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CHAPTER 1

MOTOR INSURANCE IN GERMANY

The primary goal of this thesis is to investigate how statistical models can be
used to predict the cancellation behavior among holders of motor insurance contracts in
Germany. Before the underlying study and the provided dataset are discussed in detail, I
want to give some necessary background information about motor insurance in Germany.

In Germany, the owner of a motor vehicle is required by law to compensate for
damages caused by the operation of his motor vehicle (§7 (1) StVG'). This includes
compensation for personal injuries or death and for damages to property. By §1 PAVG?2,
the owner of a motor vehicle is required to conclude a contract with an insurance company
that covers these types of damages, no matter whether they are caused by the owner
himself or by another driver (motor third-party liability).

The counterpart of the obligation of the owner to purchase liability insurance for
his motor vehicle is the requirement for insurance companies to accept any request for
this type of liability coverage (§5 (2) PAIVG). However, the insurance company can add
a risk surcharge to the premium if it believes the contract represents a higher risk.

In addition to the required liability insurance, owners of motor vehicles can also

purchase vehicle insurance and passenger accident insurance. The two latter types of

'Road Traffic Act (Strassenverkehrsgesetz)

2Compulsory Insurance Law (Pflichtversicherungsgesetz)
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motor insurance are voluntary for the owner. There is also no obligation for the insurance
company to grant coverage. Usually the different types of motor insurance are combined

in a single contract. For more details see Asmus and Sonnenburg (1998, p. 51).

1.1 Types of Motor Insurance

Asmus and Sonnenburg (1998, chap. 5) discuss the different types of motor
insurance. General conditions for motor insurance can be found in the AKB?, which
are usually very similar from one company to another. I will refer to the AKB used
by the Versicherungskammer Bayern (VKB) after 7/1/1998 for illustration. The AKB

define three types of motor insurance:

1. third-party liability (TPL) insurance,
2. partial or full motor vehicle own damage insurance and

3. passenger accident insurance.
Coverage in motor TPL insurance includes the satisfaction of justified demands
and the defense against groundless demands for compensation against insured persons

that are filed because

1. persons have been injured or killed (minimum coverage: 2.5 million Euro) or
2. property has been damaged or destroyed (minimum coverage: 500,000 Euro) or

3. basic rights of other persons have been violated without any damage to property
(minimum coverage: 50,000 Euro)

by the operation of the insured motor vehicle (§10 (1) AKB). Both the owner and the

actual driver are insured. The sums given are minimal legal requirements since 1997.

3General policy conditions for motor insurance (Allgemeine Bedingungen fuer die
Kraftfahrtversicherung)
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Motor vehicle own damage insurance provides coverage against damage,
destruction and total loss of the insured automobile. Partial vehicle own damage
insurance (semi-comprehensive cover) covers damages that are caused by fire,
explosion, theft, thunderstorm, lightning or collision with wild animals. Full motor
vehicle own damage insurance (comprehensive cover) additionally covers damages of the
insured vehicle that are due to an self-inflicted accident. It also provides compensation for
damages caused in a hit-and-run accident or by unknown persons (§12 (1) AKB). There
may be deductibles for both the semi-comprehensive and the comprehensive cover.

Passenger accident insurance is also related to a specific vehicle. It covers damages
caused by accidents of insured persons while operating the vehicle, repairing the vehicle

and during related activities (§18 AKB).

1.2 Tariffs in Motor Insurance

The next step is to understand how tariffs in motor insurance are designed and
how premiums are calculated. For this section I will closely follow the discussion in
Johannson (1999, chap. 2).

In order to receive the benefits described in the previous section, the policy holder
has to pay a premium to the insurance company. In general, the gross premium is

calculated according to the following scheme:

net risk premium
security surcharge
net premium
overhead surcharge
profit surcharge
gross premium

0+

|
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The equivalence principle states that the net risk premium must be equal to the
expected value of future payments for claims in one insurance period. In case of motor
insurance, the insurance period is usually one year. The net risk premium is supposed
to cover only the pure compensation costs. A security surcharge is added to account for
the risk that the actual payments for claims exceed the expected value. The overhead
surcharge covers all other costs, including commissions and general administration costs.
Finally, a profit surcharge may be added.

Since the distribution of future compensation payments is unknown, we have to
estimate its expectation in order to determine the net risk premium. The variance of this
distribution may also be needed to determine the security surcharge.

In order to do this, contracts with similar risks are put into groups that are as
homogeneous as possible (risk collective). This is achieved by using characteristics that
influence the number and size of future claims (risk factors). We distinguish between
objective risk factors (related to objects) and subjective risk factors (related to persons).

Then the risk factors with the strongest influence on the total claim size (tariff
factors) are identified, often using statistical methods. On the basis of these tariff factors,
tariff classes are set up and the appropriate net premium for every class is determined
(tariff calculation).

Major changes in the tariff calculation occured when motor insurance was
deregulated in 1994. Hence tariff design and premium calculation before and after the

deregulation will be discussed separately.



1.2.1 Before the Deregulation

Until the deregulation in 1994, the design and the calculation of the tariffs in
motor TPL insurance was subject to strict legal regulations. A federal office, the BAV*,
checked the compliance of the tariffs with these regulations. Any change in the design,
calculation and application of a tariff had to be preapproved by the BAV.

Furthermore, all insurance companies were required to give precisely specified
information on the number and size of claims, and the tariff factors for all contracts
in their portfolio. These data were then combined to a general claims statistic. After
smoothing the data using statistical methods, the resulting calculation statistic was the
basis for all tariffs and premiums of all insurance companies in Germany. This means
that the net premiums were basically administered by the BAV.

In 1993, three tariff factors were used to set up the calculation statistic: vehicle
power, regional class and no-claims class. The characteristics vehicle power and regional
class were used to determine a basic premium. Then a discount or surcharge was applied
to the basic premium according to the no-claims class to get the net premium.

These strict regulations did not apply for motor vehicle own damage insurance
(semi-comprehensive and comprehensive cover) and for passenger accident insurance.
These types of motor insurance had been deregulated before, in 1985, 1982 and 1979
respectively (see Asmus and Sonnenburg (1998, p. 24)).

I will now take a closer look at the tariff factors for motor TPL because they will

appear as variables in the dataset.

4Federal Insurance Supervisory Office (Bundesaufsichtsamt fuer das Versicherungswesen)
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1.2.1.1 Vehicle power. The engine power, measured in kilowatts (kW) was the
only tariff characteristic that was directly related to the insured vehicle. It is reasonable
to believe that “bigger” vehicles are likely to produce “bigger” claims. In 1993, vehicles

were classified into 11 classes according to engine power.

1.2.1.2 Regional class. The tariff factor regional class was a combined
characteristic of profession and regional classification. Three different groups of
professions were distinguished: agricultural professions (A), public employees (B) and
others (R). Group B was then divided into six regional classes (Bl to B6), whereas
Group R was divided into five rural classes (RL1 to RL5) and five urban classes (RS1 to
RS5), according to the expected total claim size. Since group A made up only 5% of the

total portfolio, there was no regional classification for this group.

1.2.1.3 No-claims class. The tariff characteristic no-claims classs took into
account the individual claims history of a specific contract. Insured persons that had not
caused any claim in the past years were classified into higher no-claims classes depending
on the number of years without a claim. All other contracts were classified into lower
no-claims classes. For each class a percentage rate was defined that determined the
percentage of the basic premium that actually had to be paid by the policy holder. There
were different no-claims classes for motor TPL, semi-comprehensive and comprehensive

vehicle insurance.



1.2.2 After the Deregulation

On 7/29/1994, the motor TPL insurance in Germany was deregulated by a law
that set equal standards for the insurance industry throughout the European Union. The
core of the deregulation was the abolition of the obligation to use the same tariffs. From
this time on, new tariffs do not have to be approved by the BAV.

The design of the tariff and the calculation of the premium is now up to the
insurance company. It can charge the premium that is necessary according to its own
opinion. It can also modify the design of the tariff, for example by modifying existing
tariff factors or by introducing new tariff factors that seem useful. Many insurance
companies made use of these possibilities in the years after 1994. But the tariffs of
different companies in Germany still show a lot of similarities. I will use the tariff
provisions (TB) used by the VKB after 7/1/1998 for illustration, since they apply to the
newest contracts in the provided dataset.

Overall, the most important modification was the replacement of the tariff factor
“vehicle power” with a new characteristic “type class” by all companies in 1996. An
empirical investigation had shown that this characteristic was more suitable to predict
the number and size of future claims than the old characteristic “vehicle power”.

Furthermore regional classification and profession are now separate tariff factors.
As most companies, also the VKB introduced new tariff factors after 1996, for example
mileage per year, age of the vehicle, number of drivers and a home owner characteristic
(§6 TB). All these tariff factors will appear in the dataset and therefore need to be

discussed in more detail.
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1.2.2.1 Type class (§12 TB). Since 1996, most companies use the vehicle type
as one of the factors to determine the basic premium. For every available type of vehicle,
the ratio of the average total claim size caused by this vehicle to the average total claim
size caused by all vehicles is determined. This index is then used to form groups of
vehicles that should have similar expected future claim sizes. There are different type
classes for motor TPL, partial motor vehicle own damage and full motor vehicle own

damage insurance. An example for motor TPL insurance is given in Table 1.1.

Table 1.1: Type classes for motor TPL (from §12 (3) TB)

H Type class H Index for the average total claim size of the vehicle H

10 below 49.5
11 [49.5,61.9)
12 [61.9,71.6)
13 [71.6,79.8)
14 [79.8,86.6)
15 [86.6,92.0)
16 [92.0,97.7)
17 [97.7,103.7)
18 [103.7,110.4)
19 [110.4,118.0)
20 [118.0,125.4)
21 [125.4,133.3)
22 [133.3,144.0)
23 [144.0,165.4)
24 [165.4,196.0)
25 over 196.0

1.2.2.2 Regional class (§8 and §11 TB). Similar to the type class, for every
one of the 446 registration districts in Germany, the ratio of the average total claim
size in this district to the average total claim size over all districts is determined. The

resulting index is then used to form several regional classes. There are different regional
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classes for motor TPL, semi-comprehensive and comprehensive vehicle insurance. An

example for motor TPL insurance is given in Table 1.2.

Table 1.2: Regional classes for motor TPL (from §8 (2) TB)

H Regional class H Index for the average total claim size in the registration district H

below 84.7

[84.7,90.7)

[90.7,93.6)

[93.6,95.8)

[95.8,98.3)

[98.3,100.8)

100.8,103.9

103.9,106.9

111.1,115.4

—| =
Ho@OO\]CDU'H&OJ[\Db—l

[ )
[ )
[106.9,111.1)
[ )
[ )

115.4,120.0

—_
DN

over 120

1.2.2.3 No-claims class (§14 - §19 TB). At the beginning of every insurance

period, each contract is classified into a no-claims class. If the contract has lasted at

least one year without a claim, then the contract is classified into a no-claims class for

the following year, depending on the number of years without a claim. For example, a

contract with x years without a claim is classified in class SF z for 1 < z < 25. Contracts

that have been without claim more than 25 years are also in class SF' 25. There is an

additional no-claims class SF 1/2. It applies under any of the following conditions:

If the contract has lasted less then one year without a claim.

If the policy holder is classified into a no-claims class for his first vehicle and effects
a motor TPL insurance policy for a second vehicle.

If a contract for a new vehicle is established and both the spouse of the policy
holder is classified into a no-claims class and the policy holder has had a driving
licence for a least one year.

If the policy holder has had a driving licence for at least three years and effects a
new policy.
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There are also two claims classes for motor TPL insurance, denoted by S and M.
If a contract cannot be classified in any of the classes S, M, SF 1/2 and SF 1 to SF 25,
then it is classified into class 0.

If one or more claims occur within one insurance period, the classification of the
contract into a no-claims class changes in the following year. An example of rules for

motor TPL insurance is given in Table 1.3.

Table 1.3: Change of the no-claims class (from §19 (1) TB)

1 claim | 2 claims | 3 claims | 4 or more claims
From class Into class

SFE 25 SF 18 SE 8 SF 3 M
SF 18 -SF 24 | SF 10 SFE 4 SF 1 M
SF 17 SEF 7 SEF 3 SF 1 M
SE 16 SEF 7 SE 3 SF 1 M
SF 15 SF6 | SF2 | SF1/2 M
SF 14 SF6 | SF2 | SF1/2 M
SF 13 SF5 | SF2 | SF1/2 M
SF 12 SF5 | SF2 | SF1/2 M
SF 11 SF5 | SF2 | SF1/2 M
SF 10 SF4 | SF1 | SF1/2 M
SF 9 SF4 | SF1 | SF1/2 M
SF 8 SF4 | SF1 | SF1/2 M
SF 7 SF3 | SF1 | SF1/2 M
SF 6 SF2 [ SF1/2 | S M
SF 5 SF2 [ SF1/2 | S M
SF 4 SF 1 S M M
SF 3 SF 1 S M M
SF 2 SF1/2| 0 M M
SF 1 SF1/2] 0 M M
SF 1/2 S M M M
S M M M M
0 M M M M
M M M M M
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For each class a corresponding percentage rate is defined that applies as a discount

or surcharge on the basic premium. An example is given in Table 1.4 .

Table 1.4: Percentage rates for the no-claims classes (from §18 (1) TB)

H No-claims class H Percentage rate TPL insurance | Percentage rate vehicle insurance H

SF 18 - SF 25 30 30
SF 17 35 35
SF 16 35 35
SF 15 35 35
SF 14 40 35
SF 13 40 40
SF 12 40 40
SF 11 40 45
SF 10 45 45
SF 9 45 45
SF 8 50 50
SF 7 50 55
SF 6 55 60
SF 5 60 65
SF 4 65 70
SF 3 75 80
SF 2 85 90
SF 1 100 100
SF 1/2 120 115

S 155 -
0 240 190
M 245 -

1.2.2.4 Tariff group (§9 and §10 TB). The contract is classified into one of
the following main tariff groups: ’A’ for farmers, 'B’ for public employees and public
corporations and N’ for all others. The tariff group is another factor that affects the

basic premium.
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1.2.2.5 Mileage class (§13 TB). According to the mileage (per year) of the
insured vehicle, a contract is classified into one of the following mileage classes with
corresponding discounts or surcharges on the basic premium for motor TPL and motor

vehicle insurance (see Versicherungskammer Bayern [VKB] (2001, p. 4)):

e 1(< 9,000 km): - 15%
9,000 — 12,000 km): - 10%

1(
2 (
3 (12,000 — 17,000 km): 0%
4 (
5 (

17,000 — 30,000 km): + 5%
> 30,000 km): + 10%

The insurance company has the right to verify the actual mileage.

1.2.2.6 Age of vehicle (§4 (1) TB). The age of the vehicle at the time of
the purchase by the policy holder can also result in a discount or surcharge on the

basic premium. For example, in motor TPL the discounts are structured as follows (see

VKB (2001, p. 4)):

not older than 1 year: - 15%
not older than 4 years: - 10%

not older than 7 years: 0%
older than 7 years: + 20%

1.2.2.7 Number of drivers (§13a TB). If the vehicle is only used by the policy
holder and his spouse, an additional discount may apply, depending on the age of the
vehicle. Additional restrictions are that both policy holder and spouse must be at least
25 years old and that the contract must be classified into a no-claims class. For details

see VKB (2001, p. 4).
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1.2.2.8 Home owner characteristic (§13b TB). If the policy holder owns
the house he is currently living in and if he has a fire insurance contract with the same

insurance company, then he qualifies for another discount of 10% (see VKB (2001, p. 4)).

1.3 Economic Importance of Motor Insurance

In the last section of this introductory chapter I want to emphasize the
economic importance of motor insurance in Germany, and also motivate the cancellation
prophylaxis study. Together with life insurance and private health insurance, motor
insurance is one of the key sectors of the German insurance industry. I want to
provide some information about this sector which can be found in the 2001 yearbook
of the German Insurance Association®.

In 2000, approximately 15.5% (20.36 billion Euro) of the gross premium income
in the private insurance business in Germany were charged for motor insurance contracts
(see Table 1.5 from GDV (2001, p. 51)).

If we consider the total number of insurance contracts, the percentage share of
the motor insurance is even higher. At the end of 2000, 24.8% (97.21 million) of all
insurance contracts were motor insurance contracts, followed by 87.49 million (22.3%)
life insurance contracts (see Table 1.6 from GDV (2001, p. 62)).

In 2000, more than 81% of all households had a motor TPL insurance
contract and 33% had a full motor vehicle own damage insurance (see Table 1.7 from

GDV (2001, p. 59)). Currently there are approximately 51 million vehicles on the

5Gesamtverband der deutschen Versicherungswirtschaft (GDV)
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Table 1.5: Premium income in private insurance (2000)

| Insurance class | Gross premiums written (in Euro bn) |
Life insurance 60.95
Private health insurance 20.71
Motor insurance 20.36
Property insurance 12.30
General liability insurance 5.87
Private accident insurance 5.40
Legal expenses insurance 2.69
Marine insurance 1.64
Credit, aviation, nuclear insurance 1.52
Others 0.15

| TOTAL | 131.59 |

Table 1.6: Insurance portfolios as at year-end (2000)

| Insurance class | Insurance contracts (in millions) |
Motor insurance 97.21
Life insurance 87.49
Property insurance 67.11
Private health insurance 47.85
General liability insurance 37.81
Private accident insurance 29.06
Legal expenses insurance 28.72

| TOTAL [ 392.25 |

road (registered). This explains, together with the obligation to purchase motor TPL
insurance, the large number of contracts in motor TPL insurance.

All these numbers show that the motor insurance is one of the key sectors of the
German insurance industry and that it has considerable overall economic importance.
Details about the premium income and the claims expenditure in motor insurance in
Table 1.8 (from GDV (2001, p. 82)) show that in 2000 income and expenditure met at
20.36 billion Euro. For that year the loss ratio (the share of gross claims expenditure on

claims of the financial year in premiums earned in percent) was roughly 100.



15

Table 1.7: Insurance cover of households (2000/2001)

| Insurance class | Households with insurance contract (in %) |
Motor TPL insurance 81.2
Comprehensive insurance on contents 77.2
Private liability insurance 65.2
Life insurance 54.6
Legal expenses insurance 43.2
Private accident insurance 40.1
Motor vehicle full own damage insurance 33.3
Private health insurance only 11.8

Table 1.8: Premium income in motor insurance (2000)

H Insurance class H Gross premiums written (in Euro bn) H
Motor TPL 12.63
Full own damage cover 5.75
Partial own damage cover 1.74
Passenger accident 0.24
TOTAL gross premium income 20.36
TOTAL gross claims expenditure 20.36

Since after the deregulation in 1994 insurance companies offering motor TPL
insurance are allowed to modify their tariffs and to introduce new tariff factors, there
is now a wide variety of tariffs for motor TPL insurance. Customers are more than
ever before aware of their choices and realize that they may save a considerable amount
of money by cancelling their current contract and effecting a new policy with another
insurance company that offers a lower premium. Overall, competition between insurance
companies has significantly intensified.

In such a price-sensitive market it is important for the companies to find ways
of preventing their customers from cancelling. In general, it is much more expensive for

the insurance company to acquire a new customer than to prevent a current customer
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from cancelling. Recent general studies estimate that, on average, it is five times more
expensive to acquire a new customer than to maintain relations with a current customer
(see Wirtz (2000, p. 160)). In order to acquire new customers, the company needs to
offer premiums that are lower than the premiums of the major competitors. Of course,
there are other important aspects like the quality of customer service and distribution
system, but the premium is the most important factor in this market.

On the other hand, people who already have a motor insurance contract with
some company are usually less sensitive to price differences. They tend to keep their
contract even if another company would offer them a lower premium. In order to provide
the insurance company with information on the cancellation behavior of their customers,

the cancellation prophylaxis study discussed in the chapter 2 was designed.
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CHAPTER 2

THE CANCELLATION PROPHYLAXIS

STUDY

In this chapter I will introduce the cancellation prophylaxis study and the dataset

that was provided for the analysis.

2.1 Cancellation by the Policy Holder

Before actually discussing the cancellation prophylaxis study in detail, I want to
explain under which circumstances the policy holder has the right to cancel the motor
insurance contract and which deadlines apply for cancellation. For a detailed discussion
see Asmus and Sonnenburg (1998, p. 133).

