefore a generalization of

the Bayes CL method.

3.3 Bayes Chain Ladder Method

Model Assumptions 3.1 require unknown development (age-to-age) factors {gk| 0 ≤ k ≤ J − 1}
which have to be estimated appropriately from the data. If there is additional portfolio data

available, for instance industry-wide data or expert knowledge concerning the development fac-

tors of the claims reserving method, new models are needed to cope with those new information

sources. The Bayes chain ladder (Bayes CL) model in Gisler–Wüthrich [27] allows for the

incorporation of additional information on the development factors in the CL method within a

credibility based approach. In the Bayes CL model it is assumed that the development factors

gk with 0 ≤ k ≤ J−1 in the classical CL model are random variables denoted by Gk with known

(conditional) mean and variance. The model assumptions are formulated for the development

ratios Yi,k :=
Ci,k+1

Ci,k
as follows:

Model Assumptions 3.3 (Bayes CL model)

a) Conditionally, given G := (G0, . . . , GJ−1), the cumulative claims payments {Ci,k| 0 ≤ k ≤
J} from different accident years i ∈ {0, . . . , I} are independent.

b) Conditionally, given G and Bi,k, the distribution of Yi,k depends only on Ci,k and it holds

E[Yi,k|G,Bi,k] = Gk

Var[Yi,k|G,Bi,k] =
σ2
k(Gk)

Ci,k
,
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for i ∈ {0, . . . , I} and k ∈ {0, . . . , J − 1}.

c) {G0, G1, . . . , GJ−1} are independent.

2

In the Bayes CL method a credibility theory based approach is used for the prediction of the

development factorsGk, see Bühlmann–Gisler [14]. The resulting credibility predictor Ĝ I,Cred
k

for the development factor Gk is then given by a credibility weighted average of the classical CL

estimate ĝ I,CLk in (3.1) and the prior mean E[Gk| Dk]

ĜI,Credk := αkĝ
I,CL
k + (1− αk)gk, (3.5)

where αk ∈ [0, 1] is given by

αk :=

I−k−1∑
i=0

Ci,k+1

I−k−1∑
i=0

Ci,k +
σ2
k

τ2k

, (3.6)

with the prior structural parameters

gk := E[Gk| Dk] σ2
k := E

[
σ2
k(Gk)

∣∣Dk
]

τ2
k := Var[Gk| Dk] . (3.7)

This leads to credibility based claim predictors for accident year i ∈ {I − J + 1, . . . , I} and

development year (k + 1) ∈ {I − i+ 1, . . . , J} given by

Ĉ I,Cred
i,k+1 := Ci,I−i

k∏

j=I−i
ĜI,Credj . (3.8)

This is exactly the predictor in (3.2) in the classical CL model, but with the estimate ĝ I,CLj

replaced by the credibility predictor ĜI,Credj . By Equation (3.8) we obtain the predictor for

aggregated outstanding loss liabilities for accident year i ∈ {I − J + 1, . . . , J}

R̂I,Credi = Ĉ I,Cred
i,J − Ci,I−i = Ci,I−i




J−1∏

j=I−i
ĜI,Credj − 1


 . (3.9)

Finally, by summation of (3.9) over all accident years i ∈ {I−J+1, . . . , I} we get the credibility

based CL predictor for aggregated outstanding loss liabilities given by

R̂I,Cred =
I∑

i=I−J+1

R̂I,Credi =
I∑

i=I−J+1

Ci,I−i




J−1∏

j=I−i
ĜI,Credj − 1


 .

For the derivation of the prediction uncertainty msepRI |DI

[
R̂I,Cred

]
in terms of the (conditional)

MSEP we refer to Gisler–Wüthrich [27]. For the prediction uncertainty of the CDR, see

Chapter 4, where the Bayes CL method is looked at as a Bayesian LSRM. In this general model

framework the (conditional) MSEP of the CDR as well as the MSEP of the predictor R̂I,Cred

for outstanding loss liabilities are derived.



3.4 Complementary Loss Ratio Method 29

Remarks 3.4 (Bayes CL model)

i) The credibility predictor (3.5) is a credibility weighted average of the classical CL estimate

ĝI,CLk purely based on the data and the structural parameter gk. The structural parameters

(3.7), which are required for the calculation of the credibility weights (3.6), can be estimated

from data, see Bühlmann–Gisler [14], or deduced from external sources of information.

ii) Since the CL method belongs to the class of LSRMs, see Chapter 4, one can ask whether

this incorporation of prior knowledge of the development pattern by means of credibility

theory does not only work in the CL method but also for all other methods which belong

to the class of LSRMs. This question is answered in Chapter 4. Moreover, estimates of

(conditional) mean squared error of prediction msepRI |DI

[
R̂I
]

and msepCDRM,I+1|DI [0]

are derived.

3.4 Complementary Loss Ratio Method

In the complementary loss ratio (CLR) method, see Bühlmann [12], incremental claims pay-

ments S1
i,k are considered as the first claim information. An external given exposure Pi (e.g.

earned premium, volume measure, ultimate claim prediction, number and size of contracts, etc.)

defined by

S2
i,k :=




Pi for k = 0

0 otherwise

and independent of time is used as a second source of information. That means in this model

there are M = 2 claim information S1
i,k and S2

i,k and we are interested in the prediction of the

first claim information S1
i,k. The second claim information S2

i,k is used for the prediction of S1
i,k

but is not predicted itself, i.e. M = {1} and Mc = {2}.

Model Assumptions 3.5 (CLR model) There exist constant weights g0, . . . , gJ−1 and vari-

ance parameters σ2
0, . . . , σ

2
J−1 > 0 such that

a) Incremental claims payments {S1
i,k| 0 ≤ i ≤ I, 0 ≤ k ≤ J} are independent.

b) For 0 ≤ i ≤ I and 0 ≤ k ≤ J − 1 holds

E
[
S1
i,k+1

∣∣Bi,k
]

= gkPi,

Var
[
S1
i,k+1

∣∣Bi,k
]

= σ2
kPi.

2
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In the CLR method estimates of the unknown model parameters gk are given by

ĝI,CLRk :=
1

I−k−1∑
i=0

Pi

I−k−1∑

i=0

Pi
S1
i,k+1

Pi
.

This leads to the CLR predictor

Ŝ1
i,k+1 := ĝI,CLRk Pi (3.10)

for i + k ≥ I. We then obtain for the predictor of aggregated outstanding loss liabilities of

accident year i ∈ {I − J + 1, . . . , J}

R̂I,CLRi :=
J−1∑

k=I−i
Ŝ1
i,k+1 (3.11)

and the corresponding predictor for several accident years is given by

R̂I,CLR :=

I∑

i=I−J+1

R̂I,CLRi =

I∑

i=I−J+1

J−1∑

k=I−i
Ŝ1
i,k+1. (3.12)

Note that if we choose in Model Assumptions 3.5 Pi := Vi where Vi is a volume measure we

obtain the ALR method in Merz-Wüthrich [44]. This shows that the ALR method is a special

case of the CLR method. Moreover, in Chapter 4 we will see that the CLR method belongs to

the class of LSRMs. Therefore, estimates of the (conditional) mean squared error of prediction

msepRI |DI

[
R̂I
]

and msepCDR1,I+1|DI [0] for the CLR method are given in Dahms [17].

3.5 Bornhuetter–Ferguson Method

Beside the CL method the Bornhuetter–Ferguson (BF) method presented in Bornhuetter–

Ferguson [8] is one of the most popular claims reserving methods. In 1972, Bornhuetter and

Ferguson introduced the BF method in order to solve the main problem of the CL method that

the reserve of accident year i ∈ {I − J + 1, . . . , J} in (3.3) is proportional to the last diagonal

entry Ci,I−i. The central idea of the BF method is that for each accident year i the incremental

claims payments S1
i,k correspond to a fixed percentage yk of a prior ultimate claim estimate xi.

We consider the BF method in its incremental representation. A cumulative version is given

in Wüthrich–Merz [63]. The incremental claims payments S1
i,k constitute the first claim

information and the second claim information is given by

S2
i,k :=

{
xi for k = 0

0 otherwise
,
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where xi is a prior ultimate claim estimate. That means that in the BF method there are

M = 2 claim information whereas the set of claim information generating cash flows is given by

M = {1}. There are many slightly varying model assumptions underlying the BF method. The

assumptions in Mack [39] are given by:

Model Assumptions 3.6 (BF model of Mack) There exist constant weights y0, . . . , yJ and

variance parameters s2
0, . . . , s

2
J > 0 such that

a) Incremental claims payments {S1
i,k| 0 ≤ i ≤ I, 0 ≤ k ≤ J} are independent.

b) For 0 ≤ i ≤ I and 0 ≤ k ≤ J holds

E
[
S1
i,k

]
= ykxi and y0 + . . .+ yJ = 1

Var
[
S1
i,k

]
= s2

kxi.

2

By setting

gk := yk+1, Pi := xi and σ2
k := s2

k+1 for 0 ≤ k ≤ J − 1

we obtain for the BF model

E
[
S1
i,k+1

∣∣Bi,k
]

= E
[
S1
i,k+1

]
= yk+1xi = gkPi,

Var
[
S1
i,k+1

∣∣Bi,k
]

= Var
[
S1
i,k+1

]
= s2

k+1xi = σ2
kPi.

This shows that the BF method can be looked at as a special case of the CLR method. Therefore,

the predictor of outstanding loss liabilities of accident year i ∈ {I−J+1, . . . , I} in the BF method

is given by (3.11), with ĝk and Pi replaced by ŷk+1 and xi, respectively. For the discussion of the

associated prediction uncertainty in the BF method we refer to the discussion of the prediction

uncertainty in the CLR method given above. As already mentioned above there are various

versions of the BF model with slightly varying model assumptions. For the corresponding

reserves and prediction uncertainty in these cases we refer to Wüthrich–Merz [63], Alai et

al. [3], Alai et al. [4] and Saluz et al. [52].

Remarks 3.7 (CLR and BF method)

i) In the CLR method and therefore in the BF method too the second claim information S2
i,k

is used for the prediction of the claims payments process S1
i,k, see Model Assumptions 3.5

and 3.6. This is the classical case, where S2
i,k is used for predicting S1

i,k but not predicted

itself, i.e. M = 2 and M = {1}.

ii) The BF method requires and allows for a prior estimate of the ultimate claim xi for each

accident year i. These prior estimates are often deduced from pricing arguments. In the

CLR method a prior exposure Pi is required.
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iii) The CLR and BF methods solve the basic problem of the CL method that the reserves

strongly depend on the observations on the last observed diagonal. This becomes obvious

by comparing the CL reserves in (3.3) and the CLR and BF reserves in (3.11).

iv) The classical BF method does not allow for including other sources of information, for ex-

ample incurred losses data, and is therefore to some extend inflexible in insurance practice.

This problem is addressed in Chapters 5 and 6.

v) Prior expert knowledge or industry wide data can not be included in the estimation of the

parameters yk in the BF method and gk in the CLR method. This task is considered for

the wide class of LSRMs in Chapter 4.

All so far presented claims reserving methods (and much more) belong to the class of (Bayesian)

LSRMs. Therefore, best-estimate predictors for outstanding loss liabilities, their prediction un-

certainty and the one-year reserving risk can be calculated in the general framework of (Bayesian)

LSRMs in Dahms [17] and Dahms–Happ [15] presented in Chapter 4.

A distribution-free claims reserving method which does not fit into the LSRM model frame-

work is briefly presented in the following section.

3.6 Munich Chain Ladder Method

Beside the claims payments data, incurred losses as a second data source are often available

in insurance companies. Applying the CL method, see Section 3.2, to the claims payments

data leads to CL reserves based on claims payments data. On the other side, if one applies

the CL method to the incurred losses data we obtain CL reserves based on incurred losses

data. However, this strategy leads to differing ultimate claim predictions which generally do

not coincide and there remains a gap between the prediction based on the cumulative payments

and the prediction based on incurred losses. This gap is reduced by applying the Munich chain

ladder (MCL) method introduced by Quarg–Mack [50] in 2004. However, this method does not

completely close the gap between the predictions. Let C1
i,k be the cumulative claims payments

and C2
i,k the cumulative incurred losses of accident year i ∈ {0, . . . , I} and development year

k ∈ {0, . . . , J}, i.e. M = 2 and M = {1}. As shown in Merz–Wüthrich [43] the model

assumptions for the MCL method can be formulated as follows:

Model Assumptions 3.8 (MCL model)

a) The sets {C1
i,j , C

2
i,j | 0 ≤ j ≤ J} are independent for different accident years i ∈ {0, . . . , I}.

b) There exist gm0 , . . . , g
m
J−1 > 0 and σm0 , . . . , σ

m
J−1 > 0 for m ∈ {1, 2} such that for all
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0 ≤ i ≤ I and 0 ≤ k ≤ J − 1 holds

E
[
C1
i,k+1

∣∣ Ck
]

= g1
kC

1
i,k Var

[
C1
i,k+1

∣∣ Ck
]

=
(
σ1
k

)2
C1
i,k

E
[
C2
i,k+1

∣∣ Ik
]

= g2
kC

2
i,k Var

[
C2
i,k+1

∣∣ Ik
]

=
(
σ2
k

)2
C2
i,k

with

Ck := σ(C1
i,j : 0 ≤ i ≤ I, 0 ≤ j ≤ k) Ik := σ(C2

i,j : 0 ≤ i ≤ I, 0 ≤ j ≤ k).

c) There are constants λ1, λ2 ∈ R such that

E

[
C1
i,k+1

C1
i,k

∣∣∣∣∣ Ck, Ik
]

= g1
k + λ1Var

[
C1
i,k+1

C1
i,k

∣∣∣∣∣ Ck
]1/2

C2
i,k

C1
i,k
− E

[
C2

i,k

C1
i,k

∣∣∣∣ Ck
]

Var

[
C2

i,k

C1
i,k

∣∣∣∣ Ck
]1/2

and

E

[
C2
i,k+1

C2
i,k

∣∣∣∣∣ Ck, Ik
]

= g2
k + λ2Var

[
C2
i,k+1

C2
i,k

∣∣∣∣∣ Ik
]1/2

C1
i,k

C2
i,k
− E

[
C1

i,k

C2
i,k

∣∣∣∣ Ik
]

Var

[
C1

i,k

C2
i,k

∣∣∣∣ Ik
]1/2

for 0 ≤ i ≤ I and 0 ≤ k ≤ J − 1.

2

Remarks 3.9 (MCL method)

i) To the best of our knowledge, estimates for the prediction uncertainty as well as for the

one-year reserving risk CDR in terms of the (conditional) MSEP could not be derived, yet.

ii) On the contrary to the MCL method, the extended complementary loss ratio (ECLR)

method by Dahms [16] provides one unified predictor for outstanding claims payments

based on the claims payments and incurred losses data simultaneously. The corresponding

prediction uncertainty and the one-year reserving risk is derived in Dahms et al. [18].

iii) Another claims reserving method being able to incorporate cumulative claims payments and

incurred losses data leading to one unified ultimate claim prediction is the PIC reserving

method by Merz–Wüthrich [46]. In the PIC reserving method unified ultimate claim

predictors as well as the prediction uncertainty in terms of the (conditional) MSEP are

derived. Moreover, the MSEP of the one-year reserving risk CDR and the whole predictive

distribution of the CDR can be derived, see Chapter 5.
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Summary

In this chapter we gave a brief introduction in classical distribution-free claims reserving methods

often used in actuarial practice. The CL method can cope with only one source of information

(i.e. the claims payments process itself). The Bayes CL method additionally includes prior

knowledge of the development factors using credibility theory. However, the main problem of

the CL method remains that predictors for the outstanding loss liabilities are very sensitive

w.r.t. outliers on the last observed diagonal, see (3.3) and (3.8). Thus, we proceeded with the

CLR method. This method allows to incorporate prior external knowledge, for example ultimate

claim estimates, as a second source of information and is more robust than the CL method w.r.t.

outliers on the last observed diagonal. We saw that the well-known BF method is a special case

of the CLR method. As shown in Dahms [17] all these methods can be embedded into the class

of LSRMs, see Chapter 4 for details. This new general class of reserving methods provides a very

flexible and powerful framework for distribution-free claims reserving modeling. Many different

sources of information can be included for the prediction of outstanding loss liabilities. However,

claims reserving methods which belong to the class of LSRMs do not allow for the incorporation

of prior expert knowledge or industry wide data in the claims reserving process. In Gisler–

Wüthrich [27] this problem is solved for the classical CL method resulting in the Bayes CL

method. We consider this problem for the whole class of LSRMs and generalize the approach

from the Bayes CL method to all LSRMs. This leads to the new class of Bayesian LSRMs

presented in Dahms–Happ [15]. This very general and powerful class of reserving methods is

subject to Chapter 4.
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4.1 Linear Stochastic Reserving Methods

As outlined in the previous chapter, many classical claims reserving methods are formulated

in distribution-free model frameworks using various sources of information for the description

of the stochastic dynamics of the underlying model. The most popular representatives among

them are the well-known CL, BF and CLR methods. In actuarial science it was not completely

understood what all these distribution-free claims reserving methods have in common. In 2012,

Dahms [17] introduced the class of linear stochastic reserving methods (LSRMs) and pointed

out that many of the well-known distribution-free claims reserving methods can be looked at

as LSRMs. Among them are the CL, BF, and CLR methods presented in Chapter 3, but also

the hybrid chain ladder (HCL) method by Arbenz–Salzmann [6] and the ECLR method by

Dahms [16]. This means that from a mathematical point of view LSRMs are a state-of-the-art

generalization of the models mentioned above. This provides a complete new viewing angle on

the large class of distribution-free claims reserving methods. Benefits for practitioners from this

generalization are listed in Conclusions 4.3.

Notational convention:

For reasons of notational consistency with Dahms [17] the counting for m starts with 0, M ≥ 0

and the number of claim information is M + 1 in this chapter.

In this section we follow Dahms [17]. In the LSRM framework incremental claim information

Smi,k are considered for m ∈ {0, . . . ,M}, i ∈ {0, . . . , I} and k ∈ {0, . . . , J}, i.e. we work under

the extended view.

Model Assumptions 4.1 (LSRM)

a) There exist fmk ∈ R such that for all i, m and k the expectation of the incremental claim

information Smi,k+1 under the condition of all information of its past Di+kk is proportional

to an exposure Rmi,k contained in Li+k ∩ Lk, i.e.

E
[
Smi,k+1

∣∣Di+kk

]
= fmk R

m
i,k ∈ Li+k ∩ Lk.

35



36 4 (Bayesian) Linear Stochastic Reserving Methods

b) There exist σm1,m2

k > 0 such that for all i, m1, m2 and k the covariance of the incremental

claim information Sm1
i,k+1 and Sm2

i,k+1 under the condition of all information of their past

Di+kk is proportional to an exposure Rm1,m2

i,k contained in Li+k ∩ Lk, i.e.

Cov
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Di+kk

]
= σm1,m2

k Rm1,m2

i,k ∈ Li+k ∩ Lk.

2

For an illustration of the linear spaces (or the generated σ-fields, respectively) used in Model

Assumptions 4.1, see Figure 4.1. 1

n

k

Dn
k

i

I

ac
ci
d
en
t
ye
ar

0

J0

development year

I

accounting
year

Dk

Dn

Figure 4.1: σ-fields (sets of observations): Dk - all claim information up to development year

k, Dn - all claim information up to accounting year n and Dnk - the union of all

information in Dk and Dn

Remarks 4.2 (LSRM)

i) Beside the claims payments process LSRMs can include various sources of information,

for example external given exposures like prior ultimate claim estimates (BF method) or

incurred losses as a second source of information (ECLR method), see Dahms [16].

ii) In Model Assumptions 4.1 a) and b) Rmi,k and Rm1,m2

i,k are assumed to be elements out of

Li+k∩Lk. That means it is implicitly assumed that there exist (unique) exposure parameters

γm,li,k,h,j ∈ R and γm1,m2,l
i,k,h,j ∈ R such that

Rmi,k =

M∑

l=1

I∑

h=0

(i+k−h)∧k∑

j=0

γm,li,k,h,jS
l
h,j and Rm1,m2

i,k =

M∑

l=1

I∑

h=0

(i+k−h)∧k∑

j=0

γm1,m2,l
i,k,h,j Slh,j , (4.1)
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respectively. These exposure parameters are called LSRM defining parameters, since they

define the stochastic dynamics of the LSRM.

iii) The LSRM defining parameters γm,li,k,h,j and γm1,m2,l
i,k,h,j in (4.1) have to be determined. There

are often heuristic and/or LoB based information that motivate a specific parameter choice.

An excellent example for such a scenario is given in Example 1 in Dahms [17]. In other

cases one can use backtesting techniques for verifying whether the LSRM would have worked

well in the past.

4.1.1 Classical Claims Reserving Methods as LSRMs

To get an idea of the flexibility of the class of LSRMs we first analyze which of the classical

claims reserving methods belong to the class of LSRMs.

CL Method

Model Assumptions 3.1 for the distribution-free CL method are:

There exist constant factors g0, . . . , gJ−1 and variance parameters σ2
0, . . . , σ

2
J−1 > 0 such that

a) Cumulative claims payments {Ci,k| 0 ≤ k ≤ J} from different accident years i ∈ {0, . . . , I}
are independent.

b) For all 0 ≤ i ≤ I and 0 ≤ k ≤ J − 1 holds

E[Ci,k+1| Bi,k] = E[Ci,k+1|Ci,k] = gkCi,k,

Var[Ci,k+1| Bi,k] = Var[Ci,k+1|Ci,k] = σ2
kCi,k.

Since in the CL method only one source of information, namely the claims payments process

itself, is incorporated we have that M = 0. The incremental claims payments in the CL method

are given by

S0
i,k+1 := Ci,k+1 − Ci,k.

With

R0
i,k := Ci,k =

k∑

j=0

S0
i,j =: R0,0

i,k ∈ Li+k ∩ Lk (4.2)

and with Model Assumptions 3.1 a) and b) we obtain

E
[
S0
i,k+1

∣∣Di+kk

]
= E

[
S0
i,k+1

∣∣Bi,k
]

= (gk − 1)︸ ︷︷ ︸
=: f0k

Ci,k︸︷︷︸
= R0

i,k

∈ Li+k ∩ Lk,

Var
[
S0
i,k+1

∣∣Di,kk
]

= Var
[
S0
i,k+1

∣∣Bi,k
]

= σ2
k︸︷︷︸

=: σ0,0
k

Ci,k︸︷︷︸
= R0,0

i,k

∈ Li+k ∩ Lk.
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This shows that the CL method belongs to the class of LSRMs.

2

CLR Method

Model Assumptions 3.5 for the CLR method are given by:

a) Incremental claims payments {S0
i,k| 0 ≤ i ≤ I, 0 ≤ k ≤ J} are independent.

b) For 0 ≤ i ≤ I and 0 ≤ k ≤ J − 1 holds

E
[
S0
i,k+1

∣∣Bi,k
]

= gkPi,

Var
[
S0
i,k+1

∣∣Bi,k
]

= σ2
kPi.

If we take

S1
i,k :=

{
Pi for k = 0

0 otherwise

we see that the CLR method belongs to the class of LSRMs. Since the BF method is a special

case of the CLR method, this implies that the BF method also belongs to the class of LSRMs.

As already mentioned above the ECLR method can also be looked at as a LSRM, see Dahms

[17].

4.1.2 Parameter Estimation for LSRMs

In the LSRMs defined above the model parameters fmk and σm1,m2

k are unknown and have to

be estimated from the data. Note that the LSRM defining exposure parameters γm,li,k,h,j ∈ R and

γm1,m2,l
i,k,h,j ∈ R in (4.1) are required by the model to provide a well-defined LSRM, see Remarks

4.2. An (Dk conditional) unbiased estimator for fmk is given by (we set 0
0 := 0)

f̂mk :=

I−1−k∑

i=0

wmi,k
Smi,k+1

Rmi,k
, (4.3)

where wmi,k ≥ 0 are Dn ∩ Dk-measurable weights with

i) Rmi,k = 0 implies wmi,k = 0 and

ii)
I−1−k∑
i=0

wmi,k = 1 if at least one Rmi,k 6= 0.

With the choice of explicit weights

wmi,k :=

(
Rmi,k

)2

Rm,mi,k



I−1−k∑

h=0

(
Rmh,k

)2

Rm,mh,k




−1

(4.4)
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the estimators (4.3) have minimum variance in the class of all linear estimators of the form (4.3),

i.e. they are (homogeneous) credibility estimators, see Bühlmann–Gisler [14] for a definition.

In the case of the CL method, the CLR method or the ECLR method these minimum variance

estimators are the well-known standard estimators, see for example Mack [38] and Dahms [16].

Estimators for the second model parameter σm1,m2

k are not required for the prediction of claim

information Smi,k in LSRMs, but for the quantification of the prediction uncertainty. An unbiased

estimator for σm1,m2

k is given by

σ̂m1,m2

k :=
1

Zm1,m2

k

I−1−k∑

i=0

Rm1
i,k R

m2
i,k

Rm1,m2

i,k

(
Sm1
i,k+1

Rm1
i,k

− f̂m1
k

)(
Sm2
i,k+1

Rm2
i,k

− f̂m2
k

)
, (4.5)

where

Zm1,m2

k :=

I−1−k∑

i=0

(
1− wm1

i,k − wm2
i,k + wm1

i,k w
m2
i,k

Rm1,m2

i,k

Rm1
i,k R

m2
i,k

I−1−k∑

h=0

Rm1
h,kR

m2
h,k

Rm1,m2

h,k

)

with

wmi,j :=
(Rmi,j)

2

Rm,mi,j

(
I−1−j∑

h=0

(Rmh,j)
2

Rm,mh,j

)−1

.

For a proof of the stated unbiasedness of the estimators (4.3) and (4.5), see Dahms [17].

4.1.3 Prediction of Future Claim Information

By (4.1) it becomes evident that Rmi,k is a linear combination of Slh,j ∈ Li+k ∩ Lk. This implies

that the linear projection

Pn : Ln −→ Ln+1, x 7−→ (Pnx)mi,k :=




xmi,k for i+ k ≤ n

Pmi,k−1x for i+ k = n+ 1
,

where

Pmi,k : Li+k −→ R, x 7−→ Pmi,kx := fmk Γmi,kx

with

Γmi,k : Li+k −→ R, x 7−→ Γmi,kx :=
M∑

l=1

I∑

h=0

(n−h)∧(k)∑

j=0

γm,li,k,h,jx
l
h,j

generates, based on all claim information in Dn, the next diagonal (accounting year) n+ 1 and

projects all claim information out of Dn on this next diagonal. The concatenation of these linear

projections fills up several diagonals at once and is given by

Pn2←n1 : Ln1 −→ Ln2+1, x 7−→ Pn2←n1x :=





ΠLn2+1x for n2 < n1

Pn2Pn2−1 · · ·Pn1x for n2 ≥ n1
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with ΠLn denoting the projection on the first n diagonals and we define

P
m|n
i,k : Ln −→ R, x 7−→ P

m|n
i,k x :=

(
Pi+k←nx

)m
i,k+1

. (4.6)

With

Sn :=
(
Smi,k
)0≤m≤M
i+k≤n

we obtain for 1 ≤ i ≤ I and k + n+ 1 ≤ J the best predictor for Smi,k+n+1 given by

E
[
Smi,k+n+1

∣∣Di+kk

]
= P

m|i+k
i,k+n Si+k. (4.7)

Replacing the unknown development factors fmk in (4.6) by their estimates f̂mk we obtain with

(4.7) for I − i ≤ k < J the LSRM predictor

Ŝ
m|I
i,k+1 := P̂

m|I
i,k SI . (4.8)

Beside the LSRM predictor (4.8) the prediction uncertainty of Ŝ
m|I
i,k+1 and CDRM,I+1 quantified

by means of the MSEP are of interest. However, this requires cumbersome notation and long

calculations and we refer therefore to Dahms [17].

Conclusion 4.3

i) In most distribution-free claims reserving methods accident year independence is a central

model assumption. This is not required in LSRMs.

ii) LSRMs possess (conditional) uncorrelated diagonals, see Lemma 2.3 c) in Dahms [17].

This implies that calendar year effects like inflation which have an impact on the whole

diagonal can not be captured by LSRMs. This issue should be subject to further research.

iii) A regime change can be modeled by an exchange of external given exposures leading to

a much faster calibration of the model to the new regime than in the CL method. One

example for such an exposure change is illustrated in Example 1 in Dahms [17].

In LSRMs there is no mathematically consistent way to incorporate prior expert knowledge or

industry-wide data knowledge into the development factors fmk . This is exactly the same issue

that is considered in the Bayes CL method in Gisler–Wüthrich [27] for the CL method. We

generalize this aspect to the whole class of LSRMs what is subject to the next section.

4.2 Bayesian Linear Stochastic Reserving Methods

In insurance practice some LoBs show large deviations and irregularities in the claims develop-

ment. Therefore, it is difficult for a reserving actuary to find reliable estimates for the devel-

opment factors for his model. In classical LSRMs the development factors fmk are estimated in
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(4.3) based on data of the trapezoids only. However information about “typical” development

factors in similar LoBs or from industry-wide data could be helpful and included in the estima-

tion of the development factors. To solve this problem one has to ask the following question:

What can we learn from the collective (industry-wide data) for the development pattern of the

LoB under consideration? This question has its origin in credibility theory where knowledge of

the collective and individual loss records are combined to improve estimates, see Bühlmann–

Gisler [14]. In our reserving context we combine experience of the industry-wide data and the

individual LoB’s claims record to calculate credibility development factors. This leads to the

class of Bayesian LSRMs. In this section we follow Dahms-Happ [15].

