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Chapter 1

Introduction

One issue, that has been discussed for years and years and in fact is still discussed, is the effect of
increasing life expectancy on society. Not only newborn children, also aged people, have today,
compared to the past, a longer life expectancy. For example a 60-year old male can still expect
to live for another 19.5 years, a female of the same age even for another 23.7 years according to
the Federal Statistical Office Germany. Some people argue that increasing life expectancy is due
to decreasing morbidity at all ages (compressed morbidity hypothesis); others claim that gained
years of life expectancy are spent entirely in illness (expanded morbidity hypothesis). It seems
as often right and equitable to assume that the reality is somewhere in between.

But not only the life expectancy or the so often quoted demographical development changes
the life of older people. There are various reasons: Due to a more individualized society and a
different family structure people live often alone and require especially at older ages external
assistance to manage their daily life. The question arises, how should the individual, how should
the society react on these issues?

More and more industrialized countries added the so-called long term care insurance (LTCI) to
their social insurance system, to guarantee a basic cover in situations where external assistance
and care is needed to cope with daily life. Insurance companies also have developed full or
additional insurance cover for long term care (LTC). It might be necessary to note at this point
that LTC is not only a problem of aging; also in the childhood, mainly due to impairments at
birth, children can become or even be LTC patients and stay that for a lifetime. These children
still have, if accurate medical care is given to them, a life expectancy of 50 years and more,
thanks to medical progress. Young- and middle-aged people also can become in need of LTC,
mainly because of accidents.

In Germany today around 4% of the people aged between 60 and 80 years and around 30% of
the people older than 80 years require some kind of external assistance. To relief them from
the financial burden involved a compulsory LTCI was introduced in 1995 as the so-called fitfth
column of the welfare system beside pension, health, accident and unemployment insurance.
The leading idea was that LTCI follows health insurance. Every citizen in the social health
insurance system was given LTCI cover for 1.7% of its income up to a certain ceiling. Citizen
in the private insurance system, had to be granted LTCI cover by their private health insurer
without any medical examination. Consequently the private insurance companies had to take
over a large claim portfolio right at the start. Today, out of approximately 80 million people in
Germany, around 1.84 millions in the social security system and another 107,000 in the private
insurance system (BMGS (2003)) receive benefits from this compulsory LTCI.
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We are going to analyze a representative sample of claim-records in the private sector within
the compulsory LTCI in this diploma thesis.

The life-history of an individual can be interpreted as a multi-state model. During its lifetime an
individual spends varying times in different states, that for example can correspond to its health
status. Transitions to other states occur over time. Objective of our analysis is to determine the
probabilities of such transitions for any individual. Usually Cox’s proportional hazard-model can
be used to asses the influence of age, gender, place and severeness of care on the individual’s
health status and thus on these transition probabilities. In Cox’s model the hazard-rate function
λ(t) is assumed to be the product of a baseline hazard λ0(t) and exp{ZT β}, where Z is a vector
of covariates and β the parameter vector to be estimated. A regression analysis produces an
estimate for β, and the hazard-rate, also known as the transition intensity, can be calculated.
For further details see Czado and Rudolph (2002).

However, for actuarial purposes less the transition intensities, but more the transition probabil-
ities are the quantities of interest. In the case of Cox’s proportional hazard-model the transition
probabilities are calculated from the transition intensities using a relationship given by a set of
differential equations, if the intensities sum up to zero, that is

∑

h∈S λgh = 0 ∀g ∈ S. Thus the
transition probabilities are complex non-linear functions of the intensity regression coefficients.

Against this background Andersen, Klein, and Rosthøj (2003) developed a method that models
the transition probabilities directly. This method calculates pseudo-values based on the Aalen-
Johansen estimator, an almost unbiased estimator of the transition matrix of an Markovian
multi-state model. These pseudo-values are then used in Generalized Estimating Equations
(GEEs), that take, in contrast to the Generalized Linear Models (GLMs), correlation between
observations into account, to estimate the parameters of the model.

We want to apply this method to a set of data, containing the claim-records of LTC claimants,
and derive the necessary transition probabilities in order to calculate the insurance premiums
required for a given LTC-plan.

In the next chapter we introduce the basic quantities of survival analysis such as the survival
function and the hazard-rate function, as well as the special features of survival data, namely
censoring and truncation, to emphasize the problems that need to be considered in the statistical
analysis of survival data. In the chapter thereafter, the discrete and continuous-time Markovian
multi-state model is explained, since we are going to use such a model for our analysis. The
quantities of interest, the transition probabilities and transition intensities, are defined and
their relationship given by the Kolmogorov differential equations is derived.

Beside other non-parametric estimators used in survival analysis such as the Nelson-Aalen esti-
mator for the cumulative hazard-rate and the Kaplan-Meier estimator for the survival distribu-
tion function, we present the Aalen-Johansen estimator, an almost unbiased estimator for the
transition matrix in a Markovian multi-state model, in the fourth chapter. We will see that the
Aalen-Johansen estimator reduces in a two-state model to the Kaplan-Meier estimator and we
will give an algorithm to compute the Aalen-Johansen estimator in a multi-state model. In the
chapter that follows, the concept of pseudo-values form jackknife methodology is introduced.
Since the Aalen-Johansen estimator does not depend on covariates, pseudo-values based on the
Aalen-Johansen estimator are calculated, that link the ith pseudo-value with the covariates of
the ith observation and thus generate the data required for a regression analysis.
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We calculate pseudo-values at different points in time using the same observations, therefore
pseudo-values are not independent as required for GLMs. Thus we introduce GEEs in the sixth
chapter, that in contrast to GLMs take correlation into account. Beside the Maximum Likelihood
Estimation (MLE) for GLMs, the Maximum Quasi-Likelihood Estimation (MQLE) is presented
in this chapter, as well, since the GEEs can be seen as an extension of quasi-likelihood to
longitudinal data analysis. The solution of the GEEs is denoted by β̂G and we will show that
the GEEs produce consistent and asymptotically Gaussian distributed estimates for the true
value of β under mild conditions, even when the correlation structure is misspecified.

In the seventh chapter we apply the tools introduced to the data set containing the claim-history
of LTC patients mentioned above: We calculate the Aalen-Johansen estimator of a three-state
model, derive the pseudo-values and thus generate the data for a regression analysis using GEEs,
where we specify the logit as link function. With the estimates obtained from this regression
analysis we calculate finally the one-year transition probabilities of our model. These transition
probabilities are used in the chapter that follows to calculate the actuarial values for a given LTC-
plan and thus derive the necessary premiums. A summary with a comparison of our premiums
with premiums offered by a German health insurer finalizes the analysis.
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Chapter 2

Survival Analysis

In this chapter we are going to introduce the basic concepts of survival analysis based on survival
data. Survival data concern the time of different lives to death. We are interested in deriving the
probability that an individual survives beyond a certain age. Therefore a sample of individuals
with their corresponding lifetimes is needed in order to calculate these probabilities, e.g. the
survival function or other related quantities like the so-called hazard-rate function. The hazard-
rate function gives the probability of death over a small interval and is related with the survival
function in a certain way, that will be explained in this chapter.

For practical reasons individuals can only be observed for a certain period of time and not over
their whole lifetime. ”Censoring” and ”Truncation” are the characteristic features of survival
surveys accounting for this. Another characteristic feature is ”conditioning” on survival up to a
certain time. Given an z-year old individual, its survival to age z + t is conditional on having
survived to time z. Because of these special features modified methods have to be used, com-
pared to standard statistical practice, to take this into account. For example, constructing the
Maximum Likelihood for survival data, one has to correct for the missing information due to
censoring or truncation.

2.1 The Survival Function

We are interested in the future lifetime of an individual. In our analysis, following MacDonald
(1996) and Klein and Moeschberger (1997), we treat the future lifetime as a random variable,
denoted by T , that takes values in [0, ω), where ω is the limiting age, i.e. survival beyond ω is
not possible. We define the survival function of T as the probability of surviving beyond time t.

S(t) := P (T > t)

This is a non-increasing function, where we require S(0) = 1 and S(ω) = 0. In the following we
have to distinguish between T as a continuous random variable and a discrete one. However, in
both cases we require the following properties to hold for the survival function:

• S(t) is a monotone function

• S(t) is a non-increasing function

• S(0) = 1

• S(ω) = 0, where ω is the limiting age
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Continuous case

For a continuous random variable T the survival function S(t) is a strictly decreasing function
and the following relation holds:

S(t) := P (T > t) = 1 − P (T ≤ t) = 1 − F (t) = 1 −

∫ t

0
f(u)du =

∫ ∞

t

f(u)du

F (t) := P (T ≤ t) is the cumulative distribution function and f(t) is the density function of the
random variable T , thus dF (t) = f(t)dt. Further we obtain:

f(t) = −
dS(t)

dt
⇒ −dS(t) = f(t)dt

which is the probability of death at time t.

Discrete case

For a discrete random variable T the survival function S(t) is a step-function with jumps at the
times of death and constant in between. If we define the quantity pj := P (T = tj), it follows for
tj ≤ t < tj+1 that

S(t) = S(tj) = P (T > tj) =
∑

j:tj>t

pj j = 1, . . . , k

where t1 < t2 < . . . are the times deaths are observed.

As an example we plotted in the following figure the survival curve S(t) based on one-year
mortality-rates for z-year old females and males according to the Bavarian life tables 1986-1988
(see Appendix B.2):
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Figure 2.1: Example: Survival Curve S(t)
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2.2 The Hazard-Rate Function

The hazard-rate function, that we will denote by λ(t), describes the change of the chance of
death over time. Generally it is assumed that the probability of death increases with age, i.e. the
hazard-rate function increases with time. A constant hazard-rate function for all times t is not
assumed to be adequate. Further we require the hazard-rate function λ(t) to be non-negative,
that is λ(t) ≥ 0 for all t. ”Force of Mortality”, ”Force of Transition” and ”Transition Intensity”
are synonymously used for ”Hazard-Rate” in the literature.

Continuous case

For a continuous random variable T we define the hazard-rate function as

λ(t) := lim
4t→0

P ( t < T ≤ t + 4t|T > t)

4t

assuming that this limit exists. We can write for λ(t)

λ(t) = lim
4t→0

P (< T ≤ t + 4t|T > t)

4t

= lim
4t→0

P (t < T ≤ t + 4t)

4t P (T > t)

= lim
4t→0

P (t < T ≤ t + 4t)

4t
·

1

S(t)

=
dF (t)

S(t)
= −

dS(t)

S(t)
= −d ln S(t) (2.1)

The hazard-rate function at time t can be interpreted for small 4t as the probability of dying
in the interval [t, t + 4t), i.e.

λ(t) · 4t ≈ P (an individual of t years dies in the small interval [t, t + 4t)).

The cumulative hazard-rate function Λ(t) is defined as the integral of the hazard-rate function
over the interval [0, t], that is

Λ(t) :=

∫ t

0
λ(u)du.

Using (2.1) the following relation holds:

Λ(t) =

∫ t

0
λ(u)du = −

∫ t

0
d lnS(u)du = − lnS(t) + lnS(0)

︸︷︷︸

=1

= − lnS(t)

Thus we derived the well known relationship between the survival function and the cumulative
hazard-rate function or hazard-rate function, respectively:

S(t) = exp {−Λ(t)} = exp

{

−

∫ t

0
λ(u)du

}
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Discrete case

For a discrete random variable T with values t1 < t2 < . . . we define the hazard-rate function
on [0, t1) as zero and on [tj , tj+1), j = 1, 2, . . ., as

λ(tj) := P (T = tj |T ≥ tj) (2.2)

Using P (T = tj) = P (T ≥ tj) − P (T ≥ tj+1) = S(tj−1) − S(tj) the hazard-rate function can be
represented, as

λ(tj) = P (T = tj| T ≥ tj) =
P (T = tj)

P (T ≥ tj)

=
S(tj−1) − S(tj)

S(tj−1)
= 1 −

S(tj)

S(tj−1)
(2.3)

The hazard-rate is constant on the interval [tj, tj+1). It can be interpreted as the probability of
dying in the small interval [tj , tj+1), i.e.

λ(tj) ≈ P (an individual of tj years dies in the small interval [tj , tj+1)).

The cumulative hazard-rate function Λ(t) is defined as the sum of the hazard-rate function at
times tj ≤ t, that is

Λ(t) :=
∑

j:tj≤t

λ(tj).

With (2.3) the following relationship holds:

Λ(t) =
∑

j:tj≤t

λ(tj) =
∑

j:tj≤t

(

1 −
S(tj)

S(tj−1)

)

Since S(t0) = 1, we derive, using (2.3), for tj ≤ t < tj+1 the following relationship:

S(t) = S(tj) =
∏

j:tj≤t

S(tj)

S(tj−1)
=
∏

j:tj≤t

(1 − λ(tj))

If we can decompose the discrete hazard-rate function λ(tj) into a sum of a continuous function
λc(t) and a step-function with mass λd(tj) at times t1 < t2 < . . ., i.e.

λ(t) = λc(t) + λd(t),

we can represent the survival function, according to Klein (1996), using the product-integral
representation (see Section 4.2.3) as follows:

S(t) =
∏

j:tj≤t

(1 − λd(tj)) · exp

{

−

∫ t

0
λc(u)du

}

Further details on product-integration, the definition of a product-integral and its properties,
can be found in the book by Andersen, Borgan, Gill, and Keiding (1993).
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2.3 The Future Lifetime of an z-year old Individual: Tz

We can extend the random variable T , i.e. the future lifetime of a new-born, to ages z > 0. We
define Tz as the future lifetime of a z-year old individual after age z, where T0 = T . Note that
this is conditional on surviving up to age z. We denote by Fz(t) the cumulative distribution
function and by Sz(t) the survival function of the random variable Tz.

Fz(t) := P (T ≤ z + t|T > z) Sz(t) := P (T > z + t|T > z)

The relationship between the cumulative distribution function of the future lifetime of an z-year
old individual and a newborn one is the following:

Fz(t) = P (T ≤ z + t|T > z) =
P (z < T ≤ z + t)

P (T > z)
=

F (z + t) − F (z)

1 − F (z)

Therefore it follows for the survival function of an z-year old individual that

Sz(t) = 1 − Fz(t) = 1 −
F (z + t) − F (z)

1 − F (z)

=
1 − F (z) − F (z + t) + F (z)

S(z)

=
S(z + t)

S(z)

The hazard-rate function for age z + t becomes

λz+t := λz(t) = lim
4t→0

P ( t < Tz ≤ t + 4t|Tz > t)

4t

= lim
4t→0

P (t < Tz ≤ t + 4t)

4t · P (Tz > t)

= lim
4t→0

Fz(t + 4t) − Fz(t)

4t · (1 − Fz(t))

= lim
4t→0

F (z+t+4t)−F (z)
1−F (z) − F (z+t)−F (z)

1−F (z)

4t · 1−F (z+t)
1−F (z)

= lim
4t→0

F (z + t + 4t) − F (z + t)

4t · (1 − F (z + t))

= lim
4t→0

F (z + t + 4t) − F (z + t)

4t
·

1

S(z + t)

In actuarial notation we have Fz(t) := tqz and Sz(t) := tpz. We denote the probability density
function of Tz by fz(t). It can be represented in terms of the hazard-rate function:

fz(t) =
∂

∂t
Fz(t) = lim

4t→0

Fz(t + 4t) − Fz(t)

4t

=
S(z + t)

S(z)
· lim
4t→0

F (z + t + 4t) − F (z + t)

4t
·

1

S(z + t)
= tpzλz+t

8



We noted before that Fz(t) = tqz; thus it follows that Fz(t) = 1 − tpz and we can rewrite the
above formula as

∂

∂t
Fz(t) =

∂

∂t
(1 − tpz) = −

∂

∂t
tpz = tpzλz+t ⇒

∂

∂t
tpz = −tpzλz+t

Thus it follows

−λz+t =
1

tpz
·

∂

∂t
tpz =

∂

∂t
ln tpz

Integrating both sides and using the boundary condition 0pz = P (Tz > 0) = 1 we derive

ln tpz − ln 0pz
︸︷︷︸

=1

=

∫ t

0

∂

∂t
ln rpzdr = −

∫ t

0
λz+rdr

gives us

tpz = exp

{

−

∫ t

0
λz+rdr

}

,

which is the well-known relationship in actuarial sciences between hazard-rate function and
survival function. It has been used by Gompertz (1825) and Makeham (1860) to derive their
laws of mortality, i.e. a representation of the hazard-rate function as a mathematical functions
of age z (see Trachtenberg (1924)):

Gompertz’ law : λz = B · cz Makeham’s law : λz = A + B · cz

Using above formula for tpz we can write in the case of Makeham’s law:

tpz = exp

{

−

∫ t

0
λz+rdr

}

= exp

{

−

∫ t

0
A + B · cz+rdr

}

= exp

{

−A · t − B · cz

∫ t

0
crdr

}

= exp { −A · t} · exp

{

−
B

ln c
· cz ·

(
ct − 1

)
}

= exp { −A}t · exp

{

−
B

ln c

}cz·(ct−1)

= st · gcz ·(ct−1)

where s := exp{−A} and g := exp{−B/ ln c}.

Since this is an equation with three unknowns, three values of tpz at different ages are sufficient
to calculate the parameters A, B and c, and thus the hazard-rate function for all ages z.

In the case of Gompertz’ law the factor st vanishes and we are left with an equation with two
unknowns. Thus only two values of tpz are required to calculate the parameters B and c for
Gompertz’ law. Of course, an inapt choice of the tpz’s leads to a wrong survival probability and
spurious results in both cases.
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2.4 Censoring

One problem in survival analysis is the estimation of the survival distribution function S(t) of
a population. For a human population we could observe n newborn lives until death, to get
an estimate for S(t). A very obvious problem of such an experiment is the very long duration.
Further many lives would be lost during the experiment due to migration or withdrawal and
bias the result. Thus additional methods have to be used to account for this.

Therefore in survival analysis experiments are designed for a shorter period of time only, and
secondly, have to account for the lost observations. If we observe a sample only for a short
period of time, we only know that some individuals were alive at the end of the survey and
no information on their exact time of death is available. If observations are lost during the
experiment, all we know is that these individuals were still alive at some stage and no information
on their exact time of death is available.

Compared with the usual statistical analysis in survival analysis only limited information is
available. The process accounting for this is called censoring. In the following sections we focus on
this ”key feature of survival data analysis”, as noted by MacDonald (1996). He considers survival
analysis as the ”analysis of censored data”. The different types of censoring are explained in the
following sections, where we follow MacDonald (1996) and Klein and Moeschberger (1997).

Right-Censoring

Data are called right-censored, if the current survey ends at a fixed date known in advance. If
the event of interest happens after this date, the observation is censored. All we know in this
case is that the event might have happened after the end of the survey.

For example, if we are interested in the lifetime of individuals, we only know that the censored
observations were alive at the end of our survey and nothing about their times of death after
the end of the survey. Only for the uncensored observations we know the exact lifetimes.

We introduce the following notation: Denote the lifetime of each individual by the random
variable X and define the censoring time by C (r). If the lifetime is smaller or equal than the
censoring time, we know the exact lifetime of this individual, whereas if the lifetime is greater
than the censoring time, we only know that this individual survived its censoring time. We
denote the actual observed lifetime of an individual by T .

X ≤ C(r) ⇒ T = X ⇒ observation is not censored

X > C(r) ⇒ T = C(r) ⇒ observation is censored

Thus the observed lifetime T can be calculated as

T = min
(

X,C(r)
)

=

{
X if the exact lifetime is observed

C(r) if the exact lifetime is not observed

Further we introduce an indicator δ, called the ”death indicator”. This indicator is a random
variable, indicating if the observation has been censored or not:

δ =

{
1 if the individual is not censored, i.e. the exact lifetime is observed
0 if the individual is censored, i.e. the exact lifetime is not observed

10



The pair of random variables (T, δ) represents now all available information in the data. As an
example consider the case described in Figure 2.2: Death of observations 1 and 3 are observed
within the survey, thus their exact lifetimes X1 and X3 are known. Observations 2 and 4 survive

beyond the end of the survey. Their exact lifetimes are unknown and C
(r)
2 and C

(r)
4 are their

censoring times, respectively.

Start of Survey

-
End of Survey

-

-

-

-

X1

C
(r)
2

X3

C
(r)
4

Figure 2.2: Right-Censoring

Further one distinguishes Type I and Type II censoring: In the case of Type I censoring we
specify for each individual a fixed point in time until this individual is observed. The censoring
time C(r) is known in advance. If the event did not occur, the observation is censored. Therefore
the number of individuals in the survey is random, whereas the observation time is fixed.

In the case of Type II censoring, this is the other way round: We start with n individuals and
observe these individuals until r < n events, are observed. Thus this observation consists of the
r smallest lifetimes and the theory of order statistics can be applied. As already mentioned, in
this case the number of individuals in the survey is fixed and the observation time is random.

Further special cases of Type I censoring are the so-called progressive and generalized Type I
censoring. In the first case we have different, fixed-sacrifice censoring times, and in the latter the
individuals enter the survey at different times and are then observed for a certain predetermined
time. Progressive censoring is also a special case of Type II censoring, where the first r1, r2, . . .
events are observed, giving random observation times Tr1 , Tr1+r2 , . . . .

Left-Censoring

Data are called left-censored, if no information on the date, at which the event of interest
occurred, is available. An example for left-censored data are medical studies, where patients
are examined and we only know that a certain disease occurred before the examination. Thus
the event of interest has already occurred before time C (l) and the exact time of occurrence is
unknown. The exact time of occurrence X is less than the censoring time C (l). We only know
the exact time of occurrence, if X is greater than or equal to C (l). Analogue to the case of
right-censored observations we can represent the data by a pair of random variables (T, ε):

X ≥ C(l) ⇒ T = X ⇒ observation is not censored

X < C(l) ⇒ T = C(l) ⇒ observation is censored

11



Thus the observed time of occurrence T can be calculated as

T = max
(

X,C(l)
)

=

{
X if the exact time of occurrence is observed

C(l) if the exact time of occurrence is not observed

The indicator ε is a random variable indicating, if the observation has been censored or not:

ε =

{
1 if the individual is not censored, i.e. the exact lifetime is observed
0 if the individual is censored, i.e. the exact lifetime is not observed

Interval-Censoring

If we generalize left and right censoring and combine both this leads us to Interval-Censoring.
Data are called interval-censored, if we only know that the event of interest fell within an interval
of time (Li, Ri], where Li denotes the left and Ri the right endpoint of the interval.

An example for interval-censored data are actuarial studies, where only the calendar year of
death is known or medical studies, where periodic follow-up takes place and a disease is only
known to have occurred in the time between the last and current follow-up.

Consequently, the data are left-censored, if we use the interval (0, C (l)], and right-censored, if
the interval is (C (r),∞]. In the first case the event of interest occurred before C (l) and in the
last case, the event of interest takes place after time C (r).

Random-Censoring

We call a censoring mechanism random-censoring, if the censoring time Ci is a random variable.
This is opposed to right-censoring, where the censoring time C (r) is known in advance.

The analogue to right-censoring is, if we censor an observation i, in the case that Ci is smaller
than its lifetime Xi, the analogue to left-censoring is, if we censor an observation i, in the case
that Ci is greater than its lifetime Xi.

2.5 Truncation

Truncation is defined as a condition which screens certain subjects so that the investigator will
not be aware of their existence. We only include individuals in our survey that fulfill a certain
condition. This condition might be the occurrence of an event prior to the actual event of interest.
In this case the data are left-truncated.

For example if we observe in a medical survey only individuals that have been exposed to a
special disease, or if we observe individuals above a certain age. Individuals that experience the
event of interest earlier, e.g. at a younger age, are not included in the survey. If Y is the time
used for truncation, we only observe individuals, which fulfill X ≥ Y . This is in contrast to left-
censoring, where this individual would be included and we would make use of the information
that this individual experienced the event of interest prior to time C (l).

Individuals are right-truncated if we include only individuals into our survey that already have
fulfilled a certain condition, i.e. they have already experienced the event of interest. An example
for right-truncated data is a mortality survey based on death records.

In the case of truncated data we have to use a conditional distribution. This has to be accounted
for when constructing likelihood functions.
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2.6 Likelihood Construction

The different censoring mechanisms mentioned in Section 2.4 affect also the way in which the
likelihood function has to be constructed, since we do not know the exact survival time of
each individual. The independence of individuals and the independence of censoring times are
important assumptions that should be carefully considered. If we observe the exact lifetime of
an individual, the contribution to the likelihood function is of course f(xi).

For right-censored individuals, we only know that they survived at least to time C (r). Therefore
the contribution of these individuals has to be S(C (r)). Similarly, left-censored individuals,
contribute 1 − S(C (l)), as we only know that the event of interest has already happened before
time C(l). As interval-censoring is a combination of right- and left-censoring and therefore we
obtain a contribution of S(Li) − S(Ri).

In the case of truncated data, as already mentioned in Section 2.5, we have to use conditional
probabilities. Thus a left-truncated observation contributes f(x)/S(Y ) and a right-truncated
observation contributes f(Y )/(1−S(Y )) to the likelihood function. In the first case observations
have to survive to time Y without experiencing the event of interest and in the second case they
have to experience the event at time Y to be included into the survey, for examples we include
only deaths into the survey.

If censoring and left-truncation is combined and the truncation time Y is independent from
the death time, we replace f(xi) by f(xi)/S(Y ), S(C(l)) by S(C(l))/S(Y ) and S(C (r)) by
S(C(r))/S(Y ). Collecting the observation with exact death times in the set D, the right-censored
observations in the set R, the left-censored observations in the set L and the interval-censored
observations in the set I,we obtain for the likelihood function combining all elements:

L =
∏

i∈D

f(xi) ·
∏

i∈R

S(C(r)) ·
∏

i∈L

(

1 − S(C(l))
)

·
∏

i∈I

(S(Li) − S(Ri)) (2.4)

In the following we show, how we get to this formula in the case of right-censored data. We
represent right-censored data by pairs of random variables Ti, δi, where Ti indicates the lifetime
of individual i and the indicator variable δi tells us, if the observation i has been censored at
time Ti (δi = 0 and consequently Ti = C(r)) or died at time Ti (δi = 1 and Ti = xi). Denoting
Xi as the actual lifetime of the individual i, we can write Ti = min(Xi, C

(r)). Assuming that
the individual is censored (δi = 0) we obtain:

P (Ti, δi = 0) = P (Ti = C(r)
∣
∣
∣ δi = 0) · P (δi = 0)

= P (δi = 0) = P (Xi > C(r)) = S(C(r))

If the individual is not censored (δi = 1), we have

P (Ti, δi = 1) = P (Ti = C(r)
∣
∣
∣ δi = 1) · P (δi = 1)

= P (C(r) = Ti

∣
∣
∣Xi ≤ C(r)) · P (Xi ≤ C(r))

=
f(ti)

1 − S(C(r))
·
(

1 − S(C(r))
)

= f(ti)
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We can summarize both cases in one single expression:

P (ti, δi) = f(ti)
δi · S(ti)

(1−δi)

This leads us for n independent individuals (Ti, δi) to the likelihood function fulfilling equation
(2.4), that is in the case of right-censored data

L =

n∏

i=1

P (ti, δi) =

n∏

i=1

f(ti)
δi · S(ti)

(1−δi)

In the case of left-censored data represented by pairs of random variables Ti, εi, where Ti indicates
the lifetime of individual i and the indicator variable εi tells us now, if the observation i has
been left-censored at time Ti (εi = 0 and Ti = C(l)) or died at time Ti (εi = 1 and Ti = Xi).
Denoting the Xi as the actual lifetime of the individual i, we can write Ti = max(Xi, C

(l)).
Assuming that the individual is left-censored (εi = 0) we obtain now:

P (Ti, εi = 0) = P (Ti = C(l)
∣
∣
∣ εi = 0) · P (εi = 0)

= P (εi = 0) = P (Xi < C(l)) = 1 − S(C(l))

If the individual is not censored (εi = 1), we have

P (Ti, εi = 1) = P (Ti = C(l)
∣
∣
∣ εi = 1) · P (εi = 1)

= P (C(l) = Ti

∣
∣
∣Xi ≥ C(l)) · P (Xi ≥ C(l))

=
f(ti)

S(C(l))
· S(C(l)) = f(ti)

We can summarize both cases in one single expression:

P (ti, εi) = f(ti)
εi · (1 − S(ti))

(1−εi)

This leads us for n independent individuals (Ti, εi) to the likelihood function fulfilling equation
(2.4), which is in the case of left-censored data:

L =

n∏

i=1

P (ti, εi) =

n∏

i=1

f(ti)
εi · (1 − S(ti))

(1−εi)
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Chapter 3

Markovian Multi-State Models

In this chapter we explain the setup of discrete and continuous-time Markovian multi-state
models. Multi-state models are a common tool to describe the life-history of an individual and
thus ideal for our purposes. Through its lifetime, from birth to death, each individual visits
different states. Some might be visited only once, some more frequently and even some not at
all. Certainly the state ”Dead” is eventually visited. We have to choose the states of the model
in such a way that at each point in time an individual can be contained in exactly one state.
Individuals are observed over time and we record their transition between states.

For example in the Illness-Death model (Figure 3.1) there are three states, ”Disease-Free”,
”Diseased” or ”Dead”. Generally we label the states from 1, . . . ,K and collect them in the state
space, denoted by S. The set S is supposed to be finite. The states should correspond to the
events we want to observe that result then in transitions between different states.

These transitions between different states can be described by transition probabilities or tran-
sition intensities. We are going to define these quantities and derive their properties such as
the Chapman-Kolmogorov equations, as well as the relationship between the transition proba-
bilities and transition intensities which is given by the Kolmogorov differential equations. The
transition probabilities are collected in the transition matrix. This matrix is responsible for the
development of of the Markov chain in discrete-time or the Markov process in continuous-time,
and thus the quantity of interest. In Chapter 4 we are then going to define a non-parametric
estimator for this transition matrix.

(1): Disease-Free - (2): Diseased

(3): Dead

S
S

S
S

S
Sw

�
�

�
�

�
�/

λ12(t)

λ13(t) λ23(t)

Figure 3.1: Illness-Death model
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In the Illness-Death model the events ”Recover from Disease”, ”Disease” and ”Death” are the
events of interest. We want to calculate probabilities like the probability of being ”Disease-Free”,
”Diseased” or ”Dead” at time t.

In Figure 3.2 we sketched the possible life-history for three individuals: The first individual
(Person A) might start in state ”Disease-Free”, get ill after some time and recover again. Another
individual (Person B) dies after being diseased for some time and a third one (Person C) dies
without being diseased at all.

It is obvious that, already in this three-state model, various states have different properties.
Whereas transitions in both directions are possible between the states ”Disease-Free” and ”Dis-
eased”, there is only the transition from ”Disease-Free” to ”Dead” or ”Diseased” to ”Dead”
possible. We call the states ”Disease-Free” and ”Diseased” transient states and the state ”Dead”
an absorbing state, as no transition out of this state is possible.

Start of Survey

-
End of Survey

Disease-Free

Diseased

Dead

b

r b

r

b

r

b

r

Person A

Person B
Person C

Figure 3.2: Life-history in the Illness-Death model

Definition 3.1 (States of a Multi-State Model) Haberman and Pitacco (1999) defined the
different states, that might occur in a multi-state model, as follows:

• transient state: it is possible to leave and to re-enter this state;

• strictly transient state: it is not possible to enter this state once it has been left;

• absorbing state: it is not possible to leave this state once it has been entered;

Generally the set of possible transitions between states, we want allow for in our model, is a
subset of the set of pairs (i, j). We call this set F and write

F ⊆ {(i, j)| i 6= j; i, j ∈ S}

The pair (S,F) is called a multi-state model. It describes the different states, an individual can
be observed in, and determines the possible transitions between the states, that can be visited
by an individual. We assume that from the initial state all states j ∈ S can be reached. This is
in contrast to the general Markovian multi-state model, where no-accessible states are possible.
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3.1 The time-discrete Markov Model

Definition 3.2 (Time-discrete Markov Chain) Consider a time-discrete stochastic process
S(t), t = 0, 1, . . . ∈ T , with a finite state space S We say that S(t), t = 0, 1, . . ., is a time-discrete
Markov chain if, for any n and each finite set of integer times 0 ≤ t0 < . . . < tn < t < u ∈ T
and corresponding set of states i0, . . . , in, i, j in S and T ∈ R with

P (S(t0) = i0, . . . , S(tn) = in, S(t) = i, S(u) = j) > 0,

the Markov property holds:

P (S(u) = j|S(t0) = i0, . . . , S(tn) = in, S(t) = i) = P (S(u) = j|S(t) = i) (3.1)

Thus for a Markov chain the probability of being in state j in the future, i.e. at time u, only
depends on the exact present, i.e. the state occupied at time t. The history or past of the process
from time t0 up to time tn is irrelevant. One also can say that, when the present is fixed, the
future and the past of the process are conditionally independent.

Theorem 3.1 A stochastic process {S(t), t ∈ T}, is a Markov Chain if, and only if the following
holds for all n ≥ 1, t0 < . . . < tn ∈ T and i0, . . . , in ∈ S:

P (S(t0) = i0, . . . , S(tn) = in) = P (S(t0) = i0) ·

n−1∏

k=0

pik,ik+1
(tk, tk+1) (3.2)

where pik,ik+1
(tk, tk+1) is the probability of transferring to state ik+1 by time tk+1 given that the

Markov Chain has been in state ik at time tk (see Definition 3.4).

Proof:

”=⇒”
Assume S(t), t ∈ T , is a Markov Chain with P (S(t0) = i0, . . . , S(tn) = in) > 0. Using the
Markov property (3.1) it follows that

P (S(t0) = i0, . . . , S(tn) = in) = P (S(t0) = i0, . . . , S(tn−1) = in−1) · pin−1,in(tn−1, tn)

Using complete induction we derive above equation (3.2).

”⇐=”
Assume equation (3.2) holds, then we have for P (S(t1) = i1, . . . , S(tn) = in) > 0

P (S(tn) = in|S(t0) = i0, . . . , S(tn−1) = in−1) =

P (S(tn) = in, S(t0) = i0, . . . , S(tn−1) = in−1)

P (S(t0) = i0, . . . , S(tn−1) = in−1)
=

P (S(t0) = i0) ·
∏n−1

k=0 pik,ik+1
(tk, tk+1)

P (S(t0) = i0) ·
∏n−2

k=0 pik,ik+1
(tk, tk+1)

=

pin−1,in(tn−1, tn) = P (S(tn) = in|S(tn−1) = in−1)

which is nothing else than the Markov property (3.1). Thus according to the definition it follows
that S(t), t ∈ T , is a Markov chain. 2
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Definition 3.3 (Time-Homogeneous Markov Chain) We call a Markov chain S(t), t ∈ T ,
time-homogeneous, if for all s, t ∈ R, i, j ∈ S with P (S(s) = i) > 0 and P (S(t) = i) > 0 and
h > 0 the following property holds:

P (S(s + h) = j|S(s) = i) = P (S(t + h) = j|S(t) = i)

Otherwise the process is said to be time-inhomogeneous.