First it should be noted that in case of cancellation of the contract, the policy
holder usually does not lose the possibility of getting a discount according to the number
of years without claim (no-claims class). §5 (7) PAVG and §25 TB state that after the
cancellation of a contract, the insurance company must issue a certificate containing
information about the length of the contract, the number of years without a claim and,
if there were any, the number of claims covered by the policy. If the policy holder
concludes a new motor insurance contract with another insurance company, he is usually
classified into a no-claims class corresponding to the certified number of years without

claim (§24 TB).
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If, on the other hand, the old contract was classified into one of the claims classes
S or M, the policy holder may try not to inform the new insurance company about this
fact in order not to be classified into one of these classes but in the class SF 1/2. However,
the new insurance company can demand the certificate from the old insurance company
and it will do so in general (§25 TB).

In general, there are two types of termination of a contract: ordinary and
extraordinary termination. Both types will be discussed with respect to the right of

the policy holder to terminate the contract.

2.1.1 Ordinary Termination

Conditions for ordinary termination can be found in §4 AKB. The duration of a
motor insurance contract can be one year or less. If the duration is less than one year,
then the contract ends automatically at the expiration date. For one-year contracts, the
contract automatically extends for another year if it is not cancelled at least one month
before the expiration date. The cancellation notice must be in written form. If the policy
holder cancels, then the contracts ends at the end of the insurance period. Termination

may refer to the complete contract or only to parts, for example only to vehicle insurance.

2.1.2 Extraordinary Termination
There are several possible reasons for extraordinary termination of the contract.
Different reasons may lead to the cancellation, the deadlines may differ and the contract

may not necessarily end at the end of the insurance period.
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2.1.2.1 Cancellation in case of a claim (§4b AKB). In case of occurrence of
one of the events insured against, the policy holder has the right to cancel the contract.
This can be done as soon as the insurance company has either accepted or refused the
demand for compensation or as soon as the insurer has advised the policy holder to take
legal action against the demand for compensation, but no later than one month after
the policy holder received notice about this fact. The contract may end immediately or
at any time until the end of the current insurance period. There is no refund for the

premiums paid for the current insurance period.

2.1.2.2 Cancellation after changes of the tariff (§9a, 9b, 9c, 9d AKB).
Changes of the underlying tariff may affect the premium a policy holder has to pay for

his motor insurance contract. This may happen in three different ways:

1. The rules for the application of tariff factors as described in section 1.2.2 may be
modified by the insurance company. Modifications then apply at the beginning of
the next insurance period (§6 TB).

2. Every year an independent trustee uses statistics from a sufficiently large number of
insurance companies to find the appropriate index values that are used to determine
the type class of a vehicle and the regional class of a registration district. Then
the classification of a specific contract into a regional class or into a type class may
change at the beginning of the next insurance period (§11 and §12 TB).

3. Changes in legal requirements may also affect the tariff, for example by the obliga-
tion to include new types of coverage or to grant higher maximum compensation
sums (§9¢ AKB). There may also be changes in the conditions of the contract
(89d AKB).

§9a (1) and §9c (1) AKB state that each of the three cases above may lead to a
premium increase by the insurance company beginning with the next insurance period

(case 1 and 2) or as soon as the changes apply (case 3). The policy holder must receive

a written notice about the change of the premium at least one month before it applies
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(§89a (2) AKB). Then he has the right to cancel the contract within one month (§9a AKB).
The contract ends at the time the premium increase would apply. In case 1, the policy
holder can cancel even if the changes do not increase his premium.

§9a (3) AKB states that the policy holder has no right to cancel if the premium
increases due to classification into a different regional class, tariff group or type class
for which the policy holder is responsible (for example, if the policy holder moves into
another registration district, changes his profession or if there were claims covered by the

contract).

2.1.2.3 Cancellation after the sale of the vehicle (§6 AKB). If the policy
holder sells the insured vehicle, the buyer takes over all rights and responsibilities of
the contract. Both buyer and seller are liable for the premium of the current insurance
period.

Within one month after the purchase or the notice about the existence of an
insurance contract, the buyer has the right to cancel the contract. The contract may
end immediately or at any time until the end of the current insurance period. Only the
premium for the actual time of coverage will be charged.

The seller, however, has the right to be classified into the same no-claims class as

before if he concludes a motor insurance contract for a new vehicle. Certain restrictions

apply (§23 TB).

2.1.2.4 Cancellation after the death of the policy holder. If the policy
holder dies, the heirs take over all rights and responsibilities of the contract. Within

one month after taking over the vehicle, the heirs have the right to cancel the contract.
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The contract may end immediately or at any time until the end of the current insurance
period. Only the premium for the actual time of coverage will be charged (see Asmus

and Sonnenburg (1998, p. 139)).

2.2 Description of the Problem

We have seen in the previous section that there are several circumstances un-
der which the policy holder has the right to cancel his motor insurance contract. As
discussed in section 1.3, the insurance company generally wants to prevent its customers
from cancelling their contracts. Even if a contract has caused many claims in the past,
the insurance company usually does not want the policy holder to cancel because the
no-claims class system automatically leads to a premium increase for this customer (see
percentage rates for the claims-classes S and M in Table 1.4).

Now the insurance company is interested in knowing in advance which contracts
are likely to be cancelled by the policy holder. If it knew in advance that an individual
policy holder is considering to cancel his contract, the insurance company could try
to prevent him from cancelling (cancellation prophylaxis). For example, the insurance
agent may be informed about contracts that are likely to be cancelled. The agent then
tries schedule a meeting with the policy holder to discuss possible changes in his contract.
This includes changing into the newest tariff generation with possible premium reductions
and checking whether additional discounts (home owner, limited mileage etc.) may be

applicable to the contract.
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In this thesis I am not discussing possible actions that may be taken to prevent
customers from cancelling their contracts. Instead I am concentrating on identifying risk
factors for cancellation and on setting up a classification rule that discriminates between
contracts that are likely to be cancelled and contracts that are not. Therefore the setup

for the study is the following:

1. Randomly choose contracts from the current total portfolio of the insurance
company and contracts that have been cancelled recently. Store all available
characteristics that describe the sampled contracts.

2. Use the available characteristics of the contracts in the sample to set up a statistical
model that describes the dependence of the cancellation behavior on these
characteristics and provides a rule for classifying contracts as likely to be cancelled
or unlikely to be cancelled for every possible combination of the characteristics.
A reasonable time frame for cancellation would be one insurance period (one year).

3. Finally use the classification rule to identify contracts in the total portfolio that are
likely to be cancelled. For these contracts cancellation prophylaxis actions should
be considered.

Although the primary goal is to find an accurate classification rule, the company also

wants to understand which variables influence the cancellation behavior and quantify

their influence.

2.3 Study Design

The cancellation prophylaxis study is a typical case-control study. We “look in the
past” and observe the outcome on several subjects (retrospective design). For a general
description of case-control studies see for example Hosmer and Lemeshow (2000, p. 206).

More specifically, the population of all contracts is first divided into two strata by
the binary outcome “cancellation”. One strata contains all contracts cancelled between

1996 and 1998 (cases) and the other strata contains all contracts that are still in the
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portfolio in 1999 (controls). Then samples of fixed size (in this case, 10,000) are chosen
from the two strata and all available characteristics (in this case, 40) are measured for
each contract sampled. We assume that all relvant characteristics are available in the
computer system. This sample of 20,000 contracts should then be used to analyze the
dependence of the outcome cancellation on the characteristics of the contract.

One consequence of this design is that we cannot directly estimate the proportion
of contracts that are cancelled. In order to do so, we need to know the total number of
cancelled and not cancelled contracts. We also cannot estimate the actual cancellation
probability for a given contract in the portfolio; the sampling design only allows to classify
contracts as likely or unlikely to be cancelled.

An alternative sampling design would be a cohort study. In this prospective
design, we would chose a random sample from the total portfolio of motor insurance
contracts at some time and determine the values of the covariates. Then we would follow
the chosen contracts for a fixed period of time (say, for example, one year). At the end of
that time period we would check whether the contract has been cancelled or not. Under
this design we would be able to estimate the probability of cancellation for every contract

in the portfolio.

2.4 Description of the Dataset

The given dataset is provided by the Versicherungskammer Bayern (VKB), one
of the largest motor insurance companies in Germany. According to the annual report

for 1999, the total portfolio of motor insurance contracts of this company consisted of
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940,500 motor TPL insurance policies out of which 678,491 included motor vehicle own
damage insurance. Gross premiums amounted to 209.0 million Euro for motor TPL
insurance and 121.4 million Euro for motor vehicle own damage and passenger accident
insurance .

A brief description of each of the 40 variables in the dataset is given in
appendix A. As discussed there, 28 variables seem generally useful for this study. One of
them (STORNO) represents the binary outcome of interest (contract cancelled or not).

Several variables are related to the policy holder: age (KUNALTER2), nationality
(AUSLK1), zip code (PLZ), county (REGBE), payment option (ZART) and the number
of years the person had a motor insurance contract with the VKB (VWDAU). Useful
information about the insured vehicle is available through the variables STAERKE
(vehicle power in kW), FALTER (age) and KAUFDAT1 (year of purchase).

As far as the motor TPL component of the insurance contract is concerned, we
have information on tariff generation (KZKHT), type of coverage (DECKAR), regional
classification (REGIO), tariff group (TGR1), restricted mileage (KZWF), restricted
number of drivers (FANZ1), home owner discount (KZEHB1), type class (TYPKLH),
no-claims class (TARKLA), percentage rate (BEITSAT) and annual premium (JTBH).

The variable KZFV indicates whether motor vehicle own damage insurance is
included in the contract. If this is the case, then several variables describe this part of the
contract, namely TYPKL (type class), FELD66 (no-claims class), FELD68 (percentage
rate) and JTBF (annual premium). Finally, additional discounts are coded in the

variables SORABI (special discount) and VERBU1 (employee tariff).
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Among those 27 variables 9 are measured on interval or ratio scale (VWDAU,
KUNALTER2, STAERKE, FALTER, KAUFDAT1, BEITSAT, JTBH, FELD68, JTBF),
3 are measured on ordinal scale (ZART, TYPKLH, TYPKL) and 15 on nominal scale
(AUSKL1, PLZ, REGBE, KZKHT, DECKAR, REGIO, TGR1, KZWF, FANZI1,

KZEBH1, TARKLA, KZFV, FELD66, SORAB1, VERBU1).

2.5 General Modeling Considerations

The general setting for this study is the following: The response (or outcome or

dependent) variable of interest is binary (dichotomous):

1 if the i-th contract is cancelled within the next insurance period

0 if the i-th contract is not cancelled

For every motor insurance contract in the sample we have observed whether it
has been cancelled or not. Additionally, several characteristics stored in the computer
system were recorded for all 20,000 contracts. I follow the usual terminology and combine
these variables into a vector of explanatory (or predictor or independent) variables
X; = (Zq,...,2ip). According to section 2.4, all types of measurement scales (nominal,
ordinal, interval and ratio) occur in the given dataset and there seem to be p = 27 useful
explanatory variables. Any model under consideration should be able to handle this set
of explanatory variables.

For the purpose of setting up a statistical predictive model that describes the
dependence of the outcome y; on the explanatory variables x;, a common assumption
is that the outcomes for different subjects are independent. In this context, it means

that the cancellation behavior of a specific contract does not depend on the cancellation
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behavior of other contracts in the portfolio. There may be situations where this is not
true, for example, if a group of people receives an advertising message from a competitor
and subsequently cancels. However, since the underlying population is large (the portfolio
of the insurance company consists of approximately 1 million contracts) and contracts are
selected randomly, the assumption seems justifiable. Thus, the outcomes y; are treated
as independent binary random variables. If there are reasons to believe that outcomes
are correlated, then some of the standard models for categorical data analysis can be
adjusted (see Agresti (1990, p. 456)).

The resulting model is required to have the following properties (which are

common requirements for statistical models):

e The resulting model should fit the data, while being as parsimonious as possible.
e It should also be reasonable and interpretable in the context of the study.

e And, of course, it should be able to predict the outcome as accurately as possible.

In this thesis, I will investigate the use of two types of models for the prediction

of cancellation behavior: logistic regression models and classification trees. As Hosmer

and Lemeshow (2000) note, logistic regression models have become the standard method

of analysis in a situation where the goal is to describe the relationship between a discrete

(often binary) outcome and several explanatory variables. Logistic regression models

can be seen as an adaptation of the standard regression model to the case of a discrete

dependent variable, within the common framework of Generalized Linear Models (see
Agresti (1990)).

An alternative approach is the use of trees for prediction. The basic idea of

a classification tree is to recursively partition the covariate space into more and more
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homogeneous subsets. The partition is achieved by binary recursive splitting and can be
described graphically by a tree. Classification trees are a computer-intensive technique
and have a wide range of applications. They are especially useful if the number of
observations and the number of covariates is large.

I will discuss logistic regression models and classification trees in more detail
in chapters 3 and 4, respectively. Hastie, Tibshirani, and Friedman (2001) give a

comprehensive overview of statistical predictive models.



28

CHAPTER 3

LOGISTIC REGRESSION MODELS

This chapter summarizes the basic methodology for logistic regression models, as

well as some aspects of model selection and model assessment.

3.1 General Idea

In a logistic regression model we assume that the binary outcome Y; can be
modeled as a random variable having a Bernoulli distribution with some unknown

probability of success that depends on the vector of covariates x;:

Y; ~ Bernoulli(7(x;)), 0 < m(x;) < 1.

We first observe that

E(Y; | x;) =m(x;) and Var(Y;|x;) = 7(x;)(1 — 7(x;)).

The conditional expectation of Y; given x; must lie in the interval [0,1],
and the conditional variance depends on x;. The classical linear regression model does
not satisfy these conditions and must therefore be modified in order to be used for a
binary response variable.

The basic idea is to consider the logit transformation of the probability of success

7(x;) which maps the range of probabilities (0,1) onto the interval (—oo,+00) and is
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defined by:

logit (7(x;)) = In <ﬂ> . (3.1)

1 —7(x)
Then a linear predictor is used in the same way as for the standard linear regression

model. This gives the following model equation for the case of p explanatory variables:

In (%) = ﬁo + ﬁlxil +...+ Bpxip' (32)

Equivalently we have

eﬂ0+ﬂ1 Ti1 +---+ﬂp$ip

W(Xi) = 14+ 6,30+,31$i1+---+5p$ip

where the right-hand side can be recognized as the cumulative distribution function
(c.d.f.) of the logistic distribution. The question is why exactly this type of distribution
(this particular transformation) is chosen.

First of all, the choice of c.d.f. of the logistic distribution is motivated by plots of
the proportions of positive responses versus the values of continuous covariates. These
curves often have an S-shaped form that looks like the c.d.f. of a continuous probability
distribution. The c.d.f. of the logistic distribution in particular has a simple form which
can be easily manipulated and corresponds to a rather simple transformation, the logit.
Using the c.d.f. of the standard normal distribution instead (as in probit models) results
in a transformation that cannot be expressed explicitely.

Second, it leads to a meaningful interpretation of the model in terms of odds ra-
tios. For details see section 3.6. Third, logistic regression models can be used for the
analysis of data from case-control studies in the same way as for data that were collected

in a cohort study (Hosmer and Lemeshow (2000, p. 208)). Finally, it is also theoretically
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appealing, because the logit link is the canonical link for Generalized Linear Models with
Bernoulli random component (see Agresti (1990, p. 80)).

Both continuous and categorical variables can be used as predictors in logistic
regression models as given by Equation (3.2). For a categorical variable with & levels we
simply define £ — 1 dummy variables and use them in the formulation of the model.

Multiple logistic regression models as introduced above are analogous to the
normal theory linear models and have become the standard models for data analysis
in situations comparable to this study. A more detailed general discussion of logistic
regression models can be found in Agresti (1990), Cox and Snell (1989), and Hosmer and

Lemeshow (2000).

3.2 Fitting Logistic Regression Models

After settting up a logistic regression model, the first step of the analysis is to
estimate the unknown parameters ;, ¢+ = 0,...,p. All major software packages use the
maximum likelihood method, although there are alternative approaches (see Hosmer and
Lemeshow (2000, p. 21)).

For logistic regression models the likelihood equations are nonlinear in the
unknown parameters. They can be solved iteratively using the Newton-Rhapson
algorithm; this algorithm also computes the estimated asymptotic covariance matrix
of the parameters as a byproduct. The iterative process of calculating the maximum
likelihood estimates is sometimes referred to as iterative weighted least squares

algorithm. The parameter estimates can then be used to estimate the logit for a particular
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observation and the probability of success by inverting the logit transformation:

650+51$¢1+---+Bp$1p

T = W(xi) - 1+ eBotBrzi+..+Bpmip

Likelihood equations and the Newton-Rhapson algorithm are discussed in more detail in

Agresti (1990, p. 112) and in Hosmer and Lemeshow (2000, p. 33).
3.3 Significance Testing

After estimating the coefficients, the next step is to assess the significance of the
predictor variables in the model. The natural question is whether a model M; that
includes some explanatory variables under consideration gives more information about
the outcome than a model M, that does not include these variables. This question can
be answered by testing the null hypothesis that M> holds, given that M; holds.

Let Mt and M2 be the parameter vectors for M; and Ms, respectively, such that
BMi can be written in the form M = (ﬂMz,v). That is, v is a g-dimensional vector
that contains the parameters for variables that are in M; but not in M,. The test stated
above is equivalent to considering M; and testing the null hypothesis Hy : v = 0 against
the two-sided alternative H; : v # 0. Note that in order to assess the significance of a
categorical predictor with k levels, we have to test whether the coefficients of all £ — 1
dummy variables are equal to zero.

Three different test statistics have been suggested for this test. First, the Wald
test is based on the asymptotic normality of the maximum likelihood estimates for M,

denoted by AM: = (BM2, ’y). The test statistic is given by
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where Cov(4) denotes the estimated covariance matrix corresponding to the parameter
estimates 4. Second, the likelihood ratio test is based on the ratio of the maximized

likelihoods for M; and M,. The test statistic is

G = —90n (maxumzed likelihood for M2> .

maximized likelihood for M;

And third, the score test is based on the distribution of the partial derivatives of the
log likelihood for M, with respect to the parameter vector SM'. Let U(8Y!) be the
vector of first partial derivatives of the log likelihood, and let H(3™!) be the matrix of
second partial derivatives. In addition, let I(8M!) be either —H (3™!) or the expected
value of —H (8M1). Now calculate the maximum likelihood estimates 52 for M, and set

BO = (BM2, 0,..., 0). The score statistic is defined by

~ ~

S =U' (BN (BNUB).

Under Hy, all three test statistics have a large-sample chi-square distribution with
g degrees of freedom. In the univariate case (¢ = 1), this fact can be used to find an
approximate confidence interval for one of the unknown parameters ;. For details see
Cox and Snell (1989, p. 179).

Both Wald and likelihood ratio test require the computation of the maximum
likelihood estimates for M;. Further investigation has indicated that the Wald test is
less powerful than the likelihood ratio test and that it can even show aberrant behavior:
it may fail to reject the null hypothesis when the coefficient is significant. Therefore the
likelihood ratio test is usually recommended (see Agresti (1990, p. 89)). The Score test,

on the other hand, does not require the fitting of the larger model M;. This reduced
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computational effort is often cited as its major advantage, especially if several tests have

to be performed in a stepwise procedure (see Hosmer and Lemeshow (2000, p. 16)).

3.4 Model Selection Procedures

The significance tests described in the previous section are the basis for stepwise
procedures for selection or deletion of variables from a model. All these procedures
check for the importance of a variable by measuring the statistical significance of the
coefficient(s) of that variable. —The statistical significance can be measured by
computing p-values from any of the three test statistics mentioned in the previous section.
Hosmer and Lemeshow (2000, chap. 4) discuss the commonly used stepwise procedures
for model selection, namely backward elimination, stepwise selection (forward selection
with backward elimination) and best subset selection.

These procedures are very useful and effective data analysis tools. However they
only take into account the statistical significance of explanatory variables. If the sample
size is large, effects that not are significant in the context of the problem may become
statistically significant.

Furthermore, significance tests compare models in a relative sense; they do not
consider whether the predicted values are an accurate representation of the observed
values in an absolute sense. The latter is what is usually referred to as goodness of fit.
Therefore stepwise procedures can give interesting insight in the structure of the problem,
but further considerations as discussed in the following section are necessary in order to

select an appropriate predictive model.
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3.5 Assessing Goodness of Fit

In order to assess the goodness of fit of a logistic regression model we compare
the observed outcomes y; € {0,1} to the fitted values 7; € (0,1) from the model.
A general problem in this context is that the fitted model tends to perform in an
optimistic manner on the dataset that was used for fitting. If the sample size is large
enough (as it is the case for this study), a more unbiased assessment of goodness of fit
can be achieved by using external validation: the original dataset is randomly divided
into a training set and a validation set. The training set is used to fit the model; then the
validation set is considered for the assessment of goodness of fit. Most authors
recommend to split the data into 2/3 training and 1/3 validation set, or similar ratios.
Hastie et al. (2001, chap. 7) discuss model selection and model assessment for statistical

predictive models in general.

