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Abstract 
 
Nonparametric regression, or smoothing consists of using the data to guide the 

selection of a model from a large class of flexible functions. Eilers and Marx (1996) 

introduced P-splines as a method of smoothing, in which B-splines and a roughness 

penalty based on differences are combined. We shall see that this class of smoothers 

are sufficiently flexible for a wide variety of situations including linear modelling and 

generalized linear modelling. We extend the method to two dimensions and apply the 

model to analyse a large set of mortality data indexed by age and year of death.  
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CHAPTER  

       1 
 

Introduction 
 

In the recent years, statistical analysis has covered 

considerable ground in the area of nonparametric 

smoothing. There has been an upsurge of interest and 

activity which has led inevitably to a specialization of the 

subject matter. There are a number of reasons for this 

growth of popularity: parametric modelling is usually not 

adequate to fully model large data sets; graphical design of 

the results has become more desirable and easier to use; 

exploratory analysis is now a more common approach for 

data analysis.  

 

Many methods for non-parametric modelling have been 

proposed and studied. Some of the most popular ones are 

mainly data analytic and they do not make particular use of 

statistical models. The roughness penalty method on the 

other hand, amenable to a very complete and elegant 

mathematical way, provides the connecting link between 

classical and non-parametric statistics. Being only one of a 

number of available curve estimation procedures it has the 

conceptual advantage to allow explicit specification of the 

 6
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way in which adherence to the data is to be measured 

providing a unifying approach to a wide range of smoothing 

problems. It balances fidelity to the data with smoothness of 

the fitted curve allowing the latter to be incorporated in a 

natural way to regression analysis.  One of the oldest 

applications of the roughness penalty approach (Whittaker, 

1923) is in the smoothing of life tables for actuarial 

purposes.  

   

Eilers and Marx (1996) provided a very interesting and 

flexible addition in  nonparametric curve fitting based on 

the idea of the roughness penalty. They proposed P-splines 

as an effective tool for flexible smoothing which is basically a 

combination of B-splines and difference penalties. The 

proposed method has many attractive and useful  properties 

and a short overview of those will be given later.  

 

 

Our main theme in this project is the applicability of the 

roughness penalty approach in modelling human mortality. 

We use the method to smooth and analyse a large set of  

mortality data,  a key component of actuarial work. We 

follow Eilers and Marx in using P-splines as our smoothing 

procedure. Making the rational assumption that mortality 

 7
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rate varies smoothly with age, we graduate crude rates to 

obtain estimates of the underlying true mortality.  

 

Although our primary emphasis in this project is on 

smoothing problems we found it helpful to start in chapter 2, 

by developing the classical regression models which are 

closely related to our discussion. Before starting a formal 

and comprehensive development of the idea of roughness 

penalty we give a brief description of what is meant by a B-

spline since it plays a pivotal role in our smoothing 

methodology. We then extend the ordinary least squares to 

incorporate B-splines as a basis for our regression and via 

some numerical examples we demonstrate the idea of P-

spline regression.  

   

In chapter 3 we set out the way in which the roughness 

penalty method can be applied in the broader context of 

generalized linear models. We start by explaining some 

essential background of this class of models and provide an 

example that arises from the actuarial context. We then 

consider the theoretical development of P-splines as a 

method of smoothing and illustrate the idea with the analysis 

of one-dimensional count data with Poisson errors. The 

illustrations give some flavour of the analysis of the two-

dimensional mortality data covered in chapter 4.   
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Chapters 2 and 3 cover the theoretical background, simplify 

and clarify the subsequent discussion of the last chapter, 

where we consider the extension of P-spline smoothing in 

two-dimension. We see that there is a natural generalization 

of the method to two-dimensions and that the attractive 

features of the one-dimension methodology carry over. We 

illustrate our remarks with the analysis of a large set of 

mortality data indexed by age and year of death provided by 

CMIB.  

 

In theory the estimation procedure might seem quite 

straightforward but in practise  it  

 

 

involves considerable computation. However  recent 

advances  in  computer software,  

the variety and rapid development of computing facilities 

and the existence of publicly-available software has made 

the applications of these statistical techniques feasible. The 

development of computer programs for numerical 

optimisation of non-linear functions are now included in 

statistical packages making the numerical aspect of the 

problem manageable. For the computation of the regression 

results we used routines available within the statistical 

 9
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software R. This is a free downloadable package which 

provides most of the functionalism of the S-Plus program. 

The two languages have very similar syntax.  
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CHAPTER  

       2 
 

Regression using B-splines 
 
2.1 REGRESSION MODELS 

2.2 B-SPLINE REGRESSION  

2.3 ORDINARY LEAST SQUARES WITH B-SPLINE BASIS 

2.4 PENALIZED LEAST SQUARES  REGRESSION  

2.5 OPTIMAL SMOOTHING IN PENALIZED LEAST SQUARES REGRESSION 

 
2.1 REGRESSION MODELS 
 
Many statistical investigations are concerned with providing 

models that are needed to predict one or more variables in 

terms of others. Although it would be desirable to be able to 

predict the exact lifetime of a person, the outcome of next 

week’s lottery or the sales of a new product this is not of 

course possible. However, statistics has managed to provide 

us with models that in many cases enable us to deal 

effectively with situations involving uncertainties.  The 

expected lifetime of an insured person for example, would be 

a satisfactory piece of information for an actuary required 

to set a life insurance premium. 
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Regression analysis is an approach that may be used for the 

study of relations between variables. Linear regression is one 

of the oldest and most widely used statistical techniques. 

Given data points (X,Y) the natural way to view linear 

regression is as a method fitting a model of the form 

 

    Y ebXa ++=    (2.1)  

 

to the observed data, where a, b represent unknown constant 

parameters, called “regression coefficients”,   and e is the 

random “error” of the model which is assumed  

 

 

to have a normal distribution with mean value of zero and 

unknown variance σ2. 

 

The first purpose of regression is to provide a summary of 

the observed data in order to explore and present the 

relationship between the design variable X and the response 

variable Y. In many problems we are dealing with a data set 

that gives the indication (possibly through a plot of the 

observed values) of simple linear regression of the form  

(2.1). It is obvious and natural then to draw a straight line to 

emphasize the linear trend. Linear regression automates this 

procedure and ensures comparability and consistency of 

 12
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results. The other main purpose of regression is to use the 

model (2.1) for prediction. Given any point X an estimate of 

the expected value of a new observation Y at the point X is 

given by Xb̂a where ˆ + â  and b̂  are estimates of  and b , the 

parameters of the problem. The fitting of the simple linear 

relation between Ys and Xs requires us therefore to choose 

the values of the parameters that give the patterned set Y

a

iˆ  

closest to the data Yi. To do so requires some measure of 

discrepancy to be defined between the observed and fitted 

values. Classical least squares chooses as the 

measure of discrepancy. Estimates of the parameters are 

obtained by minimizing the sum of squares of deviations of 

the observed Y, from the assumed true model. The aim is to 

minimize the sum of squared  differences between observed 

and fitted values.Let us consider a very simple data set, 

which will be useful in illustrating the above. 