In the Bayesian LSRM setup we assume that the development factor fmk of claim information

m ∈ {0, . . .M} in development year k ∈ {0, . . . J − 1} is a realization of a random variable Fmk .

We denote the random matrix containing all development factors Fmk by

F := (Fmk )0≤m≤M
0≤k≤J−1 . (4.9)

The vector collecting all development factors of development year k ∈ {0, . . . , J − 1} is denoted

by

Fk := (F 0
k , . . . , F

M
k )′

and we define in an analog way

f := (fmk )0≤m≤M
0≤k≤J−1 ∈ R(J)×(M+1)

and

fk := (f0
k , . . . , f

M
k )′ ∈ RM+1.

Moreover, for an arbitrary mapping

ha : A −→ B, x 7−→ ha(x),

(for arbitrary sets A and B) depending on a fixed parameter (vector) a we denote by

h|a=b(x) := hb(x)

the function h, but with a replaced by b.

For the construction of Bayesian LSRMs we assume that conditionally, given F, Model Assump-

tions 4.1 for classical LSRMs are fulfilled.
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Model Assumptions 4.4 (Bayesian LSRM)

a) Conditionally, given F = (Fmk )0≤m≤M
0≤k≤J−1, for all i, m and k the expectation of the incre-

mental claim information Smi,k+1 under the condition of all information of its past Di+kk is

proportional to an exposure Rmi,k ∈ Li+k∩ Lk, i.e.

E
[
Smi,k+1

∣∣Di+kk ,F
]

= Fmk R
m
i,k.

b) Conditionally, given F, the covariance of the incremental claim information Sm1
i,k+1 and

Sm2
i,k+1 under the condition of all information of their past Di+kk is proportional to an

exposure Rm1,m2

i,k ∈ Li+k ∩ Lk, i.e.

Cov
[
Sm1
i,k+1, S

m2
i,k+1

∣∣∣Di+kk ,F
]

= σm1,m2

k (F)Rm1,m2

i,k with Rm1,m2

i,k ∈ Li+k∩ Lk.

c) For all n ∈ {I, . . . , I + J}, j ≤ J − 1 and 0 ≤ k0 < k1 < . . . < kj ≤ J − 1 it holds

E

[
j∏

i=0

Ωki

∣∣∣∣∣D
n

]
=

j∏

i=0

E[Ωki | Dn] ,

where, for k ∈ {0, . . . , J − 1}, Ωk ∈
{
Fmk , σ

m1,m2

k (F), Fm1
k Fm2

k

∣∣ 0 ≤ m,m1,m2 ≤M
}

.

2

Remarks 4.5 (Bayesian LSRM)

i) The covariance coefficients σm1,m2

k (F) in Model Assumptions 4.4 b) have to be chosen, so

that
(
σm1,m2

k (F)Rm1,m2

i,k

)
m1,m2

is positive semidefinite almost sure for all i and k.

ii) Model Assumption 4.4 c) is a kind of uncorrelatedness assumption, which is actually less

restrictive than a priori independence of {Fk : 0 ≤ k ≤ J − 1}. Indeed, one can show

that unconditional independence of the development factors {Fk : 0 ≤ k ≤ J − 1} together

with Model Assumption 4.4 a) satisfy c), if in b) σm1,m2

k (F) depends on Fk only and in a)

the slightly stronger assumption holds that not only the expected value but the distribution

of Smi,k+1 depends on F and Di+kk via Fmk and Rmi,k only (compare this with the Model

Assumptions 3.3 for the Bayes CL method).

iii) The Bayes CL method presented in Gisler-Wüthrich [27] belongs to the class of Bayesian

LSRMs, see the next subsection.

4.2.1 Classical Bayesian Claims Reserving Methods as Bayesian LSRMs

We first analyze which of the classical Bayesian claims reserving methods belong to the class of

Bayesian LSRMs.
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Bayes CL Method

Model Assumptions 3.3 for the Bayes CL method are:

a) Conditionally, given G := (G0, . . . , GJ−1), the cumulative claims payments {Ci,k| 0 ≤ k ≤
J} from different accident years i ∈ {0, . . . , I} are independent.

b) Conditionally, given G and Bk, the distribution of Yi,k depends only on Ci,k and it holds

E[Yi,k|G,Bi,k] = Gk

Var[Yi,k|G,Bi,k] =
σ2
k(Gk)

Ci,k
,

for i ∈ {0, . . . , I} and k ∈ {0, . . . , J − 1}.

c) {G0, G1, . . . , GJ−1} are independent.

In the Bayes CL method we have that M = 0. The incremental claims payments are given

by

S0
i,k+1 := Ci,k+1 − Ci,k.

We define componentwise F := G− 1 and

R0
i,k := Ci,k =

k∑

j=0

S0
i,j =: R0,0

i,k ∈ Li+k ∩ Lk. (4.10)

With Model Assumptions 3.3 a) and b) we obtain

E
[
S0
i,k+1

∣∣Di+kk ,F
]

= E
[
S0
i,k+1

∣∣Di+kk ,G
]

= E
[
S0
i,k+1

∣∣Bi,k,G
]

= (Gk − 1)Ci,k = F 0
kR

0
i,k

Var
[
S0
i,k+1

∣∣Di,kk ,F
]

= Var
[
S0
i,k+1

∣∣Bi,k,G
]

= σ2
k(Gk)Ci,k = σ2

k(F
0
k + 1)︸ ︷︷ ︸

=: σ0,0
k (F 0

k )

Ci,k = σ0,0
k (F 0

k )R0,0
i,k .

This shows that Model Assumption 4.4 a) and b) are fulfilled and c) follows by Theorem 3.2 in

Gisler–Wüthrich [27]. It follows that the Bayes CL method belongs to the class of Bayesian

LSRMs.

2

Credibility-Based Additive Loss Reserving Method

The credibility-based ALR method in Merz–Wüthrich [44] is based on the classical ALR

method, which is a special case of the CLR method, see Section 3.4. Since the CLR method

belongs to the class of LSRMs we expect that the credibility-based ALR method also belongs

to class of Bayesian LSRMs. The model assumptions of the credibility-based ALR method are

given by:
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Model Assumptions 4.6 (Credibility-based ALR model) There exist constant positive vol-

ume measures V0, . . . , VI such that

a) Conditionally, given G = (G0, . . . , GJ) the incremental claim payments {S0
i,k| 0 ≤ i ≤

I, 0 ≤ k ≤ J} are independent.

b) Conditionally, given G, the distribution of S0
i,k+1 only depends on Gk and the constant Vi,

and for all i = 0, . . . , I and k = 0, . . . , J holds

E
[
S0
i,k+1

∣∣G
]

= Gk+1Vi

Var
[
S0
i,k+1

∣∣G
]

= σ2
k+1(Gk+1)Vi.

c) {G0, . . . , GJ} are independent with prior distributions U(g).

2

In the credibility-based ALR method we have M = 1 and M = {0}. We define

S1
i,k :=




Vi for k = 0

0 otherwise
.

Setting F 0
k := Gk+1 for k = 0 . . . , J − 1 and σ0,0

k (Fk) := σ2
k+1(Gk+1) we obtain

E
[
S0
i,k+1

∣∣Di+kk ,F
]

= E
[
S0
i,k+1

∣∣Di+kk ,G
]

= Gk+1Vi = F 0
kVi

Var
[
S0
i,k+1

∣∣Di+kk ,F
]

= Var
[
S0
i,k+1

∣∣Di+kk ,G
]

= σ2
k+1(Gk+1)Vi = σ0,0

k (F 0
k )Vi.

Model Assumptions 4.4 a) and b) are satisfied, since Vi ∈ Li+k ∩ Lk. Model Assumption 4.4 c)

follows by Theorem 3.3 in Merz–Wüthrich [44]. This shows that the credibility-based ALR

method also belongs to the class of Bayesian LSRMs.

2

4.2.2 Prediction of Future Claim Information

The Bayesian LSRM is constructed in such a way that conditionally, given F, Model Assumptions

4.1 of the classical LSRM are fulfilled. This implies that, in analogy to (4.7) for classical LSRMs,

we obtain for Bayesian LSRMs for i ∈ {0, . . . , I}, i+k ≥ I, k+n+1 ≤ J and m ∈ {0, . . . ,M}

Ŝ
m|i+k,F
i,k+n+1 := E

[
Smi,k+n+1

∣∣Di+k,F
]

= P
m|i+k,F
i,k+n Si+k, (4.11)

where P
m|n,F
i,k := P

m|n
i,k

∣∣∣
f = F

. An immediate consequence is the following result:
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Predictor 4.7 (Bayesian predictor of Smi,k+1 at time I) Under Model Assumptions 4.4 we

obtain for i ∈ {0, . . . , I}, i+ k ∈ {I, . . . , I + J − 1}, k + n+ 1 ≤ J and m ∈ {0, . . . ,M}

E
[
Smi,k+n+1

∣∣Di+k
]

= P
m|i+k,Bayes
i,k+n Si+k,

where P
m|n,Bayes
i,k := P

m|n
i,k

∣∣∣
f = E[F| Dn]

.

Proof: Conditionally, given Di+k and F, we obtain with (4.11)

E
[
Smi,k+n+1

∣∣Di+k,F
]

= P
m|i+k,F
i,k+n Si+k.

Because each mapping Pmi,k is linear in fmj , we get with the second equation in (4.11) and Model

Assumption 4.4 c)

E
[
Smi,k+n+1

∣∣Di+k
]

= E
[

E
[
Smi,k+n+1

∣∣Di+k,F
]∣∣∣Di+k

]

= E
[
P
m|i+k,F
i,k+n Si+k

∣∣∣Di+k
]

= P
m|i+k,Bayes
i,k+n Si+k.

2

4.2.3 Credibility for Linear Stochastic Reserving Methods

Our goal in this section is to derive a predictor for the unknown incremental claim information

Smi,k+1 for i+k ≥ I. It is a well known result in probability theory that the best square-integrable

predictor for the incremental claim information Smi,k+1, given the data DI at time I, is given

by

Ŝ
m|I,Bayes
i,k+1 := E

[
Smi,k+1

∣∣DI
]

= P
m|I,Bayes
i,k SI . (4.12)

In order to calculate P
m|I,Bayes
i,k one needs to know the joint prior distribution of F and the

explicit form of the conditional joint distribution of Smi,k for i + k ≤ I, given F. These distri-

butions are often unknown in practice and it is not obvious, how reasonable estimates of these

distributions can be derived. Thus, we choose a so-called credibility based approach, where only

the first two moments (or appropriate estimates) of the conditional distribution of F, given Dk,
are required. That means instead of calculating E

[
F| DI

]
contained in P

m|I,Bayes
i,k (cf. (4.12))

we use a so-called credibility predictor for Fk for k ∈ {0, . . . , J − 1}. That means that for all

development years k ∈ {0, . . . , J − 1} we replace
(
E
[
F| DI

])
k

= E
[
Fk| DI

]
by best predictors,

which are affine-linear in the observations

Yi,k :=
(
Y 0
i,k, Y

1
i,k, . . . , Y

M
i,k

)′
with Y m

i,k :=
Smi,k+1

Rmi,k
for i = 0, . . . , I − k − 1.
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This implies that at time I we use best predictors from the linear subspace

Lind(Y0,k, . . . ,YI−k−1,k) :=

{
F̂k

∣∣∣∣F̂k = ak0 +
I−k−1∑

i=0

AiYi,k, ak0 ∈ R(M+1),Ai ∈ R(M+1)×(M+1)

}
,

which contains all affine-linear combinations of the observations Yi,k with i ∈ {0, . . . , I − k− 1}
at time I. The best predictor from this subspace is given by

Definition 4.8 (Credibility predictor of Fk at time I) The credibility predictor at time I

for the development factor Fk for k ∈ {0, . . . , J − 1} is defined by

F̂I,Cred
k := Pro(Fk| Lind(Y0,k, . . . ,YI−k−1,k)),

where Pro(Fk| Lind(Y0,k, . . . ,YI−k−1,k)) denotes the orthogonal projection operator on the linear

subspace Lind(Y0,k, . . . ,YI−k−1,k).

2

For many derivations it is easier to work with the following so-called “normal equations” which

are necessary and sufficient conditions for orthogonal projections.

Lemma 4.9 (Normal equations) A predictor F̂k ∈ Lind(Y0,k, . . . ,YI−k−1,k) is the credibility

predictor for Fk, i.e. F̂k = F̂I,Cred
k , if and only if for i ∈ {0, . . . , I−k−1} the following equations

hold true:

1. E
[(

F̂k − Fk

)
Y′i,k

]
= 0 ∈ R(M+1)×(M+1)

(
denoted by: Fk − F̂I,Cred

k ⊥ Yi,k

)
,

2. E

[(
F̂k − Fk

)′
· 1
]

= 0 ∈ R(M+1)×(M+1).

Proof: For a proof of Lemma 4.9 we refer to Brockwell-Davis [9]. 2

Lemma 4.9 is often called Hilbert projection theorem. We will use the normal equations for the

derivation of the credibility predictor F̂I,Cred
k in Theorems 4.13 and 4.15 below.

In the same way as in (4.9) we collect all credibility predictors F̂
m|I,Cred
k :=

(
F̂I,Cred
k

)
m

for

claim information m ∈ {0, . . . ,M} and development year k ∈ {0, . . . , J − 1} in F̂I,Cred defined

by

F̂I,Cred :=
(
F̂
m|I,Cred
k

)0≤m≤M

0≤k≤J−1
.

Definition 4.10 (Credibility based predictor of Smi,k+1 at time I) The credibility based pre-

dictor of the incremental claim information Smi,k+1 at time I is given by

Ŝ
m|I,(Cred)
i,k+1 := P

m|I,Cred
i,k SI ,

where P
m|I,Cred
i,k := P

m|I
i,k

∣∣∣
f =F̂I,Cred

. 2
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Remarks 4.11 (Credibility based predictor)

i) Credibility predictors are the best predictors, which are affine-linear in the observations.

We base the prediction of Fmk at time I on the normalized observations

{Yi,k|i = 0, 1, . . . , I− k− 1}, since they are the only observations containing information

on Fk.

ii) For the credibility predictor it holds

F̂I,Cred
k := arg min

F̂k∈Lind(Y0,k,...,YI−k−1,k)

E

[(
F̂k − Fk

)′ (
F̂k − Fk

)∣∣∣∣Dk
]
,

i.e. F̂I,Cred
k minimizes the conditional, given Dk, MSEP in the linear subspace

Lind(Y0,k, . . . ,YI−k−1,k).

iii) The superscript “Cred” in brackets in Definition 4.10 means that S
m|I,(Cred)
i,k+1 is a predic-

tor based on the credibility predictors F̂I,Cred and not a credibility predictor itself. This

follows from the definition, because credibility predictors are affine-linear functions of the

observations. In our multiplicative model structure, it would not make sense to restrict to

affine-linear predictors of Smi,k.

In order to calculate the credibility based predictor Ŝ
m|I,(Cred)
i,k+1 stated in Definition 4.10 we have

to derive the credibility predictor F̂I,Cred
k for Fk given in Definition 4.8.

We start our calculations with some basic results on Yi,k:

Lemma 4.12 Under Model Assumptions 4.4 it holds for i ∈ {0, . . . , I}, k ∈ {0, . . . , J − 1} and

m1,m2 ∈ {0, . . . ,M}:

i) Yi,k are conditionally, given Dk and F, unbiased predictors for Fk, i.e.

E[Yi,k| Dk,F] = Fk.

ii) Yi,k are conditionally, given Dk and F, uncorrelated for different accident years, i.e.

Cov[Yi1,k,Yi2,k| Dk,F] = 0 ∈ R(M+1)×(M+1) for i1 6= i2.

iii) We have

Cov
[
Y m1
i,k , Y

m2
i,k

∣∣∣Dk,F
]

=
Rm1,m2

i,k σm1,m2

k (F)

Rm1
i,k R

m2
i,k

=: (Σi,k(F))m1,m2
. (4.13)

Proof: The first and third claim is a direct consequence of Model Assumptions 4.4. For the

second claim we assume without loss of generality that i1 < i2. Then Yi1,k is Di2+k
k -measurable



48 4 (Bayesian) Linear Stochastic Reserving Methods

and

Cov[Yi1,k,Yi2,k| Dk,F] = E
[

Cov
[
Yi1,k,Yi2,k| Di2+k

k ,F
]∣∣∣Dk,F

]

+ Cov
[

E
[
Yi1,k| Di2+k

k ,F
]
,E
[
Yi2,k| Di2+k

k ,F
]∣∣∣Dk,F

]

= 0 + Cov[Yi1,k,Fk| Dk,F] = 0.

2

By Definition 4.8 the credibility predictor F̂I,Cred
k for the development factor Fk is an affine-

linear predictor in the normalized observations Yi,k. We compress the data Y0,k, . . . ,YI−k−1,k

linearly to one (M + 1)-dimensional vector Ck (see Theorem 4.13) and show that the credibility

predictor F̂I,Cred
k depends on the data Y0,k, . . . ,YI−k−1,k only via Ck, i.e. Ck is a sufficient

statistics (see Theorem 4.15). For that reason, we define

Ck := W−1
•,k

I−k−1∑

i=0

Wi,kYi,k, (4.14)

where

W−1
•,k :=

(
I−k−1∑

i=0

Wi,k

)−1

and Wi,k := diag

(
R0
i,kR

0
i,k

R0,0
i,k

, . . . ,
RMi,kR

M
i,k

RM,M
i,k

)
. (4.15)

For this compressed data vector Ck we obtain with Lemma 4.12 and (4.13) that

E[Ck| Dk,F] = Fk (4.16)

Cov[Ck,Ck| Dk,F] = W−1
•,k

(
I−k−1∑

i=0

Wi,kCov[Yi,k,Yi,k| Dk,F] Wi,k

)
W−1
•,k

= W−1
•,k

(
I−k−1∑

i=0

Wi,kΣi,k(F)Wi,k

)
W−1
•,k. (4.17)

Theorem 4.13 (Credibility predictor of Fk at time I based on compressed data)

Under Model Assumptions 4.4 the credibility predictor for Fk based on the compressed data

vector Ck is given by

F̂I,Cred
k = AI

kCk + (I−AI
k)µk,

with the identity matrix I, the structural parameter vector (prior mean)

µk := E[Fk| Dk]

and the credibility weight

AI
k := Tk(Tk + UI

k)
−1
, (4.18)
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where

UI
k := W−1

•,k

(
I−k−1∑

i=0

Wi,kE[Σi,k(F)| Dk] Wi,k

)
W−1
•,k

and the structural parameter matrix

Tk := Cov[Fk, Fk| Dk] .

Proof: Conditionally on Dk the random variable Ck fulfills Model Assumptions 7.1 in

Bühlmann-Gisler [14] and is therefore the credibility predictor for Fk at time I based on the

compressed data vector Ck. 2

Remarks 4.14 (Credibility predictor F̂I,Cred
k )

i) The vector Ck is the estimator for fk in the classical (non-Bayesian) LSRM framework in

Section 4.1. This becomes clear by comparing Ck in (4.14) and associated weights (4.15)

to f̂k in (4.3) with corresponding weights (4.4) componentwise.

ii) The credibility predictor is a credibility weighted average of the prior mean µk and the

compressed data vector Ck consisting of credibility weighted observations.

iii) Note, that we only need estimators for the first two moments of Fk, given Dk, and not the

full joint distribution. This is the great advantage of credibility theory.

iv) The credibility predictor in Theorem 4.13 is based on the three structural parameters: µk,

Tk and UI
k. These parameters can either be estimated by including prior expert knowl-

edge or by portfolio data (see Section 7.3.5 in Bühlmann-Gisler [14]). Note that the

estimation of UI
k can be reduced to an estimator σ̂m1,m2

k of E
[
σm1,m2

k (F)
∣∣Dk

]
, because all

remaining terms in UI
k are DIk-measurable and can be observed. An unbiased estimator

for E
[
σm1,m2

k (F)
∣∣Dk

]
is given by (4.5). The (conditional) unbiasedness of the estimator

follows by

E
[
σ̂m1,m2

k

∣∣Dk
]

= E
[
E
[
σ̂m1,m2

k

∣∣F,Dk
]∣∣Dk

]
= E

[
σm1,m2

k (F)
∣∣Dk

]
.

Now we will prove that the data compression Ck is an admissible compression, i.e. that the

credibility predictor F̂Cred
k for Fk based on Ck in Theorem 4.13 is also the credibility predictor

for Fk based on all data Y0,k, . . . ,YI−k−1,k.

Theorem 4.15 (Credibility predictor of Fk at time I based on all data) Under Model

Assumptions 4.4 the credibility predictor for Fk based on Y0,k, . . . ,YI−k−1,k is given by

F̂I,Cred
k = AI

kCk + (I−AI
k)µk,

where AI
k, Ck and µk are defined as in Theorem 4.13.
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Proof: Choose i ∈ {0, . . . , I − k − 1}. All following calculations are done conditionally

given Dk. Since F̂I,Cred
k = AI

kCk + (I − AI
k)µk, it follows straightforward that F̂I,Cred

k ∈
Lind(Y0,k, . . . ,YI−k−1,k). Moreover, using (4.16) we get

E[Ck]= E[E[Ck|F]]= E[Fk]= µk.

This implies

E
[
F̂I,Cred
k

]
= E

[
AI
kCk + (I−AI

k)µk
]
= µk = E[Fk],

i.e. Condition 2. in Lemma 4.9 is fulfilled. It remains to show that

Fk − F̂I,Cred
k ⊥ Yi,k.

It holds

E
[(

Fk − F̂I,Cred
k

)
Y′i,k

]
= E

[(
Fk −AI

kCk −
(
I−AI

k

)
µk
)
Y′i,k

]

= AI
kE
[
(Fk −Ck) Y′i,k

]
+
(
I−AI

k

)
E
[
(Fk − µk) Y′i,k

]
. (4.19)

We have (see Theorem A.3 of Appendix A in Bühlmann-Gisler [14] for a proof) that Ck is

the orthogonal projection of Fk on the affine-linear subspace

Linde (Y0,k, . . . ,YI−k−1,k)

:=

{
F̂k

∣∣∣∣F̂k =
I−k−1∑

i=0

Ai,kYi,k, Ai,k ∈ R(M+1)×(M+1),E
[
F̂k

∣∣∣Fk

]
= Fk

}
,

of all conditionally, given Fk, unbiased estimators for Fk, which are linear in Yi,k, i = 0, . . . , I−
k − 1. This implies

E
[
(Fk −Ck)(Yi,k −Ck)

′]= 0 ∈ R(M+1)×(M+1)

and together with (4.17) we obtain

E
[
(Fk −Ck)Y

′
i,k

]
= E

[
(Fk −Ck)C

′
k

]

= E
[
E
[
(Fk −Ck)C

′
k

∣∣F
]]

= E
[
E
[
(Fk −Ck)(Ck − Fk)

′∣∣F
]]

= −E

[
W−1
•,k

(
I−k−1∑

i=0

Wi,kΣi,k(Fk)Wi,k

)
W−1
•,k

]

= −UI
k.

Using the same arguments, we get

E
[
(Fk − µk)Y′i,k

]
= Tk.
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By putting this into (4.19) and using the definition of AI
k we get

AI
kE
[
(Fk −Ck)Y

′
i,k

]
+ (I−AI

k)E
[
(Fk − µk)Y′i,k

]
= −AI

kU
I
k + (I−AI

k)Tk

= −AI
k(Tk + UI

k) + Tk

= −Tk(Tk + UI
k)
−1

(Tk + UI
k) + Tk

= Tk −Tk = 0,

i.e. E
[(

Fk − F̂I,Cred
k

)
Y′i,k

]
= 0. This completes the proof. 2

Theorem 4.15 provides an explicit formula for the credibility predictor F̂I,Cred
k and allows for

a direct calculation of the credibility based predictor Ŝ
m|I,(Cred)
i,k+1 stated in Definition 4.10. In

the following subsection our goal is to quantify the MSEP of this credibility based predictor.

We will base several definitions in the following subsections on Ŝn|n1 ∈ Ln with n1 ∈ {I, I + 1}
defined by

(
Ŝn|n1

)m
i,k

:=




Ŝ
m|I
i,k for n1 < i+ k ≤ n

Smi,k for 0 ≤ i+ k ≤ n1

, (4.20)

for an arbitrary σ(Dn1 ,F)-measurable predictor Ŝ
m|I
i,k for S

m|I
i,k . That means that the matrix

SI containing all observations up to time I is extended by additional predicted diagonals up to

accounting year n.

4.2.4 Mean Squared Error of Prediction

One is often interested in weighted sums of incremental claim information of the form
∑J−1

k=I−i α
m
i S

m
i,k+1 for fixed m ∈ M, i ∈ {I − J + 1, . . . , I} and αmi ∈ R. The credibility

based predictor for these sums at time I is given by
∑J−1

k=I−i α
m
i Ŝ

m|I,(Cred)
i,k+1 . For the prediction

uncertainty, we consider the (conditional) MSEP given by

msep ∑
m∈M

J−1∑
k=I−i

αm
i S

m
i,k+1

∣∣∣∣∣DI

[ ∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,(Cred)
i,k+1

]

= E



( ∑

m∈M

J−1∑

k=I−i
αmi

(
Smi,k+1 − Ŝ

m,I,(Cred)
i,k+1

))2
∣∣∣∣∣∣
DI

 .
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We decompose the (conditional) MSEP into

msep ∑
m∈M

J−1∑
k=I−i

αm
i S

m
i,k+1

∣∣∣∣∣DI

[ ∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,(Cred)
i,k+1

]

= E

[
Var

[ ∑

m∈M

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]∣∣∣∣∣D
I

]

︸ ︷︷ ︸
“average” process variance

(4.21)

+ E



(

E

[ ∑

m∈M

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]
−
∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m,I,(Cred)
i,k+1

)2
∣∣∣∣∣∣
DI



︸ ︷︷ ︸
“average” estimation error

. (4.22)

At first we analyze the “average” estimation error (4.22).

Estimation Error for Single Accident Years

For the “average” estimation error (4.22) of a single accident year i ∈ {I − J + 1, . . . , I} we find

(using ' to indicate that the equation is approximately fulfilled)

E



(

E

[ ∑

m∈M

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]
−
∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,(Cred)
i,k+1

)2
∣∣∣∣∣∣
DI



' E



( ∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,F
i,k+1 −

∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,Bayes
i,k+1

)2
∣∣∣∣∣∣
DI



= Var

[ ∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,F
i,k+1

∣∣∣∣∣D
I

]
(4.23)

The conditional variance (4.23) can further be decomposed into

Var

[ ∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,F
i,k+1

∣∣∣∣∣D
I

]
(4.24)

= E



( ∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,F
i,k+1

)2
∣∣∣∣∣∣
DI

− E

[ ∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,F
i,k+1

∣∣∣∣∣D
I

]2

=
∑

m1,m2∈M

J−1∑

k1,k2=I−i
αm1
i αm2

i E
[
Ŝ
m1|I,F
i,k1+1 Ŝ

m2|I,F
i,k2+1

∣∣∣DI
]

(4.25)

−
∑

m1,m2∈M

J−1∑

k1,k2=I−i
αm1
i αm2

i E
[
Ŝ
m1|I,F
i,k1+1

∣∣∣DI
]

E
[
Ŝ
m2|I,F
i,k2+1

∣∣∣DI
]
.

In order to find an estimator for (4.25), we have to make some computations for expectations of

products of Ŝ
m|I,F
i,k+1 . Let i2 + k2 ≥ I and k2 > k1. Then we get with Model Assumption 4.4 c)

E
[
Ŝ
m1|I,F
i1,k1+1Ŝ

m2|I,F
i2,k2+1

∣∣∣DI
]

= E
[
Ŝ
m1|I,F
i1,k1+1P

m2|i2+k2,Bayes
i2,k2

Ŝi2+k2|I,F
∣∣∣DI

]
,
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where (cf. (4.20))

Ŝn|I,F := Ŝn|I
∣∣∣
Ŝ
m|I
i,k =Ŝ

m|I,F
i,k

.

For k1 = k2 =: k and i1 + k, i2 + k ≥ I we calculate again with Model Assumption 4.4 c)

E
[
Ŝ
m1|I,F
i1,k+1 Ŝ

m2|I,F
i2,k+1

∣∣∣DI
]

= E
[
Fm1
k Fm2

k

∣∣DI
]

E
[
Γm1
i1,k

Ŝi1+k|I,FΓm2
i2,k

Ŝi2+k|I,F
∣∣∣DI

]

=
(
E
[
Fm1
k

∣∣DI
]

E
[
Fm2
k

∣∣DI
]

+ %∗m1,m2

k

)
E
[
Γm1
i1,k

Ŝi1+k|I,FΓm2
i2,k

Ŝi2+k|I,F
∣∣∣DI

]
,

with

%∗m1,m2

k :=
(
Cov

[
Fk,Fk| DI

])
m1,m2

.

