Aggregation of capital requirements in Solvency II standard formula
Conference, SCOR Sweden Re, 2017-10-13

Magnus Carlehed, Head of Risk, Swedbank Group Savings
Swedbank

• Retail bank
 – Four home markets (Sweden, Estonia, Latvia, Lithuania)
 – 7.2 million private customers, 0.6 million corporate customers
 – 13 900 employees
 – Also has asset management and insurance companies as subsidiaries

• Swedbank’s insurance business
 – Swedbank Försäkring AB, Life insurance, Sweden, AUM 170bn SEK
 – Swedbank Life Insurance SE, Baltics, AUM 5bn SEK
 – Swedbank P&C Insurance SA, Non-Life Insurance, Baltics
Solvency Capital Requirement (SCR)
Solvency II: The three pillars

Pillar I – Solvency Capital Requirements (SCR)

Pillar 2 – Governance

Pillar 3 – Reporting

Pillar I
- **Solvency Capital Requirements**
 - Minimal Capital Requirements (MCR)
 - Solvency Capital Requirements (SCR)
 - Standard model or Internal model
 - Capital structure
 - Mark to market/model

Pillar II
- **Governance and Risk Management**
 - System for:
 - Governance
 - Risk Management
 - Internal Control
 - Own Risk and Solvency Assessment

Pillar III
- **External and Internal Reporting**
 - IT-system support
 - Data Quality
 - Reporting structure and procedures
Identify risk exposures (example from life insurance)

Identifying risk exposure to future profits

- Future cash flows are exposed to a number of risks that, if crystallized, may have an adverse affect on Own Funds.

SII risk taxonomy

- The main exposures applicable to SFAB business is highlighted above.
Shocking Market Valued Balance Sheet (MVBS)
- VAR approach calibrated to a 99.5% confidence level

Assets

- Market Value of Assets
- Best estimate
- Own Funds

Liabilities

- Net Asset Value
- Risk Margin
- TVOG
- Net Asset Value
- Risk Margin
- TVOG

MVBS post a 99.5% event

TVOG

Net Asset Value

SCR

Own Funds

Own Funds
Solvency Capital Requirements
Aggregation
Two risk factors

• In all examples we will look at two risk types X and Y, e.g. Equity and Lapse

• In principle, the correct capital requirement is the 99.5% quantile of the value distribution, when we simulate both X and Y simultaneously → difficult
The standard formula is a simplification (1)

In the Standard Formula, we stress one risk factor at the time, by a prescribed stress.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Value (f(X,Y))</th>
<th>Capital requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>(q_X = -0.5)</td>
<td>0</td>
<td>-75</td>
<td>(C_X = 75)</td>
</tr>
<tr>
<td>0</td>
<td>(q_Y = -0.3)</td>
<td>-300</td>
<td>(C_Y = 300)</td>
</tr>
</tbody>
</table>

• \(C_X = -f(q_X, 0), C_Y = -f(0, q_Y) \), where \(q_X \) and \(q_Y \) are quantiles of \(X \) and \(Y \), and \(f \) is the “value function”.
• The value function \(f \) describes how the value of our portfolio varies with \(X \) and \(Y \), and is obviously very important for the outcome.
The standard formula is a simplification (2)

In the Standard Formula, we then aggregate the individual capital requirements C_X and C_Y using a prescribed “correlation” α.

- $SCR = SCR(\alpha) = \sqrt{C_X^2 + 2\alpha C_X C_Y + C_Y^2}$
Example: Two risks, each with a capital requirement of 100

<table>
<thead>
<tr>
<th>α</th>
<th>Capital requirement (SCR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>200</td>
</tr>
<tr>
<td>0.75</td>
<td>187</td>
</tr>
<tr>
<td>0.5</td>
<td>173</td>
</tr>
<tr>
<td>0.25</td>
<td>158</td>
</tr>
<tr>
<td>0</td>
<td>141</td>
</tr>
<tr>
<td>-0.25</td>
<td>122</td>
</tr>
</tbody>
</table>

- What is the correct α?
 - That depends on f, but also on the underlying joint distribution of X and Y.
- What is a prudent α?
 - For Life Risks and Market Risks, Solvency II has $\alpha=0.25$.
Everything is normal…

- Solvency II does not assume any specific joint distribution for the risk factors.
- We will assume bivariate normal distribution of X and Y, with mean 0, variance 1 and correlation ρ.
- The theme of my work is:

 Given ρ, if we want $\text{SCR}(\alpha)$ to equal the correct capital requirement (from the joint distribution), how shall we choose α?

- Naive conclusion: $\alpha = \rho$
Special case: The “volume dependent” situation in a life portfolio
Volume dependent case in life insurance

• A portfolio of unit-linked contracts. The company receives fees that are proportional to the Assets Under Management (AUM).
• After expenses, this gives rise to a number of cash flows that are discounted to today with a (hopefully) positive net sum = Own Funds (OF). Statically, the Own Funds are approximately proportional to AUM.
• Losing AUM “over-night”, due to e.g. mass lapse or equity crash, means losing OF overnight in a proportional way.

Surprisingly, if the stresses are not too small, the correct α is negative, even for highly positive ρ. “A lapsed portfolio can’t crash.”
Plot of how α depends on the stress and on ρ

1. Small stress and high correlation gives positive α.
2. Large stress gives negative α.
3. Zero or negative correlation gives negative α, regardless of stress.
Case study: Three portfolios in a life insurance company
Three portfolios of a life insurance company

• P1, unit-linked
• P2 and P3, guarantees
• Equity stress: Full stress of EQ Type 1 as -39% (no stress of Type 2 or Fixed Income instruments). Half stress -19.5%.
• Lapse: Full stress: Mass lapse, 40%. Half stress 20%.
Risk matrices (a small number of simultaneous stresses for each portfolio)

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>0</th>
<th>½</th>
<th>1</th>
<th></th>
<th>P3</th>
<th>0</th>
<th>½</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>946</td>
<td>1893</td>
<td></td>
<td></td>
<td>0</td>
<td>66</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>½</td>
<td>823</td>
<td>1593</td>
<td>2364</td>
<td></td>
<td></td>
<td>½</td>
<td>92</td>
<td>147</td>
<td>210</td>
</tr>
<tr>
<td>1</td>
<td>1647</td>
<td>2240</td>
<td>2835</td>
<td></td>
<td></td>
<td>1</td>
<td>185</td>
<td>228</td>
<td>285</td>
</tr>
</tbody>
</table>

Rows = Lapse
Columns = EQ
(Each cell requires a large stochastic simulation)
Simulation approach ("internal model")

• Distribution assumptions:
 – EQ: Student-t distributed
 – Lapse: another heavy-tailed distribution
 – Independence between EQ and Lapse

• Draw a large number of scenarios (EQ,Lapse) from the assumed distribution.

• Use the risk matrices to calculate the value (OF) of the portfolio given each scenario ("value response function")

• Find the correct quantile of the OF value changes, and compare with $SCR(\alpha)$; the latter is found analytically.

• Back out α.
Results and conclusion

The found α are -0.19, -0.19, -0.12, for the three portfolios, respectively. Here $\rho = 0$. However, some analysis shows that we are in the area where α is negative for all ρ.

The prescribed $\alpha=0.25$ is too large!
Thank you!
magnus.carlehed@swedbank.com