∑
i

iiy 2)ˆ( − y

 

EXAMPLE 2.1 

The number of weeks that 10 female patients had been on a 

diet and the corresponding weights losses are displayed in 

the following table: 

    Weeks    )(Weight∆  
x y 
1 1.5 
2 3.3 
2 2 
3 3.8 
4 7 
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6 8.5 
7 13 
9 13.2 
12 16 
14 20 

 14
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Plotting these data as in Figure 2.1a, we observe that the 

pattern followed suggests that the regression is 

approximately linear and that a straight line would provide 

a good fit. Using the R-program we find that the values of 

the regression coefficients are: 276666.0ˆ =a , b  and 

hence we can calculate the fitted values using the fitted 

regression line . The fitted line is shown in Figure 

2.1b. 

4205556.1ˆ =

xbay ˆˆˆ +=

        

     Figure 2.1a: Data on number of weeks          Figure 2.1b: Fitted regression line of  

      being on a diet and observed differences           example 2.1  

      between the weights before and after the diet. 

 

Whilst the simple linear model is sufficient to deal with a 

number of problems of interest, there are many situations in 

practice where observed responses are influenced  

simultaneously by several variables. Statistical analysis of 

the dependence on explanatory variables then usually leads 
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to the use of Multiple linear regression. In general therefore, 

with a dependent variable Y and p independent variables X1, 

X2…,XP we seek for a relationship of the form:  

 

    (2.2) eXb...XbXbbY pp22110 +++++=

 

The same principles of estimation apply with multiple 

regression as apply with simple linear regression. 

 

 

It is undesirable to include too many variables in the 

regression equation since the work of calculation increases 

rapidly with the number of variables and furthermore a 

model with many variables it can seldom be easily applied in 

subsequent prediction. 

 

Another type of regression is the polynomial regression. The 

fitting of polynomial regression equation defined by 

polynomials of the form  

 

    (2.3) eXb...XbXbbY p
p

2
2

1
10 +++++=

 
is in principle no different from the fitting of multiple regression equation as defined 

previously. The different powers of X simply play the role of the different 

independent variables in the earlier discussion. However, a polynomial is usually 

fitted in order to smooth out fluctuations in the data caused by random errors and not 

 16
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because it is thought to represent the actual relationship. It should be pointed out, that 

the fitting of polynomials of high degree to the observed data is seldom of much 

value. At first sight it might seem as though a good model is one that fits the data very 

well. By including enough parameters in our model (high degree of polynomial) we 

can make the fit as close as we please. In doing so, however we have achieved no 

reduction in complexity, no simple theoretical pattern of the data. Simplicity is also a 

desirable feature   of   a  model as  it  gives  better  predictions than  one  that includes 

unnecessary extra parameters. If a model is made to fit very closely to a particular set 

of data then it will not be able to encompass the inevitable changes that will be tend to 

be necessary when another set of data related to the same phenomenon is collected. 

 

2.2  B- SPLINE REGRESION  

 

For situations where a simple polynomial or nonlinear regression model is not 

suitable, the spline provides a flexible smooth function for a set of observations. 

 

Smoothing splines have been extensively used for regression 

type  problems. They are formed mathematically  from  

piecewise  polynomial  functions  satisfying  continuity  

 

 

properties. There is an enormous literature on splines, most 

of it concerning their numerical-analytic rather than 

statistical properties. In this project we are dealing with B-

splines, a type of spline that are perhaps the most popular in 

computer graphic applications. They are attractive as base 

functions for non-parametric modelling and are constructed 

from polynomial pieces connected at certain values of x, the 

knots. Very simple examples of B- splines with degree 1 and 
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2 respectively are shown in figures 2.2a and 2.2b. The first 

figure illustrates 4 B-splines of degree one, each one based 

on 3 knots and consists of two linear pieces, whilst the 

second figure displays 4 B-splines of degree two consisting 

three quadratic pieces, joined at two knots. The splines here 

are based on four adjacent knots and at the connecting 

points the first derivatives of the polynomial pieces coincide. 

We note that first degree B-splines overlap with two 

neighbours whereas second degree B-splines overlap with 

four neighbours (provided that they are not the leftmost or 

rightmost splines). We could construct as large set of B-

splines as we want by simply introducing more knots.  

  
      Figure 2.2 a: B-splines of degree 1               Figure 2.2 b: B-splines of degree 2  

 

To put B-splines in a more formal and general framework we consider the properties 

of a B-spline of degree q as given by Eilers and Marx (1996): 

 

� it  consists of q+1 polynomial pieces, each of degree q 

� the polynomial pieces join at q inner knots 

� at the joining points, derivatives up to order q-1 are continuous 
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� the B-spline is positive on a domain spanned by q+2 knots; everywhere else 

is zero 

� except at the boundaries, it overlaps with 2q polynomial pieces of its 

neighbours 

� at a given x, q+1 B-splines are nonzero. 

 

Once we are given the number of knots it is easy to compute B-splines recursively for 

any desired degree of the polynomial. However, B – splines of third degree are by far 

the most commonly used in practice. They interpolate the range between the knots by 

a third order polynomial ensuring that the first and second derivatives are continuous 

at these points. Cubic B-splines have a fairly pleasing appearance since discontinuities 

in third and higher order derivatives are not visible.  

 

Many   papers and  a  number of  books have appeared discussing how we  could cope 

with the delicate problem of choosing the number and positions of knots. The optimal 

choice is a complex numerical workload and in this project we adopt what Eilers and 

Marx proposed (1996) i.e. a relatively large number of knots in an equidistant grid.  

 

2.3 ORDINARY LEAST SQUARES WITH B-SPLINES BASIS 

 

In this section we return to the fundamental problem of computing the minimiser of 

the residual sum of squares when we are given a data points and we need to condense 

them by fitting them to a model in the form of a parametric equation. 

 

We consider the case where we are dealing with a simple linear regression of the form 

(2.1). 

 

The aim is to find the regression coefficients by using the criterion of least squares 

where we want to minimize the function ∑
=

−−=
n

i
ii bxaybaS

1
)(),( 2 .By differentiating 

with respect to a and b we get the normal equations of the form: 
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∑
=

n

i
iy

1
=  +  ,an ˆ ∑

=

n

i
ixb

1

ˆ      =  + bi

n

i
ixy∑

=1
∑
=

n

i
ixa

1
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=

n

i
ix

1
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We can write these in matrix form as  













=



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


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
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












∑

∑

∑∑

∑
ii

i

ii

i

yx

y

b

a

xx

xn

2

 

 

Let’s define the basis matrix  as  and   ,X























=

−

n

n

x
x

x
x

X

1

.

.

.

1
.
.
.
1
1

1

2

1

,













=Θ

b

a



















=

ny

y

y
.
.
.