3.5.1 Pearson Chi-Square and Likelihood Ratio Statistic

Overall measures of the distance between y; and 7; have been proposed for the
assessment of goodness of fit. For this purpose it is useful to consider the data as described
by a J x 2 contingency table. The two columns are defined by the binary outcome y;; the
covariate patterns define the J rows. We will see that for every reasonable model in this
study the number of covariate patterns is equal to the number of observations (J = n).
From the resulting n x 2 table the Pearson chi-square statistic X? and the likelihood

ratio statistic (deviance) D can be computed by

2§ M o= (&) o (1_%)
X _Zﬁi(l—fri) and D = 2<Zy,ln P +(1—y)ln — ‘
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We cannot use the large sample chi-square approximation to the distribution of
X? and D since the number of covariate patterns increases with the sample size and
hence the estimated expected frequencies are small. However a large sample normal
approximation for the distribution of X? has been derived by Osius and Rojek (1992).

Hosmer and Lemeshow (2000, p. 153) describe how this approximation can be
implemented in statistical software packages. The procedure simplifies if external
validation is used. First the parameters are estimated from the training sample; these
parameter estimates are used to calculate predicted probabilities for the observations in
the validation sample. Then the Pearson chi-square statistic X? is calculated for the

validation sample and standardized by

2
X% —n,

Oy

Z =

where n, is the total number of observations in the validation sample and
o =3y ﬁ —4n,, (Hosmer and Lemeshow (2000, p. 187)). Osius and Rojek (1992)

have shown that Z has a large sample standard normal distribution; they recommend to

use a two tailed p-value. Their results do not apply to the likelihood ratio statistic D.

3.5.2 Stukel’s Test

One of the basic assumptions of the logistic regression model is that the logit trans-
formation (3.1) is the correct function linking the linear predictor with the conditional
mean 7(x;). A test of this assumption can be derived by considering a generalization of
the logistic regression model proposed by Stukel (1988). Two shape parameters a; and s

are introduced in order to allow for asymmetric probability curves with heavier or lighter
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tails than the logistic distribution. The usual logistic regression model corresponds to
the case a; = ap = 0.

A test for the hypothesis that the logit link is the correct link against the alterna-
tive of link function that results in heavier and/or lighter tails can be obtained from these

7y

1—7;

N 2 N 2
s =05x (In| ")) xI(#>05)and z=—05x (In{—"—)) xI(# <0.5).
1—m; I—m

Then the score test for addition of z; and 2, to the model is performed, which has a large

ideas. First, two new variables based on the estimated logit In ( ) are introduced:

sample chi-square distribution with two degrees of freedom. This test is equivalent to
the Score test that a; = ap = 0 in a generalized logistic regression model. A simulation
study by D.W. Hosmer, T. Hosmer, S. Le Cessie, and S. Lemeshow (1997) indicated that

this test has moderate power to detect an asymmetric link function.

3.5.3 Hosmer-Lemeshow Test

Hosmer and Lemeshow (2000, p. 147) have proposed to collapse the J x 2
contingency table introduced in section 3.5.1 to a g X 2 table by grouping the observations
according to the estimated probabilities 7;. The grouping can be based either on fixed
values or on percentiles of the estimated probabilities. For the first method, we choose
cutpoints k/g, k = 1,...,9 — 1, and the groups contain all subjects with estimated
probabilities between adjacent cutpoints. For the second method, the first group
contains the n/g subjects having the smallest estimated probabilities and so on.

The observed frequencies for the two columns of the table are the number of
positive responses (y; = 1) and the number negative responses (y; = 0) in each group.

The estimated expected frequencies are found by summing the estimated probabilities of
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success (7;) and failure (1 — 7;) for all g groups. Then the Pearson chi-square statistic
is calculated from the g x 2 table of observed and estimated expected frequencies. The

Hosmer-Lemeshow statistic is defined by

i O — nk7rk)

)7k (1 — 7rk)
where n) denotes the number of observations, o, the number of positive responses and
T, the average estimated probability in group £.

If the fitted logistic regression model is the correct model, then the distribution of
C for both types of grouping is well approximated by the chi-square distribution with g—2
degrees of freedom. The approximation depends on the assumption that the estimated
expected frequencies are large (> 5). If any of the estimated expected frequencies is
smaller than 5, then adjacent rows should be combined until the condition is satisfied;
the number of degrees of freedom has to be reduced accordingly.

The grouping method based on percentiles results in better adherence to the X§72
distribution and is therefore preferred. A common choice is g = 10, in which case the
groups are sometimes referred to as the deciles of risk. For example, the first group
represents the 10% of the contracts with the smallest estimated cancellation probability
and so on.

If the Hosmer-Lemeshow test statistics are computed for the validation sample,
then each term in the definition of C' has a large sample chi-square distribution with
one degree of freedom. For g groups the distribution of C for the validation sample is
approximately Xg- In addition to computing a p-value for the overall statistic C’, the

individual terms can be examined separately.
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The 10 x 2 table itself can serve as a useful overall summary of lack of fit that is
easily understood by suject matter scientists. This explains why the Hosmer-Lemeshow
tests have become very popular tools and are implemented in several computer packages.
However, further research has shown that there are disadvantages in the use of fixed
groups based on estimated probabilities. Some issues are illustrated in a paper by Hosmer
et al. (1997): First of all, the value of the test statistic depends on the choice of the
cutpoints. There are examples where one set of fixed groups shows that the model fits
while the tests rejects fit using a different set of fixed groups. In addition, these tests may
have low power for detecting certain types of lack of fit. The grouping based on estimated
probabilities (“y-space”) results in groups that may contain subjects with widely different
values of the covariates (“x-space”).

There has been considerable work on the development of alternative methods.
Hosmer et al. (1997) compared some of these alternative approaches via simulation
studies and recommend to use a combination of tests: the normal approximation to
the Pearson chi-square statistic for power against overall non-linearity on the logit and
Stukel’s test for power against a non-logit link. Despite its drawbacks, they also use
the Hosmer-Lemeshow deciles of risk test for confirmatory evidence. I will follow their

recommendations.

3.5.4 Classification Tables and Area under the ROC Curve
When assessing the goodness of fit of a model we should keep in mind the
main purpose of the model, which in this study is to predict the outcome accurately.

The response is either cancelled or not cancelled. From the fitted model a predicted
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probability of cancellation can be calculated for each contract. If the predicted probability
exceeds some cutpoint ¢ € [0, 1], then the contract is predicted to be cancelled; otherwise
it is predicted as not cancelled. A 2 x 2 classification table is obtained by crossclassifying
observed and predicted outcomes. The accuracy of the classification rule can be measured
by the overall misclassification rate, and by sensitivity (proportion of cancelled contracts
that are classified as cancelled) and specificity (proportion of not cancelled contracts that
are classified as not cancelled).

If the same observations used to fit the model are also used to estimate the
misclassification rate, the resulting estimate is biased. One solution is to use external
validation, that is, to set up a classification table for the validation sample based on the
parameter estimates from the training sample. If the sample size is too small such that
external validation cannot be used, the bias can be reduced by the use of crossvalidation.
Leave-one-out crossvalidation, for example, removes one observation to be classified from
the data, reestimates the parameters and classifies the observation based on the new
parameter estimates. This process is repeated for every observation in the dataset. For
details on crossvalidation see Hastie et al. (2000, p. 214).

Misclassification rate, sensitivity and specificity depend on a single cutpoint c. We
can get a more complete description of the ability of the model to classify observations
correctly by the area under the Receiver Operating Characteristic (ROC) curve. We
obtain this curve by calculating sensitivity and specificity for a range of possible cutpoints
and plotting sensitivity versus (1 - specificity).

The area under this curve provides a measure of discrimination with the following

interpretation (Hosmer and Lemeshow (2000, p. 162)): suppose our sample consists of
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ny1 cancelled and ny not cancelled contracts. Then consider the n; X ngy pairs obtained
by pairing each cancelled contract with each not cancelled contract. We calculate the
number of pairs for which the cancelled contract has a higher predicted cancellation
probability than the not cancelled contract. When the probability is the same we just
add 1/2. The area under the ROC curve is equal to the resulting number divided by
the number of pairs. Hosmer and Lemeshow also note that the count we get above is
equal to the Mann-Whitney U statistic for these data (y;,7;). They give the following

guidelines for interpretation:

e ROC = 0.5: no discrimination (we might as well flip a coin)
e 0.7 < ROC < 0.8: acceptable discrimination

e 0.8 < ROC < 0.9: excellent discrimination

e ROC > 0.9: outstanding discrimination

The calculations can also be used to find an optimal cutpoint for the purpose of
classification. If both types of error are supposed to be weighted equally, we may
select the cutpoint such that sensitivity equals specificity.

Some caution is necessary when using sensitivity, specificity, misclassification rate
and area under the ROC curve as measures of goodness of fit. They all measure the
ability of the model to discriminate between the two outcomes. It is possible that a
model discriminates well between the two outcomes but is not well calibrated. That is,
the probabilities do not reflect the true outcome experience. We should always consider
summary measures like the Pearson chi-square statistic to investigate the calibration of

the model, especially if one of the goals is to interpret the coefficients of the model.
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3.5.5 Other Measures

Considerable effort has been made to establish summary measures of goodness
of fit for logistic regression models that are comparable to the R? measures in linear
regression. Hosmer and Lemeshow (2000, p. 164) describe several of these measures
and also refer to a comprehensive study of these measures of explained variation. The
problem is that all these measures give low values when compared to R? measures usually
encountered in linear regression. Therefore they are not very useful in making global
statements about the goodness of fit of a model. However, they may be helpful in the
evaluation of competing models.

Both Cox and Snell (1989) and Hosmer and Lemeshow (2000) recommend to use
regression diagnostics in addition to the overall measures described above. Residuals
and other statistics based on individual observations can help to detect anomalous or
influential observations or unexpected patterns. Since the sample size for this study is
large (20,000 records), the application of these measures is limited. However, it may
sometimes be useful to inspect the individual components of overall measures like the
Pearson chi-square statistic. For a detailed discussion of regression diagnostics see Cox

and Snell (1989, p. 69) and Hosmer and Lemeshow (2000, p. 167).

3.6 Interpretation of the Model

After assesssing the goodness fit, we come to the last step in the data analysis
procedure, the interpretation of the selected model. The question is how the model

helps to understand the dependence of the outcome “cancellation” on the covariates x;.
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Three cases can be distinguished: binary covariates, polychotomous covariates, and
continuous covariates. A more detailed discussion that also involves interactions can
be found in Hosmer and Lemeshow (2000, chap. 3).

First consider a single binary covariate x with possible values 0 and 1 and a logistic

regression model of the form logit(w(z)) = By + Biz. The odds of cancellation among

contracts with x = 1 is defined as 1353()1). Similarly, the odds of cancellation among

7(0)
1-7(0) "

contracts with £ = 0 is defined as The odds ratio is defined to be the ratio of the
odds of cancellation for contracts with £ = 1 to the odds of cancellation for contracts

with z = 0. It is given by the equation

(/1= 7(1)
OR = L 0)/T==(0))

and can be interpreted in the following way: if OR = r, then the odds of cancellation
for contracts with x = 1 are r times the odds of cancellation for contracts with z = 0
(see Agresti (1990, p. 14)).

The odds ratio is a widely used measure of association for contingency tables
(especially 2 x 2 tables) because its value does not change if rows or columns in the 2 x 2
table are multiplied by a nonzero constant. That means that the odds ratio can be used
for interpretation even if the sample is unbalanced in some rows/columns. For example,
in this study we have an equal number of cancelled and not cancelled contracts in the
sample which does not reflect the actual proportion of cancelled contracts. However,
the sample odds ratio we obtain by crossclassifying the outcome and a binary covariate

estimates the same quantity as the sample odds ratio obtained from a sampling design
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that samples cancelled and not cancelled contracts according to their actual proportion
in the portfolio (see Agresti (1990), p. 16).

Another advantage of the odds ratio is that it approximates the relative risk. The
relative risk is defined by

m(1)

Relative Risk := —<%

7(0)

and can be interpreted in the following way: if the relative risk is equal to r, then
contracts with x = 1 are r times as likely to be cancelled than contracts with z = 0 (see
Agresti (1990), p.14)). This is a very simple and easily understandable description of the

dependence of the outcome on x. It follows from these definitions that the odds ratio

approximates the relative risk if 1:28 ~ 1. This the case if both 7(0) and 7(1) are close
to zero, that is, if the probability of cancellation is small for both groups formed by the
binary covariate (see Agresti (1990), p. 17)).

For the logistic regression model above the relationship between the odds ratio
OR and the regression coefficient 3; is OR = €. This simple relationship is one of
the reasons why logistic regression are considered a very useful data analysis tool. The
odds ratio is estimated by plugging in the parameter estimate Bl in the formula above.
A confidence interval for the odds ratio can be obtained by first calculating the endpoints
of a confidence interval for the coefficient 3; (using the asymptotic normality of the
maximum likelihood estimate), and then exponentiating these endpoints. The resulting

confidence intervals are not symmetric about the point estimate ebr (see Hosmer and

Lemeshow (2000, p. 52)).
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Now suppose we have an independent variable with & levels. The interpretation of
the coefficients depends on the coding of the design variables used in the logistic regression
model. If reference cell coding is used, then the coefficients are easily interpretable in a
manner similar to the binary case (see Hosmer and Lemeshow (2000, p. 57)).

Reference cell coding means that we choose a reference group among the k groups
formed by the covariate. The k — 1 design variables are all set to zero for this group,
and for all other groups one of the design variables is set equal to one and all others
equal to zero. Then the odds ratio for every group relative to the reference group can
be estimated by exponentiating the corresponding coefficient in the logistic regression
model. We can obtain confidence intervals in the same way as described above. The
choice of the reference group depends on the specific meaning of the covariate. An
alternative would be effect coding, which results in estimates for the odds for one group
relative to the geometric mean of the odds for all groups. For details see Hosmer and
Lemeshow (2000, p. 59).

The interpretation of the coefficient of a continuous covariate depends on the
particular units of the variable. Exponentiation of the parameter estimate yields an odds
ratio for a one-unit change in the continuous covariate. Very often a one-unit change is
not very meaningful, but a change in the continuous covariate of ¢ units makes sense in
the context of the problem. Then an estimate for the odds ratio for a change of ¢ units
can be obtained by computing ecﬁl; confidence intervals are computed similarly.

Sometimes a logistic regression model is of the form logit(n(z)) = By + f1d + Be,
where d = 0 if > 0 and d = 1 if x = 0. This is reasonable if the value 0 has a special

meaning that distinguishes it from positive values for x. Under this parameterization,
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two types of odds ratios can be estimated. For positive values of z, the odds ratio
corresponding to a change of ¢ units is estimated by e?2¢ as discussed above. Additionally,
we can estimate the odds ratio comparing observations with a value of zo > 0 versus
observations with x; = 0 by eP222=B1 Tn order to obtain a confidence interval for this
estimated odds ratio, we first estimate the standard error of the linear predictor Bozo— B
by [22Var(Bs) + Var(B,) — 22,Cov(fs, £1)]/2), then compute a confidence interval for

32@ — Bl using the normal approximation, and finally exponentiate the endpoints.



46

CHAPTER 4

CLASSIFICATION TREES

For the discussion of classification trees in this chapter I will closely follow the

methodology introduced by Breiman, Friedman, Olshen, and Stone (1984).

4.1 Basic Idea

The setup for a classification tree is as follows: For every subject in a study we have
measured a vector of explanatory variables (covariates) x;, together with a classification y;
into one of K classes. The set of all possible vectors x; is called the covariate space X,
and the set of possible classes is denoted by C.

A (binary) tree structured classifier is then constructed by repeated (binary) splits
of subsets of the covariate space X', beginning with the complete covariate space. Some
subsets are not split, and are called terminal subsets; they form a partition of the covariate
space. For each terminal subset a class label is assigned, where different terminal subsets
can have the same class label. The partition is gotten by putting together all terminal
subsets corresponding to the same class. Thus, classification trees are a hierarchical way
of describing a partition of X.

The terminology of trees is graphic. A node t corresponds to a subset of X;
the root node t; corresponds to the complete covariate space. Terminal subsets become

terminal nodes or leaves and non-terminal subsets are called non-terminal nodes.
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Each non-terminal node contains a question on which the split is based. Any
possible observation in the covariate space can be passed down the tree, with decisions
being made at each node until a terminal node (leaf) is reached. The observation is then
classified according to the corresponding class label.

The construction of such a tree is based on past experience, which is summarized
by a learning sample. The learning sample consists of the covariate vectors x; for N
cases observed in the past and their actual classification y;. This sample is used to
construct a classification tree, where the construction is centered on three major elements

(see Breiman et al. (1984, p. 22)):

1. The selection of the splits.
2. The decision when to declare a node terminal or to continue splitting it.

3. The assignment of each leaf to a class.
I will discuss the first two aspects in more detail in the following sections; this will also
include a solution to the third question.

The discussion will be focused on the methodology introduced by Breiman et
al. (1984) and implemented in the CART (Classification And Regression Trees) software
package. I will also refer to more recent developments discussed in Ripley (1996). Other
approaches that should be mentioned are CHAID (see Kass (1980)) and C4.5/C5.0

(see Quinlan (1993)).

4.2 Selection of Splits

Before discussing how to actually select the “best” split at a node ¢, we first have

to define the set of possible splits. Usually only binary splits are considered; each node
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is split into just two groups at each stage. Sometimes it may be useful to allow for splits
into more than two groups (multiway splits). However as Hastie et al. (2001, p. 273)
point out, this is not a good general strategy: First, the data are split too quickly using
multiway splits; insufficient data may be left at the next level. Second, any multiway
split can be achieved by a series of binary splits.

Every binary split can be expressed as a question; if the answer is yes, then
an observation is sent to the left branch otherwise to the right branch. Breiman et

al. (1984, p. 29) define the following “standard set of questions”:

1. Consider only splits on a single variable z,,, where x,, can be measured on any
type of measurement scale.

2. Possible questions for a categorical variable with levels by, ..., by are of the form
{Is z,, € S}, where S can be any subset of by, ..., br.

3. Possible questions for a continuous variable are of the form {Is z,, < ¢?}, where ¢
ranges over (—oo, 00).

The set of possible splits corresponding to these questions is denoted by S and it
is finite: For a continuous variable there are as many possible splits as there are different
values and for a categorical variable with L levels, there are 2L~! — 1 different splits.

This standard set can be extended to allow for splits based on linear combinations
of variables (see Breiman et al. (1984, p. 38 and p. 132)). In order to discover and
use linear structure in the data, splits of the form Y., a,z, < ¢, where 3, a2 = 1,
are included in §. An effective search algorithm to find the best split is presented.
The disadvantage is that there is a loss in interpretability and that splits are no longer
invariant under monotone transformations of variables z,,. Breiman et al. (1984, p. 136)

also discuss the use of splits based on boolean combinations of variables.
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The next step is to describe how the “best” split at a node ¢ can be found. For
a better understanding it is helpful to assume that we have a probability distribution
over X x C. By partitioning, we can obtain p(k,t), the probability that an observation
reaches the node ¢ and is in class k£ from the distribution over X x C. Then

p(t) = YK  p(k,t) is the (marginal) probability that an observation falls in node t

and p(k|t) = IE( )) is the (conditional) probability that an observation is in class &k given

that it falls in node ¢.

All these probabilities are estimated by the respective quantities in the learning

N(k,t)
N(t)

sample. For example p(k|t) = where N(t¢) is the number of observations in the
learning sample that fall in node ¢ and N(k,t) is the number of class k& observations

among all observations in node ¢. These estimated proportions are used to assign a class

label to each node by the plurality rule: assign class label £*(¢) for node ¢ if

p(k*(t)[t) = maxg=1,. xp(k|t).

Generalizations of this rule are discussed in section 4.4.