To simplify notation of the terms above, we define for n ∈ {I, . . . , I+J−1} and k ∈ {0, . . . , J−1}
the linear operators (the symbol ⊗ denotes the tensor product, see Lang [37])

Hn
k(τ ) : Lnk ⊗ Lnk −→ Lnk+1 ⊗ Lnk+1, xy 7−→ Hn

k(τ ) xy

with

(
Hn
k(τ ) xy

)m1,m2

i1,k1,i2,k2

:=





P
m1|n∨(i1+k)
i1,k1−1 x P

m2|n∨(i2+k)
i2,k2−1 y for i1 ∧ i2 ≤ n− k − 1 or k1 ∧ k2 ≤ k(

fm1
k fm2

k + τm1,m2

i1,i2,k

)
E
[
Γm1
i1,k

xΓm2
i2,k

y
∣∣∣DI

]
otherwise

,

where τ is a (M+1)×(M+1)×I×I×J tensor and τm1,m2

i1,i2,k
are the entries of τ . Concatenations

of these operators will be denoted by

Hn
k2←k1(τ ) :=





Hn
k2

(τ )Hn
k2−1(τ ) · · ·Hn

k1
(τ ) for k2 ≥ k1

ΠLnk2+1⊗Lnk2+1
otherwise

,

H
m1,m2|n
i1,k1,i2,k2

(τ )xy :=
(
Hn

(k1∨k2)←0(τ )xy
)m1,m2

i1,k1+1,i2,k2+1
, (4.26)

where ΠLnk2+1⊗Lnk2+1
denotes the projection onto Lnk2+1 ⊗ Lnk2+1.

By replacing in (4.26) f by E
[
F| DI

]
and τm1,m2

i1,i2,k
:= %∗m1,m2

k we obtain

H
m1,m2|n,Bayes
i1,k1,i2,k2

(%∗ ) := H
m1,m2|n
i1,k1,i2,k2

(τ )
∣∣∣
f =E[F| DI ] ∧ τ

m1,m2
i1,i2,k

=%
∗m1,m2
k

. (4.27)

With n = I in (4.27) we get for each summand in (4.25)

E
[
Ŝ
m1|I,F
i1,k1+1Ŝ

m2|I,F
i2,k2+1

∣∣∣DI
]

= H
m1,m2|I,Bayes
i1,k1,i2,k2

(%∗ )SISI . (4.28)

However, H
m1,m2|I,Bayes
i1,k1,i2,k2

(%∗ ) in (4.28) still depends on Cov
[
Fk,Fk| DI

]
and E

[
F| DI

]
, see (4.27).

In a first step we estimate E
[
F| DI

]
by F̂I,Cred, i.e.

Ê
[
F| DI

]
:= F̂I,Cred. (4.29)
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Using the approximation

Cov
[
Fk,Fk| DI

]
= E

[(
Fk − E

[
Fk| DI

]) (
Fk − E

[
Fk| DI

])′∣∣∣DI
]

' E

[(
Fk − F̂I,Cred

k

)(
Fk − F̂I,Cred

k

)′∣∣∣∣DI
]

(4.30)

' AI
kU

I
k,

where in the last approximation we used the loss matrix of the credibility predictor F̂I,Cred
k (see

Theorem 7.5 in Bühlmann-Gisler [14]), we find the following estimator for %∗m1,m2

i1,i2,k

%̂∗m1,m2

i1,i2,k
:=
(
AI
kU

I
k

)
m1,m2

. (4.31)

Putting the estimates (4.29) and (4.31) into (4.27) we obtain for n ∈ {I, . . . , I + J − 1}

Ĥ
m1,m2|n,Cred
i1,k1,i2,k2

(%̂∗ ) := H
m1,m2|n
i1,k1,i2,k2

(τ )
∣∣∣
f = F̂I,Cred ∧ τ = %̂∗

.

For n = I this leads to the following estimator of the estimation error (4.22).

Estimator 4.16 (Estimation error for single accident years) Under Model

Assumptions 4.4 at time I an estimator for the estimation error (4.22) of accident year i ∈
{I − J + 1, . . . , I} is given by

Ê



(

E

[ ∑

m∈M

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]
−
∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,(Cred)
i,k+1

)2
∣∣∣∣∣∣
DI



:=
∑

m1,m2∈M

J−1∑

k1,k2=I−i
αm1
i αm2

i

(
Ĥ
m1,m2|I,Cred
i,k1,i,k2

(%̂∗ )− Ĥ
m1,m2|I,Cred
i,k1,i,k2

(0)
)

SISI ,

where 0 denotes the 0-tensor.

Process Variance for Single Accident Years

For the process variance (4.21) we see that, conditionally given F, Model Assumptions 4.1 for the

classical LSRM are fulfilled and with Lemma 4.2 in Dahms [17] follows for I ≤ i1 +k1, i2 +k2

Cov
[
Sm1
i1,k1+1, S

m2
i2,k2+1

∣∣∣F,DI
]

=

(i1+k1)∧(i2+k2)+1∑

n=I+1

M∑

l1,l2=0

J∑

j=n−I
σl1,l2j−1 (F) E

[
Γl1,l2n−j,j−1S

n−1
∣∣∣F,DI

] (
P
m1|n,F
i1,k1

)l1
n−j,j

(
P
m2|n,F
i2,k2

)l2
n−j,j

.

with the coupling exposure

Γm1,m2

i,k Si+k :=

M∑

l=1

I∑

h=0

(i+k−h)∧k∑

j=0

γm1,m2,l
i,k,h,j Slh,j = Rm1,m2

i,k ,
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see (4.1). Thus, with Model Assumptions 4.4 c) we obtain for a fixed accident year i ∈ {I −J +

1, . . . , I} for the process variance (4.21)

E

[
Var

[
M∑

m=0

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]∣∣∣∣∣D
I

]
(4.32)

=
∑

m1,m2∈M
αm1
i αm2

i

(
J−1∑

k1,k2=I−i

i+(k1∧k2)+1∑

n=I+1

M∑

l1,l2=0

J∑

j=n−I
(4.33)

E
[
σl1,l2j−1 (F)

∣∣∣DI
]

Γl1,l2n−j,j−1Ŝ
n−1|I,BayesE

[(
P
m1|n,F
i,k1

)l1
n−j,j

(
P
m2|n,F
i,k2

)l2
n−j,j

∣∣∣∣DI
])

,

where

Ŝn|I,Bayes := Ŝn|I
∣∣∣
Ŝ
m|I
i,k =Ŝ

m|I,Bayes
i,k

.

Since in the derivation of (4.28) no special property of SI is used, except that it is contained in

LI , we get with the same arguments for i1 + k1, i2 + k2 ≥ I

E

[(
P
m1|n,F
i1,k1

)l1
n−j,j

(
P
m2|n,F
i2,k2

)l2
n−j,j

∣∣∣∣DI
]

= E
[
P
m1|n,F
i1,k1

el1n−j,jP
m2|n,F
i2,k2

el2n−j,j

∣∣∣DI
]

= H
m1,m2|n,Bayes
i1,k1,i2,k2

(%∗ )el1n−j,je
l2
n−j,j , (4.34)

where el1n−j,j ∈ Ln with el1n−j,j = 1 in the entry (n−j, j, l1), 0 otherwise. Using the approximations

(estimates)

Ŝi+k|I,(Cred) ' Ŝi+k|I,Bayes

σ̂l1,l2j−1 := Ê
[
σl1,l2j−1 (F)

∣∣∣DI
]

Ĥ
m1,m2|n,Cred
i,k1,i,k2

(%̂∗ ) ' H
m1,m2|n,Bayes
i,k1,i,k2

(%∗ ),

(4.35)

see Remark 4.14 for the estimate σ̂l1,l2j−1 , and putting the estimates (4.35) into (4.33) and (4.34),

respectively, we get the following estimator:

Estimator 4.17 (Process variance for single accident years) Under Model Assumptions

4.4 at time I an estimator for the process variance (4.21) of accident year i ∈ {I −J + 1, . . . , I}
is given by

Ê

[
Var

[ ∑

m∈M

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]∣∣∣∣∣D
I

]

:=
∑

m1,m2∈M
αm1
i αm2

i

(
J−1∑

k1,k2=I−i

i+(k1∧k2)+1∑

n=I+1

M∑

l1,l2=0

J∑

j=n−I

σ̂l1,l2j−1 Γl1,l2n−j,j−1Ŝ
n−1|I,(Cred)Ĥ

m1,m2|n,Cred
i,k1,i,k2

(%̂∗ )el1n−j,je
l2
n−j,j

)
.
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Mean Squared Error of Prediction for Single Accident Years

Combining the Estimators 4.16 and 4.17 we get an estimator for the (conditional) MSEP for

single accident years.

Estimator 4.18 (MSEP for single accident years) Under Model Assumptions 4.4 at time

I an estimator for the (conditional) MSEP of accident year i ∈ {I − J + 1, . . . , I} is given by

m̂sep ∑
m∈M

J−1∑
k=I−i

αm
i S

m
i,k+1

∣∣∣∣∣DI

[ ∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,(Cred)
i,k+1

]

:=
∑

m1,m2∈M
αm1
i αm2

i

(
J−1∑

k1,k2=I−i

[(
Ĥ
m1,m2|I,Cred
i,k1,i,k2

(%̂∗ )− Ĥ
m1,m2|I,Cred
i,k1,i,k2

(0)
)

SISI

+

i+(k1∧k2)+1∑

n=I+1

M∑

l1,l2=0

J∑

j=n−I
σ̂l1,l2j−1 Γl1,l2n−j,j−1Ŝ

n−1|I,(Cred)Ĥ
m1,m2|n,Cred
i,k1,i,k2

(%̂∗ )el1n−j,je
l2
n−j,j

])
.

Mean Squared Error of Prediction for Aggregated Accident Years

Now we take a closer look at the prediction uncertainty of sums of credibility based predictors

Ŝ
m|I,(Cred)
k+1 for different accident years. Since these predictors depend on data of all accident

years they are not independent. Again, we decompose the (conditional) MSEP into

msep I∑
i=I−J+1

∑
m∈M

J−1∑
k=I−i

αm
i S

m
i,k+1

∣∣∣∣∣DI

[
I∑

i=I−J+1

∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,(Cred)
i,k+1

]
(4.36)

= E

[
Var

[
I∑

i=I−J+1

∑

m∈M

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]∣∣∣∣∣D
I

]
(4.37)

+ E



(

E

[
I∑

i=I−J+1

∑

m∈M

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]
−

I∑

i=I−J+1

∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,(Cred)
i,k+1

)2
∣∣∣∣∣∣
DI

 ,

(4.38)

where (4.37) corresponds to the process variance and (4.38) to the estimation error, respectively.

Using the same techniques as in the previous section leads to the following estimator:
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Estimator 4.19 (MSEP for aggregated accident years) Under Model Assumptions 4.4 at

time I an estimator for the (conditional) MSEP for aggregated accident years (4.36) is given by

m̂sep I∑
i=I−J+1

∑
m∈M

J−1∑
k=I−i

αm
i S

m
i,k+1

∣∣∣∣∣DI

[
I∑

i=I−J+1

∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,(Cred)
i,k+1

]

:=
I∑

i1,i2=I−J+1

∑

m1,m2∈M
αm1
i1
αm2
i2

(
J−1∑

k1=I−i1

J−1∑

k2=I−i2

[(
Ĥ
m1,m2|I,Cred
i1,k1,i2,k2

(%̂∗ )− Ĥ
m1,m2|I,Cred
i1,k1,i2,k2

(0)
)

SISI

+

(i1+k1)∧(i2+k2)+1∑

n=I+1

M∑

l1,l2=0

J∑

j=n−I
σ̂l1,l2j−1 Γl1,l2n−j,j−1Ŝ

n−1|I,(Cred)Ĥ
m1,m2|n,Cred
i1,k1,i2,k2

(%̂∗ )el1n−j,je
l2
n−j,j

])
.

4.2.5 Special Case: Mean Squared Error of Prediction for the Bayes CL

Method

We saw in Subsection 4.2.1 that the Bayes CL method in Gisler–Wüthrich [27] belongs to

the class of Bayesian LSRMs. In the following we show that if the Bayesian LSRM is the Bayes

CL method the LSRM estimate for the (conditional) MSEP given by Estimator 4.18 coincides

with the estimate in the Bayes CL method given in Theorem 4.4 in Gisler–Wüthrich [27].

Again we use the identity

G := (G0, . . . , GJ−1) =
(
F 0

0 + 1, . . . , F 0
J−1 + 1

)
= F + 1.

We first study the average process variance (4.21) for single accident years i given by formula

(4.33).

Process Variance

For the Bayes CL method looked at as a LSRM, see Subsection 4.2.1, we first analyze the inner

part of the average process variance (4.32)

Var

[
M∑

m=0

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]
(4.39)

=

J−1∑

k1,k2=I−i

i+(k1∧k2)+1∑

n=I+1

J∑

j=n−I
σ0,0
j−1(F)Γ0,0

n−j,j−1Ŝ
n−1|I,F

(
P

0|n,F
i,k1

)0

n−j,j

(
P

0|n,F
i,k2

)0

n−j,j
. (4.40)

A short calculation yields (the empty product is set to 0)

(
P

0|n,F
i,k1

)0

n−j,j
=





0 for i 6= n− j

1 for i = n− j ∧ k1 = j − 1
k1∏

l=n−i
Gl −

k1−1∏
l=n−i

Gl for i = n− j ∧ k1 ≥ j
(4.41)
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and

Γ0,0
n−j,j−1Ŝ

n−1|I,F = Cn−j,I−n+j

j−2∏

l=I−n+j

Gl. (4.42)

With (4.41) and (4.42) we obtain for (4.40)

J−1∑

k1,k2=I−i

i+(k1∧k2)+1∑

n=I+1

σ0,0
n−i−1(F)Γ0,0

i,n−i−1Ŝ
n−1|I,F

(
P

0|n,F
i,k1

)0

i,n−i

(
P

0|n,F
i,k2

)0

i,n−i
(4.43)

= Ci,I−i
J+i∑

n=I+1

σ2
n−i−1(Gn−i−1)

n−i−2∏

l=I−i
Gl
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P

0|n,F
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)0

i,n−i

(
P

0|n,F
i,k2

)0

i,n−i

= Ci,I−i
J+i∑

n=I+1

σ2
n−i−1(Gn−i−1)
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l=I−i
Gl
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(
P
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i,k1

)0

i,n−i
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(
P

0|n,F
i,k2

)0

i,n−i

= Ci,I−i
J+i∑

n=I+1

σ2
n−i−1(Gn−i−1)

n−i−2∏

l=I−i
Gl




J−1∑

k1=n−i−1

(
P

0|n,F
i,k1

)0

i,n−i




2

= Ci,I−i
J+i∑

n=I+1

σ2
n−i−1(Gn−i−1)

n−i−2∏

l1=I−i
Gl1

J−1∏

l2=n−i
(Gl2)2

= Ci,I−i
J−1∑

n=I−i
σ2
n(Gn)

n−1∏

l1=I−i
Gl1

J−1∏

l2=n+1

(Gl2)2 . (4.44)

Taking the conditional (on DI) expectations of (4.43) and (4.44) and using Model Assumptions

4.4 c) implies for the process variance

E

[
Var

[
M∑

m=0

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]∣∣∣∣∣D
I

]
(4.45)

= Ci,I−i
J−1∑

n=I−i
E
[
σ2
n(Gn)

∣∣DI
] n−1∏

l1=I−i
E
[
Gl1 | DI

] J−1∏

l2=n+1

E
[

(Gl2)2
∣∣∣DI

]
(4.46)

= Ci,I−i
J−1∑

n=I−i
E
[
σ2
n(F 0

n + 1)
∣∣DI

] n−1∏

l1=I−i
E
[
F 0
l1 + 1

∣∣DI
] J−1∏

l2=n+1

E
[
(F 0

l2 + 1)2
∣∣DI

]
. (4.47)

Formula (4.46) for the process variance in the LSRM is identical with Formula (4.13) in Gisler–

Wüthrich [27] for the process variance in the Bayes CL method. Hence, we have to check that

in the Bayesian LSRM and in the Bayes CL method each component of (4.46) is estimated in
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the same way. In the Bayesian LSRM the following estimates are used, see (4.29)–(4.31),

Ê
[
F 0
k + 1

∣∣DI
]

:= F̂
0|I,Cred
k + 1 (4.48)

E
[(
F 0
k + 1

)2∣∣∣DI
]

= E
[(
F 0
k − E

[
F 0
k

∣∣DI
])2∣∣∣DI

]
+ E

[
F 0
k + 1

∣∣DI
]2

' E

[(
F 0
k − F

0|I,Cred
k

)2
∣∣∣∣Dk

]
+
(
F

0|I,Cred
k + 1

)2

= AI
kU

I
k +

(
F

0|I,Cred
k + 1

)2

= αk

E
[
σ0,0
k (F 0

k )
∣∣∣Dk

]

I−k−1∑
i=0

Ci,k

+
(
F

0|I,Cred
k + 1

)2
, (4.49)

with

αk :=

I−k−1∑
i=0

Ci,k

I−k−1∑
i=0

Ci,k +
E[σ0,0

k (F 0
k )|Dk]

Var[F 0
k |Dk]

. (4.50)

The approximations (4.48) and (4.49) for the LSRM coincide with the approximations (4.15)

and (4.16) in Gisler–Wüthrich [27] for these quantities for the Bayes CL method. By putting

the approximations (4.48) and (4.49) into (4.47) and using the fact that

F
0|I,Cred
k + 1 = GI,Credk and σ0,0

k (F 0
k ) = σ2

k(Gk)

we obtain the Bayesian LSRM estimate for the process variance (cf. Estimator 4.17) in the case

of the Bayes CL method

Ê

[
Var

[
M∑

m=0

J−1∑

k=I−i
αmi S

m
i,k+1

∣∣∣∣∣F,D
I

]∣∣∣∣∣D
I

]

= Ci,I−i
J−1∑

n=I−i

n−1∏

l1=I−i
GI,Credl1

Ê
[
σ2
n(Gn)

∣∣DI
] J−1∏

l2=n+1



(
GI,Credl2

)2
+α̂l2

Ê
[
σ2
l2

(Gl2)
∣∣Dl2

]

I−l2−1∑
i=0

Ci,l2


 , (4.51)

where Ê
[
σ2
k(Gk)

∣∣DI
]

and V̂ar[Gk| Dk] are appropriate estimates for E
[
σ2
k(Gk)

∣∣DI
]

and

E
[
σ2
k(Gk)

∣∣Dk
]

as well as Var[Gk| Dk] and

α̂k := αk|E[σ2
k(Gk)|DI ]=Ê[σ2

k(Gk)|DI ]∧Var[Gk|Dk]=V̂ar[Gk|Dk]
.

If we use in the Bayesian LSRM as well as in the Bayes CL method the same estimators

Ê
[
σ2
k(Gk)

∣∣DI
]

and V̂ar[Gk| Dk] for the structural parameters E
[
σ2
k(Gk)

∣∣DI
]

and Var[Gk| Dk]
(this is the case, since in both methods the Bühlmann-Straub estimators, see Bühlmann-Gisler

[14], are proposed) the estimator (4.51) is the well-known estimator for the process variance in
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the Bayes CL method given in Theorem 4.4 in Gisler–Wüthrich [27]. For non-informative

(vague) priors for the development factors F 0
k , i.e.

Var[Gk| Dk] = Var
[
F 0
k

∣∣Dk
]
−→∞,

we have that αk −→ 1 and for the credibility predictor F
0|I,Cred
k holds in this case

GI,Credk = F
0|I,Cred
k + 1 −→

αk→1
f̂0
k + 1 = ĝI,CLk ,

i.e. for non-informative priors the credibility predictor GI,Credk coincides with the classical CL

estimator ĝI,CLk , see (3.1). This then results in the estimate for the process variance with non-

informative priors given by

Ê
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αmi S
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I

]
(4.52)

= Ci,I−i
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ĝI,CLl1

Ê
[
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ĝI,CLl2

)2
+

Ê
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Ci,l2


 . (4.53)

The estimator (4.53) is exactly the estimator for the process variance for non-informative priors

in the Bayes CL method, see Theorem 4.4 in Gisler–Wüthrich [27]. The estimator (4.53)

is slightly higher then the estimator given in Mack [38] and Buchwalder et al. [10]. For

a detailed comparison of the different estimators for the process variance in the (Bayes) CL

method we refer to Gisler–Wüthrich [27] and Wüthrich–Merz [63].

Estimation Error

With the approximation

F
m|I,Cred
k ' Fm|I,Bayesk (4.54)
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the estimation error (4.22) can be rewritten by
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' C2
i,I−i
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J−1∏

j=I−i

(
GI,Credj

)2


 . (4.56)

Formula (4.55) is exactly the formula for the estimation error of the Bayes CL method in

Theorem 4.4 in Gisler–Wüthrich [27]. In the same way as for the process variance, if we use

in the Bayesian LSRM and in the Bayes CL method the same estimators Ê
[
σ2
k(Gk)

∣∣Dk
]

and

V̂ar[Gk| Dk] for the structural parameters E
[
σ2
k(Gk)

∣∣Dk
]

and Var[Gk| Dk] (this is the case, since

in both methods the Bühlmann-Straub estimators, see Bühlmann-Gisler [14], are proposed)

the estimator (4.56) is the well-known estimator for the process variance in the Bayes CL method

given in Theorem 4.4 Gisler–Wüthrich [27].
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For non-informative priors we have that αk −→ 1 and for the estimation error we obtain
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This estimator for the estimation error is the same as in Buchwalder et al. [10] for the

classical (non-Bayesian) CL method, but different from the one in Mack [38]. For details see

Chapter 3 in Wüthrich–Merz [63].

With the same techniques as for single accident years, we also obtain for several accident years

the estimates for the MSEP in the Bayes CL method in Gisler–Wüthrich [27] as a special

case of CL method looked at as a Bayesian LSRM.

4.2.6 Claims Development Result

Now we turn back to general Bayesian LSRMs and consider the one-year prediction uncertainty

in terms of the CDR. In the current business period I, we observe the data DI and use the

credibility based predictors Ŝ
m|I,(Cred)
i,k+1 for the prediction of outstanding incremental claim infor-

mation. In the next business period (i.e. at time I+1 with observed data DI+1) we calculate the

credibility based predictors Ŝ
m|I+1,(Cred)
i,k+1 for outstanding incremental claim information. The at

time I+1 observed CDR for accident year i ∈ {I−J +1, . . . , I} andM⊆ {0, . . . ,M} measures

the difference between these two predictions:

CDRM,I+1
i =

∑

m∈M
αmi

J−1∑

k=I−i

(
Ŝ
m|I,(Cred)
i,k+1 − Ŝm|I+1,(Cred)

i,k+1

)
.

For the estimation of the at time I expected claims development result CDRM,I+1
i and its

(conditional) MSEP we state a theorem, which provides an updating-formula for the credibility

predictors F̂I,Cred
k that will be crucial in further calculations.

Theorem 4.20 (Updating-formula for F̂I,Cred
k ) Under Model Assumptions 4.4 for the cred-

ibility predictors
(
F̂I,Cred
k

)
I

the following updating-formula holds:

F̂I+1,Cred
k = F̂I,Cred

k + ZIk

(
YI−k,k − F̂I,Cred

k

)
= ZIkYI−k,k +

(
I− ZIk

)
F̂I,Cred
k ,

with

ZIk := AI
kU

I
k

[
AI
kU

I
k + E[ ΣI−k,k(F)| Dk]

]−1
,

where AI
k and UI

k are defined in Theorem 4.13 and Σi,k(F) is given in Lemma 4.12. [B]−1

denotes a generalized inverse of the matrix B.
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Proof: For the loss matrix of the credibility predictor F̂I,Cred
k we obtain by Theorem 7.5 in

Bühlmann-Gisler [14]:

E

[(
Fk − F̂I,Cred

k

)(
Fk − F̂I,Cred

k

)′∣∣∣∣Dk
]

= AI
kU

I
k.

Now the claim follows by the Kalman-Filter Algorithm in Theorem 10.1 in Bühlmann-Gisler

[14] or by Proposition 12.2.2 in Brockwell-Davis [9]. 2

Remarks 4.21 (Updating-formula for F̂I,Cred
k )

i) The credibility predictor F̂I+1,Cred
k based on the data DI+1 at time I + 1 is a credibility

weighted average of the new observation YI−k,k at time I + 1 and the previous credibility

predictor F̂I,Cred
k at time I.

ii) Theorem 4.20 is central for the derivation of the CDR uncertainty, because it allows to

separate the credibility predictor F̂I,Cred
k at time I and the new observation YI−k,k at time

I + 1, together leading to the new credibility predictor F̂I+1,Cred
k at time I + 1.

Now we consider what we can say about F̂I+1,Cred
k conditionally given DI at time I. With

Theorem 4.20, Model Assumption 4.4 a) and the fact that F̂I,Cred
k is DIk-measurable we get

F̄k := E
[
F̂I+1,Cred
k

∣∣∣DIk
]

= ZIkE
[
YI−k,k| DIk

]
+
(
I− ZIk

)
F̂I,Cred
k (4.57)

= ZIkE
[
E
[
YI−k,k| DIk,Fk

]∣∣DIk
]

+
(
I− ZIk

)
F̂I,Cred
k

= ZIkE
[
Fk| DIk

]
+
(
I− ZIk

)
F̂I,Cred
k .

In the same way as in (4.9) we define with F̄mk :=
(
F̄k

)
m

F̄ :=
(
F̄mk
)0≤m≤M

0≤k≤J−1
.

For further calculations we use

F̃k : = E
[
F̄k

∣∣DI
]

= ZIkE
[
Fk| DI

]
+
(
I− ZIk

)
F̂I,Cred
k ' F̂I,Cred

k , (4.58)

F̃∗k : = ZIkE
[
Fk| DI

]
+
(
I− ZIk

)
E[Fk| Dk] ,

F∗k : = E[Fk| Dk] .

Note that by (4.58) follows that F̄k can be estimated at time I by F̂I,Cred
k . The approximation

F̃k = E
[
F̂
I+1,(Cred)
k

∣∣∣DI
]
' F̂I,Cred

k ,

see (4.58), motivates for the expected claims development result CDRM,I+1
i at time I the esti-

mate

Ê
[

CDRM,I+1
i

∣∣∣DI
]

:= 0. (4.59)
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For the derivation of an estimator for the (conditional) MSEP of the claims development result

CDRM,I+1
i for single accident years, we use the predictor in (4.59). This implies

msep
CDRM,I+1

i |DI [0] := E

[(
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i − 0
)2
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]
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(4.60)

+

(
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Ŝ
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)∣∣∣∣∣D
I

])2

, (4.61)

where we used that Ŝ
m|I,(Cred)
i,k+1 is DI -measurable. The first term (4.60) corresponds to the

process variance, whereas the second term (4.61) is a kind of estimation error.

Process Variance for Single Accident Years

We decompose the process variance (4.60) as follows
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(4.62)

We begin with the calculation of (4.62) by computing products of conditional expectations of

Ŝ
m|I+1,(Cred)
i,k+1 . For k1 < k2 and i2 + k2 ≥ I we get with (4.57)

E
[
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m2|I+1,(Cred)
i2,k2+1

∣∣∣DI
]

= E
[

E
[
Ŝ
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with
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For
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we compute in the case of k1 = k2 =: k for i1, i2 ≥ I − k

E
[
Ŝ
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Fm1
k

∣∣DIk
]
F̄m2
k + %̄m1,m2

i1,i2,k

)
R̂
m1|I+1,(Cred)
i1,k

R̂
m2|I+1,(Cred)
i2,k

∣∣∣DI
]

for i2 > i1 = I − k

E
[(
F̄m1
k E

[
Fm2
k

∣∣DIk
]

+ %̄m1,m2

i1,i2,k

)
R̂
m1|I+1,(Cred)
i1,k

R̂
m2|I+1,(Cred)
i2,k

∣∣∣DI
]

for i1 > i2 = I − k

E
[(

E
[
Fm1
k

∣∣DIk
]

E
[
Fm2
k

∣∣DIk
]

+ %̄m1,m2

i1,i2,k

)
R̂
m1|I+1,(Cred)
i1,k

R̂
m2|I+1,(Cred)
i2,k

∣∣∣DI
]

for i1 = i2 = I − k
(4.64)

with

%̄m1,m2

i1,i2,k
:=





Cov
[
F̂
m1|I+1,Cred
k , F̂

m2|I+1,Cred
k

∣∣∣DIk
]

for i1, i2 > I − k

Cov
[
Sm1
i1,k+1, F̂

m2|I+1,Cred
k

∣∣∣DIk
]

Rm1
i1,k

for i2 > i1 = I − k

Cov
[
F̂
m1|I+1,Cred
k , Sm2

i2,k+1

∣∣∣DIk
]

Rm2
i2,k

for i1 > i2 = I − k

Cov
[
Sm1
i1,k+1, S

m2
i2,k+1

∣∣∣DIk
]

Rm1
i1,k

Rm2
i2,k

for i1 = i2 = I − k

0 otherwise or denominator equals zero

.

A short calculation yields

%̄m1,m2

i1,i2,k
=





(
ZIk
(
E
[
ΣI−k,k(F)| DIk

]
+ Cov

[
Fk,Fk| DIk

])
ZI
′
k

)
m1,m2

for i1, i2 > I − k
((

E
[
ΣI−k,k(F)| DIk

]
+ Cov

[
Fk,Fk| DIk

])
ZI
′
k

)
m1,m2

for i2 > i1 = I − k

(
ZIk
(
E
[
ΣI−k,k(F)| DIk

]
+ Cov

[
Fk,Fk| DIk

]))
m1,m2

for i1 > i2 = I − k

(
E
[
ΣI−k,k(F)| DIk

]
+ Cov

[
Fk,Fk| DIk

])
m1,m2

for i1 = i2 = I − k

0, otherwise or denominator equals zero

. (4.65)

Replacing all unknown components in (4.65) (note that by Remark 4.14 iv) we already have an

estimate for the structural matrix E[Σi,k(F)| Dk]) by the estimates

Ê
[
ΣI−k,k(F)| DIk

]
:= E[ΣI−k,k(F)| Dk]

Ĉov
[
Fk,Fk| DIk

]
:= AI

kU
I
k

(4.66)
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leads to an estimator ̂̄% of %̄. Replacing %̄ by its estimate ̂̄% and using the estimate

Ê
[
Fk| DIk

]
:= FI,Cred

k (4.67)

in (4.64) and (4.63) we obtain the following estimator for each summand in the first addend of

(4.62)

Ê
[
Ŝ
m1|I+1,(Cred)
i1,k1+1 Ŝ

m2|I+1,(Cred)
i2,k2+1

∣∣∣DI
]

= Ĥ
m1,m2|I,Cred
i,k1,i,k2

(̂̄%)SISI .

