

Aggregation of capital requirements in Solvency II standard formula

Conference, SCOR Sweden Re, 2017-10-13

Magnus Carlehed, Head of Risk, Swedbank Group Savings

Swedbank

Retail bank

- Four home markets (Sweden, Estonia, Latvia, Lithuania)
- 7.2 million private customers, 0.6 million corporate customers
- 13 900 employees
- Also has asset management and insurance companies as subsidaries
- Swedbank's insurance business
 - Swedbank Försäkring AB, Life insurance, Sweden, AUM 170bn SEK
 - Swedbank Life Insurance SE, Baltics, AUM 5bn SEK
 - Swedbank P&C Insurance SA, Non-Life Insurance, Baltics

Solvency Capital Requirement (SCR)

Solvency II: The three pillars

- Pillar Solvency Capital Requirements (SCR)
- Pillar 2 Governance
- Pillar 3 Reporting

SCR_{non-life}

Lifecat

NL_{Prem&Res}

= adjustment for the

future profit sharing

risk mitigating effect of

NLLapse

SCRintang

₫

SCR

Identify risk exposures (example from life insurance)

Shocking Market Valued Balance Sheet (MVBS)

- VAR approach calibrated to a 99,5% confidence level

Solvency Capital Requirements Aggregation

Two risk factors

- In all examples we will look at two risk types X and Y, e.g. Equity and Lapse
- In principle, the correct capital requirement is the 99.5% quantile of the value distribution, when we simulate both X and Y simultaneously \rightarrow difficult

The standard formula is a simplification (1)

In the Standard Formula, we stress one risk factor at the time, by a prescribed stress.

X	Y	Value f(X,Y)	Capital requirement
0	0	0	N/A
$q_X = -0.5$	0	-75	<i>C_X</i> = 75
0	$q_{Y} = -0.3$	-300	$C_{Y} = 300$

- $C_X = -f(q_X, 0), C_Y = -f(0, q_Y)$, where q_X and q_Y are quantiles of X and Y, and f is the "value function".
- The value function *f* describes how the value of our portfolio varies with *X* and *Y*, and is obviously very important for the outcome

© Swedbank Information class Date Internal 2014-11-20

The standard formula is a simplification (2)

In the Standard Formula, we then aggregate the individual capital requirements C_X and C_Y using a prescribed "correlation" α .

•
$$SCR = SCR(\alpha) := \sqrt{C_X^2 + 2\alpha C_X C_Y + C_X^2}$$

Example: Two risks, each with a capital requirement of 100

α	Capital requirement (SCR)
1.0	200
0.75	187
0.5	173
0.25	158
0	141
- 0.25	122

- What is the correct *α*?
 - That depends on *f*, but also on the underlying joint distribution of *X* and *Y*.
- What is a prudent α ?
 - For Life Risks and Market Risks, Solvency II has $\alpha = 0.25$.

Everything is normal...

- Solvency II does not assume any specific joint distribution for the risk factors.
- We will assume bivariate normal distribution of X and Y, with mean 0, variance 1 and correlation ρ.
- The theme of my work is:

Given ρ , if we want SCR(α) to equal the correct capital requirement (from the joint distribution), how shall we choose α ?

• Naive conclusion: $\alpha = \rho$

Special case: The "volume dependent" situation in a life portfolio

Volume dependent case in life insurance

- A portfolio of unit-linked contracts. The company receives fees that are proportional to the Assets Under Management (AUM).
- After expenses, this gives rise to a number of cash flows that are discounted to today with a (hopefully) positive net sum = Own Funds (OF). Statically, the Own Funds are approximately proportional to AUM.
- Losing AUM "over-night", due to e.g. mass lapse or equity crash, means losing OF overnight in a proportional way.

Surprisingly, if the stresses are not too small, the correct α is negative, even for highly positive ρ . "A lapsed portfolio can't crash."

Plot of how α depends on the stress and on ρ

1. Small stress and high correlation gives positive α . 2. Large stress gives negative α . 3. Zero or negative correlation gives negative α , regardless of stress.

Case study: Three portfolios in a life insurance company

Three portfolios of a life insurance company

- P1, unit-linked
- P2 and P3, guarantees
- Equity stress: Full stress of EQ Type 1 as -39% (no stress of Type 2 or Fixed Income instruments). Half stress -19.5%.
- Lapse: Full stress: Mass lapse, 40%. Half stress 20%.

Risk matrices (a small number of simultaneous stresses for each portfolio)

simulation)

Simulation approach ("internal model")

- Distribution assumptions:
 - EQ: Student-t distributed
 - Lapse: another heavy-tailed distribution
 - Independence between EQ and Lapse
- Draw a large number of scenarios (EQ,Lapse) from the assumed distribution.
- Use the risk matrices to calculate the value (OF) of the portfolio given each scenario ("value response function")
- Find the correct quantile of the OF value changes, and compare with $SCR(\alpha)$; the latter is found analytically.
- Back out α .

Results and conclusion

	EQ	Lapse	Sum	Both	Standard Formula, $\alpha = 0.25$	Simulation, $\rho = 0$
P1	1893	1647	3540	2835	2802	2288
P2	60	58	118	91	87	72
P3	143	185	328	285	260	223

The found α are -0.19, -0.19, -0.12, for the three portfolios, respectively. Here $\rho = 0$. However, some analysis shows that we are in the area where α is negative for all ρ .

The prescribed α =0.25 is too large!

Thank you!

magnus.carlehed@swedbank.com