Breiman et al. (1984, p. 23) describe the basic idea of split selection: look for a split
of a subset so that the data in the descendant subsets are “purer” than the data in the
parent subset. Reasonable measures of impurity should be zero if p(k|t) is concentrated
on one class and maximal if it is uniform on the K classes. Commonly used measures of

impurity ¢(¢) of a node t are misclassification rate, Gini index and entropy (or deviance):

e Misclassification rate:
1

i(t) = NG

> Iy #k (1) =1-p(k 1))

(zi,y:) €t
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e (Gini index:

K K
= > p(klp(K'[t) = Y p(klt)(1 — p(k[t)) = 1 = > (B(K[t))".
k#k! k=1 k=1
e Entropy (deviance):
K
p(k|t)In (p(k|t)) (where 0ln0 := 0).
k=1

For a two-class problem (C = {0,1}) with p being the proportion of class 1
observations in node ¢ the three measures become i(t) = 1 —max(p, 1 —p), i(t) = 2p(1—p)
and i(t) = —pln(p) — (1 — p) In(1 — p). Additionally, if either Gini index or entropy are
used in a two-class problem, then the number of possible splits for a categorical variable
can be reduced to L — 1 (for a nice proof see Ripley (1996, p. 218)). I will discuss
interpretations of these measures later in this section.

First suppose we have a candidate split s at node ¢ which divides into nodes %,
and tg and sends the proportion p; to t; and pg to tg. The goodness of this split is

defined to be the decrease in average impurity:

Al(S,t) = ’l(t) - pLi(tL) - pRi(tR).

The best split for this node is the one that maximizes the goodness of split measure. The
algorithm searches through all possible splits in & to find the best split. Then node ¢ is
split and the nodes ¢, and tp are considered for further splitting.

For illustration, Breiman et al. (1984, p. 32) also define the overall tree impurity

for a tree T with set of leaves T by:
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They show that maximizing the decrease in node impurity is equivalent to minimizing
the overall tree impurity. The splitting procedure can therefore be seen as a repeated
attempt to minimize overall tree impurity.

If the sample size at a particular node ¢ is too large (larger than a fixed maximum),
computational efficiency can be increased by using subsampling for the split search.
A subsample from each class represented at node ¢ is used to determine the split; but
the entire dataset in ¢ is sent down the split. Such a procedure usually only affects upper
nodes in a tree; the sample size down the tree is not decreased (for details see Breiman
et al. (1984, p. 163)). It should only be applied when the computer resources are limited.

At this point 1 will take a closer look at the impurity measures. The Gini
index can be interpreted in two ways. First suppose that instead of using the
plurality rule for assigning a class label, we choose the class label randomly from the
class distribution p(k|t) at node ¢, that is, we classify into class & with probability p(k|t).
The estimated probability that an observation is actually in class k' # k is p(k'[t) and
the estimated probability of misclassification is >y p(k|t)p(k'|t), the Gini index.

A second interpretation in terms of variances is gotten by the following
considerations. Assign all class k objects a value of 1 and all other objects a value of zero.
The sample variance of these values is p(k|t)(1 — p(k|t)). Repeating this for all K classes
and summing the variances again yields the Gini index (Hastie et al. (2001, p. 271)).

The deviance measure of impurity is based on a slightly different approach
(see Venables and Ripley (1997, p. 417)). We view the tree as a probability model
for the learning sample. Since each case in the learning sample is assigned to a leaf,

we have a random sample of size N(t) from the multinomial distribution specified by
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p(klt),k = 1,...,K, at each leaf ¢t. If we now condition on the vectors x; in the
learning sample, we know N(t) and N(k,t) for all nodes, in particular for the leaves.

The conditional likelihood is proportional to

I II k)N

leaves t classes k

The deviance is then defined to be the conditional log-likelihood multiplied by -2:

D) =-2 % ¥ Nb)n(pkL).

leaves t classes k

N(k,t)
N(t) -

The quantities p(k|t) are estimated by the maximum likelihood estimates
One splitting strategy is to choose the split which maximizes the decrease in deviance. If
we now consider the overall tree impurity I(7) for the entropy measure, it can be shown
(see Ripley (1996, p. 219)) that I(T) = D(T)/2N. Hence the splitting strategies based
on deviances and on the entropy measure are identical.

In general, Gini index and entropy are preferred to the misclassification rate as
impurity measures used for growing a tree. Breiman et al. (1984, p. 95) discuss reasons
why the misclassification rate should not be used. First, the decrease in impurity may
be zero for all possible splits in & under rather weak conditions. Second, even though
minimizing the misclassification rate is the overall goal, it is not advisable to use it as a
criterion for the split search, since we only do a one-step optimization.

Breiman et al. (1984) seem to prefer the Gini index, whereas the entropy is used
frequently in the machine learning literature. For two-class problems, the resulting
trees should be very similar (see, for example, the plot of the impurity measures in
Hastie et al. (2001, p.271)); the pruning criterion seems to be much more important

(see section 4.3).
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For multi-class problems, however, different splitting criteria may lead to
substantially different results. Therefore it is good practice to experiment with different
rules. One alternative splitting criterion (twoing) for the multi-class problem is defined

in Breiman et al. (1984, p. 104).

4.3 Pruning

In the previous section I discussed how to grow a classification tree by repeated
binary splits on single variables. The next obvious question is when to stop the growth
of a tree.

In statistics, we usually have to deal with “noisy” classification problems; the class
distributions overlap and there is no exact partition of the covariate space X. If there
was one, we could simply grow the tree until every observation in the learning sample
is classified correctly. Doing so in a noisy problem would over-fit the observations; the
tree adapts too well to the observations in the learning sample and has a higher true
misclassification rate than the smaller, right-sized tree. On the other hand, if the growth
of the tree is stopped too early, we do not use all the classification information available
in the learning sample and also get a higher true misclassification rate (Breiman et
al. (1984, p. 60)).

Early approaches tried to find appropriate stopping rules, that is, criteria for
declaring a node terminal. A simple example is to set a threshold 5 and to decide not
to split a node if the maximum decrease in impurity is less than 8. The difficulty here

is how to choose 3. If [ is set too low, then the resulting tree is too large. Increasing 3
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results in another problem: There may be nodes ¢ for which Ai(s,t) is small for all
possible splits; but for the descendants t; and tg, there are splits with large decreases
in impurity. If ¢ is declared terminal, the information in the good splits on ¢; and/or tg
is lost (see Breiman et al. (1984, p. 61)). An example for a stopping criterion based on
significance tests is the CHAID algorithm described in Kass (1980). It also did not lead
to satisfactory results.

Finally these approaches were discarded in favor of a completely different way of
looking at the problem that can be described as a three-step procedure: First grow a tree
that is much too large. Then prune the tree upward in a reasonable way until you end
up at the root node. Finally use accurate estimates of the true misclassification rate to
select the right-sized tree from among the pruned subtrees (Breiman et al. (1984), p. 37).

Breiman et al. (1984, p. 62) discuss this procedure in great detail. They

recommend to grow a very large tree 7} first. Nodes are split until either

e the node is pure (all cases are in one class, impurity measure is zero) or

e the node contains only identical measurement vectors (splitting would result in one
empty descendant node) or

e the node is small, that is, N(t) < Npin. Typical choices for Ny, are 1 or 5,
depending on the problem and the available computer resources.

Then we start with 7;; and selectively prune it upward. This results in a sequence
of smaller and smaller subtrees that eventually collapses to the tree consisting only of
the root node. We would like each subtree to be the “best” in its size range. Breiman
et al. (1984, p. 284) showed to the number of subtrees that have the same root as Tj is

approximately |1.5028368!|, where [ is the number of leaves of Tj. Hence there is large
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number of distinct ways of pruning upward to the root node. I will discuss two algorithms
that can be used to get such a sequence of subtrees.

Probably the simplest pruning process works as follows. Suppose 7Ty has L leaves.
Then for each value of H, 1 < H < L, consider all subtrees of 7j having exactly
L — H leaves. Among those, choose the subtree Ty that has the smallest misclassification
rate R(T) on the learning sample. This procedure has one drawback: the sequence of
subtrees is not necessarily nested, that is, Ty, is not necessarily a subtree of Ty. Nodes
that were just cut off may reappear as we go through the sequence. However the process
is intuitively appealing, gives the best subtree for every possible number of leaves, and
can be implemented effectively (see Breiman et al. (1984, p. 65)).

The second pruning method I want to discuss is cost-complexity pruning which
was first introduced by Breiman et al. (1984) and represents the established methodology.

They define the cost-complexity measure of a tree T' by

R, (T) = R(T) + o x size(T),

where R(T') is the misclassification rate on the learning sample, size(T) is the number
of leaves and o > 0 is the complexity parameter. According to Ripley (1996, p. 221),
another possible measure R(7T) could be the deviance.

Then T'() is defined to be the smallest minimizing subtree for given complexity

parameter «, that is, T'(«) is the smallest subtree such that

R, (T(a)) = min{R,(T) : T is any subtree of Tp}.

Breiman et al. (1984) showed that for every « > 0 there is such a subtree T'(«) and that

it is unique. They also noted that there is only a finite number of subtrees of Ty, but «
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runs through a continuum of values. This means that if 7'(«) is the smallest minimizing
subtree for some «, then it continues to be optimal as « increases until a jump point o/
is reached and a new tree T(«') becomes minimizing. If we continue to increase «, then
we finally end up at the tree consisting only of the root node.

The resulting sequence of subtrees is finite and nested. That is, each subtree can
be gotten from the previous tree by pruning upward. Furthermore an algorithm, based
on the so-called weakest link cutting, was developed for the effective computation of this
sequence. For details see Breiman et al. (1984, p. 68) and Ripley (1996, p. 222). In the
beginning of the process, the algorithm tends to prune off larger subbranches with many
terminal nodes; as the algorithm produces smaller trees, the number of leaves cut off at
a time tends to decrease.

These two pruning methods are closely related. If T'(«) is the smallest minimizing
subtree with respect to the cost-complexity measure (based on the misclassification rate)
and has n leaves, then it is also the subtree which has the smallest misclassification rate
among all subtrees with n leaves. That is, the sequence of subtrees gotten using cost-
complexity pruning is a nested subsequence of the sequence of subtrees gotten by mini-
mizing the misclassification rate for every possible number of leaves. Ripley (1996, p. 226)
describes some alternatives to these pruning methods.

What remains at this point (no matter which pruning method was used) is to
choose the “best” subtree within the sequence. The criterion usually used is the true
misclassification rate of a tree, which of course is unknown for a noisy problem. Breiman
et al. (1984, p. 72) recommend to use an “honest” estimate of the true misclassification

rate and describe two ways of obtaining this estimate.
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If the dataset is large, then it is split into a training and a validation sample,
usually in a ratio of 2:1 or similar. The training set is used to grow the large initial
tree Ty and to prune it. The subtree with the smallest misclassification rate on the
validation sample is then choosen from the sequence. Alternatively, for small datasets
the use of V-fold crossvalidation is recommended.

For both external validation and crossvalidation the plot of the estimated
misclassification rate versus the number of leaves has a similar shape. As the number of
leaves increases, we first see a rapid initial decrease, followed by a long flat valley where
the misclassification rate only fluctuates slightly, and then a gradual increase for very
large trees (due to overfitting).

In order to reduce the instability and to find the simplest tree whose accuracy
is “close” to the optimum, Breiman et al. (1984, p. 78 ) recommend to use the “one
standard error rule” to select the tree. Since the n, observations in the validation sample
are independent of the observations in the training sample, we can describe the process
of classifying these observations using the tree by a binomial model with n, independent
trials and some common probability of misclassification p. The proportion R,(T) of
misclassified observations in the validation sample is an unbiased estimator for p. Its

estimated standard error is

The smallest subtree in the sequence whose misclassification rate is just within one

estimated standard error of the minimum is selected.
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The methods discussed in the two previous sections represent the basic established
methodology for classification trees. There are some features that have been added to
the basic tree structure in order to make it more flexible and more powerful. One of them
is the use of priors and the inclusion of misclassification costs. A second one is the use of
surrogate rules for the handling of missing values and for assessing the importance of the

individual covariates. They are discussed in the two remaining sections of this chapter.

4.4 Priors and Misclassification Costs

Due to the sampling design, the class proportions in the learning sample sometimes
do not reflect the class proportions in the whole population from which the sample was
chosen. This fact can be incorporated into the tree construction process by specifying
prior probabilites 7 (k) for the K classes.

In this concept, the priors are interpreted as the probabilities that a class &
observation is presented to the tree. They are either supplied by the analyst or estimated

by the class proportions % in the learning sample. The estimated probability that a

case is in class k given that it falls in node ¢ is now p(k[t) = N % X ]%’(“t’)t), which reduces

to A][é'(“t’)t) for w(k) = % The same class assignment rule as in section 4.2 is used with

the modified estimates p(k|t) (see Breiman et al. (1984, p. 34 and p. 112)).
Priors can be used to adjust the individual class misclassification rates in any
desired direction. Equal priors tend to equalize the misclassification rates, whereas

a larger prior on one class tends to decrease the misclassification rate for this class.
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Using priors 7(k) is equivalent to weighting observations in class k& by weights N %
(see Ripley (1996, p. 220)).

So far the assumption has been made that the cost or loss in misclassifying class &
objects as class k' objects is the same for all & # k'. In some classification problems,
the consequences of misclassifying observations are more serious in some classes than
in others. If this is the case, we can include a set of misclassification costs C(k'|k),
where C'(k'|k) is the cost of misclassifying a class k object as a class k' object. We
assume that C(k'|k) > 0 for all k£ # k" and C(k'|k) =0 for k =k’

These costs can then be included in the class assignment rule. If an observation
of unknown class is selected randomly, falls into node ¢ and is classified as class k', then
the estimated expected misclassification costs at that node are 5 | C(k'|k)p(k|t). The
class label k*(t) of node ¢ is the value of &' that minimizes this sum (see Breiman et
al. (1984, p. 35)).

Using the learning sample, the expected misclassification cost at node ¢ can be esti-
mated by 7(¢) = min {Zszl C(K'|\k)p(k|t) : K €{1,..., K}} and the estimated expected
misclassification cost of the tree T with leaves T is given by R(T) = ¥,.77(t)p(2).
R(T) is then used in the pruning process; this is why R, (7) is called cost-complexity
measure. In the case of unit cost ( C(k'|k) = 1 for all £ # k'), R(T) simplifies to the
misclassification rate on the learning sample.

Misclassification costs may also be included in the splitting rule (see discussion
in Breiman et al. (1984, p. 113)). A direct inclusion in the definition of the Gini index
is completely ineffective in two-class problems because it symmetrizes costs. Instead of

including the costs in the definition of the impurity measure, Breiman et al. recommend
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to adjust the priors in order to take into account varying misclassification costs. This
works perfectly for two-class problems and also for multi-class problems if, for each class,
there is a constant misclassifiction cost that does not depend on how an observation is mis-
classified (C(k'|k) = C(k),k # k'). Ripley (1996, p. 221) discusses how misclassification

costs and priors can be incorporated in the deviance measure by using weights.

4.5 Surrogate Splits

Consider a node ¢t with optimal split s* that sends the proportion p; to the left
branch ¢; and py to the right branch tz. The goal is now to predict the action of s*.
A simple rule would be to predict ¢, if p, = max(pr, pr) and tg otherwise. That is, we
determine the branch to which most observations are sent using s* and simply send all
observations to that branch. Obviously the error probability of this rule is min(py, pr)-

We may be able to do better by applying the following procedure. For any variable
Z., find the split §,, on z,, that most accurately predicts the action of s*. That is, 5, is
the split on z,,, at node ¢ which sends the largest proportion of observations in ¢ to the
same branch as s* would do. §,, is called a surrogate split on z,, for s* at node ¢ (Breiman
et al. (1984, p. 140)). Such a rule 5, only makes sense if its error rate is smaller than
min(pr, pr), the error rate of the simple rule discussed above.

One application of surrogate rules is an intelligent way of handling missing values.
All observations, even those with missing values, can be used in a natural way in the
tree construction. If there are missing values for some of the cases at a node ¢, then

first consider each variable z,, in turn and find the split s}, on z,, using all observations
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without a missing value for z,,. Among those splits s}, for all variables x,,, choose the
split s* that results in the largest decrease in impurity.

Then for a particular observation, the split s* at node t may not be defined because
the observation has a missing value. If this is the case, consider all nonmissing variables
for this observation and find the one, say x;, for which the surrogate split has the smallest
error rate. Assign the observation to a branch using §; (Breiman et al. (1984, p. 142)).

This algorithm works much better than most algorithms for missing values in
regression models. We make the most possible use of the data to grow the tree and the
worst case is that the smallest error probability of a surrogate rule is close to min(py, pr)-
But even if an observation is sent to the wrong branch by the surrogate rule at some
node, it may still be classified correctly since the splitting continues below that node.

A simple alternative to the described way of handling missing values is to drop an
observation as far as it goes in the tree and use the highest proportion in that node for
the classification. Sometimes the fact that a value is missing carries some information.
Then (and only then) it is reasonable to treat “missing” as a seperate value for a variable
and use it in the split search. Ripley (1996, p. 232) discusses these approaches in some
detail.

Surrogate rules can also be used to get an idea of the relative importance of
the covariates used for splitting. To measure the importance of a variable z,,, find the

surrogate split §,, on z,, for all nodes ¢ and compute the decrease in tree impurity Al (5,,, )
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if 5, is used at node ¢. Breiman et al. (1984, p. 147) define a measure of importance by

M(@m) =Y AI(Gm, 1.

teT
The concept behind this definition is the following: Suppose that the best split at a node ¢
is on z,,, and that z,, can generate a split s}, similar to s;, in terms of decrease in
impurity. Then at node ¢, the decrease in impurity of the surrogate split on z,,
AI(3p,,t), will be nearly as large as Al(sy, ,t). Using AI(s},,,t) in the summation
for the importance measure can lead to misleading results (see discussion in Breiman et
al. (1984)). Since only relative differences are important, this measure is normalized on
a 0 - 100 scale.

Alternatively, the decrease in impurity may be discounted by an agreement
measure which is one if §,, is actually the primary split at node ¢. If §,, is a surrogate
split at node ¢, then the agreement is equal to the proportion of observations that is
sent to the same branch by §,, and the primary split. The measure is set to zero if the
surrogate split §,, has an error rate greater than min(py,pr). This corresponds to the

implementation in SAS and is also available in the CART software.
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CHAPTER 5

RESULTS

This chapter contains details and results of the model building process for both

logistic regression models and classification trees.

5.1 Logistic Regression Models

5.1.1 Variable Screening

The first step in the model building process should be a careful univariate analysis
of each variable that seems to be a reasonable predictor considering the context of the
study. The goal is to get some understanding about the dependence of the outcome
on each one of the possible covariates and about the best way the covariates should be
entered into the logistic regression model.

In this step we can also check for coding errors and missing values in the dataset.
Before I started the analysis, the dataset had been cleaned up: values that did not make
sense (for example, values that were out of the range of a variable or character values
instead of numerical values) were deleted.

If a variable has missing values and it is used for the logistic regression model, then
the sample size needs be reduced accordingly. Missing values do not represent a serious
problem for most of the possible covariates. For all covariates except KUNALTER2 (age

of the policy holder) and KAUFDAT1 (year of purchase of the vehicle), the
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number of missing values is very small. For KUNALTER2, 1,935 (9.68%) values are

missing. However, the age of the policy holder seems to be an important covariate. For
KAUFDAT1I, 9,331 values (46.66%) are missing. Using this variable directly would lead to
an undue decrease in sample size. Further investigation has shown that even if “missing”
is defined as a seperate category, this variable is not a useful predictor. If all observations
with missing values for any of the important covariates are ignored, the remaining dataset
has 18,014 records and is still balanced between cancelled and not cancelled contracts
(49% cancelled, 51% not cancelled).

I have screened all 27 reasonable covariates discussed in chapter 2 using the SAS
computer package (procedures FREQ, UNIVARIATE, GPLOT, LOGISTIC and CORR).
For details on the use of the SAS system for categorical data analysis see Stokes, Davis,
and Koch (2000) or Cody and Smith (1997). The methods used and some results are

discussed below; for more details see appendix B.

5.1.1.1 Categorical covariates. For categorical explanatory variables (nominal
or ordinal scale) with k levels, we first set up a k& X 2 contingency table. Particular
attention should be paid to contingency tables with zero cells or cells with small counts
because they may result in estimation problems (Hosmer and Lemeshow (2000), p. 135).
One solution to these numerical problems is to combine categories in some sensible
fashion, taking into account background information about the variable.