3.1.1 Transition Probabilities

Definition 3.4 (Transition Probabilities) The conditional probability of being in state j at
time u given having been in state i by time t, i.e. P (S(u) = j|S(t) = i), is called transition
probability and denoted by pij(t, u).

pij(t, u) := P (S(u) = j|S(t) = i) 0 ≤ t < u ∈ T i, j ∈ S

It is worth mentioning that this definition applied to pii(t, u) does not require the process to
stay in state i in the interval (t, u). Excursions to other states are possible. The individual starts
at time t in state i and has to be back in state i by u. Transitions to other states in (t, u) are not
excluded. If we do not want to allow for transition to other states in (t, u), we have to introduce
a modified transition probability pii(t, u); this will be done in Section 3.1.2.

The transition probabilities are the quantities that determine the behavior of the Markov chain.
For a time-homogeneous Markov chain the transition probabilities do not depend on the time
and therefore we define

pij(h) := pij(s, s + h)

This means that for a time-homogeneous Markov chain the transition probabilities depend only
on the time difference and not from the time-level reached. For example in a simple two-state
model the probability of dying in the next ten years for a 20-year old live would be the same as
for a 50-year old live.

The conditional probabilities also satisfy the so-called Chapman-Kolmogorov equations, which
are written in the discrete case as

Theorem 3.2 (Chapman-Kolmogorov Equations)

pij(t, u) =
∑

k∈S

pik(t, w) · pkj(w, u) t ≤ w ≤ u ∀i, j ∈ S (3.3)

Proof:

For w = t or w = u this is obviously true (see Definition 3.5).

Let t < w < u and define using the assumption P (S(t) = i) > 0

S∗ := {k ∈ S| pik(t, w) 6= 0}

= {k ∈ S|P (S(w) = k|S(t) = i) 6= 0}

= {k ∈ S|P (S(w) = k, S(t) = i) 6= 0}
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We can then write pij(t, u) as follows:

pij(t, u) = P (S(u) = j|S(t) = i)

=
∑

k∈S∗

P (S(u) = j, S(w) = k|S(t) = i)

=
∑

k∈S∗

P (S(w) = k|S(t) = i) · P (S(u) = j|S(w) = k, S(t) = i)

=
∑

k∈S∗

pik(t, w) · pkj(w, u)

=
∑

k∈S

pik(t, w) · pkj(w, u)

2

Haberman and Pitacco (1999) use a special case of the Chapman-Kolmogorov equations, setting
w = t + 1. The equations (3.3) can then be rewritten as

pij(t, u) =
∑

k∈S

pik(t, t + 1) · pkj(t + 1, u)

This means that we can derive any conditional probability pij(t, u) from the set of one-year
transition probabilities pik(t, t+1). We denote the one-year transition probabilities by pik(z) :=
pik(z, z + 1), where z = 0, 1, . . . . If pik(z) is independent of z, the corresponding process is
time-homogeneous. That is at each age the probability of transition is the same.

Definition 3.5 (Transition Matrix) A family (pij(t, u))
i,j

is called a transition matrix, if the
following properties are fulfilled:

• pij(t, u) ≥ 0 ∀i, j ∈ S and t ≤ u ∈ T

•
∑

j∈S pij(t, u) = 1 ∀i ∈ S

• For P (S(t) = i) > 0 the following holds:

pij(t, t) =

{
1 i = j
0 i 6= j

∀i, j ∈ S

• pij(t, u) =
∑

k∈S pik(t, w) · pkj(w, u) for t ≤ w ≤ u ∈ T , P (S(t) = i) > 0 and i, j ∈ S

Theorem 3.3 For a Markov chain S(t), t ∈ T , (pij(t, u))
i,j

is a transition matrix.

Proof:

This theorem follows directly from the Chapman-Kolmogorov equations. 2

19



3.1.2 Occupancy Probabilities

Definition 3.6 (Occupancy Probabilities) The following probabilities are called the occu-
pancy probabilities:

pii(t, u) = P (S(z) = i for all z ∈ [t, u]|S(t) = i)

where t < u. In contrast to the transition probabilities the process stays in the interval [t, u] in
state i. In case of a transition probability it would be sufficient to be in state i at time t and
after an excursion to other states to be back in state i by time u.

Because of their similar nature to the transition probabilities, the occupancy equations satisfy
also a set of Chapman-Kolmogorov equations, however, a different one.

Theorem 3.4 (Chapman-Kolmogorov)

pii(t, u) = pii(t, w) · pii(w, u) t ≤ w ≤ u

The proof of this theorem is analogue to the continuous case as in Theorem 3.8, which can be
found in Section 3.2.5.
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3.2 The time-continuous Markov Model

The definitions of the time-continuous case are very similar to the discrete one. Therefore we
only quote the necessary definitions in this section and highlight, where additional requirements
are needed. Further we introduce transition intensities and derive their relationship to transition
probabilities given by the Kolmogorov differential equations.

Definition 3.7 (Time-continuous Markov Chain) Consider a time-continuous stochastic
process S(t), t ≥ 0, with a finite state space S. We say that S(t), t ≥ 0, is a time-continuous
Markov chain if, for any n and each finite set of integer times 0 ≤ t0 < . . . < tn < t < u ∈ R

and corresponding set of states i0, . . . , in, i, j ∈ S with

P (S(t0) = i0, . . . , S(tn) = in, S(t) = i, S(u) = j) > 0,

the Markov property holds, that is

P (S(u) = j|S(t0) = i0, . . . , S(tn) = in, S(t) = i) = P (S(u) = j|S(t) = i).

3.2.1 Transition Probabilities

Definition 3.8 (Transition Probabilities) The conditional probability of being in state j at
time u given having been in state i by time t, i.e. P (S(u) = j|S(t) = i), is called transition
probability and denoted by pij(t, u):

pij(t, u) := P (S(u) = j|S(t) = i) 0 ≤ t < u i, j ∈ S

Definition 3.9 (Time-Homogeneous Markov Chain) We call a Markov chain St; t ≥ 0,
time-homogeneous, if for all s, t ∈ R, i, j ∈ S with P (S(s) = i) > 0 and P (S(t) = i) > 0 and
h > 0 the following property holds:

P (S(s + h) = j|S(s) = i) = P (S(t + h) = j|S(t) = i)

Theorem 3.5 (Chapman-Kolmogorov Equations)

pij(t, u) =
∑

k∈S

pik(t, w) · pkj(w, u) t ≤ w ≤ u i, j ∈ S (3.4)

This is intuitively clear: We are starting in state i at time t, visit some state k at time w before
we arrive in state j by time u. Summing over all possible states k, visited at time w, we obtain
the probability pij(t, u).

Proof:

pij(t, u) = P (S(u) = j|S(t) = i)

=
∑

k∈S

P (S(u) = j, S(w) = k|S(t) = i)

=
∑

k∈S

P (S(w) = k|S(t) = i) · P (S(u) = j)|S(w) = k, S(t) = i)

=
∑

k∈S

P (S(w) = k|S(t) = i) · P (S(u) = j)|S(w) = k)

=
∑

k∈S

pik(t, w) · pkj(w, u)
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The unconditional probabilities P (S(u) = j) can be easily computed using the initial distribution
ai := P (S(0) = i) and the conditional probabilities:

P (S(u) = j) =
∑

i∈S

ai · pij(0, u)

Proof:

P (S(u) = j) =
∑

i∈S

P (S(u) = j, S(0) = i)

=
∑

i∈S

P (S(u) = j|S(0) = i) · P (S(0) = i)

=
∑

i∈S

ai · pij(0, u)

2

Definition 3.10 (Transition Matrix) A family pij(t, u) is called a transition matrix, if the
following properties are fulfilled:

• pij(t, u) ≥ 0 ∀i, j ∈ S and 0 ≤ t ≤ u

•
∑

j∈S pij(t, u) = 1 ∀i ∈ S

• For P (S(t) = i) > 0 the following holds:

pij(t, t) =

{
1 i = j
0 i 6= j

∀i ∈ S

This is to ensure that the stochastic process is at any time in exactly one state and therefore
well-defined.

• pij(t, u) =
∑

k∈S pik(t, w) · pkj(w, u) for 0 ≤ t ≤ w ≤ u, P (S(t) = i) > 0 and i, j ∈ S

3.2.2 Transition Intensities

Definition 3.11 (Transition Intensities) We define the transition intensities for all i 6= j
and t ≥ 0 as follows:

µij(t) := lim
dt→0

pij(t, t + dt)

dt
= lim

dt→0

P (S(t + dt) = j|S(t) = i)

dt
(3.5)

where we assume that this limit exists and that the intensities are integrable on compact intervals.

Further we define for all i ∈ S and t ≥ 0 :

µii(t) := −
∑

j 6=i

µij(t)
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For a time-homogeneous process µij(t) reduces to time-constant function µij:

µij(t) := lim
dt→0

pij(t, t + dt)

dt
= µij

From this definition we can interpret the product µij(t)dt as the conditional probability of
making a transition from state i to state j in the small interval [t, t + dt) after having been in
state i at time t.

Definition 3.12 (Intensity of Decrement) Summing up the transition intensities out of state
i, we define the total intensity of decrement from state i as

µi(t) :=
∑

j 6=i

µij(t)

We can interpret µi(t) as the conditional probability of leaving state i in the small interval
[t, t + dt) to any other state, given to be in state i at time t. We can re-write µi(t) in terms of
the transition probabilities using (3.5):

µi(t) =
∑

j 6=i

lim
dt→0

pij(t, t + dt)

dt

= lim
dt→0

∑

j 6=i

pij(t, t + dt)

dt

= lim
dt→0

1 − pii(t, t + dt)

dt

In the following we will derive two important differential equations, that are commonly used in
Markovian multi-state models, the Kolmogorov forward and Kolmogorov backward differential
equations, which can be proved using the Chapman-Kolmogorov equations.

Both equations give the relationship between the transition probabilities and the transition
intensities in a Markovian multi-state model. As we will see for the case of a three-state model
in Example 3.1 and Example 3.2 both differential equations lead to the same results.
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3.2.3 Kolmogorov Forward Differential Equations

Theorem 3.6 (Kolmogorov Forward Differential Equations) The Kolmogorov forward dif-
ferential equations are given for all states i, j and 0 ≤ z ≤ t with the boundary condition
pij(z, z) = δij by

d

dt
pij(z, t) =

∑

k 6=j

pik(z, t) · µkj(t) − pij(z, t) · µj(t)

=
∑

k 6=j

pik(z, t) · µkj(t) − pij(z, t) ·
∑

k 6=j

µjk(t) (3.6)

Proof:

We can write the Chapman-Kolmogorov equations as

pij(z, t + dt) =
∑

k 6=j

pik(z, t) · pkj(t, t + dt) + pij(z, t) · pjj(t, t + dt)

This gives:

pij(z, t + dt) − pij(z, t)

dt
=
∑

k 6=j

pik(z, t) ·
pkj(t, t + dt)

dt
+ pij(z, t) ·

pjj(t, t + dt) − 1

dt

Since the transition probabilities are probabilities, the sum over the pik(t, t+dt) should be equal
to one for fixed t and t + dt. Summation is done over all possible states k, that can be reached.
In other words, the probability of staying in state i and the probabilities of leaving state i to
any other state k, has to be equal to one (see Definition 3.10).

∑

k∈S

pjk(t, t + dt) = 1 ⇒ 1 − pjj(t, t + dt) =
∑

k 6=j

pjk(t, t + dt)

Inserting this in above equation we obtain:

pij(z, t + dt) − pij(z, t)

dt
=
∑

k 6=j

pik(z, t) ·
pkj(t, t + dt)

dt
− pij(z, t) ·

∑

k 6=j

pjk(t, t + dt)

dt

Letting dt → 0 the final result is:

lim
dt→0

pij(z, t + dt) − pij(z, t)

dt
=
∑

k 6=j

pik(z, t) · lim
dt→0

pkj(t, t + dt)

dt
− pij(z, t) · lim

dt→0

∑

k 6=j

pjk(t, t + dt)

dt

d

dt
pij(z, t) =

∑

k 6=j

pik(z, t) · µkj(t) − pij(z, t) ·
∑

k 6=j

µjk(t)

2

Haberman and Pitacco (1999) interpreted this as follows: The transition probabilities start in
state i at time z. The left-hand side of the Kolmogorov forward differential equations represents
the change in the probability of entering state j over the small interval [t, t + dt), whereas the
right-hand side represents the probability of entering state j starting from any state k, k 6= j
minus the probability of leaving state j in the small interval [t, t + dt).
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Example 3.1

Consider in the following the Illness-Death model (Figure 3.1) with states ”Disease-Free”, ”Dis-
eased” and ”Dead”, labeled 1, 2 and 3, respectively. In the following we are going to write down
the Kolmogorov forward differential equations (3.6) and obtain their solutions. First notice that
we exclude transitions from state 2 to 1, that is a transition from state ”Diseased” to ”Disease-
Free”; thus µ21 = 0. The same holds for transitions from state 3 to 1 and 3 to 2 for obvious
reasons. Recall that the Kolmogorov forward differential equations have the form

d

dt
pij(z, t) =

∑

k 6=j

pik(z, t) · µkj(t) − pij(z, t) ·
∑

k 6=j

µjk(t)

This gives for the conditional probability from state 1 to state j ∈ S

d

dt
p11(z, t) = p12(z, t) · µ21(t) + p13(z, t) · µ31(t) − p11(z, t) · (µ12(t) + µ13(t))

= −p11(z, t) · (µ12(t) + µ13(t))

d

dt
p12(z, t) = p11(z, t) · µ12(t) + p13(z, t) · µ32(t) − p12(z, t) · (µ21(t) + µ23(t)) (3.7)

= p11(z, t) · µ12(t) − p12(z, t) · µ23(t)

d

dt
p13(z, t) = p11(z, t) · µ13(t) + p12(z, t) · µ23(t) − p13(z, t) · (µ31(t) + µ32(t))

= p11(z, t) · µ13(t) + p12(z, t) · µ23(t)

For transitions out of state 2 we have

d

dt
p21(z, t) = p22(z, t) · µ21(t) + p23(z, t) · µ31(t) − p21(z, t) · (µ12(t) + µ13(t))

= 0
d

dt
p22(z, t) = p21(z, t) · µ12(t) + p23(z, t) · µ32(t) − p22(z, t) · (µ21(t) + µ23(t))

= −p22(z, t) · µ23(t)

d

dt
p23(z, t) = p21(z, t) · µ13(t) + p22(z, t) · µ23(t) − p23(z, t) · (µ31(t) + µ32(t))

= p22(z, t) · µ23(t)

Finally the equations for transitions out of state 3 are the following:

d

dt
p31(z, t) = p32(z, t) · µ21(t) + p33(z, t) · µ31(t) − p31(z, t) · (µ12(t) + µ13(t))

= 0
d

dt
p32(z, t) = p31(z, t) · µ12(t) + p33(z, t) · µ32(t) − p32(z, t) · (µ21(t) + µ23(t))

= 0
d

dt
p33(z, t) = p31(z, t) · µ13(t) + p32(z, t) · µ23(t) − p33(z, t) · (µ31(t) + µ32(t))

= 0
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Note that a transition intensity of zero implies a transition probability of zero, as well. Further
it is important to note the boundary conditions pij(z, z) = δij , which are in our case

p11(z, z) = 1

p22(z, z) = 1

p33(z, z) = 1

All other transition probabilities are zero, e.g. p12(z, z) = 0. Using these boundary conditions
we can solve the above equations and obtain for p11 and similar for p22 the following solutions:

d

dt
p11(z, t) = −p11(z, t) · (µ12(t) + µ13(t))

1

p11(z, t)
·

d

dt
p11(z, t) = − (µ12(t) + µ13(t))

d

dt
ln p11(z, t) = − (µ12(t) + µ13(t))

∫ t

z

d

du
ln p11(z, u)du = −

∫ t

z

(µ12(u) + µ13(u)) du

ln p11(z, t) − ln p11(z, z)
︸ ︷︷ ︸

=1

= −

∫ t

z

(µ12(u) + µ13(u)) du

p11(z, t) = exp

{

−

∫ t

z

(µ12(u) + µ13(u)) du

}

The solution for p22 can be derived in an analogue way:

p22(z, t) = exp

{

−

∫ t

z

µ23(u)du

}

(3.8)

Using the properties of the transition matrix we get

p13(z, t) = 1 − p11(z, t) − p12(z, t)

p23(z, t) = 1 − p21(z, t) − p22(z, t) = 1 − p22(z, t)

which leaves us to solve (3.7) for p12(z, t). This differential equation is a first order linear differ-
ential equation and can be solved using the variation of constants method. Given a differential
equation of the form y′ = a(x)y + b(x) it follows that y′ = a(x)y is its homogeneous differential
equation with solution

y = c · exp

{∫

a(u)du

}

for c ∈ R and the solution of the original differential equation is given by

y =

(∫ [

b(s) · exp

{

−

∫

a(u)du

}]

ds + c

)

· exp

{∫

a(u)du

}
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Applying these results to equation (3.7) we obtain as its homogeneous differential equation

d

dt
p12(z, t) = −p12(z, t) · µ23(t)

which has similar to (3.8) a solution of the form

p12(z, t) = c · exp

{

−

∫ t

z

µ23(s)ds

}

Thus the solution for p12(z, t) is

p12(z, t) =

(∫ t

z

p11(z, u) · µ12(u) · exp

{∫ u

z

µ23(s)ds

}

du + c

)

· exp

{

−

∫ t

z

µ23(s)ds

}

=

∫ t

z

p11(z, u) · µ12(u) · exp

{∫ u

z

µ23(s)ds

}

· exp

{

−

∫ t

z

µ23(s)ds

}

du + c · exp

{

−

∫ t

z

µ23(s)ds

}

=

∫ t

z

p11(z, u) · µ12(u) exp

{

−

∫ t

u

µ23(s)ds

}

du + c · exp

{

−

∫ t

z

µ23(s)ds

}

=

∫ t

z

p11(z, u) · µ12(u) · p22(u, t)du + c · exp

{

−

∫ t

z

µ23(s)ds

}

Taking into account that p12(z, z) = 0, as required by the boundary condition, we have to choose
c = 0, and the solution of (3.7) is therefore

p12(z, t) =

∫ t

z

p11(z, u) · µ12(u) · p22(u, t)du

Summarizing the solutions of the three-state model we have

p11(z, t) = exp

{

−

∫ t

z

(µ12(u) + µ13(u)) du

}

p12(z, t) =

∫ t

z

p11(z, u) · µ12(u) · p22(u, t)du

p13(z, t) = 1 − p11(z, t) − p12(z, t)

p21(z, t) = 0

p22(z, t) = exp

{

−

∫ t

z

µ23(u)du

}

p23(z, t) = 1 − p22(z, t)

p31(z, t) = 0

p32(z, t) = 0

p33(z, t) = 0
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3.2.4 Kolmogorov Backward Differential Equations

Theorem 3.7 (Kolmogorov Backward Differential Equations) The Kolmogorov backward
differential equations are given for all states i, j and 0 ≤ z ≤ t with the boundary condition
pij(t, t) = δij by

d

dz
pij(z, t) = pij(z, t) · µi(z) −

∑

k 6=i

µik(z) · pkj(z, t)

= pij(z, t) ·
∑

k 6=i

µik(z) −
∑

k 6=i

µik(z) · pkj(z, t) (3.9)

Proof:

We can write the Chapman-Kolmogorov equations as

pij(z, t) = pii(z, z + dz) · pij(z + dz, t) +
∑

k 6=i

pik(z, z + dz) · pkj(z + dz, t)

Again using Definition 3.10 for pik(z, z + dz) it follows that

∑

k∈S

pik(z, z + dz) = 1 ⇒ pii(z, z + dz) = 1 −
∑

k 6=i

pik(z, z + dz)

We obtain:

pij(z, t) =



1 −
∑

k 6=i

pik(z, z + dz)



 · pij(z + dz, t) +
∑

k 6=i

pik(z, z + dz) · pkj(z + dz, t)

This leads to

pij(z + dz, t) − pij(z, t)

dz
= pij(z + dz, t) ·

∑

k 6=i

pik(z, z + dz)

dz

−
∑

k 6=i

pik(z, z + dz)

dz
· pkj(z + dz, t)

Letting dz → 0 we finally obtain:

lim
dz→0

pij(z + dz, t) − pij(z, t)

dz
= lim

dz→0
pij(z + dz, t) ·

∑

k 6=i

pik(z, z + dz)

dz

−
∑

k 6=i

lim
dz→0

pik(z, z + dz)

dz
· pkj(z + dz, t)

d

dz
pij(z, t) = pij(z, t) ·

∑

k 6=i

µik(z) −
∑

k 6=i

µik(z) · pkj(z, t)

2
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Example 3.2

It should be clear that we arrive at the same solutions as in Example 3.1 starting with the set
of Kolmogorov backward differential equations (3.9), that are

d

dz
pij(z, t) = pij(z, t) ·

∑

k 6=i

µik(z) −
∑

k 6=i

pkj(z, t) · µik(z)

For our three-state model, in addition to the boundary conditions pij(t, t) = δij , the following
equations hold:

d

dz
p11(z, t) = p11(z, t) · (µ12(z) + µ13(z)) − (p21(z, t) · µ12(z) + p31(z, t) · µ13(z))

= p11(z, t) · (µ12(z) + µ13(z))

d

dz
p12(z, t) = p12(z, t) · (µ12(z) + µ13(z)) − (p22(z, t)µ12(z) + p32(z, t) · µ13(z))

= p12(z, t) · (µ12(z) + µ13(z)) − p22(z, t) · µ12

d

dz
p13(z, t) = p13(z, t) · (µ12(z) + µ13(z)) − (p23(z, t) · µ12(z) + p33(z, t) · µ13(z))

= p13(z, t) · (µ12(z) + µ13(z)) − (p23(z, t) · µ12(z) + p33(z, t) · µ13(z))

d

dz
p21(z, t) = p21(z, t) · (µ21(z) + µ23(z)) − (p11(z, t) · µ21(z) + p31(z, t) · µ23(z))

= 0
d

dz
p22(z, t) = p22(z, t) · (µ21(z) + µ23(z)) − (p12(z, t) · µ21(z) + p32(z, t) · µ23(z))

= p22(z, t) · µ23

d

dz
p23(z, t) = p23(z, t) · (µ21(z) + µ23(z)) − (p13(z, t) · µ21(z) + p33(z, t) · µ23(z))

= p23(z, t) · µ23 − p33(z, t) · µ23

d

dz
p31(z, t) = p31(z, t) · (µ31(z) + µ32(z)) − (p11(z, t) · µ31(z) + p21(z, t) · µ32(z))

= 0
d

dz
p32(z, t) = p32(z, t) · (µ31(z) + µ32(z)) − (p12(z, t) · µ31(z) + p22(z, t) · µ32(z))

= 0
d

dz
p33(z, t) = p33(z, t) · (µ31(z) + µ32(z)) − (p13(z, t) · µ31(z) + p23(z, t) · µ32(z))

= 0

We obtain again the following solutions for p11(z, t) and p22(z, t):

p11(z, t) = exp

{

−

∫ t

z

(µ12(u) + µ13(u)) du

}

p22(z, t) = exp

{

−

∫ t

z

µ23(u)du

}
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Since in the case of p11(z, t)

d

dz
p11(z, t) = p11(z, t) · (µ12(z) + µ13(z))

1

p11(z, t)
·

d

dz
p11(z, t) = µ12(z) + µ13(z)

d

dz
ln p11(z, t) = µ12(z) + µ13(z)

∫ t

z

d

du
ln p11(u, t)du =

∫ t

z

(µ12(u) + µ13(u)) du

ln p11(t, t)
︸ ︷︷ ︸

=0

− ln p11(z, t) =

∫ t

z

(µ12(u) + µ13(u)) du

p11(z, t) = exp

{

−

∫ t

z

(µ12(u) + µ13(u)) du

}

Again using the properties of the transition matrix we get

p13(z, t) = 1 − p11(z, t) − p12(z, t)

p23(z, t) = 1 − p21(z, t) − p22(z, t) = 1 − p22(z, t)

Finally, using the variation of constants methods, we write down for p12(z, t) the homogeneous
differential equation, that is

d

dz
p12(z, t) = p12(z, t) · (µ12(z) + µ13(z))

with solution

p12(z, t) = c · exp

{

−

∫ t

z

(µ12(u) + µ13(u)) du

}

where c ∈ R. Thus the solution of the inhomogeneous differential equation is

p12(z, t) =

(∫ t

z

p22(u, t) · µ12(u) · exp

{∫ t

u

(µ12(s) + µ13(s)) ds

}

du + c

)

· exp

{

−

∫ t

z

(µ12(s) + µ13(s)) ds

}

=

∫ t

z

p22(u, t) · µ12(u) · exp

{∫ t

u

(µ12(s) + µ13(s)) ds

}

· exp

{

−

∫ t

z

(µ12(s) + µ13(s)) ds

}

du

+ c · exp

{

−

∫ t

z

(µ12(s) + µ13(s)) ds

}

=

∫ t

z

p22(u, t) · µ12(u) · exp

{

−

∫ u

z

(µ12(s) + µ13(s)) ds

}

du + c · exp

{

−

∫ t

z

(µ12(s) + µ13(s)) ds

}

=

∫ t

z

p22(u, t) · µ12(u) · p11(z, u)du + c · exp

{

−

∫ t

z

(µ12(s) + µ13(s)) ds

}

In order to fulfill the boundary condition p12(z, z) = 0, c is chosen to be equal zero and our
solution is

p12(z, t) =

∫ t

z

p11(z, u) · µ12(u) · p22(u, t)du

This shows that we derived the same solutions as in the case of the Kolmogorov forward differ-
ential equations as in Example 3.1.
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3.2.5 Occupancy Probabilities

Definition 3.13 (Occupancy Probabilities) The following probabilities are called the occu-
pancy probabilities:

pii(t, u) = P (S(z) = i for all z ∈ [t, u]|S(t) = i) t < u

Further we assume that the probability of two or more transitions in the small interval [t, t+ dt)

is o(dt), where limdt→0+
o(dt)
dt

= 0.

In contrast to the transition probabilities the process stays in state i during the time spent in
the interval [t, u]. In case of a transition probability it would be sufficient to be in state i at time
t and to be back in state i by time u.

Whereas the Chapman-Kolmogorov equations (3.4) hold for the transition probabilities, we have
for the occupancy probabilities the following equations:

Theorem 3.8 (Chapman-Kolmogorov)

pii(t, u) = pii(t, w) · pii(w, u) t ≤ w ≤ u

This means, surviving in state i from time t to u can be seen as a two step process; first surviving
in state i from time t to w, and secondly from time w to u.

Proof:

pii(t, u) = P (S(z) = i ∀z ∈ [t, u]|S(t) = i)

= P (S(z) = i ∀z ∈ [t, w], S(z) = i ∀z ∈ [w, u]| S(t) = i)

=
P (S(z) = i ∀z ∈ [t, w], S(z) = i ∀z ∈ [w, u])

P (S(t) = i)

=
P (S(z) = i ∀z ∈ [t, w])

P (S(t) = i)
·
P (S(z) = i ∀z ∈ [t, w], S(z) = i ∀z ∈ [w, u])

P (S(z) = i ∀z ∈ [t, w])

= P (S(z) = i ∀z ∈ [t, w]| S(t) = i) · P (S(z) = i ∀z ∈ [w, u]| S(z) = i ∀z ∈ [t, w])

= P (S(z) = i ∀z ∈ [t, w]| S(t) = i) · P (S(z) = i ∀z ∈ [w, u]| S(w) = i)

= pii(t, w) · pii(w, u)

2

Haberman and Pitacco (1999) use the transition and occupancy probabilities as a tool to formally
label the states of a Markov process. For 0 ≤ t ≤ u we have the following:

• State i is a transient state, if pii(t,+∞) = 0; once we have entered state i we can leave
and re-enter state i as many times as we like.

• State i is a strictly transient state, if pii(t, u) = pii(t,u) < 1; once we have entered state i,
we can either stay in state i or leave, but not return to this state.

• State i is an absorbing state, if pii(t, u) = 1; once we have entered state i, there is no
way out of this state. We have to remain in state i, for example the state ”Dead” in the
Illness-Death model.
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Theorem 3.9 (Differential Equations for Occupancy Probabilities) For the occupancy
probabilities the following differential equations holds:

d

dt
pii(z, t) = −pii(z, t) · µi(t) = −pii(z, t) ·

∑

k 6=i

µik(t)

The solution of this differential equations with boundary condition pii(z, z) = 1 is

pii(z, t) = exp






−

∫ t

z

∑

k 6=i

µik(r)dr







Proof:

For the occupancy probabilities we have, using Theorem 3.8, the following relationship:

pii(z, t + dt) = pii(z, t) · pii(t, t + dt).

From here it follows that

pii(z, t + dt) − pii(z, t)

dt
=

pii(z, t)
(
pii(t, t + dt) − 1

)

dt

The probability of two or more transitions in the interval [t, t + dt) is by Definition 3.13 o(dt):

pii(t, t + dt) + o(dt) = pii(t, t + dt)

Thus we obtain

pii(z, t + dt) − pii(z, t)

dt
= −pii(z, t) ·

1 − pii(t, t + dt) + o(dt)

dt

lim
dt→0

pii(z, t + dt) − pii(z, t)

dt
= −pii(z, t) · lim

dt→0

∑

k 6=i pik(t, t + dt) + o(dt)

dt
d

dt
pii(z, t) = −pii(z, t) ·

∑

k 6=i

µik(t)

To derive a solution of this differential equations we write further

1

pii(z, t)
·

d

dt
pii(z, t) = −

∑

k 6=i

µik(t) ⇒
d

dt
ln pii(z, t) = −

∑

k 6=i

µik(t)

Integrating from z to t gives

ln pii(z, t) − ln pii(z, z) =

∫ t

z

d

dr
ln pii(z, r)dr = −

∫ t

z

∑

k 6=i

µik(r)dr

pii(z, t) = exp






−

∫ t

z

∑

k 6=i

µik(r)dr







2

Haberman and Pitacco (1999) note that under mild general conditions on the transition inten-
sities, each set of simultaneous differential equations (Theorem 3.6) or (Theorem 3.9) uniquely
determines the transition probabilities pij(z, t). The transition probabilities satisfy then the
definiton of a transition matrix (Definition 3.10) and the Chapman-Kolmogorov equations (3.4).
In practice transition intensities are estimated from statistical data and are then used to derive
the transition probabilities via the differential equations.
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Chapter 4

Non-Parametric Estimators

In the situation of survival data we study the time to failure or death for a homogeneous pop-
ulation of n individuals with hazard-rate function λ(t) and cumulative hazard-rate function
Λ(t) =

∫ t

0 λ(s)ds as introduced in Chapter 2. Another quantity of interest, the survival distribu-
tion function, that gives the distribution function of the time until death, i.e. S(t) = exp {−Λ(t)}
has also been defined in Chapter 2.

In this chapter we are going to derive estimators for these quantities: The cumulative hazard-
rate function can be estimated with the Nelson-Aalen estimator and the survival distribution
function with the Kaplan-Meier estimator. We are going to show that both estimators are
almost unbiased estimators, and derive estimators for their variances, e.g. Greenwood’s formula,
to calculate confidence intervals.

The Kaplan-Meier estimator can be used in a two-state model with states ”Alive” and ”Death”
to estimate the survival distribution function, the probability of staying in state ”Alive” beyond
a certain time, and thus give an estimate for the transition matrix of a two-state model, where
transitions are only allowed from state ”Alive” to state ”Death”.

If we extend this two-state model to a multi-state model or allow all possible transitions between
states, the Aalen-Johansen estimator is needed to produce estimates of the whole transition
matrix. Looking at this the other way round, the Aalen-Johansen estimator reduces to the
Kaplan-Meier estimator in above mentioned two-state model and the same values are estimated
with both estimators.

Therefore beside the Nelson-Aalen estimator and the Kaplan-Meier estimator we define the
Aalen-Johansen estimator, show above mentioned relationship between the Kaplan-Meier es-
timator and the Aalen-Johansen estimator and give an algorithm for computing the Aalen-
Johansen estimator in different cases.

Before doing so, recall that censoring and truncation are important issues in survival analysis and
have also to be taken in account constructing non-parametric estimators: A sample is subject to
right censoring, that is for some individuals we only know that they survived beyond a certain
censoring time t. As Borgan (1997) points out, we require independent censoring in the sense
that the additional knowledge of censoring before time t does not alter the risk of failure at time
t. Individuals who are censored are at the same risk of failure as those who are still alive and
uncensored. In other words, the censoring process is independent of the survival time.
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To calculate above mentioned estimators we observe a sample of individuals over time and record
information on the times transitions occurred, how many individuals transferred from one state
to another and how many individuals were contained in each state at this time.

Definition 4.1 We define the following quantities:

• t1 < t2 < . . . are the times, when deaths are observed

• dj is the number of observed individuals that die at tj

• rj is the number of observed individuals alive and uncensored just prior to tj

If, in addition to right-censoring, the sample is subject to left-truncation, we change the definition
of rj, the individuals at risk for dying at tj , to

• rj is the number of individuals that entered the study before tj and are still alive and
uncensored just prior to tj

The quantities dj and rj are realizations of the random variables Dj and Rj , respectively. They
will be investigated later. Estimates are only defined in the range where data are available. For
values beyond the largest observation the estimates might be spurious. Further we denote by
F t− all information available just prior to time t.

In the following section three estimators, namely the Nelson-Aalen for the cumulative hazard-
rate function, the Kaplan-Meier for the survival distribution function and the Aalen-Johansen
for the matrix of transition probabilities, are introduced. We follow in our presentation mainly
Klein and Moeschberger (1997), use the paper by Borgan (1997) and the three-part publication
by MacDonald (1996).
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4.1 The Nelson-Aalen Estimator for the Cumulative Hazard

4.1.1 Definition

The Nelson-Aalen estimator is a non-parametric estimator for the cumulative hazard-rate func-
tion Λ(t) =

∫
λ(s)ds using censored survival data. It is zero for 0 ≤ t < t1 and for t ≥ t1

we define it as an increasing right-continuous step-function with increments λ̂j := dj/rj at the
observed failure times tj, that is

Λ̂(t) :=
∑

j:tj≤t

dj

rj

Lemma 4.1 The variance of the Nelson-Aalen estimator can, according to Borgan (1997), be
estimated with the following formula:

σ̂2 := ˆV ar
[

Λ̂(t)
]

=
∑

j:tj≤t

(rj − dj) · dj

(rj − 1) · r2
j

(4.1)

Proof:

Given all information up to time tj the random variable Dj is binomially distributed with
parameters rj and λj. The quantity λj is the true, but unknown hazard-rate function (2.2), that
is λj = P ( an individual of tj years dies in the small interval [tj, tj+1)) = P (Tj = tj |Tj ≥ tj).