Estimator 4.22 (Process variance for single accident years) Under Model Assumptions

4.4 at time I an estimator for the process variance (4.60) for single accident years i ∈ {I − J +

1, . . . , I} is given by

V̂ar

[ ∑

m∈M
αmi

J−1∑

k=I−i
Ŝ
m|I+1,(Cred)
i,k+1

∣∣∣∣∣D
I

]

:=
∑

m1,m2∈M
αm1
i αm2

i

(
J−1∑

k1,k2=I−i

(
Ĥ
m1,m2|I,Cred
i,k1,i,k2

(̂̄%)− Ĥ
m1,m2|I,Cred
i,k1,i,k2

(0)
)

SISI

)
.

Estimation Error for Single Accident Years

We get with (4.58), Model Assumptions 4.4 c) and Lemma 4.12 i)

S̃mi,k+1 := E
[
Ŝ
m|I+1,(Cred)
i,k+1

∣∣∣DI
]

= P̄
m|I,F̃
i,k SI ,

where

P̄
m|I,F̃
i,k := P

m|I
i,k

∣∣∣
P

m1
i1,k1

=P̄
m1,F̃
i1,k1

and P̄m,F̃i,k :=





Pmi,k

∣∣∣
fk = F̃k

i+ k > I

Pmi,k

∣∣∣
fk=E[Fk| DI ]

i+ k ≤ I

and we define

S̃n :=
(
S̃mi,k

)0≤m≤M

i+k≤n
.

Having this notation the estimation error (4.61) can be decomposed into

∆̄M : =

(
E

[ ∑

m∈M
αmi

J−1∑

k=I−i

(
Ŝ
m|I+1,(Cred)
i,k+1 − Ŝm|I,(Cred)

i,k+1

)∣∣∣∣∣D
I

])2

=
∑

m1,m2∈M

J−1∑

k1,k2=I−i

[
S̃mi,k1+1S̃

m
i,k2+1 − S̃mi,k1+1Ŝ

m2|I,(Cred)
i,k2+1 (4.68)

−Ŝm1|I,(Cred)
i,k1+1 S̃mi,k2+1 + Ŝ

m1|I,(Cred)
i,k1+1 Ŝ

m2|I,(Cred)
i,k2+1

]
.
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For the estimation of (4.68) we apply the resampling approach, see Wüthrich–Merz [63], i.e.

we define the resampling probability measure as the product measure of

P∗
(
F̂ I,Credk ∈ A

)
:= P

(
F̂ I,Credk ∈ A

∣∣∣Dk
)

(4.69)

and estimate the estimation error in (4.68) by its expectation under this resampling probability

measure. We denote the corresponding expected value under P∗ by E∗ and the covariance by

Cov∗, respectively. For k1 > k2 and i1 + k1 ≥ I we obtain for the terms in (4.68)

E∗
[
S̃m1
i1,k1+1S̃

m2
i2,k2+1

]
= E∗

[
P̄m1,F̃∗

i1,k1
S̃i1+k1S̃m2

i2,k2+1

]

E∗
[
Ŝ
m1|I,Cred
i1,k1+1 S̃m2

i2,k2+1

]
= E∗

[
Pm1,F∗

i1,k1
Ŝi1+k1|I,CredS̃m2

i2,k2+1

]

E∗
[
S̃m1
i1,k1+1Ŝ

m2|I,Cred
i2,k2+1

]
= E∗

[
P̄m1,F̃∗

i1,k1
S̃i1+k1Ŝ

m2|I,Cred
i2,k2+1

]

E∗
[
Ŝ
m1|I,(Cred)
i1,k1+1 Ŝ

m2|I,(Cred)
i2,k2+1

]
= E∗

[
Pm1,F∗

i1,k1
Ŝi1+k1|I,CredŜm2|I,(Cred)

i2,k2+1

]

(4.70)

with

Pm,F
∗

i,k := Pmi,k
∣∣
fk=E[Fk|Dk]

and P̄m,F̃
∗

i,k :=





Pmi,k

∣∣∣
fk = F̃ ∗k

i+ k > I

Pmi,k

∣∣∣
fk=E[Fk| DI ]

i+ k ≤ I
.

Moreover, in the case of k1 = k2 =: k the first two identities in (4.70) still hold if at least one

claim property lies on or above the diagonal I + 1. Otherwise, for k1 = k2 =: k, we get after

short calculations

E∗
[
S̃m1
i1,k+1S̃

m2
i2,k+1

]
= E∗

[
(F̃ ∗m1

k F̃ ∗m2
k + %∗11m1,m2

i1,i2,k
)R̃m1

i1,k
R̃m1
i2,k

]

E∗
[
Ŝ
m1|I,(Cred)
i1,k+1 S̃m2

i2,k+1

]
= E∗

[
(E
[
Fm1
k

∣∣Dk
]
F̃ ∗m2
k + %∗12m1,m2

i1,i2,k
)R̂

m1|I,(Cred)
i1,k

R̃m2
i2,k

]

E∗
[
S̃m1
i1,k+1Ŝ

m2|I,(Cred)
i2,k+1

]
= E∗

[
(F̃ ∗m1

k E
[
Fm2
k

∣∣Dk
]

+ %∗21m1,m2

i1,i2,k
)R̃m1

i1,k
R̂
m2|I,(Cred)
i2,k

]

E∗
[
Ŝ
m1|I,(Cred)
i1,k+1 Ŝ

m2|I,(Cred)
i2,k+1

]
= E∗

[
(E
[
Fm1
k

∣∣Dk
]

E
[
Fm2
k

∣∣Dk
]

+ %∗22m1,m2

i1,i2,k
)R̂

m1|I,(Cred)
i1,k

R̂
m2|I,(Cred)
i2,k

]

(4.71)

where

R̂
m|I,(Cred)
i,k := Γmi,kŜ

i+k|I,(Cred) and R̃mi,k := Γmi,kS̃
i+k
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and

%∗11m1,m2

i1,i2,k
:=





((
I− ZIk

)
AI
k

(
Tk + UI

k

) (
AI
k

)′ (
I− ZIk

)′)
m1,m2

for i1 + k > I and i2 + k > I

0 otherwise

%∗12m1,m2

i1,i2,k
:=





(
AI
k

(
Tk + UI

k

) (
AI
k

)′ (
I− ZIk

)′)
m1,m2

for i1 + k ≥ I, i2 + k > I

0 otherwise

%∗21m1,m2

i1,i2,k
:=





((
I− ZIk

)
AI
k

(
Tk + UI

k

) (
AI
k

)′)
m1,m2

for i1 + k > I, i2 + k ≥ I

0 otherwise

%∗22m1,m2

i1,i2,k
:=





(
AI
k

(
Tk + UI

k

) (
AI
k

)′)
m1,m2

for i1 + k ≥ I and i2 + k ≥ I

0 otherwise

.

(4.72)

Summarizing all parts and replacing all unknown parameters in (4.70), (4.71) and (4.72) by

their estimates leads to the following estimator:

Estimator 4.23 (Estimation error for single accident years) Under Model Assumptions

4.4 at time I an estimator for the estimation error (4.61) for single accident years i ∈ {I − J +

1, . . . , I} is given by

̂̄∆
M

:=
∑

m1,m2∈M
αm1
i αm2

i

(
J−1∑

k1,k2=I−i

(
Ĥ
m1,m2|I,Cred
i,k1,i,k2

(%̂∗11)− Ĥ
m1,m2|I,Cred
i,k1,i,k2

(%̂∗12)

− Ĥ
m1,m2|I,Cred
i,k1,i,k2

(%̂∗21) + Ĥ
m1,m2|I,Cred
i,k1,i,k2

(%̂∗22)
)

SISI

)
.

Mean Squared Error of Prediction for Single Accident Years

Combining the Estimators 4.22 and 4.23 implies

Estimator 4.24 (MSEP for single accident years) Under Model Assumptions 4.4 at time

I an estimator for the (conditional) mean squared error of prediction for single accident years

i ∈ {I − J + 1, . . . , I} is given by

msep
CDRM,I+1

i |DI [0] :=
∑

m1,m2∈M
αm1
i αm2

i

(
J−1∑

k1,k2=I−i

(
Ĥ
m1,m2|I,Cred
i,k1,i,k2

(̂̄%)− Ĥ
m1,m2|I,Cred
i,k1,i,k2

(0)

+ Ĥ
m1,m2|I,Cred
i,k1,i,k2

(%̂∗11)− Ĥ
m1,m2|I,Cred
i,k1,i,k2

(%̂∗12)

− Ĥ
m1,m2|I,Cred
i,k1,i,k2

(%̂∗21) + Ĥ
m1,m2|I,Cred
i,k1,i,k2

(%̂∗22)
)
SISI

)
.
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Mean Squared Error of Prediction for Aggregated Accident Years

In the same way as for single accident years we decompose the MSEP into

msep I∑
i=I−J+1

CDRM,I+1
i

∣∣∣∣∣DI

[0] (4.73)

:= E



(

I∑

i=I−J+1

∑

m∈M
αmi

J−1∑

k=I−i

(
Ŝ
m|I+1,(Cred)
i,k+1 − Ŝm|I,(Cred)

i,k+1

)
− 0

)2
∣∣∣∣∣∣
DI



= Var

[
I∑

i=I−J+1

∑

m∈M
αmi

J−1∑

k=I−i
Ŝ
m|I+1,(Cred)
i,k+1

∣∣∣∣∣D
I

]
(4.74)

+

(
E

[
I∑

i=I−J+1

∑

m∈M
αmi

J−1∑

k=I−i

(
Ŝ
m|I+1,(Cred)
i,k+1 −Ŝm|I,(Cred)

i,k+1

)∣∣∣∣∣D
I

])2

. (4.75)

We decompose the process variance (4.74) by

Var

[
I∑

i=I−J+1

∑

m∈M
αmi

J−1∑

k=I−i
Ŝ
m|I+1,(Cred)
i,k+1

∣∣∣∣∣D
I

]

= E



(

I∑

i=I−J+1

∑

m∈M
αmi

J−1∑

k=I−i
Ŝ
m|I+1,(Cred)
i,k+1

)2
∣∣∣∣∣∣
DI



−
(

E

[
I∑

i=I−J+1

∑

m∈M
αmi

J−1∑

k=I−i
Ŝ
m|I+1,(Cred)
i,k+1

∣∣∣∣∣D
I

])2

,

and the estimation error (4.75) into

(
E

[
I∑

i=I−J+1

∑

m∈M
αmi

J−1∑

k=I−i

(
Ŝ
m|I+1,(Cred)
i,k+1 − Ŝm|I,(Cred)

i,k+1

)∣∣∣∣∣D
I

])2

=
I∑

i1,i2=I−J+1

∑

m1,m2∈M
αm1
i1
αm2
i2

( J−1∑

k1,k2=I−i

[
S̃mi1,k1+1S̃

m
i2,k2+1 − S̃mi2,k1+1Ŝ

m2|I,(Cred)
i,k2+1

−Ŝm1|I,(Cred)
i1,k1+1 S̃mi2,k2+1 + Ŝ

m1|I,(Cred)
i1,k1+1 Ŝ

m2|I,(Cred)
i2,k2+1

])
.

We obtain in the same way as for single accident years the following result:
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Estimator 4.25 (MSEP for aggregated accident years) Under Model Assumptions 4.4 at

time I the mean squared error of prediction for aggregated accident years can be estimated by

m̂sep I∑
i=I−J+1

CDRM,I+1
i

∣∣∣∣∣DI

[0]

:=

I∑

i1,i2=I−J+1

∑

m1,m2∈M
αm1
i1
αm2
i2

(
J−1∑

k1=I−i1

J−1∑

k2=I−i2

(
Ĥ
m1,m2|I,Cred
i1,k1,i2,k2

(̂̄%)− Ĥ
m1,m2|I,Cred
i1,k1,i2,k2

(0)

+ Ĥ
m1,m2|I,Cred
i1,k1,i2,k2

(%̂∗11)− Ĥ
m1,m2|I,Cred
i1,k1,i2,k2

(%̂∗12)

− Ĥ
m1,m2|I,Cred
i1,k1,i2,k2

(%̂∗21) + Ĥ
m1,m2|I,Cred
i1,k1,i2,k2

(%̂∗22)
)
SISI

)
.

4.2.7 Special Case: Claims Development Result for the Bayes CL Method

We saw in Subsection 4.2.1 that the Bayes CL method in Gisler–Wüthrich [27] belongs to

the class of Bayesian LSRMs. In Subsection 4.2.5 we showed that in the case of the Bayes

CL method the Bayesian LSRM estimate for the MSEP coincides with the estimate derived in

Gisler–Wüthrich [27] for the Bayes CL method. Now we consider whether this also holds

true for the MSEP of the CDR. The MSEP for the CDR in the Bayesian CL method was derived

in Bühlmann et al. [13]. In this derivation only the process variance is taken into account,

whereas the estimation error is set to 0. This becomes clear by Formula (4.5) in Bühlmann

et al. [13], where in the first step the approximation Gn,Credk ' E[Gk| Dn] for n ∈ {I, I + 1}
(exact credibility case) is used leading to

msep
CDR0,I+1

i |DI [0] = E

[(
CDR0,I+1

i − 0
)2
∣∣∣∣DI

]

= Var
[

CDR0,I+1
i

∣∣∣DI
]

+ E
[

CDR0,I+1
i

∣∣∣DI
]2

' Var
[

CDR0,I+1
i

∣∣∣DI
]
, (4.76)

i.e. the calculation of the MSEP of the CDR is reduced to the calculation of the conditional vari-

ance (4.76). In the Bayesian LSRM we additionally quantify the estimation error, see Estimator

4.23. Thus, Estimator 4.24 for the MSEP of the CDR in the Bayesian LSRM and the estimator

in Bayes CL method in Result 4.1 in Bühlmann et al. [13] do not coincide. However, we

show that the Estimator 4.22 for the process variance in the Bayesian LSRM is identical with

the estimator of the MSEP in the Bayes CL method in Result 4.1 in Bühlmann et al. [13]. In

order to prove this equality we have to verify that in the derivation of the process variance (4.76)

in both methods the same approximations are used. In the Bayes CL method in Bühlmann et
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al. [13] Lemmata 4.5 and 4.6 use the following approximations (with slightly other notation)

E
[
σ2
k(Gk)

∣∣DI
]
' Ê

[
σ2
k(Gk)

∣∣DI
]

Var
[
Gk| DI

]
' E

[(
GI,Credk −Gk

)∣∣∣DI ∩ Dk
]

E
[
Gk| DI

]
' GI,Credk

Var

[(
GI+1,Cred
k

)2
∣∣∣∣DI

]
' E

[(
GI+1,Cred
k −GI,Credk

)2
∣∣∣∣DI ∩ Dk

]
+
(
GI,Credk

)2
.

Recalling the identities

F = G − 1 and σ2
k(Gk) = σ0,0

k (F 0
k )

(cf. Subsection 4.2.1) we see that exactly the same approximations are used in the Bayesian

LSRM, see (4.66) and (4.67), for the estimation of the process variance of the CDR. Conse-

quently, the Estimator 4.22 and the estimator in Result 4.1 in Bühlmann et al. [13] coincide.

By the same arguments as above also follows that the MSEP of the CDR for several accident

years in the Bayes CL method, see Result 4.7 in Bühlmann et al. [13], coincides with the

Bayesian LSRM estimator for the process variance for several accident years, given by the first

line of Estimator 4.25. For a discussion of the case that non-informative priors are used and the

link to the MSEP of the CDR in the classical CL method we refer to Bühlmann et al. [13],

Merz–Wüthrich [45] and Wüthrich et al. [64].

4.3 Example Bayesian LSRM

For a detailed knowledge of profitability and a better understanding of pricing for different

business units (BU) we have to calculate best-estimate reserves and its corresponding prediction

uncertainty in terms of the MSEP for each BU. Furthermore, we consider the variability (MSEP)

of the CDR as a measure for the one-year reserving risk, what is required under Solvency 2 and

SST.

For our example we revisit the building engineering data set of Winterthur Insurance Company

presented by Gisler-Wüthrich [27]. It contains trapezoids of incremental claims payments of

six BUs multiplied by a constant due to confidentiality reasons. For simplicity and illustration

purposes we pick out BU 1–3 (of totally 6 BU) and apply the Bayesian LSRM. The data used

is provided in Tables 7.5–7.7.

For the detailed specification of the Bayesian LSRM we choose the exposure Rmi,k to be the sum

over all payments from all BUs in accident year i up to development year k. In a similar way we

use for the coupling Rm1,m2

i,k of these three BUs all payments from all BUs in accident year i up

to development year k. For the structural parameter σm1,m2

k (F) we use the unbiased estimator

given in (4.5).
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Method Reserves MSEP1/2

1 2 3 1 2 3

CL 486 235 701 657 (135%) 288 (122%) 411 (58%)

Cred CL 504 244 517 498 (99%) 402 (164%) 520 (100%)

LSRM 245 340 598 774 (316%) 273 (80%) 346 (58%)

Bayesian LSRM 267 349 594 520 (195%) 222 (64%) 248 (42%)

Table 4.1: Reserves and prediction uncertainty

The prior covariance matrix Tk of the development factors Fk is, see (4.18), a component of the

weights AI
k given to the prior mean µk and the observation Ck. That means that Tk can be

interpreted as an input parameter reflecting the actuaries confidence in the data in comparison

to the believe in prior expert knowledge (see Theorem 4.13). In our example the confidence in

the data of development year k is the higher, the more observations are available in development

year k and thus we choose Tk = 0.0001(10 − k) · I. In order to get a smoothing effect for the

development pattern, we choose the prior mean µk to be the mean over all BUs of development

factor estimates resulting from the classical LSRM, i.e.

µmk :=
1

3
(f̂0
k + f̂1

k + f̂2
k ) for m ∈ {0, 1, 2}.

Applying the Bayesian LSRM for this parameter constellation leads to reserves and correspond-

ing MSEP given in the last line of Table 4.1. Compared to the classical LSRM results, we

observe a smoothing effect (lower fluctuations in the reserves of different BUs) for the reserves

in the credibility case. This is a direct consequence of the smoothing effect of credibility for

each individual development factor. The incorporation of prior knowledge for the mean of the

development factors has a common influence on the development factors of all BUs, i.e. the

credibility development factors are inbetween the classical LSRM development factors and the

prior means. This smoothing effect of prior information on the credibility development factors

is illustrated for BU 1 in Figure 4.2. For BU 2 and 3 we obtain similar results (not shown here).

Similar smoothing effects were observed in the Bayes CL method in Gisler-Wüthrich [27].

For the prediction uncertainty (MSEP) we obtain slightly lower values as in the classical LSRM

in all BUs. This is not always the case, because the prediction uncertainty depends directly

on the prior (co)variance for the development factors (see Estimator 4.16 for that). Now we

take a look on the one-year reserving risk uncertainty in the CDR presented in Table 4.2. The

one-year prediction uncertainty in the Bayesian LSRM only slightly differs from the uncertainty

in classical LSRM and the estimates are quite robust with respect to different prior choices for

the development factor covariance matrix.



4.3 Example Bayesian LSRM 73

●

●

●

●

●

●

●
●

●

2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

development year

●

●

●

●

LSRM BU 1

LSRM BU 2

LSRM BU 3

Cred LSRM BU 1

●

●

● ● ●

●

● ●
●

●

●
●

● ● ● ● ● ●

●

●

●

●

●

●

●
●

●

Figure 4.2: Development factors for BUs 1–3 in the classical LSRM and credibility development

factor F̂
0|I,Cred
k k ∈ {0, . . . , 10} for BU 1

Method MSEP
1/2
CDR MSEP

1/2
CDR/MSEP1/2

1 2 3
∑

1 2 3

LSRM 494 207 240 659 64% 76% 69%

Bayesian LSRM 480 207 240 646 92% 93% 96%

Table 4.2: Individual LoB and overall CDR uncertainty
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4.4 Conclusions

The classical LSRMs presented in Dahms [17] constitute a wide class of distribution-free stochas-

tic claims reserving methods covering many popular distribution-free stochastic claims reserving

methods such as the CL, BF and (E)CLR method. As already mentioned in Dahms [17] for

setting up an adequate claims reserving method it is crucial to identify appropriate exposures

for the stochastic dynamics in order to specify a LSRM. If one is interested in using prior ex-

pert knowledge or information from industry-wide data in the LSRM framework the Bayesian

LSRMs presented in this chapter provide an appropriate mathematically consistent basis for the

incorporation of such information. Conservative prior means for the development factors can

generate risk-margins in the resulting credibility predictors and hence in the corresponding re-

serves. Moreover, Bayesian LSRMs provide the welcome effect of smoother development factors

as shown in Figure 4.2.

Main results of (Bayesian) LSRMs:

For solvency considerations in Chapter 7 we summarize all quantities of interest derived in the

LSRM framework:

1. The predictor R̂I for outstanding loss liabilities RI , see (2.5c) and (2.4c), given by

R̂I =

I∑

i=I−J+1

∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,(Cred)
i,k+1 (4.77)

2. The estimator for the prediction uncertainty in terms of the (conditional) MSEP

m̂sep I∑
i=I−J+1

∑
m∈M

J−1∑
k=I−i

αm
i S

m
i,k+1

∣∣∣∣∣DI

[
I∑

i=0

∑

m∈M

J−1∑

k=I−i
αmi Ŝ

m|I,(Cred)
i,k+1

]
(4.78)

given by Estimator 4.19.

3. The estimator for the CDR uncertainty in terms of the (conditional) MSEP

m̂sep I∑
i=I−J+1

CDRM,I+1
i

∣∣∣∣∣DI

[0] (4.79)

given by Estimator 4.25.
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In the previous chapter we considered the class of LSRMs which covers many popular distribution-

free claims reserving methods and gives a new perspective on these methods. In a second step we

extended the LSRMs to the class of Bayesian LSRMs that allows for the incorporation of prior

knowledge of the development pattern. In this Bayesian LSRM framework we stated explicit

predictors for the outstanding loss liabilities RI and estimates for its associated prediction and

CDR uncertainty. This shows that all classical risk characteristics in Table 2.1 can be calcu-

lated in the Bayesian LSRM framework. However, with respect to recent solvency regulation in

Solvency II and SST insurance liabilities have often to be evaluated by risk measures like VaR

and ES, see AISAM–ACME [2] and FOPI [24], and not only by the risk characteristics given

in Table 2.1. The knowledge of the predictive distribution of outstanding loss liabilities an the

CDR allows for the calculation of such risk measures, see Robert [51], Merz–Wüthrich [46]

and Happ et al. [30]. That means that we are interested in claims reserving modeling where

the predictive distribution of outstanding claims payments and the distribution of the CDR can

be derived (analytically or simulatively).

A second important aspect which is assigned to the choice of a claims reserving method is

the data which can be incorporated in the method. In insurance practice cumulative claims

payments and incurred losses data are often available and should therefore be utilized for the

prediction of outstanding claims payments. Thus, we are looking for a flexible model i) which

is able to cope with these two data sources and ii) allows for the derivation of the predictive

distribution of outstanding claims payments and the CDR. At first, we consider the task of

modeling cumulative claims payments and incurred losses simultaneously.

The MCL method in Quarg–Mack [50] addresses this problem, see also Section 3.6. This

method reduces the gap between the CL ultimate claim predictor based purely on cumulative

claims payments data and the CL ultimate claim predictor based on incurred losses, respectively,

but does not close this gap. However, since the MCL method is distribution-free no predictive

distribution can be derived. Moreover, to the best of our knowledge, even estimates for the

(conditional) MSEP of the ultimate claim and the CDR have not been found up to now.

Another distribution-free approach to the problem of the incorporation of cumulative claims

payments and incurred losses in claims reserving is presented in Dahms [16] with the ECLR

75
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method. The ECLR method was the first claims reserving method which can cope with cumu-

lative claims payments and incurred losses simultaneously leading to one unified ultimate claim

prediction. It allows for the derivation of predictors for the ultimate claim and the CDR and

estimates for their corresponding (conditional) MSEP. Unfortunately, the ECLR method also

does not allow for the derivation of a predictive distribution.

An alternative is presented in Merz–Wüthrich [46] by a distributional approach. Based on

Hertig’s log-normal claims reserving method (cf. Hertig [32]) and Gogol’s Bayesian claims

reserving method for incurred losses (cf. Gogol [28]), Merz and Wüthrich introduced the PIC

reserving method and provided an ultimate claim predictor as well as the corresponding predic-

tion uncertainty. In this chapter we derive the uncertainty of the CDR for the PIC reserving

method and calculate the predictive distribution of the CDR. This is crucial for new solvency

considerations, see Chapter 7 as well as AISAM–ACME [2] and FOPI [24], [25]. In this chapter

we follow Happ et al. [30].

Notational convention:

In this and in the following chapter we use the notation employed in the PIC reserving method

in Merz–Wüthrich [46] for consistency reasons. Therefore, we recapitulate the notation used

in this paper.

5.1 Notation and Model Assumptions

The PIC reserving method combines two channels of information: i) claims payments, which

correspond to the payments for reported claims; ii) incurred losses, which refer to the reported

claim amounts. In the following, we assume I = J for notational simplicity, but all results hold

true also in the case I > J . Cumulative claims payments in accident year i after j development

years are denoted by Pi,j and the corresponding incurred losses by Ii,j . The crucial observation

is that the claims payments and incurred losses time series must reach the same ultimate value,

because these two time series both converge to the total ultimate claim. Therefore, we assume

that all claims are settled and closed after development year J , i.e. Pi,J = Ii,J holds with

probability 1 for all i ∈ {0, . . . , J}, see Model Assumptions 5.1. After accounting year t = J we

have observations in the paid and incurred triangles given by (see Figure 5.1)

DJ := {Pi,j , Ii,j ; 0 ≤ i ≤ J, 0 ≤ j ≤ J, 0 ≤ i+ j ≤ J}.

After accounting year t = J + 1 we have observations in the paid and incurred trapezoids given

by (see Figure 5.2)

DJ+1 = {Pi,j , Ii,j ; 0 ≤ i ≤ J, 0 ≤ j ≤ J, 0 ≤ i+ j ≤ J + 1}.

This means the updating of information DJ 7→ DJ+1 adds a new diagonal to the observations.
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Figure 5.1: Cumulative claims payments Pi,j and incurred losses Ii,j observed at time t = J both

leading to the ultimate loss Pi,J = Ii,J
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Figure 5.2: Updated cumulative claims payments Pi,j and incurred losses Ii,j observed at time

t = J + 1

Our goal is to predict the ultimate losses Pi,J = Ii,J , i = 1, . . . , J , based on the information DJ
and DJ+1, respectively. We state the PIC model, which combines both cumulative payments

and incurred losses information:

Model Assumptions 5.1 (PIC model)

a) Conditionally, given the parameter vector Θ := (Φ0; Φ1,Ψ1,Φ2,Ψ2, . . . ,ΦJ ,ΨJ)′, we as-

sume:

- the random vectors Ξi := (ξi,0; ξi,1, ζi,1, ξi,2, ζi,2, . . . , ξi,J , ζi,J)′ are i.i.d. with multi-

variate Gaussian distribution

Ξi ∼ N (Θ,V) for i ∈ {0, 1, . . . , J}

and positive definite covariance matrix V as well as individual development factors

ξi,j := log
Pi,j
Pi,j−1

and ζi,l := log
Ii,l
Ii,l−1

,
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for j ∈ {0, 1, . . . , J} and l ∈ {1, 2, . . . , J}, where we have set Pi,−1 := 1;

- Pi,J = Ii,J , P-a.s., for all i ∈ {0, 1, . . . , J}.

b) The components of Θ are independent with prior distributions

Φj ∼ N (φj , s
2
j ) for j ∈ {0, . . . , J} and Ψl ∼ N (ψl, t

2
l ) for l ∈ {1, . . . , J}

with prior parameters φj, ψl ∈ R and s2
j > 0, t2l > 0.

2

Remarks 5.2 (PIC reserving method)

i) In Model Assumptions 5.1 we can choose any arbitrary positive definite covariance matrix

V. This allows for modeling dependence structures between claims payments ratios
Pi,j

Pi,j−1

and incurred losses ratios
Ii,l
Ii,l−1

.

ii) Expert opinion should be included to structure the covariance matrix V. For a more

detailed discussion on this topic and suitable choices for V we refer to Happ–Wüthrich

[31]. However, the problem of finding statistically optimal estimators should be subject to

further statistical research.

iii) We define prior distributions for the components of the mean vector Θ and assume V to

be a given covariance matrix. This Bayesian approach guarantees closed form results. If

we also put a prior on V we have to use Markov-Chain-Monte-Carlo (MCMC) methods

for the calculation of the posterior distribution (see Merz–Wüthrich [46]).