1

 

 

Then , XX
xx

xn
T

ii

i

=














∑∑

∑
2

yX
yx

y
T

ii

i

=














∑

∑
 and so we get .yXˆXX TT =Θ  

 

The estimate of Θ is therefore given by  

 

   (2.4) yX)XX(ˆ T1T −=Θ

 

and the fitted values by  

 

   (2.5) HyyX)XX(XˆXŷ T1T === −Θ

 

where H is known as the hat matrix since it maps the vector of observed values to 

their predicted values. It can be proved that the same relationship holds for regression  
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of     the        form     (2.2)      and     (2.3)     where         and  























=

n2n1

2212

2111

xx1

...

...

...
xx1
xx1

X

 

























2
nn

2
22

2
11

xx1

...

...

...
xx1
xx1

 respectively for p=2. 

 

Note that the trace of the hat matrix gives the number of parameters of the model. For 

example in the simple linear regression model using the general relationship for 

matrices, tr(AB)=tr(BA) we get: tr(H) = tr(X(XTX)-1XT) = tr((XTX)-1 XTX) = tr(I2) = 2 

 

By simply replacing the basis matrix X  with the B-spline matrix it can be shown that   

the above   relationships also apply   when we do regression of the form y = BΘ + ε  

using B-spline basis, where Θ is a vector of the regression coefficients. Splines are 

therefore  linear  smoothers since the fitted values ŷ = (ŷ1,ŷ2…ŷn)T can  be  written as a 

linear function of the observed values y=(y1, y2, …, yn)T , that is ŷ = Hy. The connection 

with classical regression motivates the calculation of the degrees of freedom that give 

an indication of the effective number of parameters fitted. Just like the case of 

ordinary regression the degrees of freedom of the model are given by the trace of the 

hat matrix and that arises as a natural property of these linear models.  

 

We illustrate the least squares smoothing method in the following example where we 

choose the basis function to be a set of cubic B-splines on a fixed grid of knots 

equally spaced to cover the range of the points x.  
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EXAMPLE 2.2 

We generate some data (x,y) as follows:     Let      x=1,2,…,50,       E(y)=x3 – 7x + 11,  

y=(E(y) – min(E(y))/[max(E.y) – min(E(y)]+rnorm(50,0,0.1). Let ndx denote the 

number of intervals in the domain of x which when added to the degree of the B-

spline basis gives the effective number of parameters fitted (number of B-splines).  

The B-spline base matrix can be generated with the aid of the R-program using a 

certain algorithm. 

Considering the notation used in the normal equations before and using the B-spline 

matrix instead of X, the estimates of y are given by ŷ=B(BTB)-1BTy. 

         Figure 2.3: … observed data set (x,y) 

                                      observed x-values against fitted y-values   
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We observe that by using large number of intervals in the domain i.e. a large number 

of B-splines, we obtain a very good fit of the data. However, the model is not that 

appealing, for  such large numbers, if we consider the high complexity of the model 

associated with that values. The increased number of the degrees of freedom indicates 

that complexity. A natural need that therefore arises is to cope with the unappealing 

characteristic of overparameterization which tends to undersmoothing and in practise 

yield curves that are too “wiggly”. We should consider a way that best combines 

smoothness of the fitted model and closeness to the data so that the choice of ndx 

would not influence the necessary compromise.   

 

2.4 PENALIZED LEAST SQUARES REGRESSION  

 

The underlying principle in penalized least squares estimation is to estimate the 

unknown smooth (regression) function by explicitly trading off fidelity to the data 

with smoothness of the estimate. We obtain this by adding a roughness penalty term 

to the residual sum of squares. The addition of the roughness penalty ensures that the 

penalized least squares estimator is determined not only by its goodness-of-fit to the 

data as quantified by the residual sum of squares but also by its smoothness enforced 

by the penalty.  

 

Eilers and Marx (1996) defined the penalty function to be 

based on finite differences of the regression coefficients of 

adjacent B-splines. The penalized spline estimator is then 

called a P-spline.  This approach reduces the problem of 

choosing the smoothing or interpolating curve from being 

infinite-dimensional to finite-dimensional and encourages 

smoothness by forcing the coefficients to be close.  
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The difference penalty is easily introduced into the 

regression equations. The parameters are estimated by 

minimizing the function: 

])...()()([)()( 2
1

2
32

2
21

1

2

1
kk

k

j
jiji

n

i
byS Θ−Θ+Θ−Θ+Θ−Θ+Θ−=Θ −

==
∑∑ λ  which can 

also be written as  

 

 

    ΘΘλΘΘΘ ΤΤ DD)By()By()(S T+−−= (2.6)  

 

where λ  is the smoothing parameter, its coefficient the roughness penalty and D a 

matrix of differences with k-1 rows and k columns of the form                                    

 

D= 

 ( k is the number of columns in  


















−

−
−

11.000
00....
...10.
00.110
00.011

 

B depending on the number of knots and the degree of the B-spline).  

 

We shall not for the moment discuss the choice of the 

smoothing parameter. This will be considered in detail later 

on. Note that   we could also   have used quadratic penalty   

of the form (θ1-2θ2-θ3)2+...+(θκ-2-2θκ-1+θκ)2 and with proper 

modification of the D matrix equation (2.6) would also hold.   
 

Using standard calculus as in 2.3, it can be shown that the penalized estimator is given 

by 

 

                                (2.7) yB)DDBB()(ˆ T1TT −+= λλΘ
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The effective dimension of the P-spline fit is approximately the trace of the hat matrix 

as proposed by Hastie and Tibshirani (1990). 

 

We applied penalized least squares estimation on the data set of example 2.3. We used 

cubic B-splines as base functions and a second order penalty on the regression 

coefficients. We considered several values of the smoothing parameter and kept the 

number of intervals fixed at 35. The graphical presentation is shown in figure 2.4. 

 
Figure 2.4 : Penalized least squares estimation with cubic B-splines base function and second 

order roughness penalty. 
 

We note that for small values of λ, the estimated curve tracks the data closely. In the 

limiting case where 0→λ  the fitted curve will approach that shown in figure 2.3 (for 

ndx=30), yielding a wiggly undersmooth curve. For large values of the smoothing 
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parameter the estimated curve displays little curvature but fairly poor fit. In the 

limiting case as ∞→λ  the curve will approach the linear least squares regression 

line. Note also that as lambda increases the trace of the hat matrix i.e the effective 

dimension of the fitted curve decreases. 

 

The above remarks lead us to the conclusion that the smoothing parameter determines  

 

 

the strength of the penalty and balances the two criteria of smoothness of the fitted  

model and closeness of the fit of the model to the data. We need therefore some way 

to determine the optimal value of it and subsequently the “adequate” level of 

smoothing.  