E[Dj | Ftj− ] = rjλj V ar[Dj | Ftj− ] = rjλj(1 − λj) (4.2)

By definition, the random variable Rj is, given Ftj− , known at time tj with value rj . Further,
the random variables Dj/Rj , j = 1, . . . , k, are conditionally uncorrelated:

E

[
Dk

Rk

Dl

Rl

∣
∣
∣
∣
Ftl−

]

k<l
=

dk

rk
E

[
Dl

Rl

∣
∣
∣
∣
Ftl−

]

= E

[
Dk

Rk

∣
∣
∣
∣
Ftl−

]

E

[
Dl

Rl

∣
∣
∣
∣
Ftl−

]

Using the decomposition of the variance into conditional expectation and conditional variance
(see the Springer ”Formelsammlung” by R̊ade and Westergren (1997)) we obtain:

V ar
[

Λ̂(t)
]

= V ar
[

E
[

Λ̂(t)
∣
∣
∣Ftj−

]]

+ E
[

V ar
[

Λ̂(t)
∣
∣
∣Ftj−

]]

(4.3)

We calculate the first term:

E
[

Λ̂(t)
∣
∣
∣Ftj−

]

=
∑

j:tj≤t

E

[
Dj

Rj

∣
∣
∣
∣
Ftj−

]
(4.2)
=

∑

j:tj≤t

rjλj

rj
=
∑

j:tj≤t

λj

Since this conditional expectation is constant, its variance is zero and the first term in equation
(4.3) vanishes. Using the law of iterated conditional expectation, that is E[X] = E [E[X| Y ]],
we also obtain that the Nelson-Aalen estimator Λ̂(t) is almost unbiased for Λ(t):

E
[

Λ̂(t)
]

= E
[

E
[

Λ̂(t)
∣
∣
∣Ftj−

]]

= E




∑

j:tj≤t

λj



 =
∑

j:tj≤t

λj ≈

∫ t

0
λ(s)ds = Λ(t)

when the length of the interval [tj , tj+1) converges to zero for all j.
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For the second term of (4.3) we get:

V ar
[

Λ̂(t)
∣
∣
∣Ftj−

]

=
∑

j:tj≤t

V ar

[
Dj

Rj

∣
∣
∣
∣
Ftj−

]
(4.2)
=

∑

j:tj≤t

1

r2
j

rj · λj(1 − λj) =
∑

j:tj≤t

1

rj
· λj(1 − λj)

Again this is a constant quantity and therefore its expectation is the quantity itself. Adding
above terms together we obtain:

V ar
[

Λ̂(t)
]

=
∑

j:tj≤t

1

rj
· λj(1 − λj) ≈

∑

j:tj≤t

(rj − dj) · dj

r3
j

(4.4)

This is slightly different to (4.1). But, in order to get an unbiased estimator we use (4.1). Thus it
remains to show now that the estimate of the variance, defined in (4.1), is an unbiased estimator,
i.e. E[σ̂2] = E[ ˆV ar[Λ̂(t)]] = V ar[Λ̂(t)]:

E
[
σ̂2
]

= E




∑

j:tj≤t

1

R2
j

·
Dj · (Rj − Dj)

Rj − 1



 =
∑

j:tj≤t

E

[

E

[

1

R2
j

·
Dj · (Rj − Dj)

Rj − 1

∣
∣
∣
∣
∣
Ftj−

]]

=
∑

j:tj≤t

E

[

1

r2
j · (rj − 1)

E
[
Dj · (Rj − Dj)| Ftj−

]

]

=
∑

j:tj≤t

E

[

1

r2
j · (rj − 1)

(
E
[
Dj · Rj | Ftj−

]
− E

[
D2

j

∣
∣Ftj−

])

]

(4.2)
=

∑

j:tj≤t

E

[

1

r2
j · (rj − 1)

(
rj · rjλj − rjλj(1 − λj) − r2

j · λ
2
j

)

]

=
∑

j:tj≤t

E

[

1

r2
j · (rj − 1)

·
(
r2
j · (λj − λ2

j ) − rjλj(1 − λj)
)

]

=
∑

j:tj≤t

E

[

1

r2
j · (rj − 1)

· (r2
j − rj) · λj · (1 − λj)

]

=
∑

j:tj≤t

E

[
λj · (1 − λj)

rj

]

=
∑

j:tj≤t

λj · (1 − λj)

rj

(4.4)
= V ar

[

Λ̂(t)
]

2

This shows that the Nelson-Aalen estimator and its variance estimate are almost unbiased.
Further one can show that, for large samples, the Nelson-Aalen estimator is asymptotically
normally distributed for fixed t, that is

Λ̂(t) ∼ AN
(
Λ(t), σ̂2

)

For details see Andersen, Borgan, Gill, and Keiding (1993) Theorem IV. 1.2. pp. 191.

For survival data with no ties the formula for the variance can be reduced further. If we choose the
intervals [tj, tj+1) sufficiently small such that only one jump occurs in [tj , tj+1), the assumption
of no ties is reasonable. Then dj takes only a value of one and we obtain:

σ̂2 =
∑

j:tj≤t

(rj − dj) · dj

(rj − 1) · r2
j

=
∑

j:tj≤t

1

r2
j
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4.1.2 The Nelson-Aalen Estimator in a Multi-State Model

The above setup can be interpreted as a two-state model with states ”Alive” and ”Death”.
Extending this to a multi-state model we can assume that either individuals in each state are
subject to more than one type of event, known as competing risk model (see Houggaard (2000)
or Borgan (1997)), or events can happen to each individual more than once.

A well known example of the latter is the Illness-Death model, where individuals can recover
from disease, and ”Dead” is the only absorbing state. More generally we model the live-history of
an individual using a Markovian process with a finite number of states. The transition intensity
from state g to h is denoted by λgh for g 6= h. Modifying the definition of tj, dj and rj the
Nelson-Aalen estimator can be applied to the cumulative intensities in an analogues way. For
the transitions from state g to h we define:

• t1 < t2 < . . . are the times, when transitions, regardless of the states involved, are observed

• dghj is the number of individuals that transfer from state g to h at tj

• dgj :=
∑

h6=g dghj is the number of individuals that transfer out of state g at tj.

• rgj is the number of individuals in state g just prior to tj

The Nelson-Aalen estimator for the cumulative transition intensity Λgh(t) =
∫ t

0 λgh(s)ds from
state g to state h is then given by

Λ̂gh(t) =
∑

j:tj≤t

dghj

rgj
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4.2 The Kaplan-Meier Estimator for the Survival Distribution

4.2.1 Definition

The Kaplan-Meier estimator, also known as the product-limit estimator, is a non-parametric
estimator for the survival distribution function S(t) using censored survival data. It is one for
0 ≤ t < t1 and for t ≥ t1 defined as

Ŝ(t) :=
∏

j:tj≤t

(

1 − λ̂j

)

(4.5)

where λ̂j = dj/rj . This is a decreasing right-continuous step-function with jumps only at the
death times. The size of the jumps is determined by the number of deaths at tj as well as the
number of censored observations in the interval [tj−1, tj). In the case of no censoring it reduces
to the empirical distribution function.

Lemma 4.2 (Greenwood’s formula) To estimate the variance of the Kaplan-Meier estima-
tor Greenwood’s formula (see MacDonald (1996)) can be used, which is defined as

σ̂2 := Ŝ2(t) ·
∑

j:tj≤t

dj

rj · (rj − dj)
(4.6)

Proof:

Given a random variable Xn ∼ AN(µ, σ2) as n → ∞ and some function f , the Delta-method
states that under mild regularity conditions on f the transformed random variable f(Xn) is
asymptotically normally distributed with mean E [f(Xn)] ≈ f(µ) and variance V ar [f(Xn)] ≈
f ′(µ2)σ2. A sequence of random variables Xn is asymptotically normally distributed with mean
µ and variance σ2, that is Xn ∼ AN(µ, σ2), if for sufficiently large n the quantity (Xn −
µ)/σ2 converges in distribution against a standard normally distributed random variable. To
understand the idea behind the Delta-Method consider the 1st order Taylor approximation of f :

f(Xn) ≈ f(µ) + f ′(µ) · (Xn − µ)

⇒ E [f(Xn)] ≈ f(µ) since E[Xn] ≈ µ (4.7)

⇒ V ar [f(Xn)] = E
[

(f(Xn) − E[f(Xn)])2
]

≈ E
[

f ′(µ)2 · (Xn − µ)2
]

= f ′(µ)2 · E
[
(Xn − µ)2

]
= f ′(µ)2 · V ar [Xn] (4.8)

Now we use that the random variable Dj given all information until time tj− is binomially

distributed with parameters rj and λj ; thus E[ λ̂j

∣
∣
∣Ftj− ] = λj and V ar[ λ̂j

∣
∣
∣Ftj− ] = λj(1−λj)/rj .

E
[

λ̂j

]

= E
[

E
[

λ̂j

∣
∣
∣Ftj−

]]

= E

[

E

[
Dj

Rj

∣
∣
∣
∣
Ftj−

]]
(4.2)
= E

[
rjλj

rj

]

= E [λj] = λj

V ar
[

λ̂j

]

= E
[

V ar
[

λ̂j

∣
∣
∣Ftj−

]]

+ V ar
[

E
[

λ̂j

∣
∣
∣Ftj−

]]

= E

[

V ar

[
Dj

Rj

∣
∣
∣
∣
Ftj−

]]

+ V ar [λj ]
︸ ︷︷ ︸

=0

(4.2)
= E

[
λj · (1 − λj)

rj

]

=
λj · (1 − λj)

rj
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We apply now in the following the Delta-method with the function f(x) = ln(1 − x) to the
Kaplan-Meier estimator:

ln(Ŝ(t)) = ln




∏

j:tj≤t

(1 − λ̂j)



 =
∑

j:tj≤t

ln(1 − λ̂j) (4.9)

E
[

ln Ŝ(t)
]

(4.9)
= E




∑

j:tj≤t

ln(1 − λ̂j)



 =
∑

j:tj≤t

E

[

ln(1 −
Dj

Rj
)

]

(4.7)
≈

∑

j:tj≤t

lnE

[

(1 −
Dj

Rj
)

]

=
∑

j:tj≤t

lnE

[

E

[

(1 −
Dj

Rj
)

∣
∣
∣
∣
Ftj−

]]

(4.2)
=

∑

j:tj≤t

lnE

[

(1 −
rjλj

rj
)

]

=
∑

j:tj≤t

ln(1 − λj) (4.10)

V ar
[

ln
(

1 − λ̂j

)] (4.8)
≈

(
−1

1 − λj

)2

· V ar[1 − λ̂j ] =

(
1

1 − λj

)2

·
λj · (1 − λj)

rj

=
λj

(1 − λj) · rj
≈

λ̂j

(1 − λ̂j) · rj

=
dj

(rj − dj) · rj

V ar
[

ln(Ŝ(t))
]

(4.9)
= V ar




∑

j:tj≤t

ln(1 − λ̂j)



 =
∑

j:tj≤t

V ar
[

ln(1 − λ̂j)
]

≈
∑

j:tj≤t

dj

(rj − dj) · rj
(4.11)

To obtain the asymptotic expectation and variance of Ŝ(t) we apply again the Delta-method
with the function exp{x} to the above derived results, yielding to:

E
[

Ŝ(t)
]

= E
[

exp
{

ln Ŝ(t)
}] (4.7), (4.10)

≈ exp







∑

j:tj≤t

ln(1 − λj)







=
∏

j:tj≤t

(1 − λj) = S(t)

V ar
[

Ŝ(t)
]

= V ar
[

exp
{

ln(Ŝ(t))
}] (4.8)

≈ Ŝ(t)2 · V ar
[

ln Ŝ(t)
]

(4.11)
≈ Ŝ(t)2 ·

∑

j:tj≤t

dj

rj · (rj − dj)
(4.12)

2

Thus we derived Greenwood’s formula (4.6) and even proved that the Kaplan-Meier estimator
is an almost unbiased estimator.
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Lemma 4.3 The variance estimate (4.6) reduces in the case of no censoring to the binomial
variance, thus we obtain:

σ̂2 =
Ŝ(t) · (1 − Ŝ(t))

n
(4.13)

Proof:

In the case of no-censoring the number of individuals at risk at time tj+1 is equal to the number
of individuals at risk at time tj minus the individuals that died at time tj, that is rj+1 = rj −dj.
For tk ≤ t < tk+1 we have:

∑

j:tj≤t

dj

(rj − dj) · rj
=

∑

j:tj≤t

rj − rj+1

rj+1 · rj

=
∑

j:tj≤t

(
1

rj+1
−

1

rj

)

=
1

rk+1
−

1

r1
=

r1 − rk+1

r1 · rk+1

=
1 −

rk+1

r1

r1 ·
rk+1

r1

=
1 − Ŝ(t)

r1 · Ŝ(t)

Thus it follows:

V ar[Ŝ(t)]
(4.12)
≈ Ŝ(t)2 ·

∑

j:tj≤t

dj

(rj − dj) · rj

= Ŝ(t)2 ·
1 − Ŝ(t)

r1 · Ŝ(t)

=
Ŝ(t) · (1 − Ŝ(t))

r1

2

This is nothing else than a binomial variance, as in the case of no censoring r1 is equal to n and
the relation Ŝ(t) = rk+1/r1 holds for all k. If S(t) is the true survival probability at time t, the
distribution of survivors to time t, denoted by rk+1, is binomially distributed with parameters
r1 and S(t). Again, for a large sample Ŝ(t) is approximately normally distributed.

In the case of left-truncated observations we use above mentioned modified rj . Using this quantity
all estimation procedures are still applicable, but the result needs a different interpretation, as
probabilities have to be replaced by conditional probabilities.

The Kaplan-Meier estimator is now the probability of survival beyond t, conditional on survival
to the smallest entry time, denoted by C (l), that is S(t)/S(C (l)). In a similar way the Nelson-
Aalen estimator estimates the integral of the hazard-rate function over the interval C (l) to t,
that is Λ(t) =

∫ t

C(l) λ(s)ds.
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4.2.2 The Kaplan-Meier Estimator as Maximum Likelihood Estimator

In the Case of No Censoring

In this section we want to derive the Kaplan-Meier estimator as the maximum likelihood es-
timator of the survival distribution function, following MacDonald (1996). We assume that n
lives under observation die at times t1, . . . , tk where k ≤ n so that multiple deaths are possible.
The quantities dj and rj are defined as in Definition 4.1 and depend on each other through
the relation rj+1 = rj − dj . We assume that rk+1 = 0, which means that all n individuals die

eventually. Consequently n =
∑k

j=1 dj .

Let denote by F the discrete lifetime distribution with jumps at t1, . . . , tk, then the probability
of dying at time tj is given by F (tj) − F (tj−), where the random variable T denotes again the
future lifetime of an individual. Thus the likelihood can be written as

L(F ) =
k∏

j=1

P (T = tj)
dj =

k∏

j=1

P (T = tj|T ≥ tj)
dj · P (T ≥ tj)

dj (4.14)

We want to find a distribution function F̂ that estimates the true, but unknown distribution
function F and maximizes L, i.e. F̂ is the maximum likelihood estimate of F . We define the
discrete hazard-rate at time tj as

λj := P (T = tj |T ≥ tj) =
P (T = tj)

P (T ≥ tj)
=

F (tj) − F (tj−)

1 − F (tj−)
(4.15)

Thus we can calculate with (4.15) one minus the discrete hazard, i.e.

1 − λj =
P (T ≥ tj) − P (T = tj)

P (T ≥ tj)
=

P (T > tj)

P (T > tj−1)
(4.16)

where we interpret t0 as zero and define P (T > t0) = 1. Multiplying the factors from (4.16) for
j = 1, . . . , r ≤ k we get:

r∏

j=1

(1 − λj) = (1 − λ1) · . . . · (1 − λr) =
P (T > t1)

P (T > t0)
︸ ︷︷ ︸

=1

· . . . ·
P (T > tr)

P (T > tr−1)
= P (T > tr)

From here it follows:

F (tr) = P (T ≤ tr) = 1 − P (T > tr) = 1 −

r∏

j=1

(1 − λj) (4.17)

More generally we get for tj ≤ t ≤ tj+1 the following:

F (t) = 1 −
∏

j:tj≤t

(1 − λj)

Since all lives die, we have rk = dk. Thus (1 − λk)
rk−dk = 1 and

ri =
k∑

j=i

dj ⇒ ri − di =
k∑

j=i+1

dj (4.18)
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Using the property (4.18) for 1 − F (tj−) we can write

k∏

j=1

(1 − F (tj−))dj =
k∏

j=1

(1 − F (tj−1))
dj

(4.17)
=

k∏

j=1

j−1
∏

i=1

(1 − λi)
dj

=
k−1∏

i=1

k∏

j=i+1

(1 − λi)
dj =

k−1∏

i=1

(1 − λi)
∑k

j=i+1 dj

(4.18)
=

k−1∏

i=1

(1 − λi)
ri−di =

k∏

i=1

(1 − λi)
ri−di (4.19)

Using (4.15) and (4.19) we can calculate the likelihood function (4.14) as

L(F ) =

k∏

j=1

(
F (tj) − F (tj−)

1 − F (tj−)

)dj

· (1 − F (tj−))dj

(4.15)
=

k∏

j=1

λ
dj

j · (1 − F (tj−))dj

(4.19)
=

k∏

j=1

λ
dj

j · (1 − λj)
rj−dj

Setting the derivative of the log-likelihood function with respect to λj zero we obtain:

∂ lnL

∂λj
=

∂

∂λj





k∑

j=1

dj · lnλj + (rj − dj) · ln (1 − λj)





=
dj

λj
−

rj − dj

1 − λj
= 0

Thus the maximum likelihood estimate for λj, denoted by λ̂j , is given by

λ̂j :=
dj

rj

Therefore the maximum likelihood estimate Ŝ(t) of the survival function S(t) is given by

Ŝ(t) = 1 − F̂ (t) = 1 −



1 −
∏

j:tj≤t

(

1 − λ̂j

)



 =
∏

j:tj≤t

(

1 −
dj

rj

)

This is nothing else than the Kaplan-Meier estimator as defined in (4.5).
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In the Case of Censoring

We want to allow now for censoring: As before we have n independent lives that die at times
t1 < . . . < tk. Again dj is the number of deaths at time tj , but in contrast to the above,
∑k

j=1 dj = m 6= n. Let cj be the number of censored lives between times tj and tj+1 at the
censoring times tj1 , . . . , tjcj

. In total we have n−m censored observations. Therefore we get the

likelihood from (4.14) as

L(F ) =

k∏

j=1

(F (tj) − F (tj−))dj ·

k∏

j=0

cj∏

l=1

(1 − F (tjl))

Since F (t) is a distribution function, it is is non-decreasing. Therefore F (tj) ≤ F (tjl) and we
will bound each factor (1 − F (tjl)), if we take the smaller value F (tj) for all l = 1, . . . , cj , that

is F (tjl) = F (tj). We also use 1 − F (t0) = 1 and rj =
∑k

i=j di +
∑k

i=j ci.

L(F ) =

k∏

j=1

(
F (tj) − F (tj−)

1 − F (tj−)

)dj

·

k∏

j=0

(

(1 − F (tj−))dj ·

cj∏

l=1

(1 − F (tjl))

)

≤

k∏

j=1

λ
dj

j ·

k∏

j=0

(1 − F (tj−))dj · (1 − F (tj))
cj

=
k∏

j=1

λ
dj

j · (1 − F (tj−))
∑k

i=j+1 di · (1 − F (tj))
∑k

i=j ci

=
k∏

j=1

λ
dj

j · (1 − λj)
rj−dj

Thus the likelihood for censored observations is bounded by the one derived for no-censored
observations. Thus we obtain the same estimator λ̂j for λj in both cases. The maximum likelihood
estimate for S(t) is therefore the Kaplan-Meier estimator (4.5), as well:

Ŝ(t) =
∏

j:tj≤t

(

1 −
dj

rj

)
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4.2.3 Relationship between Kaplan-Meier and Nelson-Aalen Estimator

From survival analysis we know that between the survival distribution function and the cumu-
lative hazard-rate function the following relation holds:

S(t) = exp {−Λ(t)}

Given the Nelson-Aalen estimator it might be tempting to use this relationship as an estimate
for the survival distribution function. Using the approximation exp {x} ≈ 1 + x for small x one
could approximate the Kaplan-Meier estimator setting x := −λ̂j:

Ŝ(t) =
∏

j:tj≤t

(1 − λ̂j) ≈
∏

j:tj≤t

exp
{

−λ̂j

}

= exp






−
∑

j:tj≤t

λ̂j






= exp

{

−Λ̂(t)
}

:= ŜNA(t)

One might receive similar behavior for ŜNA(t) and Ŝ(t), but it is important (see Borgan (1997))
that ŜNA(t) is only an approximation of the Kaplan-Meier estimator Ŝ(t). It is not the canonical
estimator of the survival distribution function. The approximation is justified in the sense that
the quantity λ̂j is a small number for large samples and sufficient small chosen intervals [t, t+dt).
But, especially in the lower and upper age ranges, where observations are rare, the result might
be spurious. Further it is worth mentioning that above relation is only valid for the continuous
case. Therefore we introduce a notation that unifies both, the continuous and discrete-time case:

Λ(t) = −

∫ t

0

dS(u)

S(u−)
(4.20)

where S(u−) is the left-hand limit of the survival distribution function.

For an absolute continuous distribution this becomes

Λ(t) = −

∫ t

0

dS(u))

S(u−)
= −

∫ t

0
d ln S(u) = − lnS(t) =

∫ t

0
λ(u)du

For a discrete distribution we have:

Λ(t) = −

∫ t

0

dS(u))

S(u−)
=
∑

j:tj≤t

λj

The above statements follow from the definition of the hazard-rate function and the relationship
F (t) = 1 − S(t), that gives us dF (t) = −dS(t).

λ(t) := lim
dt→0+

P ( t < T ≤ t + dt|T > t)

dt

= lim
dt→0+

F (t + dt) − F (t)

dt (1 − F (t))

=
dF (t)

1 − F (t)

=
−dS(t)

S(t)
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Using a product-integral, that is the limit of approximating finite products in a similar manner
as the ordinary integral is defined as the limit of approximating finite sums, for details see Gill
(2001), we can express the survival distribution function as

S(t) = R
0≤t

(1 − dΛ(u)) (4.21)

The actual definition of the product-integral is

S(t) = R
0≤t

(1 − dΛ(u)) := lim
max|ti−ti+1|→0

∏

0≤t

(1 − (Λ(ti) − Λ(ti−1)))

where the limit is taken over a sequence of finer and finer partitions 0 < t0 < t1 < . . . < tk = t
of the time interval [0, t].

The hazard dΛ(u) can be interpreted as the probability of dying in the interval [u, u+du) given
survival to time u. Consequently 1−dΛ(u) is the probability of surviving the interval [u, u+du)
given survival to time u. Multiplying over all small intervals [u, u+du), that make up the interval
[0, t), is then the unconditional probability of surviving up to time t. Therefore equation (4.21)
is for tk ≤ t < tk+1 the limiting case of

S(t) = P (T > t) =

k∏

i=1

P (T > ti|T > ti−1) =

k∏

i=1

(1 − P (T ≤ ti| T > ti−1))

For a continuous distribution expression (4.21) is equal to

S(t) = R
0≤t

(1 − dΛ(u)) = exp {−Λ(t)}

For a discrete distribution we obtain:

S(t) = R
0≤t

(1 − dΛ(u)) =
∏

j:tj≤t

(1 − λj)

The Nelson-Aalen estimator for the cumulative hazard-rate function was derived as

Λ̂(t) =
∑

j:tj≤t

dj

rj

As already noted, this is an increasing right-continuous step-functions, which means that all
probability mass concentrates at the observed times of deaths tj, and with discrete hazard-rate

λ̂j = dj/rj . Using (4.21) we obtain:

Ŝ(t) = R
0≤t

(1 − dΛ̂(u)) =
∏

j:tj≤t

(1 −
dj

rj
)

which is the Kaplan-Meier estimator. Comparing this with equation (4.20) and (4.21) we can
see that both estimators are related like the survival function and the cumulative hazard-rate
function. Therefore they are the canonical non-parametric estimators.
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Example 4.1

Suppose that we have a sample of 16 individuals from the population under study. Out of these
16 individuals 12 die at times tj (0.75, 0.91, 1.32, 1.70, 2.15, 2.76, 2.88, 2.98, 4.51, 6.23, 8.57,
10.23) and we have four censored lifetimes cj , namely 0.5, 0.8, 1.70 and 2.08. The following table
summarizes the data and gives the Kaplan-Meier estimate for the survival function:

j [tj , tj+1) nj dj (nj − dj)/nj Ŝ(tj) F̂ (tj)

0 [0, 0.75) 16 0 1 1 0
1 [0.75, 0.91) 15 1 0.9333 0.9333 0.0667
2 [0.91, 1.32) 13 1 0.9231 0.8615 0.1385
3 [1.32, 1.70) 12 1 0.9167 0.7897 0.2103
4 [1.70, 2.15) 11 1 0.9091 0.7179 0.2821
5 [2.15, 2.76) 8 1 0.8750 0.6282 0.3718
6 [2.76, 2.88) 7 1 0.8571 0.5385 0.4615
7 [2.88, 2.98) 6 1 0.8333 0.4487 0.5513
8 [2.98, 4.51) 5 1 0.8000 0.3590 0.5410
9 [4.51, 6.23) 4 1 0.7500 0.2692 0.7308
10 [6.23, 8.57) 3 1 0.6667 0.1795 0.8205
11 [8.57, 10.23) 2 1 0.5000 0.0897 0.9103
12 [10.23, ω) 1 1 0.0000 0.0000 1.0000

Table 4.1: Development of the Kaplan-Meier Estimate of the Survival Function for Example 4.1

Figure 4.1 gives the Kaplan-Meier estimate of the survival distribution together with the confi-
dence intervals (CI) using Greenwood’s formula (4.6):
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Figure 4.1: Kaplan Meier Estimate of the Survival Function together with CIs for Example 4.1
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4.3 The Aalen-Johansen Estimator for the Transition Matrix

4.3.1 Definition

The Aalen-Johansen Estimator is a non-parametric estimator for the matrix of transition prob-
abilities, the so-called transition matrix, of a given Markovian process from censored survival
data. We follow in our presentation Borgan (1997), a more detailed description can be found in
Andersen, Borgan, Gill, and Keiding (1993).

Assume that the life-history of an individual is described by a Markovian process with a finite
number of states S = {1, . . . ,K}. While the hazard-rate function λ(t) describes the instan-
taneous risk of death, the transition intensities describe the instantaneous risk of transition
between states, i.e. αgh(t) is the transition intensity from state g to h for g 6= h. Similar to the
quantity λ(t)dt, αgh(t)dt describes the probability that an individual in state g just prior to
time t will make a transition to state h in the small interval [t, t+dt). The transition probability
is denoted by pgh(s, t) and describes the probability that an individual in state g at time s to
transfer into state h by t. The K × K matrix P(s, t) summarizes the transition probabilities of
above given Markovian process.

We extend the definitions of the quantities dj and rj (see Definition 4.1) to a multi-state model
as already done for the Nelson-Aalen estimator in Section 4.1.2, and define additionally the new
quantity dgj , the number of transitions out of state g at time tj. Rewriting Definition 4.1 we
obtain the following new definition:

Definition 4.2 We define the following quantities:

• t1 < t2 < . . . are the times, when transitions are observed

• dghj is the number of individuals that transfer from state g to h at time tj

• dgj =
∑

h6=g dghj is the number of transitions out of state g at tj

• rgj is the number of individuals in state g just prior to tj

Then the Aalen-Johansen estimator for the transition matrix P(s, t) takes the following form, if
only one transition takes place at the same time tj. This assumption of no ties is relaxed later.

P̂(s, t) =
∏

j:s<tj≤t

(I + α̂j) (4.22)

where α̂j is a K × K matrix with entry (g, h) equal to α̂ghj = dghj/rgj , entry (g, g) equal to
α̂ggj = −dgj/rgj and all other entries are zero. I is the identity matrix. The product is taken
in the order of increasing tj’s. From this definition it becomes clear that the Aalen-Johansen
estimator is a product of stochastic matrices.

One can show using the theory of counting-processes, more precisely Duhamel’s equation, that
the Aalen-Johansen estimator is almost unbiased under similar conditions as the Nelson-Aalen
and Kaplan-Meier estimator, it is even unbiased if the probability that rgj = 0 is equal to zero
for all times tj and states g. Since this is, given a large sample of observations, usually the
case we refer in the following to the Aalen-Johansen estimator as an unbiased estimator. The
necessary theory and a proof of this result can be found in the book by Andersen, Borgan, Gill,
and Keiding (1993) on pp. 287.
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4.3.2 In Case of a Two-State Model

The Aalen-Johansen estimator can be seen as a matrix version of the Kaplan-Meier estimator.
This can be understood, if one takes a two-state model with states ”Alive” and ”Death”. The
Aalen-Johansen estimator reduces then to a 2 × 2 matrix. The probability to be at time t still
alive, P11(0, t), is the survival probability. The Aalen-Johansen estimator gives the same estimate
as obtained by the Kaplan-Meier estimator.

Assume we observe n individuals in the interval [0, T ]. The two states are ”Alive” and ”Death”,
where a transition is only possible from state ”Alive” to ”Death” and denoted by α01(t).

• t1 < t2 < . . . are the times, when deaths are observed

• dj is the number of individuals that die at tj

• rj is the number of individuals alive and uncensored at tj

The Aalen-Johnsen estimator reduces then to

ˆP(0, t) =
∏

j:tj≤t

(I + α̂j) =
∏

j:tj≤t

[(
1 0
0 1

)

+

(

−
dj

rj

dj

rj

0 0

)]

=
∏

j:tj≤t

(

1 −
dj

rj

dj

rj

0 1

)

=

( ∏

j:tj≤t(1 −
dj

rj
) 1 −

∏

j:tj≤t(1 −
dj

rj
)

0 1

)

=

(
Ŝ(t) 1 − Ŝ(t)
0 1

)

Example 4.2

Now we apply the Aalen-Johansen estimator to the data from Example 4.1. We should receive
the same results, modeling survival as a two-state model, as obtained from the Kaplan-Meier
estimator in Section 4.2:

P̂(0, t1) = (I + α̂1) =

(
14
15

1
15

0 1

)

=

(
0.9333 0.0667

0 1

)

P̂(0, t2) = P̂(0, t1) (I + α̂2) =

(
14
15

1
15

0 1

)

×

(
12
13

1
13

0 1

)

=

(
56
65

9
65

0 1

)

=

(
0.8615 0.1385

0 1

)

P̂(0, t3) = P̂(0, t2) (I + α̂3) =

(
56
65

9
65

0 1

)

×

(
11
12

1
12

0 1

)

=

(
154
195

41
195

0 1

)

=

(
0.7897 0.2103

0 1

)

P̂(0, t4) = P̂(0, t3) (I + α̂4) =

(
254
195

41
195

0 1

)

×

(
10
11

1
11

0 1

)

=

(
28
39

11
39

0 1

)

=

(
0.7179 0.2821

0 1

)

etc.
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4.3.3 In Case of a Multi-State Model

In the following we extend the two-state model to a multi-state model, but still assume that
only one transition takes place at a time. This assumption however, is relaxed later.

P̂(0, t) =
∏

j:tj≤t

(I + α̂j)

=
∏

j:tj≤t






















1 . . . 0
. . .