In the second step, k—1 dummy variables representing the levels of the categorical
covariate are defined using either reference cell or effect coding and a univariate logistic

regression model is fitted. The parameter estimates can be used to estimate odds ratios
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which can give hints about the differences between the categories. If significance tests
indicate that a variable is not significant, then this variable is not very likely to be a
good predictor. Variables that are measured on ordinal scale may be modeled as if they
were continuous by using scores for the levels of the variable.

For the categorical variables PLZ (zip code), DECKAR (type of coverage motor
TPL), TGR (tariff group motor TPL), KZWF (mileage per year) and FANZ1 (number
of drivers) the counts for some (or all) categories are small and would result in numerical
problems. Therefore I decided to combine categories (taking into account background
information) and defined new variables PLZX, DECKAR2, TGR2, KZWF2 and FANZ4.
For details and the definition of the new variables see appendix B.

Background information and/or frequency counts also suggest to combine
categories for the variables KZKHT, KZWF2 and FANZ4, which turned out to be useful
in the process of model selection.

Finally, the following categorical variables may be used as predictors: PLZX
(zip code, 23 levels), REGBE (county, 9 levels), KZKHT (tariff generation motor TPL,
6 levels), DECKAR2 (type of coverage motor TPL, 3 levels)), REGIO (regional
classification, 10 levels), TGR2 (tariff group, 4 levels), KZWF2 (mileage restriction,
4 levels), FANZ4 (restriction on number of drivers, 5 levels). Several binary variables
also seem to be useful predictors for the logistic regression model, namely AUSKIL1
(foreigner?), KZEHB1 (home owner discount?), KZFV (vehicle insurance?) , SORAB1

(special discount?) and VERBU1 (employee tariff?).
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5.1.1.2 Continuous covariates. For continuous variables (interval or ratio
scale), first descriptive statistics like mean, median and quantiles are computed; they
give useful information about the range of these variables.

Then the values are combined into groups in some sensible way, preferably using
the available background information. If the number of possible values is small, then the
values themselves can be used as groups. After grouping the continuous variable, both
the empirical proportion of cancelled contracts and the empirical logit are calculated for
each group. A plot of the logits against the group values can be used to check whether the
variable can be treated as linear on the logit scale. If not, we may consider polynomial
terms or other transformations of the continuous covariate (for example log or square-
root). As for categorical variables, the univariate logistic regression model is fitted and
both parameter estimates and significance tests are examinated.

It turns out that it is reasonable to treat the following variables as linear on
the logit scale: VWDAU (number of years in the portfolio), KUNALTER?2 (age of the
policy holder), ZART (payment option), STAERKE (vehicle power), FALTER (age of
the vehicle), TYPKLH (type class motor TPL), TARKLA2 (no-claims class motor TPL),
BEITSATS3 (percentage rate motor TPL), JTBH (annual premium motor TPL), TYPKL
(type class vehicle insurance), TARKLAFV (no-claims class vehicle insurance), FELD68
(percentage rate vehicle insurance) and JTBF (annual premium vehicle insurance). For
the variables STAERKE, JTBH and JTBF a quadratic term may also be reasonable.

Additionally to the linear term for the age of the vehicle (FALTER), it also seems

useful to define a new binary variable FALTERO that indicates whether the vehicle is new
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(FALTER = 0) or not: contracts for new vehicles are more likely to be cancelled than
contracts for older vehicles.

A similar approach is used for the percentage rate for the motor TPL (BEITSAT).
Contracts with percentage rate above 125 (classes S, M and 0) are very likely to be
cancelled, whereas there seems to a linear relationship on the logit scale for percentage
rates between 30 and 125. It turned out to be useful to define a new variable BEITSAT?2
that indicates whether the percentage rate is greater than 125 or not and another variable
BEITSATS3, which is defined by replacing all values above 125 in BEITSAT with zero.

The variable TARKLA2 (TARKLFV) represents the no-claims classes SF 1 through
SF 34 for motor TPL (vehicle insurance). For the remaining classes SF 1/2, 0, S and M in
motor TPL, indicator variables were defined (TARKLA 0, TARKLA 12, TARKLA S and
TARKLA _M). For the vehicle insurance, two indicator variables for the classes SF 1/2

and 0 are used (TARKLAFV_0 and TARKLAFV_12).

5.1.1.3 Associations between predictor variables. Another important result
of the variable screening is that possible values for several variables related to motor
TPL insurance depend on the tariff generation (variable KZKHT), namely TYPKLH,
DECKAR?2, KZWF2, FANZ4 and KZEHB1. Therefore the effect of these variables on
the cancellation behavior may depend on the tariff generation. This could be accounted
for by using interaction terms between KZKHT and any of these four variables.

Additonally, there are two pairs of variables that contain very similar information:
the percentage rate for motor TPL (variable BEITSAT) and the no-claims class for

motor TPL (variable TARKLA2 with 4 indicator variables). There is a similar pair



68

for motor vehicle insurance (FELD68 and TARKLAFV with 2 indicator variables).
TARKLA2 (TARKLAFV) represents the number of years without a claim, and the
indicator variables represent claims classes (S and M) and other special classes (SF 1/2
and class 0). The values of these variables determine the percentage rate BEITSAT
(FELDG68), as defined in the conditions of the contract. Different no-claims classes can
have the same corresponding percentage rate (for details see section 1.2). The percentage
rate is then used to find the annual premium JTBH (JTBF). The decision which variables
are actually entered in the logistic regression model will be made in the model selection
process.

Apart from that, there are several continuous covariates that show a high level
of association. Considering the Pearson correlation coefficient as a measure of linear
association, it turns out that vehicle power (STAERKE), type class for motor TPL
(TYPKLH) and premium for motor TPL (JTBH) are correlated, where the intensity
of the association depends on the tariff generation for TPL insurance (KZKHT). Also
percentage rate and premium for vehicle insurance (FELD68 and JTBF) and age of the
vehicle and premium for vehicle insurance (FALTER and JTBF) seem to be correlated.
These assocations suggest to consider the corresponding interaction terms in the modeling

process and will limit the interpretability.

5.1.2 Model Selection and Model Assessment
As a first step in the model building process I considered the complete dataset
and used stepwise procedures, namely backward elimination and forward selection, to

get an idea of the relative importance of the covariates specified above. Both procedures
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are based solely on statistical significance as selection criterion.

Following the recommendations in Hosmer and Lemeshow (2000, p. 92), I started
with a model containing all main effects that seemed useful according to the variable
screening in the previous section (a total of 37 effects). The decisions for entering or
removal were based on the results of both forward selection and backward elimination;
it was also useful to take into account background information about the variables.

First of all, the variables representing the percentage rates for both liability
and vehicle insurance (BEITSAT and FELDG68) seem more useful than the variables
corresponding to the no-claims classes (TARKLA2 and TARKLAFV with indicator
variables). Hence I only used BEITSAT and FELDG68 in subsequent modeling steps.

Another four variables were suggested for removal from the model: AUSLKI1
(foreigner?), REGBE (county), SORABI (special discount?) and TYPKL (type class
vehicle insurance). For the binary variables AUSLK1 and SORABI, the number of
positive responses is small (<6%) and they are not considered important risk factors for
cancellation. Regional classification into 23 areas is represented by the zip code (PLZX);
since counties correspond to larger areas, REGBE can be removed from the model. The
variable TYPKL also does not seem to give important information on the cancellation
behavior, even though it is one of the key tariff factors determining the premium for
vehicle insurance. The remaining 25 main effects seem to be useful (p-values < 0.05), at
least in terms of statistical significance.

In the second step, I investigated whether any of the interactions mentioned in
the previous section seems to be important for the prediction model. Again I used the

results of backward elimination and forward selection procedures as criteria.
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The result is that all six two-way interactions between STAERKE, TYPKLH,
JTBH and KZKHT are significant, together with two three-way interactions. At this
point it also seems reasonable to use only linear terms for STAERKE, JTBH and JTBF.
Additionally, the variables FELD68 (percentage rate vehicle insurance) and DECKAR2
(type of coverage motor TPL) are not significant any more once interaction terms are
entered. Considering all terms that are statistically significant and reasonable from the
context, we end up with a model with 28 effects.

At this stage, I checked whether the model fits the data using external validation.
The dataset was randomly divided into a training sample (2/3) and a validation sample
(1/3) and p-values were computed for the goodness of fit statistics discussed in section 3.5.
The corresponding SAS programs are given in appendix C. In order to confirm results I
considered several (for this model, 10) of these random partitions .

Overall, both the Pearson chi-square test and Stukel’s test indicate that the model
fits, although the p-values fluctuate depending on the partition. For one partition, the
p-value for Pearson’s test is even less than 0.05. This result will be discussed in detail
later.

In addition, the p-values for the Hosmer-Lemeshow tests are small (< 0.05) for
some other partitions, but they seem to depend on the way the data are grouped (fixed
cutpoints or percentiles). Sometimes one grouping strategy results in a p-value that
suggests that the model fits, while another way of grouping leads to a p-value well
below 0.05. This illustrates the disadvantages mentioned in 3.5.3 related to the use

of fixed groups based on estimated probabilites.
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Furthermore, I investigated the discriminatory power of the model by setting up
classification tables for several cutpoints. Choosing the cutpoint such that sensitivity
equals specificity resulted in misclassification rates (on the validation sample) between
15.55% and 17.23% for the 10 random partitions, where the median was 16.63%. The
area under the ROC curve varied between 0.914 and 0.925 with a median of 0.920.

The conclusion is that this model provides excellent discrimination, which is the
primary goal. However, it seems to be rather complex (eight interaction terms and a total
of 68 parameters) and the question is whether a simpler model is capable of predicting
the outcome with comparable accuracy while still fitting the data.

To get an idea of the relative importance of the variables in the model and their
influence on the misclassification rate, I ran a forward selection. In each step classification
tables were set up based on leave-one-out crossvalidation. The cutpoint was again chosen
such that sensitivity equals specificity, and both misclassification rate and area under
the ROC curve were computed. A plot of misclassification rate versus the number of
variables in the model is given in Figure 5.1. It shows that considerably smaller models
with about 20 variables have very similiar predictive performance as the original model
with 28 variables.

Hence I tried to find a way of reducing the number of variables in the model
while assuring that discriminatory power is maintained. A sound strategy seemed to be
to investigate the effect of removing variables that were entered last in the forward

selection procedure. The six effects entered last are the two three-way interactions
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Figure 5.1: Misclassification rate vs. number of variables (model with 28 variables)

(STAERKE*TYPKLH*JTBH and STAERKE*JTBH*KZKHT2), one of the two-way
interactions (STAERKE*JTBH) and the main effects ZART, KUNALTER2 and PLZX.

Removing the interaction terms considerably reduces the complexity of the model.
ZART (payment option) does not seem to be an important risk factor in the context of the
study. The removal of the variable KUNALTER2 (age of policy holder), for which 10% of
the values are missing, allows us to use almost all observations (19,981 out of 20,000) for
the fitting of the model. Finally, the zip code (categorical variable PLZX with 23 levels)
also does not seem to be necessary for achieving the minimal misclassification rate; its

removal substantially reduces the number of parameters in the model.
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If these 6 variables are removed, then the resulting model has 22 variables and 40
parameters. External validation was carried out in exactly the same way as for the larger
model. Table 5.1 shows that both the area under the ROC curve (median of 0.921 for
the 10 random partitions) and the misclassification rates (median 16.48%) remain almost
unchanged. Hence the smaller model basically has the same predictive performance as

the considerably more complex original model.

Table 5.1: Results for the model with 22 variables
| Partition | Area under the ROC curve | Misclassification rate (in %) |

1 0.923 16.47

2 0.924 16.43

3 0.920 16.49

4 0.920 16.48

5 0.918 16.33

6 0.916 17.05

7 0.923 16.14

8 0.924 15.69

9 0.921 16.57

10 0.917 17.03
median 0.921 16.48
minimum 0.916 15.69
maximum 0.924 17.05

The p-values for the normal approximation to the Pearson chi-square statistic are
well above 0.05 for all partitions except one, where it is equal to 0.0356. For this partition,
one observation in the validation sample can be identified to have an undue influence on
the p-value. It contributes 20% to the value of the Pearson chi-square statistic X?2, and
if it is removed for the computation of the test statistic, then the p-value changes to
0.3903 and hence indicates that the model fits. Further investigation has shown that

this contract has an unusual combination of characteristics and was not cancelled. The
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specific partitioning of the dataset leads to an estimated probability of cancellation of
0.99942 and a large residual.

Moreover, the p-values for Stukel’s test also indicate that the model fits. The
results for the Hosmer-Lemeshow test are similar to those for the larger model. The
p-values depend on the choice of the cutpoints, and at several steps in the modeling
process this test has proven not to be a reliable indicator of goodness of fit. Overall, a
detailed inspection of overall measures of goodness of fit suggests that the model fits the
data despite some problems with the prediction for outliers in the dataset.

Finally, all variables in the model and the way they are entered seem reasonable
in the context of the study. Further investigation has shown that removal of additional
variables either leads to a significant increase in the misclassification rates and/or results
in consistently small p-values for the goodness of fit statistics; especially the interaction
terms seem to be important for both goodness of fit and discriminatory power. The
best model found that did not include these interactions had a significantly higher
misclassification rate and lower values for the area under the ROC curve. On the other
hand, it seems that the misclassification rate cannot be reduced by inclusion of more
variables or interactions. Altogether this model with 22 variables is a reasonable final
model, taking into account prediction error, complexity, goodness of fit and context of
information. It will be discussed in more detail in the following section.

Before we come to this discussion, one more comment needs to be made on the
influence of outliers on overall measures of goodness of fit like the Pearson chi-square

statistic. In the model selection process, a total of 5 observations in the dataset of 20,000
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observations were identified to have an excessive influence on the p-values for the normal
approximation to the Pearson chi-square statistic.

For example, one of them corresponds to a contract for a 63-year-old vehicle with
a vehicle power of 17 kW, which is definitely unusual. The fact that age of the vehicle
is treated as linearly increasing on the logit scale resulted in estimated cancellation
probabilities above 0.99990. Since the contract was not cancelled, the corresponding
Pearson residual was huge and contributed more than 90% to the value of X?; its
contribution to the variance term o2 was relatively small. The result was a large value
for the standardized statistic Z and hence an extremely small p-value (< 0.0001).

Another four influential observations can also be classified as outliers. They are
the only contracts with a special type of coverage for motor TPL (DECKAR = 88), and all
have an extremely low premium for motor TPL (JTBH = 25.0). Unfortunately, detailed
information on the nature of these contracts is not available. All these contracts were
cancelled and also had predicted cancellation probabilities greater than 0.9999. Hence
the residuals were small, but the contribution to the variance term was large, which lead
to an increase in the p-values. If they are ignored, the p-values decrease.

Since the main focus of this study should be all reasonable and common types of
contracts in the portfolio, it seems acceptable to ignore these 5 contracts for the logistic

regression models.

5.1.3 Discussion of the Final Model
All observations without missing values for any of the variables in the model

(19,976 records) were used to fit the model selected in section 5.1.2. It has 40 parameters
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and all 22 effects (17 main effects and 5 interactions) are significant, even at a 0.01 level.
Based on leave-one-out crossvalidation, the misclassification rate is estimated to be 16.5%
(cutpoint 0.55) and the area under the ROC curve is computed as 0.921. These results
agree with those obtained using external validation in the previous section.

Since the cutpoint is chosen such that sensitivity equals specificity, we can note
that the resulting classification rule classifies 83.5% of the cancelled contracts as cancelled
and 83.5% of the not cancelled contracts as not cancelled.

The value of 0.921 for the area under ROC curve has the following interpretation.
Among all 9,980 x 9,996 = 99, 760, 080 pairs of cancelled and not cancelled contracts,
the cancelled contract has a higher predicted cancellation probability in 92.1% of the
cases. A plot of the ROC curve is given in Figure 5.2. The conclusion is that the model
provides excellent discrimination between the two outcomes and is capable of predicting
the outcome correctly in approximately 83.5% of the cases.

The maximum likelihood estimates of the parameters can then be used to estimate
odds ratios as discussed in section 3.6. Some selected estimated odds ratios along with the
corresponding 95% confidence intervals based on the Wald statistic are given in Table 5.2;

LCL and UCL denote the lower and upper confidence limit.

Table 5.2: Point and interval estimates for selected odds ratios

| Variable | Unit | Estimate | LCL | UCL |
Years in the portfolio increase of c=5 0.778 0.755 | 0.801
Tariff group Farmers vs. Normal 1.848 1.234 | 2.769
Tariff group Officials vs. Normal 0.333 0.297 | 0.372
Restricted number of drivers || Yes vs. No 0.707 0.619 | 0.807
Restricted mileage Yes vs. No 0.503 | 0.430 | 0.589
Home owner discount Yes vs. No 0.289 0.248 | 0.337
Employee tariff Yes vs. No 0.309 0.232 | 0.412
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Figure 5.2: ROC curve for the model with 22 variables

Further considerations are necessary if both a linear term and an indicator variable
for an effect are used as predictors, as it is the case for the age of the vehicle (FALTER
with indicator FALTERQO), the percentage rate for motor TPL (BEITSAT3 with indicator
BEITSAT?2) and the premium for vehicle insurance (JTBF with indicator KZFV). For the
definition of these variables see section 5.1.1. As Hosmer and Lemeshow (2000, p. 104)
note, this setup allows to estimate two types of odds ratios. For FALTER, for example,
both the odds ratio corresponding to a change of ¢ units for vehicles one year or older
and the odds ratio comparing contracts for new vehicles to contracts for vehicles of a
fixed age greater than zero can be estimated. Point estimates and confidence intervals

for these odds ratios are given in Table 5.3. For details on the estimation see section 3.6.



Table 5.3: Odds ratios for FALTER, BEITSAT and JTBF

H Variable H Unit ‘ Estimate ‘ LCL ‘ UCL H
Age of the vehicle increase of c=1 1.225 1.209 | 1.242
Age of the vehicle new vs. 1 year 5.719 4.405 | 7.426
Age of the vehicle new vs. b years 2.539 | 1.994 | 3.233
Age of the vehicle new vs. 10 years 0.920 0.729 | 1.161
Age of the vehicle new vs. 15 years 0.333 0.261 | 0.425
Percentage rate TPL increase of ¢=10 1.306 1.276 | 1.335
Percentage rate TPL 30 vs. 100 0.155 0.132 | 0.181
Percentage rate TPL 50 vs. 100 0.264 0.235 | 0.295
Percentage rate TPL 75 vs. 100 0.514 0.485 | 0.543
Percentage rate TPL 125 vs. 100 1.948 1.840 | 2.061
Premium vehicle insurance || increase of ¢=250 1.101 1.080 | 1.123
Premium vehicle insurance || 250 vs. 0 0.752 0.670 | 0.845
Premium vehicle insurance || 500 vs. 0 0.829 0.738 | 0.930
Premium vehicle insurance || 1000 vs. 0 1.004 0.886 | 1.139
Premium vehicle insurance || 1500 vs. 0 1.218 1.052 | 1.410
Premium vehicle insurance || 2000 vs. 0 1.477 1.242 | 1.755
Premium vehicle insurance || 3000 vs. 0 2.170 1.712 | 2.752

All these odds ratios should be interpreted with some care.
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They are good

indicators for the direction of the association, but their actual numerical value may be

misleading if there are strong associations among the predictor variables in the model. For

this model for example, the odds ratios for FANZ3 (restricted number of drivers), KZWF3

(restricted mileage) and KZEHBI1 (home owner discount) may be misleading since possi-

ble values for these variables depend on the tariff generation (variable KZKHT2). Hence

they estimate the odds of cancellation for customers who get the corresponding discount

compared to those who either are not offered the discount or do not qualify.

Associations between the variables STAERKE (vehicle power), TYPKLH (type

class motor TPL), JTBH (annual premium motor TPL) and KZKHT?2 (tariff generation

motor TPL) resulted in the inclusion of five two-way interactions between these variables
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in the selected model. First of all, a fixed DM premium increase seems to have different
impacts on the cancellation behavior depending on the type of the vehicle as described
by vehicle power and type class (interactions JTBH*STAERKE and JTBH*TYPKLH).
Furthermore the effects of premium, vehicle power and type class on the cancellation
behavior seem to depend on the tariff generation (interactions JTBH*KZKHT?2,
STAERKE*KZKHT2 and TYPKLH*KZKHT?2).