 

2.5 OPTIMAL SMOOTHING IN PENALIZED LEAST SQUARES 

REGRESSION 

  

The problem of choosing the smoothing parameter can be approached by an automatic 

method whereby its value is chosen by the data. In order to determine an “optimal” 

level of smoothing one should consider measures for the complexity and the quality 

of fit of a model. We already mentioned that the trace of the hat matrix could be 

interpreted as the effective dimension of the fitted curve. For  the quality of fit we 

could consider the residual sum of squares: 

 

SSE=(y-ŷ)T(y-ŷ)       ŷ=Hy SSE= [(I-H)y]⇒ T[(I-H)y] = yT(I-H)T(I-H)y = yT(I-H)2y 

and dividing by n (the number of observations) we get SSE/n=σ2. 

 

Several model selection criteria were evaluated to select the smoothing parameter in 

penalized regression splines using basically the above arguments and giving quite 

similar results. One of the most acceptable and successful is the Akaike information 

criterion (AIC) which requires the value of λ that minimizes log σ2 +2 tr(H)/n.   

 

Spline smoothing estimation with various smoothing parameter selectors is available 

in various statistical packages including S-PLUS, JMP, SAS/INSIGHT and XploRe. 
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With the aid of the S-PLUS program we applied the AIC for the data set of example 

2.2. Using cubic B-splines as our basis for the regression and a second order penalty 

on the regression coefficients we obtained the values of lambda that minimizes AIC 

for different values of ndx. The results are displayed in the following table and the 

plots of the fitted curves are shown in figure 3.5 

 

NDX Lambda Trace AIC
5 0.59 3.98 -4.545460
10 0.63 4.1 -4.534544
15 22.46 4.14 -4.532176
20 54.52 4.16 -4.531066
25 100 4.23 -4.530431
30 187.05 4.28 -4.530257

 

Note how the optimal value of lambda increases as ndx increases. Moreover the 

dimensionality of the problem is remarkably reduced. Note the corresponding values 

of the trace of the hat matrix when we used ordinary least squares for our estimates 

for example 2.2. The effective number of parameters fitted would increase as the 

number of intervals in the domain increases reaching the value of 33 for ndx=30. 

With the introduction of penalties we manage to keep that value close to 4.  

Furthermore all ndx give pretty much the same fitted values and that solves the 

problem of choosing the optimal value of B-splines for our regression.  
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        Figure 2.5: Penalized regression using AIC criterion for several values of ndx . 

 

CHAPTER  
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Generalized linear models 
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3.4 SMOOTHING MORTALITY DATA WITH PENALTIES 

3.5 OPTIMAL SMOOTHING 
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3.1 AN OUTLINE OF GLM 
 

In chapter 2 we considered standard linear regression 

models where we assumed that the response variables are 

independent, normally distributed, with constant variance. 

However, that is not always the case. A wide variety of 

models with a categorical response is a typical example 

where the assumption of continuity and normality cannot be 

accepted as reasonable. Consider for example a researcher 

interested in predicting the number of children in a family 

as a function of income, education and several other socio-

economic variables. The dependent variable in this case 

(number of children) is discrete and thus the linear multiple 

regression model would be  inadequate to use for 

interpreting the data.    
 

Although several non-linear or non-normal regression models have been studied 

individually for years, it was only in 1972 that Nelder and Wedderburn demonstrated 

the idea of Generalized Linear Models (GLM) by providing a unified framework for a 

class of such models. Since then, the class of GLM is one of the most frequently used 

statistical tools of the applied statistician, exerting an enormous influence in this area 

of mathematics. GLM are essentially an extension of  classical  linear models, flexible 

enough to  be  used  for  regression modelling for non-normal  data but also  allow for  

 

 

 

most of the familiar ideas of normal linear regression to carry over. The important 

assumption of independent observations made in linear models of classical regression 

analysis is also a characteristic of GLM. 
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Let’s introduce the exponential family of distributions and then define generalized 

linear models.  

 

If a random variable Y, has probability function (if discrete) 

or probability density function (if continuous) that can be 

written in the form 
 

 fY(y,θ;φ) = exp{[yθ-b(θ)]/α(φ) + c(y,φ)} (3.1) 

 

 for some functions a( ), b( ) and c( ) and some parameters θ, φ then Y is said to have 

a distribution that belongs to the exponential family. The parameter θ is called the 

natural parameter of the exponential family, specific to Y, which will carry 

information from the explanatory variables and φ is the scale parameter. The specific 

form of the distribution is determined by the functions a,b and c.  

 

The exponential family just defined includes as special cases the normal, binomial, 

Poisson, exponential and gamma distributions.  GLM are based on the exponential 

family.   

 

A generalized linear model has the following components: 

 

(i) response variables Y1,…,Yn which are assumed to be independent and  

having the same distribution coming from the exponential family 

(ii) a set of parameters whose values are 

unknown and have to be estimated from the data. 

( )Tpβββ ..1=

(iii) a set of explanatory variables  
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(iv) a link function g, monotonic and differentiable such that  

∑
=

==
p

j
jijii xg

0
)( βηµ , i= 1,2,…,n where )( ii YE=µ and iη  is the linear      

predictor.  

 

The general form of a GLM is Yi = µi + εi,  i = 1,…,n. 

 

While in theory the link function may be any monotonic and 

differentiable function, in practice it is chosen depending on 

the assumed distribution of the response variables. So for 

the Normal distribution we use the identity link g(z)=z, for 

the Binomial the logit link g(z)=log(z/1-z), for the Poisson the 

log link g(z)=log(z) etc. Other functions of course may be 

used. The particular choice of link function for each 

particular exponential family density (3.1) has particular 

significance mathematically and to a lesser extent 

statistically. If g is the inverse of the function b’ then θ 

coincides with the linear predictor and we call this 

particular g the canonical link function for the model. This 

choice slightly simplifies the algebra and the algorithms. 

 

The assumptions made under a GLM are loose enough to 

accommodate a wide class of models useful in statistics but 
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tight enough to allow the development of a unified 

methodology of estimation.  

 

To summarize, a generalized linear model differs from the 

general linear model in two important aspects. Firstly, the 

response distribution can be non-normal and furthermore 

discrete and secondly the response variable values are 

estimated from a linear combination of predictor variables, 

which  are related to the dependent variable via a link 

function. The general linear model can be considered a 

special case of the GLM where the dependent variable 

values follow the normal distribution and the link function is 

a simple identity function.   

 

 

Parameter estimates are obtained using the principle of 

maximum likelihood which requires iterative re-weighted 

least square procedure. There are many iterative methods 

for Maximum Likelihood (ML) estimation in the GLM of 

which the Newton-Raphson and Fisher Scoring method are 

among the most efficient and widely used. GLM can be 

fitted and evaluated using SPLUS, SAS, GLIM,R and a 

number of other statistical packages.  
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3.2 AN ACTUARIAL APPLICATION OF GLM  

 

A fundamental concept in survival models is the force of 

mortality µx, also known as the hazard rate. Intuitively for 

small dx, µxdx is approximately the probability that a life 

who survived to age x dies in the small interval of age x to 

x+dx. Most attempts to model human mortality are based 

upon the observation that for reasonably long periods the 

probability of death increases as age increases. 