0 . . . 1




+

















0 . . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . 0

0 . . . −
dghj

rgj
. . .

dghj

rgj
. . . 0

0 . . . . . .
. . . . . . . . . 0

0 . . . . . . . . .
. . . . . . 0

0 . . . . . . . . . . . .
. . . 0

0 . . . . . . . . . . . . . . . 0

































=
∏

j:tj≤t














1 . . . . . . . . . . . . . . . 0
0 1 . . . . . . . . . . . . 0

0 . . . 1 −
dghj

rgj
. . .

dghj

rgj
. . . 0

0 . . . . . . 1 . . . . . . 0
0 . . . . . . . . . 1 . . . 0
0 . . . . . . . . . . . . 1 0
0 . . . . . . . . . . . . . . . 1














We can notice here that the off-diagonal element of this matrix (g, h) is equal to the Nelson-
Aalen estimator in the small interval [tj ; tj+1), i.e. dΛgh(t), whereas the diagonal element (g, g)
is equal to 1 − dΛgh(t).
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4.3.4 Algorithm for Computing the Aalen-Johansen Estimator (Forwards)

Aalen and Johansen (1978) suggested an algorithm for computing their estimator at time ti+1

based on the result at time ti, where no transitions occur between those two time-points. We
denote the Aalen-Johansen estimator at time ti+1 by P̂(s, ti+1) and at time ti by P̂(s, ti). If
a transition occurs at time ti+1 from state g to state h the following calculations have to be
performed to obtain P̂(s, ti+1):

• The g′th column of P̂(s, ti) is multiplied by
(

1 − 1
rgj

)

, where rgj are the individuals at

risk at time tj = ti+1

• The g′th column of P̂(s, ti) is multiplied by 1
rgj

and the result is added to the h′th column

• All other columns stay unchanged

The resulting matrix is the Aalen-Johansen estimator at time ti+1. To see the equivalence be-
tween the above introduced calculation and this algorithm we examine the case of a three-state
Markovian model, where we observe a jump from state 1 to 2 at time ti+1. The elements of the
matrix P̂(s, ti) are denoted by (pij)i,j=1,...,3 that is:

P̂(s, ti) =





p11 p12 p13

p21 p22 p23

p31 p32 p33





If a jump occurs from state g to state h at time ti+1, the matrix P̂(s, ti) has to be multiplied,
according to (4.22), with the following matrix, where we have chosen g = 1 and h = 2:





1 − 1
rgj

1
rgj

0

0 1 0
0 0 1





Thus we obtain:

P̂(s, ti+1) =





p11 p12 p13

p21 p22 p23

p31 p32 p33



×





1 − 1
rgj

1
rgj

0

0 1 0
0 0 1



 =






p11(1 − 1
rgj

) p11
1

rgj
+ p12 p13

p21(1 − 1
rgj

) p21
1

rgj
+ p22 p23

p31(1 − 1
rgj

) p31
1

rgj
+ p32 p33






Applying the algorithm in the example of the two-state model to P̂(0, t2) we have:

P̂(0, t1) =

(
14
15

1
15

0 1

)

Further we have 1− 1/rgj = 1− 1/13 = 12/13. The jump we observe at time t2 goes from state

1 to 2, thus we multiply the first column of P̂(0, t1) by 12/13 and the second column by 1/13
and add it to the second column. This leads us to

P̂(0, t2) =

((
14
15
0

)

×
12

13
,

(
14
15
0

)

×
1

13
+

(
1
15
1

))

=

(
56
65

9
65

0 1

)

which is the same result as derived before in Example 4.1.
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4.3.5 Algorithm for Computing the Aalen-Johansen Estimator (Backwards)

Aalen and Johansen (1978) also suggested an algorithm for computing their estimator backwards.
Given P̂(ui+1, t), the value for the Aalen-Johansen estimator at time ui+1, we can compute the
Aalen-Johansen estimator at time ui < ui+1, if no transitions occur between those two time-
points. Assume the jump at time ui goes from state g to state h then the following calculations
have to be performed to obtain P̂(ui, t):

• The g′th row of P̂(ui+1, t) is replaced by a convex combination of the g ′th and h′th row

with weights
(

1 − 1
rgj

)

and 1
rgj

, respectively

• All other rows stay unchanged

The resulting matrix is the Aalen-Johansen estimator at time ui. To see the equivalence be-
tween the above introduced calculation and this algorithm we examine the case of a three-state
Markovian model, where we observe a jump from state 1 to 2 at time ui. The elements of the
matrix P̂(ui+1, t) are denoted by (pij)i,j=1,...,3 that is:

P̂(ui+1, t) =





p11 p12 p13

p21 p22 p23

p31 p32 p33





We have to multiply P̂(ui+1, t) according to (4.22) with the following matrix, to obtain the
Aalen-Johansen estimator, if the jump occurs from state state g = 1 to state h = 2:

A :=





1 − 1
rgj

1
rgj

0

0 1 0
0 0 1



 (4.23)

Thus we obtain

P̂(ui, t) =





1 − 1
rgj

1
rgj

0

0 1 0
0 0 1





︸ ︷︷ ︸

A

×





p11 p12 p13

p21 p22 p23

p31 p32 p33





=





p11(1 − 1
rgj

) + p21

rgj
p12(1 − 1

rgj
) + p22

rgj
p13(1 − 1

rgj
) + p23

rgj

p21 p22 p23

p31 p32 p33





This is basically nothing else than to write down the formula (4.22) for the Aalen-Johansen
estimator and explicitly specifying all factors, that is all stochastic matrices at the times, where
jumps are observed in [ui+1, t], that is at times ui+1 < . . . < ui+r, where at ui+r ≤ ui+r+1 = t
the last jump occurred.

P̂(ui, t) =
∏

j:ui<tj≤t

(I + α̂j) = A×A1 × . . . ×Ar = A×
∏

j:ui+1<tj≤t

(I + α̂j)

︸ ︷︷ ︸

P̂(ui+1,t)

where A := P̂(ui, ui+1) and Ak := P̂(ui+k, ui+k+1), k = 1, . . . , r. Since no jump occur between
times ui and ui+1, the matrix A is nothing else than the above specified stochastic matrix (4.23).

51



4.3.6 In Case of a Multi-State Model with different Transitions at a Time

In this section we relax the assumption made so far that only one transition takes place at a
given point in time. Questions, that arise in this situation, are, whether the resulting estimator
still gives a stochastic matrix, as required by the nature of the transition matrix, whether the
Chapman-Kolmogorov equations still hold, as required by the properties of a Markovian multi-
state model and whether there is a similar algorithm available for computing the Aalen-Johansen
estimator, as introduced in Section 4.3.4.

A positive answer for the first question can be given quite easily. We replace in the Aalen-
Johansen estimator the (g, g)th diagonal element by −dgj/rgj , where dgj =

∑

h6=g dghj according
to Definition 4.2. If in addition to the jump from state g to h at time tj , a jump from state
g to k is observed at the same time, the (g, k)th diagonal element is equal to dgkj/rgj and the
property of a stochastic matrix is preserved. This remains true if at time tj a jump from state r
to s takes place, as well. The (r, r)th diagonal element becomes −drj/rrj and the (r, s)th element
becomes drsj/rrj . As a stochastic matrix only requires that the sum over the elements in each
row are equal to one, the just above outlined matrix is therefore a stochastic matrix and the
Aalen-Johansen estimator remains a product of stochastic matrices.

P̂(0, t) =
∏

j:tj≤t














1 . . . . . . . . . . . . . . . 0

0 1 −
drj

rrj
. . .

drsj

rrj
. . . . . . 0

0 . . . 1 −
dgj

rgj
. . .

dghj

rgj

dgkj

rgj
0

0 . . . . . . 1 . . . . . . 0
0 . . . . . . . . . 1 . . . 0
0 . . . . . . . . . . . . 1 0
0 . . . . . . . . . . . . . . . 1














=
∏

j:tj≤t














1 . . . . . . . . . . . . . . . 0

0 1 −
∑

s6=r
drsj

rrj
. . .

drsj

rrj
. . . . . . 0

0 . . . 1 −
∑

h6=g
dghj

rgj
. . .

dghj

rgj

dgkj

rgj
0

0 . . . . . . 1 . . . . . . 0
0 . . . . . . . . . 1 . . . 0
0 . . . . . . . . . . . . 1 0
0 . . . . . . . . . . . . . . . 1














We show now that a product of stochastic matrices is again a stochastic matrix, the Aalen-
Johansen estimator is a stochastic matrix and therefore fulfills the requirements of a transition
matrix of a Markovian multi-state model. First we consider the case n = 3:

Let P = (pij)ij and Q = (qij)ij be two 3 × 3 stochastic matrices, that is the sum over each row
is equal to one. The matrix product P ∗Q is given by

P ×Q =





p11 p12 p13

p21 p22 p23

p31 p32 p33



×





q11 q12 q13

q21 q22 q23

q31 q32 q33





=





p11q11 + p12q21 + p13q31 p11q12 + p12q22 + p13q32 p11q13 + p12q23 + p13q33

p21q11 + p22q21 + p23q31 p21q12 + p22q22 + p23q32 p21q13 + p22q23 + p23q33

p31q11 + p32q21 + p33q31 p31q12 + p32q22 + p33q32 p31q13 + p32q23 + p33q33




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Taking sums over the elements of each row we obtain:

(P ∗ Q)[1,] = (p11q11 + p12q21 + p13q31) + (p11q12 + p12q22 + p13q32) + (p11q13 + p12q23 + p13q33)

= p11 (q11 + q12 + q13)
︸ ︷︷ ︸

=1

+p12 (q21 + q22 + q23)
︸ ︷︷ ︸

=1

+p13 (q31 + q32 + q33)
︸ ︷︷ ︸

=1

= p11 + p12 + p13 = 1

as both, P and Q are stochastic matrices. It is obvious that the same holds for the second and
third row. This proves that the product of two stochastic matrices is again a stochastic matrix.
The approach can easily be extended to any n × n matrix.

2

The second question asked, whether the Chapman-Kolmogorov equations still hold, that is
P(s, t) = P(s, u)P(u, t) for s ≤ u ≤ t. In Section 4.3.1 the Aalen-Johansen estimator was
introduced such that it fulfills these equations. Since the modifications we introduced to the
Aalen-Johansen estimator in this section do not affect the time structure, when jumps are
observed, but only the jumps themselves at a given point in time, the Chapman-Kolmogorov
equations still hold.

P̂(s, t) =
∏

j:s<tj≤t

(I + α̂j) =
∏

j:s<tj≤u

(I + α̂j)

︸ ︷︷ ︸

P̂(s,u)

×
∏

j:u<tj≤t

(I + α̂j)

︸ ︷︷ ︸

P̂(u,t)

= P̂(s, u) × P̂(u, t)

where α̂j is now the modified matrix as explained in this section.

The third and last question, that arose, dealt with an algorithm for computing the Aalen-
Johansen estimator. Obviously, in the case of a multi-state model with different transition at a
time, the algorithm gets more complex and a calculation with direct specification of the different
matrices of the estimator might be more preferable. We assume that transitions are observed at
time tj and distinguish three cases:

First case:

If there is no transition to and from state g, the gth column stays unchanged.

Second case:

If there is a transition from state g to state h, k, . . . the following calculations have to be per-
formed:

• The gth column is multiplied by (1 − dgj/rgj)

• The gth column is multiplied by dghj/rgj and added to the hth column

• The gth column is multiplied by dgkj/rgj and added to the kth column

• ...
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Third case:

If there is a transition from state g to state h, k, . . . and at the same time a transition from state
i to state g, the necessary calculations are the following:

• The ith column: Multiply the ith column by (1 − dij/rij)

• The gth column: Multiply the ith column by digj/rigj and add (1 − dij/rij) of the gth

column

• The hth column: Multiply the gth column by dghj/rgj and add the hth column

• The kth column: Multiply the gth column by dgkj/rgj and add the kth column

• ...
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Chapter 5

Regression using Pseudo-Values

As we have seen in previous chapters, the Aalen-Johansen estimator is an unbiased estimator
for the transition matrix of a Markovian multi-state process. Given a set of data containing
information on transitions of observations as well as additional covariates of these observations,
e.g. age, sex, . . . , we are now able to calculate the Aalen-Johansen estimator, that is the matrix
for the transition probabilities of a specified Markovian multi-state model.

But, the whole data set produces only one single outcome that does not depend on covariates at
all, it only uses the information on the transitions that occurred. In order to perform a regression
analysis to investigate the effect of different covariates on the transition probabilities, we need
to generate the necessary outcomes and link these outcomes with the covariates.

Andersen, Klein, and Rosthøj (2003) used so-called pseudo-values known from jackknife method-
ology (Efron and Tibshirani 1993) to overcome these problems. The ith pseudo-value is obtained
by calculating the estimator, e.g. the Aalen-Johansen estimator, using the whole data set and a
data set with the ith observation removed.

Usually these ”leave-one-out diagnostics” are used to asses the bias and precision of the estimator
by comparing the ”leave-one-out diagnostics” with the estimator based on the entire sample.
Here, we try to extract information on the way in which the covariates of each individual affect
the estimator and perform a regression analysis with these pseudo-values.

Firstly we define the so-called ith jackknife sample and the ith jackknife replication of the estima-
tor involved and derive the jackknife estimate of bias and standard error. Secondly we introduce
pseudo-values, a different representation of the jackknife. Given n observations we are able to
calculate n pseudo-values and thus generate the data required for a regression analysis.

Since the Aalen-Johansen estimator is an unbiased estimator, the expectation of the ith pseudo-
value is equal to the conditional expectation of the claim-history given the covariates of the ith

observation and we can match the ith pseudo-value with the covariates of the ith observation and
thus construct a relationship between the pseudo-values and the covariates of the observations.

Finally we show how these tools are used to perform a regression analysis for a set of data
containing the claim-history of LTC patients. We establish a quasi-likelihood model for the
transition probabilities using the logit as link function. Further details on likelihood and quasi-
likelihood methods can then be found in Chapter 6.

55



5.1 Jackknife

As already noted above, the jackknife is a method to estimate the bias and standard error of
an estimate (Efron and Tibshirani 1993). In the following we have a sample of n observations
x = (x1, . . . , xn) and an estimator θ̂ = s(x) based on these observations. We define the ith

jackknife sample as

x(−i) := (x1, . . . , xi−1, xi+1, . . . , xn),

that is the entire data set with the ith observation removed. Further, the ith jackknife replication
of θ̂, the so-called ”leave-one-out estimator”, is defined as

θ̂−i := s(x(−i)) (5.1)

The estimator θ̂−i is the same estimator as θ̂, but based on the ith jackknife sample and not on
the whole data set. We are now going to define the jackknife estimate of bias and the jackknife
estimate of standard error for an estimator θ̂ defined as above.

Before doing so, recall the two well-known quantities x and s2, that are defined for n independent
and identically distributed observations xi, where E[xi] = µ and V ar[xi] = σ2:

x :=
1

n

n∑

i=1

xi s2 :=
1

n − 1

n∑

i=1

(xi − x)2

Definition 5.1 (Jackknife Estimate of Bias) The jackknife estimate of bias for θ̂ is defined
as the following quantity:

ˆbiasjack(θ̂) := (n − 1) ·
(

θ̂(·) − θ̂
)

where θ̂(·) is the average of the θ̂−i’s, that is

θ̂(·) :=
1

n

n∑

i=1

θ̂−i.

Definition 5.2 (Jackknife Estimate of Standard Error) The jackknife estimate of stan-
dard error for θ̂ is defined by

ŝejack(θ̂) :=

(

n − 1

n
·

n∑

i=1

(

θ̂−i − θ̂(·)

)2
) 1

2

(5.2)

An obvious question arises now: Why do we use the factors (n−1) and (n−1)/n in the jackknife
estimate of bias and the jackknife estimate of standard error, respectively?

The answer given by Efron and Tibshirani (1993) is that this is ”somewhat arbitrary convention”:
Using these factors ensures that in the case of iid data the jackknife estimate of bias for the
sample variance σ̂2 := (n − 1)/n s2 is equal to the unbiased estimate of bias of σ̂2 and the
jackknife estimate of standard error for the sample mean x is equal to the unbiased estimate of
the standard error of x.
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We do not use the sample mean x in the first case, since x is an unbiased estimator for the mean
of iid data and therefore θ̂(·) − θ̂ = 0, that is

θ̂(·) − θ̂ =
1

n

n∑

i=1

θ̂−i − θ̂ =
1

n

n∑

i=1

1

n − 1

∑

j 6=i

xj −
1

n

n∑

j=1

xj =
1

n
·

1

n − 1

n∑

i=1

∑

j 6=i

xj −
1

n

n∑

j=1

xj

=
1

n(n − 1)
·

n∑

i=1

(x1 + . . . + xi−1 + . . . + xi+1 + . . . xn) −
1

n

n∑

j=1

xj

=
1

n(n − 1)
·

(

(n − 1) ·
n∑

i=1

xi

)

−
1

n

n∑

j=1

xj = 0

Thus it follows:

ˆbiasjack(x) = (n − 1) ·

(

1

n

n∑

i=1

θ̂−i − θ̂

)

= 0

The jackknife estimate of bias for the sample variance

We have to calculate ˆbiasjack for the estimate σ̂2 := 1/n
∑n

j=1(xi − x)2 = 1/n
∑n

j=1(x
2
i − nx2);

as a result we obtain

ˆbiasjack(θ̂) := (n − 1) ·
(

θ̂(·) − θ̂
)

= (n − 1) ·

(

1

n

n∑

i=1

θ̂−i − θ̂

)

ˆbiasjack(σ̂
2) = (n − 1) ·




1

n

n∑

i=1

1

n − 1
·




∑

j 6=i

x2
j −

1

n − 1
· (nx − xi)

2



−
1

n





n∑

j=1

x2
i − nx2









= (n − 1) ·




1

n(n − 1)
·

n∑

i=1

(n − 1) · x2
i −

1

n(n − 1)2
·

n∑

i=1

(nx − xi)
2 −

1

n

n∑

j=1

x2
i + x2





= (n − 1) ·




1

n

n∑

i=1

x2
i −

1

n(n − 1)2
·

(

n3x2 − 2n2x2 +
n∑

i=1

x2
i

)

−
1

n

n∑

j=1

x2
i + x2





= (n − 1) ·

(

−
n(n − 2)

(n − 1)2
· x2 −

1

n(n − 1)2
·

n∑

i=1

x2
i + x2

)

= (n − 1) ·

(

−
1

n(n − 1)2
·

n∑

i=1

x2
i −

(
n(n − 2)

(n − 1)2
− 1

)

· x2

)

= (n − 1) ·

(

−
1

n(n − 1)2
·

n∑

i=1

x2
i −

n2 − 2n − n2 + 2n − 1

(n − 1)2
· x2

)

= −
1

n(n − 1)
·

n∑

i=1

x2
i +

1

(n − 1)
· x2 = −

1

n(n − 1)
·

(
n∑

i=1

x2
i − nx2

)

= −
1

n(n − 1)
·

n∑

i=1

(xi − x)2
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Thus we have the following result:

ˆbiasjack(σ̂
2) = −

1

n
·

1

n − 1

n∑

i=1

(xi − x)2 = −
s2

n

This is equal to the unbiased estimate of the bias of σ̂2:

ˆbiasjack(σ̂
2) = −

s2

n
where s2 :=

1

n − 1

n∑

i=1

(xi − x)2

since the following holds for σ̂2 in the case of iid data:

E[σ̂2] = σ2 −
σ2

n
⇒ bias(σ̂2) = E[σ̂2] − σ2 = −

σ2

n

The jackknife estimate of standard error for the mean

We have to calculate ŝejack for the estimate x = 1/n
∑n

i=1 xi:

ŝejack(θ̂) :=

(

n − 1

n
·

n∑

i=1

(

θ̂−i − θ̂(·)

)2
) 1

2

=




n − 1

n
·

n∑

i=1

(

θ̂−i −
1

n

n∑

l=1

θ̂−l

)2




1
2

Now inserting x gives:

ŝejack(x) =




n − 1

n
·

n∑

i=1




1

n − 1

∑

j 6=i

xj −
1

n

n∑

l=1

1

n − 1

∑

j 6=l

xj





2



1
2

=




n − 1

n
·

n∑

i=1

(
1

n − 1

)2

·




∑

j 6=i

xj −
1

n
· (n − 1) ·

n∑

j=1

xj





2



1
2

=




1

n(n − 1)
·

n∑

i=1




1

n
·




∑

j 6=i

nxj − (n − 1) ·

n∑

j=1

xj









2



1
2

=




1

n(n − 1)
·

n∑

i=1




1

n
·





n∑

j=1

xj − nxi









2



1
2

=

(

1

n(n − 1)
·

n∑

i=1

(xi − x)2

) 1
2

(5.3)

This is equal to the unbiased estimate of the standard error of x, if we use iid data, which is

ŝe(x) =

(
s2

n

) 1
2

since V ar[x] =
σ2

n
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5.2 Pseudo-Values

A different representation of the jackknife are pseudo-values. They are defined in terms of the
estimator θ̂ and the ith jackknife replication of θ̂, that is

θ̃i := θ̂ + (n − 1) · (θ̂ − θ̂−i) = n · θ̂ − (n − 1) · θ̂−i (5.4)

These pseudo-values are supposed to act as if they were n independent data values. This idea
can be understood looking at the following lemma:

Lemma 5.1 For any θ̂ the formula for ŝejack(θ̂) can be expressed as

ŝejack(θ̃) =

(

1

n(n − 1)
·

n∑

i=1

(

θ̃i − θ̃
)2
) 1

2

where θ̃ := 1/n
∑n

i=1 θ̃i, i.e. it holds ŝejack(θ̂) = ŝejack(θ̃).

This equation has a form similar to the jackknife estimate of the standard error for x derived
in equation (5.3), where the data now is given by the θ̃i. This supports the idea looking at the
pseudo-values as independent observations.

Proof of Lemma 5.1:

ŝejack(θ̃) =

(

1

n(n − 1)
·

n∑

i=1

(

θ̃i − θ̃
)2
) 1

2

=




1

n(n − 1)
·

n∑

i=1

(

n · θ̂ − (n − 1) · θ̂−i −
1

n

l∑

i=1

θ̃l

)2




1
2

=




1

n(n − 1)
·

n∑

i=1

(

n · θ̂ − (n − 1) · θ̂−i −
1

n

n∑

i=l

(n · θ̂ − (n − 1) · θ̂−l)

)2




1
2

=




n − 1

n
·

n∑

i=1

(

−θ̂−i +
1

n

n∑

i=l

θ̂−l

)2




1
2

=




n − 1

n
·

n∑

i=1

(

θ̂−i −
1

n

l∑

i=1

θ̂−l

)2




1
2

=

(

n − 1

n
·

n∑

i=1

(

θ̂−i − θ̂(·)

)2
) 1

2

= ŝejack(θ̂)

which is the jackknife estimate of standard error ŝejack(θ̂) as defined in (5.2). 2
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Example 5.1 (Application to regression data)

Let Xi be a random variable, e.g. the claim-history of the ith individual. We assume that the Xi’s
are independent and identically distributed with expectation θ, and that an unbiased estimator
θ̂ is available for θ, e.g. the Aalen-Johansen estimator, that is

E[θ̂] = θ := E [Xi]

Further we introduce independent and identically distributed covariates Zi = (Zi1, . . . , Zip)
T ,

that follow the distribution C. Thus we have:

θ := E [Xi] = E [E [Xi|Zi]] =

∫

E [Xi|Zi = zi] dC(zi)

Since θ̂ is an unbiased estimator its expectation is equal to θ . But also the expectation of the
quantity E [Xi|Zi] is equal to θ. We define θi to be this conditional expectation, i.e.

θi := E [Xi|Zi = zi] .

If we estimate C by Ĉ, the empirical distribution of Zi, it follows that the parameter θ might
be interpreted as the simple average of the θi’s, that is

E[θ̂] = θ ≈
1

n

n∑

i=1

θi (5.5)

Since the estimator θ̂ is an unbiased estimator for θ it follows that the ”leave-one-out estimator”,
namely θ̂−i, the ith jackknife replication of θ as defined in (5.1), is also an unbiased estimator for
θ and can be approximated in terms of the θi’s. This can be understood, if we consider instead
of the full data set the ith jackknife sample, and apply the same reasoning as for θ̂:

E
[

θ̂−i

]

≈
1

n − 1

∑

j 6=i

θj (5.6)

Since the data is only available given the covariates, we need a link between the estimator θ̂
and the quantity θi = E [Xi|Zi = zi]. Therefore Andersen, Klein, and Rosthøj (2001) defined
the quantity θ̃i as the summary statistic θ̂ based on the entire sample modified in the direction
given by the ”leave-one-out estimator” (θ̂ − θ̂−i), that we defined as the pseudo-values in (5.4):

θ̃i := n · θ̂ − (n − 1) · θ̂−i (5.7)

One can show, using the representation of θ as an average of the θi’s that the expectation of the
ith pseudo-value θ̃i is equal to the quantity θi = E [Xi|Zi = zi]:

E
[

θ̃i

]

= n · E
[

θ̂
]

− (n − 1) · E
[

θ̂−i

] (5.5), (5.6)
≈

∑

j

θj −
∑

j 6=i

θj = θi

Therefore we can use θ̃i as pseudo-values to fit the regression model

θ̃i = θi + εi

where θi = E [Xi|Zi = zi] is a specified regression mean.
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It became clear in this example that we can use the pseudo-values to construct a relationship
between an unbiased estimator θ̂, for example the Aalen-Johansen estimator P̂(s, t), and the co-
variates of each single observation. The Aalen-Johansen itself does not depend on the covariates,
thus we match the ith pseudo-value with the covariates of the ith observation. The pseudo-values
allow us not only to generate the data required for a regression analysis, calculating the Aalen-
Johansen estimator out of a given set of data would result in only one outcome, but also to
construct a relationship between the pseudo-values and the covariates.

A regression analysis of above model produces estimates for the transition matrix over the
interval (s, t]. But to calculate the necessary actuarial values, we need the one-year transition
probabilities. Therefore we have to look at a multivariate case, where we calculate the Aalen-
Johansen estimator in different intervals.

Example 5.2 (Fitting transition matrices which depend on covariates)

The above situation can be extended to the multivariate case: We consider a series of time-points
t0, . . . , tk and define θ̂ := (θ̂(t0), . . . , θ̂(tk)) calculating the pseudo-values analogue to (5.7) as

θ̃il = n · θ̂(tl) − (n − 1) · θ̂−i(tl) i = 1, . . . , n l = 0, . . . , k (5.8)

For our purpose we use the Aalen-Johansen estimator (4.22) and define the pseudo-values
element-wise, that is for each element of the transition matrix,

θ̂
(gh)

(tl) := P̂gh(l, l + 1) l = 0, . . . , k

giving us above θ̂ = (θ̂(t0), . . . , θ̂(tk)). We calculate then the Aalen-Johansen estimator based
on the entire sample and the ”leave-one-out estimator” for all i = 1, . . . , n and l = 0, . . . , k
giving us the pseudo-values θ̃il as defined in (5.8).

Note that the Aalen-Johansen estimator is a matrix; therefore we obtain for each observation i
one matrix of pseudo-values θ̃il at each time-point tl, l = 0, . . . , k.

We assume now a regression model for each element of θ̃il on Zi to quantify the effect of
the covariates on the transition probabilities. To perform this regression we assume that the

relationship between θ̃
(gh)
il , where g, h ∈ S denotes the possible entries of the transition matrix,

and the covariates is given by a GLM with link function g(·), that is

g(θ̃
(gh)
il ) = ZT

i β(gh)

The first covariate Zi1 is usually assumed to be equal to one to include an intercept term for β.

In the following we are going to specify the approach described above, to give an idea how it is
used in our data application (see Chapter 7):

Assume a three-state model with states labeled 1, 2 and 3. We calculate the Aalen-Johansen
estimator θ̂(tl) ∈ R

3×3, l = 0, . . . , k, for the transition matrix of this three-state model. Since
this is an unbiased estimator, we can calculate with the ”leave-one-out estimators”, as seen
above, our n matrices of pseudo-values θ̃il at times tl, l = 0, . . . , k. As covariates we include an
intercept term, ”Age” and ”Sex”, denoted by Zi1, Zi2 and Zi3.
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Note that the Aalen-Johansen estimator is a matrix. Therefore we perform a regression analysis
for each element of this matrix. Our model for the pseudo-values of the transition probability
from state g to state h is the following:

θ̃
(gh)
il =

exp{α
(gh)
l + Zi1β

(gh)
1 + Zi2β

(gh)
2 + Zi3β

(gh)
3 }

1 + exp{α
(gh)
l + Zi1β

(gh)
1 + Zi2β

(gh)
2 + Zi3β

(gh)
3 }

+ ε
(gh)
il i = 1, . . . , n l = 0, . . . , k

where ε
(gh)
il ∼ N(0, σ2

(gh)) and θ̃
(gh)
il is according to the above an unbiased estimator for the

transition probability Pgh(l, l + 1), the quantity we are interested in. Further we define

η
(gh)
il := α

(gh)
d + Zi1β

(gh)
1 + Zi2β

(gh)
2 + Zi3β

(gh)
3

µ
(gh)
il :=

exp{α
(gh)
l + Zi1β

(gh)
1 + Zi2β

(gh)
2 + Zi3β

(gh)
3 }

1 + exp{α
(gh)
l + Zi1β

(gh)
1 + Zi2β

(gh)
2 + Zi3β

(gh)
3 }

=
exp{η

(gh)
il }

1 + exp{η
(gh)
il }

∈ [0, 1].

Note that a regression analysis was performed for each element of the transition matrix. There-
fore for each transition probability an own model will be used and different parameter estimates
will be obtained. We use the logit as link function, our pseudo-values are restricted to the interval
(0, 1) due to the definition of the natural logarithm.

g(µ
(gh)
il ) = logit(µ

(gh)
il ) = ln

µ
(gh)
il

1 − µ
(gh)
il

︸ ︷︷ ︸

∈(0,1)

= η
(gh)
il ∈ R

µ
(gh)
il = g−1(η

(gh)
il ) =

exp{η
(gh)
il }

1 + exp{η
(gh)
il }

∈ [0, 1]

The formula for the pseudo-values θ̃il = n · θ̂(tl) − (n − 1) · θ̂−i(tl) requires that for large n
the ”leave-one-out estimator” is very close to the full estimator. Since the data usually does not
meet this accuracy, we observe values smaller than 0 or larger than 1, which cause problems for
the choice of the link function. To avoid these problems, we assumed a normal error distribution
for the pseudo-values and specify the link function with the logit and the variance function as
constant, that is

θ̃
(gh)
il ∼ N(µ

(gh)
il , σ2

(gh))

where µ
(gh)
il is the value of the inverse of the link function evaluated at η

(gh)
il .
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Chapter 6

Parameter Estimation

In the last chapter we generated the data required for a regression analysis and provided the
reasoning why we can match the ith pseudo-value with the covariates of the ith observation. We
also presented the model we want to use for a regression analysis. Aim of this chapter is now to
give an overview of the estimation methods available and introduce the one we used:

We start with a short introduction to Maximum Likelihood inference in general and show how
these tools can be applied to a class of distribution functions, the exponential family, which
leads to the generalized linear models (GLMs). Parameters can be estimated solving the so-
called set of Score equations, that is the derivative of the log-likelihood function with respect to
the parameters. Using the Newton-Raphson and Fisher-Scoring method, one can show that the
Score equations can be solved using an iterative weighted least-squares algorithm.

In the case of GLMs an assumption on the whole distribution function of the outcomes is made.
Generalizing this approach leads us to quasi-likelihood estimation, where only the relationship
between the mean and the variance is specified. One can show that the quasi-likelihood function
is nothing else than the log-likelihood function if the outcomes follow a distribution function from
the exponential family fulfilling the relationship between the mean and the variance. Estimation
is done using the so-called Score-like equations for quasi-likelihood. Similar to the case of GLMs
an iterative weighted least-squares algorithm is available to solve these Score-like equations.

Both the GLMs and the quasi-likelihood approach relay on the assumption of independence
between observations. In situations with longitudinal data, that is we record for example n
observations at ni different time-points, this assumption still holds for the outcomes of different
observations but obviously not for the outcomes of the same observation at different points in
time. Therefore we need a model that takes correlation into account. The Generalized Estimating
Equations (GEEs) can be seen as an extension of quasi-likelihood to longitudinal data.

Firstly we introduce the Independence Estimating Equations that in contrast to the above as-
sume that all outcomes of the set of longitudinal data are independent. Secondly we sacrifice
this assumption and present the GEEs where we allow for correlation between the outcomes
of the same observations at different points in time. We show in Theorem 6.5 that under mild
conditions the estimate obtained by solving the GEEs is consistent and asymptotically multi-
variate Gaussian distributed even if the correlation structure is misspecified in the first place.
Similar to the GLMs and quasi-likelihood methods, the GEEs can be solved using an iterative
weighted least-squares algorithm, but in contrast, one has to iterate between Fisher-scoring for
the parameter vector β and moment estimation of the correlation structure, as well.
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6.1 Maximum Likelihood Inference

One objective of statistical analysis is, as Diggle, Liang, and Zeger (1996) point out, to estimate
the unknown probability pattern underlying observed data. Let us assume we are given a set
of observed data y = (y1, . . . , yn)T and want to find its underlying probability density function
fi(yi,θ), depending on a p × 1 vector of unknown parameters θ. This is generally done using
maximum likelihood methods. Assuming independence of the n observations the joint density
of y1, . . . , yn is given by

f(y;θ) =

n∏

i=1

fi(yi,θ)

This means that once the data are observed, only the quantity θ is unknown and needs to be
estimated. Therefore we define the likelihood function as a function of θ, while y is fixed.

L(θ;y) := f(y;θ) =
n∏

i=1

fi(yi;θ) =
n∏

i=1

Li(θ; yi)

The maximum likelihood estimate for θ is usually denoted by θ̂. This is the value that maximizes
the likelihood function or equivalently the log-likelihood function denoted by

l(θ;y) := lnL(θ;y) = ln

n∏

i=1

Li(θ; yi) =

n∑

i=1

lnLi(θ; yi) =

n∑

i=1

li(θ; yi)

An estimate for θ can be obtained by setting the Score function S(θ), the derivative of the
log-likelihood function with respect to θ, equal to zero and solve these equations, the so-called
Score equations.

S(θ) :=
l(θ;y)

∂θ
= 0 (6.1)

The Score function evaluated at the true parameter value θ has expectation zero and its co-
variance matrix is given by the information matrix I(θ) := E[S(θ)S(θ)T ], which under mild
regularity conditions can be obtained as minus the expected value of the second order deriva-
tives of the log-likelihood function.

I(θ) = −E

[
∂2l(θ;y)

∂θ2

]

(6.2)

Usually numerical methods are required to solve (6.1) for θ̂, e.g. the Newton-Raphson method.

6.1.1 Newton-Raphson Method

The Newton-Raphson Method is used for solving non-linear equations of the form f(x) = 0. We
assume that ξ solves the equation, and approximate f(ξ) with a first order Taylor series at x0

with x0 close enough to ξ. For further details see Stoer (1999).

0 = f(ξ) ≈ f(x0) + Df(x0)(ξ − x0) (6.3)

where Df(x0) is the Jacobi-matrix. Solving (6.3) for ξ we obtain:

ξ = x0 − [Df(x0)]
−1 f(x0)
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This equation gives us an iterative scheme to solve for x:

x(i+1) = x(i) −
[

Df(x(i))
]−1

f(x(i)) (6.4)

Thus we can use the iterative procedure (6.4) to solve the Score equations (6.1) for the unknown
parameter θ and obtain an estimate θ̂ for θ.

As the Score function is already the first derivative of the log-likelihood function, the Jacobi-
matrix is simply the Hessian matrix of the log-likelihood function, denoted by H(θ). Using (6.4)
our approach to solve the Score equations is the following:

θ(i+1) = θ(i) −
[

H(θ(i))
]−1

S(θ(i)) (6.5)

6.1.2 Fisher-Scoring Method

As in many cases the Hessian matrix H(θ) in (6.5) still depends on the data, we use instead its
expectation. This is the Fisher-Scoring Method as described by McCullagh and Nelder (1989).
We define the matrix A(θ) as minus the information matrix, that is minus the expected value
of the Hessian matrix.

A(θ) := −E[H(θ)] = −E

[
∂2l(θ;y)

∂θ2

]

Therefore (6.5) takes the form

θ(i+1) = θ(i) +
[

A(θ(i))
]−1

S(θ(i)) (6.6)

Solutions of (6.6) can be obtained by iterative weighted least-squares, as we will show in the
case of GLMs in Section 6.2.4.
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6.1.3 Variance of the Maximum Likelihood Estimator θ̂

Under mild regularity conditions one can show that in large samples θ̂ is an asymptotically
unbiased and efficient estimator (see Serfling (1980)). We call an estimator θ̂n based on n
observations asymptotically unbiased, if its expectation is equal to the true value, if n tends to
infinity, that is

lim
n→∞

E[θ̂n] = θ

The estimator θ̂n is said to be consistent, if it converges in probability to θ, that is

lim
n→∞

P (|θ̂n − θ| < ε) = 1 ∀ ε > 0

An estimator θ̂ is efficient, if we estimate the parameter θ̂ with the asymptotically smallest
possible covariance matrix V of θ̂. This matrix is known as the inverse of the Fisher information
matrix (McCulloch and Searle 2001):

V = −

[

E
∂2l(θ;y)

∂θ2

]−1

(6.7)

It further follows that θ̂n is asymptotically normally distributed, that is θ̂n ∼ AN(θ, V ). We
call a sequence of random variables θn asymptotically normal with mean θ and variance V , if
V > 0 and for sufficiently large n the quantity V −1(θn − θ) converges in distribution against a
standard normally distributed random variable.