5.2 One-year Claims Development Result

We consider the short term (one-year) run-off risk introduced in Section 2.6. This means, we

study the uncertainty in the one-year CDR for accounting year J + 1 given by

CDRJ+1
i = E[Pi,J | DJ ]− E[Pi,J | DJ+1] , i = 1, . . . , J,

between the best estimates for the ultimate claim Pi,J at times J and J + 1. The one-year CDR

in accounting year J + 1 measures the change in the prediction by updating the information

from DJ to DJ+1. With the tower property of the conditional expectation we obtain for the

expected one-year CDR for accident year i, viewed from time J ,

E
[

CDRJ+1
i

∣∣∣DJ
]

= 0,

which is the martingale property of successive predictions. This justifies the fact that, in the

budget statement, the one-year CDR is usually predicted by 0 at time J . In the following we
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study the uncertainty in this prediction by means of the conditional MSEP, given the observa-

tions DJ . In other words we calculate, see Wüthrich–Merz [63], Section 3.1,

msepCDRJ+1
i |DJ

[0] = E

[(
CDRJ+1

i − 0
)2
∣∣∣∣DJ

]
= Var

[
CDRJ+1

i

∣∣∣DJ
]

= Var[E[Pi,J | DJ+1]| DJ ] .

(5.1)

The conditional MSEP is probably the most popular uncertainty measure in claims reserving

practice and has the advantage that it can be derived analytically in the PIC model. Moreover,

we also present the full predictive distribution below, which also allows to evaluate other risk

measures.

5.3 Expected Ultimate Claim at Time J + 1

In this section we derive the conditional expected ultimate claim E[Pi,J | Dk] for k ∈ {J, J + 1}
in two steps. In the first step we derive E[Pi,J |Θ,Dk] and in the second step we calculate

E[Pi,J | Dk], see Corollary 5.7.

In the following we can either work with the random vector Ξi ∈ R2J+1 (see Model Assump-

tions 5.1) or with the logarithmized observations of accident year i, namely,

Xi := (logPi,0, log Ii,0, logPi,1, . . . , logPi,J−1, log Ii,J−1, logPi,J)′ ∈ R2J+1.

This is possible, since there exist an invertible matrix B ∈ R(2J+1)×(2J+1) such that Xi = B Ξi,

i.e. there is a one-to-one correspondence between Xi and Ξi. This implies

Xi|Θ = B Ξi|Θ ∼ N (µ := BΘ,Σ := BVB′). (5.2)

Let k ∈ {J, J + 1} and define n := 2J + 1 and q := qk(i) := 2(k − i + 1). To simplify notation

we define:

X
(1)
i,k :=





(logPi,0, log Ii,0, logPi,1, log Ii,1 . . . , logPi,k−i, log Ii,k−i)′ ∈ Rq for k − i < J,

Xi otherwise;

X
(2)
i,k :=





(logPi,k−i+1, log Ii,k−i+1, . . . , logPi,J−1, log Ii,J−1, logPi,J)′ ∈ Rn−q for k − i < J,

(logPi,J) otherwise.

X
(1)
i,k describes the observations at time k ∈ {J, J+1}, i.e. it corresponds to the σ-field generated

by Dk, see Figures 5.1 and 5.2. X
(2)
i,k is the part of claims development that needs to be predicted

at time k for i > k − J .

For k − i < J we decompose the transformation matrix B in a similar way into

B :=

(
B

(1)
i,k

B
(2)
i,k

)
, (5.3)
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where B
(1)
i,k ∈ Rq×n. For k − i ≥ J we set B

(1)
i,k := B and B

(2)
i,k := B

(2)
1,J , but (5.3) does not hold

in this case. We obtain, for k − i < J , a decomposition

µ = BΘ =
(
µ

(1)
i,k ,µ

(2)
i,k

)′
∈ Rn

of the mean vector, where

µ
(1)
i,k := E

[
X

(1)
i,k

∣∣∣Θ
]

= B
(1)
i,kΘ and µ

(2)
i,k := E

[
X

(2)
i,k

∣∣∣Θ
]

= B
(2)
i,kΘ.

For k − i < J the covariance matrix is decomposed in a similar way such that

Σ = BVB′ =

(
Σ

(11)
i,k Σ

(12)
i,k

Σ
(21)
i,k Σ

(22)
i,k

)
∈ Rn×n, (5.4)

with Σ
(11)
i,k ∈ Rq×q. For k − i ≥ J we set Σ

(11)
i,k = Σ, Σ

(12)
i,k = Σ

(12)
1,J and Σ

(22)
i,k = Σ

(22)
1,J , but (5.4)

does not hold in this case. Now having this notation we provide the following lemma:

Lemma 5.3 (Conditional distribution) Choose k ∈ {J, J + 1} and i > k− J . Under Model

Assumptions 5.1 we obtain for the conditional distribution of X
(2)
i,k , given {Θ,Dk},

X
(2)
i,k |{Θ,Dk} = X

(2)
i,k |{Θ,X(1)

i,k}
∼ N

(
µ̃

(2)
i,k , Σ̃

(22)
i,k

)
,

where

µ̃
(2)
i,k := µ

(2)
i,k + Σ

(21)
i,k (Σ

(11)
i,k )

−1 (
X

(1)
i,k − µ

(1)
i,k

)
∈ Rn−q,

Σ̃
(22)
i,k := Σ

(22)
i,k −Σ

(21)
i,k (Σ

(11)
i,k )

−1
Σ

(12)
i,k .

For k = J we obtain

(logPi,J−i+1, log Ii,J−i+1)′|{Θ,DJ} ∼ N (µi,Σi) for i ∈ {2, . . . , J},

with

µi :=

(
e′1
e′2

)
µ̃

(2)
i,J and Σi :=

(
e′1
e′2

)
Σ̃

(22)
i,J

(
e1 e2

)
, (5.5)

where ek := ek(i) ∈ Rn−q is the k-th canonical basis vector of dimension n − q. Moreover, for

i = 1 we have

logP1,J |{Θ,DJ} ∼ N
(
µ1 := µ̃

(2)
1,J ,Σ1 := Σ̃

(22)
(1,J)

)
.

Proof: Conditionally given the parameter vector Θ, the random vectors Xi are independent

for different accident years. Therefore, the conditional distribution of X
(2)
i,k depends on Dk only

through X
(1)
i,k . This shows the first equality in the first claim. The distributional claim is a

well-known result for multivariate normal distributions using the Schur complement for the cal-

culation of the conditional covariance matrix. The second claim is a direct consequence of the

first claim. This proves the lemma. 2
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Remarks 5.4 (Conditional distribution)

i) The second claim in Lemma 5.3 is used to derive the distribution of the elements in the

next diagonal DJ+1\DJ . This is needed for the calculation of the full predictive distribution

of the CDR via Monte-Carlo methods. For details see Section 5.5.

As a direct consequence of the first claim in Lemma 5.3 we get for the ultimate claim, i > k−J ,

log Ii,J |{Θ,Dk} = logPi,J |{Θ,Dk} ∼ N
(
e′n−qµ̃

(2)
i,k , e

′
n−qΣ̃

(22)
i,k en−q

)
. (5.6)

This immediately implies the following corollary:

Corollary 5.5 (Conditional distribution) For the predictor of the ultimate claim Pi,J , given

{Θ,DJ}, we obtain for i > k − J

E[Pi,J |Θ,Dk] = exp
{

e′n−qµ̃
(2)
i,k + e′n−qΣ̃

(22)
i,k en−q/2

}
.

Proof: The claim is a direct consequence of Lemma 5.3 and (5.6). 2

We see that the ultimate claim predictor in Corollary 5.5 still depends on Θ, namely through

e′n−qµ̃
(2)
i,k = e′n−q

(
µ

(2)
i,k + Σ

(21)
i,k (Σ

(11)
i,k )

−1 (
X

(1)
i,k − µ

(1)
i,k

))

= e′n−q

(
B

(2)
i,kΘ + Σ

(21)
i,k (Σ

(11)
i,k )

−1 (
X

(1)
i,k −B

(1)
i,kΘ

))

= Γi,kΘ + e′n−qΣ
(21)
i,k (Σ

(11)
i,k )

−1
X

(1)
i,k , (5.7)

where Γi,k is given by

Γi,k := e′n−q

(
B

(2)
i,k −Σ

(21)
i,k (Σ

(11)
i,k )

−1
B

(1)
i,k

)
.

Our aim now is to calculate the posterior distribution of Θ, conditionally given observations Dk
for k ∈ {J, J + 1}. The likelihood of the logarithmized observations at time k, given Θ, is given

by

lDk
(Θ) ∝

J∏

i=0

exp

{
−1

2

(
X

(1)
i,k −B

(1)
i,kΘ

)′
(Σ

(11)
i,k )

−1 (
X

(1)
i,k −B

(1)
i,kΘ

)}
. (5.8)

With Model Assumptions 5.1 and Bayes’ theorem follows that the posterior distribution u(Θ|Dk)
has the form

u(Θ|Dk) ∝ lDk
(Θ) exp

{
−1

2
(Θ− ϑ)′T−1(Θ− ϑ)

}
, (5.9)

with prior mean

ϑ := (φ0;φ1, ψ1, φ2, ψ2, . . . , φJ , ψJ)′ ∈ Rn
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and prior covariance matrix

T := diag(s2
0; s2

1, t
2
1, s

2
2, t

2
2, . . . , s

2
J , t

2
J) ∈ Rn×n. (5.10)

Theorem 5.6 (Posterior distribution of Θ) Under Model Assumptions 5.1 the posterior

distribution u(Θ|Dk) is a multivariate Gaussian distribution with posterior mean

ϑ(Dk) := T(Dk)
[
T−1ϑ+

J∑

i=0

(B
(1)
i,k )′(Σ(11)

i,k )
−1

X
(1)
i,k

]
.

and posterior covariance matrix

T(Dk) :=

(
T−1 +

J∑

i=0

(B
(1)
i,k )′(Σ(11)

i,k )
−1

B
(1)
i,k

)−1

,

Proof: From (5.8) immediately follows that the posterior distribution u(Θ|Dk) is a multivariate

Gaussian distribution. Therefore, it remains to calculate the first two moments of u(Θ|Dk). This

is done by squaring out all terms and analyzing quadratic and linear terms. 2

From (5.7) we see that the exponent of the predictor given in Corollary 5.5 is a affine-linear

function of Θ. Using Theorem 5.6 this implies the following corollary:

Corollary 5.7 (Ultimate claim predictor) The predictor for the ultimate claim for accident

year i > k − J and k ∈ {J, J + 1}, given Dk, is given by

E[Pi,J | Dk] = exp

{
Γi,kϑ(Dk) + Γi,kT(Dk)(Γi,k)′/2 + e′n−qΣ

(21)
i,k (Σ

(11)
i,k )

−1
X

(1)
i,k + e′n−qΣ̃

(22)
i,k en−q/2

}
.

Proof: The proof is a direct consequence of Corollary 5.5 and Theorem 5.6. 2

Remarks 5.8 (Ultimate claim predictor)

i) For k = J and diagonal covariance matrix V we obtain the same ultimate claim predictor

as in Merz–Wüthrich [46].

ii) For k = J + 1 we get a closed formula for the ultimate claim predictor in the case that

information DJ+1 is available at time J + 1. This allows for the simulation of the full

predictive distribution of the CDR. This is done in detail in Section 5.5.

iii) For other choices of prior distributions MCMC methods can be applied to calculate the

posterior distribution in Theorem 5.6. For details see Merz–Wüthrich [46].
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5.4 Mean Squared Error of Prediction of the Claims

Development Result

5.4.1 Single Accident Years

In the last section we have calculated the expected ultimate claim in the PIC reserving model,

given the observations Dk for k ∈ {J, J + 1}. Our aim now is to calculate the prediction uncer-

tainty of the CDR in terms of the conditional MSEP. From (5.1) we see that the problem to de-

rive the conditional MSEP for the one-year CDR is solved by calculating Var[E[Pi,J | DJ+1]| DJ ].

Since (E[Pi,J | DJ ])2 is given by Corollary 5.7 for k = J , this conditional variance can be derived

by calculating E
[

(E[Pi,J | DJ+1])2
∣∣∣DJ

]
. We see that for k = J + 1 the exponential term from

Corollary 5.7, namely,

Γi,J+1ϑ(DJ+1) + Γi,J+1T(DJ+1)(Γi,J+1)′/2

+ e′n−qΣ
(21)
i,J+1(Σ

(11)
i,J+1)

−1
X

(1)
i,J+1 + e′n−qΣ̃

(22)
i,J+1en−q/2,

is affine-linear in the observations DJ+1\DJ given by

Y := (logP1,J , logP2,J−1, log I2,J−1, . . . , logPJ,1, log IJ,1)′.

That means that for all i > 1 there exist a matrix Li and a DJ -measurable random variable

gi(DJ) such that

LiY + gi(DJ) = Γi,J+1ϑ(DJ+1) + Γi,J+1T(DJ+1)(Γi,J+1)′/2

+ e′n−qΣ
(21)
i,J+1(Σ

(11)
i,J+1)

−1
X

(1)
i,J+1 + e′n−qΣ̃

(22)
i,J+1en−q/2.

For i = 1 we set L1 to be the projection on the first component, i.e. L1Y := logP1,J and

g1(DJ) = 0. This implies for the ultimate claim predictor in Corollary 5.7

E[Pi,J | DJ+1] = exp{LiY + gi(DJ)} for i = 1, . . . , J. (5.11)

Different accident years are independent, given Θ. Thus, Lemma 5.3 leads to the joint distribu-

tion of Y, given {DJ ,Θ}:

Lemma 5.9 (Conditional distribution of Y) Under Model Assumptions 5.1 we have

Y|{DJ ,Θ} = (logP1,J , logP2,J−1, log I2,J−1, . . . , logPJ,1, log IJ,1)′|{DJ ,Θ} ∼ N (µ,Σ),

where

µ :=




µ1

µ2
...

µJ



∈ R2J−1 and Σ :=




Σ1 0 0 · · · 0

0 Σ2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · ΣJ



∈ R(2J−1)×(2J−1),

with µi and Σi defined in Lemma 5.3.
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In Lemma 5.9 the distribution of Y|{DJ ,Θ} still depends on Θ via

µ =
(
µ′1,µ

′
2, . . . ,µ

′
J

)′ ∈ R2J−1

and recalling the definition of µi (see Lemma 5.3) we obtain, for k = J ,

γi :=






e′1

e′2


Σ

(21)
i,J (Σ

(11)
i,J )

−1
X

(1)
i,J for i ≥ 2

e′n−qΣ
21
1,J(Σ

(11)
1,J )

−1
X

(1)
1,J for i = 1

µi =





Γ̃i,JΘ + γi for i ≥ 2

Γ̃1,JΘ + γ1 for i = 1

and

Γ̃i,J :=






e′1

e′2



(

B
(2)
i,J −Σ

(21)
i,J (Σ

(11)
i,J )

−1
B

(1)
i,J

)
for i ≥ 2

e′n−q

(
B

(2)
1,J −Σ

(21)
1,J (Σ

(11)
1,J )

−1
B

(1)
1,J

)
for i = 1

.

Next, we define the matrix Γ with rows Γ̃i,J , i.e.

Γ :=
(
Γ̃′1,J Γ̃′2,J . . . Γ̃′J,J

)′
∈ R(2J−1)×n.

and

γ := (γ ′1, . . . ,γ
′
J)′ ∈ R(2J−1).

This shows that µ = ΓΘ′ + γ is a affine-linear function of Θ. This implies together with (5.11)

the following theorem.

Theorem 5.10 (Conditional expectation) Under Model Assumptions 5.1 we obtain for i, l ∈
{1, . . . , J}

E[E[Pi,J | DJ+1] E[Pl,J | DJ+1]|Θ,DJ ]

= exp
{

(Li+Ll)µ+(Li+Ll)Σ(Li+Ll)
′/2+gi(DJ)+gl(DJ)

}
,

and

E[E[Pi,J | DJ+1] E[Pl,J | DJ+1]| DJ ] = E[Pi,J | DJ ] E[Pl,J | DJ ] exp{LiΓT(DJ)Γ′L′l + LiΣL′l}.

Proof: Using standard properties of log-normal distribution, the first claim immediately follows

by Lemma 5.9 and (5.11). The second claim follows with the identity µ = ΓΘ′+γ and Theorem

5.6. 2

By means of this relationship between E
[

(E[Pi,J | DJ+1])2
∣∣∣DJ

]
and E[Pi,J | DJ ]2 it is straight-

forward to derive the (conditional) MSEP of the one-year CDR for single accident years, which

is given in the next theorem:
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Theorem 5.11 (Conditional MSEP for single accident years) Under Model

Assumptions 5.1 the conditional MSEP, given DJ , of the one-year CDR for single accident years

i ∈ {1, . . . , J} is given by

msepCDRJ+1
i |DJ

[0] = (E[Pi,J | DJ ])2 (exp{LiΓT(DJ)Γ′L′i + LiΣL′i} − 1
)
.

In the following section we consider the conditional MSEP for aggregated accident years.

5.4.2 Aggregated Accident Years

We study the conditional MSEP of the one-year CDR for aggregated accident years:

msep J∑
i=1

CDRJ+1
i

∣∣∣∣∣DJ

[0] = E



(

J∑

i=1

CDRJ+1
i − 0

)2
∣∣∣∣∣∣
DJ




= Var

(
J∑

i=1

CDRJ+1
i

∣∣∣∣∣DJ
)

= Var

(
J∑

i=1

E [Pi,J |DJ+1]

∣∣∣∣∣DJ
)
.

(5.12)

Using the tower property of conditional expectations and Theorem 5.10 we obtain for (5.12):

Theorem 5.12 (Conditional MSEP for aggregated accident years) Under Model

Assumptions 5.1 the conditional MSEP, given DJ , of the one-year CDR for aggregated accident

years is given by

msep J∑
i=1

CDRJ+1
i

∣∣∣∣∣DJ

[0] =
J∑

i=1

msepCDRJ+1
i |DJ

[0]

+ 2
∑

l>i

E[Pi,J | DJ ] E[Pl,J | DJ ]
(
exp

{
LiΓT(DJ)Γ′L′l + LiΣL′l

}
− 1
)
.

Proof: With (5.12) and Theorem 5.10 we obtain

msep J∑
i=1

CDRJ+1
i

∣∣∣∣∣DJ

[0] =
J∑

i=1

Var [E[Pi,J |DJ+1]|DJ ] + 2

J∑

l>i

E [E[Pi,J | DJ+1] E[Pl,J | DJ+1]| DJ ]

− 2

J∑

l>i

E[Pi,J | DJ ] E[Pl,J | DJ ]

=

J∑

i=1

msepCDRJ+1
i |DJ

[0] + 2

J∑

l>i

E[Pi,J | DJ ] E[Pl,J | DJ ]
(
exp

{
LiΓT(DJ)Γ′L′l + LiΣL′l

}
− 1
)
.

2
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5.5 Example PIC Reserving Method

We revisit the data given in Dahms [16]. In Model Assumptions 5.1 we can choose any covariance

matrices V as long as it is positive definite. This allows for modeling dependence between paid

and incurred data. The task of structuring a suitable covariance matrix V based on expert

opinion and data is discussed in detail in Happ-Wüthrich [31], see Chapter also 6. In this

example we choose V as a diagonal matrix and estimate the variances on the diagonal with

standard sample estimates. This is in-line with the choice of V in Merz–Wüthrich [46]. More

detailed, for the estimation of V we use for j ∈ {0, . . . , J − 1} and k ∈ {1, . . . , J − 1}

Φ̂j :=
1

J − j + 1

J−j∑

i=0

ξi,j , Ψ̂k :=
1

J − k + 1

J−k∑

i=0

ζi,k,

σ̂2
ξj

:=
1

J − j

J−j∑

i=0

(ξi,j − Φ̂j)
2

and σ̂2
ζk

:=
1

J − k
J−k∑

i=0

(ζi,k − Ψ̂k)
2
.

Since we have for the estimation of the two parameters σ2
ξJ

and σ2
ζJ

only one observation we use

the extrapolation formula, see Wüthrich–Merz [63],

σ̂2
ξJ

:= min{σ̂2
ξJ−2

, σ̂2
ξJ−1

, σ̂4
ξJ−2

/σ̂2
ξJ−1
} and σ̂2

ζj
:= min{σ̂2

ζJ−2
, σ̂2

ζJ−1
, σ̂4

ζJ−2
/σ̂2

ζJ−1
}

and set

V := diag
(
σ̂2
ξ0 , σ̂

2
ξ1 , σ̂

2
ζ1 , . . . , σ̂

2
ξJ
, σ̂2

ζJ

)
.

Because we do not have any prior knowledge of the prior distribution parameters φl and ψj we

choose non-informative priors, i.e. we let s2
j → ∞ and t2l → ∞. This implies that in Theorem

5.6 the matrix T−1, see (5.10), is the matrix consisting of zeros and no prior information is used

in our calculations. In Table 5.1 we compare the prediction uncertainty measured by the square

root of the conditional MSEP for the one-year CDR calculated by the PIC method and the ECLR

method (cf. Dahms [16]). Under Model Assumptions 5.1, these values for the PIC method are

calculated analytically with Theorem 5.11 for single accident years and with Theorem 5.12 for

aggregated accident years. Note that for the ECLR method we obtain two different values for

the (conditional) MSEP because we can estimate the variance in two ways, namely based on

paid data or based on incurred data, respectively. We observe in the PIC method for most single

accident years and aggregated accident years a lower prediction uncertainty for the CDR than in

the ECLR method based on paid or incurred data (see Table 5.1). This can partly be explained

by the fact that in the ECLR method we have to estimate 44 parameters (cf. Dahms [16])

whereas in the Bayesian PIC model only 19 variance parameters have to be estimated leading to

a lower standard error. Moreover, we observe that in the PIC method it is not unlikely that the

total claims reserves increase about 3% in the one-year horizon. This is similar to the findings

for the CDR uncertainty for the ECLR method in Dahms et al. [18].
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claims msep
1/2
CDR claims msep

1/2
CDR in %

accident reserves ECLR method ECLR method reserves PIC method reserves

year i ECLR Paid Incurred PIC PIC

1 314.902 194 14.639 337.799 2.637 0,78%

2 66.994 4.557 4.678 31.686 4.597 14,51%

3 359.384 5.597 6.628 331.890 7.656 2,31%

4 981.883 33.675 34.258 1.018.308 6.606 0,65%

5 1.115.768 30.574 30.997 1.104.816 31.594 2,86%

6 1.786.947 42.598 43.074 1.842.669 43.168 2,34%

7 1.942.518 166.154 166.255 1.953.767 139.352 7,13%

8 1.569.657 138.685 138.740 1.602.229 127.053 7,93%

9 2.590.718 210.899 210.979 2.402.946 173.721 7,23%

Total 10.728.771 346.576 350.534 10.626.108 292.879 2,76%

Table 5.1: Ultimate claim prediction and prediction uncertainty for the one-year CDR calculated

by the ECLR method for claims payments and incurred losses (cf. Dahms [16] and

Dahms et al. [18]) and by the PIC method, respectively

Table 5.2 provides the ratios of the square root of the conditional MSEP for the one-year

CDR and the square root of the conditional MSEP for the ultimate claim. We observe that for

later accident years (i.e. i ≥ 7) and aggregated accident years the values for the ECLR method

and for the PIC method only slightly differ. Moreover, we see that for aggregated accident years

the one-year uncertainty is about 75% of the uncertainty of the ultimate claim prediction. This

result is in line with the field study conducted by AISAM–ACME [2].

msep
1/2
CDR/msep

1/2
Ultimate msep

1/2
CDR/msep

1/2
Ultimate

accident ECLR method ECLR method PIC method

year Incurred Paid Paid & Incurred

1 100.0% 100.0% 100.0%

2 100.0% 84.5% 87.6%

3 53.1% 52.7% 83.7%

4 91.5% 89.6% 62.4%

5 69.6% 69.1% 94.3%

6 65.5% 65.4% 80.8%

7 94.0% 93.9% 93.1%

8 70.1% 70.1% 70.3%

9 65.3% 65.3% 66.4%

Total 74.1% 74.3% 75.2%

Table 5.2: Ratios msep
1/2
CDR/msep

1/2
Ultimate calculated by the ECLR method for claims payments

and incurred losses (cf. Dahms et al. [18]) and calculated by the PIC method,

respectively

As already mentioned in the PIC method we can not only calculate the conditional MSEP for

the one-year CDR but also the full predictive distribution of the one-year CDR by means of MC

simulations. Firstly, we apply Theorem 5.6 to u(Θ|DJ) to generate Gaussian samples Θ(n) with
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Figure 5.3: Empirical density for the one-year CDR (blue line) from 100.000 simulations and

fitted Gaussian density with mean 0 and standard deviation 292.879 (dotted red

line)

mean ϑ(DJ) and covariance matrix T(DJ). Secondly, we generate independent two-dimensional

Gaussian samples (logPi,J−i+1, log Ii,J−i+1){DJ ,Θ} and fill up the off-diagonal entries in the paid

and incurred trapezoids (see Lemma 5.3). This way we obtain the data available at time J + 1,

i.e. DJ+1, and can calculate E[Pi,J | DJ+1] by means of Corollary 5.7. This provides Figure 5.3,

where we compare the empirical density from 100.000 simulations (blue line) to the Gaussian

density with mean µ = 0 and standard deviation σ = 292.879 (dotted red line), see Table 5.1.

We observe that these two densities look quite similar. To get a closer look on the left tail of the

empirical density for the one-year CDR we show a QQ-plot for quantiles q ∈ (0, 0.1). We observe

that the tail behaviour of the empirical density of the one-year CDR and the fitted Gaussian

density with mean 0 and standard deviation 292.879 only slightly differ (see Figure 5.4). This

is similar to the findings for the distribution of the ultimate claim in Merz–Wüthrich [46].

This means that using a Gaussian approximation for the density of the one-year CDR provides

within the PIC method and for the given data a good approximation for the shortfall risk of the

one-year CDR.

5.6 Conclusions

The PIC reserving method provides a framework, where unified ultimate claim predictions can

be calculated based on cumulative payments and incurred losses data simultaneously. It allows

for the derivation of the (conditional) MSEP for the ultimate claim in the long run as well as for
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Figure 5.4: QQ-plot for lower quantiles q ∈ (0, 0.1) to compare the left tail of the empirical

density for the one-year CDR with the left tail of the fitted Gaussian density with

mean 0 and standard deviation 292.879

the CDR in the one-year time horizon. Merz–Wüthrich [46] derived the MSEP formula for the

ultimate claim uncertainty. In this chapter we did the same for the one-year CDR uncertainty.

In contrast to the ECLR method by Dahms [16], where also MSEP formulas for the ultimate

claim and the CDR uncertainty exist, the PIC method allows for the calculation of the full

predictive distribution of the ultimate claim and the CDR via Monte-Carlo simulations. This

implies that any other risk measure for example VaR or ES can be calculated for the ultimate

claim uncertainty (long term risk) as well as for the CDR uncertainty (one-year risk).

Main results of the PIC reserving method:

For solvency considerations in Chapter 7 we summarize all quantities of interest derived in the

PIC reserving method:

1. The predictor R̂I for outstanding loss liabilities RI , see (2.5c) and (2.4c) given by

R̂I =
J∑

i=1

(E[Pi,J | DJ ]− Pi,J−i) , (5.13)
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see Corollary 5.7 and

Ŝ
0|I,Bayes
i,k := E[Pi,k| DJ ]− E[Pi,k−1| DJ ]

2. The estimator for the prediction uncertainty in terms of the (conditional) MSEP

msepRI |DJ

[
R̂I
]
, (5.14)

given by Theorem 4.1 in Merz–Wüthrich [46].

3. The estimator for the CDR uncertainty in terms of the (conditional) MSEP

msep J∑
i=1

CDRJ+1
i

∣∣∣∣∣DJ

[0] , (5.15)

given by Theorem 5.12.



6 Paid-Incurred Chain Reserving Method with

Dependence Modeling

As mentioned in the previous section, the classical PIC reserving method introduced in Merz–

Wüthrich [46] is one of the first claims reserving methods which can cope with three sources

of information: (i) claims payments for reported claims; (ii) incurred losses which correspond

to the reported claim amounts; (iii) prior expert opinion which can be used to design the prior

covariance matrix V and prior means. The initial version of the PIC reserving method assumes

V to be diagonal and hence does not allow for dependence modeling between claims payments

and incurred losses data. We revisit the problem of the classical PIC reserving method and

generalize it to allow for appropriate dependence modeling. In this section we follow Happ–

Wüthrich [31].

6.1 Notation and Model Assumptions

For the PIC model we consider three channels of information: (i) claims payments, which

refer to the payments done for reported claims; (ii) incurred losses, which correspond to the

reported claim amounts; (iii) prior expert opinion. As already mentioned in Chapter 5 the

crucial observation is that the claims payments and incurred losses time series must reach the

same ultimate value, because these two time series both converge to the total ultimate claim.

By choosing appropriate model assumptions we force this property to hold true in our model.

In the same way as in Chapter 5 we denote accident years by i ∈ {0, . . . , J} and development

years by j ∈ {0, . . . , J}. We assume that all claims are settled after the J-th development year.

Cumulative claims payments in accident year i after j development periods are denoted by Pi,j

and the corresponding incurred losses by Ii,j . Moreover, for the ultimate claim we assume (force)

Pi,J = Ii,J with probability 1, which means that ultimately (at time J) they reach the same

ultimate value. For an illustration we refer to Table 6.1. The PIC model with dependence is

defined as follows:

91
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1
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.