Furthermore, our experience suggests the force of mortality 

(at least at older ages) increases exponentially. The 

Gompertz Model (1825), well known to actuaries, describes 

human mortality over the whole range of ages based on 

these observations. The formula for this model is given by µx 

= Bcx. 

 

The Gompertz Model of mortality is a nice actuarial 

example of GLM. Consider a group of lives and let Ex be the 

number of lives age x, and yx the realization of the random 

variable Yx corresponding to the number of deaths. The 

Poisson model of mortality suggests that Y )(~ xxx EP λ with mean 

xxx E λµ =  where xλ stands for the force of mortality. For the 

expected number of deaths we get 

bxaEEE xxxxxx ++=+ loglog)log( = log=)log( λλµ  which is the loglink 
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function incorporating the linear relationship between 

log(λx) and age(Gomperz Model). 

 
3.3 ESTIMATING THE HAZARD RATE 

 

Consider again the Gompertz model for mortality and the Poisson model for deaths 

introduced  in 3.2.  We  aim to obtain estimates  of  the  parameters a  and  b using the  

 

 

principle of maximum likelihood. The likelihood function is given by 

 and the log-likelihood  ∏
=
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We could then write this as: 

 

∑ ∑
= =

+ +++−=
n

1i

n

1i
ii

bxa
i .const)bxa(yeE)b,a(l i                        (3.2)                             

 

The maximisation of the log-likelihood leads to the following equations:  

0ˆ
1 1

=+−∑ ∑
= =

n

i

n

i
ii yµ , or in matrix form  for  ∑ ∑

= =

=+−
n

i

n

i
iiii yxx

1 1
0µ̂ ( ) 0ˆ1 =−






 µyxT

T

( )nµµµ ..1=Τ , , ( )nyyy ..1=Τ ( )1..11 =Τ , ( )nxxx ..1=Τ  and 

. For X=(1:x), we can also write these as ( )0,00 =Τ

 

 ( ) 0ˆ =− µyX T    (3.3) 
 
The above equation holds for multiple regression, polynomial regression or B-spline 

regression with appropriate modification of the X matrix.  

 

The resulting ML equation is not linear but can be solved using the iterative Newton-

Raphson scheme or the Fisher scoring method giving  
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    (3.4) )~y(X)XW~X(~ˆ T1T µΘΘ −+= −

 

where , 




=Θ β
α µ~,~Θ  are current approximations to the problem and 

)(µdiagW = the diagonal matrix of weights. The estimates can be obtained by using 

the fitting function glm in S-Plus or an iterative scheme.  

 

 

 

In this project we apply the Gompertz assumption for mortality for Poisson 

regression. We attempt to analyse  a set of mortality data provided by the Continuous 

Mortality Investigation Bureau  (CMIB) which gathers information on claims from 

UK life insurance companies. The data set we consider is for 20 to 90 years-old male 

policyholders for each of the calendar year 1958-1968. We have the number of years 

lived which are our exposure data and the number of policy claims, the death data. 

Our aim is to obtain estimates of the hazard function at this range of ages. The 

observed mortalities are called crude mortality rates in actuarial language and we 

expect random fluctuations of those rates, since any estimate is only a sample from 

the sampling distribution of the estimator, as well as irregularity since they will not 

progress smoothly as ages rise due to the random sampling involved. From our 

experience however, we expect, for large enough samples, the true underlying 

mortality rates to proceed smoothly  as we move to higher years of age. Mortality 

rates moving in discrete steps would not be a reasonable pattern as human mortality is 

merely affected by the gradual aging progress. Particularly in the actuarial business 

there is an extra reason we prefer to use smooth set of mortality rates and that is the 

smoothly progressing rates of the premiums implied. 

 

In Figure 3.1 the dots represent the crude rates and the lines the graduated rates which 

are our estimates of the actual rates of mortality.  The displayed observed and fitted 

mortalities, both presented in the log-scale, are for policyholders aged 20-90 for the 

calendar years 1958,1960,1962,1964,1966,1968. We aimed to provide a smooth 

mortality curve and to reduce the random sampling error (by basically using estimates 
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at ages close to age x to improve our initial estimate). It can be seen that the estimated 

log-mortality is a linear function of age. The data suggest that there is a little 

improvement in mortality over the decade, particularly at higher ages. We also note 

that mortality rates tend to be underestimated at  young ages between 20-30. That 

would not of course be desirable for any life assurance company as it could lead to 

wrong calculations of financial functions of interest (e.g. Ax) and therefore the 

impacts on the assurance company   could be disastrous. The above remarks lead us to 

the conclusion that we need to improve the fit at young ages as the Gompertz model 

fails to describe efficiently their mortalities.   

  

 

 
       Figure 3.1: Log-mortalities against age. 
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In  Figure 3.2 we interpolated the data set for the calendar year 1968 by using 

cubic(bdeg=3) B-spline functions as the basis for our regression with number of 

internal knots 5, 15, 25, 35. The crude estimates have been graduated using the 

maximum likelihood concept .We note that at ages between 20-25, the crude death 

rates are higher than those at ages between 30-35. This could be possibly explained by 

the increased motor accidents and terminal illnesses (e.g. AIDS) observed at these 

ages as people at younger ages tend to be less sensitive and mature at these issues. 

Another  point we  should make is  that  as  we  increase the number of intervals in the  

 

 

 

domain i.e. the number of B-splines the fitted curve tracks the data more closely. But 

the shape of the resulted curve is not appealing at all. In fact it presents a rather poor 

graduation. That underlines the point that a good fit to the data is not the one and only  

aim in curve fitting. Another, often conflicting aim is to obtain a smooth estimated 

curve. We should therefore find a way so that the number of ndx used would not 

influence much the shape of the fitted curve and a way that best compromises 

goodness of fit and smoothness.   

 

It should be stressed that there are situations where the wiggly curves observed for 

large values of ndx would not be unsatisfactory as explanations of the given data. It 

may well be that the phenomenon under study is known to vary rapidly and that the 

given observations are known to be extremely accurate. However, even in this case it 

is of interest to regard the very local variation in the curve as random “noise” in order 

to study the more slowly varying trend in the data.  
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Figure 3.2: Likelihood estimate(-) of the death rate and the crude death rates(o) for the year    

1968, using B-splines, both presented on the log-scale. 
 

 

3.4 SMOOTHING MORTALITY DATA WITH PENALTIES 

 

When we deal with a regression problem, a good fit to the data is not the only aim of 

curve fitting. Another aim, usually conflicting to some extent, is to obtain a curve 

estimate that does not involve too much rapid fluctuation. We therefore target to 

maximize goodness of fit and minimize roughness.  

 

The unconstrained maximization  of    the  log-likelihood will 

not  provide  a  sensible estimate of the parameters. The 

likelihood will be maximized by any smooth function that 

interpolates the data, giving a fairly useless result as it leads 
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to overfitting and subsequently an implausibly rough fitted 

curve.  
 