If we pursue the estimation of unknown probability patterns underlying observed data further
and introduce covariates, this leads us to regression models. Aim here is, to describe the de-
pendence structure of the mean response on the explanatory variables like in linear models or
generalized linear models.

6.1.4 Generalized Linear Models (GLMs)

GLMs are a natural generalization of the classical linear models, originally introduced by Gauss
and Legendre. They can be established by a three-part specification of the classical case, as done
by McCullagh and Nelder (1989).

• The random component: Instead of having the response yi
iid
∼ N

(
µi, σ

2
)

we allow any
distribution from the exponential family. A definition of the exponential family can be
found in Appendix A.1.

• The systematic component: The vector of covariates xi = (xi1, . . . , xip)
T produces a linear

predictor ηi given by ηi = xi
T β, where β = (β1, . . . , βp)

T is the parameter vector to be
estimated.

• The link between the random and systematic components: For the link function g(·),
with g(µi) = ηi we allow other monotonic differentiable functions than the identity link
g(·) = id(·).
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Objective for the Generalized Linear Regression is, to describe the relation between the mean
response µi = E[yi] and the covariates. The GLM, we want to fit for n independent observations
yi, is given by

g(µi) = xi
T β i = 1, . . . , n

Estimation for GLMs is generally done by minimizing a Goodness of fit measure, that assesses
the fit between our observed values yi and the fitted values µ̂i, generated by our model, for
example the deviance:

D(µ̂;y) = 2 (l(y;y) − l(µ̂;y))

where µ̂ = (µ̂1, . . . , µ̂n)T and y = (y1, . . . , yn)T . To calculate l(y;y) we take the observed values
as fitted values. This is the saturated model. Thus l(y;y) is the highest value obtainable for the
maximum likelihood function and does not depend on the unknown parameters.

It follows that maximizing the likelihood function is equivalent to minimizing the deviance, since
l(y;y) is a constant. Further l(µ̂;y) is the log-likelihood function maximized over β in terms of
the parameter µ̂, which is obtained through the relationship g(µ̂i) = xi

T β̂.

In the case of GLMs, the Maximum Likelihood Estimator of β is denoted by β̂ and can be
obtained by solving the Score equations (6.1), which take the form

S(β) =
∂l(β;y)

∂β
= 0

With the log-likelihood function l(θ;y) := ln f(y;θ) as a function of θ with fixed y, we can
derive expressions for the expectation of the first and second order derivative.

E

[
∂l(θ;y)

∂θ

]

= 0 and E

[
∂2l(θ;y)

∂θ2

]

+ E

[(
∂l(θ;y)

∂θ

)2
]

= 0 (6.8)

A proof of both of these equations (6.8) can be found in Appendix A.1.

In the next section, where we follow Diggle, Liang, and Zeger (1996) and McCullagh and Nelder
(1989), we are going to examine the maximum likelihood estimation in GLMs for observations
that follow an exponential distribution. The strong assumptions on the actual form of the distri-
bution function are relaxed in the section thereafter by introducing quasi-likelihood functions.
In the quasi-likelihood approach one only specifies the relationship between mean and variance,
via the variance function, and between mean and outcome, via the link function.
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6.2 Maximum Likelihood Estimation (MLE) in GLMs

6.2.1 The Likelihood Function of a GLM

Given the density function f(yi, θi, φ) for one observation yi from the exponential family, we
form the log-likelihood as l(θi, φ; yi) := ln f(yi; θi, φ). Whereas the density function is seen as a
function of yi for fixed θi, the log-likelihood function is a function of θi for a given observation
yi and we express it as a function of the mean µi = E[yi]. Using the independence of the n
observations y = (y1, . . . , yn)T with expectations µ = (µ1, . . . , µn)T the log-likelihood is the
sum of the individual contributions, that is

l(θ, φ;y) =
n∑

i=1

{(
yiθi − b(θi)

a(φ)

)

+ c(yi, φ)

}

Note that the functions a, b and c are defined in Appendix A.1. Estimation proceeds in setting
the derivative of the log-likelihood function zero. This gives us the Score equations that have
now to be solved for the unknown parameter β.

6.2.2 Score Equations for GLMs

In the case of the GLMs the Score equations can be expressed as follows, and the solution can
be obtained by iterative weighted least-squares as we will see in Sections 6.2.4:

Sj(β) =
n∑

i=1

∂l

∂βj
=

n∑

i=1

∂l

∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj
=

n∑

i=1

∂l

∂µi

∂µi

∂ηi

∂ηi

∂βj

!
= 0 j = 1, . . . , p

Rearranging the Score equations we obtain for j = 1, . . . , p

Sj(β) =
∂l(y;β, φ)

∂βj
=

n∑

i=1

∂l(yi;β, φ)

∂βj
=

n∑

i=1

∂l(yi;β, φ)

∂µi

∂µi

∂ηi

∂ηi

∂βj
by the chain rule,

where the second equation follows by independence of the yi’s. In the following we derive these
derivatives; for the first one we get:

∂l

∂θi
=

∂l

∂µi

∂µi

∂θi
⇒

∂l

∂µi
=

∂l

∂θi
/
∂µi

∂θi
=

yi − b′(θi)

a(φ)
/b′′(θi) =

yi − µi

vi

where µi and vi are defined as

µi := E[yi] = b′(θi) vi := V ar[yi] = b′′(θi) · a(φ)

For the last derivative we obtain:

∂ηi

∂βj
=

∂xi
T β

∂βj
= xij

We define a new variable wi as

wi := v−1
i

(
∂ηi

∂µi

)−2

= v−1
i

(
∂µi

∂ηi

)2
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Consequently the Score equations can be expressed as

Sj(β) =

n∑

i=1

yi − µi

vi

(
∂µi

∂ηi

)

xij =

n∑

i=1

wi(yi − µi)
∂ηi

∂µi
xij = 0 j = 1, . . . , p (6.9)

This is a system of non-linear equations in β. As mentioned in Section 6.1 we can calculate its
solution using the Newton-Raphson and Fisher-Scoring method.

6.2.3 Fisher-Scoring Method for GLMs

Solving the Score equations for β̂, we have to calculate the Jacobi-Matrix of S(β), i.e. we need
the Hessian Matrix H(β) of the log-likelihood function. Lets define the matrix A(β) as minus
the information matrix, that is minus the expected value of the Hessian matrix:

A(β) := −E[H(β)] = −E

[(
∂2l

∂βr∂βs

)

s,r=1,...,p

]

(6.10)

The matrix H(β) has the following elements:

H(β) :=






∂2l
∂β1∂β1

. . . ∂2l
∂βp∂β1

. . . . . . . . .
∂2l

∂β1∂βp
. . . ∂2l

∂βp∂βp






Therefore we calculate element (r, s) of the matrix H(β), which is ∂2l/∂βs∂βr, and obtain

∂2l

∂βs∂βr
=

∂

∂βs

[
n∑

i=1

yi − µi

vi

∂µi

∂ηi
xir

]

=

n∑

i=1

(yi − µi)
∂

∂βs

[

v−1
i

∂µi

∂ηi
xir

]

+

n∑

i=1

∂

∂βs
(yi − µi)

[

v−1
i

∂µi

∂ηi
xir

]

=
n∑

i=1

(yi − µi)
∂

∂βs

[

v−1
i

∂µi

∂ηi
xir

]

−
n∑

i=1

∂µi

∂ηi

∂ηi

∂βs

[

v−1
i

∂µi

∂ηi
xir

]

=

n∑

i=1

(yi − µi)
∂

∂βs

[

v−1
i

∂µi

∂ηi
xir

]

−

n∑

i=1

v−1
i

(
∂µi

∂ηi

)2

xisxir

This expression depends in most cases still on the data. Taking expectations the first term
vanishes, because E[yi − µi] = 0, while the second term becomes:

−E

[
∂2l

∂βs∂βr

]

= E

[
n∑

i=1

v−1
i

(
∂µi

∂ηi

)2

xisxir

]

= E

[
n∑

i=1

wixisxir

]

(6.11)

Thus inserting (6.11) into (6.10) we can write:

A(β) = −E[H(β)] = XT WX (6.12)

where X is the design matrix with elements xij , i = 1, . . . , n, j = 1, . . . , p, and W is the n × n
diagonal matrix with the diagonal elements given by w1, . . . , wn.
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As seen in Section 6.1.3 maximum likelihood gives us in large samples asymptotically unbiased
and efficient estimators. Its variance is, according to (6.7), given by

V = −

[

E
∂2l(β;y)

∂β2

]−1

=

(
n∑

i=1

∂µi

∂β
v−1
i

∂µi

∂β

)−1

Consequently β̂ is asymptotically normally distributed, that is β̂ ∼ AN(β, V ). Rewriting equa-
tion (6.11) we obtain for the elements of V −1:

Ars = −E

[
∂2l

∂βs∂βr

]

= E

[
n∑

i=1

v−1
i

(
∂µi

∂ηi

)2

xisxir

]

= E

[
n∑

i=1

∂µi

∂βs
v−1
i

∂µi

∂βr

]

6.2.4 Iterative Weighted Least-Squares Algorithm for GLMs

The actual estimation using the Newton-Raphson and Fisher-Scoring method is done by an
iterative algorithm. Given a current estimate b of β as a solution of the Score equations (6.9)
we obtain a new estimate b∗ using the iterative algorithm introduced in (6.6).

b∗ = b + A−1(b)S(b) ⇒ A(b)b∗ = A(b)b + S(b) (6.13)

The left side of the second expression in (6.13) gives:

(A(b)b∗)j =

p
∑

s=1

Ajs(b)b∗s
(6.12)
=

p
∑

s=1

n∑

i=1

(wixijxis) b∗s

=
n∑

i=1

wixij

p
∑

s=1

xisb
∗
s

︸ ︷︷ ︸

η∗

i :=xi
T b∗

=
n∑

i=1

wixijη
∗
i (6.14)

The right side of the second expression in (6.13) gives:

(A(b)b + S(b))j =

p
∑

s=1

Ajs(b)bs + S(b)j

(6.9), (6.12)
=

p
∑

s=1

n∑

i=1

wixijxisbs +

n∑

i=1

wi(yi − µi)
∂ηi

∂µi
xij

=

n∑

i=1

wixij









p
∑

s=1

xisbs

︸ ︷︷ ︸

ηi:=xi
T b

+(yi − µi)
∂ηi

∂µi









=
n∑

i=1

wixij

[

ηi + (yi − µi)
∂ηi

∂µi

]

︸ ︷︷ ︸

=:zi

=

n∑

i=1

wixijzi
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Putting the results from (6.14) and (6.15) together we finally obtain:

n∑

i=1

wixijη
∗
i =

n∑

i=1

wixijzi (6.15)

These equations have the form of linear weighted least-squares equations with weights wi and
dependent variate zi (see Appendix A.3). Using first order Taylor expansion for g(yi) one sees
that the dependent variable zi is a linearized form of the link function applied to yi.

g(yi) ≈ g(µi)
︸ ︷︷ ︸

ηi

+(yi − µi) g′(µi)
︸ ︷︷ ︸

∂ηi
∂µi

= ηi + (yi − µi)
∂ηi

∂µi
= zi

Assuming that ηi and µi are fixed we get for the variance of zi.

V ar[zi] = V ar[yi − µi]

(
∂ηi

∂µi

)2

= vi

(
∂ηi

∂µi

)2

= w−1
i

Since the dependent variable zi and the weights wi depend both on the fitted values µi only
current estimates are available, therefore the process is iterative. Usually the data itself can

be used as a first estimate to start with, e.g. µ̂
(0)
i := yi. Consequently we have the following

algorithm:

• Let η̂(j) be the current estimate of the linear predictor vector with corresponding fitted
value vector µ̂(j), which has been defined as

η̂(j) := g(µ̂(j)) = xi
T β̂

(j)

• Calculate with η̂(j) the adjusted dependent variate z(j) = (z
(j)
1 , . . . , z

(j)
n )T and the weights

w(j) = (w
(j)
1 , . . . , w

(j)
n )T , evaluating the derivative of the link function ∂ηi/∂µi at µi = µ̂

(j)
i ,

that is calculate the following quantities:

z
(j)
i := η̂i

(j) +
(

yi − µ̂i
(j)
) ∂ηi

∂µi

∣
∣
∣
µi=µ̂

(j)
i

w
(j)
i :=

1

v
(j)
i

(
∂ηi

∂µi

)−2 ∣
∣
∣
µi=µ̂

(j)
i

• Regress z(j) on the covariates xi1, . . . , xip, i = 1, . . . , n, with weights w(j), to obtain a new

estimate of the parameter β, denoted by β̂
(j+1)

• Calculate a new estimate η̂(j+1) of the linear predictor, i.e.

η̂(j+1) := g(µ̂(j+1)) = xi
T β̂

(j+1)

• Repeat until changes are sufficiently small, i.e. a satisfied degree of convergence is obatined:

∥
∥
∥β̂

(j+1)
− β̂

(j)
∥
∥
∥ < ε ε > 0
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6.3 Maximum Quasi-Likelihood Estimation (MQLE)

6.3.1 The Quasi-Likelihood Function

In above likelihood analysis we specified the whole distribution function of the yi’s by choosing
a distribution from the exponential family. As we have seen, the Score function depends in this
case only on the mean and variance of the yi’s (see equation (6.9)). The approach in which we
make just assumptions about the link function and the variance function without attempting
to specify the entire distribution of the yi’s leads us to the quasi-likelihood methods, as first
proposed by Wedderburn (1974). We only specify the relationship between the mean and the
variance and we allow any choice of link function. As in the likelihood case, the Score function
then only depends on the mean and variance of the yi’s. We will see that the quasi-likelihood
function can be used for estimation in the same way as the likelihood function.

Wedderburn (1974) assumed independent observations yi, i = 1, . . . , n with expectation µi and
variance V (µi), where V is a known function of µi. Further µi is a function of unknown pa-
rameters β = (β1, . . . , βp)

T . In the case of GLMs this function is called the mean function
µi = g−1(xi

T β).

For each observation the quasi-likelihood function, denoted by K(yi, µi), is defined by the relation

∂K(yi, µi)

∂µi
=

yi − µi

V (µi)

or equivalently

K(yi, µi) =

∫ µi

yi

yi − t

V (t)
dt

This function can be interpreted as a log-likelihood function. Thus for n independent observations
we obtain the following function:

K(y,µ) =
n∑

i=1

∫ µi

yi

yi − t

V (t)
dt

Above defined function K shares many properties with the likelihood function. One can show
that K is the log-likelihood function, if y has an one-parameter distribution from the exponential
family, which we will proof later in Section 6.3.2. But first we have a look to certain derivatives
of the quasi-likelihood function:

E

[
∂K(yi, µi)

∂µi

]

= E

[
yi − µi

V (µi)

]

=
1

V (µi)
E [yi − µi] = 0 i = 1, . . . , n

E

[
∂K(yi, µi)

∂βj

]

= E

[
∂K(yi, µi)

∂µi

∂µi

∂βj

]

= E

[
yi − µi

V (µi)

∂µi

∂βj

]

=
∂µi

∂βj
E

[
yi − µi

V (µi)

]

= 0 j = 1, . . . , p

E

[(
∂K(yi, µi)

∂µi

)2
]

= E

[(
yi − µi

V (µi

)2
]

=
1

V (µi)2
E
[

(yi − µi)
2
]

=
1

V (µi)
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−E

[
∂2K(yi, µi)

∂µ2
i

]

= −E

[
∂

∂µi

(
yi − µi

V (µi)

)]

= −E

[

−
1

V (µi)

]

=
1

V (µi)

E

[
∂K

∂βr

∂K

∂βs

]

= E

[(
∂K(yi, µi)

∂µi

)2 ∂µi

∂βr

∂µi

∂βs

]

= E

[(
yi − µi

V (µi)

)2 ∂µi

∂βr

∂µi

∂βs

]

=
1

V (µi)

∂µi

∂βr

∂µi

∂βs
(6.16)

−E

[
∂2K

∂βr∂βs

]

= −E

[
∂

∂βs

(
yi − µi

V (µi)

∂µi

∂βr

)]

= −E

[

(yi − µi)
∂

∂βs

(
1

V (µi)

∂µi

∂βr

)

−
1

V (µi)

∂µi

∂βr

∂µi

∂βr

]

=
1

V (µi)

∂µi

∂βi

∂µ

∂βj
(6.17)

Using these results one easily sees that the same properties hold as in the case of log-likelihood,
which we studied in (6.8), namely

E

[
∂K(yi, µi)

∂µi

]

= E

[
yi − µi

V (µi)

]

= 0

⇒ E [yi] = µi

E

[
∂2K(yi, µi)

∂µ2
i

]

+ E

[(
∂K(yi, µi)

∂µi

)2
]

= −
1

V (µi)
+ E

[(
yi − µi

V (µi)

)2
]

= 0

⇒ V ar [yi] = V (µi)

6.3.2 Quasi-Likelihood of Exponential Families

Assuming that Y has an one-parameter family of distributions with µ as parameter we can
define a log-likelihood function. This log-likelihood function is, according to Wedderburn (1974),
identical to the quasi-likelihood function if and only if this family is an exponential family.

Theorem 6.1 For one observation y, the log-likelihood function L has the property

∂L

∂µ
=

y − µ

V (µ)

where µ := E[Y ] and V (µ) := V ar[Y ] if and only if the density of y with respect to some measure
can be written in the form exp{θy − b(θ)}, where θ is some function of µ.

Proof:

”=⇒”
If ∂L/∂µ = (y − µ)/V (µ), integrating with respect to µ leads to

l(µ; y) =

∫
∂L

∂µ
dµ =

∫
y − µ

V (µ)
dµ =

∫
y

V (µ)
dµ −

∫
µ

V (µ)
dµ = θy − b(θ)

where θ :=
∫

dµ/V (µ) and the function b is defined as a function of θ, which itself is a function
of µ, that is b(θ) :=

∫
µ/V (µ)dµ.
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”⇐=”
Suppose that for some measure m, the distribution of Y is given by exp {yθ − b(θ)} dm(y). The
definition of a density function gives

∫
eyθe−b(θ)dm(y) = 1. Therefore we obtain

∫
eyθdm(y) =

eb(θ). Thus the moment generating function Ψ(t) of Y is

Ψ(t) = E
[
ety
]

=

∫

etyeθye−b(θ)dm(y) = e−b(θ)

∫

ey(θ+t)dm(y) = eb(θ+t)−b(θ)

Expectation and variance can be represented with the 1st and 2nd order derivatives of the
moment generating function Ψ(t) evaluated at zero. Thus the following relationship holds:

Ψ′(0) = E[Y ]

Ψ′′(0) −
(
Ψ′(0)

)2
= V ar[Y ]

This gives us here

Ψ(s) = exp{ b(θ + s) − b(θ)}

Ψ′(s) = b′(θ + s)Ψ(s)

⇒ E[Y ] = Ψ′(0) = b′(θ)

Ψ′′(s) = b′′(θ + s)Ψ(s) +
(
b′(θ + s)

)2
Ψ(s)

⇒ V ar[Y ] = Ψ′′(0) − (Ψ′(0)2) = b′′(θ)

We set µ := b′(θ), V (µ) := b′′(θ), then ∂µ/∂θ = ∂b′(θ)/∂θ = b′′(θ) = V (µ). Inserting this in the
log-likelihood function we get:

∂L

∂µ
=

∂L

∂θ

∂θ

∂µ
=

∂

∂θ
(yθ − b(θ))

∂θ

∂µ
=
(
y − b′(θ)

) ∂θ

∂µ
=

y − µ

V (µ)

2

As seen in Theorem 6.1 the log-likelihood and the quasi-likelihood are identical for an one-
parameter exponential family. The information matrix −E

[
∂2L/∂µ2

]
is therefore minimized

and its value is equal to −E
[
∂2K/∂µ2

]
. Generally speaking we have from the Cramér-Rao

inequality (see Appendix A.5) and using −E
[
∂2K/∂µ2

]
= 1/V ar(Y ) the following relationship:

V ar [Y ] ≥ −1/E

[
∂2L

∂µ2

]

⇒ −1/E

[
∂2K

∂µ2

]

≥ −1/E

[
∂2L

∂µ2

]

⇒ −E

[
∂2K

∂µ2

]

≤ −E

[
∂2L

∂µ2

]

(6.18)

One can interpret −E
[
∂2K/∂µ2

]
as the information Y gives concerning µ, when only the mean-

variance relationship is known.

From above it follows that E
[
∂2(K − L)/∂µ2

]
is always non-negative and we can regard it as

the additional information knowing the distribution of Y . Therefore assuming an one-parameter
exponential family for Y is equivalent to making no assumption other than the mean-variance
relation, since in this case −E

[
∂2(K − L)/∂µ2

]
= 0.
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6.3.3 Score-like Equations for Quasi-Likelihood

As already seen the quasi-likelihood function shares many properties with the log-likelihood
function. This holds also true for the way how we estimate regression parameters and judge
their precision. The estimator β̂QL for β is defined to be the solution of

SLj(β) =

n∑

i=1

∂K(yi;µi)

∂βj
j = 1, . . . , p

=
n∑

i=1

∂K(yi;µi)

∂µi

∂µi

∂βj

=

n∑

i=1

yi − µi

V (µi)

∂µi

∂βj

=

n∑

i=1

rivj

V (µi)
= 0 j = 1, . . . , p (6.19)

where ri := yi − µi and vj = ∂µi/∂βj . This equation reduces to the Score function if the
distribution of the yi’s is from the exponential family. This can be easily understood, comparing
expression (6.9) with (6.19).

6.3.4 Fisher-Scoring Method for Quasi-Likelihood

In the maximum likelihood case we estimated the precision of the estimator with the expectation
of the matrix of 2nd order derivatives. For the maximum quasi-likelihood function K we do
likewise, and denote the matrix of expected 2nd order derivatives by HQL. Further we define the
matrix D as minus the expectation of HQL.

D := −E[HQL] = −E

[(
∂2K

∂βi∂βj

)

s,r=1,...,p

]

the (r, s)th element of D can be calculated using (6.17) as follows:

Drs = −E

[
∂2
∑n

i=1 K(yi;µi)

∂βs∂βr

]

= −E

[

∂

∂βs

n∑

i=1

yi − µi

V (µi)
vr

]

= −E

[
n∑

i=1

∂

∂βs
(yi − µi)

vr

V (µi)
+

n∑

i=1

(yi − µi)
∂

∂βs

vr

V (µi)

]

= −E

[
n∑

i=1

−
vr

V (µi)

∂µi

∂βs

]

=

n∑

i=1

vrvs

V (µi)
(6.20)

Using first order Taylor expansion for β̂QL we obtain the following equation with the Newton-
Raphson method (see Section 6.1.1):

β̂QL = β − H−1
QL

n∑

i=1

∂K(yi;µi)

∂βj
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As required by the Fisher-scoring we replace HQL by it’s expectation −D and obtain:

β̂QL = β + D−1
n∑

i=1

∂K(yi;µi)

∂βj
(6.21)

this is analogue to the maximum likelihood approach. Therefore the following theorem holds:

Theorem 6.2 Maximum quasi-likelihood estimate β̂QL has approximate covariance matrix

D−1 = E[H−1
QL],

where HQL is the matrix of 2nd order derivatives of
∑n

i=1 K(yi;µi).

6.3.5 Iterative Weighted Least-Squares Algorithm for Quasi-Likelihood

As in the last section an iterative algorithm can be obtained using the Newton-Raphson and
Fisher-Scoring method. Given a current estimate b of β̂QL we obtain a new estimate b∗ using
an iterative procedure. Updating (6.21) we get:

D(b)b∗ = D(b)b +
n∑

i=1

∂K(yi;µi)

∂βj
(6.22)

The left side of (6.22) gives:

(D(b)b∗)j =

p
∑

s=1

Djs(b)b∗s
(6.20)
=

p
∑

s=1

n∑

i=1

vjvs

V (µi)
b∗s

=
n∑

i=1

vj

V (µi)

p
∑

s=1

vsb
∗
s (6.23)

The right side of (6.22) gives:

(

D(b)b +

n∑

i=1

∂K(yi;µi)

∂βj

)

j

=

p
∑

s=1

Djs(b)bs +

n∑

i=1

∂K(yi, µi)

∂βj

=

p
∑

s=1

n∑

i=1

vjvs

V (µi)
bs +

n∑

i=1

(yi − µi)

V (µi)

∂µi

∂βj

=

n∑

i=1

vj

V (µi)

p
∑

s=1

vsbs +

n∑

i=1

(yi − µi)
vj

V (µi)
(6.24)

Putting (6.23) and (6.24) together we obtain:

n∑

i=1

vj

V (µi)

p
∑

s=1

vsb
∗
s =

n∑

i=1

vj

V (µi)

p
∑

s=1

vsbs +

n∑

i=1

(yi − µi)
vj

V (µi)

p
∑

s=1

n∑

i=1

vjvs

V (µi)
(b∗s − bs)
︸ ︷︷ ︸

=:δbs

=

n∑

i=1

(yi − µi)
vj

V (µi)
(6.25)
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This means that, if we obtain successive approximations to β̂QL using the Newton-Raphson

method with the 2nd order derivatives of K replaced by their expectations, we obtain corrections
δb = b∗ − b to the estimates. We are summarizing these results in the following theorem:

Theorem 6.3 Using the Newton-Raphson method with expected second derivatives K to cal-
culate β̂QL is equivalent to calculating iteratively a weighted linear regression of the residuals,
ri := yi − µi, on the derivatives of µi with respect to the β’s with weight 1/V (µi), and using the
regression coefficients as correction to β̂. Here V (µi) and the derivatives of µi are calculated at
the current estimate of β̂QL.

Therefore we obtain the following algorithm:

• Let β̂
(l)
QL be the current estimate for β

• Regress the residuals r
(l)
i := yi − µ

(l)
i on the derivatives of µi with respect to the β’s,

denoted by vj , with weight 1/V (µi), evaluated at the current estimate β̂
(l)
QL.

vj :=
∂µi

∂βj

∣
∣
∣
∣βj=β̂

(l)
QLj

• Use the regression coefficients to calculate a corrected estimate for β, denoted by β̂
(l+1)
QL

To see the strong relationship between equation (6.15) and (6.25) we assume that a GLM holds
and η = xi

T β. We replace the derivative

vj =
∂µi

∂βj
by

∂µi

∂ηi

∂ηi

∂βj
=

∂µi

∂ηi
xij

thus we can rewrite (6.25) as

p
∑

s=1

n∑

i=1

vjvs

V (µi)
(b∗s − bs) =

n∑

i=1

(yi − µi)
vj

V (µi)

p
∑

s=1

n∑

i=1

1

V (µi)

∂µi

∂ηi
xij

∂µi

∂ηi
xis (b∗s − bs) =

n∑

i=1

(yi − µi)
1

V (µi)

∂µi

∂ηi
xij

n∑

i=1

1

V (µi)

(
∂µi

∂ηi

)2

xij

p
∑

s=1

xis (b∗s − bs) =

n∑

i=1

yi − µi

V (µi)

∂µi

∂ηi
xij

again using wi :=
1

V (µi)

(
∂µi

∂ηi

)2

n∑

i=1

wixij (η∗i − ηi) =
n∑

i=1

wi (yi − µi)
∂ηi

µi
xij

n∑

i=1

wixijη
∗
i =

n∑

i=1

wixij

(

ηi + (yi − µi)
∂ηi

∂µi

)

︸ ︷︷ ︸

=:zi

(6.26)

This is equal to equation (6.15) and the solution here can be obtained in exactly the same way.
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6.4 Estimation Methods for Correlated Data

6.4.1 Introduction

So far we had one observation for each subject and assumed these observations to be independent,
as they were from different subjects. If we study more than one observation from the same subject
or take correlation between subjects into account this assumption can no longer hold. These and
similar questions where studied by Diggle, Liang, and Zeger (1996) for longitudinal studies.

In population studies one distinguishes between cross-sectional studies and longitudinal studies.
In cross-sectional studies the outcome for each individual is measured once, whereas in longitu-
dinal studies individuals are measured repeatedly through time. Therefore longitudinal studies
can distinguish changes over time within individuals, known as age effects (e. g. growth), from
differences among people in their baseline levels, the so-called cohort effects. Clearly, indepen-
dence between subjects can be assumed in both, cross-sectional studies and longitudinal studies,
but in the latter one has to account for correlation within the outcomes of a subject to obtain
a correct statistical model.

Therefore we need a model for the joint distribution of the repeated observations. When the
outcome variable is approximately Gaussian, statistical methods for longitudinal data haven
been developed, as mentioned by Liang and Zeger (1986). For non-Gaussian outcomes however,
less development has taken place and few models are available. It seems therefore obvious to
use quasi-likelihood methods, where only the relation between mean and covariates in addition
to the relation between mean and variance has to be specified. This is in contrast to likelihood
methods, where we specify the whole joint distribution of the outcome variables.

Zeger and Liang (1986) describe the quasi-likelihood approach as a model where a known trans-
formation of the marginal expectation of the outcome (link function) is assumed to be a linear
function of the covariates. Instead of specifying the joint distribution of dependent variables,
its variance is assumed a known function of its expectation (variance function). In addition a
”working” correlation matrix for the observations of each subject is specified.

This setup leads us to the so-called Generalized Estimating Equations (GEEs) as proposed by
Liang and Zeger (1986) and Zeger and Liang (1986). Given that the regression model is correctly
specified these equations give under mild assumptions on the time dependence, even when the
time dependence is misspecified - as often is expected, consistent estimates of the regression
coefficients and their variances as well as asymptotically normally distributed estimates. Fur-
thermore the GEEs reduce to the Score equations for multivariate Gaussian outcomes and can
therefore be used in an analogue way.

To see the strong relation between the equations obtained using GLMs and the GEEs, we start
with a working model in which the ”independence working” assumption holds. We assume that
the marginal distribution of the dependent variable follows a GLM. Repeated observations are
assumed to be independent, that means, the ”working” correlation matrix is identical to the
identity matrix. Later we will generalize this independent working model to explicitly account
for correlation, giving us GEEs estimates.
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6.4.2 Models

Let us assume the following data situation: (yit;xit) are observed at times t = 1, . . . , ni for
subjects i = 1, . . . , n, hereby

• yit is the response with mean µit and variance vit

• xit is the 1 × p vector of covariates (xit1, . . . , xitp)

• yi is the ni × 1 vector, that collects the outcomes of subject i: (yi1, . . . , yini
)T with mean

µi and variance vi

• Xi is the ni × p matrix, that collects the covariates of subject i: (xi1, . . . ,xini
)T

Finally, y is the vector of length N =
∑n

i=1 ni, that collects the outcomes of all subjects i =
1, . . . , n. The unknown vector, to be estimated is β = (β1, . . . , βp)

T .

To summarize the above, we have for subject i the following data:

yi =





yi1

. . .
yini



 ; Xi =





xi1

. . .
xini



 =





xi11 . . . xi1p

. . . . . . . . .
xini1 . . . xinip



 ∈ R
ni×p

When convenient we let ni = n for all subjects without loss of generality to simplify notation.
If ni = 1 for all i, we have nothing else than the situation of quasi-likelihood of Section 6.3.
Additionally, if we specify the distribution of yit with a distribution from the exponential family
we have the situation of the classical likelihood, as discussed in Section 6.2.

Liang and Zeger (1986) and Zeger and Liang (1986) discussed two different approaches in deriving
the GEEs. The first one assumes a distribution from the exponential family for the yit’s and
starts with likelihood methods, whereas the second one only specifies the link and variance
function and thus, starts with quasi-likelihood methods. Both methods derive the same set of
GEEs and differ only in the additional specification of the distribution function in the first case.
However, the equations obtained in the second case, reduce to the equations, derived by the first
approach, if one takes a distribution from the exponential family.

Let yit have any distribution from the exponential family:

f(yit) = exp {(yitθit − b(θit) + c(yit))φ} (6.27)

where θit := h(ηit) and h(·) will be defined below.

As seen in Section 6.2 we have using (6.27)

µit := E[yit] = b′(θit)

vit := V ar[yit] = b′′(θit)/φ

where φ is the scale parameter and µi a ni × 1 vector, containing the elements µi1, . . . , µini
.
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Using the link function and above relationship we obtain:

g(µit) = ηit =⇒ µit = g−1(ηit)

µit = b′(θit) =⇒ θit = b′−1(µit) := m(µit)

If we take both together, this leads to

θit = m(µit) = m(g−1(ηit)) := h(ηit)

Further

ηit := xitβ = xit1β1 + . . . + xitpβp

Recall that xit is already a 1 × p vector and therefore does not need to be transposed. This is
in contrast to the notation used for GLMs and accounts for the additional dimension over time.
In an analogue way to yi we define µi and θi as the ni × 1 vectors of the elements ηi1, . . . , ηini

and θi1, . . . , θini
, respectively.

The two quantities µit and vit are specified in the quasi-likelihood approach as

µit := h(xitβ)

vit := k(µit)/φ

In the following the actual specification of µit and vit does not matter. We treat both cases
in only referring to µit and vit, ignoring the actual assumption on the underlying probability
density: A distribution from the exponential family or the quasi-likelihood approach. To obtain
the first or the second case it is only necessary to substitute the relevant quantities for µit and
vit, respectively. In both cases the following relationship holds:

∂l(yit, µit)

∂µit
=

yit − µit

vit

For the quasi-likelihood approach this is true by definition, in the case of a distribution from
the exponential family, we can obtain the same relationship:

∂l(yit, µit)

∂θit
=

∂l(yit, µit)

∂µit

∂µit

∂θit
⇒

∂l(yit, µit)

∂µit
=

∂l(yit, µit)

∂θit
/
∂µit

∂θit

Applying this to the definition of the exponential family (6.27) we obtain:

∂l(yit, µit)

∂µit
=

(yit − µit)φ

b′′(θit)
=

yit − µit

vit

This is of the same form as required by the definition of the quasi-likelihood function. So in the
next section we can use µit and vit in both cases without loss of generality.
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6.4.3 Independence Estimating Equations

Now we assume additionally that though observations come from the same subject (repeated
observations of one subject), they are nevertheless independent of one another. We call this the
”independence working” assumption.

