

G. Camarda Smooth Constrained Mortality Forecasting

Forecasting

3

G. Camarda Smooth Constrained Mortality Forecasting

HMD Users Conference Nov 2020

G. Camarda Smooth Constrained Mortality Forecasting

ecasting

7

HMD Users Conference Nov 2020

G. Camarda Smooth Constrained Mortality Forecasting

Results

Subnational forecasts

Conclusions

ined 🌘

Observing mortality patterns (over years)

CP-splines

000000000000000

Motivation *P*-splines for forecasting

Observ	ing mortality	patterns	(over	years)		
Motivation 000	<i>P</i> -splines for forecasting 00	<i>CP</i> -splines 00●000000000	Results 0000	Subnational forecasts	Conclusions	ined 🌘

Motivation *P*-splines for forecasting CP-splines Subnational forecasts Results 00000000000 Observing mortality patterns (over years)

ined 🎯

Observing mortality patterns (over years)

0000000000000 Observing mortality patterns (over years)

CP-splines

Motivation 000	<i>P</i> -splines for forecasting 00	<i>CP-splines</i>	Results 0000	Subnational forecasts	Conclusions	ined 🎯
<u>.</u> .						

Observing mortality patterns (over years)

Working on the shape

• Disregarding information about shapes seems unreasonable

- Future mortality *must* follow data-driven age-profiles and rate-of-change
- We constrain derivatives of future mortality to lay within certain confidence intervals of observed derivatives
- Asymmetric penalties are employed for this purpose:
 - within each iteration, whenever current estimations present derivatives (in future years) out of the desired intervals, a penalty intervenes
- Let's see how it works in action for a specific year (2035) and a specific age (50)

Motivation

P-splines for forecasting

Subnational forecasts

ined 🌘

15

ined 🎯

Constraining on derivatives in action

Results

MotivationP-splines for forecastingCP-splines0000000000000000

Subnational forecasts Conclusions ined

ined 🌘

17

Constraining on derivatives in action

Constraining on derivatives in action

Motivation P-splines for forecasting CP-splines

Outcomes for US, males

Log-mortality. Ages 0-105, observed years 1960-2016, forecast up to 2050

18

ined 🔞

Outcomes for US, males

Log-mortality. Ages 0-105, observed years 1960-2016, forecast up to 2050

HMD Users Conference Nov 2020 G. Camarda		Smooth	21							
Motivation	<i>P</i> -splines for forecasting	<i>CP-splines</i> 000000000000000	Results	Subnational forecasts	Conclusions	ined 🍥				
What	What I haven't shown here,									
	• but you can find in the paper below:									

- All associated equations
- Applications to more populations
- How infant mortality is addressed in a smoothing setting
- Bootstrap procedure to obtain confidence intervals
- Out-of-sample performance
- Comparison with other alternative methods
- Effect of changing time-window on the outcomes
- Sensitivity analysis on confidence level in rate-of-change over t
- Reproducible R-code

Camarda, C. G. (2019). Smooth Constrained Mortality Forecasting. *Demographic Research.* **41** (38), 1091-1130

23

ined 🌘

ined 🌘

Outcomes for US, males

Life Expectancy and Lifespan variability measure (e_0^{\dagger}) . Ages 0-105, observed years 1960-2016, forecast up to 2050

 HMD Users Conference Nov 2020
 G. Camarda
 Smooth Constrained Mortality Forecasting
 22

 Motivation occupation
 P-splines for forecasting occupation
 CP-splines occupation
 Subnational forecasts occupation
 Conclusions occupation

 Generalizing CP-splines
 CP-splines

- Recently, there has been a growing strand of research on so-called *coherent* forecasting
- What does it mean? Mortality forecast of
 - males and females from the same population
 - a group of countries
 - more causes of death
 - sub-populations belonging to the same country

The idea:

given forecast values for the whole country, constrain mortality differences between each sub-population and overall country to lay within (a range of) observed past differences

- Let's take Australia and its 8 territories/states
- Data: Females, Ages 0-100, Observed years 1971-2016, forecast up to 2050

G. Camarda Smooth Constrained Mortality Forecasting

Differences in future log-mortality with CP-splines

Differences in estimated smooth log-mortality

HMD Users Conference Nov 2020 G. Camarda		Smooth	Constrained Mortality Fored	casting	29		
Motivation 000	<i>P</i> -splines for forecasting	<i>CP-splines</i>	Results 0000	Subnational forecasts	Conclusions	ined 🌘	
Differences in future log-mortality with CP-splines							

95% CI of estimated & forecast (CP-splines) differences in log-mortality

Differences in future log-mortality with *CP*-splines

Differences with the 95% CI in estimated log-mortality

HMD Users Co	onference Nov 2020	G. Camarda Smooth Constrained Mortality Forecasting			30	
Motivation 000	<i>P</i> -splines for forecasting	<i>CP-splines</i>	Results 0000	Subnational forecasts	Conclusions	ined (
Constr	aining differe	nces: Coh	erent	CP-splines		