The idea set out in section 2.4 was that the curve estimation requires balance between 

goodness of fit and roughness. Penalizing the residual sum of squares by adding a 

roughness penalty term is an obvious way of obtaining this. The approach can be seen 

as a particular case of the more general concept of penalized likelihood. Good and 

Gaskins, who first introduced that concept (1971), suggested subtracting from the log-

likelihood a roughness penalty. Instead of maximizing the pure log-likelihood itself, 

we choose to maximize a modified form of it, the penalized log-likelihood. Therefore 

in the regression context the penalized likelihood is equal to  

 

     (3.5) ΘΘλΘ DD2/1)(l TT−

 

where D a difference matrix. 

 

If the smoothing parameter λ  is large, then the main component of the modified 

likelihood will be the roughness penalty term and therefore the fitted curve will 

display very little curvature. In the limiting case where ∞→λ , given that we use a 

second order penalty, the estimated curve will approach the linear regression fit. For 

relatively small values of the smoothing parameter the main contribution to the 

penalized likelihood will be the probability function. In this case the fitted values will 
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track the data very closely even if this is at the expense of giving a rather variable, 

wiggly curve. For illustration, see the graphs in Figure 3.3. In the left hand panel 

where we have used a small value of lambda, the graduated rates adhere too closely to 

the crude rates and approach the interpolating curve shown in figure 3.2. In the right 

hand panel we have used a relatively large value of lambda and the graduation seems 

satisfactory. In both cases we used cubic B-splines for our regression  with a second 

order penalty and value of ndx=35. The data set shown is from the calendar year 

1968. 

 

These remarks give rise to the very reasonable question of how to choose the value of 

λ that would be the most appropriate to a given data set. We attempt to address this 

problem in the following section.  

 
Figure 3.3: A graduation of the log-hazard using the idea of penalized likelihood for a 

small and large value of lambda  
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Placing restriction on the likelihood function ensures 

balance between over-adherence to the data (high values of 

the log-likelihood) with smoothness of the estimated curve 

(low values of  the  roughness  penalty). The optimisation of 

the penalized log-likelihood gives the following system of 

equations: 

 

    (3.6) Θλµ DD)y(B TT =−

 

for an m))(),...,(( 1 xBxBB k= k× matrix of B-splines where k 

depends on the number of knots and the degree of the B-

spline. These equations are solved using iterative weighted 

linear regressions giving the system  

 

    (3.7) ΘµΘλ ~BW~B)~y(Bˆ)DDBW~B( TTTT +−=+

 

 where Θ~ and µ~ are current approximations to the problem 

)(µdiagW = the diagonal matrix of weights. 

 

The main conceptual advantage of the roughness penalty 

method applied to the mortality data, is that it considers 

automatically the fact that the variability of the crude death 

rates differs greatly as we move in different sections of the 
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age range and that is a consequence of both the variation in 

the cohort size and in the underlying mortality rate.   
 

3.5 OPTIMAL SMOOTHING  

 

In the previous section we showed how we can control the smoothness of the fitting 

curve with λ . A way of getting an optimal value of the smoothing parameter is the 

application of the Akaike information criterion, which its general definition is given 

by  

 

          (3.8) 

 

)H(tr2Deviance)(AIC +=λ

 

 

 where  

 

         (3.9)

    
WB)DDWBB(BH T1TT −+= λ

The best value of λ is the one that gives AIC the minimum value. The deviance is a 

measure of the closeness of the fit of the model to the data and it can be interpreted as 

the residual sum of squares in the linear model case. The trace of the hat matrix 

determines the effective dimension of the B-spline smoother. 

 

We observe that AIC is easier to compute for a Poisson distribution rather than the 

normal distribution as the relationship between mean and variance of the former is 

known. To make the computational part easier is suggested to use 

 as ))(()( 1 WBBDDWBBtrHtr TTT −+= λ )()( BAtrABtr = for conformable matrices.  

 

AIC  basically corrects the log-likelihood of a fitted model for the effective number of 

parameters. We have chosen to use this criterion for optimal smoothing as it is 

computationally easy and fast but it is important to remark that it is likely to result in 

undersmoothing for data with much variation as the assumed variance of the data may 

be too low.  
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In our data set for the year 1968, we search for an optimal value of  λ on the 

geometric grid 10-6,10-5,…,106 . For our estimate we used penalized spline fit with a 

quadratic penalty on the knot coefficients. The value of lambda that minimizes AIC 

for each of the number of ndx used and the corresponding minimum value of AIC is 

displayed in table 3.1.  

 

Table 3.1 

      ndx lambda          AIC 

5 1 103.9
15 100 98.3
25 100 99.7
35 1000 98.3  

 

 

Figure 3.4 shows the log-hazard against age for the data set of the calendar year 1968. 

The estimated curves look identical to the naked eye even if we have used different 

values of ndx for each graduation. That is evidence of the efficiency of the AIC 

criterion for optimal smoothing. For a right combination of ndx and lambda, so that 

AIC is minimized we managed to balance goodness of fit and roughness.  

 

Actuaries would not of course work directly from a graph like those in Figure 3.4 but 

would use the numerical values of the estimated death rates for further calculations.  
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 Figure 3.4:  Estimated Log-hazard against age for the data set of year 1968.   

 

The idea set out from the outset of this project was the direct 

concept of balancing the  

 

 

two aims in curve estimation: goodness of fit and 

smoothness. Penalizing the log-likelihood by subtracting a 

roughness penalty term is an obvious way of making the 

necessary compromise explicit. AIC provides a good method 
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for “choosing” the smoothing parameter and therefore the 

“rate of exchange” between deviance and local variation.   
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CHAPTER  

       4 
 

Smoothing two-dimensional Poisson data 
 

4.1 INTRODUCTION 

4.2 A MODEL FOR TWO-DIMENSIONAL POISSON DATA  

4.3 ANALYSING THE CMIB MORTALITY DATA 

  
4.1 INTRODUCTION 
 
In the previous chapters we have considered the applications of roughness penalties in 

linear modelling and generalized linear modelling. In particular, in chapter 2 we used 

P-splines as a method of smoothing in linear models. The method was based on using 

B-splines as the basis for the regression and calculate the regression coefficients by 

minimizing the penalized least squares which is obtained by adding to the classical 

least squares a penalty term to control the smoothness of the model. Similarly in 

chapter 3 we used B-splines to smooth one-dimensional count data with Poisson 

errors. The method was based on the idea of modifying the log-likelihood by a 

difference penalty on the regression coefficients. We illustrated the method by 

modelling the mortality against age for several years between 1958 and 1968. 