J
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1

..
.

J

development years

0 1 . . . J 01

Pi,J=Ii,J

. . .

claims payments

Pi,j

incurred losses

Ii,j

Table 6.1: Left-hand side: development triangle with cumulative claims payments Pi,j ; right-

hand side: development triangle with incurred losses Ii,j ; both leading to the same

ultimate claim Pi,J = Ii,J

Model Assumptions 6.1 (PIC model with dependence)

a) Conditionally, given the parameter vector Θ := (Ψ0; Ψ1,Φ1,Ψ2,Φ2, . . . ,ΨJ ,ΦJ)′, we as-

sume:

- the random vectors Ξi := (ζi,0; ζi,1, ξi,1, ζi,2, ξi,2, . . . , ζi,J , ξi,J)′ ∈ R2J+1 are i.i.d. with

multivariate Gaussian distribution

Ξi ∼ N (Θ,V) for i ∈ {0, . . . , J};

and positive definite covariance matrix V ∈ R(2J+1)×(2J+1) as well as individual de-

velopment factors

ζi,j := log
Ii,j
Ii,j−1

and ξi,l := log
Pi,l
Pi,l−1

, (6.1)

for j ∈ {0, . . . , J} and l ∈ {1, . . . , J}, where we have set Ii,−1 := 1;

- Pi,J = Ii,J , P-a.s., for all i ∈ {0, . . . , J}.

b) The components of Θ are independent with prior distributions

Ψj ∼ N
(
ψj , t

2
j

)
for j ∈ {0, . . . , J} and Φl ∼ N

(
φl, s

2
l

)
for l ∈ {1, . . . , J}

with prior parameters ψj , φl ∈ R and t2j > 0, s2
l > 0.

2

The only difference between Model Assumptions 5.1 of the PIC model and Model Assumptions

6.1 of the PIC model with dependence is that Ii,j and Pi,j have changed roles and Ii,j are used

as priors for Pi,j , see Remark 6.2 ii) for details.
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Remarks 6.2 (PIC model with dependence)

i) For V = diag(τ2
0 ; τ2

1 , σ
2
1, . . . , τ

2
J , σ

2
J) we obtain the PIC reserving model from Merz–

Wüthrich [46]. In the following we allow for general covariance matrices V (as long

as they are positive definite). In (6.3) below, we give an explicit choice that will be applied

to a motor third party liability portfolio.

ii) The PIC model combines both cumulative payments and incurred losses data to get a unified

predictor for the total ultimate claim that is based on both sources of information. Thereby,

the model assumption Pi,J = Ii,J guarantees that the total ultimate claim coincides for

claims payments and incurred losses data. In particular, we obtain by (6.1) the identities

Ii,j = Ii,j−1 exp {ζi,j} , with initial value Ii,0 = exp {ζi,0} ,

and by backwards recursion

Pi,j−1 = Pi,j exp {−ξi,j} , with initial value Pi,J = Ii,J . (6.2)

Note that in comparison to Merz–Wüthrich [46] we have exchanged the role of Ii,j

and Pi,j. In the original model of Merz–Wüthrich [46] the resulting claims reserves

are completely symmetric in the exchange of Ii,j and Pi,j. If we consider the model with

dependence, as in Model Assumptions 6.1 above, it is more natural to use incurred losses

Ii,J as prior for claims payments Pi,j. This means that Hertig’s log-normal model [32] for

Ii,j plays the role of the prior for Gogol’s claims reserving model [28] for Pi,j, see also

Merz–Wüthrich [46].

iii) If we have prior (expert) knowledge (as a third information channel) this can be used to

design the prior distribution of Θ. If there is no prior knowledge we choose non-informative

priors for Θ, that is we let t2j →∞ and s2
l →∞ for j ∈ {0, . . . , J} and l ∈ {1, . . . , J}.

iv) The assumption Pi,J = Ii,J means that all claims are assumed to be settled after J de-

velopment years and there is no so-called tail development factor. If there is a claims

development beyond development year J , then one can extend the PIC model for the esti-

mation of a tail development factor, see Merz–Wüthrich [42] for more details.

v) Under Model Assumptions 6.1 the distribution of the ultimate claims Ii,J are a priori equal

across accident years. However, given the observed data, we observe different posterior

distributions for claims of different accident years. Therefore, the PIC reserving method

allows for accident year variation (see Corollary 6.6). However, if knowledge of prior

differences is available it should be incorporated in the prior means. This relaxation of the

model assumption will still lead to closed form solutions. A similar effect can be achieved

by considering (volume-) adjusted observations.
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vi) Conditional i.i.d. guarantees that we obtain a model of CL type, see (6.2), where CL

factors do not depend on accident year i. Of course, this model assumption requires that

the data considered need to be sufficiently regular. If this is not the case, one can introduce

prior differences between accident years (see also last bullet point). These more general

assumptions still lead to a closed form solution. The drawback is that the model might

become over-parametrized and/or it requires extended expert knowledge.

vii) The covariance matrix V allows for modeling dependence within Ξi. In particular, we

will choose this covariance matrix such that the correlation between ζi,j and ξi,j is positive

because Pi,j is contained in Ii,j (and hence they are dependent).

This last bullet point is motivated by the following argument: a positive change (an increase)

from Ii,j−1 to Ii,j means that the claims adjusters increase their expectation in future claims

payments. One part of this increased expectation is immediately paid in development period j

(and hence contained in both Ii,j and Pi,j) and the remaining increased expectation is paid with

some settlement delay, which means that we also have higher expectations for Pi,l, l > j. This

argument leads to the following possible explicit choice for the correlation matrix Ṽ (note that

we have to differentiate between the covariance matrix V and its associated correlation matrix

Ṽ of the random vector Ξi)

Ṽ :=

ζi,0 ζi,1 ξi,1 ζi,2 ξi,2 ζi,3 ξi,3 ζi,4 ξi,4 · · · ζi,J ξi,J

ζi,0 1 0 ρ1 0 ρ2 0 0 0 0 · · · 0 0

ζi,1 0 1 ρ0 0 ρ1 0 ρ2 0 0 · · · 0 0

ξi,1 ρ1 ρ0 1 0 0 0 0 0 0 · · · 0 0

ζi,2 0 0 0 1 ρ0 0 ρ1 0 ρ2 · · · 0 0

ξi,2 ρ2 ρ1 0 ρ0 1 0 0 0 0 · · · 0 0

ζi,3 0 0 0 0 0 1 ρ0 0 ρ1 · · · 0 0

ξi,3 0 ρ2 0 ρ1 0 ρ0 1 0 0 · · · 0 0

ζi,4 0 0 0 0 0 0 0 1 ρ0 · · · 0 0

ξi,4 0 0 0 ρ2 0 ρ1 0 ρ0 1 · · · 0 0
...

...
...

...
...

...
...

...
...

...
. . .

...
...

ζi,J 0 0 0 0 0 0 0 0 0 · · · 1 ρ0

ξi,J 0 0 0 0 0 0 0 0 0 · · · ρ0 1

(6.3)

The rational behind this correlation matrix is that the incurred losses increments ζi,j are

(positively) correlated to the claims payments increments ξi,j , ξi,j+1 and ξi,j+2 with positive

correlations ρ0, ρ1 and ρ2, respectively. ζi,0 plays the special role of the initial value for incurred

losses Ii,0 (on the log scale), whereas the initial value for claims payments Pi,0 (on the log scale)

can be defined by ξi,0 =
∑J

j=0 ζi,j −
∑J

l=1 ξi,l.

Notational remark:

In comparison to Chapter 5 there will be many similarities in the notation and derivations in
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the following sections of this chapter. Most of the proofs in this chapter follow in a similar way

as the corresponding proofs in Chapter 5 and we often refer to these proofs. However, there are

some differences which are not obvious at first glance. Note that on the contrary to the Model

Assumptions 5.1 in Chapter 5 the role of the paid and incurred ratios has changed in Model

Assumptions 6.1. This implies that the matrix B in this chapter does not coincide with the

matrix B in Chapter 5, although we choose the same symbols. Beside this, we use the basis

vectors ei in this chapter in a slightly different meaning in order to further simplify notation.

Moreover, we focus in this chapter on the dependence structure of the paid and incurred ratios

and hence do not derive the MSEP for the CDR (this can be done in the same way as in Chapter

5). This allows to leave out the time index k ∈ {J, J+1} in this chapter simplifying the notation

and calculations in comparison to Chapter 5 and making the derivations easier to understand.

6.2 Ultimate Claim Prediction for Known Parameters Θ

We can either work with the random vector Ξi ∈ R2J+1 (see Model Assumptions 6.1) or with

the logarithmized observations given by the random vector

Xi := (log Ii,0, logPi,0, log Ii,1, logPi,1, . . . , log Ii,J−1, logPi,J−1; log Ii,J)′ ∈ R2J+1.

The consideration of Ξi was easier for the model definition and for the interpretation of the

dependence structure; but often it is more straightforward if we directly work with Xi (under

the explicit logarithmized cumulative observations). Similar to Section 5.3 there is a linear one-

to-one correspondence B between Ξi and Xi, such that Xi = B Ξi. By this correspondence we

obtain the following conditional multivariate Gaussian distribution for Xi:

Xi|Θ = B Ξi|Θ ∼ N
(
µ := µ(Θ) := BΘ , Σ := BVB′

)
. (6.4)

Conditionally, given the parameter vector Θ, the random vector Xi is multivariate Gaussian

distributed. Our first aim is to study the conditional distribution of the ultimate claim Pi,J =

Ii,J , conditionally given the parameter vector Θ and the observations

DJ = {Ii,j , Pi,j : i+ j ≤ J, 0 ≤ i ≤ J, 0 ≤ j ≤ J}

in the upper paid and incurred triangles, see Table 6.1.

For accident years i ∈ {1, . . . , J}, define n := 2J + 1 and q := q(i) := 2(J − i+ 1) ∈ {2, . . . , 2J}.
At time J we have for accident year i observations (given in the upper triangles DJ)

X
(1)
i := (log Ii,0, logPi,0, log Ii,1, logPi,1, . . . , log Ii,J−i, logPi,J−i)

′ ∈ Rq,

and we would like to predict the lower triangles given by

X
(2)
i := (log Ii,J−i+1, logPi,J−i+1, . . . , log Ii,J−1, logPi,J−1; log Ii,J)′ ∈ Rn−q. (6.5)
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This provides, for i ∈ {1, . . . , J}, the following decomposition µ = (µ
(1)
i ,µ

(2)
i ) = BΘ ∈ Rn of

the conditional mean:

E
[
X

(1)
i

∣∣∣Θ
]

= µ
(1)
i = B

(1)
i Θ ∈ Rq and E

[
X

(2)
i

∣∣∣Θ
]

= µ
(2)
i = B

(2)
i Θ ∈ Rn−q,

with partition of B ∈ Rn×n given by, for i ∈ {1, . . . , J},

B =

(
B

(1)
i

B
(2)
i

)
with B

(1)
i ∈ Rq×n and B

(2)
i ∈ R(n−q)×n. (6.6)

In the same way we also decompose the covariance matrix which provides

Σ =

(
Σ

(11)
i Σ

(12)
i

Σ
(21)
i Σ

(22)
i

)
with Σ

(11)
i ∈ Rq×q. (6.7)

For i = 0 we set q(0) := n, X
(1)
0 := X0 ∈ Rn, Σ

(11)
0 := Σ and B

(1)
0 := B, but (6.6) and (6.7) do

not hold in this case.

Having this notation, we provide the prediction of X
(2)
i , conditionally given {Θ,DJ}:

Lemma 6.3 (Conditional distribution) Choose an accident year i ∈ {1, . . . , J}. Under

Model Assumptions 6.1 we have

X
(2)
i

∣∣∣
{Θ,DJ}

= X
(2)
i

∣∣∣
{Θ,X(1)

i }
∼ N

(
µ̃

(2)
i , Σ̃

(22)

i

)
,

with the conditional mean and covariance matrix

µ̃
(2)
i := µ

(2)
i + Σ

(21)
i (Σ

(11)
i )−1

(
X

(1)
i − µ

(1)
i

)
and Σ̃

(22)

i := Σ
(22)
i −Σ

(21)
i (Σ

(11)
i )−1Σ

(12)
i .

Proof: The proof follows in the same way as the proof of Lemma 5.3. 2

An immediate consequence of Lemma 6.3 is the following corollary, which constitutes an analog

of Corollary 5.5 for the PIC model with dependence.

Corollary 6.4 (Conditional distribution) Under the assumptions and notation of Lemma

6.3 we obtain for the ultimate claim Ii,J = Pi,J , for i ∈ {1, . . . , J},

log Ii,J |{Θ,DJ} ∼ N
(
e′i µ̃

(2)
i , e′i Σ̃

(22)

i ei

)
.

Proof: By Lemma 6.3 the random vector X
(2)
i has (conditional) distribution

X
(2)
i

∣∣∣
{Θ,DJ}

∼ N
(
µ̃

(2)
i , Σ̃

(22)

i

)
.

Since log Ii,J is the last entry of X
(2)
i , see (6.5), we have that log Ii,J = e′i X

(2)
i . 2

This corollary implies that, conditionally given the parameter vector Θ and the observations

DJ , we get the ultimate claim predictor, for i ∈ {1, . . . , J},

E[Ii,J |Θ,DJ ] = exp
{

e′i µ̃
(2)
i + e′i Σ̃

(22)

i ei/2
}
. (6.8)

In the special case of a diagonal correlation matrix (6.3), i.e. ρ0 = ρ1 = ρ2 = 0, this is exactly

the predictor derived in Corollary 2.5 of Merz–Wüthrich [46].
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6.3 Estimation of Parameter Θ

The ultimate claim predictor (6.8) is still based on the unknown parameter vector Θ, namely

e′i µ̃
(2)
i = e′i

(
µ

(2)
i + Σ

(21)
i (Σ

(11)
i )−1

(
X

(1)
i − µ

(1)
i

))

= e′i
(
B

(2)
i Θ + Σ

(21)
i (Σ

(11)
i )−1

(
X

(1)
i −B

(1)
i Θ

))
(6.9)

= Γi Θ + e′i Σ
(21)
i (Σ

(11)
i )−1 X

(1)
i ,

where we have defined

Γi := e′i
(
B

(2)
i −Σ

(21)
i (Σ

(11)
i )−1B

(1)
i

)
.

In particular, we see that e′i µ̃
(2)
i is an affine-linear function in Θ. We aim to calculate the

posterior distribution of Θ, conditionally given the observations DJ . The σ-field generated by

DJ is the same as the one generated by D̃J = {X(1)
0 , . . . ,X

(1)
J }. Therefore, by a slight abuse

of notation, we identify the observations D̃J with DJ . The likelihood of the logarithmized

observations, conditionally given Θ, is then written as, see also (6.4),

lDJ
(Θ) ∝

J∏

i=0

exp

{
−1

2

(
X

(1)
i −B

(1)
i Θ

)′
(Σ

(11)
i )−1

(
X

(1)
i −B

(1)
i Θ

)}
.

Under Model Assumptions 6.1 the posterior density of Θ, given DJ , is given by

u (Θ| DJ) ∝ lDJ
(Θ) exp

{
−1

2
(Θ− ϑ)′T−1 (Θ− ϑ)

}
, (6.10)

where the last term is the prior density of Θ with prior mean given by

ϑ := (ψ0;ψ1, φ1, ψ2, φ2, . . . , ψJ , φJ)′ ∈ Rn,

and (diagonal) covariance matrix defined by

T := diag(t20; t21, s
2
1, t

2
2, s

2
2, . . . , t

2
J , s

2
J) ∈ Rn×n.

This immediately implies the following theorem:

Theorem 6.5 (Posterior distribution of Θ) Under Model Assumptions 6.1, the posterior

distribution of Θ, given DJ , is a multivariate Gaussian distribution with posterior mean

ϑ(DJ) := T(DJ)

[
T−1 ϑ+

J∑

i=0

(B
(1)
i )′(Σ(11)

i )−1X
(1)
i

]
,

and posterior covariance matrix

T(DJ) :=

(
T−1 +

J∑

i=0

(B
(1)
i )′(Σ(11)

i )−1B
(1)
i

)−1

.
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Proof: The proof follows in the same way as the proof of Theorem 5.6. 2

Remarks on credibility theory:

We define the matrix

S :=

(
J∑

i=0

(B
(1)
i )′(Σ(11)

i )−1B
(1)
i

)−1

.

The existence of S follows by the fact that
∑J

i=0(B
(1)
i )′(Σ(11)

i )−1B
(1)
i is as sum of symmetric

positive definite (s.p.d) matrices also s.p.d. and hence invertible. Moreover, we define the

credibility weights (I is the identity matrix)

A :=
(
T−1 + S−1

)−1
S−1 and I−A =

(
T−1 + S−1

)−1
T−1, (6.11)

see also formula (7.11) in Bühlmann–Gisler [14]. This implies for the posterior covariance

matrix T(DJ) = AS = (I−A)T and we obtain the credibility formula for the posterior mean

ϑ(DJ) = (I−A)ϑ+ A Y, (6.12)

with compressed data

Y := S

[
J∑

i=0

(B
(1)
i )′(Σ(11)

i )−1X
(1)
i

]
, (6.13)

see Chapters 7 and 8 in Bühlmann–Gisler [14]. That is, the posterior mean ϑ(DJ) is a

credibility weighted average between the prior mean ϑ and the observations Y with credibility

matrix A. The crucial point why we obtain identical results using Theorem 6.5 and credibility

theory is that the normal prior distribution and the normal conditional distribution in Model

Assumptions 6.1 lead to the exact credibility case, see Bühlmann–Gisler [14] for details.

Therefore, the compressed data vector (6.13) in the PIC method has a similar structure as the

compressed data vector (4.14) used for the credibility predictors FI,Cred
k in the (Bayesian) LSRM

and (6.12) corresponds to the credibility predictor FI,Cred
k for Bayesian LSRMs, see Subsection

4.2.3. Now we state an analog to Corollary 5.7 for the PIC model with dependence.

Corollary 6.6 (Ultimate claim predictor) Under Model Assumptions 6.1 we obtain for Ii,J =

Pi,J the ultimate claim predictor, given observations DJ ,

E[Ii,J | DJ ] = exp
{

Γi ϑ(DJ) + Γi T(DJ) Γ′i/2 + e′i Σ
(21)
i (Σ

(11)
i )−1 X

(1)
i + e′i Σ̃

(22)

i ei/2
}
.

Proof:

The proof follows by Theorem 6.5 and (6.8) in the same way as the proof of Corollary 5.7. 2

Corollary 6.6 gives the ultimate claim predictor that is now based on claims payments, incurred

losses and prior expert information. In contrast to Merz–Wüthrich [46] we can now easily

choose any meaningful covariance matrix V for Ξi.
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6.4 Prediction Uncertainty

In order to analyze the prediction uncertainty, we can now study the posterior predictive dis-

tribution of IJ = (I1,J , . . . , IJ,J), which exactly corresponds to the column of unknown ultimate

claims, given the observations DJ . If g(·) is a sufficiently nice function we obtain

E[g(IJ)| DJ ] =

∫

x∈RJ

g(x) f (x| DJ) dx =

∫

x∈RJ ,Θ
g(x) f (x|Θ,DJ) u (Θ| DJ) dx dΘ,

where u (Θ| DJ) denotes the posterior density of Θ, given DJ (cf. (6.10)). Because the densities

f (x|Θ,DJ) and u (Θ| DJ) are explicitly given by Corollary 6.4 and (6.10) and the conditional

independence of accident years, given Θ, we can calculate the predictive values E[g(IJ)| DJ ]

numerically, for example using MC simulations. This allows for the analysis of any uncertainty

and risk measure. If we consider the total ultimate claim
∑J

i=1 Ii,J and the corresponding

predictor
∑J

i=1 E[Ii,J | DJ ] the conditional MSEP is given by

msep J∑
i=1

Ii,J

∣∣∣∣∣DJ

[
J∑

i=1

E[Ii,J | DJ ]

]
= E



(

J∑

i=1

Ii,J −
J∑

i=1

E[Ii,J | DJ ]

)2
∣∣∣∣∣∣
DJ


 = Var

[
J∑

i=1

Ii,J

∣∣∣∣∣DJ
]
.

Henceforth, we need to calculate this last conditional variance in order to obtain the conditional

MSEP.

Theorem 6.7 Under Model Assumptions 6.1 the conditional MSEP is given by

msep J∑
i=1

Ii,J

∣∣∣∣∣DJ

[
J∑

i=1

E[Ii,J | DJ ]

]

=

J∑

i,k=1

E[Ii,J | DJ ] E[Ik,J | DJ ]
(

exp
{

Γi T(DJ) Γ′k + e′i Σ̃
(22)

i ei 1{i=k}
}
− 1
)
,

with E[Ii,J | DJ ] given by Corollary 6.6.

Proof: With the variance decoupling formula we obtain

Var

[
J∑

i=1

Ii,J

∣∣∣∣∣DJ
]

=
J∑

i,k=1

Cov[Ii,J , Ik,J | DJ ]

=

J∑

i,k=1

Cov[E[Ii,J |Θ,DJ ] ,E[Ik,J |Θ,DJ ]| DJ ] +

J∑

i=1

E[Var[Ii,J |Θ,DJ ]| DJ ] , (6.14)

where for the second term on the right hand side of (6.14) we have used the conditional inde-

pendence of different accident years, given Θ. Thus, we need to calculate these last two terms.

Using Corollary 6.4 and (6.9), we obtain

E[Ii,J |Θ,DJ ] = exp
{

Γi Θ + e′i Σ
(21)
i (Σ

(11)
i )−1 X

(1)
i + e′i Σ̃

(22)

i ei/2
}
, (6.15)
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and

Var[Ii,J |Θ,DJ ] = E[Ii,J |Θ,DJ ]2
(

exp
{

e′i Σ̃
(22)

i ei

}
− 1
)
. (6.16)

We first treat the second term in (6.14). Using (6.16) leads to

E[Var[Ii,J |Θ,DJ ]| DJ ]

= E
[

exp
{

2Γi Θ + 2e′i Σ
(21)
i (Σ

(11)
i )−1 X

(1)
i + e′i Σ̃

(22)

i ei

}∣∣∣DJ
] (

exp
{

e′i Σ̃
(22)

i ei

}
− 1
)

= E[Ii,J | DJ ]2 exp
{
Γi T(DJ) Γ′i

}(
exp

{
e′i Σ̃

(22)

i ei

}
− 1
)
.

For the first term in (6.14) we need to consider

Cov[E[Ii,J |Θ,DJ ] ,E[Ik,J |Θ,DJ ]| DJ ]

= exp
{

e′i Σ
(21)
i (Σ

(11)
i )−1 X

(1)
i + e′i Σ̃

(22)

i ei/2 + e′k Σ
(21)
i (Σ

(11)
i )−1 X

(1)
k + e′k Σ̃

(22)

i ek/2
}

× Cov[exp {Γi Θ} , exp {Γk Θ}|DJ ] ,

where the last covariance term is given by

Cov[exp {Γi Θ} , exp {Γk Θ}|DJ ]

= E[exp {Γi Θ}|DJ ] E[exp {Γk Θ}|DJ ]
(
exp

{
Γi T(DJ) Γ′k

}
− 1
)
.

Henceforth, using (6.16) we obtain for the first term in (6.14)

Cov[E[Ii,J |Θ,DJ ] ,E[Ik,J |Θ,DJ ]| DJ ] = E[Ii,J | DJ ] E[Ik,J | DJ ]
(
exp

{
Γi T(DJ) Γ′k

}
− 1
)
.

Collecting all the terms completes the proof. 2

Thus, we obtain a closed form solution for both, the ultimate claim predictors E[Ii,J | DJ ] and

the corresponding prediction errors, measured by the conditional MSEP.

6.5 Example PIC Reserving Method with Dependence

Modeling

We apply the PIC model with dependence to the motor third party liability data given in Table

7.8 and 7.9 below. In Model Assumptions 6.1 we work with logarithmized paid claims ratios

ζi,k and logarithmized incurred losses ratios ξi,k, respectively (cf. (6.1)). That means that we

have to transform the data in Table 7.8 and 7.9 into ζi,j and ξi,l. Due to the fact that there is

no expert knowledge for the specific choice of the means in the prior distributions for Ψl and Φj

we choose in Model Assumptions 6.1 non-informative priors, i.e. we let t2j → ∞ and s2
l → ∞.

This implies asymptotically for the credibility matrix A = I in (6.11) and no prior knowledge is

used in our calculations.
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For Model Assumptions 6.1, it remains to choose a suitable covariance matrix V. Here we

present three different choices of correlation matrices Ṽ of the type (6.3) , which are motivated

by an ad-hoc estimate. The corresponding covariance matrix V is then given by

V := Var1/2 Ṽ Var1/2, (6.17)

where

Var := diag
(
σ2
ζ0 ;σ2

ζ1 , σ
2
ξ1 , . . . , σ

2
ζJ
, σ2

ξJ

)
.

The estimator for the correlation matrix of the type (6.3) should be seen as an intuitive proposal

for a correlation structure and not as an estimator being optimal in some mathematical sense.

Correlation Matrix Choice

The choice of a correlation matrix of type (6.3) reduces the number of parameters to be estimated

in comparison to the estimation of a general correlation matrix. Note that we have decided for

structure (6.3) by pure expert choice. For a correlation matrix of type (6.3), we have to choose

ρl for l ∈ {0, 1, 2} as

ρl = Cor[ζi,k, ξi,k+l] for i = 1, . . . , J and k = 1, . . . , J − l,

and

ρl = Cor[ζi,0, ξi,l] for l ∈ {1, 2}.

We propose the following ad-hoc estimators for ρl.

1:

For the unknown means Ψk = E[ζi,k] and Φk = E[ξi,k] as well as variances σ2
ζk

= Var[ζi,k] and

σ2
ξk

= Var[ξi,k] we use sample estimates

Ψ̂k :=
1

J − k + 1

J−k∑

i=0

ζi,k for k = 0, . . . , J σ̂2
ζk

:=
1

J − k
J−k∑

i=0

(ζi,k − Ψ̂k)
2

for k = 0, . . . , J − 1

and

Φ̂k :=
1

J − k + 1

J−k∑

i=0

ξi,k for k = 1, . . . , J σ̂2
ξk

:=
1

J − k
J−k∑

i=0

(ξi,k − Φ̂k)
2

for k = 1, . . . , J − 1.

Since for the estimation of the last variance parameters σ̂2
ζJ

and σ̂2
ξJ

there is only one observation

in the observed triangle we use the well-known extrapolation formula

σ̂2
ζJ

:= min{σ̂2
ζJ−2

, σ̂2
ζJ−1

, σ̂4
ζJ−2

/σ̂2
ζJ−1
} and σ̂2

ξJ
:= min{σ̂2

ξJ−2
, σ̂2

ξJ−1
, σ̂4

ξJ−2
/σ̂2

ξJ−1
},
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Figure 6.1: Correlation estimators ρ̂l for ρl for l ∈ {0, 1, 2, 3} as a function of the number of

observations used for the estimation

see Wüthrich–Merz [63].

2:

We consider for accident year i ∈ {0, . . . , J} the standardized logarithmized ratios

ζ̃i,k :=
ζi,k − Ψ̂k

σ̂ζk
for k = 0, . . . J − i and ξ̃i,k :=

ξi,k − Φ̂k

σ̂ξk
for k = 1, . . . J − i.

3:

We use the correlation estimator for ρl given by

ρ̂l :=

J−l∑

k=1

J−k−l∑

i=1

ζ̃i,kξ̃i,k+l for l ∈ {0, 1, 2, 3}. (6.18)

According to the correlation estimators (6.18) we obtain for ρ̂l with l = 0, 1, 2, 3 as a function

of the number of observations the values given in Figure 6.1. We see in Figure 6.1 that the

assumption of positive correlatedness between ζi,k and ξi,k+l for l ∈ {0, 1, 2} is evident. For

l = 3 or higher time lags the correlation estimation is comparably small (about 5%) and will

therefore be neglected in our following considerations. For the sample estimators (6.18) we

obtain:
ρ̂0 ρ̂1 ρ̂2 ρ̂3

23% 27% 28% 5%
(6.19)

In order to study correlation sensitivities, we make three explicit correlation choices, see Table

6.2, based on the correlation estimates in (6.19) and compare it to the uncorrelated case (case 0)

treated in Merz–Wüthrich [46]. For these cases we have to check whether the corresponding

covariance matrix V is positive definite (see Model Assumptions 6.1). To calculate V, we use

the identity (6.17) and obtain

V := V̂ar
1/2

ṼlV̂ar
1/2
,
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case 0 case 1 case 2 case 3

ρ0 = ρ1 = ρ2 = 0% ρ0 = 30%, ρ1 = 25%, ρ2 = 40% ρ0 = 30%, ρ1 = 25%, ρ2 = 30% ρ0 = 25%, ρ1 = 25%, ρ2 = 30%

Table 6.2: Uncorrelated case and three explicit choices for correlations

where V̂ar denotes the variance estimates

V̂ar := diag
(
σ̂2
ζ0 ; σ̂2

ζ1 , σ̂
2
ξ1 , . . . , σ̂

2
ζJ
, σ̂2

ξJ

)
.

Since V̂ar
1/2

is diagonal we only have to check, whether the matrix Ṽl is positive definite. The

eigenvalues of the estimated correlation matrix Ṽl are for the four cases strictly positive, the

smallest being 9.2·10−12 and the largest being 3.8·10−03 and hence the corresponding covariance

matrix V fulfills Model Assumptions 6.1.