The estimator β̂I = (β̂I
1 , . . . , β̂I

p)T is defined to be the solution of the Score-like equations from
likelihood analysis given below. Besides β also the quantity φ has to be estimated. As the Score
equations are not affected by φ, we can proceed by setting φ to one. As observations are assumed
independent, we derive the Score equations in the case of the exponential family as

UI(β) =

n∑

i=1

ni∑

t=1

∂l(yit;β)

∂β

=

n∑

i=1

ni∑

t=1

∂l

∂θit

∂θit

∂µit

∂µit

∂ηit

∂ηit

∂β

=
n∑

i=1

ni∑

t=1

∂l

∂θit

∂θit

∂ηit

∂ηit

∂β
= 0 (6.28)

Defining ∆i := diag(∂θit/∂ηit), that is a ni×ni diagonal matrix with diagonal elements ∂θit/∂ηit,
where t = 1, . . . , ni and Si := yi − µi ∈ R

ni×1 and using ηit := xitβ we obtain

UI(β) =
n∑

i=1

ni∑

t=1

∂l(yit;β)

∂β

=

n∑

i=1

ni∑

t=1

(yit − µit)
∂θit

∂ηit
xit

T

=

n∑

i=1

XT
i diag

(
∂θij

∂ηij

)

j=1,...,ni

(yi − µi)

=
n∑

i=1

XT
i ∆iSi = 0 (6.29)

Further we define Ai := diag(viφ) for each i, which is equal to diag(b′′(θit)) in the case of the
exponentially family and equal to diag(k(µit)) in the case of the quasi-likelihood. Nevertheless, in
both cases, independent of the parameter φ. One can show that under mild regularity conditions
the following theorem holds. The proof of this theorem is omitted, as this is a special case of
Theorem 6.5 we are going to prove in Section 6.4.5.

In the case of quasi-likelihood the following Score equations are derived:

UI(β) =
n∑

i=1

ni∑

t=1

∂l(yit,β)

∂µit

∂µit

∂β

=
n∑

i=1

ni∑

t=1

yit − µit

vit

∂h(xitβ)

∂β
xT

it

=

n∑

i=1

(
∂µi

∂β

)T

Si = 0
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Theorem 6.4 The estimator β̂I of β is consistent and n
1
2 (β̂I −β) asymptotically multivariate

Gaussian as n → ∞ with zero mean and covariance matrix VI given by

VI = lim
n→∞

n

(
n∑

i=1

XT
i ∆iAi∆iXi

)−1( n∑

i=1

XT
i ∆iCov [yi] ∆iXi

)(
n∑

i=1

XT
i ∆iAi∆iXi

)−1

= lim
n→∞

n H1(β)−1H2(β)H1(β)−1

where

H1(β) =

n∑

i=1

XT
i ∆iAi∆iXi

H2(β) =

n∑

i=1

XT
i ∆iCov [yi] ∆iXi

The variance of β̂I can consistently be estimated by

V̂I = H1(β̂I)
−1

(
n∑

i=1

XT
i ∆iSiS

T
i ∆iXi

∣
∣
∣
∣β=β̂I

)

H1(β̂I)
−1

V̂I can be determined without knowledge of φ, since Ai is independent of φ and Cov[yi] is

estimated directly by SiS
T
i

∣
∣
∣
∣β=β̂I

Although we totally ignored the correlation structure of successive observations of the same
subject, there are advantages for doing so:

• β̂I is easy to compute with existing software

• β̂I and V ar[β̂I ] are consistent estimators, when the regression is correctly specified

• β̂I is reasonable efficient for a few simple designs (Liang and Zeger 1986)

Nevertheless, omitting the correlation structure can cause low efficiency especially when the
correlation is large. Higher efficiency can be obtained using the GEEs, that explicitly take the
correlation into account.
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6.4.4 Generalized Estimating Equations (GEEs)

In this section we relax the ”independence working” assumption and take the correlation between
repeated observations from the same subject into account. The resulting estimator β̂G for β

remains consistent but efficiency is increased. Under the assumption that a weighted average of
the estimated correlation matrices converges to a fixed matrix, we can also derive an consistent
variance estimate of β̂G.

We define for each yi the ni × ni correlation matrix Ri(α), that is fully parametrized by the
s × 1 correlation parameter vector α, which is the same for all subjects, whereas the times of
observations and the correlation matrix can differ from subject to subject. We only require Ri(α)
to be a correlation matrix and call it the ”working” correlation matrix, as we do not expect it
to be correctly specified, though we want consistent estimates and have consistent variances of
these estimates. We define Vi using again the ni × ni diagonal matrix Ai := diag(viφ) as

Vi := A
1
2
i Ri(α)A

1
2
i /φ (6.30)

If Ri(α) is the true correlation matrix for yi, the matrix Vi is equal to the true covariance matrix
for yi, that is Vi = Cov[yi].

Cov[yi] = V ar[yi]
1
2 Corr[yi]V ar[yi]

1
2 = diag(viφ)

1
2 Ri(α)diag(viφ)

1
2 /φ

In addition to β and φ we have now also to estimate α. To obtain the GEEs we calculate,
analogue to (6.28), with (6.30)

UG(β) =
n∑

i=1

∂l(yi;β)

∂β
=

n∑

i=1

∂l

∂µi

∂µi

∂β
=

n∑

i=1

(
∂µi

∂β

)T

V −1
i (yi − µi) = 0 (6.31)

Note the similarity to the quasi-likelihood approach in the derivatives used. Further we define
Dit as the derivative of µit with respect to β, that is

Dit :=
∂µit

∂β
=

∂µit

∂θit

∂θit

∂ηit

∂ηit

∂β
= b′′(θit)∆itxit = vitφ∆itxit (6.32)

which is the specification in the case of a distribution from the exponential family. We define
the ni × p matrix Di using the vectors Dit by

Di := (Di1, . . . , Dini
)T =

∂µi

∂β
= Ai∆iXi ∈ R

ni×p

With (6.32) the GEEs from (6.31) have the form

UG(β) =

n∑

i=1

DT
i V −1

i Si =

n∑

i=1

Ui(β,α) = 0 (6.33)

where Ui(β,α) := DT
i V −1

i Si. If only one observation is available for each subject, that is ni = 1,
this equation becomes identical to the Score-like equation obtained for quasi-likelihood (6.19).

One can easily check that the general estimating equations reduce to the independence equation
(6.29) if we specify Ri(α) as the identity matrix. In contrast to the quasi-likelihood approach
from Wedderburn (1974), the matrix Vi in the function Ui(β,α) depends for each i not only on
the parameter β but also on the parameter α.
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A next step is now to replace α and φ by any n
1
2 -consistent estimators. Assuming that β and

φ are known we denote the estimator for α by α̂(β, φ) := α̂(Y,β, φ). Given β we take φ̂(β) :=

φ̂(Y,β) as estimator for φ. The estimator α̂ is called n
1
2 consistent, if n

1
2 (α̂(Y,β, φ)−α) = Op(1).

We insert these n
1
2 -consistent estimators in (6.33) and obtain:

UG(β) ≈

n∑

i=1

Ui

(

β, α̂(β, φ̂(β))
)

= 0

We define β̂G as the solution of this equation. We summarize its large sample properties in the
following theorem:

6.4.5 Large Sample Properties of β̂G

Theorem 6.5 Under mild regularity conditions and given that:

(i) α̂ is n
1
2 -consistent given β and φ;

(ii) φ̂ is n
1
2 -consistent given β; and

(iii) |∂α̂(β, φ)/∂φ| ≤ H(Y,β) which is Op(1),

then n
1
2

(

β̂G − β
)

is asymptotically multivariate Gaussian with zero mean and covariance matrix

VG given by

VG = lim
n→∞

n

(
n∑

i=1

DT
i V −1

i Di

)−1( n∑

i=1

DT
i V −1

i Cov [yi]V
−1
i Di

)(
n∑

i=1

DT
i V −1

i Di

)−1

Proof:

Under mild regularity conditions we obtain, using first order Taylor approximation and defining
α∗(β) := α̂(β, φ̂(β)):

β̂G = β −

(
n∑

i=1

∂

∂β
[Ui(β,α∗(β))]

)−1( n∑

i=1

Ui(β,α∗(β))

)

+ op(n
− 1

2 )

For details on the Op, op notation see Appendix A.4. Thus we get

n
1
2

(

β̂G − β
)

=

(
n∑

i=1

−
∂

∂β
[Ui(β,α∗(β))] /n

)−1( n∑

i=1

Ui(β,α∗(β))/n
1
2

)

+ op(1)

where

∂

∂β
[Ui(β,α∗(β))] =

∂Ui(β,α∗(β))

∂β
︸ ︷︷ ︸

Ai

+
Ui(β,α∗(β))

∂α∗(β)
︸ ︷︷ ︸

Bi

∂α∗(β)

∂β
︸ ︷︷ ︸

C
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Remembering, that we defined Di as ∂µi/∂β, we know that the derivative of Ui(β,α) with
respect to β can be derived as follows:

n∑

i=1

∂Ui(β,α)

∂β
=

n∑

i=1

∂

∂β

(
DT

i V −1
i (yi − µi)

)

=

n∑

i=1

[
∂

∂β

(
DT

i V −1
i

)
]

(yi − µi) +
(
DT

i V −1
i

) ∂

∂β
(yi − µi)

=

n∑

i=1

∂

∂β

(
DT

i V −1
i

)
(yi − µi) −

(
DT

i V −1
i

) ∂µi

∂β

=
n∑

i=1

∂

∂β

(
DT

i V −1
i

)
(yi − µi) − DT

i V −1
i DT

i

Taking expectation the first term vanishes and we are left with the last one. Further note that
∂Ui(β,α)/∂α = ∂DT

i V −1
i Si/∂α is a linear function of the Si’s. Consequently this function has

mean zero. Taking these results in mind and using the definition of Ai, Bi and C as above we
have now the following equations:

n∑

i=1

Ai/n =
n∑

i=1

∂Ui(β,α∗(β))

∂β
/n ≈ −

n∑

i=1

DT
i V −1

i Di/n as n → ∞

n∑

i=1

Bi/n =

n∑

i=1

∂Ui(β,α∗(β))

∂α∗(β)
/n = op(1)

C =
∂α∗(β)

∂β
=

∂α̂(β, φ̂(β))

∂β
=

α̂(β, φ) − α̂(β, φ̂(β))

φ − φ̂(β)

(6.34)
=

Op(1)

Op(1)
= Op(1)

where the last equation holds, as both, α̂ and φ̂ are n
1
2 -consistent estimators. For fixed β a first

order Taylor expansion of Ui(β,α∗(β)) around α gives
∑n

i=1 Ui(β,α∗(β))

n
1
2

=

∑n
i=1 Ui(β,α)

n
1
2

︸ ︷︷ ︸

A∗

+

∑n
i=1

∂
∂αUi(β,α)

n
︸ ︷︷ ︸

B∗

n
1
2 (α∗(β) − α)
︸ ︷︷ ︸

C∗

+op(1)

Again we use the fact that ∂Ui(β,α)/∂α = ∂DT
i V −1

i Si/∂α is a linear function of the Si’s and
its expectation is therefore zero. Thus we obtain for B∗

B∗ =
n∑

i=1

∂

∂α
Ui(β,α)/n = op(1)

and for C∗ we get using Taylor expansion

C∗ = n
1
2 (α∗ − α) = n

1
2

(

α̂(β, φ̂(β)) − α̂(β, φ) + α̂(β, φ) − α
)

+ n
1
2
op(1)

n
1
2

Taylor
= n

1
2









∂α̂

∂φ̂(β)
(β, φ̂(β))

︸ ︷︷ ︸

(iii)⇒Op(1)

(φ̂(β) − φ)
︸ ︷︷ ︸

(ii)⇒Op(1)

+ α̂(β, φ) − α
︸ ︷︷ ︸

(i)⇒Op(1)









= Op(1) (6.34)
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Consequently,
∑n

i=1 Ui(β,α∗(β)) is asymptotically equivalent to
∑n

i=1 Ui(β,α) whose asymp-
totic distribution is multivariate Gaussian with mean zero and covariance matrix given by

V = lim
n→∞

(
n∑

i=1

DT
i V −1

i Cov[yi]V
−1
i Di/n

)

This is, because

A∗ =

∑n
i=1 Ui(β,α)

n
1
2

(6.33)
=

n∑

i=1

1

n
1
2

DT
i V −1

i Si =

n∑

i=1

1

n
1
2

DT
i V −1

i

︸ ︷︷ ︸

A(i)

(yi − µi)

Using the formulas E[A(i)X] = A(i)E[X] and V ar[A(i)X] = A(i)V ar[X](A(i))T we get

E [A∗] =

n∑

i=1

A(i)E [yi − µi] = 0

V ar [A∗] =
n∑

i=1

A(i)V ar [yi − µi] (A
(i))T =

1

n

n∑

i=1

DT
i V −1

i Cov [yi − µi] V
−1
i Di

This proves that the asymptotic variance of
∑n

i=1 Ui(β,α) is V and leaves us with

n
1
2

(

β̂G − β
)

=

(
n∑

i=1

−
∂

∂β
Ui(β,α∗(β))/n

)−1( n∑

i=1

Ui(β,α∗(β))/n
1
2

)

+ op(1)

=

(
n∑

i=1

DT
i V −1

i Di/n

)−1( n∑

i=1

Ui(β,α)/n
1
2 + op(1)

)

+ op(1)

As n → ∞ we can now calculate the asymptotic distribution for
(

n∑

i=1

DT
i V −1

i Di/n

)−1

︸ ︷︷ ︸

=:A

(
n∑

i=1

Ui(β,α)/n
1
2

)

The second term has mean zero and variance V . Again using the formulas E[AX] = AE[X] and
V ar[AX] = AV ar[X]AT we finally obtain the required result:

VG := lim
n→∞

V ar
[

n
1
2

(

β̂G − β
)]

= lim
n→∞

(
n∑

i=1

DT
i V −1

i Di/n

)−1( n∑

i=1

DT
i V −1

i Cov [yi]V
−1
i Di/n

)(
n∑

i=1

DT
i V −1

i Di/n

)−1

= lim
n→∞

n

(
n∑

i=1

DT
i V −1

i Di

)−1( n∑

i=1

DT
i V −1

i Cov [yi]V
−1
i Di

)(
n∑

i=1

DT
i V −1

i Di

)−1

We can estimate VG by inserting the estimators for β, α and φ in above formula and replacing
Cov[yi] by the empirical covariance SiS

T
i . The consistency of β̂G and V̂G depends only on the

correct specification of the mean and not on the choice of Ri(α). Equation (6.33) converges to
zero and consequently has consistent roots, if E[Si] = E[yi]−µi = 0. The asymptotic distribution

of β̂G does not depend on the specific choice of α and φ as long as they are n
1
2 -consistent.
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6.4.6 Iterative Weighted Least-Squares Algorithm for GEEs

We apply the same procedure as with the likelihood and quasi-likelihood function to obtain
a solution for the Score and Score-like equations, respectively. We use the Newton-Raphson
method and replace the matrix of 2nd derivatives of the log-likelihood function by its expectation
(Fisher-scoring). The expectation of the Hessian matrix in the GLM case is

−E

[
∂2l(β;yi)

∂2β

]

= −E

[
n∑

i=1

∂

∂β

(
∂l(β;yi)

∂β

)]

= −E

[
n∑

i=1

∂

∂β

(

(yi − µi)V −1
i

∂µi

∂β

)]

= E

[
n∑

i=1

(
∂µi

∂β

)T

V −1
i

∂µi

∂β

]

=

n∑

i=1

DT
i V −1

i Di

But in the case of general estimating equation we have to account for additional parameter
estimation for α. So we iterate between Fisher-scoring for β and moment estimation of α and
φ. Given current estimates α̂ and φ̂ the procedure for β is the following:

β̂j+1 = β̂j −

(
n∑

i=1

DT
i (β̂j)Ṽi(β̂j)

−1Di(β̂j)

)−1( n∑

i=1

DT
i (β̂j)Ṽi(β̂j)

−1Si(β̂j)

)

(6.35)

where Ṽi(β) = Vi[β, α̂(β, φ̂(β))]. This procedure is a modification of Fisher-scoring method. We
replace the matrix of expectation of 2nd derivatives of the likelihood function by the limiting
value of the expectation of the derivative of

∑n
i=1 Ui[β, α̂(β, φ̂(β))].

Define D := (DT
1 , . . . , DT

n )T , S := (ST
1 , . . . , ST

n ) and Z := Dβ − S. Further let Ṽ be a nin× nin
block diagonal matrix with Ṽi’s as the diagonal elements. Then the iterative procedure (6.35)
for calculating β̂G is equivalent to performing an iteratively re-weighted linear regression of Z,
as dependent variable on D with weight Ṽ −1. We iteratively solve for the regression coefficients
and the correlation and scale parameters α and φ.

To understand this better, notice once again the close relation to the derivation of the re-weighted
linear regression in the two previous sections.

To simplify notation we abbreviate the quantities from equation (6.35) as follows:

βG = β − A−1
G UG ⇒ AGβG = AGβ − UG
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Inserting the results, we derived in this section, we obtain:

n∑

i=1

DT
i V −1

i DiβG =

n∑

i=1

DT
i V −1

i Diβ −

n∑

i=1

DT
i V −1

i Si

n∑

i=1

DT
i V −1

i DiβG =
n∑

i=1

DT
i V −1

i (Diβ − Si)
︸ ︷︷ ︸

=:Zi

n∑

i=1

(
∂µi

∂ηi

∂ηi

∂β

)T

V −1
i

∂µi

∂ηi

∂ηi

∂β
βG =

n∑

i=1

(
∂µi

∂ηi

∂ηi

∂β

)T

V −1
i

(
∂µi

∂ηi

∂ηi

∂β
β − Si

)

Wi =

(
∂µi

∂ηi

)T

V −1
i

∂µi

∂ηi
n∑

i=1

(
∂ηi

∂β

)T

Wi
∂ηi

∂β
βG =

n∑

i=1

(
∂ηi

∂β

)T

Wi
∂ηi

∂µi

(
∂µi

∂ηi

∂ηi

∂β
β − Si

)

n∑

i=1

XT
i Wiη

∗
i =

n∑

i=1

XT
i Wi

(

ηi −
∂ηi

∂µi

(yi − µi)

)

where η∗
i := XiβG. Comparing this with the results derived for the Maximum quasi-likelihood

estimation in (6.26), one sees the similarities between both approaches.

6.4.7 Estimation of the Parameters α and φ

For estimating the values of α and φ we use Pearson residuals (see Liang and Zeger (1986)).
They can be calculated in each step of the iteration given the current value for β as

r̂it :=
yit − b′(θ̂it)

b′′(θ̂it)
1
2

where we calculate θ̂it from the current value for β. Let N be again the number of all observations,
that is N =

∑n
i=1 ni, we can estimate φ by

φ̂−1 =

n∑

i=1

ni∑

t=1

r̂2
it

N − p

which is the longitudinal analogue of the familiar Pearson statistic (Zeger and Liang 1986). This
can be proved as follows:

E

[
n∑

i=1

ni∑

t=1

(yit − µit)
2

V (µit)/φ

]

= E

[
n∑

i=1

ni∑

t=1

(yit − µit)
2

V ar[yit]

]

≈ N − p

⇒ φ−1 ≈
1

N − p
E

[
n∑

i=1

ni∑

t=1

(yit − µit)
2

V (µit)

]

≈

n∑

i=1

ni∑

t=1

r̂2
it

N − p

The estimation of the parameter α depends on the correlation structure selected for the working
correlation matrix. In the case that observation times are the same for all subjects so that the
working correlation matrix Ri(α) = R(α) for all i = 1, . . . , n, we give in the next section
estimators for different types of correlation structures following Liang and Zeger (1986):

88



Correlation structures for GEEs

Liang and Zeger (1986) presented five different types of correlation structure: An ”independent”,
”exchangeable”, ”unstructured”, ”autoregressive (AR-I)” and ”one-dependent” working corre-
lation. In the following we are going to define above mentioned correlation structures and give
possible estimators for them:

The working correlation matrix R(α) can be chosen to be the identity matrix. R(α) = I. Obvi-
ously different outcomes from the same observation are then assumed to have zero correlation.

Corr[yit, yit′ ] = 0 ∀ t 6= t′

In this case we do not allow any correlation between observations even if we measure the same
observations at different points in time. Regardless if outcomes are from different or the same
time series, they are assumed to be independent and the GEEs reduce to the independence
estimating equations.

Liang and Zeger (1986) investigated the effect of the choice of the correlation matrix on the
efficiency of β in simulation studies. They found out that in cases with small correlation both
estimators, the estimator obtained by solving the independence estimating equations β I and
the estimator obtained by solving the generalized estimating equation βG, are efficient, but, as
correlation increases βG remains efficient, whereas βI does not.

The estimation of the correlation matrix in case of an ”independent” working correlation matrix
is unnecessary here, since the correlation matrix is fixed to the identity matrix.

If we choose the working correlation matrix as ”exchangeable” the correlation between different
observations within a time series is the same regardless of the distance in time.

Corr[yit, yit′ ] = α ∀ t 6= t′

An estimator for this correlation structure is given by

α̂ =
φ

n

n∑

i=1

∑

t>t′

r̂itr̂it′/

(
1

2
· ni · (ni − 1) − p

)

In contrast to the identity matrix, that does not allow for any correlation, we could use a totally
unspecified working correlation matrix. In this ”unstructured” case we have to estimate all
1
2 · ni · (ni − 1) correlations. This can be done by

φ

n

n∑

i=1

A
− 1

2
i SiS

T
i A

− 1
2

i

where Ai = diag(viφ) and Si = yi−µi are the quantities as defined in Section 6.4.4 and Section
6.4.3, respectively.
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The ”autoregressive (AR-I)” working correlation is nothing else than the correlation structure
of a continuous first-order autoregressive process (AR-I). This means that observations with the
same distance in time have the same correlation, where the correlation decreases polynomially
as the distance increases.

Corr[yit, yit′ ] = α|t−t′|

Since in the case of an ”autoregressive (AR-I)” correlation structure E[r̂itr̂it′ ] ≈ α|t−t′ |, Liang and
Zeger (1986) suggested to estimate the parameter α by the slope obtained from the regression
of log{r̂itr̂it′} on log{|t − t′|}.

In contrast to the polynomial decrease of the correlations in the ”autoregressive (AR-I)” case
is the ”dependent” correlation structure. Observations with the same distance do still have the
same correlation, but for each distance a separate value, not necessarily decreasing, is estimated.

Corr[yit, yit′ ] = α|t−t′| if t 6= t′

A special case of the ”dependent” working correlation matrix is the ”one-dependent” structure.
This is equivalent to the correlation structure of a stationary Markov process of degree one, i.e.

Corr[yit, yit′ ] = α|t−t′| if t ≤ 1

and zero otherwise. The ”one-dependent” correlation structure needs ni − 1 parameters, that
can be estimated by

α̂t =
φ

n − p

n∑

i=1

r̂i,tr̂i,t+1

In the case where αt = α for all t = 1, . . . , ni − 1 we can estimate the overall α as

α̂ =
1

ni − 1

ni−1∑

i=1

α̂t

Since βG and VG are robust to the choice of the correlation structure (see Liang and Zeger (1986))
we obtain according to Theorem 6.5 asymptotically correct estimates even if the correlation
structure is misspecified. Clearly, if we choose the working correlation matrix close to the true
correlation the estimates will be more efficient. For details on simulation studies using different
correlation structures and misspecified correlation structures see Liang and Zeger (1986).

The program written by Mark X. Norleans provides all of these five correlation structures, namely
the ”independent”, ”exchangeable”, which is called ”compoundsymmetric” in this program , the
”unstructured”, ”autoregressive (AR-I)” and ”dependent” correlation structure. The program
can be obtained from http://lib.stat.cmu.edu/ and is designed for Splus.

Another program called ”Oswald” is developed by the Statistics Group at the University of Lan-
caster and can be obtained from http://www.maths.lancs.ac.uk/Software/Oswald/ as a Splus
library. Here additional correlation structures are possible: Beside the above mentioned corre-
lation structures one can choose between a ”stationary Markov process” or a ”non-stationary
Markov process” structure of degree ”Mv”, where ”Mv” is a quantity to be specified. Fur-
ther a fixed user-specified matrix ”R” can be used as well as the correlation structure of an
autoregressive process of degree ”Mv”.
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Chapter 7

Application to Data

In this section we want to apply the results derived in the previous chapters to LTCI. We use a
Markovian multi-state model with states corresponding to the levels and places of care according
to the German compulsory LTCI system, the fifth component of the German welfare system,
that has been introduced in 1995. The relevant law (§14, BGB 11 1994, see Sozialgesetzbuch
(1994)) defines persons eligible for benefits in context of LTCI as follows:

”LTC beneficiaries are persons who, on account of a physical, mental or psychic
illness or disability, are in considerable or even more serious need of care for usual
and regular recurring activities of daily living on a continuing base, presumably for
at least six months.”

The German system distinguishes between two places of care, ”Care at home” and ”Care in
a nursing home” and between three levels of care, ”Level 1”, ”Level 2” and ”Level 3”, where
the severity of care increases from ”Level 1” to ”Level 3”. In the definition of the three levels
of care four areas, personal hygiene, nutrition, mobility and household activities, are specified,
where assistance might be necessary. The first three areas are subsumed as basic care. For each
area certain activities are specified. For example for personal hygiene the following activities are
outlined: Washing, showering, bathing, dental care, combing, shaving and using the toilet. To
qualify for any of the three levels an individual has to require assistance for a certain pre-specified
amount of time:

• Level 1 (considerably in need of care): The individual requires at least once a day for more
than 90 minutes help, including at least 45 minutes help for at least two activities of one
or more areas of basic care.

• Level 2 (seriously in need of care): The individual requires at least three times a day, at
different times of the day, for more than 3 hours help, including at least 2 hours help for
basic care.

• Level 3 (extremely in need of care): The individual requires at least five times a day, around
the clock and also at night time, for more than 5 hours help, including at least 4 hours
help for basic care.

Benefits are paid, depending on the place of care and level needed, up to certain ceilings. In the
case of ”Care at home” one can choose between benefits in kind (up to 1432 EUR in Level 3) or
a care allowances (up to 665 EUR in Level 3). For ”Care in a nursing home” the benefits range
from 1023 EUR (Level 1) to 1432 EUR (Level 3). Additional benefits are also possible.
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We are going to analyze the case of a three-state model with states ”Care at home”, ”Care in a
nursing home” and ”Death”. This is equivalent to the Illness-Death model already introduced
in Section 3 (Figure 3.1). Specifying the Illness-Death model for our purposes we obtain:

(1): Care at home
-λ12(t)

�

λ13(t)

(2): Care in a nursing home

(3): Death

S
S

S
S

S
Sw

�
�

�
�

�
�/

λ21(t)

λ23(t)

Figure 7.1: Markov model with states ”Care at home”, ”Care in a nursing home” and ”Death”

Given a representative sample of claim-records from the private compulsory LTCI, we calculated
pseudo-values as explained in Section 5.2 using the Aalen-Johansen estimator from Section
4.3 and performed a regression using GEEs as introduced in Section 6.4. We calculate the
Aalen-Johansen estimator and thus the pseudo-values at different points in time using the same
observations. In other words, one observation contributes to the Aalen-Johansen estimator at
different points in time and thus influences the outcome, the pseudo-values, at these times.
Therefore the assumption of independence required for GLMs does no longer hold and we use
GEEs, that in contrast to GLMs take correlation between successive outcomes into account. With
the parameters obtained from the GEEs the transition matrix can be estimated and premiums
calculated, following the approach sketched in Chapter 8.

The necessary calculations were performed using the programs ”S-Plus” and ”Matlab”. An
introduction to ”Splus” has been written by Venables and Ripley (2000) and to ”Matlab” by
Hanselman and Littlefield (1997). The program code of the functions used can be found in
Appendix B.1, where we used ”Matlab” for the computationally intensive calculation of the
Aalen-Johansen estimator and ”Splus” for the preparation of the data and the final parameter
estimation using GEEs.

Finally we want to derive the one-year transition probabilities for each combination of age z and
duration l of years spend in care:

Pgh(l, z) = P (S(l + 1) = h|S(l) = g, Age = z)

where the Markov chain S denotes now the claim-history of an individual as introduced in
Chapter 3, that had been a LTC claimant for l years. The estimated transition probabilities
P̂gh(l, z) are then used in Section 8.6, to calculate the necessary actuarial values and to derive
the premiums in an insurance model. But before doing this, lets have a look to the data first:
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7.1 Data Description

The data were collected between April 1st, 1995 and December 31st, 1998. Subject to observation
were 5593 individuals, 3505 female and 2088 male. Their claim-history is given with correspond-
ing levels of care, ”Level 1”, ”Level 2” or ”Level 3” and places of care, ”Care at home” (ah)
or ”Care in a nursing home” (nh) at the times a transition occurred. The definition of level
and place of care is due to German legislation as explained above. Out of the 5593 individuals,
3264 were censored during the survey due to various reasons. In total 7348 transitions could be
observed; their relative frequency is displayed in the following table:

cens. dead recov. Level 1 Level 2 Level 3 Level 1 Level 2 Level 3
(ah) (ah) (ah) (nh) (nh) (nh)

Level 1 (ah) 1011 279 28 0 444 75 118 68 34
Level 2 (ah) 873 597 1 46 0 296 9 208 58
Level 3 (ah) 307 631 2 2 20 0 0 4 87
Level 1 (nh) 248 85 3 9 1 0 0 108 26
Level 2 (nh) 449 263 2 1 2 1 7 0 116
Level 3 (nh) 376 437 0 1 0 4 2 9 0

It becomes clear from this table that total recovery, that is the individual is no longer LTC
patient, as well as an improvement regarding level or place of care, is a rare event. Therefore we
will not allow for recoveries and improvements in our model, and treat these observations like
censored observations from the time on the individual recovers or improves.

Further investigation tells us that 5198 transitions occurred from ”Care at home”, 3028 female,
2170 male, and 2150 transitions from ”Care in a nursing home”, 1646 female and 504 male:

female male total
transition transition transitions

at home 3028 2170 5198
nursing home 1646 504 2150

On the other side 2537 transitions occurred from ”Level 1”, 1684 female and 853 male, 2929
transitions from ”Level 2”, 1859 female and 1070 male, and 1882 transitions from ”Level 3”,
1131 female and 751 male. This result is summarized in the following table:

female male total
transition transition transitions

Level 1 1684 853 2537
Level 2 1859 1070 2929
Level 3 1131 751 1882

Note that in above tables we recored transitions. If a female observation transfered from state
”Level 1” to ”Level 2” and died then, it contributed to the number for ”Level 1” and ”Level 2”
in the first column of above table.
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7.2 The Three-State Model

In the case of the three-state model we considered, as mentioned above, the states ”Care at
home”, ”Care in a nursing home” and ”Death”.

(1): Care at home
-λ12(t)

�

λ13(t)

(2): Care in a nursing home

(3): Death
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�
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λ21(t)

λ23(t)

Figure 7.2: Markov model with states ”Care at home”, ”Care in a nursing home” and ”Death”

where λij(t) denotes the hazard-rate function at time t for a transition from state i to state j.
We excluded transitions from state 2 to 1, consequently λ21(t) := 0 for all t, and consider state 3
as an absorbing state for natural reasons. Thus λ31(t) and λ32(t) are zero, as well. In our dataset
we observed the following transitions:

to censored Care at Care in a Death
from home nursing home

Care at home 2222 883 586 1507
Care in a nursing home 1097 0 268 785

where we treated the observations that recovered, that is a transition from ”Care in a nursing
home” to ”Care at home” as censored observations.

We calculated now the Aalen-Johansen estimator as described in Section 4.3 as well as the ”leave-
one-out” estimator as introduced in Section 5.2. From these quantities, according to Section 5.2,
pseudo-values were calculated and a regression model using GEEs is fitted as already indicated
in Section 5.1. A detailed description of the functions we used and the functions themselves can
be found in Appendix B.1.

We used for each element of the pseudo-transition matrix a normal error distribution. As link-
function we chose the logit and assume the variance function, to be constant. This leads to the
quasi-likelihood approach using GEEs with possible covariates ”Age”, ”Sex”, ”Level of Care 2”,
”Level of Care 3” and ”Duration of care”, that we collect in the vector Zi. Therefore our model
for a transition probability from state g to state h is

θ̃
(gh)
il =

exp{α
(gh)
l + Zi1β

(gh)
1 + Zi2β

(gh)
2 + Zi3β

(gh)
3 + Zi4β

(gh)
4 + Zi5β

(gh)
5 }

1 + exp{α
(gh)
l + Zi1β

(gh)
1 + Zi2β

(gh)
2 + Zi3β

(gh)
3 + Zi4β

(gh)
4 + Zi5β

(gh)
5 }

+ ε
(gh)
il

for i = 1, . . . , n and l = 1, . . . , k, where αl indicates the duration of care, Zi1 an intercept
term, Zi2 the age at the time of the transition, Zi3 the sex Zi4 and Zi5 the level of care.
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To see the similarity of above equation and the notation used for the GEEs in Section 6.4.2 note

that above θ̃
(gh)
il corresponds to the yit in Section 6.4.2. In both cases i = 1, . . . , n indicates the

different subjects whereas l = 1, . . . , k corresponds to t = 1, . . . , ni indicating the different times
of observation. In our model, the times of observations are equal for all subjects; in other words,
k is the same for all subjects in contrast to ni which was allowed to vary for different subjects.

Note that the covariates ”Duration of care”, ”Sex”, ”Level of care 2” and ”Level of care 3” are
factors, which will be dummy coded, i.e.

α
(gh)
l :=

{
1 if the duration is in the interval (l, l + 1]
0 otherwise

Zi3 :=

{
0 if the individual is female
1 if the individual is male

Zi4 :=

{
0 if the individual is in level of care 1 or 3
1 if the individual is in level of care 2

Zi5 :=

{
0 if the individual is in level of care 1 or 2
1 if the individual is in level of care 3

For above specified model we performed now a regression analysis using GEEs. First we had to
choose the working correlation matrix R(α). In a first approach we decided to allow all possible
correlation and thus use the ”unstructured” working correlation matrix.

Based on the correlation matrix estimated in this approach we decided then which correlation
structure would represent this estimated correlation matrix best and performed another regres-
sion using this new correlation structure as working correlation matrix. Further we compared
the resulting premiums of both approaches (see Figure 8.2 in Section 8.6).