  

The approach has several merits clearly deserving a respectable place in smoothing 

methodology. In order to increase the credibility of Eiler’s and Marx’s claim that P-

splines come close to the “ideal smoothers” we should address the many important 

advantages that this method enjoys. Among others we only mention the simplicity of 

the idea (roughness penalty based on B-splines coefficients to prevent overfitting) 

which is certainly appealing, the reduction of the dimensionality of the problem and 

the computational burden (which can easily be incorporated in standard software), the 

connection  to  smoothing  spline and  polynomial regression and  its  flexibility to  be  

applied in different modelling situations.   
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From all the above mentioned attractive properties of P-spline smoothing we stand at 

the last one, that it is flexible enough to be applied in different modelling situations. It 

would be interesting to see an application of this methodology in multivariate 

problems.  In this chapter we  explore the extension of the method to   the more 

challenging two-dimensional Poisson data, which was our main goal  from the 

beginning of this project. We will see that the ideas of P-spline regression described 

in the previous chapters apply equally well in the context of the two-dimensional 

regression model of this chapter. We illustrate that by developing a model and 

analysing a set of mortality data provided by CMIB considering the mortality of male 

policyholders aged 20-90 for the years 1958-1968. The method models  the age and 

year factor simultaneously i.e. describes mortality as a surface above the age and year 

plane. We pay particular attention to mortality trends over the decade  and the extent 

to which these trends are influenced by the age factor. The application shows the very 

wide potential applicability of P-splines smoothing.  

 

 4.2 A MODEL FOR TWO-DIMENSIONAL POISSON DATA 
 

We’ll start our discussion for the two-dimensional Poisson data by putting them in the 

context of multiple regression and its simplest form the Bivariate regression. We have 

seen in section 2.1 that there are many problems in which predictions of one variable 

could be improved if we consider additional relevant information. For instance, we 

should be able to make better predictions for a person’s future lifetime if we consider 

not only the age factor but also the sex, the smoking status, the socioeconomic level 

etc.  

 

For describing such relationships, we usually use the linear equation of the form   

 

eXb...XbXbbY pp22110 +++++=    
 

where Y is the random variable whose values we want to predict in terms of given 

values and the multiple regression coefficients. For our data set  p2,1 X...XX p,1,0 b...bb
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we consider the dependent variable to be the  observed mortality at each age and year 

and the explanatory variables to be the age and year of death. The derivation of the 

regression coefficients corresponds to the work of section 2.2. In this chapter we 

depart from the classical procedure and we arrange our two-dimensional data in a way 

that can be presented in a mathematical sense as one-dimensional data and 

furthermore can be handled by computers relatively easy.   

 

We set up our notation similar to that used in the one-dimensional case. Let Y=(yij) be 

the matrix of the observed deaths at age i, i=1,2,…,m and year j, j=1,2,…,n. We 

arrange this matrix in vector form by considering the column order from left to right. 

Let the resulting vector of length nmN ×=  be denoted by y. We work similarly for 

the exposure matrix E=(Eij) and the mortality matrix Θ=( θij) and let the 

corresponding vectors be denoted by e and θ respectively. We no longer require the 

one-dimensional splines obtained by holding either the age variable or the year 

variable fixed to be simple splines. We therefore consider  the Ba matrix of dimension 

 to be the set of B-splines basis for smoothing in the one-dimensional case by 

age considering a single year (the number of columns of B

anm×

a depends on the number of 

knots and the degree of the B-spline). Similarly we consider By be the n one-

dimensional B-spline basis for smoothing by year for a single age. We then consider 

the Kronecker/ tensor product of the two B-splines basis, which is a systematic 

method of using families of smooth functions on one dimension to generate smooth 

surfaces in higher dimensional spaces. We define our regression B-spline matrix of 

dimension  to be the tensor product 

yn×

yannmn×

 

 ay BBB ⊗=   (4.1) 

 

Assuming that the number of deaths Yx has a Poisson distribution with mean  µx= Exθx   

we get logθ=Βa , where a is the vector of length nany (number of columns in B) 

corresponding to the regression coefficients. We write a in matrix form as  

 

   (4.2) ),a,...,a(A ny1= )a,...,a(A rr
na1=′
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Similar to the one-dimensional case it is not appropriate to use the log-likelihood 

directly for calculation of the regression coefficients. Motivation for the penalized 

likelihood criterion is by now familiar. In the absence of the penalty term the 

optimization of the likelihood would yield  over-fitting. Instead we choose to  smooth 

the entries of A  by imposing penalties on each row and column of the matrix. We 

now find A by maximizing the penalized log-likelihood  

 

                       ∑∑
=

′
−

=

′′′−
ay n

1i

r
iyy

r
iy2

1jaaj

n

1j
a2

1 aDDaaDDa)Y;A(l λλ  (4.3) 

 

where Da and Dy are difference matrices on columns (age) and rows (years) 

respectively. For )a,...,a(a y1 n ′′′=

anyyy IDDP ⊗′=

 and the penalty matrices for age and year 

,  expression (4.3) can be written in column form as aana DDIP y ′⊗=

 

             (4.4) a)IDD(aa)DDI(a)y;a(l ay nyyy2
1aana2

1 ⊗′′′′− −⊗ λλ

 

        a)PP(a)y;a(l yyaa
2

1 λλ +′−=                                                    (4.5) 

 

We have now obtained a rather elegant model that fits the age and year effect 

simultaneously. As in section 3.4 when we dealt with the one-dimensional case 

(equation 3.7) we calculate the regression coefficients by solving the iterative scheme 

 

a~BW~B)~y(Bâ)PBW~B( TTT +−=+ µ                           (4.6) 

 

 where a and ~ µ~ are current approximations to the problem, 

),diagW ( µ= the diagonal matrix of weights, and yyaa PPP λλ += . 

 

Just like in the one-dimensional case we consider the 

classical selector AIC  for choosing the value of the 
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smoothing parameters, which can be easily extended to deal 

with  the   two-dimensional   case. However  as  it  has 

already    been  pointed  out  in  

 

 

section 3.5 AIC is likely to result in undersmoothing for over 

dispersed data giving a non-satisfactory result. We therefore 

consider also the Bayesian information criterion (BIC) as a 

method for smoothing parameter selection, which introduces 

much heavier penalties and therefore produces smoother 

curves.  Both selectors have the form 

 

                                     

(4.7) 

 

)H(tr),,a;y(dev ya δλλ +

where tr(H) is the trace of the hat matrix and δ=2 for AIC 

and log(N) for BIC. With our data set N=781 giving log(N) 

the approximate value of 6.66 and thus the strength of the 

penalty in BIC is far greater than that used by AIC.  The 

minimization of the function can be approached by a simple 

grid search. 

 

Conceptually the maximization of the penalized log-

likelihood can be considered in two steps. First consider 

either of the two methods for choosing the smoothing 
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parameters and then iterating the process to convergence to 

get the estimates. 

 

Many applications of regression involve large number of 

fitted parameters. The numerical complications encountered 

when we are dealing with a large data set may be then 

enormous.  The preceding discussion has introduced a way 

of overcoming the  computational difficulties by mainly take 

advantage of the important property of P-splines to reduce 

dimensionality. The methodology described above was 

originally developed by Durban, Currie and Eilers (2002). 