Based on these choices for the covariance matrix V, we calculate the ultimate claim reserves

and the conditional MSEP.

Remarks 6.8 (Example PIC reserving method with dependence modeling)

i) We choose by means of explorative data analysis explicit covariance matrices V. This was

partly done by intuitive expert knowledge.

ii) The derivation of an optimal estimator Ṽ for the covariance matrix V with good statistical

properties is not trivial and should be subject to more statistical research. Therefore, we

present an ad-hoc estimator for the correlation matrix and use the resulting estimates as

an orientation for different explicit choices for the correlation structure (case 1-3).

iii) Model Assumptions 6.1 allow for arbitrary covariance matrices as long as they are positive

definite. If sufficient data for a robust estimation of their n(n+ 1)/2 entries is available,

there is no need to reduce to correlations up to lag 2. However, we believe (due to over-

parametrization) that an arbitrary correlation structure is not a feasible alternative and

expert opinion always needs to specify additional structure.

iv) Positive definiteness of V should always be checked because most intuitive choices do not

provide a positive definite covariance matrix.

Claims Reserves and Prediction Uncertainty

1) Claims reserves at time J :

We consider the expected outstanding loss liabilities (claims reserves)

R̂(DJ) := E[Ii,J |DJ ]− Pi,J−i
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acc. R̂(DJ) R̂(DJ) D(R̂(DJ)) R̂(DJ) D(R̂(DJ)) R̂(DJ) D(R̂(DJ))

year case 0 case 1 case 1 case 2 case 2 case 3 case 3

1 7.726 7.729 0,0% 7.729 0,0% 7.728 0,0%

2 12.084 12.090 0,0% 12.089 0,0% 12.087 0,0%

3 15.196 15.537 2,2% 15.423 1,5% 15.397 1,3%

4 9.916 8.291 16,4% 8.664 12,6% 8.718 12,1%

5 20.746 21.310 2,7% 21.169 2,0% 21.096 1,7%

6 23.675 24.111 1,8% 24.102 1,8% 24.047 1,6%

7 33.328 33.410 0,2% 33.749 1,3% 33.683 1,1%

8 35.740 37.369 4,6% 37.327 4,4% 37.146 3,9%

9 40.144 38.695 3,6% 39.669 1,2% 39.767 0,9%

10 53.888 48.764 9,5% 51.602 4,2% 51.788 3,9%

11 62.825 59.284 5,6% 61.134 2,7% 61.233 2,5%

12 79.164 77.724 1,8% 78.716 0,6% 78.352 1,0%

13 89.437 81.510 8,9% 85.614 4,3% 85.572 4,3%

14 88.300 79.565 9,9% 82.942 6,1% 83.358 5,6%

15 122.534 107.575 12,2% 115.540 5,7% 116.508 4,9%

16 126.151 108.955 13,6% 117.667 6,7% 118.831 5,8%

17 126.202 119.794 5,1% 122.695 2,8% 122.682 2,8%

18 127.522 124.947 2,0% 126.287 1,0% 125.897 1,3%

19 152.078 143.847 5,4% 147.725 2,9% 148.060 2,6%

20 185.586 170.054 8,4% 175.798 5,3% 177.062 4,6%

21 251.803 246.960 1,9% 248.818 1,2% 248.554 1,3%

total 1.664.045 1.567.522 5,8% 1.614.459 3,0% 1.617.568 2,8%

Table 6.3: Claims reserves in the classical PIC model and PIC model with dependence

at time J . The percental difference between claims reserves with and without dependence is

denoted by D(R̂(DJ)). We observe in Table 6.3 that in the first case the claims reserves are about

6% lower than the claims reserves without dependence. In the other two cases the difference is

still about 3%. This shows that the specific choice of correlation structure has a crucial impact

on the size of claims reserves.

2) Prediction uncertainty at time J :

In Table 6.4 we provide the MSEP for our four explicit correlation structures, see Table 6.2. We

observe that the prediction uncertainty measured in terms of the conditional MSEP for the PIC

msep1/2 msep1/2 msep1/2 msep1/2

case 0 case 1 case 2 case 3

total 40.606 48.010 49.145 48.922

in % of claims reserves 2,44% 3,06% 3,04% 3,02%

Table 6.4: Prediction uncertainty msep1/2 for the classical PIC model and the PIC model with

dependence
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model with dependence is higher than in the classical PIC model. The reason is that positive

correlations of the type (6.3) between paid and incurred ratios in Model Assumptions 6.1 increase

the correlations in the ultimate outcomes, and hence the uncertainties. This means that not

considering dependence in the PIC model clearly underestimates the total uncertainty.

6.6 Conclusions

In the original PIC model of Merz–Wüthrich [46] a unified predictor of the ultimate claim

based on incurred losses and claims payments as well as the corresponding prediction uncertainty

in terms of the conditional MSEP can be derived analytically. The main criticism is that the

original PIC model does not allow for modeling dependencies between claims payments and

incurred losses as it is observed in the data.

In this paper, we generalize the original PIC model so that it allows for modeling dependence

between claims payments and incurred losses data. This is motivated by the fact that on the one

hand, claims payments are contained in incurred losses data and on the other hand, incurred

losses contain additional information, which influences future claims payments data. The data

in our example (see Tables 7.8 and 7.9) confirms this hypothesis of dependence between claims

payments and incurred losses data (see Table 6.1).

We have seen in the sensitivity analysis that dependence modeling in the PIC method has a

crucial impact on the claims reserves and the corresponding (conditional) MSEP (see Tables

6.3 and 6.4). Therefore, the classical PIC model of Merz–Wüthrich [46] underestimates the

prediction uncertainty, see Table 6.4, due to the missing dependence structure within accident

years. For a better understanding of the influence of prior choices on the reserves and its

uncertainty it might be useful to provide a sensitivity analysis of the method to the choice of

priors, which should be subject to an extended case study in future work.

Summarizing, the benefits of the PIC method with dependence modeling are that

• two different channels of information are combined to get a unified ultimate loss predictor;

• dependence structures between paid and incurred data can be modeled appropriately;

• prior expert knowledge can be used to design the prior distributions of the parameter

vector Θ, otherwise we can choose non-informative priors for Θ. Prior expert opinion

should also be used for the design of appropriate correlation structures;

• we can calculate the ultimate claim and the conditional MSEP analytically;

• the CDR prediction uncertainty can be calculated, see Happ–Wüthrich [30] or Chapter

5;

• the full predictive distribution can be derived via MC simulations. This allows for the



106 6 Paid-Incurred Chain Reserving Method with Dependence Modeling

calculation of any risk measure like VaR or ES.

Main results of the PIC reserving method with dependence:

For solvency considerations in Chapter 7 we summarize all quantities of interest derived in the

PIC reserving method:

1. The predictor R̂I for outstanding loss liabilities RI , see (2.5c) and (2.4c) given by

R̂I =
J∑

i=1

(E[Ii,J | DJ ]− Pi,J−i) , (6.20)

see Corollary 6.6 and the predictor for incremental claim payments

Ŝ
0|J,Bayes
i,k+1 := E[Pi,k+1| DJ ]− E[Pi,k| DJ ] . (6.21)

2. The estimator for the prediction uncertainty in terms of the (conditional) MSEP

msepRI |DJ

[
R̂I
]

(6.22)

given by Theorem 6.7.

3. The estimator for the CDR uncertainty in terms of the (conditional) MSEP

msep J∑
i=1

CDRJ+1
i

∣∣∣∣∣DJ

[0] (6.23)

can be derived in the same way as in Theorem 5.12.



7 Solvency

Recently, regulatory authorities have established new solvency requirements in order to main-

tain the long-term function of insurance companies and to protect policyholders from losses. As

already mentioned in the introduction the European supervision authority EIOPA will regulate

insurance companies in Europe through the Solvency II framework. Solvency II will presum-

ably be obligatory for European insurance companies from January 2016. In Switzerland the

regulatory solvency framework Swiss Solvency Test (SST) is already implemented since 2006

and obligatory for all insurance companies in Switzerland. In this chapter we consider the issue

which conditions are required by the regulator w.r.t. appropriate reserves in solvency frame-

works like Solvency II and SST. Moreover, we point out how these requirements can be fulfilled

in claims reserving frameworks.

A central task in insurance companies is to build up “appropriate” reserves to meet future

loss liabilities and to provide solvency. In the regulatory’ point of view reserves should be

such that they provide protection against almost all possible adverse events. The International

Association of Insurance Supervisors [34] states:

“Solvency – ability of an insurer to meet its obligations (liabilities) under all con-

tracts at any time. Due to the very nature of insurance business, it is impossible to

guarantee solvency with certainty. In order to come to a practicable definition, it is

necessary to make clear under which circumstances the appropriateness of the assets

to cover claims is to be considered,...”

Following this regulatory statement we consider the issue which regulatory conditions are re-

quired for appropriate reserves.

In the previous chapters we introduced distribution-free as well as distribution-based claims

reserving methods, namely LSRMs in Chapter 4 and the PIC reserving method (with depen-

dence) in Chapters 5 and 6. All these methods provide predictors R̂I for the outstanding loss

liabilities RI at time I, see (4.77) for LSRMs, (5.13) and (6.20) for the PIC reserving method

(with dependence). Of course, depending on the method used for claims reserving (i.e. for the

prediction of RI), there may result rather different reserves. However, the regulatory author-

ities do not explicitly require the usage of certain claims reserving methods, see European

107
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Commission [23], FOPI [24] and FOPI [25]. As already mentioned, for example, the regula-

tory authority EIOPA and FINMA only require the reserves to be best-estimate valuation of

liabilities (BEL).

“Mathematisch ausgedrückt sind die versicherungstechnischen Bedarfsrückstellungen

eine bedingt erwartungstreue Schätzung des bedingten Erwartungswertes der zukünfti-

gen Zahlungsflüsse aufgrund der zum Zeitpunkt der Schätzung vorliegenden Informa-

tion. Sie gelten damit als Best-Estimate, sind also weder auf der vorsichtigen noch

auf der unvorsichtigen Seite und enthalten insbesondere keine bewussten Verstärkun-

gen.”

(FINMA Rundschreiben 2008/42)

Remarks 7.1 (BEL)

i) Note that neither in Solvency II nor in the SST exact mathematical definitions are given for

BEL. Of course, the conditional expectation E
[
RI
∣∣DI

]
is the best DI-measurable predictor

for RI when using the conditional MSEP as risk measure. However, many widely used

claims reserving methods do not allow for the exact derivation of E
[
RI
∣∣DI

]
, for example

the CL method, the CLR method and the class of (Bayesian) LSRMs, see Chapters 3 and

4.

ii) The analytical derivation of the conditional expectation E
[
RI
∣∣DI

]
of the outstanding

claims payments at time I is possible for some models such as the PIC model (with depen-

dence) in Merz–Wüthrich [46] and Happ–Wüthrich [31], Hertig’s [32] log-normal

model and the gamma-gamma model in Wüthrich [60]. For more models which allow

for the analytical derivation of the conditional expectation E
[
RI
∣∣DI

]
of the outstanding

claims payments at time I, see Wüthrich–Merz [63].

Following claims reserving tradition we have used the term reserves for the value of the predictor

R̂I of outstanding loss liabilities at time I. From now on we only consider predictors R̂I which

are BEL. In the following we will use the term reserves for the amount (current value of all

assets hold by the insurance company) available to cover all insurance liabilities. This amount

at time I will be denoted by RESI . The acceptability of reserves of an insurance company w.r.t

regulatory solvency requirements is specified in Definitions 7.2 and 7.6.

7.1 Regulatory Requirements on Reserves

In order to build up reserves for outstanding loss liabilities an insurance company is obliged to

predict very carefully all future loss liability cash flows based on the data available. So far we

have discussed the concept of BEL. From the regulatory point of view, it is not acceptable to
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take the amount of BELI as reserves at time I. BELI only reflects the average outcome of loss

liabilities and does not provide any protection against shortfalls in the CDR. At first a consensus

has to be found and formulated which functions and requirements reserves for outstanding loss

liabilities should fulfill. There is a general agreement that reserves should support the short- and

longterm function and solvency of an insurance company. In the short run reserves are required

to provide financial strength and solvency in the current accounting year I, i.e. reserves should

be higher than the “current value” of liabilities. The Solvency II guideline [23] states:

“Liabilities should be valued at the amount for which they could be transferred, or

settled, between knowledgeable willing parties in an arm’s length transaction.”

This requirement will be later referred to as accounting condition, see Wüthrich–Merz [62],

and ensures that there are sufficient reserves to transfer the run-off to a knowledgeable third

party. The BEL does not fulfill this requirement, because no risk-averse market participant

would bear the run-off risk for the price of BEL.

7.1.1 Market-Value Margin

A risk-averse market participant is only willing to take over the run-off of the insurance portfolio

and to transfer the associated liabilities on his balance sheet, if he is paid the amount of BEL

plus a market-value margin (MVM) for bearing the run-off risk. Therefore, the MVM accounts

for the risk aversion of market participants and is a compensation payment for bearing the run-

off risk. The MVM is also often called risk-margin (RM), safety margin (SF) or cost-of-capital

(CoC) margin. The regulatory authority FOPI states for the MVM:

“The Market Value Margin (MVM) is the additional amount on top of the best

estimate which is required by a willing buyer in an arms-length transaction to assume

the liabilities the loss reserves are held to meet...”

In accordance to the last quotation the fair value of liabilities (FVL) in accounting year I is

defined by

FVLI := BELI + MVMI .

In this context the FVLI is the (pseudo-market) price to transfer the run-off of the insurance

portfolio to a third party. The ability of an insurance company to transfer the insurance run-off

portfolio to a third party at time I is required by regulatory authorities, see FOPI [24] and

FOPI [25].

Definition 7.2 (Accounting Condition) In accounting year I reserves RESI fulfill the ac-

counting condition, if the insurance company is able to transfer the insurance run-off portfolio
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to a willing knowledgeable party, i.e.

RESI ≥ FVLI = BELI + MVMI .

2

By definition of the MVMI , the FVLI is the (market) price for which the run-off portfolio can be

transferred to a third party in accounting year I. At this point arises the problem that there is

no market for trading insurance contract liabilities of insurance run-off portfolios and we can not

take the MVM as the difference between market price FVLI of the run-off portfolio and its BELI .

Thus, marked-to-model approaches have to be used to determine MVMs. The International

Actuarial Association (IAA) [33] divides all approaches to the problem of determining (marked-

to-model) MVMs into the following four classes:

• Quantile based methods using risk measures like the VaR, the Conditional Tail Expectation

(CTE) and the ES also called Conditional VaR (TVaR).

• Cost-of-Capital (CoC) approach. CoC is defined as the cost of financing the Solvency

Capital Requirements (SCR) (protection against adverse events, see the definition below)

in all future accounting years up to the complete settlement of the insurance portfolio.

• Discount related methods: The MVM is defined as the difference between i) the discounted

cash flows using risk-free interest rates and ii) the discounted cash flows using the risk-free

interest rate plus a risk-adjustment. Often probability distortions, see Wüthrich–Merz

[62], are used to incorporate risk aversion leading to MVMs.

• Simple methods using a fixed percentage of the BEL as MVM.

The IAA prefers among these four categories the CoC approach, since this approach is most risk

sensitive and used in life as well as in non-life insurance. However, this approach is the most

sophisticated one and is feasible only under restrictive model assumptions or simplifications, see

Robert [51] and Salzmann–Wüthrich [53]. In recent publications probability distortions

and deflators (to model risk-aversion) have been applied to calculate MVM, see Wüthrich et

al. [61] or Wüthrich-Merz [62] in a market-consistent full balance sheet approach.

In the following we present the CoC approach for the calculations of MVMs.

Market-Value Margin in a Cost-of-Capital Approach

In Section 2.6 we saw that the claims development result CDRM,I+1 constitutes the amount

by which BELI is to be adjusted at time I + 1 to have best-estimate valuation of liabilities

BELI+1 also in accounting year I + 1. In order to protect against shortfalls in the claims

development result CDRM,I+1 the insurance company needs to hold sufficient reserves. These

required reserves are determined by a conditional (given DI) risk measure ρI which evaluates
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the shortfall risk of the claims development result CDRM,I+1 and provides protection against

shortfalls. For the definition of conditional risk measures, let (Ω,D,D,P) be a filtered probability

space with σ-field D and filtration D := (Dn)0≤n≤I+J with Dn ⊆ D. Let

L0 (Ω,Dn,P) := {X |X is Dn-measurable and X <∞ P-a.s.} .

be the space of almost sure finite Dn-measurable random variables. For all times n ∈ {I, . . . , I+

J − 1} from now we define the following conditional risk measures which determine the amount

required at time n for protection against shortfalls in the claims development result CDRM,n+1.

Let An ⊂ L0 (Ω,D,P) be such that i) cn ∈ An for all Dn-measurable cn ∈ L0 (Ω,Dn,P), ii)

X + Y ∈ An for X,Y ∈ An and iii) λnX ∈ An for X ∈ An and Dn-measurable λn.

Definition 7.3 (Conditional risk measure) A mapping

ρn : An 7−→ L0(Ω,Dn,P) : X 7−→ ρn(X)

is called conditional risk measure, if it is finite a.s. on Dn-measurable random variables.

2

In a general CoC approach at each time n ∈ {I, . . . , I + J − 1} from today (I) to the last year

before the final run-off (I + J − 1) a conditional risk measure determines the amount ρn which

the insurance company needs to hold at time n for protection against shortfalls in the claims

development result CDRM,n+1 at time n + 1. However, the insurance company does not hold

the amount ρn in its books, but the price for providing this capital. The idea behind that is

to buy at time n a reinsurance contract for the price (premium) of c ρn where c > 0 is the

cost-of-capital rate. According to this reinsurance contract the seller of the contract (another

insurance company or an investor) provides the insurance company with the required amount

ρn at time n. This money will be used to compensate losses in the case of a shortfall in the

CDRM,n+1. Alternatively, one can think of the issue of an insurance bond with the nominal

value ρn with rate of return c at time n. Viewed from time I, this strategy generates CoC cash

flows up to the final settlement of the run-off portfolio

c ρI , . . . , c ρI+J−1. (7.1)

Note that in the general CoC setting the CoC loading ρn in (7.1) at time n ∈ {I, . . . , I + J − 1}
is Dn-measurable (i.e. observable only at time n) but must be evaluated at time I ≤ n. This

means that the insurance company has to build up reserves ĈoC
I

at time I for the CoC cash

flows in (7.1). By setting MVMI,CoC := ĈoC
I

the fair value of liabilities (risk-adjusted reserves)

FVLI at time I is then given by

FVLI = BELI + MVMI,CoC . (7.2)
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Since there are many ways to define the risk measures ρn (from very simple to very sophisticated

risk measures) in the CoC approach, there are various different ways to calculate risk-adjusted

reserves in a CoC setting. For risk measures which reflect the whole run-off risk it is generally

far from straightforward to calculate CoC market-value margins, see Salzmann–Wüthrich

[53], Robert [51] and Wüthrich–Merz [62]. Therefore, in practice the following regulatory

solvency approach is used for the calculation of CoC market-value margins. This approach

meets the simplicity requirements in practice and is proposed in the SST [25] and discussed in

Salzmann–Wüthrich [53].

Definition 7.4 (Regulatory Cost-of-Capital approach) Let φ > 0 be a constant, c > 0

the cost-of-capital rate and

R̂n|I :=
∑

m∈M

I∑

i=0

J−1∑

k=n−i
Ŝ
m|I
i,k+1

be the predicted at time I outstanding loss liabilities after time n ∈ {I, . . . , I + J − 1} and let

Sn+1 ∈ Ln+1. The regulatory risk measure is then defined by

ρn := ρn(Sn+1) := φ
|R̂n|I |
|R̂I |

msepCDRM,I+1|DI [0]1/2 . (7.3)

The regulatory CoC market-value margin is then defined by

MVMI,CoC :=
I+J−1∑

n=I

c ρn = c φ

I+J−1∑
n=I

|R̂n|I |

|R̂I |
msepCDRM,I+1|DI [0]1/2 . (7.4)

2

Remarks 7.5 (Regulatory Cost-of-Capital approach)

i) ρn = ρn(Sn+1) with n ∈ {I . . . , I+J−1} is the amount required for protection against CDR

shortfalls at time n+ 1. In general ρn is Dn-measurable. However, in this regulatory CoC

approach ρn are DI-measurable and hence observable at time I for all n ∈ {I, . . . , I+J−1}.

ii) ρn comprises only risk of the one-year claims development result CDRM,I+1. Run-off risks

for accounting years I + 1, . . . , I + J − 1 are not captured.

iii) The risk in the claims development result CDRM,I+1 viewed from time I is measured by

the conditional MSEP, see (7.3), and not by the risk measures VaR or ES proposed in

Solvency II and SST, see European Commission [23] and FOPI [24]. The constant φ

can be used to compensate for the difference between MSEP and VaR or ES, respectively.

If, for example, the claims development result CDRM,I+1 is assumed to be conditionally

normal distributed

CDRM,I+1|DI ∼ N (µ, σ2) (7.5)
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with mean µ := 0 and variance σ2 := msepCDRM,I+1|DI [0] we choose the parameter

φ :=
Ψ−1
µ,σ2(q)

msepCDRM,I+1|DI [0]1/2
(7.6)

for any security level q ∈ (0, 1), where Ψµ,σ2 denotes the distribution function of a normal

distribution with mean µ and variance σ2. The choice (7.6) replaces in (7.4) the MSEP by

the risk measure VaR. In the same way, the MSEP in (7.4) can be replaced by any other

risk measure like ES as required in the SST.

iv) Equation (7.3) shows that risk-bearing capital ρn(Sn+1) at time n ∈ {I, . . . , I + J − 1} is

proportional to the conditional MSEP of the claims development result CDRM,I+1. The

proportionality factor depends only on the outstanding loss liability predictors R̂I given by

(2.5c). This makes the regulatory CoC approach widely applicable in insurance practice.

vi) The simplifications in the regulatory CoC approach (only the claims development result

CDRM,I+1 is considered and the conditional MSEP is used as risk measure) are necessary

to make the approach accessible to most claims reserving methods. In the case of a general

CoC approach with VaR or ES as risk measure the calculations of MVMs become infea-

sible for almost all claims reserving methods. For two exceptions under restrictive model

assumptions, see Robert [51] and Section 10.3.2 in Wüthrich–Merz [62].

For a detailed discussion of more sophisticated CoC approaches we refer to Salzmann–Wüthrich

[53] and Wüthrich–Merz [62].

7.1.2 Solvency Capital Requirements

The MVM in the accounting condition (cf. Definition 7.2) guarantuees transferability of the

run-off portfolio to a third party in accounting year I. We presented in Definition 7.4 the

regulatory CoC approach which is widely used to provide such MVMs and is applicable to all

methods (except for MCL method) in this thesis. Additionally, the insurance company has to

fulfill the accounting condition also in the next accounting year I + 1 with “high probability”.

This condition will be referred to as insurance contract condition, see Wüthrich–Merz [62],

and maintains that the insurance company has the financial strength to fulfill the accounting

condition with high probability also in accounting year I + 1. The requirement “with high

probability” is determined by a conditional risk measure ρI based on the information DI at time

I. Let ρI be a conditional risk measure as in Definition 7.3 which is additionally translation

invariant, i.e.

ρI(X + c) = ρI(X) + c for all X ∈ AI+1 and DI -measurable c, (7.7)
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see McNeil et al. [41]. Based on this risk measure ρI the solvency capital requirement (SCR),

see European Commission [23] and FOPI [24], for accounting year I is implicitly defined by

FVLI + SCRI := ρI
(
SMI+1 + BELI+1 + MVMI+1

)
. (7.8)

By definition the solvency capital requirement SCRI is the minimum amount needed at time

I in addition to the fair value of liabilities FVLI to pay out in accounting year I + 1 the loss

liabilities SMI+1 and to fulfill the accounting condition with “high probability” measured by ρI .

Definition 7.6 (Insurance Contract Condition) Let ρI be a translation invariant (condi-

tional) risk measure. In accounting year I the insurance contract condition is fulfilled, if

RESI ≥ FVLI + SCRI = ρI
(
SMI+1 + BELI+1 + MVMI+1

)
,

where RESI denotes the value at time I of all assets hold by the insurance company to meet

outstanding loss liabilities.

2

Adding the solvency capital requirements SCRI to the fair value of liabilities FVLI creates an

additional (beside the MVM) protection against adverse events and maintains that the insur-

ance company holds with high probability (measured by ρI) at least the amount of FVLI+1 =

BELI+1 +MVMI+1 at time I+1. That means that if the insurance contract condition is fulfilled

at time I the insurance company fulfills the accounting condition, see Definition 7.2, at time

I+1 (in the next accounting year) with high probability. In this way the regulator can establish

a condition at time I that provides with high probability that an insurance company has the

financial strength to transfer its run-off portfolio to a third knowledgeable party at time I + 1.

7.1.3 Final Regulatory Reserves

The amount of the solvency capital requirements SCRI in (7.8) mainly depends on the choice

of the risk measure ρI . Regulatory authorities propose the following two risk measures:

Value-at-Risk

The Value-at-Risk (VaR) is a quantile-based risk measure and widely used in the banking sector.

It also became a central component of new regulatory requirements in Solvency II.
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Figure 7.1: Reserves consist of BEL, MVM (together satisfying accounting condition) and SCR

(satisfying the insurance contract condition)

Definition 7.7 ((Conditional) Value-at-Risk (VaR)) Let X be a random variable on a

probability space (Ω,D,P) and G ⊆ D a σ-field. For the distribution of X|G with distribu-

tion function FG (in the case of their existence) the conditional VaR for security level α ∈ (0, 1)

is defined by

VaRα[X| G] := inf{x ∈ R|FG(x) ≥ α}.

2

The VaR with α = 99.5% will be required in Solvency II calculations for determining appropriate

reserves, see European Commission [23]. Often the VaR99.5% is associated with an one-in-

200-year event. For a detailed discussion on VaR, see Artzner et al. [7].

Expected Shortfall (ES)

The VaR will be required in Solvency II whereas the ES is the risk measure incorporated in the

SST framework.

Definition 7.8 ((Conditional) Expected Shortfall (ES)) Under the assumptions of Defi-

nition 7.7 the ES is defined by

ESα[X| G] :=
1

1− α

∫ 1

α
VaRx[X| G] dx.

2
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The ES for security level α ∈ (0, 1) is a normalized average over all VaRx[X| G] with x ∈ (α, 1).

If X describes losses the ES can be interpreted as the average loss in the worst (1−α) ·100 % of

the cases. The ES is also called conditional Value-at-Risk (CVaR). Since the VaR is monotone

increasing in α, we obtain VaRα[X| G] ≤ ESα[X]. This implies that for the same security level α

the ES is a more conservative risk measure than the VaR. Moreover, the ES has the advantage

that it better reflects the tail behaviour of a distribution than the VaR. In contrary to the value-

at-risk VaRα with security level α which is by definition the (1−α)-quantile of the distribution

FG the ESα also incorporates the shape of the distribution function behind the α-quantile, i.e.

FG(x) for x ∈ (α, 1). For details and a further discussion on VaR and ES, see Acerbi-Tasche

[1].

The insurance contract condition in Definition 7.6 is now formulated with the explicit risk

measures required under Solvency II and SST:

• Solvency II: VaR99.5% is required as risk measure. This means that

RESI ≥ VaR99.5%

[(
SMI+1 + BELI+1 + MVMI+1

)∣∣DI
]

(7.9)

At time I only a one-in-200-year event leads to a financial situation where accounting

condition in Definition 7.2 can not be fulfilled at time I + 1.

• SST: The risk measure ES99% is required, i.e.

RESI ≥ ES99%

[(
SMI+1 + BELI+1 + MVMI+1

)∣∣DI
]
. (7.10)

Only an event worse than the average loss in the worst 1 % of the cases leads to a financial

situation where accounting condition in Definition 7.2 can not be fulfilled at time I + 1.

However, the exact calculation of the right hand side in (7.9) and (7.10) is infeasible in most

claims reserving methods, because many claims reserving methods allow only for the calculation

of the first two moments (or appropriate estimates) of RI and CDRM,I+1. The knowledge of

the distribution of SMI+1 + BELI+1 + MVMI+1 would allow for the calculation of the right hand

side of (7.9) and (7.10). Unfortunately, this distribution is unknown in most claims reserving

methods.

This shows that the regulatory requirements (accounting condition in Definition 7.2 and insur-

ance contract condition in Definition 7.6) for reserves exceed the possibilities of most current

claims reserving methods. Therefore, an agreement has to be found which simplifications are

permitted to make these requirements accessible to current claims reserving methods.

7.1.4 Simplifications for Regulatory Solvency Requirements

We consider proposals for simplifications given in the SST, see FOPI [24] and FOPI [25], to

make current claims reserving methods accessible for the accounting and insurance contract
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conditions in Definitions 7.2 and 7.6. As already mentioned in the beginning of this chapter

all methods presented in this thesis, namely the class of (Bayesian) LSRMs in Chapter 4 and

the PIC reserving method (with dependence) in Chapters 5 and 6 allow for the derivation of

the following risk characteristics and the MVM, according to the regulatory CoC approach in

predictor prediction uncertainty

RI R̂I msepRI |DI

[
R̂I
]

CDRM,I+1 0 msepCDRM,I+1|DI [0]

(7.11)

Definition 7.4.

Simplification I

Viewed from time I, it is difficult to derive the distribution of the market-value margin MVMI+1

at time I, if the method used for calculating the MVM is sophisticated (for example a general

CoC approach). Therefore, we approximate MVMI+1 by omitting in (7.4) the first summand,

i.e.