- Incorporate constraints on future differences as *CP*-splines do with relative derivatives
- Asymmetric penalty can be adapted
- Coherence with respect to known overall mortality preserved
- Each sub-population can be treated independently
- We achieve age-specific coherence in future years simultaneously
- Limits:
 - Knowledge about the overall future mortality is necessary
 - Range from past differences are kept in the future

Asymmetric penalty in action on differences

Actual, estimated and forecast life expectancy by (coherent) CP-splines. Australia and Victoria

35

000	00	0000000000000	0000	000000000000000000000000000000000000000	000		
Motivation	P-splines for forecasting	CP-splines	Results	Subnational forecasts	Conclusions	in	le

Forecast differences in log-mortality: Australia - Victoria

Estimated and forecast differences in log-mortality

HMD Users C	onference Nov 2020	G. Camarda	Smooth	Constrained Mortality Foree	casting	34		
Motivation 000	<i>P</i> -splines for forecasting	<i>CP-splines</i>	Results 0000	Subnational forecasts	Conclusions	ined 🌘		
Coherent forecast e_0 for Tasmania								

Actual, estimated and forecast life expectancy by (coherent) CP-splines. Australia and Tasmania

36

Coherent forecast e_0 for all territories in 2050. Females

	CP-splines	Coherent <i>CP</i> -splines	Δ
Australia	89.69	-	-
Australian Capital Territory	90.05	89.91	-0.14
New South Wales	89.75	89.64	-0.11
Northern Territory	86.57	86.11	-0.46
Queensland	90.18	89.90	-0.27
South Australia	89.49	89.73	0.24
Tasmania	87.64	88.32	0.68
Victoria	90.28	89.92	-0.36
Western Australia	90.20	90.08	-0.12

Forecast female life expectancy in 2050 by (coherent) $C\!P\text{-splines}.$ Australia and its territories

HMD Users Conference Nov 2020 G. Camarda		Smooth	Constrained Mortality Fored	casting	37	
Motivation 000	<i>P</i> -splines for forecasting 00	<i>CP</i> -splines	Results 0000	Subnational forecasts	Conclusions ●00	ined 🌘
Conclu	uding remarks	;				

- We combine a powerful statistical methodology with prior demographic information
- From *P*-splines we gain good fit, flexibility and smooth outcomes
- With additional constraints, we incorporate knowledge about mortality shapes to guide future developments
- We enforce shape constraints by asymmetric penalties on the observed mortality derivatives

CP-splines

• *CP*-splines can be extended to achieve coherent mortality forecast for multiple sub-populations

Subnational forecasts Conclu

ined 🌘

Coherent forecast e_0 for all territories in 2050. Males

	CP-splines	Coherent <i>CP</i> -splines	Δ
Australia	87.04	-	-
Australian Capital Territory	88.20	87.92	-0.29
New South Wales	87.47	87.08	-0.40
Northern Territory	81.78	83.13	1.35
Queensland	86.75	86.79	0.04
South Australia	86.88	86.93	0.05
Tasmania	84.94	85.78	0.85
Victoria	87.97	87.47	-0.51
Western Australia	87.49	87.33	-0.16

Forecast male life expectancy in 2050 by (coherent) *CP*-splines. Australia and its territories

HMD Users Conference Nov 2020 G. Camarda			Smooth (38		
Motivation 000	<i>P</i> -splines for forecasting	<i>CP-splines</i> 00000000000000	Results 0000	Subnational forecasts	Conclusions ○●○	ined 🎯
To-do	list					

- From a methodological perspective:
 - Addressing cohort effects by constraining derivatives over specific diagonals of the mortality surface
 - Using CP-splines to guide expert-based forecast approaches
 - Forecasting of cause of death data
 - Simultaneous CP-splines estimation for both sexes
- Further applications:
 - Coherent CP-splines on more heterogeneous sub-populations
 - CP-spline for creating future mortality scenarios
 - Calibrating the choice of possible future age pattern and time trends based on broader past experiences

Motivation 000	<i>P</i> -splines for forecasting	CP-splines	Results 0000	Subnational forecasts	Conclusions	ined <mark>(@</mark>
3 rd HMD Users Conference						

Smooth Constrained Mortality Forecasting with an extension to multi-population forecasts

Thanks for your attention. Comments and questions?

More info and R routines available on: sites.google.com/site/carlogiovannicamarda

HMD Users C	Conference Nov 2020	G. Camarda	Smooth C	Constrained Mortality Fored	asting	41	
Motivation 000	<i>P</i> -splines for forecasting	<i>CP</i> - splines	Results 0000	Subnational forecasts	Conclusions	ined 🎯	
The P	enalized IWLS	S					
 Given data: d = vec(D) e = vec(E) And model 							
$ln(oldsymbol{d}) = ln(oldsymbol{e}) + ln(oldsymbol{\mu}) \ = \ ln(oldsymbol{e}) + oldsymbol{\eta}$							
	$=$ ln($oldsymbol{e}$) + $oldsymbol{B}lpha$						
	$oldsymbol{B} = oldsymbol{B}_{y_1} \otimes oldsymbol{B}$ $lpha$: penalized	B _x d coefficients					
0	Estimate $lpha$ by p	penalized IWL	_S:				
$(oldsymbol{B}' ilde{oldsymbol{W}}oldsymbol{B}+oldsymbol{P}) ilde{lpha}=oldsymbol{B}' ilde{oldsymbol{W}} ilde{oldsymbol{z}}$							

where

•
$$\tilde{z} = (\boldsymbol{d} - \boldsymbol{e} * \tilde{\mu})/\boldsymbol{e} * \tilde{\mu} + \tilde{\eta}$$