Further details can be found in the Proceedings of the 17th 

International Workshop on Statistical Modelling, Crete, 207-

214 which includes a discussion of other models for two 

dimensional Poisson data, computational problems that 

arise, economies of calculations and illustration with the 

analysis of a large set of mortality data. 

 
4.3 ANALYZING THE CMIB MORTALITY DATA 

 

In  this  section   we demonstrate  the methodology introduced   above  by applying 

the suggested  model  to  the  CMIB mortality  data described  in  3.3.  For  fitting  the  

 

 

log-hazard against ages and years we calculated both methods for choosing the 

smoothing parameters but we mostly displayed the ones obtained by BIC, since AIC 

selects smaller smoothing parameters and produced very rough estimated curves. 
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For the smoothing operation we chose as basis function a set 

of cubic B-splines (bdeg=3) and equally spaced internal 

knots which were taken to cover the range of age and year. 

Optimization of the penalized log-likelihood was obtained 

using a second order penalty (pord=2). Table 4.1 

summarizes the results giving  the minimum values of BIC 

and AIC (bold) for the different values of ndxa and ndxy, the 

total number of fitted parameters (npar) and the effective 

dimension of the fitted model (tr).  Note the very large 

difference in the effective dimensions of the fitted model 

selected by BIC and AIC.  

 

     Table 4.1 

nd

xa 

nd

xy 

npa

r 

λa λy tr BIC AIC 

20 3 138 19

0 

13

0 

28 1612.

46 

1482.

5 

   10 0.1 66 1720.

35 

1410.

6 

20 4 161 18

0 

42

0 

28 1612.

66 

1483 

   10 0.1 77 1765.

38 

1405.

65 

10 3 78 14 80 26 1589. 1469.
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01 62 

   3 0.1

1 

44 1626.

76 

1419.

6 

10 4 91 12.

5 

31

0 

25 1586.

51 

1468.

39 

   1.3 0.1 55 1677.

25  

1418.

98 

 

 

The cross section of the fitted surface corresponding to age 

65 is displayed in Figure 4.1. In  the  left hand panel the 

number of internal knots for age was 10 (ndxa=10) and  

for years 3 (ndxy=3), while in the right hand panel ndxa=10 

and ndxy=4. The fit of the  model  selected  by  AIC  is  

omitted  from  this  plot since it leads to under smoothing 

revealing the evidence that this criterion is not suitable for 

over dispersed data. Inspection   of the two  plots reveals  

that the  number of knots  does not play a crucial  

 

 

role in curve estimation as they give more or less the same 

fitted values. It is worth remarking how the mortality falls 

off quite rapidly after 1962. 
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       Figure 4.1: Log hazard against year for age 65. 

 

Considering the fitted surface constructed for ndxa=20, 

ndxy=4 and BIC as the smoothing parameter selector we also 

extracted the cross sections for ages 60, 80, 37 and 46. The 

plots for  ages 60 and 80 are shown in Figure 4.2 while for 

ages 37 and 46 in Figure 4.3. Mortalities in high ages seem to 

have improved with that of age 60 more rapidly. The same 

pattern applies to younger ages but the improvement is not 

so marked. 

 
     Figure 4.2: Log hazard against year for ages 60 and 80. 
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      Figure 4.3: Log hazard against year for ages 37 and 46. 

 

Figure 4.4 is a plot of the log-mortality against age for years 

1958, and 1968. The solid line shows the fitted curve when 

we chose the degree of smoothing using BIC whilst the 

dotted line shows the fitted curve when we used AIC as a 

smoothing parameter selection. For our B-spline basis ndxa 

was 20 while ndxy  was 4. There is  little to choose between 

the two fits but we would prefer the slightly stiffer fit 

suggested by BIC.    
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Figure 4.4: Log hazard against age for the year 1958, 1968. Smoothing parameter   selection:   
BIC, solid line; AIC, dotted line. 

 
In Figure 4.5 we produced the fitted mortality surface over the age and year plane. 
The ability of the model to produce a smooth surface over the age and year plane is 
clear. 
 

 
 
Figure 4.5: Fitted mortality surface 
 
 

One of the attractions of the model as illustrated above is 

obviously the happy combination of circumstances both that 

the estimate is the solution of a neatly expressed and 

intuitively attractive optimization and that it can be 

calculated keeping the computational side of the fitting 

process under control. Even though the two-dimensional case 

poses considerable computational burden it seems that the 

special structure of the penalized log-likelihood and the 
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cubic B-splines is sufficient to cope with it producing a 

satisfactory description of the data. 
 

Overall this analysis, in common with that of other data sets studied, confirms a 

pattern of improved mortality over the years. Especially in higher ages (after 60) this 

improvement occurs more rapidly. It is desirable for an actuary to observe these 

trends carefully since human mortality plays a crucial role in the calculation of 

financial factors e.g. Ax , ax and acknowledge the financial implications that  this 

improvement has for the insurance business.  

 

 
 
 
 
CHAPTER  

       5 
 

Concluding remarks 
 

One of the beauties of the P-spline approach in curve 

estimation is its conceptual versatility. We demonstrated 

that by considering its applications in situations arising from 

linear modelling and generalized linear modelling and by 

exploring the extension of the method to consider the more 

challenging two-dimensional case. We have shown how P-

spline smoothing provides a flexible data-fitting 

methodology constituting a respectable addition to 

smoothing techniques that are still a driving force in the 

development of nonparametric regression. 
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In addition to explanation of the formal statistical 

background and the theory we also embarked on discussing 

the method in the light of its applicability for the analysis of 

real data. Since human mortality is prominent in the field of 

actuarial science and a subject of interest to an actuary 

required to carry out the tasks of pricing and valuation we 

considered a set of mortality data provided by CMIB and we 

analysed the trends over the years. The fitted model has 

proven to perform well in describing the underlying 

mortality pattern and we demonstrated that by presenting 

graphs which are of great importance for any exploratory 

analysis. Although the estimation of the fitted curves was 

computationally demanding the special structure of P –

splines simplified and accelerated significantly the 

computational process. Even though we discussed the model 

in the context of smoothing of 2-dimensional Poisson data it 

is clear that the work presented applies equally well in a 

broader glm setting which includes other important models 

like the Binomial.   

 

The crucial fact arising from the analysis of the CMIB data 

confirms that mortality has improved rapidly over the last 

years. For comparison we plot several cross- sections of the 

fitted mortality surface showing either estimated mortalities 
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against age for several years or estimated mortalities against 

year for certain ages. As 
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expected, we observed the increase in mortality rates as we 

moved in higher ages with some pattern of high mortality at 

young ages possibly due to accidental causes which are much 

more significant at those ages. What all of these plots had in 

common though, was the suggestion of a significant fall in 

mortality rates over time and that was especially visible at 

older ages (over 60). This feature of course implies 

important financial consequences for the insurance industry 

and it should be reflected in the mortality assumptions used 

by life offices when calculating financial functions of 

interest.  
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