MVMI+1 ' M̂VM
I+1

:= c φ

I+J−1∑
n=I+1

|R̂n|I |

|R̂I |
msepCDRM,I+1|DI [0]1/2 .

(7.12)

Since M̂VM
I+1

is DI -measurable we obtain with (7.12) for conditional risk measures, which are

translation invariant, e.g. VaR and ES, for the right hand side of (7.8)

ρI
(
SMI+1 + BELI+1 + MVMI+1

)
' ρI

(
SMI+1 + BELI+1

)
+ M̂VM

I+1
. (7.13)

Simplification II

Applying Simplification I it remains to calculate

ρI
(
SMI+1 + BELI+1

)
(7.14)

for ρI = VaR99.5% and ρI = ES99%. The simplification strategy for the calculation of (7.14) is

as follows:

Viewed from time I most claims reserving methods allow for the derivation of the first two

moments of the quantity SMI+1 + BELI+1. The unknown distribution of the quantity SMI+1 +

BELI+1 is approximated by a log-normal distribution with the same first two moments using

the methods of moments for calibration. This is illustrated in Figure 7.2. The risk measures

ρI = VaR99.5% and ρI = ES99% of the log-normal distribution can then be calculated easily. This
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approximation method simplifies the calculation of the right hand side of (7.14) to the task of

calculating (or estimating) the first two (conditional) moments of the quantity SMI+1 + BELI+1:

Let us assume that the model used by the reserving actuary allows for the calculation of the

conditional expectation of outstanding loss liabilities

BELn = R̂n := E[Rn| Dn] for n ∈ {I, . . . , I + J − 1}, (7.15)

i.e. the outstanding loss liability predictors are best predictors. The tower property of condi-

tional expectations (cf. Williams [59]) then implies

E
[
SMI+1 + BELI+1

∣∣DI
]

= R̂I = BELI

Var
[
SMI+1 + BELI+1

∣∣DI
]

= msepCDRM,I+1|DI [0] .
(7.16)

For the PIC reserving method (with dependence) the condition in (7.15) is fulfilled, see (5.13)

in Chapter 5 and (6.20) in Chapter 6 and hence we obtain the first two (conditional) moments

of the quantity SMI+1 + BELI+1 by (7.16) (for the detailed structure, see (5.15) and (6.23)).

For the class of Bayesian LSRMs we approximate the right hand side of (7.16) by corresponding

estimates given in (4.77) and (4.79). Then we approximate (7.14) by

ρI
(
SMI+1 + BELI+1

)
' ρI (X) with X ∼ LN

(
BELI , m̂sepCDRM,I+1|DI [0]

)
,

where LN denotes a log-normal distribution.

7.2 Example for Regulatory Reserves

We revisit the example given for the Bayesian LSRMs in Chapter 4. In this example we consider

an insurance company with three insurance portfolios 1, 2 and 3, i.e. m ∈ {0, 1, 2} in the LSRM

terminology, where each portfolio corresponds to an individual LoB of the insurance company,

see Tables 7.5, 7.6 and 7.7. In this section we calculate reserves which meet central regulatory

solvency requirements in the SST. The best-estimate valuation of liabilities resulting from the

Bayesian LSRM are given in Table 7.1. The overall best-estimate valuation of liabilities are

then given by aggregation over m ∈ {0, 1, 2}. For the calculation of the market-value margin

MVMI we apply the regulatory CoC approach given in Definition 7.4 and as risk measure for the

solvency capital requirements SCRI we use the expected shortfall ES99% under Approximations

I–II as proposed in the SST. In the run-off trapezoids in Tables 7.5–7.7 there are 21 accident

years, i.e. I = 20, and we consider 11 development years, i.e. J = 10.

Best-Estimate Valuation of Liabilities

For the calculation of the best-estimate valuation of liabilities BEL20 at time 20 we apply the

specific Bayesian LSRM used in Chapter 4. At time 20 the best-estimate valuation of liabilities
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LoB 1 0 1 2 3 4 5 6 7 8 9 10 BELI
0

0 118 369 745 34 0 131 0 0 95 0 0 0

1 124 533 206 27 24 2 25 0 0 -76 0 0

2 556 1648 1290 -496 -15 35 -560 0 12 0 0 0

3 1646 705 141 15 105 0 -4 -853 0 0 0 0

4 317 569 4 0 60 40 0 0 0 0 0 0

5 242 677 299 6 5 20 0 0 0 0 0 0

6 203 409 10 17 28 -20 0 0 0 0 0 0

7 492 913 280 -17 85 -11 62 0 0 0 0 0

8 321 828 579 135 14 0 0 0 0 0 0 0

9 609 500 174 11 -41 2 0 0 0 0 0 0

10 492 1135 -5 50 0 0 0 0 -51 0 0 0

11 397 396 75 21 75 0 0 0 0 0 0 0

12 523 575 377 14 0 0 0 0 0 -8 0 -8

13 1786 1165 419 -341 182 78 36 0 8 -12 0 -4

14 241 224 71 60 56 0 0 -30 3 -5 0 -32

15 327 295 -45 6 0 0 -29 -46 5 -7 0 -77

16 275 245 9 0 12 13 -21 -33 4 -5 0 -43

17 89 238 51 4 19 9 -15 -23 2 -4 0 -11

18 295 6 95 -11 16 8 -12 -20 2 -3 0 -20

19 151 255 104 -11 16 8 -12 -20 2 -3 0 84

20 315 287 110 -11 17 8 -13 -21 2 -3 0 376

Total 267

LoB 2 0 1 2 3 4 5 6 7 8 9 10 BELI
1

0 92 350 99 0 -13 0 0 0 0 0 0 0

1 451 626 8 93 34 5 0 0 0 0 0 0

2 404 313 117 15 0 1 0 0 0 0 0 0

3 203 369 241 62 3 32 2 184 -7 0 -103 0

4 352 482 214 24 16 0 0 0 0 0 0 0

5 504 742 26 81 -68 0 0 0 0 0 0 0

6 509 499 53 0 0 10 0 0 0 0 0 0

7 229 351 50 40 2 0 0 0 0 0 0 0

8 324 491 56 -12 8 -90 0 0 0 0 0 0

9 508 297 101 63 2 0 0 0 0 0 0 0

10 354 287 192 9 0 0 0 0 0 0 0 0

11 431 416 7 61 3 0 0 0 0 0 -8 -8

12 205 625 148 56 14 0 0 0 0 0 -11 -11

13 522 612 -70 138 0 8 0 0 -1 0 -18 -19

14 567 358 -10 42 -4 0 0 7 0 0 -7 -1

15 1238 686 110 -137 0 0 0 10 -1 0 -10 -1

16 355 648 134 27 32 -2 0 7 0 0 -7 -2

17 312 368 2 4 1 -1 0 5 0 0 -5 -1

18 246 106 66 15 1 -1 0 4 0 0 -4 14

19 91 327 42 15 1 -1 0 4 0 0 -4 56

20 130 263 44 16 1 -1 0 4 0 0 -5 322

Total 349

LoB 3 0 1 2 3 4 5 6 7 8 9 10 BELI
2

0 268 188 29 -2 0 0 0 0 0 0 0 0

1 268 252 57 2 0 0 0 0 0 0 0 0

2 385 583 49 2 0 0 0 0 0 0 0 0

3 251 491 53 136 0 0 0 0 0 0 0 0

4 456 449 257 2 0 0 0 0 27 0 0 0

5 477 809 90 0 -3 0 0 0 0 0 0 0

6 405 594 173 24 0 14 0 0 0 0 0 0

7 443 489 20 13 19 8 20 0 0 0 0 0

8 477 569 290 26 13 0 0 0 0 0 0 0

9 581 565 170 46 29 0 0 0 0 0 0

10 401 596 232 19 33 3 -20 0 0 0 0 0

11 474 304 161 382 45 26 0 0 0 0 0 0

12 649 771 287 2 0 0 0 -71 0 0 0 0

13 911 1024 369 3 2 0 0 53 4 0 0 4

14 508 546 47 -30 0 0 0 -1 2 0 0 1

15 389 401 78 41 660 0 0 -1 2 0 0 1

16 373 625 93 64 46 2 0 -1 2 0 0 3

17 276 577 79 16 26 2 0 -1 1 0 0 28

18 465 355 39 19 22 1 0 -1 1 0 0 43

19 343 279 69 19 22 1 0 -1 1 0 0 111

20 254 285 73 20 23 2 0 -1 1 0 0 403

Total 594

Table 7.1: Predicted incremental claim information for LoB 1, 2 and 3
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BEL for each LoB is given in Table 7.1. The overall BEL then result as

BEL20 = BEL20
0 + BEL20

1 + BEL20
2

= 267 + 349 + 594

= 1210,

(7.17)

where BEL20
0 , BEL20

1 and BEL20
2 denote the best-estimate valuation of liabilities for LoB 1, 2 and

3, respectively. In order to fulfill the accounting condition in Definition 7.2, which guarantees

transferability of the run-off portfolio to a third party, we add to the BEL20 in (7.17) a market-

value margin MVM20.

Market-Value Margin

As proposed in the SST guidelines we use the regulatory CoC approach given in Definition 7.4

with a cost-of-capital rate c = 6% to calculate the MVM. We choose the parameter φ = 3,

since this choice provides VaR99.5

[
CDRM,I+1

]
' 3 · msepCDRM,I+1|DI [0]1/2 in the case that

CDRM,I+1 is normally distributed with zero mean and variance σ2 = msepCDRM,I+1|DI [0]. For

the calculation of the MVM according to Definition 7.4 we apply the expected pattern of BEL

given by Table 7.2. The identity msepCDRM,I+1|DI [0]1/2 = 646 is given in (7.18). We obtain for

n 20 21 22 23 24 25 26 27 28 29

R̂n|I 1210 136 -86 -100 -108 -77 -39 -17 -12 -5

Table 7.2: Expected pattern of BEL for calendar years n = 20, . . . , 29

the MVM at time I = 20 calculated by the regulatory CoC approach

MVM20,CoC =
29∑

n=20

0.06 · 3 · ρn

= 0.06 · 3 · (1210 + 136 + 86 + 100 + 108 + 77 + 39 + 17 + 12 + 5)

1210
· 646

= 172.

This implies for the fair value of liabilities FVL20 at time I = 20

FVL20 = BEL20 + MVM20,CoC

= 1210 + 172

= 1382.

This fair value of the run-off liabilities (in a marked-to-model view) is the price the run-off

portfolio can be transferred to a third willing and knowledgeable party. Hereby it is assumed that
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both the insurance company and the third party (investor) agree to use the same claims reserving

method for calculating the best-estimate valuation of liabilities BEL20 and the regulatory CoC

approach for the calculation of the market-value margin MVM20.

Solvency Capital Requirements

We follow the approximation outline given in the SST to derive the SCR. In the specific Bayesian

LSRM under consideration we obtain

BEL20 = 1210,

m̂sepCDRM,21|D20 [0]
1/2

=
√

4802 + 2072 + 2402 + 2942 = 646,
(7.18)

where 480, 207 and 240 are the square roots of m̂sepCDR0,21|D20 [0], m̂sepCDR1,21|D20 [0] and

m̂sepCDR2,21|D20 [0], respectively and 294 corresponds to the covariance terms between the dif-

ferent LoBs (cf. Estimator 4.25).

Now we fit by the method of moments a log-normally distributed random variable X to these

empirical moments. This leads to

E[X]= exp

{
µ+

σ2

2

}
= 1210

Var[X]= exp{2µ+ σ2}
(
exp{σ2} − 1

)
= 6462

which imply µ̂ = 6.973024 and σ̂ = 0.500702. The corresponding density f(x) of X is then given

by

f(x) =





1
0.500702

√
2πx

exp
{
−(log(x)−6.973024)2

2·0.5007022

}
for x > 0

0 for x ≤ 0,

see Figure 7.2 for an illustration. Then the ES can be calculated by the well-known formula

ESα[X]=
1

1− αe
µ+σ2/2Φ(σ − Φ−1(α)),

where α ∈ (0, 1) denotes a security level and Φ the distribution function of the standard normal

distribution. Using the security level α = 99% and the parameter estimates µ̂ = 6.973024 and

σ̂ = 0.500702 resulting from the method of moments we obtain

ES99%[X]= 4108.2.

By Definition 7.6 we obtain for the solvency capital requirements

SCR20 = ρ20

(
SM21 + BEL21 + MVM21

)
− FVL20

' ρ20

(
SM21 + BEL21

)
+ M̂VM

21 − FVL20

= ES99%

[
SM21 + BEL21

∣∣D20
]

+ M̂VM
21 − FVL20

' 4108.2 + 55.7− 1382

= 2781.9. (7.19)
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Figure 7.2: The calibrated log-normal distribution with µ̂ = 6.973024 and σ̂ = 0.500702 used as

an approximation for the distribution of the quantity SM21 +BEL21 and corresponding

expected value, VaR and ES for the security level α = 0.99
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Figure 7.3: Best-estimate valuation of liabilities BEL20, market-value margin MVM20 (together

satisfying accounting condition) and solvency capital requirements SCR20 (satisfying

the insurance contract condition) leading to the overall reserves

Reserves

Summing up the results for best-estimate valuation of liabilities BEL20, the market-value margin

MVM20 and the solvency capital requirements SCR20 we obtain

RES20 = BEL20 + MVM20 + SCR20

= 1210 + 172 + 2781.9

= 4163.9.

This means that the overall reserves RES20 must be at least 4137.1 to fulfill the regulatory

solvency requirements (accounting condition, see Definition 7.2, and insurance contract condi-

tion, see Definition 7.6). For an illustration, see Figures 7.2 and 7.3. At this stage it becomes

obvious that the Simplifications I–II are crucial for the calculation of MVM and SCR in all

distribution-free claims reserving methods.

At a first glance the required amount of RES20 = 4163.9 seems very high and we will analyze

this fact in more detail. The biggest loading of the reserves RES20 is contributed by the solvency

capital requirements SCR20 = 2781.9 and the expected shortfall ES99%

[
SM21 + BEL21

∣∣D20
]

of

the log-normal distribution is the main risk driver of this quantity, see (7.19). The crucial point

is that the ES of the heavy-tailed log-normal distribution mainly depends on the variance of

the log-normal distribution. In (7.16) the variance is replaced by the conditional MSEP of the

Bayesian LSRM. In our specific Bayesian LSRM in Chapter 4 the square root of the conditional

MSEP is about 50% of the predicted outstanding loss liabilities, see (7.18), what is much higher

than in many other claims reserving methods. This is due to the fact that the Bayesian LSRM is

chosen in such a way that all three LoBs are highly correlated, for details see Section 4.3. Hence

the associated MSEP of the CDR is much higher then in most other claims reserving methods

leading to a high SCR. This explains the high value for the reserves RES20.





Conclusions and Outlook

In this thesis we considered the problem of claims reserving as one of the main actuarial tasks in

non-life insurance practice. In Chapter 2 we started with the introduction of typical loss liability

cash flows (claims payments) generated by classical non-life insurance run-off portfolios. For a

complete risk assessment of these run-off portfolios all claims payments at any time in the future

have to be predicted based on all relevant information available at time of prediction (predic-

tion step). In Chapter 3 we gave a brief introduction in classical widely-used distribution-free

claims reserving methods. We saw that most of these classical methods are very limited w.r.t.

the information sources they can incorporate. To solve this problem we presented three claims

reserving methods which can cope with various different sources of information.

Model I: At first we considered the class of LSRMs in Chapter 4. This model class was recently

presented by Dahms [17] and generalizes almost all distribution-free claims reserving methods,

given in Chapter 3. However, expert knowledge w.r.t. the claims development pattern can not

be included in a mathematically consistent way. We considered LSRMs in a Bayesian model

setup and approximated the Bayes predictors by their corresponding credibility based predic-

tors. This led to the class of Bayesian LSRMs. This model class additionally allows for including

expert knowledge/external data w.r.t. the development pattern. Such credibility based methods

are often applied for pricing problems, if there is only a scarce data base available and extern

prior knowledge is to be included.

Models II and III: Beside the class of distribution-free claims reserving methods there are

various approaches to claims reserving based on distributional assumptions. An important rep-

resentative among them is the PIC reserving method introduced in Merz-Wüthrich [46] which

allows to combine paid and incurred data simultaneously. These data sources are often available

in insurance practice and hence should be utilized for prediction purposes. We recapitulated

this model and showed how the one-year CDR prediction uncertainty can be quantified. The

classical PIC reserving method assumes the paid and incurred ratios to be independent. There-

fore, in a second step, we generalized the classical PIC reserving method in that way that it

respects dependence structures often observed in practice in paid and incurred data. This led

to the PIC reserving method with dependence modeling.

Concluding, we considered in this thesis three methods: The Bayesian LSRMs, PIC reserving
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method and PIC reserving method with dependence modeling. All three models allow for the

incorporation of data sources often available in insurance practice and hence take account for

the requirement that all predictions should be based on all data available. Moreover, all three

methods allow for the derivation of best-estimate valuations of liabilities BEL and estimates for

the ultimate claim as well as the CDR prediction uncertainty. On top of that, the PIC reserving

method (with dependence modeling) provides the whole predictive distribution of the ultimate

claim and CDR. As we pointed out in Chapter 7 BEL, MVM and SCR can be calculated in each

model based on the BEL and the CDR prediction uncertainty.

We state two questions to be answered in future research:

1. The (Bayesian) LSRMs is a large class of distribution-free claims reserving methods.

Therefore, it would be helpful to have a criterion for model selection. Having such a

criterion the specific LSRM is chosen which provides the best fit to the data w.r.t. this

model selection criterion. A similar problem remains in the PIC reserving method with

dependence. For the explicit choice of the covariance matrix V an estimator has to be

found which is optimal w.r.t. to some optimality criterion.

2. All calculations in the three methods are provided on a nominal scale, i.e. time value of

money (stochastic discounting) is not considered. Of course, this in-line with the status

quo of classical claims reserving literature but does not accommodate recent developments

of market-consistent valuation techniques, see Wüthrich–Merz [62]. Therefore, we put

the question: To what extend these methods can be generalized to a full market-consistent

valuation approach ?

All three methods allow for the calculation of BEL. Based on these BEL the valuation port-

folio, see Wüthrich–Merz [62], can be calculated for each method leading to a market-

consistent BEL. The assessment of the prediction uncertainty in terms of the MSEP for

the ultimate claims and for the CDR in the market-consistent valuation setup turns out

to be more sophisticated.

For the wide model class of (Bayesian) LSRMs it seems possible to extend this model class

w.r.t. market-consistent valuation. However, to the best of our knowledge no scientific

contribution considering this issue exists so far. Making LSRMs accessible to market-

consistent valuation would allow to consider most distribution-free claims reserving meth-

ods (CL, BF, CLR methods), widely used in practice, in a market-consistent valuation

approach.

Moreover, for the PIC reserving method (with dependence modeling) and for most so far

existing distributional claims reserving methods the question how these methods can be

embedded in a valuation approach should be subject to further research.
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Data Sets

Data sets used in the contributions of this thesis:

i\ j 0 1 2 3 4 5 6 7 8 9

0 1’216’632 1’347’072 1’786’877 2’281’606 2’656’224 2’909’307 3’283’388 3’587’549 3’754’403 3’921’258

1 798’924 1’051’912 1’215’785 1’349’939 1’655’312 1’926’210 2’132’833 2’287’311 2’567’056

2 1’115’636 1’387’387 1’930’867 2’177’002 2’513’171 2’931’930 3’047’368 3’182’511

3 1’052’161 1’321’206 1’700’132 1’971’303 2’298’349 2’645’113 3’003’425

4 808’864 1’029’523 1’229’626 1’590’338 1’842’662 2’150’351

5 1’016’862 1’251’420 1’698’052 2’105’143 2’385’339

6 948’312 1’108’791 1’315’524 1’487’577

7 917’530 1’082’426 1’484’405

8 1’001’238 1’376’124

9 841’930

Table 7.3: Cumulative claims payments

i\j 0 1 2 3 4 5 6 7 8 9

0 3’362’115 5’217’243 4’754’900 4’381’677 4’136’883 4’094’140 4’018’736 3’971’591 3’941’391 3’921’258

1 2’640’443 4’643’860 3’869’954 3’248’558 3’102’002 3’019’980 2’976’064 2’946’941 2’919’955

2 2’879’697 4’785’531 4’045’448 3’467’822 3’377’540 3’341’934 3’283’928 3’257’827

3 2’933’345 5’299’146 4’451’963 3’700’809 3’553’391 3’469’505 3’413’921

4 2’768’181 4’658’933 3’936’455 3’512’735 3’385’129 3’298’998

5 3’228’439 5’271’304 4’484’946 3’798’384 3’702’427

6 2’927’033 5’067’768 4’066’526 3’704’113

7 3’083’429 4’790’944 4’408’097

8 2’761’163 4’132’757

9 3’045’376

Table 7.4: Incurred losses
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i \ j 0 1 2 3 4 5 6 7 8 9 10

0 118 369 745 34 0 131 0 0 95 0 0

1 124 533 206 27 24 2 25 0 0 -76 0

2 556 1648 1290 -496 -15 35 -560 0 12 0 0

3 1646 705 141 15 105 0 -4 -853 0 0 0

4 317 569 4 0 60 40 0 0 0 0 0

5 242 677 299 6 5 20 0 0 0 0 0

6 203 409 10 17 28 -20 0 0 0 0 0

7 492 913 280 -17 85 -11 62 0 0 0 0

8 321 828 579 135 14 0 0 0 0 0 0

9 609 500 174 11 -41 2 0 0 0 0 0

10 492 1135 -5 50 0 0 0 0 -51 0 0

11 397 396 75 21 75 0 0 0 0 0

12 523 575 377 14 0 0 0 0 0

13 1786 1165 419 -341 182 78 36 0

14 241 224 71 60 56 0 0

15 327 295 -45 6 0 0

16 275 245 9 0 12

17 89 238 51 4

18 295 6 95

19 151 255

20 315

Table 7.5: Business unit 1
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i \ j 0 1 2 3 4 5 6 7 8 9 10

0 92 350 99 0 -13 0 0 0 0 0 0

1 451 626 8 93 34 5 0 0 0 0 0

2 404 313 117 15 0 1 0 0 0 0 0

3 203 369 241 62 3 32 2 184 -7 0 -103

4 352 482 214 24 16 0 0 0 0 0 0

5 504 742 26 81 -68 0 0 0 0 0 0

6 509 499 53 0 0 10 0 0 0 0 0

7 229 351 50 40 2 0 0 0 0 0 0

8 324 491 56 -12 8 -90 0 0 0 0 0

9 508 297 101 63 2 0 0 0 0 0 0

10 354 287 192 9 0 0 0 0 0 0 0

11 431 416 7 61 3 0 0 0 0 0

12 205 625 148 56 14 0 0 0 0

13 522 612 -70 138 0 8 0 0

14 567 358 -10 42 -4 0 0

15 1238 686 110 -137 0 0

16 355 648 134 27 32

17 312 368 2 4

18 246 106 66

19 91 327

20 130

Table 7.6: Business unit 2
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i \ j 0 1 2 3 4 5 6 7 8 9 10

0 268 188 29 -2 0 0 0 0 0 0 0

1 268 252 57 2 0 0 0 0 0 0 0

2 385 583 49 2 0 0 0 0 0 0 0

3 251 491 53 136 0 0 0 0 0 0 0

4 456 449 257 2 0 0 0 0 27 0 0

5 477 809 90 0 -3 0 0 0 0 0 0

6 405 594 173 24 0 14 0 0 0 0 0

7 443 489 20 13 19 8 20 0 0 0 0

8 477 569 290 26 13 0 0 0 0 0 0

9 581 565 170 46 29 0 0 0 0 0 0

10 401 596 232 19 33 3 -20 0 0 0 0

11 474 304 161 382 45 26 0 0 0 0

12 649 771 287 2 0 0 0 -71 0

13 911 1024 369 3 2 0 0 53

14 508 546 47 -30 0 0 0

15 389 401 78 41 660 0

16 373 625 93 64 46

17 276 577 79 16

18 465 355 39

19 343 279

20 254

Table 7.7: Business unit 3

136



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 136.367 195.757 213.788 227.545 240.136 249.647 260.260 271.207 285.847 290.814 300.035 305.988 312.930 316.524 319.988 323.268 325.798 326.231 327.722 328.616 332.724 337.137

1 143.135 212.658 233.989 252.155 267.259 280.669 295.863 310.584 322.938 332.021 341.670 349.924 356.908 361.126 367.795 370.548 373.051 376.942 378.314 379.716 381.388

2 146.469 219.759 241.983 257.063 272.848 285.437 313.398 329.903 340.223 353.075 362.015 371.042 375.094 379.430 382.385 389.057 391.468 395.824 397.531 399.724

3 158.518 232.128 256.752 276.593 292.807 310.757 322.837 339.751 352.613 366.707 378.735 385.394 394.505 402.618 409.044 412.422 415.624 421.409 424.117

4 158.633 224.457 249.797 267.676 285.455 303.548 320.282 340.976 352.487 361.300 374.500 388.449 397.848 402.989 408.151 414.016 416.098 419.528

5 153.215 225.074 249.688 267.753 285.294 307.116 324.791 341.238 353.420 369.549 382.016 390.301 395.206 403.634 406.302 407.819 411.082

6 153.185 215.699 235.609 255.384 272.749 290.988 304.081 319.717 334.457 352.992 372.879 383.645 394.634 401.194 407.377 410.387

7 150.974 217.545 242.400 260.473 279.436 299.797 317.991 336.679 352.929 373.339 397.542 407.145 416.136 429.445 435.980

8 141.432 205.018 225.339 241.315 260.098 277.061 296.286 312.645 330.538 338.629 349.021 357.775 366.468 372.513

9 141.554 207.510 230.597 250.393 272.538 294.008 321.253 346.836 366.865 381.705 391.678 404.292 411.770

10 141.899 206.157 229.510 246.710 262.735 280.171 303.956 324.354 343.041 356.874 368.163 380.622

11 145.037 215.127 240.970 260.457 280.524 304.118 322.331 345.629 357.081 370.673 384.000

12 135.739 203.999 232.176 250.014 277.500 298.976 323.555 339.853 352.098 364.883

13 135.350 209.545 236.220 256.710 276.576 293.467 305.436 320.329 336.143

14 132.847 203.592 227.902 249.914 270.477 286.129 301.347 317.801

15 135.951 205.450 229.862 250.624 266.371 280.202 300.874

16 131.151 193.635 215.365 234.202 247.325 262.034

17 130.188 190.262 213.586 226.115 242.768

18 118.505 174.622 192.852 206.808

19 118.842 177.671 199.872

20 121.011 185.856

21 132.116

Table 7.8: Cumulative claims payments Pi,j , i+ j ≤ 21, from a motor third party liability

1
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 370.661 369.491 358.572 344.401 346.665 342.370 344.807 344.529 346.520 344.774 345.346 344.592 339.747 340.214 338.824 338.687 338.119 337.285 336.834 336.271 336.647 337.137

1 419.289 416.218 393.048 384.661 383.508 376.001 382.602 383.968 384.388 383.803 387.951 389.023 386.576 389.510 388.477 388.833 389.687 390.600 389.190 388.147 388.548

2 437.568 427.975 415.222 407.791 406.460 418.175 411.091 406.724 410.959 413.780 414.044 410.973 410.142 409.120 410.870 414.860 412.483 410.468 410.964 410.768

3 450.610 448.418 431.294 424.361 432.825 427.773 436.947 434.592 437.282 437.315 438.579 439.037 440.049 439.942 439.561 437.789 437.218 439.781 438.979

4 468.979 450.942 432.591 435.162 423.583 420.876 424.588 424.632 429.180 431.788 429.673 433.284 430.848 432.002 431.379 429.732 429.539 428.875

5 443.189 434.315 433.325 425.332 424.921 422.432 421.233 422.904 424.484 426.661 431.462 431.676 434.368 433.599 431.820 432.994 433.037

6 435.307 422.149 412.660 405.190 402.367 402.597 411.096 412.873 420.973 432.325 437.067 433.610 435.824 435.656 434.796 436.011

7 475.948 438.817 432.413 436.710 436.904 443.156 448.347 463.171 468.412 476.070 474.593 473.324 477.058 472.283 473.524

8 447.021 422.678 405.919 399.462 400.047 398.297 406.939 404.834 409.056 411.421 412.002 410.739 409.744 413.587

9 457.229 444.054 436.390 436.853 442.292 453.494 456.363 460.272 459.591 456.975 455.336 454.500 453.068

10 462.989 464.776 447.833 432.893 432.124 442.743 451.994 451.534 450.528 450.845 448.398 442.810

11 484.915 468.800 454.958 447.601 461.106 470.358 465.346 468.879 461.537 456.753 453.919

12 462.028 429.610 438.929 454.797 468.116 468.721 469.907 463.823 459.524 452.385

13 450.908 456.030 476.259 483.129 476.952 464.941 453.391 445.089 434.103

14 426.385 428.504 456.796 449.886 445.397 432.021 412.353 402.565

15 461.078 477.458 480.960 471.869 462.978 444.670 437.203

16 444.123 430.684 433.664 419.422 403.126 396.903

17 433.830 407.931 393.723 371.800 361.853

18 418.202 374.855 338.598 324.790

19 426.853 373.282 351.590

20 410.810 394.477

21 405.597

Table 7.9: Incurred losses Ii,j , i+ j ≤ 21, from a motor third party liability

1
3
8
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