As discussed in section 1.2, the vehicle power is one of the three tariff factors
for the oldest tariff generation; for the three newer generations the type class is used
instead. Thus, the level of association between the premium and both vehicle power and
type class depends on the tariff generation. Overall, the effect of the premium on the
cancellation behavior does not seem to be as simple as described by a linear or quadratic
model. Because of this complex structure, estimation of odds ratios for any of these
variables is complicated and does not add to the understanding.

Finally, the order in which variables are entered in the forward selection procedure
can be used as an indicator for the relative importance of the variables. Overall, results
can be summarized as follows.

The most important factor seems to be the tariff generation (KZKHT2); using it
alone allows us to classify 75% of the contracts correctly. This is partly due to a flaw of
the provided dataset. Tariff generation C was introduced in July 1998 and the sample of
cancelled contracts was taken from the years 1996-1998. Since the not cancelled contracts
were sampled from the total portfolio in 1999, almost all contracts in tariff generation C
in the dataset are not cancelled. This is another reason why results have to be interpreted

with care.
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Other important covariates are the number of years in the portfolio (VWDAU) and
the age of the insured vehicle (FALTER). The longer contracts are in the portfolio, the
smaller are their odds of cancellation. In general, the odds of cancellation increase with
the age of the vehicle. New vehicles are an exception: for them the odds of cancellation
are higher compared to the odds for 1 to 5 year old vehicles.

Also the main tariff factors percentage rate (BEITSAT3, BEITSAT?2), tariff group
(TGR2), regional classification (REGIO), vehicle power (STAERKE), type class
(TYPKLH) and the final premium for motor TPL (JTBH) have considerable
influence on the cancellation behavior. For example, the odds increase as the percentage
rate increases; especially contracts with percentage rate above 125 are very likely to be
cancelled. Moreover, there are significant differences between the tariff groups. The odds
of cancellation are higher for farmers and lower for officials, compared to customers in
the tariff group “normal”.

Variables representing various discounts (KZWF3, FANZ3, KZEHB1 and
VERBU1) that may apply to a contract are also used as predictors in the model, but
they are of minor importance. For all these types of discounts, it can be seen that the
odds of cancellation are smaller for customers who get the discount. Part of this effect
is due to the fact that some of the discounts were not offered in older tariff generations.

The only variable in the model related to vehicle insurance is the premium for
vehicle insurance (JTBF with indicator KZFV). The odds of cancellation are higher for
customers who have not included vehicle insurance compared to those who pay relatively
small premiums for vehicle insurance. On the other hand, the odds of cancellation

are higher for contracts with a large premium for vehicle insurance, compared to those
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without vehicle insurance. Neither type class nor percentage rate needs to be used as a
predictor in order to get an accurate classification rule. It seems that motor TPL is the
component of the contract that has the largest influence on the cancellation behavior.
More detailed information on the type of coverage for vehicle insurance (partial or full)
may be helpful for further improvements of the classification rule.

Also the age of the policy holder does not seem important and is not used as a
predictor. However, factors likely to be related to the age, for example, the number of
years in the portfolio and the percentage rate, are used as predictors and may account

for differences in the cancellation behavior between different age groups.

5.2 Classification Trees

5.2.1 Variable Screening

Contrary to logistic regression models, the complete dataset consisting of 20,000
records can be used for building classification trees. Missing values are handled as
discussed in chapter 4, and classification trees are robust with respect to outliers. For
the definition of the set of possible splits we have to distinguish between continuous and
categorical predictors.

The results of the variable screening for logistic regression models discussed in
section 5.1.1 are useful at this point. Variables that were entered with linear or quadratic
terms in the logistic regression models are now treated as continuous. Also categorical

variables are used in the same way as for logistic regression models. It is not necessary to
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combine categories with small counts, since there are no numerical problems associated
with that.

Hence the following 14 variables are treated as continuous for the tree models:
VWDAU, KUNALTER2, ZART, FALTER, STAERKE, KZWF2, TYPKLH, TARKLA2,
BEITSAT, JTBH, TYPKL, TARKLAFV, FELD68 and JTBF. It should be noted that
the value zero for TYPKLH means that the type class for motor TPL is not available
because the contract is based on an old tariff generation (KZKHT = O, 5 or 6). For
all variables related to vehicle insurance (TYPKL, TARKLAFV, FELD68 and JTBF), a
value of zero means that vehicle insurance is not included in the contract.

Additionally, I used 17 categorical variables (number of levels in parentheses):
AUSLK1 (2), PLZX (23), REGBE (9), KZKHT (6), DECKAR2 (3), REGIO (10),
TGR2 (4), FANZ1 (7), KZEHB1 (2), KZFV (2), SORAB1 (2), VERBU1l (2),
TARKLA 0 (2), TARKLA 12 (2), TARKLA S (2), TARKLA M (2), TARKLAFV 0 (2)
and TARKLAFV_12 (2). For details on these variables see section 5.1.1.

Quadratic terms, interactions and indicator variables like FALTERO, BEITSAT?2
and KZFV are not included, since the tree procedure automatically detects nonlinear
structures and interactions. Altogether 31 variables are used for growing classification

trees.

5.2.2 Model Selection and Model Assessment
The Enterprise Miner package for SAS was used to fit tree models. Overall, the
SAS Enterprise Miner can be used to build classification trees according to the established

methodology discussed in chapter 4. Only cost-complexity pruning is not available;
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instead the subtree with the smallest misclassification rate on the validation sample is
found for every possible number of leaves. Details of this implementation are discussed
in appendix D.

The dataset was divided into a training sample (2/3) used to grow and prune the
tree and a validation sample (1/3) used to select the subtree with smallest misclassification
rate. As for logistic regression models I used 10 random partitions to confirm the results.

Preliminary investigation showed that the best strategy is to grow the largest
possible tree first and then prune it as described in chapter 4. That is, nodes are split
until they are either pure or contain only one observation. Alternatively, if splitting is
stopped as soon as the number of observations in a node is below some threshold N,,;,,
then the computational effort is reduced since the resulting tree is smaller. The default in
the Enterprise Miner package, for example, is the number of observations in the training
sample divided by 100. But after the pruning process, the resulting trees have a higher
misclassification rate for a given number of leaves than trees that are grown to maximal
size first. Hence this is not an advisable strategy, at least if there are no computational
problems associated with the growth of the largest possible tree.

Another option for the tree growing process is the choice of the impurity measure
(Gini index or entropy). Both impurity measures result in structurally similar trees for
a given partition. Table 5.4 contains minimum misclassification rates on the validation
sample and corresponding number of leaves for both Gini index and entropy measure,

for the 10 random partitions of the dataset.
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Table 5.4: Comparison of Gini index and entropy measure

Partition Gini index Entropy
Number of leaves ‘ Miscl. rate || Number of leaves ‘ Miscl. rate
1 345 15.04% 300 15.70%
2 326 14.92% 328 14.92%
3 289 15.33% 326 15.42%
4 257 15.39% 342 15.27%
5 253 15.22% 310 15.34%
6 261 15.84% 316 16.53%
7 300 14.43% 325 15.07%
8 328 14.08% 347 15.46%
9 364 14.79% 315 15.46%
10 310 15.09% 336 15.48%
median 305 15.07% 325 15.44%
minimum 253 14.08% 300 14.92%
maximum 364 15.84% 347 16.53%

For all partitions except one, the minimum misclassification rate for trees grown
using the Gini index is less than or equal to the misclassification rate for the corresponding
tree based on the entropy measure. The median of the differences is 0.51%. Moreover,
the trees based on the Gini index are smaller on average than those based on the entropy
measure. Further calculations (not shown here) indicated that the trees based on the
Gini index for which the misclassification rate is equal to the minimum misclassification
rate for the corresponding tree based on the entropy measure are consistently smaller
(median: 147 leaves). Hence the Gini index seems preferable for this particular dataset
and will be used to grow classification trees.

To illustrate the pruning process and motivate the choice of the appropriate

subtree, it is useful to consider a plot of the misclassification rate on both training and
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validation sample versus the number of leaves of the subtree. The corresponding plot for

random partition #10 from Table 5.4 for the Gini index is given in Figure 5.3.
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Figure 5.3: Misclassification rates vs. number of leaves (partition #10, Gini index)

For the training sample, we see a rapid decrease for the first about 100 leaves,
followed by a linear decrease for larger trees, with some minor fluctuations. For the
largest tree with 1,453 leaves, the misclassification rate is 0.14%.

The curve for the validation sample looks entirely different. For the first 40 leaves,
the misclassification rates are very similar. From then on, the mislassification rate on the
validation sample is greater than on the training sample, and the difference is increasing.
This illustrates the fact that estimation of model performance based on the training
sample can give overly optimistic results. However, the misclassification rate on the

validation sample decreases until it reaches its minimum of 15.09% for 310 leaves (vertical
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reference line in Figure 5.3). Trees between 300 and 800 leaves seem to have very similar
misclassification rates on the validation sample. But there is a significant increase in the
misclassification rate for subtrees with more than 800 leaves. This is a consequence of
the fact that these large trees overfit the data. The largest possible tree with 1,453 leaves
has a misclassification rate of 21.72% on the validation sample.

Since the pruning is based on the misclassification rate on the validation sample
as discussed in chapter 4, it is reasonable to select the subtree with the smallest number
of leaves such that its misclassification rate is minimal. However, the plot suggests that
a misclassification rate on the validation sample very “close” to the minimum can be
achieved using a substantially smaller tree. As mentioned in chapter 4, one suggestion
is to choose the smallest subtree such that the misclassification rate on the validation
sample is within one estimated standard error of the minimum (“one standard error
rule”). Application of this rule leads to the results given in Table 5.5 (for the Gini
index). The median of the misclassification rates has increased by 0.43%, but also the
number of leaves has decreased significantly; on average, it was reduced by 45%.

However, the resulting trees still have between 131 and 240 leaves, which limits
the interpretability. If such a tree is actually used for predicting the cancellation behavior
for the complete portfolio of the insurance company, application of the “one standard
error rule” may substantially reduce computing time, where the estimated predictive
performance is only slightly below the optimum. This illustrates that there needs to be a
trade-off between predictive performance and complexity which depends on the context of
the problem and available computer resources. For a detailed discussion in the following

section I will consider the trees selected according to the “one standard error rule”.
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Table 5.5: Minimum misclassification rate and “one standard error rule”

Partition Minimum One standard error rule
Number of leaves ‘ Miscl. rate || Number of leaves ‘ Miscl. rate
1 345 15.04% 192 15.48%
2 326 14.92% 167 15.36%
3 289 15.33% 138 15.77%
4 257 15.39% 133 15.83%
5 253 15.22% 148 15.66%
6 261 15.84% 131 16.29%
7 300 14.43% 175 14.86%
8 328 14.08% 196 14.51%
9 364 14.79% 240 15.22%
10 310 15.09% 163 15.53%
median 305 15.07% 165 15.50%
minimum 253 14.08% 131 14.51%
maximum 364 15.84% 240 16.29%

5.2.3 Discussion of the Selected Classification Trees

For the tree models selected in the previous section, we can crossclassify observed
and predicted outcomes and analyze the resulting 2 x 2 tables. In addition to the
misclassification rates given in Table 5.5, sensitivity and specificity are calculated. For
all partitions, the sensitivity (approximately 86%) is slightly higher than the specificity
(approximately 84%). This means that cancelled contracts are predicted slightly more
accurately than not cancelled contracts. Overall, approximately 85% of the contracts are
classified correctly.

The large size of the trees limits the interpretability of the tree structure. Some
insight into the relative importance of the 31 predictor variables can be gained by
examination of the importance rankings. These rankings are quite similar for the 10
partitions; the ranking for partition #10 along with the number of times a variable is

used for splitting is given in Table 5.6.



Table 5.6: Importance ranking (partition #10, 163 leaves)

H Variable ‘ Label H Importance ‘ Rules ‘
KZKHT tariff generation TPL 1.0000 7
JTBH premium TPL 0.8745 22
FANZ1 number of drivers 0.8544 1
KZWF?2 mileage class 0.8454 1
KZEHB1 home owner discount? 0.8427 3
TARKLA2 no-claims class TPL 0.7256 3
VWDAU years in portfolio 0.6983 15
DECKAR2 type of coverage TPL 0.6957 0
BEITSAT percentage rate TPL 0.6669 14
TYPKLH type class TPL 0.6661 2
REGIO regional classification 0.6514 18
FALTER age of vehicle 0.6168 12
PLZX zip code area 0.5334 26
JTBF premium vehicle insurance 0.5212 8
TARKLA 12 SF 1/2 TPL? 0.5118 0
STAERKE vehicle power (kW) 0.4969 9
FELDG68 percentage rate vehicle insurance 0.4635 1
TARKLAFV no-claims class vehicle insurance 0.4506 2
TYPKL type class vehicle insurance 0.4442 2
REGBE county 0.4380 1
TARKLA 0 class 0 TPL? 0.4287 0
KUNALTER2 age of policy holder 0.3000 12
TARKLAFV_12 | SF 1/2 vehicle insurance? 0.2156 0
AUSLK1 foreigner? 0.1883 0
TARKLA_S class S TPL? 0.1833 0
TARKLAFV_0 | class 0 vehicle insurance 0.1817 0
VERBU1 employee tariff? 0.1551 0
TGR2 tariff group TPL 0.1297 2
ZART payment option 0.1213 0
SORABI1 special discount? 0.1180 1
TARKLA_M class M TPL? 0.0000 0

88
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This ranking indicates that tariff generation and premium for motor TPL are the
most useful variables for distinguishing between cancelled and not cancelled contracts.
The high ranking for the tariff generation is partly due to the way the sample was taken
(see discussion later in this section).

Furthermore, some of the tariff factors for TPL insurance play an important role
for the recursive partitioning of the covariate space. And, of course, the number of years
in the portfolio seems to be one of the main factors influencing the cancellation behavior.
All variables related to vehicle insurance play a minor role in the tree construction process.

Among the least important variables are the indicator variables for claims classes
in both motor TPL and vehicle insurance, and variables representing special discount,
payment option, tariff group, employee tariff and nationality. Also the age of the policy
holder is ranked low, even though it is used for 12 splits. This may partly be due to
the fact that it has a lot of missing values, and they count against its importance. On
the other hand, other variables that are likely to be related to the age (for example, the
number of years in the portfolio and the number of years without a claim) may account
for differences in cancellation behavior between age groups.

Such a ranking only gives an idea about which variables are useful for the successive
partitioning of the covariate space; it does not give any information about how the actual
partition is achieved. A tree ring display like the one in Figure 5.4 can be used to visualize
the partition defined by a classification tree. For concept and definition of a tree ring
see appendix D. For this example, the coloring of the tree ring indicates the percentage
of observations from the training sample that are classified correctly (see legend). The

overall misclassification rate on the training sample is 12.55%.



Figure 5.4: Tree ring (partition #10, 163 leaves)
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First of all, the tree ring shows that the partition is highly complex, as expected
for a tree with 163 leaves. The covariate space is partitioned into many small subsets,
but there are also several larger subsets. Moreover, the tree ring is unbalanced. In some
areas, the final partition is defined by only a few splits, whereas in others up to 20 splits
are necessary to define a leaf.

Overall, the coloring reflects the good discriminatory power of the corresponding
classification rule. Most leaves have a misclassification rate below 30%; especially some
large leaves classify observations with more than 90% accuracy. Only for a few leaves the
black color indicates a misclassification rate above 30% for the training sample.

Further insight into the tree structure and the definition of the largest leaves can
be gained by examination of the first few levels of the classification tree. The first three
levels are given in Figure 5.5.

First, the training set is split into contracts based on the newest tariff generation C
and contracts in all other tariff generations (variable KZKHT). Among the contracts in
tariff generation C only 2.4% are cancelled, a fact that is mostly due to the way the
sample was taken. Tariff generation C was introduced in July 1998, and the sample of
cancelled contracts is taken from all cancelled contracts in the years 1996 - 1998. The not
cancelled contracts, on the other hand, were sampled from the total portfolio in 1999.

Competing splits on the root node try to mimic the chosen split. For example, a
split on the variable KZWF2 (mileage classes 1 through 4 vs. mileage class 5) results in
a similar decrease in impurity and assigns almost 90% of the observations to the same
branch as the primary split does. This however is due to the fact that classes 2 through

4 are only offered in tariff generation C, and class 1 only in tariff generations A, B and C.
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All contracts based on older tariffs (45%) have a value of 5 for KZWF2. This discussion
illustrates that a more balanced sampling method would result in structurally different
trees. Hence all interpretations must be handled with care, since they may be biased
because of the way the sample was taken.

Among the contracts based on tariff generation C, those with a percentage rate
less than 110 (variable BEITSAT) are very unlikely to be cancelled. Leaf #4 with 3,221
observations corresponds to the largest white area of the tree ring in Figure 5.4. If the
percentage rate is above 110, but the contract has been in the portfolio for at least one
year, then it is unlikely to be cancelled (leaf #11 with 70 observations). On the other
hand, one more split based on the premium for vehicle insurance is used to classify the
remaining 41 contracts that are new in the portfolio and have a percentage rate above 110
(node #10). Overall, even for the relatively homogeneous subset of tariff generation C
contracts, information on the percentage rate for TPL insurance, the number of years in
the portfolio, and the premium for vehicle insurance can be used to improve the accuracy
of the prediction rule.

Node #3, which contains all contracts not in the newest tariff generation, is split
using the variable TYPKLH (type class motor TPL). The left branch corresponds to all
contracts with a value of 0, 10 or 11 for TYPKLH. That is, since the number of contracts
with type class 10 or 11 is small and since a value of 0 means that the contract is in one
of the three oldest tariff generations (5, 6 or O), we basically have a second split based
on the tariff generation.

For both branches, splits depending on the number of years in the portfolio result

in further reduction of the overall tree impurity (see nodes #12/13 and #14/15). In the
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left branch (node #6), for example, contracts that have been in the portfolio of the VKB
for at most 3 years form a relatively pure node (#12). Two more splits, again based
on the number of years in the portfolio (VWDAU) and then on the tariff generation
(KZKHT), result in a leaf with 1,146 observations and a misclassification rate of 0.2%.
This leaf corresponds to the area labeled #47 in Figure 5.4. Also the other white area
of the tree ring (labeled #49) is defined by two more splits of node #12 based on tariff
generation and number of years in the portfolio.

The set of contracts with a value of at least 4 for the number of years in the
portfolio (node #13), on the other hand, is divided in the next step in longtime contracts
(25 years or more) and contracts between 4 and 24 years in the portfolio (nodes #26 and
#27). The latter subset is then split according to the age of the vehicle and the premium
for motor TPL. For 624 contracts, the vehicle is older than 13 years and the premium
is below DM 1370.35; they form leaf #86 in Figure 5.4 (89.4% cancelled). If the vehicle
is at most 13 years old, then 6 more splits are necessary to define leaf #566 with 718
observations, among which 79.8% are cancelled.

Now let us consider node #7 which contains all contracts in tariff generation
A and B with a type class of 12 or higher and is balanced between cancelled and not
cancelled contracts. Two splits based on VWDAU define leaf #28 that contains all 481
new contracts (VWDAU = 0) in this subset; they are all cancelled. Also the customers
with exactly one year in the portfolio are likely to cancel if their percentage rate is above
110 (leaf #55: 147 contracts, 98.6% cancelled).

On the other hand, among the contracts that have been in the portfolio for at

least two years (node #15), the majority is not cancelled. Especially those for which
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the percentage rate is small and the vehicle is relatively new are unlikely to be cancelled
(leaf #96: 246 contracts, 91.9% not cancelled). For all others, the prediction is not
very accurate, as the predominantly grey and black color of the tree ring in Figure 5.4
shows. A larger tree, for example the one with 310 leaves and minimum misclassification
rate, is capable of predicting the cancellation behavior of this subset of contracts more
accurately.

Overall, in the first 6 levels of this classification tree, almost all primary splits are
based on the following 4 variables: KZKHT, VWDAU, BEITSAT and FALTER. Two
splits are based on PLZX (zip code area) and one on the premium for vehicle insurance;
the split based on TYPKLH in node #3 is basically also a split based on the tariff
generation (see discussion above).

Although splits in lower levels of the tree operate on subsets of the complete
training sample, some common features of the splits on these four variables can be noticed.
New customers seem to be very likely to cancel (VWDAU = 0); also the first few years
in the portfolio are critical. Longtime customers (VWDAU > 25) are unlikely to cancel.
Moreover, a high percentage rate for motor TPL insurance (BEITSAT > 110) is a good
indicator for cancellation. On the other hand, a very small percentage rate indicates that
the customer is unlikely to cancel. In addition, contracts for old vehicles are likely to be
cancelled.