For p12, the transition probability from state ”Care at home” to ”Care in a nursing home” we
estimated the following ”unstructured” correlation matrix:

R̂(α) =





















1.00 0.05 −0.04 0.03 0.02 0.01 0.01 0.00 0.02 −0.01 0.07
0.05 1.00 0.14 0.07 −0.01 0.01 0.05 −0.01 −0.01 0.00 0.00

−0.04 0.14 1.00 −0.01 0.00 0.03 0.14 −0.02 −0.01 0.00 −0.01
0.03 0.07 −0.01 1.00 0.05 0.00 −0.02 −0.01 0.05 −0.01 0.00
0.02 −0.01 0.00 0.05 1.00 −0.01 0.07 −0.03 0.09 0.00 0.00
0.01 0.01 0.03 0.00 −0.01 1.00 0.00 −0.02 −0.01 −0.01 −0.01
0.01 0.05 0.14 −0.02 0.07 0.00 1.00 0.06 −0.01 0.00 0.10
0.00 −0.01 −0.02 −0.01 −0.03 −0.02 0.06 1.00 −0.01 0.12 −0.02
0.02 −0.01 −0.01 0.05 0.09 −0.01 −0.01 −0.01 1.00 0.01 −0.01

−0.01 0.00 0.00 −0.01 0.00 −0.01 0.00 0.12 0.01 1.00 −0.04
0.07 0.00 −0.01 0.00 0.00 −0.01 0.10 −0.02 −0.01 −0.04 1.00





















Since the values in this correlation matrix are negligible we choose for the transition probability
p12 the ”independence” working correlation matrix and obtained after 37 iterations the following
estimates:
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Call:

gee(formula = p12 ∼ Age + C(factor(Sex), treatment) + C(factor(ZLevel), treatment) + C(factor(time),
treatment), family = quasi(link = logit, variance = constant), data = geedata11, subject = id,
repeated = time, wc = ”ind”, QR = T)

Coefficients:

Values Stderr t-values Pr(|t| >)

Intercept -5.31 0.98 -5.43 0.00
Age 0.02 0.01 1.95 0.05
Sex 0.66 0.23 2.90 0.00
Level of care 2 -1.37 0.37 -3.69 0.00
Level of care 3 -1.38 0.46 -3.04 0.00
Duration of care 1 0.35 0.34 1.04 0.30
Duration of care 2 0.40 0.35 1.15 0.25
Duration of care 3 0.90 0.32 2.77 0.01
Duration of care 4 1.24 0.33 3.79 0.00
Duration of care 5 0.10 0.53 0.19 0.85
Duration of care 6 1.53 0.35 4.43 0.00
Duration of care 7 -0.11 0.72 -0.15 0.88
Duration of care 8 0.25 0.48 0.52 0.60
Duration of care 9 0.80 0.50 1.58 0.11
Duration of care 10 1.26 0.43 2.93 0.00

Degrees of Freedom: 80828 Total; 80813 Residual

Since we assumed in this case the ”independence” working correlation matrix, the correlation
matrix is fixed to the identity matrix and does not need to estimated.

In contrast to p12 we obtained for p13 larger correlations using the ”unstructured” working
correlation matrix:

R̂(α) =





















1.00 0.42 0.37 0.36 0.36 0.24 0.16 0.12 0.26 0.04 0.02
0.42 1.00 0.41 0.27 0.24 0.14 0.13 0.07 0.13 0.01 0.00
0.37 0.41 1.00 0.44 0.27 0.21 0.17 0.12 0.49 0.14 0.02
0.36 0.27 0.44 1.00 0.34 0.22 0.20 0.17 0.49 0.18 0.12
0.36 0.24 0.27 0.34 1.00 0.34 0.16 0.07 0.31 0.10 0.00
0.24 0.14 0.21 0.22 0.34 1.00 0.34 0.19 0.68 0.18 0.01
0.16 0.13 0.17 0.20 0.16 0.34 1.00 0.52 1.20 0.44 0.14
0.12 0.07 0.12 0.17 0.07 0.19 0.52 1.00 1.26 0.38 0.13
0.26 0.13 0.49 0.49 0.31 0.68 1.20 1.26 1.00 1.28 0.24
0.04 −0.01 0.14 0.18 0.10 0.18 0.44 0.38 0.13 1.00 0.33
0.02 0.00 0.02 0.12 0.00 0.01 0.14 0.13 0.24 0.33 1.00




















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The correlations tend to decrease when the distance in time increases, therefore we considered
an ”autoregressive (AR-I)” correlation structure sufficient for this transition probability giving
the following estimates:

Call:

gee(formula = p13 ∼ Age + C(factor(Sex), treatment) + C(factor(ZLevel), treatment) + C(factor(time),
treatment), family = quasi(link = logit, variance = constant), data = geedata11, subject = id,
repeated = time, wc = ”aut”, QR = T)

Coefficients:

Values Stderr t-values Pr(|t| >)

Intercept -2.16 0.65 -3.32 0.00
Age 0.02 0.01 2.42 0.02
Sex 0.36 0.20 1.81 0.07
Level of care 2 -0.69 0.21 -3.22 0.00
Level of care 3 -0.53 0.23 -2.25 0.02
Duration of care 1 0.02 0.06 0.37 0.71
Duration of care 2 0.18 0.07 2.70 0.01
Duration of care 3 0.88 0.09 1.03 0.00
Duration of care 4 0.99 0.12 8.55 0.00
Duration of care 5 0.74 0.14 5.38 0.00
Duration of care 6 0.41 0.16 2.65 0.01
Duration of care 7 0.24 0.18 1.34 0.18
Duration of care 8 0.82 0.24 3.49 0.00
Duration of care 9 1.19 0.33 3.65 0.00
Duration of care 10 -0.48 0.31 -1.55 0.12

Degrees of Freedom: 80828 Total; 80813 Residual

The estimate for the correlation matrix in this case is as follows:

R̂(α) =





















1.00 0.39 0.15 0.06 0.02 0.01 0.00 0.00 0.00 0.00 0.00
0.39 1.00 0.39 0.15 0.06 0.02 0.01 0.00 0.00 0.00 0.00
0.15 0.39 1.00 0.39 0.15 0.06 0.02 0.01 0.00 0.00 0.00
0.06 0.15 0.39 1.00 0.39 0.15 0.06 0.02 0.01 0.00 0.00
0.02 0.06 0.15 0.39 1.00 0.04 0.15 0.06 0.02 0.01 0.00
0.01 0.02 0.06 0.15 0.39 1.00 0.39 0.15 0.06 0.02 0.01
0.00 0.01 0.02 0.06 0.15 0.39 1.00 0.39 0.15 0.06 0.02
0.00 0.00 0.01 0.02 0.06 0.15 0.39 1.00 0.39 0.15 0.06
0.00 0.00 0.00 0.01 0.02 0.06 0.15 0.39 1.00 0.39 0.15
0.00 0.00 0.00 0.00 0.01 0.02 0.06 0.15 0.39 1.00 0.39
0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.06 0.15 0.39 1.00




















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In the case of p23 we also decided to use the ”autoregressive (AR-I)” working correlation matrix,
since a similar behavior in the correlation estimate of the ”unstructured” working correlation
matrix can be observed:

R̂(α) =





















1.00 0.29 0.18 0.19 0.09 0.08 −0.01 0.05 0.03 0.01 0.09
0.29 1.00 0.31 0.24 0.29 0.05 0.04 −0.01 −0.01 0.00 −0.03
0.18 0.31 1.00 0.37 0.18 0.16 0.04 0.07 0.08 0.00 −0.02
0.19 0.24 0.37 1.00 0.12 0.11 0.15 0.10 0.00 0.00 −0.02
0.09 0.29 0.18 0.12 1.00 0.24 0.13 0.12 0.00 0.00 −0.01
0.08 0.05 0.16 0.11 0.24 1.00 0.12 0.29 0.13 0.08 0.04

−0.01 0.04 0.04 0.15 0.13 0.12 1.00 0.35 0.21 0.14 0.30
0.05 −0.01 0.07 0.10 0.12 0.29 0.35 1.00 0.42 0.13 0.26
0.03 −0.01 0.08 0.00 0.00 0.13 0.21 0.42 1.00 0.28 0.83
0.01 0.00 0.00 0.00 0.00 0.08 0.14 1.33 0.28 1.00 1.22
0.09 −0.03 −0.02 −0.02 −0.01 0.04 0.30 0.26 0.83 1.22 1.00





















As estimates for p23 using the ”autoregressive (AR-I)” working correlation matrix we obtained

Call:

gee(formula = p23 ∼ Age + C(factor(Sex), treatment) + C(factor(ZLevel), treatment) + C(factor(time),
treatment), family = quasi(link = logit, variance = constant), data = geedata11, subject = id,
repeated = time, wc = ”aut”, QR = T)

Coefficients:

Values Stderr t-values Pr(|t| >)

Intercept 7.40 1.88 3.93 0.00
Age -0.06 0.02 -3.11 0.00
Sex 1.51 0.43 3.52 0.00
Level of care 2 -1.96 0.47 -4.13 0.00
Level of care 3 -2.27 0.55 -4.16 0.00
Duration of care 1 0.34 0.26 1.30 0.19
Duration of care 2 -1.08 0.28 -3.90 0.00
Duration of care 3 -0.37 0.28 -1.30 0.19
Duration of care 4 -1.68 0.36 -4.67 0.00
Duration of care 5 -1.96 0.39 -5.03 0.00
Duration of care 6 -1.06 0.41 -2.57 0.01
Duration of care 7 -0.65 0.46 -1.41 0.16
Duration of care 8 -0.09 0.62 -0.15 0.88
Duration of care 9 -2.28 0.63 -3.64 0.00
Duration of care 10 -0.03 0.82 -0.03 0.97

Degrees of Freedom: 80828 Total; 80813 Residual
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Giving a estimated correlation matrix of

R̂(α) =





















1.00 0.40 0.16 0.06 0.03 0.01 0.00 0.00 0.00 0.00 0.00
0.40 1.00 0.40 0.16 0.06 0.03 0.01 0.00 0.00 0.00 0.00
0.16 0.40 1.00 0.40 0.16 0.06 0.03 0.01 0.00 0.00 0.00
0.06 0.16 0.40 1.00 0.40 0.16 0.06 0.03 0.01 0.00 0.00
0.03 0.06 0.16 0.40 1.00 0.40 0.16 0.06 0.03 0.01 0.00
0.01 0.03 0.06 0.16 0.40 1.00 0.40 0.16 0.06 0.03 0.01
0.00 0.01 0.03 0.06 0.16 0.40 1.00 0.40 0.16 0.06 0.03
0.00 0.00 0.01 0.03 0.06 0.16 0.40 1.00 0.40 0.16 0.06
0.00 0.00 0.00 0.01 0.03 0.06 0.16 0.40 1.00 0.40 0.16
0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.16 0.40 1.00 0.40
0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.16 0.40 1.00




















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7.3 Results

In the following table we summarized the estimates obtained from the GEEs for all possible
transition probabilities of the model shown in Figure 7.2:

p12 p13 p23

Values Pr(|t| >) Values Pr(|t| >) Values Pr(|t| >)
Intercept -5.31 0.00 -2.16 0.00 7.40 0.00
Age 0.02 0.05 0.02 0.02 -0.06 0.00
Sex 0.66 0.00 0.36 0.07 1.51 0.00
Level of care 2 -1.37 0.00 -0.69 0.00 -1.96 0.00
Level of care 3 -1.38 0.00 -0.53 0.02 -2.27 0.00
Duration of care 1 0.35 0.30 0.02 0.71 0.34 0.19
Duration of care 2 0.40 0.25 0.18 0.01 -1.08 0.00
Duration of care 3 0.90 0.01 0.88 0.00 -0.37 0.19
Duration of care 4 1.24 0.00 0.99 0.00 -1.68 0.00
Duration of care 5 0.10 0.85 0.74 0.00 -1.96 0.00
Duration of care 6 1.53 0.00 0.41 0.01 -1.06 0.01
Duration of care 7 -0.11 0.88 0.24 0.18 -0.65 0.16
Duration of care 8 0.25 0.60 0.82 0.00 -0.09 0.88
Duration of care 9 0.80 0.11 1.19 0.00 -2.28 0.00
Duration of care 10 1.26 0.00 -0.48 0.12 -0.03 0.97

The transition probabilities can now be derived from these estimates for any given set of covari-
ates simply by calculating the mean function, the inverse of the logit, the link function we have
chosen. Note that this is a non-linear function.

Generally the transition probabilities p12 and p13 increase with age, whereas p23 decreases but
very slightly. The values of all three transition probabilities are higher for males than the values
for females as indicated by the high values of the covariate ”Sex”.

Transitions out of state ”Care at home” are more likely to happen to individuals in ”Level 1”,
whereas the values for individuals in ”Level 2” and ”Level 3” are nearly the same. This can be
understood looking at the values for ”Level of care 2” and ”Level of care 3” that are nearly
the same for these transition probabilities. The probability of dying in state ”Care at home”
decreases from ”Level 1” to ”Level 2” before it increases to ”Level 3” but does not reach the
value from ”Level 1” again. In contrast, for p23 one observes decreasing transition probabilities
for an increase in the severeness of care needed.

The ”Duration of Care” causes rising transition probabilities for p12 and p13 until a duration
of four years, then a decrease can be observed for three years until they increase again. For the
transition from state ”Care in a nursing home” to ”Death” the values are very close together
for all durations and only low changes occur.
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Chapter 8

The Multiple-State Insurance Model

In the last chapter we showed how one-year transition probabilities can be derived in a multi-state
model. These transition probabilities are necessary to calculate LTC premiums in an insurance
model. To calculate an insurance premium we have to define, when premiums and benefits have
to be paid, and what kind of benefits are under which circumstances due.

In this chapter we define firstly possible inflows and outflows in a multiple-state insurance model.
Then we introduce the concept of random present values that is used to compare random cash-
flows that occur at different points in time. A discount factor also has to be assigned. Calculating
the expectation of these random present values leads us to actuarial values.

The principle of equivalence is then used to determine the premium to be charged for a given
LTC-plan, that is we choose the premium such that the actuarial values of the inflows is equal
to the actuarial values of the outflows at the time the policy is issued. Further we explain how
reserves are calculated that mark a further constraint on the premiums: The so-called ”funding
condition” states, that reserves should be greater or equal zero at any time while the insurance
contract is in force.

In the last section of this chapter we apply these tools to our three-state model. To do so, we
have to add the state ”Active” to our model: Lives in the state ”Active” pay premiums, lives
in the states ”Care at home” and ”Care in a nursing home” receive benefits until they transfer
eventually to state ”Death”.

Since our data only provided information on LTC claimants we had to use additional sources to
calculate transition probabilities from state ”Active” to all other three states. We used incidence
rates from ”Custodial Insurance, Japan” (Appendix B.3) together with the relative frequency
of a person becoming LTC claimant and needing care at home or in a nursing home that were
observed in our data over a two-year period (Section 8.6) and the mortality rates from ”Bavarian
life tables 1986-1988” (Appendix B.2).

We discretized time-continuous quantities in our model and used an interest rate of 3.5% per
annum. Annual premiums were paid at the start of the year. If a live became LTC claimant
it received a certain allowance depending on the place and level of care needed: At home the
insurance company paid 25% in ”Level 1”, 50% in ”Level 2” and 75% in ”Level 3” of the
allowance and in a nursing home 100% of the allowance for all three levels. The actuarial values
were calculated using a C-program and the necessary premiums derived for a 10 EUR daily
allowance, seperately for female and males for ages 20 to 70.
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8.1 Benefits and Premiums

In Chapter 3 we modeled the life-history of an individual as a time-continuous Markovian process
S(t), using a multi-state model with finite state space S = {1, . . . ,K}. At each point in time
the individual is in exactly one state and potentially transfers, as time proceeds, from one state
to the next one until eventually the state ”Death” is reached.

Modeling an insurance contract cash-flows occur: Premiums are paid and benefits received by
the insured corresponding to the states visited. As the sample path s(t) of the time-continuous
Markovian process S(t) is different for each individual, so are the cash-flows. From the insurance
company point of view we distinguish between inflows (e.g the premiums paid by the insured)
and outflows (e.g. annuity benefits or lump sums paid by the insurer).

Generally the following types of premiums or benefits are possible. For further details and
examples see Haberman and Pitacco (1999):

Inflows:

• a continuous premium at a rate pi(t) at time t, if S(t) = i;

• a premium πi(t) at some fixed time t, if S(t) = i;

Outflows:

• a continuous annuity benefit at rate bj(t) at time t, if S(t) = j;

• a lump sum cij(t), if at time t a transition occurs from state i to state j;

• a lump sum dj(t) at some fixed time t, if S(t) = j, a so-called pure endowment;

We denote by pi(t)dt the premium amount and by bj(t)dt the benefit amount paid out in the
infinitesimal interval [t, t + dt), respectively. If we assume that S(0) = 1, for example in the
Illness-Death model all individuals start from the ”Disease-Free” state, π1(0) might represent
an initial single premium and all other premium functions remain zero.

Further the cumulative premium function and cumulative annuity benefit function are denoted
by Πi(t) and Bj(t), respectively. Both are non-negative and non-decreasing functions and will
be precisely defined in Section 8.4.

If the individual is in state i in the interval [t, u) a premium of Πi(u) − Πi(t) is due. If the
individual is, in contrast, in state j in the interval [t, u) an annuity benefit of Bj(u) − Bj(t) is
due. Pure endowments cause jumps in the function Bj(t).
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8.2 Random Present Values

Actuarial values, that we are going to define in Section 8.3 more explicitly, are expected present
values. Assume that the future premiums paid by the insured were known at the present time
as well as the future benefits that the insured receives. These cash-flows generally happen at
different points in time. In order to compare the value of the inflows and outflows for the
insurer, one uses the concept of present values, that is outflows and inflows are deflated to the
present time. The resulting quantities are then comparable given that the deflation factor is
correct specified. In insurance this assumption does not hold: Inflows and outflows are random
quantities. Therefore random present values have to be determined. A definition of a random
present values is necessary. Consider the compound interest model. The force of interest δ is
assumed to be deterministic and constant. Thus the annual discount factor, denoted by v, is

v = exp{ −δ}

Consider a continuous premium at rate pj(u) at time u, if S(u) = j. As already mentioned,
pj(u)du is the premium amount paid out in the infinitesimal interval [u, u + du). The random
present value of this premium at time t is given by

Y
pj

t (u, u + du) := vu−tI{S(u)=j}pj(u)du

The same continuous premium paid over the time interval [u1, u2), with t ≤ u1 < u2, has the
following random present value at time t:

Y
pj

t (u1, u2) :=

∫ u2

u1

vu−tI{S(u)=j}pj(u)du

Consider a premium πj(u) at some fixed time u, if S(u) = j. The random present value of this
benefit at time t is given by

Y
πj

t (u) := vu−tI{S(u)=i}πj(u)

Consider a continuous annuity benefit at a rate bj(u) at time u, if S(u) = j. Again, bj(u)du is
the benefit amount paid out over the infinitesimal interval [u, u+du). The random present value
of this benefit at time t is given by

Y
bj

t (u, u + du) := vu−tI{S(u)=j}bj(u)du

The same continuous annuity benefit on the time interval [u1, u2), with t ≤ u1 < u2, has the
following random present value at time t:

Y
bj

t (u1, u2) :=

∫ u2

u1

vu−tI{S(u)=j}bj(u)du

Consider a lump sum cjk(u), paid just after time u, if a transition from state j to k occurs at
time u. The random present value of this lump sum at time t is given by

Y
cjk

t (u) := vu−tI{S(u−)=j, S(u)=k}cjk(u)
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The random present value at time t of this lump sum, paid for each transition from state j to
state k in the interval [u1, u2) is given by

Y
cjk

t (u1, u2) :=

∫ u2

u1

vu−tcjk(u)dNjk(u)

where Njk(u) is the number of transitions from state j to k in the interval [0, u). Consequently
dNjk(u) is the number of transitions from state j to k in the interval [u1, u2).

Consider the pure endowment, a lump sum benefit dj(u) at some fixed time u, if S(u) = j. The
random present value at time t is given by

Y
dj

t (u) := vu−tI{S(u)=j}dj(u)

In the following sections these random present values will be used to calculate the actuarial
values, which are the basic tool to determine premiums and reserves.
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8.3 Actuarial Values

As mentioned before actuarial values are expected present values. In addition to the financial
structure of random present values we need now a probabilistic structure, as well. This is where
the assumption of the life-history or claim-history as a time-continuous Markov chain comes in.
Further we suppose that the risk is in state i at time t, that is S(t) = i, and define the actuarial
values as a conditioning event. Actuarial values are therefore conditional expected present values.
Following Czado and Rudolph (2002) we define:

Definition 8.1 (Actuarial values) Actuarial values are expected present values. Assuming
that the insured risk is in state i at time t, then the actuarial values are given as conditional
expectations of the random present values, that is

• E[Yt(u)|S(t) = i] for lump sum payments

• E[Yt(u, u + du)|S(t) = i] for annuities

In the following we are going to specify the actuarial values for the random present values
introduced in Section 8.2:

The actuarial value of the continuous premium at rate pj(u) at time u, if S(u) = j, is

E
[
Y

pj

t (u, u + du)
∣
∣S(t) = i

]
= vu−tpij(t, u)pj(u)du

E
[
Y

pj

t (u1, u2)
∣
∣S(t) = i

]
=

∫ u2

u1

vu−tpij(t, u)pj(u)du

The actuarial value of a lump sum πj(u) paid at some fixed time u, if S(u) = j, is

E
[
Y

πj

t (u)
∣
∣ S(t) = i

]
= vu−tpij(t, u)πj(u)

The actuarial value of the continuous annuity benefit at rate bj(u) at time u, if S(u) = j, is

E
[

Y
bj

t (u, u + du)
∣
∣
∣ S(t) = i

]

= vu−tpij(t, u)bj(u)du

E
[

Y
bj

t (u1, u2)
∣
∣
∣S(t) = i

]

=

∫ u2

u1

vu−tpij(t, u)bj(u)du

The actuarial value of a lump sum cjk paid just after time u, if a transition from state j to k
occurs at time u, is

E
[
Y

cjk

t (u)
∣
∣S(t) = i

]
= vu−tpij(t, u)µjk(u)cjk(u)

E
[
Y

cjk

t (u1, u2)
∣
∣S(t) = i

]
=

∫ u2

u1

vu−tpij(t, u)µjkcjk(u)du

The actuarial value of a lump sum dj(u) paid at some fixed time u, if S(u) = j, is

E
[

Y
dj

t (u)
∣
∣
∣ S(t) = i

]

= vu−tpij(t, u)dj(u)
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The actuarial notation considers usually unit-level premiums or unit annuities. Using these we
derive the following quantities:

For a continuous unit premium at a rate pj(u) or a continuous unit annuity benefit bj(u) paid
in state j during the period [t, n):

āij(t, n) =

∫ n

t

vu−tpij(t, u)du

For an unit premium πj(u) at some fixed time t:

Ēij(t, u) = vu−tpij(t, u)

For an unit lump sum cjk(u) at time t, if a transition occurs from state j to k:

Āijk(t, n) =

∫ n

t

vu−tpij(t, u)µjk(u)du

Āi.k(t, n) =
∑

j:j 6=k

Āijk(t, n)

Āij.(t, n) =
∑

k:k 6=j

Āijk(t, n)

For an unit lump sum dj(u) at some fixed time t:

Ēij(t, u) = vu−tpij(t, u)

106



8.4 The Principle of Equivalence

If we take all above defined premiums together, we obtain the cumulative premium function.
The actuarial value of the continuous-time premium paid at rate pj(u) at time t, if S(t) = j, is
given by the following quantity:

Pi(t, n) =

∫ n

t

vu−t
∑

j∈S

pij(t, u)pj(u)du

where n is the policy term. Further we have the actuarial value of the discrete-time premiums
πj(t), that is

Πi(t) =
∑

u:u≥t

vu−t
∑

j∈S

pij(t, u)πj(u)

Taking all the benefits mentioned above together we obtain the cumulative benefit function
Bi(t, n), that is

Bi(t, n) =

∫ n

t

vu−t
∑

j∈S

pij(t, u)bj(u)du

+

∫ n

t

vu−t
∑

j∈S

∑

k:k 6=j

pij(t, u)µjk(u)cjk(u)du

+
∑

u:u≥t

vu−t
∑

j∈S

pij(t, u)dj(u)

The principle of equivalence states, as mentioned by Czado and Rudolph (2002), that the ex-
pected amount of premiums has to be equal to the expected amount of benefits. At the time
when the policy is issued, the actuarial value of the benefits, that are paid under this contract,
has to be the same as the actuarial value of the premiums, that are received by the insurer. This
can formally be described as follows:

Definition 8.2 (The Principle of Equivalence) For an insured risk with policy end at n
and initial state S(0) = 1, the equivalence principle is satisfied if and only if

P1(0, n) = B1(0, n)

or equivalently in the case of a discrete-time premium at time t

Π1(0, n) = B1(0, n)

Clearly this relationship might be fulfilled by an infinity of premium functions. The so-called
”funding condition” is a further constraint. At any time during the insurance contract is in force
we require that

BS(t)(t, n) ≥ PS(t)(t, n)

As the principle of equivalence only has to be fulfilled at policy begin, this also enables us to
construct insurance contracts with increasing, decreasing or level premiums according to given
laws or customers needs.
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8.5 Calculation of Reserves

For every insurance contract reserves have to be built up in order to ensure that the insurance
company is able to fulfill the promises given in their contracts with the insured. The prospective
reserve at time t is defined as the actuarial value of future benefits less the actuarial value of
future premiums. Generally speaking, the reserve is equal to the expected amount the insurance
company has to pay in the future reduced by the expected amount the insured pays in the future
to the insurance company. Given S(t) = i, that is

V̄i(t) = Bi(t, n) −Pi(t, n)

or equivalently in the case of a discrete-time premium at time t:

V̄i(t) = Bi(t, n) − Πi(t, n)

Note that for each state i, that possibly is occupied at time t, a reserve has to be calculated.
Consider now an insurance contract, offering benefits bj(u) and cjk(u) with continuous premium
pj(u), then the prospective reserve is given by

V̄i(t) = Bi(t, n) −Pi(t, n)

=

∫ n

t

vu−t
∑

j∈S

pij(t, u)bj(u)du +
∑

j∈S

∑

k:k 6=j

pij(t, u)µjk(u)cjk(u)du

−

∫ n

t

vu−t
∑

j∈S

pij(t, u)pj(u)du

=

∫ n

t

vu−t
∑

j∈S



pij(t, u)bj(u) +
∑

k:k 6=j

pij(t, u)µjk(u)cjk(u) − pij(t, u)pj(u)



 du

Clearly this reserve changes over time driven by underlying quantities such as premium and
benefits payment as well as changes on interest and mortality assumptions.
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8.6 Calculation of Premiums

So far we modeled only transitions for individuals that already qualified for one of the three
levels of care (see Section 7). If we extend our model to the situation of an insurance company,
we have to add the state ”Active” to our model. In Figure 8.1 we added this state. For the area
within the dotted line we were able to calculate the necessary probabilities using our data. For
transition probabilities from outside this area additional information is necessary.

Since our data does not provide this information, we used published tables to account for the
incidence of care and the mortality of individuals in the ”Active” state. Namely we used incidence
rates from ”Custodial Insurance, Japan” (Appendix B.3) and mortality rates from the ”Bavarian
life tables 1986-1988” (Appendix B.2).

The incidence rate is the probability of an z-year old individual in the ”Active” state to transfer
to any state where LTC is needed within the next year.

iz := P (S(z + 1) = j, j ∈ {2, 3}| S(z) = 1)

Since the incidence rates from ”Custodial Insurance, Japan” only distinguish between age and
sex, we use the relative frequencies of the place of care, that occurred in our data between
January 1st, 1997 and December 31st, 1998, to make a further distinction with respect to the
place of care. The relative frequency were the following:

Place of care Female (in %) Male (in %)

at home 81.76 85.38
in a nursing home 18.24 14.62

The mortality rates of the so-called ”active-life” are usually denoted by qa
z . This is the probability

of an z-year individual in the ”Active” state to die within the next year given, that this individual
has survived up to age z.

qa
z := P (z < T ≤ z + 1| T > z, ”Active” )

In the three-state model transitions only between places of care are possible; transitions between
different levels of care are not accounted for. To provide still for this we calculate the necessary
actuarial values for each level and use then a weighted average, where weighting was performed
with the average duration in the corresponding level:

Female (in %) Male (in %)

Level 1 36.44 33.28
Level 2 39.75 40.83
Level 3 23.81 25.89
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Lets have a look to the new model:

(1): Active - (4): Death

(3): Care in a nursing home(2): Care at home -

?
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Figure 8.1: Markov four-state Insurance Model

We need for every combination of care duration l and age z the one-year transition probabilities,
denoted by Pgh(l, z). This is the probability of an z-year old individual with a care duration of
l years to transfer from state g to state h within a year.

Pgh(l, z) := P (S(l + 1) = h|S(l) = g,Age = z)

After having estimated these probabilities we are able to determine the necessary actuarial
values based on these estimates. We consider an insurance contract that pays a lump sum c1j , if
a transition from state 1 (”Active”) to state j occurs, where j might be state 2 (”Care at home”)
or state 3 (”Care in a nursing home”). We denote the actuarial value of this contract at policy
begin by B1,c1j

(0).

Further we have to specify a limiting age ω, such that the probability that any individual survives
beyond age ω is equal to zero.

From Section 8.3 we know that the actuarial value of such a lump sum c1j can be calculated as

B1,c1j
=

w−z−1∑

i=0

P11(0, i)p1j(i)v
ic1j

where P11(0, i) = P (S(i) = 1|S(0) = 1) for 0 ≤ i is the probability of not becoming claimant in
the interval [0, i] and p1j(i) = P (S(i + 1) = j|S(i) = 1) for j 6= 1 is the probability to transfer
to state j within the next year after having been in state 1 at time i. S(t) is the Markov chain
representing the claim-history of an individual.
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Further on this insurance contract, an annuity bj is paid, while the individuals is claimant in
state j ∈ {2, 3}. The actuarial value of this annuity is given by

B1,bj
=

w−z−1∑

i=0

P1j(0, i)v
ibj

The insured has to pay an single-annual premium π for this insurance cover, which has an
actuarial value of

P1,π =

w−z−1∑

i=0

P11(0, i)v
iπ

In accordance with the principle of equivalence the actuarial value of the benefits paid and the
premiums received should be zero at time 0. Thus we have

3∑

j=2

B1,c1j
+

3∑

j=2

B1,bj
= P1,π

3∑

j=2

w−z−1∑

i=0

P11(0, i)p1j(i, z)vic1j +

3∑

j=2

w−z−1∑

i=0

P1j(0, i)v
ibj =

w−z−1∑

i=0

P11(0, i)v
iπ

Solving this equation for π gives the necessary premium for any given set of annuities bj’s and
lump sums c1j ’s.

In the following we calculate the premiums for the LTC-plan ”PET” sold by a German insurer.
According to this LTC-plan the insured receives a certain allowance depending on the level of
care needed. This is for ”Care at home” 25% in ”Level 1”, 50% in ”Level 2” and 75% in ”Level
3” and for ”Care in a nursing home” 100% of the allowance. Thus, the c1j ’s are zero and in the
case of ”Care at home” bj = 1 − 0.25 ∗ (4 − j), where j ∈ {1, 2, 3}, for an unit allowance and in
the case of ”Care in a nursing home” bj = 1, j ∈ {1, 2, 3}.

For the calculation of the premiums we use a modified version of a C-program, which needs the
benefits, interest rate and transition probabilities as input. For details see Rudolph (2000). We
obtained for a 10 EUR daily allowance the following premiums:

Age Female Male Age Female Male

20 04.94 03.85 50 21.01 16.95
25 06.14 04.80 55 27.58 22.40
30 07.70 06.05 60 36.48 29.88
35 09.76 07.72 65 48.53 40.06
40 12.51 09.97 70 64.55 53.62
45 16.14 12.95

Table 8.1: Premiums fro a 10 EUR daily allowance
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In the following table we calculated the premiums for the same LTC-plan with estimates for
the transition probabilities using ”unstructured” working correlation matrices only, to compare
them with the premiums from Table 8.1 in Figure 8.2:

Age Female Male Age Female Male

20 04.98 03.94 50 21.16 17.35
25 06.19 04.91 55 27.74 22.93
30 07.76 06.19 60 36.63 30.58
35 09.84 07.90 65 48.58 40.97
40 12.61 10.21 70 64.28 54.78
45 16.27 13.26

Table 8.2: Premiums fro a 10 EUR daily allowance

Figure 8.2 compares the premiums from Table 8.1 calculated with the transition probabilities
from our model with a ”independence” working correlation matrix for p12 and a ”autoregressive
(AR-I)” working correlation matrix for both transition probabilities, p13 and p23 (Model I),
with the premiums 8.2 calculated with the transition probabilities based on the ”unstructured”
working correlation matrix (Model II).
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Figure 8.2: Comparison of Premiums using different Correlation Structures
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Chapter 9

Summary

We have presented three non-parametric estimators for basic quantities in survival analysis,
namely the Nelson-Aalen estimator for the cumulative hazard-rate function, the Kaplan-Meier
estimator for the survival distribution function and finally the Aalen-Johansen estimator for
the transition matrix of a Markovian multi-state model. All three estimators can be shown to
be at least almost unbiased. This property enabled us to define pseudo-values and construct a
relationship between the transition probabilities and the covariates of a single observation and
thus generate the data required for a regression analysis.

Consequently we could derive the transition probabilities in a Markovian three-state model, with
states ”Care at home”, ”Care in a nursing home” and ”Death”, using GEEs, that in contrast to
GLMs take correlation between observation into account. To extend this model to an insurance
model, the state ”Active” had to be added. Since our data did only provide information on LTC
claimants, additional sources had to be used, such as incidence rates for LTC and mortality
rates for active individuals. The transition probabilities obtained for this model could be used
to calculate the actuarial values and derive premiums for a given LTC-plan.

In the following table we are going to compare the premiums obtained with premiums offered
by a German health insurer. As already done in Section 8.6, we calculated premiums for a 10
EUR daily allowance based on the LTC-plan ”PET”:

Age Premium based Premium offered by
on GEEs German health insurer

Female Male Female Male

20 04.94 03.85 02.12 01.70
25 06.14 04.80 02.92 02.33
30 07.70 06.05 03.90 03.10
35 09.76 07.72 05.05 04.01
40 12.51 09.97 06.44 05.13
45 16.14 12.95 08.16 06.52
50 21.01 16.95 10.39 08.36
55 27.58 22.40 13.32 10.86
60 36.48 29.88 17.31 14.40
65 48.53 40.06 22.01 18.84
70 64.55 53.62 29.04 25.71
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We observe higher premiums using GEEs although the data have only slightly been modified. But
we can see that the behavior with respect to age is similar as well as the proportion between males
and females. It also should be noted that the incidence rates and mortality rates for ”Active”
individuals include administrative costs, whereas the transition probabilities do not. Therefore a
comparison between the calculated premiums using GEEs and the commercial premiums is not
very reasonable. Further the LTC definition in different countries, such as Japan and Germany,
varies and therefore country-specific incidence rates might be necessary.
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Figure 9.1: Comparison of Premiums

The method we used models the transition probabilities directly. The transition probabilities can
be calculated simply using the mean function, i.e. the inverse of the link function, of our model
for any given set of covariates, and therefore are simple functions of the regression coefficients.