• $\tilde{\boldsymbol{W}} = \operatorname{diag}(\boldsymbol{e} * \tilde{\mu})$

Motivation 000	<i>P</i> -splines for forecasting 00	CP-splines	Results 0000	Subnational forecasts	Conclusions 000	ined 🌘

Additional slides

HMD Users Conference Nov 2020		G. Camarda	Smooth Constrained Mortality Forecasting		casting	42	
Motivation 000	<i>P</i> -splines for forecasting	<i>CP-splines</i> 0000000000000	Results 0000	Subnational forecasts	Conclusions 000	ined 🎯	
Asymmetric penalty in formulas over $ages/1$							
	,	$\frac{\partial}{\partial a}\hat{\mu} \partial_{a}$	a) ∂				
		$\frac{\hat{\mu}}{\hat{\mu}} = \frac{\partial a}{\partial a}$ in(μ) = $\overline{\partial a}$	$-\eta = D_a^- \alpha$,			

where

$$oldsymbol{D}_a^{t_1} = oldsymbol{B}_{t_1} \otimes oldsymbol{C}_a \ \ \, ext{ and } \ \ \, oldsymbol{C}_a = rac{1}{h} \left[egin{matrix} q^{-1} oldsymbol{B}_a^k - egin{matrix} q^{-1} oldsymbol{B}_a^{k-1} \end{bmatrix}$$

with h, q and k being knot-distance, degree and positions of the original B-spline basis, B_a .

- δ_L^a and δ_U^a : lower and upper bounds of CI of the derivatives
- Keep same constraints for all years \Rightarrow augment δ over both dimensions:

$$egin{array}{rcl} egin{array}{rcl} egin{arra$$

• Similar computation is performed over years

43

G Camarda Su

onclusions ined 🔞

Asymmetric penalty in formulas over ages/2

• New penalized IWLS:

$$(\breve{B}' V \tilde{W} \breve{B} + P + P^a + P^t) \tilde{\alpha} = \breve{B}' V \tilde{W} \tilde{z} + p^a + p^t$$

Results

where

• As example, lower bounds over ages:

$$\begin{array}{lll} \boldsymbol{P}_{L}^{a} & = & \kappa \; \boldsymbol{D}_{a}^{t_{1}+t_{2}\prime} \operatorname{diag}(\boldsymbol{s} \; \boldsymbol{v}_{L}^{a}) \; \boldsymbol{D}_{a}^{t_{1}+t_{2}} \\ \boldsymbol{p}_{L}^{a} & = & \kappa \; \boldsymbol{D}_{a}^{t_{1}+t_{2}\prime} \operatorname{diag}(\boldsymbol{s} \; \boldsymbol{v}_{L}^{a}) \; \boldsymbol{g}_{L}^{a} \end{array} \quad \text{with} \quad \boldsymbol{v}_{L}^{a} = \begin{cases} 0 & \text{if} \; \; \boldsymbol{D}_{a}^{t_{1}+t_{2}} \tilde{\alpha} \geqslant \boldsymbol{g}_{L}^{a} \\ 1 & \text{if} \; \; \boldsymbol{D}_{a}^{t_{1}+t_{2}} \tilde{\alpha} < \boldsymbol{g}_{L}^{a} \end{cases} \end{array}$$

where

$$oldsymbol{v}_L^a = egin{cases} 0 & ext{if} & oldsymbol{D}_a^{t_1+t_2} ilde{lpha} \geqslant oldsymbol{g}_L^a \ 1 & ext{if} & oldsymbol{D}_a^{t_1+t_2} ilde{lpha} < oldsymbol{g}_L^a \ , \end{cases}$$

and s is a 0/1 vector equal to 1 when the constraint is to be applied (future years).

HMD Users Conference Nov 2020		G. Camarda	Smooth Constrained Mortality Forecasting			45
Motivation	P splines for forecasting	CP splines	Recults	Subpational forecasts	Conclusions	
000	00	000000000000000000000000000000000000000	0000	000000000000000000000000000000000000000	000	ined 🎯

Outcomes for Denmark, females

Log-mortality. Ages 0-105, observed years 1960-2016, forecast up to 2050

47

ined 🎯

Outcomes for Denmark, females

Log-mortality. Ages 0-105, observed years 1960-2016, forecast up to 2050

HMD Users Conference Nov 2020	G. Camarda	Smooth Constrained Mortality Forecasting	46

Results

Subnational forecasts

Outcomes for Denmark, females

CP-splines

Motivation *P*-splines for forecasting

Ages 0-105, observed years 1960-2016, forecast up to 2050

Confidence level in rate-of-change over time

HMD Users Conference Nov 2020

G. Camarda Smooth Constrained Mortality Forecasting