The overall conclusion is that the complexity of the tree structure limits the
interpretability. However it is possible to identify some key variables used to build the
upper levels on the tree. Classification trees definitely provide accurate classification

rules for this problem.
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CHAPTER 6

COMPARISONS AND CONCLUSION

6.1 Comparison of Logistic Regression Models and
Classification Trees

In the first section of this final chapter I would like to compare the two modeling
approaches used in this thesis for the prediction of cancellation behavior. First,
assumptions, strengths and weaknesses of both logistic regression models and
classification trees are discussed in general. Breiman et al. (1984, chap. 2) mention
some of the advantages of the tree structured approach; Steinberg and Cardell 1998)
compare the two approaches in detail. Additionally, the results for the provided dataset

are compared.

6.1.1 General Comparison

First of all, we should recall the two basic assumptions for the logistic regression
model: the binary outcome is modeled as Bernoulli distributed with a probability of
success that depends on the covariate vector, and the logit of the probability of success
is modeled via a linear predictor (see section 3.1). That is, a functional form is required,
and we assume a linear or curvilinear data structure. This results in smooth, continuous
predicted probabilities. A small change in a continuous variable x results in a small

change in the predicted probability y.
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Classification trees, on the other hand, do not require specification of a functional
form and are nonparametric procedures. Only the set of possible splits, the rule for
selecting the best split, and the criterion for selection of the best tree need to be specified
before the classification tree can be grown. One consequence is that predicted probabil-
ities are discontinuous: a small change in a continuous predictor z may result in a large
change in the predicted probability y. Classification trees can be applied in a natural way
to problems with polychotomous outcomes (more than K = 2 classes). Generalizations
also exist for logistic regression models (see Hosmer and Lemeshow (2000), chap. 8).

As Steinberg and Cardell (1998) note, logistic regression requires “hand-built”
models. The variable screening is an essential part of the modeling process, since we
need to assure that the assumption of linearity on the logit scale is satisfied. If it is not,
transformations of continuous predictors (for example, polynomial terms, log, square-
root) should be considered. Interactions are hard to detect, if they are not obvious from
the context of the study. This presents a problem if the type of study is new and there
are no results from previous, similar studies that could be used as a guideline. Overall,
the model-building process is time-consuming and requires expert knowledge in order to
give satisfactory and reliable results.

Classification trees automatically seperate irrelevant from relevant predictors, and
transformations do not need to be considered. But of course, performance can be
enhanced by a careful selection of predictor variables. Furthermore, the tree procedure
automatically detects interaction structures and nonlinear relationships and uses them
in the growing process. Overall, tree-based methods are faster to apply since they are

highly automated, and they are easier to use, especially for non-statisticians.
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Additionally, the methodology for classification trees as discussed in chapter 4
provides a natural way of handling missing values via surrogate rules (see section 4.5).
For logistic regression, two options for the handling of missing values are imputation and
deletion. Imputation is complicated and time-consuming, especially for large databases.
If observations with missing values are deleted, then the sample size is reduced, which
may also present a problem.

Another advantage of tree models is that they are not affected by outliers or
errors in the dataset and hence can handle “dirty” data. Every data point has weight
1 in the tree growing process and the resulting classification rules have a robustness
property similar to the median. Contrary to that, logistic regression models are sensitive
to outliers because of the specified functional form.

Altogether, the main advantage of classification trees is that they can handle
complex data structures (many predictors, large number of records) in a variety of
contexts. They can also easily detect and use local structures in large databases. The
structure is graphically displayed by a tree diagram. This makes them a very flexible
data analysis tool.

The possibility of uncovering structure of the data by a classification tree is limited
by the instability of the tree structure. There may be nodes where splits on several
variables give almost the same decrease in impurity. Since the data are “noisy” and the
partition in training and validation sample is random, the choice of the split at such a
node may depend on the partition. If different splits are chosen for different partitions,
then the evolution of the tree from that node downward will differ (see Breiman et

al. (1984, p. 156)). Sometimes inspection of competing splits at a node may help in the
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interpretation of the tree structure. The main reason for this instability is the hierarchical
structure of a tree. The variation in the prediction may be reduced by the use of Bagging,
that is, by averaging over several trees based on different bootstrap samples (see Hastie
et al. (2001, p. 246)).

Logistic regression models, on the other hand, can effectively capture the global
features of the data. The output of logistic regression models describes this structure
and gives the possibility to interpret the results in terms of odds ratios. Also many
non-linear structures can be reasonably approximated with a linear structure. Hence,
even an incorrectly specified logistic regression model can perform fairly well.

Classification trees, however, are weak at capturing linear structure. The structure
is recognized, but it cannot be represented efficiently and it is not obvious from the
output. Sometimes a large tree is necessary to represent a fairly simple linear structure.
This is a common feature of nonparametric procedures: whenever the assumptions of the
corresponding parametric methods are satisfied, the parametric model seems to perform
better.

Application of logistic regression models becomes complicated and time-consuming
as the data structure becomes more complex. Local structure in large datasets is in
general hard to detect by a logistic regression model. Overall, both classification trees
and logistic regression models are powerful data analysis tools and have demonstrated

remarkable accuracy in a variety of problems.
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6.1.2 Results for the Cancellation Prophylaxis Study

The first result to be mentioned here is that the model building process was
significantly faster and also easier for classification trees. Only a few options needed to
be set, and classification trees were built in a rather straightforward way.

Due to the large number of possible covariates, the model selection process for
logistic regression models was sophisticated and time-consuming. For every variable,
the appropriate functional form had to be found and stepwise procedures were used
to seperate important from irrelevant predictors. The assessment of goodness of fit
was further complicated by the undue influence of outliers on the test statistics (see
discussion in section 5.1.2). Furthermore, the drawbacks of the Hosmer-Lemeshow test
became apparent in the analysis of this dataset.

Missing values for the variable representing the age of the policy holder resulted
in a decrease of the sample size of about 10%. The final model, however, did not include
this variable and was therefore fitted using almost all observations.

As far as the predictive performance is concerned, both modeling approaches yield
similar results as the plot of ROC curves in Figure 6.1 shows. Misclassification rates for
classification trees were slightly below those for logistic regression models: The difference
was 1 to 1.5 percentage points, depending on whether the “one standard error rule”
was applied or not. This means that the most accurate logistic regression model had
an average misclassification rate about 10% higher than the most accurate classification
trees. It seems as if there is a lot of linear structure in these data, and logistic regression
models are capable of effectively representing it. The smaller misclassification rate for

trees is probably due to the fact that they additionally recognize local structure.
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Figure 6.1: Comparison of ROC curves (partition #1)

For both approaches, the resulting models are quite complex: the final logistic
regression model contains several interaction terms and a total of 40 parameters. Point
and interval estimates for odds ratios give an idea of the actual influence of the variables
on the cancellation behavior. This allows identification of risk factors for cancellation
and quantification of their influence. However, assocations among predictor variables
limit the interpretability.

The large number of leaves for the selected classification trees limits the
comprehensibility of the tree structure. Additionally, the structure of the tree depends on
the partition; the upper levels are ususally almost identical, whereas there are significant
differences in the lower levels of the tree. But also for these models the most important

factors for the cancellation behavior have been identified. The complexity of the tree
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structure also indicates that the tree tries to represent linear structure in these data, but
cannot do this effectively. For every classification tree, we can set up a corresponding
logistic regression model by using indicator variables for the leaves as predictors. Since
the number of parameters of such a logistic regression model is equal to the number of
leaves of the tree, we see that for this study classification trees are more complex than
the selected logistic regression model (with 40 parameters). However, in order to achieve
a misclassification rate close to the misclassification rate of the final logistic regression
model, we only need a classification tree with about 50 leaves.

Overall, both types of statistical models discussed here could be used for the pre-
diction of cancellation behavior. Logistic regression models seem to be easier to interpret,
whereas classification trees are slightly more accurate. The choice of the method should
also take into account the time factor, especially if the costs of the study are a major

concern.

6.2 Suggestions for Further Study

6.2.1 Alternative Modeling Approaches

A variety of methods has been proposed for classification problems like the one
discussed in this thesis. Hastie et al. (2001) give an overview over a wide range of
modeling approaches, including classical and modern statistical algorithms, tree-based
models and neural networks. Lim, Loh, and Shih (2000) have compared 33 classification
algorithms with respect to accuracy, complexity and training time, using 32 sample

datasets.
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Four algorithms show consistently good performance, with respect to both the
mean misclassification rate and the rank of the mean misclassification rate. A spline-based
statistical algorithm called POLYCLASS is placed at the top; however, it requires relatively
long training time. Logistic regression ranks second and, hence, higher than all tree-based
methods. The most accurate tree algorithm is QUEST (Quick Unbiased and Efficient
Statistical Tree). It is quite similar to the CART algorithm described in Breiman et
al. (1984), which was applied in this thesis. The exhaustive split search algorithm used
in the CART methodology is biased towards selecting variables that afford more splits.
QUEST uses a different split selection criterion, which tries to reduce the bias in variable
selection. For details on QUEST, see Loh and Shih (1997).

The tree algorithms CART, QUEST and C4.5 (see Quinlan (1993)) had the best
combination of misclassification rate and speed in this study. However, C4.5 tends to
produce trees with twice as many leaves as those from CART and QUEST.

Finally, the classical statistical method of linear discriminant analysis is also
ranked among the best classification algorithms in this study. This is surprising, since
its key assumption (multivariate Gaussian distribution for the class densities) is violated
if we have a mixture of categorical and continuous predictors. In addition, it is fast and
widely available. Similarly, Hastie et al. (2001, p. 105) point out that logistic regression
models and linear or quadratic discriminant analysis models often give very similar
results, even if discriminant analysis is used inappropriately with qualitative predictors.
However, logistic regression models seem to be safer and more robust in such a situation

since they rely on fewer assumptions.
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Hence, newer tree-based methods like QUEST (which also incorporates a variant
of linear discriminant analysis) may be reasonable alternatives to the selected modeling
approaches. Overall, logistic regression models seem to be competitive with tree models
if applied correctly. In addition, there have been attempts to combine logistic regression

models and classification trees to form a hybrid model (see Steinberg and Cardell (1998)).

6.2.2 Improvement of the Cancellation Prophylaxis Study

Experiences during the modeling process for this cancellation prophylaxis study
lead to the following suggestions for possible improvements of the study.

First, we should make sure that all available characteristics of a contract are
actually recorded. In the provided dataset, for example, information on the type of
coverage in vehicle insurance and on deductibles in both motor TPL and vehicle insurance
was missing. Additional information may result in further improvement of the predictive
performance of the models. More detailed information on the meaning of the covariates
could also assure that unusual contracts like those discussed in section 5.1.2 are excluded
from the study in advance.

If a case-control study design is chosen, as for the provided dataset, then the
sampling method should assure that cases and controls are sampled from the same time
period and not, as was the case here, from separate time periods. This would lead to
more unbiased results.

We should note again that a case-control study design cannot provide estimated
cancellation probabilities for the contracts in the total portfolio of the insurance

company; it is only capable of classifying contracts as cancelled or not cancelled. If
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the company is interested in estimation of the actual probability of cancellation, a cohort
study would be the appropriate approach (see section 2.3). Both logistic regression
models and classification trees can be applied to data from a cohort study in exactly the

same way as presented in this thesis for a case-control study.
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VARIABLES IN THE DATASET

This appendix contains an overview of all 40 variables found in the provided
dataset; Table A.1 presents label, scale and range for all variables. It also includes the
variable KZFV which was not in the original dataset. An inspection of the dataset has
shown that it may be useful to define a variable that indicates whether motor vehicle

own damage insurance is included in a specific contract or not. This is done by defining

KZFV by

1 if JTBF >0
KZFV :=

0 if JTBF =0

Variables that do not provide useful information and are therefore not considered during
the analysis are put in #talics. They are discussed in detail below.

The variable VSNR represents the policy number which is used to uniquely identify
a contract in the portfolio of the insurance company. The variable VVNR represents a
preliminary policy number which is used for administration purposes. Both variables are
not relevant for this study.

The variable VERMNR uniquely identifies the responsible insurance agent for the
contract. This characteristic may be relevant to check whether an agent is providing good
service to his customers. Since no detailed description is available and the number of
contracts per insurance agent is very small (there are 4,866 different agents in the sample),
I will also ignore this variable. In order to evaluate the performance of insurance agents

a different study design must be used.
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The date of cancellation for a cancelled contract is stored in the variable STODAT;
STODAT1 contains the year of cancellation. The variable BEGDAT1 corresponds to the
year in which the first contract with VKB has been concluded. STODAT, STODAT1
and BEGDAT1 will not be used directly for the analysis. However they were used to
define the variable VWDAU, representing the number of years the contract was in the

portfolio of VKB, by:

99 — BEGDAT1 it STORNO =0
VWDAU :=

STODAT1 — BEGDAT1 if STORNO =1

The variable GEBJJ represents the year of birth of the policy holder. It is used

to find the relevant age of the policy holder by

99 — GEBJJ it STORNO =0
KUNALTER?2 :=

STODAT1 — GEBJJ if STORNO =1

The original variable KUNALTER, defined by KUNALTER := 99 - GEBJJ does not
take into account the fact that the cancelled contracts are sampled from the years
1996 - 1998 and the not cancelled contracts from 1999. Thus GEBJJ and KUNALTER
will be ignored; I will use KUNALTER?2 instead.

HERSTELL is the number that uniquely identifies the manufacturer of the
insured automobile (but not the specific model). It is used together with another variable
describing the specific model (not available in this dataset) to determine the type class
for both motor TPL and motor vehicle own damage insurance. This variable therefore
has no use for this study and will be ignored.

There is also information available about the year of first registration of the

insured vehicle (ZULMMJJ1). Since FALTER represents the age of the vehicle similar
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to how KUNALTER2 represents the age of the policy holder, ZULMMJJ1 will not be
used for this study. For the variables VIYPH, NEUGE, KUEND and FELD62 detailed
descriptions are not available. Thus, I will ignore them.

Altogether two new variables (KZFV and KUNALTER?2) have been defined in this
step and 14 variables have been excluded from the study. The remaining 28 variables (one

response variable and 27 covariates) seem to be useful for the cancellation prophylaxis

study.
Table A.1: Label, scale and range of the variables in the dataset
H Variable H Label ‘ Scale ‘ Range H
Policy
VSNR policy number nominal | 0000001 - 9999999
VVNR preliminary policy number nominal | 00000001 - 99999999
VERMNR agent number nominal | 000001 - 999999
STORNO cancelled? nominal | 0, 1
STODAT date of cancellation interval | ddmmyy, yy=96, 97, 98
STODAT1 year of cancellation interval | 96, 97, 98
BEGDATI1 year of first contract with VKB | interval | 0 - 99
VWDAU years in portfolio ratio 0-99
Policy holder
GEBJJ year of birth interval | 0 - 81
KUNALTER | age ratio 18 - 99
KUNALTER?2 | age ratio 18 - 99
AUSLK1 foreigner? nominal | 0, 1
PLZ zip code nominal | 01000 - 99999
REGBE county nominal | 1,2, 3,4,5,6,7,8,9
ZART payment option ordinal |1, 2,4
Insured vehicle
HERSTELL manufacturer key nominal | 0001 - 9999
STAERKE engine power (kW) interval | 1-999
ZULMMJJ1 year of first registration interval | 0 - 99
FALTER age ratio 0-99
KAUFDAT1 year of purchase interval | 0 - 99

(table continues)
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H Variable H Label ‘ Scale ‘ Range H
Motor TPL insurance

KZKHT tariff generation nominal | O, 5, 6, A, B, C
DECKAR | type of coverage nominal | 3, 8, 9, 12, 52, 88
REGIO regional class nominal | 0,1, 2, 3,4,5,6,7,8,9
TGRI1 tariff group nominal | A, B, C, D, K, N, R
KZWF mileage per year nominal | 0, 1, 2, 3,4, 5
FANZ1 number of drivers nominal | 0, F1, F2, J1, J2, N1, N2
KZEHB1 | home owner? nominal | 0, 1
TYPKLH | type class ordinal | 0, 10 - 25
TARKLA | no-claims class nominal | 0 - 99
BEITSAT | percentage rate ratio 30 - 275
JTBH annual permium ratio 0 -9999

Motor vehicle own damage insurance
KZFV vehicle insurance? nominal | 0, 1
TYPKL type class ordinal | 0, 10 - 40
FELDG66 no-claims class nominal | 0 - 99
FELDG6G8 percentage rate ratio 0, 30 - 190
JTBF annual premium ratio 0 - 99999

Others

SORABI1 | special discount? nominal | 0, 1
VERBU1 | employee tariff? nominal | 0, 1
VTYPH preferred tariff ordinal | 0,1, 2,3
NEUGE new customer nominal | 0, 1, 2
KUEND cancellation in case of a claim | nominal | 0, 1, 2, 3,4, 5,6, 7, 8,9
FELDG62 characteristic second tariff ordinal | 000 - 999
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RESULTS OF THE VARIABLE
SCREENING

This appendix contains some important results from the variable screening dis-
cussed in section 5.1.1. I will discuss the tariff generations in motor TPL in detail, and
also highlight some of the results for both categorical and continuous covariates, including

the definition of new variables.

B.1 Tariff Generations in Motor TPL insurance

The variable KZKHT represents the type of tariff used for the calculation of the
premium for motor TPL insurance. The values O, 5 and 6 denote tariffs based on engine
power used before 1996. A, B and C represent tariffs based on the type class of the
insured vehicle used after June 1996; they were introduced on 6/1/1996, 1/1/1997 and
7/1/98 respectively.

For the value C, the proportion of cancelled contracts is very small. This is mostly
due to the fact that this tariff generation was introduced in July 1998 and the sample of
cancelled contracts is taken from the years 1996 - 1998; the not cancelled contracts, on
the contrary, are all sampled in 1999. This is clearly a flaw of the sampling method and
will limit the interpretability of the results.

Furthermore, the set of possible values for some other variables related to motor
TPL depends on the tariff generation KZKHT. For example, the variable TYPKLH is
equal to 0 for all motor TPL contracts for which the tariff is based on vehicle power (9,056

contracts in the sample); these contracts are those with values O, 5 or 6 for KZKHT.
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Also the value for KZEHB1 (home owner discount) depends on the value for
KZKHT since this type of discount is only offered in tariff generations A, B and C. More
examples for these dependencies among predictor variables are given below (see variables
DECKAR, KZWF and FANZ1).

Apart from that, the categories O, 5 and 6 may be combined since they all
represent tariffs based on vehicle power and there is no further information about
differences between these tariffs. This defines a new variable KZKHT2 with 4 levels.

Some of the other categorical variables in the dataset are also worth closer examination.

B.2 Categorical Covariates

B.2.1 PLZ and PLZX (zip code areas)

The original variable PLZ (five digit zip code) has 2,668 different values in the
sample dataset which means that it is not useful for the prediction of the cancellation
behavior since all counts are small. However, the first two digits of the zip code represent
larger areas in Germany, where big cities form separate areas. It may therefore be
advisable to use the first two digits of the zip code (95 different values). For many of
these areas the counts are very small, since the VKB only operates in Bavaria and in parts
of Rheinland-Pfalz (22 zip code areas). I defined a new variable PLZX which represents
the first two digits of the zip code for contracts in any of these 22 zip code areas; PLZX

is set to zero for all other contracts.
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B.2.2 DECKAR and DECKAR?2 (type of coverage TPL)

The type of coverage for motor TPL insurance chosen by the policy holder is
coded in DECKAR: 12 means unlimited coverage, 52 denotes unlimited coverage plus
additional services, and the other values (3, 8, 9 and 88) represent different types of
limited coverage (< 1% of the contracts). Hence I combined the values 3, 8, 9 and 88
and defined a new variable DECKAR2. The value 52 can only occur if KZKHT is equal

to C. Overall, this variable seems to have limited usefulness.

B.2.3 KZWF, KZWF2 and KZWF3 (mileage per year)

KZWF represents the annual mileage restriction for the vehicle (see section 1.2.2):
0 means that no mileage restrictions are applicable for this contract, and it is equivalent
with the mileage class 5. Therefore a new variable KZWF2 was defined by replacing
0 with 5. All contracts based on vehicle power (KZKHT equal to O, 5 or 6) have
a value of 5 for KZWF2 since this discount was not offered in this tariff generation.
Contracts in tariff generations A or B can either have a discount (KZWF2 = 1) or
not (KZWF2 = 5). The values 2, 3 and 4 can only occur if KZKHT is equal to C
and represent different levels of discount. Further investigation has shown that it seems

advisable to define a new variable KZWF3 which indicates whether there is a discount

for restricted mileage (KZWF2 = 1, 2, 3 or 4) or not (KZWF2 = 5).