However, in our case there are no methods available at the moment to examine the goodness-
of-fit or confirm the choice of link function. The choice of time-points might also influence the
results, but in our case the time-points are given, as we need one-year transition probabilities for
the calculation of actuarial values. More precise estimates might be obtained if the correlation
matrix is chosen close to the true one.
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Appendix A

Parameter Estimation

A.1 The Exponential Family

In the first of the specifications for a GLM (6.1.4) we required that the components yi have
a distribution from the exponential family, which contains the Normal-, Poisson-, Binomial-,
Gamma- and Inverse Gaussian distribution. A distribution is called to belong to the exponential
family, if we can specify functions a(·), b(·) and c(·) and the canonical parameter θ, such that
its density function can be written in the following form:

fY (y; θ, φ) = exp

{(
yθ − b(θ)

a(φ)

)

+ c(y, φ)

}

(A.1)

With this expression the log-likelihood function l(θ, φ; y) := ln fY (y; θ, φ), as a function of θ and
φ with fixed y, can be easily derived. Further expressions for the mean and variance of Y can
be derived using the following equations:

E

[
∂l(θ, φ; y)

∂θ

]

= 0

E

[
∂2l(θ, φ; y)

∂θ2

]

+ E

[(
∂l(θ, φ; y)

∂θ

)2
]

= 0

Proof:

E

[
∂l(θ; y)

∂θ

]

=

∫
∂ ln f(y; θ)

∂θ
f(y; θ)dy

=

∫
1

f(y; θ)

(
∂

∂θ
f(y; θ)

)

f(y; θ)dy

=

∫
∂

∂θ
f(y; θ)dy

=
∂

∂θ

∫

f(y; θ)dy

︸ ︷︷ ︸

1

= 0
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To simplify notation we omit now the arguments of the log-likelihood and density functions and
write instead l := l(θ; y) and f := f(y; θ). Further for the derivatives with respect to θ we write
f ′ := ∂f/∂θ and f ′′ := ∂2f/∂θ2, respectively

E

[
∂2l

∂θ2

]

+ E

[(
∂l)

∂θ

)2
]

=

∫
∂

∂θ

(
∂ ln f

∂θ

)

fdy +

∫ (
∂ ln f

∂θ

)2

fdy

=

∫
∂

∂θ

(
1

f

(
∂

∂θ
f

))

fdy +

∫ (
1

f

(
∂

∂θ
f

))2

fdy

=

∫
f ′′f − f ′f ′

f2
fdy +

∫
f ′2

f
dy

=

∫

f ′′dy −

∫
f ′2

f
dy +

∫
f ′2

f
dy

=

∫
∂2

∂θ2
fdy

=
∂2

∂θ2

∫

fdy

︸ ︷︷ ︸

1

= 0

2

Using the representation of the density function (A.1) we get for the log-likelihood function

l(θ, φ; y) =

{(
yθ − b(θ)

a(φ)

)

+ c(y, φ)

}

Therefore we obtain

E

[
∂l(θ, φ; y)

∂θ

]

= E

[
y − b′(θ)

a(φ)

]

= 0

⇒ E [Y ] = b′(θ)

E

[
∂2l(θ, φ; y)

∂θ2

]

+ E

[(
∂l(θ, φ; y)

∂θ

)2
]

= E

[
−b′′(θ)

a(φ)

]

+ E

[(
y − b′(θ)

a(φ)

)2
]

= 0

⇒ V ar [Y ] = b′′(θ)a(φ) (A.2)

As we can see in (A.2), the variance of Y is the product of two functions. The first factor is
the function b′′(θ), which is referred to as the variance function V (Y ). This function depends
through the canonical parameter θ on the mean. Thus it will be considered as a function of
µ and we will write V (µ). The second factor is the function a(φ), which is independent of θ
and depends on φ only. Each distribution function of the exponential family has a special link
functions, such that θ = η. This link function is called the canonical link function.
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A.2 Ordinary Least-Squares Regression

Aim in ordinary least-squares regressions is to explain the linear relationship between the vectors
of covariates x1j, . . . ,xnj and the observed random variables y = (y1, . . . , yn)T . The standard
model for multivariate linear Regression is the following:

yi = β0 + β1xi1 + . . . + βpxip + εi i = 1, . . . , n (A.3)

where y1, . . . , yn are the independent and normally distributed random variables and x1j, . . . ,xnj

the 1 × (p + 1) vectors of covariates. The vector of unknown parameters is β = (β0, . . . , βp)T

and has to be estimated from the data. Finally the quantities ε1, . . . , εn are the error terms,
which are assumed to be independent and identically normally distributed with mean zero and
variance σ2. The covariates are collected in the so-called design matrix, that is

X =





1 x11 . . . x1p

. . . . . . . . . . . .
1 xn1 . . . xnp





The design matrix can be used to write (A.3) as a matrix equation given by

y = Xβ + ε.

The most important assumption is that the error terms are independent and identically normally
distributed:

ε
iid
∼ N(0, σ2In)

From this assumption it follows that the vector y has expectation Xβ and variance σ2In using
the independence of observations.

E[y] = E[Xβ] + E[ε] = Xβ

V ar[y] = V ar[ε] = σ2In

The estimator β̂ for β is obtained by least-squares, that is we minimizes εT ε over β.

(y − Xβ)T (y − Xβ) (A.4)

To obtain an unique solution of this minimizing problem we require n ≥ p+1 and the vectors of
covariates x1j, . . . ,xnj to be linearly independent. If these two requirements are fulfilled, we get,

taking first derivative of (A.4) with respect to β and setting the result to zero, the estimator β̂.

XT (y − Xβ) = 0 ⇐⇒ XT Xβ = XTy

β̂ =
(
XT X

)−1
XT y

Using the property that E[AY ] = AE[Y ] and V ar[AY ] = AV ar[Y ]AT we obtain:

E[β̂] = E[
(
XT X

)−1
XTy] =

(
XT X

)−1
XT E[y] =

(
XT X

)−1
XT β = β

V ar[β̂] = V ar[
(
XT X

)−1
XT y] =

(
XT X

)−1
XT V ar[y]X

(
XT X

)−T

=
(
XT X

)−1
XT σ2InX

(
XT X

)−T
= σ2

(
XT X

)−1

This estimator is known as the best linear unbiased estimator (BLUE) for the above model. For
further details on ordinary least-squares regression see the book by Fahrmeir, Künstler, Piegeot,
and Tutz (2003).
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A.3 Weighted Least-Squares Regression

For ordinary least-squares we assumed that the error term ε is normally distributed with ex-
pectation zero and covariance matrix σ2In. For a weighted least-squares we assume that the
covariance matrix of the error term is equal to σ2V , where V is a diagonal matrix with elements
vi > 0. This leads us to

y = Xβ + ε ε
iid
∼ N(0;σ2V ) (A.5)

We try to track this problem back to ordinary least-squares and multiply above equation by the
matrix V − 1

2 :

V − 1
2 y = V − 1

2 Xβ + V − 1
2 ε ε

iid
∼ N(0;σ2V )

Defining y∗ := V − 1
2 y, X∗ := V − 1

2 X and ε∗ := V − 1
2 ε we get the following setup, similar to the

ordinary least-squares regression model:

E[ε∗] = E[V − 1
2 ε] = V − 1

2 E[ε] = 0

V ar[ε∗] = V ar[V − 1
2 ε] = V − 1

2 V ar[ε]
(

V − 1
2

)T

= V − 1
2 σ2In

(

V − 1
2

)T

= σ2In

Therefore

y∗ = X∗β + ε∗ ε∗
iid
∼ N(0;σ2In)

From ordinary least-squares we know that the estimator for β is defined as

β̂
∗

= (X∗T X∗)−1X∗y∗

= (XT (V − 1
2 )T V − 1

2 X)−1XT (V − 1
2 )T V − 1

2 y

= (XT V −1X)−1XT V −1y

Further we can calculate the expectation and covariance matrix of the estimator β̂
∗
:

E[β̂
∗
] = (XT V −1X)−1XT V −1E[y] = (XT V −1X)−1XT V −1Xβ = β

V ar[β̂
∗
] = (XT V −1X)−1XT V −1V ar[y]

(
(XT V −1X)−1XT V −1

)T

= (XT V −1X)−1XT V −1σ2V V −T X(XT V −1X)−T

= σ2(XT V −1X)−1XT V −1X(XT V −1X)−T

= σ2(XT V −1X)−1

Thus the estimator β̂
∗

has to fulfill the following equations:

(XT V −1X)β̂
∗

= XT V −1y

β̂
∗

is called the weighted least-squares estimator of β in Model A.5.
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A.4 The Op and op Notation for Stochastic Sequences

The idea of the O, o notation for non-stochastic sequences as known from Taylor expansion
can be extended to stochastic sequences, as well. The information contained in the Op(1), op(1)
notation is often referred to as the stochastic order of Xn. The following section refers to Bishop,
Fienberg, and Holland (1980) and further information can be found there. They define op(1) for
a sequence of random variables as follows:

Definition A.1 The stochastic sequence Xn = op(1), if for every ε > 0

lim
n→∞

P (|Xn| ≤ ε) = 1

• If Xn is a vector, we write Xn = op(1), if ||Xn|| = op(1);

• If Xn/bn = op(1), we write Xn = op(bn);

• If Xn is a vector, we write Xn = op(bn), if ||Xn|| = op(bn);

To show the differences between the op(1) and Op(1) definition, we rewrite the definition for
op(1). It is equivalent for Xn = op(1) to say, that the absolute value of Xn is op(1) with an
arbitrarily high probability.

Definition A.2 If for every ε, η > 0 there exists an integer n(ε, η) such that for n ≥ n(ε, η)

P (|Xn| ≤ ε) ≥ 1 − η

then the stochastic sequence Xn = op(1).

From this definition of op(1) we define Op(1) in an analogue way. We suppose that Xn = Op(1)
means with arbitrarily high probability |Xn| = Op(1).

Definition A.3 If for every η > 0 there exists a constant K(η) and an integer n(η) such that
for n ≥ n(η)

P (|Xn| ≤ K(η)) ≥ 1 − η

then the stochastic sequence Xn = Op(1).

As in the case for op(1) similar definitions apply for the case that Xn is a vector. To summarize
both definitions, one can refer to op(1) as Xn converging to zero in probability, and = Op(1) as
Xn being bounded in probability.

There is a relationship between Tchebychev’s inequality and the Op(1), op(1) notation. This
allows us to connect the stochastic order of magnitude from the Op(1), op(1) notation with the
standard deviation from Tchebychev’s inequality. The Tchebychev’s inequality is stated in the
following theorem:

Theorem A.1 (Tchebychev’s inequality) If Xn is a random variable with mean µ and vari-
ance σ2 < ∞, then for any positive number h

P (|Xn − µ| ≤ hσ) ≥ 1 −
1

h2

119



Proof of Theorem A.1:

To prove Tchebychev’s inequality we use Markov’s inequality, that holds for non-negative random
variables Yn ≥ 0:

aI{Yn≥a} ≤ aI{Yn≥a} + a
︸︷︷︸

≥0

I{Yn≤a}
︸ ︷︷ ︸

≥0

= E [Yn]

Taking expectations on both sides of Markov’s inequality we obtain:

aI{Yn≥a} ≤ E [Yn] ⇒ E
[
aI{Yn≥a}

]
= aP (Yn ≥ a) ≤ E [Yn] ⇒ P (Yn ≥ a) ≤

E[Yn]

a

Setting Yn := (Xn − µ)2 and a = ε2 this leads to

P
(
(Xn − µ)2 ≥ ε2

)
≤

E
[
(Xn − µ)2

]

ε2
=

V ar[Xn]

ε2

P (|Xn − µ| ≤ ε) ≥ 1 −
σ2

ε2

ε:=hσ
=⇒ P (|Xn − µ| ≤ hσ) ≥ 1 −

σ2

h2σ2
= 1 −

1

h2

which gives us exactly the inequality we called Tchebychev’s inequality above.
2

The following theorem gives us above mentioned relationship between Tchebychev’s inequality
and the Op(1), op(1) notation:

Theorem A.2 If Xn is a stochastic sequence with µn = E[Xn] and σ2
n = V ar[Xn] < ∞, then

Xn − µn = Op(σn)

Proof:

We define h := η−
1
2 for 0 < η < 1. Applying Tchebychev’s inequality to Xn, µn and σn we have:

P

(
|Xn − µn|

σn
≤ η−

1
2

)

≥ 1 − η

This holds for n = 1, 2, . . .. Now we set K(η) = η− 1
2 and apply the definition of = Op(1) to

conclude that

P

(
|Xn − µn|

σn
≤ K(η)

)

≥ 1 − η

This corresponds with the definition of Op(1); therefore

Xn − µn

σn
= Op(1)

2

The next theorem gives us a tool to prove that a sequence is op(1), if we have already shown

that the sequence is Op(n
− 1

2 ).
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Theorem A.3

Xn = Op(n
− 1

2 ) =⇒ Xn = op(1)

Proof:

Xn = Op(n
− 1

2 ) ⇐⇒ n
1
2 Xn = Op(1)

This is equivalent, that for every η > 0 there exists a constant K(η) and an integer n(η) such
that for n ≥ n(η)

P (n
1
2 |Xn| ≤ K(η)) ≥ 1 − η

This can also be written as

P (|Xn| ≤ n− 1
2 K(η)) ≥ 1 − η

It follows for every ε > 0 that

lim
n→∞

P (|Xn| < ε) = 1

which is nothing else than the definition for op(1).

In the following we want to use these notations in the context of Taylor expansion. A first order
Taylor expansion for a function f is, as x → a, given by

f(x) = f(a) + f ′(a)(x − a) + o(|x − a|) (A.6)

where we require the function f to be continuously differentiable in a. Assume that we are given
a random variable Xn such that Xn − a = Op(n

− 1
2 ), then

f(Xn) = f(a) + f ′(a)(Xn − a) + op(n
− 1

2 )

Proof:

We define a new function h(x) such that

h(x) :=

{
f(x)−f(a)−f ′(a)(x−a)

|x−a| x 6= a

0 x = a

Since f is continuous differentiable in a, so is h and h(Xn)
P
→ h(a) = 0, this is nothing else than

h(Xn) = op(1) and it follows that h(Xn)|Xn − a| = op(1) · Op(n
− 1

2 ) = op(n
− 1

2 ) 2
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A.5 Cramér-Rao Inequality

The Cramér-Rao inequality, states (see Gart (1959)) that under regularity conditions for a
consistent estimator θ̂ the following inequality holds:

Cov
[

θ̂
]

≥ I(θ)−1

where I(θ) is the information matrix, which is as defined in (6.2), minus the expectation of the
second derivative of the log-likelihood function with respect to θ.

Proof:

If L(θ;y) := f(y;θ) denotes the likelihood function, it follows by this definition that

∫

. . .

∫

Ldy1 . . . dyn = 1

Taking the derivative with respect to θ we obtain interchanging differentiation and integration:

∫

. . .

∫
∂L

∂θ
dy1 . . . dyn = 0 ⇒

∫

. . .

∫
∂ lnL

∂θ
Ldy1 . . . dyn = 0

Taking a second time the derivative we get:

∫

. . .

∫
(

∂2 lnL

∂θ2 +

(
∂lnL

∂θ

)2
)

Ldy1 . . . dyn = 0

This is equal to

E

[
∂2 lnL

∂θ2

]

+ E

[(
∂lnL

∂θ

)2
]

= 0 ⇒ E

[(
∂lnL

∂θ

)2
]

= −E

[
∂2 lnL

∂θ2

]

= I(θ) (A.7)

Since θ̂ is an unbiased estimator we have:

E[θ̂] =

∫

. . .

∫

θ̂Ldy1 . . . dyn = θ

If we take the derivative with respect to θ on the last equation it follows that

∫

. . .

∫

θ̂
∂ lnL

θ
Ldy1 . . . dyn = 1 (A.8)

As seen in (6.8) the expectation of the log-likelihood function with respect to θ is equal to zero.
Therefore we can write:

E

[
∂ lnL

∂θ

]

= 0 ⇒ E

[

θ
∂ lnL

∂θ

]

= θE

[
∂ lnL

∂θ

]

= 0 (A.9)
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Using the Cauchy-Schwarz inequality, that is E[XY ]2 ≤ E[X2]E[Y 2], we finally obtain the
required result:

1
(A.8)+(A.9)

= E

[(

θ̂ − θ
) ∂ lnL

∂θ

]2

≤ E

[(

θ̂ − θ
)2
]

︸ ︷︷ ︸

Cov

[

θ̂
]

E

[(
∂ lnL

∂θ

)2
]

(A.10)

Now it is easy to see, using (A.10) and (A.7), that this is nothing else than the Cramér-Rao
inequality:

Cov[θ̂] ≥

(

E

[(
∂ lnL

∂θ

)2
])−1

(A.7)
=

(

−E

[
∂2 lnL

∂θ2

])−1

= I(θ)−1

2
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Appendix B

Program and Tables

B.1 Program for Calculating the Aalen-Johansen Estimator

The parameter estimation using GEEs was performed using Mark X. Norleans’ program ”The
Generalized Estimating Equations Procedure, Version 2.6” written for ”Splus” with a syntax
similar to the existing Splus-glm() program. For details see http://lib.stat.cmu.edu/.

To calculate the Aalen-Johansen Estimator as well as the pseudo-values we used an own program,
which will be explained in this Section. Our dataset had one row for each transition containing
information on each individual’s sex, age at the time, the transition to the current state occurred,
begin and end of the time spent in this state, place of care, level of care, the state, to which the
next transition was observed as well as additional information, which were not of interest for
the problem at hand.

In a first step the dataset had to be restricted to rows one to thirteen (only to get rid of un-
necessary information). Then we used the function ”prep.aj.three.state” or ”prep.aj.four.state”
to prepare for the next step. Note that we designed one program for a three-state model and a
four-state model. Therefore these two preparations functions were necessary as kind of a trans-
lator to determine the state from which and to which the corresponding transition took place.
Thus we refer to ”place of care” or ”level of care” as ”state” depending on the model used.

After having transferred the so prepared dataset to ”Matlab” we used the function ”riskset”
to calculate at each transition time the corresponding so-called ”riskset” at that time, i.e. all
individuals that were at this time in the same state. As we need for calculating the actuarial
values one-year transition probabilities, we had to account for that with the function ”transi-
tion”. Thus we summarized the l to l + 1-year transitions in a new dataset ”transition.l”, where
l ranges in l = 0, . . . , k. Based on the dataset ”transition.l” and the ”riskset” we could calculate
the Aalen-Johansen estimator. The function ”aj” returned already the ”leave-one-out” Aalen-
Johansen Estimator with the estimator based on the entire sample being in the first row.

Next, based on this matrix the pseudo-values were calculated using the function ”pseudovalues”
and prepared for the parameter estimation with the function ”gee”. An additional column iden-
tifying the ith observation and a column indicating the ”time” of the transition, meaning l to
l+1-year transition, had to be included. The dataset, returned by the function ”gee”, had to be
transfered back to ”Splus” and was after some adjustments then ready for further calculation
with above mentioned program for GEEs written by Mark X. Norleans.
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The Splus Function ”prep.aj.three.state”

prep.aj.three.state function(data)
{

working.data data
attach(working.data)
data.length nrow(working.data)
j length(working.data)

G rep(0,data.length)
H rep(0,data.length)
Time rep(0,data.length)
Sex rep(0, data.length)
ZArt rep(0, data.length)
ZLevel rep(0, data.length)

for (i in 1:data.length){

G[i] data$Art[i]

if (data$Transitto[i]==1){ H[i] 3 }
if ((data$Transitto[i]==11) ‖ (data$Transitto[i]==12) ‖ (data$Transitto[i]==13)){H[i] 1}
if ((data$Transitto[i]==21) ‖ (data$Transitto[i]==22) ‖ (data$Transitto[i]==23)){H[i] 2}

Time[i] data$LTCend[i]

if (data$Zsex[i]==”m”){ Sex[i] 1 }

if (data$Art[i]==”stationaer”){ ZArt[i] 1 }

if (data$Level[i]==”Stufe1”){ ZLevel[i] 0 }
if (data$Level[i]==”Stufe2”){ ZLevel[i] 1 }
if (data$Level[i]==”Stufe3”){ ZLevel[i] 2 }

if ( (G[i]==2) && (H[i]==1) ){ H[i] 0 }
}

add cbind(G, H, Time, Sex, ZArt, ZLevel)
working.data cbind(working.data, add)

datdata working.data[order(working.data[,5], working.data[,j+1], working.data[,j+2]), na.last=T]

return(datdata)
}
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The Matlab Function ”riskset”

function A = riskset(A);
n=size(A,1);
m=size(A,2);

for j=1:n
A(j,m+1)=0;
A(j,m+2)=0;

end

for i = 1:n
r=0;

for j =1:n

if (A(i,13) == A(j,13)) & (A(i,11)==A(j,11)) & (A(i,12) == A(j,12)) & (A(i,12) ∼= 0)
r=r+1;
A(i,m+1)=r;

end

if (A(j,11)==A(i,11)) & (A(j,3) < A(i,4)) & (A(i,4) <= A(j,4))
A(i,m+2)=A(i,m+2)+1;

end

end

end

A;

The Matlab Function ”transition”

function C=transition(A, d)
n=size(A,1);
m=size(A,2);
j=1;
B=A;

for i=1:n

if d*360 ¡= A(i,4) & A(i,4) ¡ (d+1)*360
B(j,:)=A(i,:);
j=j+1;

end

end

C=B(1:j-1,1:m);

126



Calculation of the ”leave-one-out” Aalen-Johansen Estimators in Matlab

load three state model

threeaalen0=aj(threetransition0, riskset);

save threeaalen0
. . .

threeaalenK=aj(threetransitonK, riskset);

save threeaalenK

The Matlab Function ”aj”

function AJ = aj(A, B)
n=size(A,1); m=size(B,1); AJ=zeros(m+1,16);

for i=0:m
delete=i; p=n-1; DD=A(:,17); RR=A(:,18);

for t=1:p
if ( A(t,11)==A(t+1,11) ) & ( A(t,12)==A(t+1,12) ) & ( A(t,13)==A(t+1,13) )

DD(t+1)=0;
end

end

if ( delete ∼= 0 )
j=delete;
if (j <= n)

while ( (DD(j) == 0) & (j > 1) )
j=j-1;

end
DD(j)=DD(j)-1;

end
end

if (delete ∼= 0)
for j=1:n

if ( A(j, 11) ∼= B(i,11) )
RR(j)=RR(j);

end
if ( A(j, 11) == B(i,11) ) & ( A(j, 4) > B(i,3) ) & ( A(j, 4) <= B(i,4) )

RR(j)=RR(j)-1;
end

end
end
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mm=0;

for j=1:n
if ( DD(j) > 0 ) & ( A(j, 12) ∼= A(j,11) )

mm=mm+1;
end

end

l=1; d=zeros(m,1);
r=zeros(m,1);
g=zeros(m,1);
h=zeros(m,1);
t=zeros(m,1);

for j=1:n
if ( DD(j) > 0 ) & ( A(j, 12) ∼= A(j,11) )

d(l)=DD(j);
r(l)=RR(j);
g(l)=A(j,11);
h(l)=A(j,12);
t(l)=A(j,13);
l=l+1;

end
end

workingAJ=aalenjohn(d, r, g, h, t);
AJ(i+1,1)=workingAJ(1,1);
AJ(i+1,2)=workingAJ(1,2);
AJ(i+1,3)=workingAJ(1,3);
AJ(i+1,4)=workingAJ(1,4);
AJ(i+1,5)=workingAJ(2,1);
AJ(i+1,6)=workingAJ(2,2);
AJ(i+1,7)=workingAJ(2,3);
AJ(i+1,8)=workingAJ(2,4);
AJ(i+1,9)=workingAJ(3,1);
AJ(i+1,10)=workingAJ(3,2);
AJ(i+1,11)=workingAJ(3,3);
AJ(i+1,12)=workingAJ(3,4);
AJ(i+1,13)=workingAJ(4,1);
AJ(i+1,14)=workingAJ(4,2);
AJ(i+1,15)=workingAJ(4,3);
AJ(i+1,16)=workingAJ(4,4);

end

AJ;

128



The Matlab Function ”aalenjohn”

function mat = aalenjohn(d, r, g, h, t)
n=length(d); AJ=zeros(n, 16);

for i=1:n
AJ(i,1)=1; AJ(i,6)=1; AJ(i,11)=1; AJ(i,16)=1;

end

if (n >= 1)

for j=1:n
for i=1:n

if ( h(i) ∼ =0 ) & ( t(i)==t(j) ) & ( r(i) > 1)
if ( g(i)==1 )

AJ(j,1)=AJ(j,1)-d(i)/r(i);
AJ(j,h(i))=AJ(j,h(i))+d(i)/r(i);

end
if ( g(i)==2 )

AJ(j,6)=AJ(j,6)-d(i)/r(i);
AJ(j,h(i)+4)=AJ(j,h(i)+4)+d(i)/r(i);

end
if ( g(i)==3 )

AJ(j,11)=AJ(j,11)-d(i)/r(i);
AJ(j,h(i)+8)=AJ(j,h(i)+8)+d(i)/r(i);

end
end

end
end

end

l=1; m=n-1;
if (m < 1)

mat=eye(4);
end

if (m >= 1)

for k=1:m
if (t(k) ∼= t(k+1))

l=l+1;
end

end

k=1; aj=zeros(l, 16);

for i=1:n
aj(i,1)=1; aj(i,6)=1; aj(i,11)=1; aj(i,16)=1;

end
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for j=1:n
s=1;

for s=1:16
aj(k,s)=AJ(j,s);

end

if (j < n)
if (t(j) =t(j+1))

k=k+1;
end

end

end

mat=eye(4); test=eye(4);

for j=1:l
test(1,1)=aj(j,1); test(1,2)=aj(j,2); test(1,3)=aj(j,3); test(1,4)=aj(j,4);
test(2,1)=aj(j,5); test(2,2)=aj(j,6); test(2,3)=aj(j,7); test(2,4)=aj(j,8);
test(3,1)=aj(j,9); test(3,2)=aj(j,10); test(3,3)=aj(j,11); test(3,4)=aj(j,12);
test(4,1)=aj(j,13); test(4,2)=aj(j,14); test(4,3)=aj(j,15); test(4,4)=aj(j,16);
mat=mat*test;

end

end

Calculation of the dataset for the GEEs in Matlab

load threeaalen0

. . .

load threeaalenK

threepseudo0=pseudovalues(threeaalen0);

. . .

threepseudoK=pseudovalues(threeaalenK);

geedata=gee(threepseudo0, . . . threepseudoK, threetest);

save checkgee.m geedata
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The Matlab Function ”pseudovalues”

function B = pseudovalues(A)
n=size(A,1)-1;
B=zeros(n,16);

for i=1:n
B(i,:)=n*A(1,:) - (n-1)*A(i+1,:);

end

The Matlab Function ”gee”

function A = gee(A1, . . . AK, B)
n=size(B,1);
m=size(B,2);

B1=B;
for i=1:18

B1(1,m+i)=0;
end
B1(:,m+1)=ones(n,1);
for i=1:16

B1(:,m+1+i)=A1(:,i);
end
B1(:,m+18)=(1:1:n)’;

...

BK=B;
for i=1:18

BK(1,m+i)=0;
end
BK(:,m+1)=K*ones(n,1);
for i=1:16

BK(:,m+1+i)=AK(:,i);
end
BK(:,m+18)=(1:1:n)’;

A=[B1; . . . ; BK];

131



The Splus Function ”geeimport”

geedata importData(”geedata.m”, type=”MATLAB”)

variablen.alt c(”Indnumber”, ”Zlevel”, ”LTCbegin”, ”LTCend”, ”Transitto”, ”Death”, ”Recov-
ery”, ”DeltaAmb”, ”DeltaStat”, ”Age”, ”G”, ”H”, ”Time”, ”Sex”, ”ZArt”, ”ZLevel”, ”D”, ”R”)

variablen.neu c(”time”, ”p11”,, ”p12”, ”p13”, ”p14”, ”p21”, ”p22”, ”p23”, ”p24”, ”p31”, ”p32”,
”p33”, ”p34”, ”p41”, ”p42”, ”p43”, ”p44”, ”id”)

variablen c(variablen.alt, variablen.neu)

dimnames(geedata)[[2]] variablen

geedata geedata[order(geedata[,36]), na.last=T]

attach(geedata10)

uns.out.12 gee(p12 ∼ Age+C(factor(Sex), treatment)+C(factor(ZLevel), treatment)+C(factor(time),
treatment), quasi(link=logit, variance=constant), geedata, id, time, wc=”uns”, QR=T)
uns.out.12

uns.out.13 gee(p13 ∼ Age+C(factor(Sex), treatment)+C(factor(ZLevel), treatment)+C(factor(time),
treatment), quasi(link=logit, variance=constant), geedata, id, time, wc=”uns”, QR=T)
uns.out.13

uns.out.23 gee(p23 ∼ Age+C(factor(Sex), treatment)+C(factor(ZLevel), treatment)+C(factor(time),
treatment), quasi(link=logit, variance=constant), geedata, id, time, wc=”uns”, QR=T)
uns.out.23

132



B.2 Bavarian One-Year Mortality Rates (1986-1988)

Age qx (Male) qy (Female) Age qx (Male) qy (Female)

20 0.00131 0.00041 61 0.01658 0.00767
21 0.00126 0.00041 62 0.01806 0.00845
22 0.00121 0.00039 63 0.01970 0.00933
23 0.00117 0.00038 64 0.02153 0.01029
24 0.00112 0.00038 65 0.02357 0.01136
25 0.00109 0.00037 66 0.02583 0.01256
26 0.00106 0.00037 67 0.02835 0.01392
27 0.00104 0.00039 68 0.03114 0.01547
28 0.00104 0.00042 69 0.03426 0.01728
29 0.00106 0.00045 70 0.03774 0.01940
30 0.00111 0.00048 71 0.04164 0.02188
31 0.00119 0.00052 72 0.04597 0.02476
32 0.00126 0.00056 73 0.05077 0.02809
33 0.00131 0.00059 74 0.05607 0.03193
34 0.00138 0.00063 75 0.06190 0.03632
35 0.00148 0.00070 76 0.06830 0.04131
36 0.00159 0.00079 77 0.07530 0.04694
37 0.00174 0.00088 78 0.08293 0.05327
38 0.00191 0.00098 79 0.09120 0.06033
39 0.00210 0.00107 80 0.10015 0.06816
40 0.00228 0.00119 81 0.10978 0.07681
41 0.00247 0.00131 82 0.12011 0.08630
42 0.00270 0.00145 83 0.13116 0.09668
43 0.00296 0.00159 84 0.14295 0.10796
44 0.00327 0.00173 85 0.15550 0.12017
45 0.00360 0.00188 86 0.16881 0.13332
46 0.00395 0.00203 87 0.18290 0.14743
47 0.00435 0.00220 88 0.19778 0.16248
48 0.00480 0.00239 89 0.21345 0.17846
49 0.00531 0.00259 90 0.22991 0.19536
50 0.00590 0.00280 91 0.24715 0.21313
51 0.00654 0.00304 92 0.26515 0.23174
52 0.00724 0.00331 93 0.28391 0.25112
53 0.00800 0.00362 94 0.30338 0.27121
54 0.00882 0.00396 95 0.32353 0.29193
55 0.00972 0.00435 96 0.34431 0.31318
56 0.01068 0.00477 97 0.36569 0.33488
57 0.01171 0.00523 98 0.38759 0.35690
58 0.01281 0.00574 99 0.40995 0.37914
59 0.01398 0.00631 100 0.43271 0.40147
60 0.01523 0.00695 101 1.00000 1.00000
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B.3 LTC Incidence Rates (Custodial Insurance, Japan)

Age ix (Male) iy (Female) Age ix (Male) iy (Female)

20 0.00010 0.00010 61 0.00374 0.00374
21 0.00010 0.00010 62 0.00425 0.00425
22 0.00010 0.00010 63 0.00483 0.00483
23 0.00010 0.00010 64 0.00549 0.00549
24 0.00010 0.00010 65 0.00625 0.00625
25 0.00011 0.00011 66 0.00711 0.00710
26 0.00011 0.00011 67 0.00808 0.00808
27 0.00011 0.00011 68 0.00919 0.00919
28 0.00011 0.00011 69 0.01046 0.01046
29 0.00011 0.00011 70 0.01190 0.01190
30 0.00012 0.00012 71 0.01355 0.01354
31 0.00012 0.00012 72 0.01542 0.01542
32 0.00012 0.00012 73 0.01755 0.01755
33 0.00013 0.00013 74 0.01999 0.01998
34 0.00014 0.00013 75 0.02276 0.02276
35 0.00014 0.00014 76 0.02591 0.02592
36 0.00015 0.00015 77 0.02951 0.02953
37 0.00016 0.00016 78 0.03361 0.03364
38 0.00017 0.00017 79 0.03828 0.03834
39 0.00018 0.00018 80 0.04360 0.04369
40 0.00027 0.00027 81 0.04967 0.04980
41 0.00030 0.00030 82 0.05657 0.05678
42 0.00034 0.00034 83 0.06445 0.06475
43 0.00039 0.00039 84 0.07343 0.07386
44 0.00044 0.00044 85 0.08366 0.08427
45 0.00049 0.00050 86 0.09262 0.09336
46 0.00056 0.00056 87 0.10039 0.10120
47 0.00064 0.00064 88 0.10841 0.10933
48 0.00073 0.00072 89 0.11671 0.11777
49 0.00082 0.00082 90 0.12529 0.12657
50 0.00093 0.00093 91 0.13421 0.13579
51 0.00105 0.00105 92 0.14351 0.14542
52 0.00119 0.00119 93 0.15323 0.15550
53 0.00135 0.00135 94 0.16345 0.16612
54 0.00154 0.00154 95 0.17346 0.17651
55 0.00174 0.00174 96 0.18055 0.18373
56 0.00198 0.00198 97 0.18696 0.19014
57 0.00225 0.00225 98 0.19302 0.19604
58 0.00255 0.00255 99 0.19870 0.20136
59 0.00290 0.00290 100 0.20405 0.20605
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