B.2.4 FANZ1, FANZ3 and FANZ4 (number of drivers)
If the number of drivers insured under the contract is limited, a discount on the
basic premium may apply (see section 1.2.2). These restrictions are stored in the variable

FANZ1, where 0 means no limitations, N1, J1 and F1 denote restriction on one driver and
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N2, J2 and F2 denote restriction on two drivers. Discounts apply for the values F1/F2
and J1/J2, but not for N1/N2. The 7 x 2 crossclassification table of FANZ1 versus the
outcome STORNO has zero counts for F1 and F2; these values can only occur when the
contract is in tariff generation C (variable KZKHT). Since J1/J2 and F1/F2 apply in
different tariff generations but have essentially the same meaning (discount for one/two
drivers), the variable FANZ4 was defined by setting all values F1 (F2) equal to J1 (J2).
In addition, a variable representing whether there is a restriction on the number of drivers

(FANZ4 # 0) or not has been found useful as a predictor (binary variable FANZ3).

B.2.5 TGR1 and TGR2 (tariff group motor TPL)

For the variable TGR1, the contingency table of TGR1 versus the binary outcome
STORNO has zero counts for the values C, D, K and R; they represent professional
groups other than the main groups A, B and N (see section 1.2.2). Since they together
only represent less than 2% of the observations, we combine them into one category O

(other professional groups) and define a new variable TGR2.

B.3 Continuous Covariates

An overview of the continuous variables is given in Table B.2. For all variables
related to vehicle insurance (TYPKL, TARKLAFV, FELD68 and JTBF), a value of
zero means that vehicle insurance is not included in the contract. For TYPKLH (type
class motor TPL) a value of zero means that the premium calculation for motor TPL is

based on an old tariff for which vehicle power is used as a tariff factor instead of type class.
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For the computation of the quantiles for all these variables, observations with a value of
zero have been excluded.

Positive values for JTBF represent the annual premium for partial or full vehicle
insurance, depending on the choice of the customer. Premiums for the partial coverage
tend to be low, whereas premiums for the full coverage can be very high. Customers
usually have full coverage only as long as the car is relatively new. Hence the premium
level may be related to the age of the vehicle. However, there is no information provided

about the type of coverage (partial or full) chosen.

Table B.1: Range and quantiles for continuous variables

Variable Range Quantiles

1% | 5% | 50% | 95% | 99%
VWDAU 0-41 0 0 6 25 28
KUNALTER2 | 18 - 97 22 27 45 73 82
ZART 1,2, 4 1 1 2 4 4
STAERKE 7 - 280 25 33 57 113 150
FALTER 0-63 0 1 8 17 22
TYPKLH 0,10 - 25 11 12 16 21 23
TARKLA2 0,1-34 1 1 11 29 34
BEITSAT 30 - 275 30 30 45 120 240
JTBH 25.0 - 3155.3 491.3 | 624.6 | 1123.8 | 1770.2 | 2153.7
TYPKL 0, 10 - 40 11 13 19 33 37
TARKLAFV | 0,1-34 1 1 1 26 33
FELDG68 0, 30 - 190 30 30 100 100 100
JTBF 0,26.4 -12125.0 | 45.2 | 70.2 | 273.85 | 2028.2 | 3065.1
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This appendix contains the SAS code used for the assessment of logistic regression

models via external validation.

C.1 Fitting of the Model

TITLE ’Model assessment: 22 variables’;

* Choose partition!;
* Y = STORNO for the training sample and
* Y is missing for the validation sample;
DATA work.total4;

SET work.total4;

Y = Y1,
KEEP _ALL_;
RUN;

* Fit logistic regression model!;
* Model probability of cancellation;

PROC LOGISTIC DATA=work.total4 DESCENDING;

CLASS FALTERO (REF=’No’) KZKHT2 (REF=’01/97 - 06/98°)
REGIO (REF=’0’) TGR2 (REF=’Normal’)
KZWF3 (REF=’No’) BEITSAT2 (REF=’No’)
FANZ3 (REF=’No’) KZEHB1 (REF=’No’)
KZFV (REF=’Yes’) VERBU1 (REF=’No’)
/ PARAM=REF;

MODEL Y = VWDAU STAERKE FALTER FALTERO KZKHT2 TYPKLH REGIO TGR2
KZWF3 BEITSAT3 BEITSAT2 FANZ3 KZEHB1 JTBH KZFV JTBF
VERBU1 KZKHT2*STAERKE KZKHT2*xJTBH KZKHT2*TYPKLH

STAERKE*JTBH TYPKLH*JTBH;

OUTPUT 0OUT=work.pred XBETA=logit PROB=phat;
* Output dataset contains the same variables as the input data set;
* Additionally, it contains the predicted logits and;

* the predicted probabilities;
RUN;
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C.2 Pearson Chi-Square Test

TITLE ’Normal approximation to the Pearson Chi-Square Statistic’;

x Consider validation sample!;
* Calculate squared Pearson residual and variance term!;
DATA work.pearsonl;

SET work.pred;

WHERE Y = . and phat ne .;

r = (STORNO-phat)**2 / (phat*(1-phat));
v = (1/(phat*(1-phat))) - 4;

KEEP _ALL_;

RUN;

* Find Pearson Chi-Square Statistic and variance sigma_v**2!;
PROC UNIVARIATE DATA=work.pearsonl NOPRINT;

VAR r v;

OUTPUT OUT=work.pearson2 SUM=Pearson Sigma_2 N=n_v;
RUN;

* Calculate Z statistic and find two-tailed p-value!;
DATA work.pearson2;
SET work.pearson2;

Z
P

(Pearson - n.v) / sqrt(Sigma_2);
2 *x (1 - cdf(’normal’,abs(Z)));

LABEL Pearson=’Pearson chi-square statistic’
Sigma_2=’Variance (sigma_v**2)’ n_v=’# obs (n_v)’
Z=’Standardized Statistic Z’ p=’p-value (two-tailed)’;

KEEP _ALL_;

RUN;

% Print results!;

PROC PRINT DATA=work.pearson2 LABEL NOOBS;
VAR n_v Pearson Sigma_ 2 Z p;

RUN;

* Clean up!;

PROC DATASETS LIBRARY=work;
DELETE pearsonl pearson2;

RUN;



C.3 Stukel’s Test

TITLE ’Stukels Test’;

* Compute new variables zl and z2 from fitted values!;
DATA work.pred;
SET work.pred;

IF phat >= 0.5 THEN DO;
z1l = 0.5 * logit**2;
z2 = 0;
END;
ELSE DO;
zl = 0;
z2 = - 0.5 x logit**2;
END;
KEEP _ALL_;
RUN;

% Include all 22 variables!;

¥ Test z1 and z2 for addition to the model!;

* Look at Residual chi-square test (score test)!;
PROC LOGISTIC DATA=work.pred DESCENDING;

CLASS FALTERO (REF=’No’) KZKHT2 (REF=’01/97 - 06/98’)
REGIO (REF=’0’) TGR2 (REF=’Normal’)
KZWF3 (REF="No’) BEITSAT2 (REF=’No’)
FANZ3 (REF=’No’) KZEHB1 (REF=’No’)
KZFV (REF=’Yes’) VERBU1 (REF=’No’)
/ PARAM=REF;

MODEL Y = VWDAU STAERKE FALTER FALTERO KZKHT2 TYPKLH REGIO TGR2
KZWF3 BEITSAT3 BEITSAT2 FANZ3 KZEHB1 JTBH KZFV JTBF
VERBU1 KZKHT2*STAERKE KZKHT2*xJTBH KZKHT2*TYPKLH
STAERKE*JTBH TYPKLH*JTBH
Z1 72
/ SELECTION=FORWARD SLENTRY=0 INCLUDE=22 DETAILS;
RUN;
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C.4 Hosmer-Lemeshow Test
TITLE ’Hosmer-Lemeshow Test (validation sample): deciles of risk’;

x Define grouping variable!;
DATA work.hltest;

SET work.pred;

WHERE Y = . and phat ne .;

phatgroup = phat;

KEEP STORNO phat phatgroup;
RUN;

* Divide into 10 groups of equal size according to predicted
* probabilities and sort!;
PROC RANK DATA=work.hltest GROUPS=10 OUT=work.hltest;
VAR phatgroup;
RUN;

PROC SORT DATA=work.hltest;
BY phatgroup;
RUN;

* Find total # of observations and sum of observations per group
*+ for phat and response STORNO!;
PROC UNIVARIATE DATA=work.hltest NOPRINT;
BY phatgroup;
VAR STORNO phat;
OUTPUT OUT=work.hltest2 N=n_y n_p SUM=sum.y sum_p;
RUN;

* Calculate components of H-L statistic!;
DATA work.hltest2;
SET work.hltest2;

group = phatgroup + 1;

num = (sum.y - sum_p)**2;

denom = sump * (1 - sump / np);
quotient = num / denom;

pvalue = 1 - cdf(’chisquare’,quotient,1);

LABEL quotient=’C_k’ group=’Group’ sum_y=’0bserved’
sum_p=’Expected’ n_y=’Total’ pvalue=’p-value (df=1)’;
KEEP _ALL_;
RUN;
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* Calculate Hosmer-Lemeshow Test Statistic!;
PROC UNIVARIATE DATA=work.hltest2 NOPRINT;
VAR quotient;
OUTPUT 0OUT=work.hltest3 SUM=sum;
RUN;

* Find p-value from Chi-Square distribution!;
DATA work.hltest3;
SET work.hltest3;

p = 1 - cdf(°chisquare’,sum,10);

LABEL sum=’Hosmer-Lemeshow Statistic’ p=’p-value (df=10)’;
KEEP _ALL_;
RUN;

* Print results!;

PROC PRINT DATA=work.hltest2 NOOBS LABEL;
VAR group n.y sum.y sum_p quotient pvalue;
SUM n_y sum.y sum_p quotient;

RUN;

PROC PRINT DATA=work.hltest3 NOOBS LABEL;
RUN;

* Clean up!;

PROC DATASETS LIBRARY=work;
DELETE hltest hltest2 hltest3;

RUN;

C.5 Classification Tables
TITLE ’Classification table (validation sample)’;

* Use macro to compute classification table for several cutpoints;
%LET response = STORNO;

WLET pred = ypred;

WLET respyes = 1;

%LET respno = 0;

%MACRO ctable(num,step);
* num=number of cutpoints;
* step=step size between cutpoints;
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x Classify observations in the validation sample using all
* cutpoints in the sequence!;
DATA work.validate;

SET work.pred;

WHERE Y = . ;

ARRAY pt(&num) 8 &pred.l-&pred.&num;

DO j=1 to &num;
IF phat = . THEN pt(j) = .;
ELSE IF phat >= j*&step THEN pt(j) = &respyes;
ELSE pt(j) = &respno;

END;

KEEP &pred.l1-&pred.&num &response phat;
RUN;

%D0 n=1 %T0 &num; * for every single cutpoint ...;

* Compute classification table (predicted vs. observed)!;
PROC FREQ DATA=work.validate NOPRINT;

TABLES &pred.&n+&response / 0UT=work.freqs OUTPCT;
RUN;

WLET yy = 0; /x predicted YES, observed YES x/
ALET yn = 0; /% predicted YES, observed NO */
WLET ny = 0; /% predicted NO, observed YES x/
JLET nn = 1; /% predicted NO, observed NO x/
HLET sens = 0; /+ sensitivity =/

WLET spec = 0; /+ specificity =/

ALET fpos = 0; /% false positive rate x/

JLET fneg = 0; /+ false negative rate x/

* Sort classification table (order: yy, yn, ny, nn)!;
PROC SORT DATA=work.freqs 0UT=work.freqs;

BY DESCENDING &pred.&n DESCENDING &response;
RUN;

* Get information from classification table!;
DATA work.freqstemp();
SET work.freqs;
WHERE &pred.&n NE .;
LENGTH mcr sens spec fpos fneg yy yn nn ny cprob 8;
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IF &pred.&n = &respyes AND &response = &respyes THEN
DO;
CALL symput(’yy’,COUNT) ; /% save in macro variable x/
CALL symput(’sens’,PCT_COL);
END;
ELSE IF &pred.&n = &respyes AND &response = &respno THEN
DO;
CALL symput(’yn’,COUNT);
CALL symput (’fpos’,PCT_RQOW) ;
END;
ELSE IF &pred.&n = &respno AND &response = &respyes THEN
DO;

CALL symput(’ny’,COUNT) ;

CALL symput(’fneg’ ,PCT_ROW) ;
END;
ELSE IF &pred.&n = &respno AND &response
DO;

&respno THEN

CALL symput(’nn’,COUNT);
CALL symput(’spec’,PCT_COL);
yn=symget (’yn’); /* get value from macro variable x/
ny=symget (’ny’);
nn=symget (’nn’) ;
yy=symget (’yy’);
mcr = (yn+ny)/(yn+ny+yy+nn) ;
spec=symget (’spec’);
sens=symget (’sens’) ;
fpos=symget (*fpos’);
fneg=symget (’fneg’) ;
cprob=symget(’n’);
cprob=cprobx&step;

END;

KEEP mcr sens spec fpos fneg cprob;
RUN;

HIF &n = 1 Y THEN /x first cutpoint =/
%DO;
DATA work.freqall;
SET work.freqstemp;
WHERE mcr NE .;
RUN;
HEND;
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HELSE %D0;
DATA work.freqstemp;
SET work.freqstemp;
WHERE mcr ne .;
RUN;

PROC APPEND BASE=work.freqall DATA=work.freqstemp;
RUN;
HEND;
JEND;

PROC DATASETS LIBRARY=work;
DELETE freqs freqstemp validate;
RUN;

%MEND ctable;

* Run macro!;
%ctable(19,0.05);

* Set up classification table!;
DATA work.ctable;
SET work.freqall;
LABEL sens=’Sensitivity’ spec=’Specificity’
fpos="False positive rate’ fneg=’False negative rate’
mcr="Misclassification rate’ cprob=’Cutpoint’
_Imspec=’1 - Specificity’;

_1mspec = 100 - spec;

KEEP _ALL_;
RUN;

% Print classification table!;

PROC PRINT DATA=work.ctable LABEL NOOBS;
VAR cprob mcr sens spec fpos fneg ;

RUN;

* Clean up!;

PROC DATASETS LIBRARY=work;
DELETE freqall ctable;

RUN;



C.6 Area under the ROC Curve

TITLE ’Area under the ROC curve (validation sample)’;

* Consider validation sample!;
DATA work.wilcoxon;
SET work.pred;
WHERE Y = . and phat ne .;
KEEP STORNO phat;
RUN;

* Find Wilcoxon rank sum statistic _WIL_!;
* Two groups are defined by binary outcome STORNO!;
x Computes rank sum for smaller group!;
PROC NPAR1WAY DATA=work.wilcoxon WILCOXON NOPRINT;
CLASS STORNO;
VAR phat;
OUTPUT 0OUT=work.wilcoxon2 WILCOXON;
RUN;

*+ Find number of positive reponses and total number of

* observations in validation sample!;
PROC SORT DATA=work.wilcoxon;

BY DESCENDING STORNO;
RUN;

PROC UNIVARIATE DATA=work.wilcoxon NOPRINT;

VAR STORNO;

OUTPUT OUT=work.wilcoxon3 SUM=sumyes N=total;
RUN;

* First calculate Mann-Whitney U statistic by;

* subtracting mk(m+1), where m=# of obs in smaller group!

x Then divide by number of pairs!;
DATA work.wilcoxon4;

SET work.wilcoxon3;

SET work.wilcoxon2;

sumno = total - sumyes;

IF sumyes < sumno THEN DO;
U = WIL. - sumyes*(sumyes+1)/2;
ROC = U / (sumyes*sumno);

END;
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ELSE DO;
U = _WIL_ - sumno*(sumno+1)/2;
ROC = 1 - U / (sumyes*sumno) ;
END;

LABEL ROC=’Area under the ROC curve’;
KEEP total sumyes sumno _WIL_ U ROC;
RUN;

* Print result!;

PROC PRINT DATA=work.wilcoxon4 NOOBS LABEL;
VAR ROC;

RUN;

* Clean up!;
PROC DATASETS LIBRARY=work;

DELETE wilcoxon wilcoxon2 wilcoxon3 wilcoxoné;
RUN;
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CLASSIFICATION TREES IN SAS
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CLASSIFICATION TREES IN SAS

In this appendix I will describe how the SAS Enterprise Miner can be used to build

classification trees as discussed in chapter 4. For details see the SAS help documentation.

D.1 Selection of Splits

By setting the “maximum number of branches from a node” equal to 2, the set
of possible splits is restricted to binary splits on a single variable. Linear combination
splits are not available in this implementation. Both Gini index and entropy measure
of impurity are available for the selection of the splits. Since the dataset is not too
large, all observations should be used for the split search (no subsampling). Therefore
the number of “observations necessary for a split search” is set to 13,333, the number
of observations in the training set. For binary splits on binary targets, the optimal split
is always found and we can set the “maximum tries in an exhaustive split search” such
that all possible splits are enumerated (for example, 99,999,999). Several (for example,
5) competing “splitting rules are saved in each node” and may be used for comparison

of competing splits and interpretation.

D.2 Pruning

As discussed in section 4.3, first a large tree is grown. By setting the “minimum
number of observations in a leaf” equal to 1, we make sure that pure nodes are not split.
To grow the largest tree first, we set the “number of observations required for a split

search” equal to N, + 1 (for example, equal to 2). Since the covariate vectors x; in
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the dataset are all distinct, it is impossible that a node with more than one observation
contains only identical covariate vectors. There is also a restriction on the “maximum
depth of a tree” (100 levels), but this will not be a problem in this study.

The SAS Enterprise Miner uses the first algorithm discussed in section 4.3 to
prune the large tree, based on the misclassification rate on the training sample. It is not
possible to use cost-complexity pruning. The smallest subtree with the smallest misclas-
sification rate on the validation sample is then chosen. In order to use this procedure the
“model assessment measure” has to be set to the proportion correctly classified and the
“subtree method” to the best assessment value. The “One standard error rule” has to

be implemented manually. Crossvalidation is not available.

D.3 Priors and Misclassification Costs

Priors and misclassification costs can be defined in the “target profile”. There are two

options which allow the use of priors and/or misclassification costs during the split search.

D.4 Surrogate Splits

Surrogate rules as described in section 4.5 can be computed (by setting the option
“surrogate rules saved in each node” equal to the number of variables minus 1). Missing
values are not used as separate categories in the tree construction if the checkbox “treat
missing as an acceptable value” is disabled. The importance measure computed by the
SAS Enterprise Miner is slightly different from the one originally suggested by Breiman

et al. (1984) and was discussed at the end of chapter 4.
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D.5 Output

The output generated for tree models includes a graphical display of the “best”
subtree chosen and the corresponding classification table for both training and validation
sample. Also the node definition, competing splits and surrogate splits for each node can
be examined. Another graphical display is a tree ring, which illustrates tree complexity,
split balance, and discriminatory power. The center region of the ring represents the
entire data set (the root node of the tree). The ring surronding the center represents
the initial split. Successive rings represent successive stages of splits, where the sizes of
displayed segments in one ring are proportional to the number of training observations
in the segments. The last ring corresponds to the final partition of the covariate space.

There are several options for the coloring of a tree ring.
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ABSTRACT

The deregulation of the German insurance industry in 1994 has significantly
intensified competition between insurance companies, especially in the important sector
of motor insurance. One consequence is that insurance companies are interested in
identifying contracts in their portfolio that are likely to be cancelled. This would enable
them to take appropriate measures with the goal of preventing these customers from
cancelling (cancellation prophylaxis).

For this purpose a cancellation prophylaxis study was designed, and a random
sample of 20,000 contracts from the portfolio of a large German insurance company was
taken. In this thesis, two modeling approaches for the prediction of the cancellation
behavior are considered: logistic regression models and classification trees based on the
CART methodology.

For both methods, the basic methodology and some recent developments are
summarized. The model selection and model assessment processes are described, and
main results are discussed. We conclude with a comparison of logistic regression models
and classification trees, as well as suggestions for improvement of the study. Appendices

contain detailed information on the provided dataset and on the implementation of the

methods in SAS.



